View original document

The full text on this page is automatically extracted from the file linked above and may contain errors and inconsistencies.

Federal Reserve Bank of Chicago

Monetary Policy and Uncertainty in an
Empirical Small Open Economy Model
Alejandro Justiniano and Bruce Preston

WP 2009-21

Monetary Policy and Uncertainty in an Empirical
Small Open Economy Model
Alejandro Justiniano
Federal Reserve Bank of Chicagoy

Bruce Preston
Columbia University and NBERz

March 14, 2008

Abstract
This paper explores optimal policy design in an estimated model of three small open
economies: Australia, Canada and New Zealand. Within a class of generalized Taylor
rules, we show that to stabilize a weighted objective of output, consumer price in‡
ation
and nominal interest variation optimal policy does not respond to the nominal exchange.
This is despite the presence of local currency pricing and due, in large part, to observed
exchange rate disconnect in these economies. Optimal policies that account for the
uncertainty of model estimates, as captured by the parameters’ posterior distrbution,
similarly exhibit a lack of exchange rate response. In contrast to Brainard (1967), the
presence of parameter uncertainty can lead to more or less aggressive policy responses,
depending on the model at hand.

This is a signi…cantly revised version of a paper circulated under the title “Small Open Economy DSGE
Models: Speci…cation, Estimation and Model Fit” The authors thank Steve Durlauf, Marc Giannoni, Thomas
.
Lubik, Adrian Pagan, Frank Schorfheide, two anonymous referees, seminar participants at the Australian
National University, Columbia University, the Federal Reserve Bank of Atlanta, and participants at the joint
CAMA and Reserve Bank of New Zealand conference on “Macroeconometrics and Model Uncertainty” and
especially our discussant Domenico Giannone. The usual caveat applies. The views expressed in this paper
are those of the authors’and should not be interpreted as re‡
ecting the views of the Federal Reserve Bank of
Chicago or any person associated with the Federal Reserve System.
y
Federal Reserve Bank of Chicago, Economic Research, 230 South LaSalle St., Chicago, IL 60604. E-mail:
ajustiniano@frbchi.org.
z
Department of Economics, Columbia University, 420 West 118th St. New York, NY 10027. E-mail:
bp2121@columbia.edu.

1

1

Introduction

Recent theoretical analyses have emphasized the importance of pricing to market assumptions
for optimal exchange rate policy, monetary policy and macroeconomic dynamics. Whether a
country has producer currency pricing or local currency pricing can give rise to rather di¤erent
policy recommendations, even when the sole of objective of policy is to stabilize the aggregate
in‡
ation rate. For instance, Devereux and Engel (2003) show in a two country model with
local currency pricing that optimal monetary policy stipulates stabilization of the nominal
exchange rate. Similarly, Monacelli (2005) shows that local currency pricing induces a tradeo¤ in stabilizing aggregate price in‡
ation and the output gap that is not present when the
law of one price holds.
Despite these theoretical contributions there has been relatively little work on policy evaluation in empirical small open economy models. This paper seeks to …ll this gap by exploring
optimal policy design within an estimated structural model using data for Australia, Canada
and New Zealand. Of particular interest is whether policies in a class of generalized Taylor
rule optimally respond to exchange rate variations as predicted by theory. Moreover, we assess
the consequence of various sources of model uncertainty for the design of optimal monetary
policy. To our knowledge, this is the …rst such study in a fully estimated small open economy
model.1
The analysis is pursued using generalizations of the small open economy framework proposed by Gali and Monacelli (2005) and Monacelli (2005), in which a small and large country
each specialize in the production of a continuum of goods subject to imperfect competition and
price rigidities.2 Following the latter, imports are subject to local currency pricing (through
what could be considered a retail sector providing distribution services) giving rise to deviations from the law of one price. We depart from their framework, by considering incomplete
asset markets, the addition of other rigidities — such as indexation and habit formation —
1

Levin, Onatski, Williams, and Williams (2005) pursue a similar analysis for the closed economy case.
The model is technically a semi-small open economy model, as domestic goods producers have some
market power. The model shall nonetheless be referred to as a small open economy. Note also that our
analysis appeals to an earlier interpretation of the Gali and Monacelli (2005) of a small-large country pair,
rather than as an analysis of a continuum of small open economies.
2

1

as well as a large set of disturbances which have been found crucial in taking closed economy
models to the data as documented by, inter alia, Christiano, Eichenbaum, and Evans (2005)
and Smets and Wouters (2003).
Using the empirical model, the optimal policy rule within a generalized class of Taylortype rule is determined to minimize a weighted objective function in the variance of aggregate
consumer price in‡
ation, output and interest rates, subject to the constraints imposed by the
estimated model. The Taylor rule posits that nominal interest rates are adjusted in response
to output, output growth, in‡
ation, nominal exchange rate growth, and past interest rates.
Optimization occurs subject to two di¤erent assumptions about the central bank’ knowledge
s
of the economy. First, policy is determined assuming estimated model parameters are known
with certainty to the policymaker. Second, we consider optimal policy that results from taking
into account all uncertainty regarding model parameters by using the posterior distribution
of our estimates. This is rendered feasible by adopting a Bayesian approach to inference.
The central insights from our analysis are as follows. First, we …nd that optimal policies
do not respond to the nominal exchange rate. This is true regardless of whether parameter
uncertainty is taken into account or not. Furthermore, this result is robust to a wide range of
weight combinations for the components of the loss function; to the set of observables used to
estimate the model; and the precise shocks included in estimation. This …nding contrasts with
Smets and Wouters (2002) which provides evidence that optimal policies stipulate a response
to exchange rate variations.
The …nding that it is not optimal to respond to exchange rate variation can be sourced
to speci…c properties of the empirical model. There exists a “disconnect” between nominal
exchange rate movements and the evolution of domestic series. Indeed, cost-push and risk
premium shocks account for between 69 and 84 percent of variation in the exchange rate,
while accounting for a substantially lower share of the variation in output, interest rates
and aggregate in‡
ation across these three small open economies. Active stabilization of the
nominal exchange rate exacerbates variability in output, in‡
ation and nominal interest rates
by connecting the evolution of these series more tightly to cost-push and risk premium shocks.
And, even if this disconnect were not too strong, active stabilization of nominal exchange rates

2

in the class of policies considered would still engender greater volatility in domestic variables.
Second, the implications of parameter uncertainty for monetary policy design are ambiguous. Depending on the country, the weight given to output stabilization, and the speci…c
policy coe¢ cient under consideration, policy can be more or less aggressive. The classic attenuation result of Brainard (1967) need not obtain, though our …ndings are consistent with
multivariate generalizations of that analysis by Chow (1975). Similar results have also been
documented for the closed economy case in the robust control literature — see Giannoni
(2002). We conclude that the implications of parameter uncertainty for policy design need to
be assessed on a case-by-case basis.
In exploring the robustness of our conclusions, we give particular attention to the modeling
of the foreign block, which in the baseline model is …tted to observed U.S. series. In an
alternative model, the foreign block is treated as latent. By confronting the model with
fewer observable series, greater ‡
exibility exists to …nd mechanisms that could warrant an
exchange rate channel for output and in‡
ation stabilization. This is not the case and our
characterization of optimal policy remains qualitatively unchanged.
An emergent issue in our robustness analysis concerns the impact of parameter identi…cation for the design of optimal policy. For Australia, modeling the foreign block as latent gives
rise to two modes with almost identical posterior densities. One is shown to favor a fairly high
degree of nominal rigidities, while the other presents more persistent and volatile technology
shocks. Although both modes con…rm our conclusion that it is not optimal to respond to
exchange rate variations, the policy coe¢ cients on in‡
ation and output growth are di¤erent,
and each policy engenders rather di¤erent losses. We source these discrepancies to changes
in the implied contribution of shocks and the transmission mechanisms of disturbances.
A number of recent papers have raised concerns about identi…cation in DSGE models —
see Lubik and Schorfheide (2005) and Justiniano and Preston (2006) for discussions in the context of open economy models. More generally, Beyer and Farmer (2005), Fukac, Pagan, and
Pavlov (2006), Canova and Sala (2005), Cochrane (2007) and Iskrev (2007) explore sources of
identi…cation problems and their implications for inference and speculate on its consequences
for policy evaluation. Our discussion provides a novel example of the problems that identi…-

3

cation pose for policy design and underscores that care is warranted in the estimation of this
class of models.
This paper most closely related to ours is Smets and Wouters (2002) and the references
therein on policy evaluation in empirical small open economy models. Lubik and Schorfheide
(2003) also consider whether there is evidence that Australia, Canada, New Zealand and the
United Kingdom have had monetary policies that depend on nominal exchange rate variations.
However, they do not address the question of optimal policy or the consequences of model
uncertainty. Our analysis also builds on the ever growing literature on estimating small open
economy models using Bayesian methods — see Ambler, Dib, and Rebei (2004), Bergin (2003,
2004), Del Negro (2003), Dib (2003), Ghironi (2000), Justiniano and Preston (2004, 2006),
Lubik and Schorfheide (2003, 2005), Lubik and Teo (2005) and Rabanal and Tuesta (2005).
The paper proceeds as follows. Section 2 lays out the theoretical model. Section 3 discusses
the data. Section 4 outlines the estimation methodology and adopted priors. Section 5
presents the baseline estimation results and properties of the model implied second order
moments. Section 6 presents the optimal policy exercises and assesses the implications of
parameter uncertainty for policy design. Section 7 analyzes the robustness of our conclusions
to the speci…cation of the foreign block. Section 8 concludes.

2

A Simple Small Open Economy Model

The following section sketches the derivation of key structural equations implied by the model
proposed by Monacelli (2005) and its closely related precursor Gali and Monacelli (2005)
when allowing for incomplete asset markets, habit formation and indexation of prices to past
in‡
ation. These papers extend the microfoundations of the kind described by Clarida, Gali,
and Gertler (1999) and Woodford (2003) for analyzing monetary policy in a closed economy
setting to an open economy context. For additional detail the reader is encouraged to consult
Monacelli (2005).

4

2.1

Households

Households are assumed to maximize
E0

1
X

t

~g;t
"

t=0

where Nt is the labor input; Ht

"

hCt

Ht )1

(Ct

Nt1+'
1+'

1
1

#

is an external habit taken as exogenous by the

household; ; ' > 0 are the inverse elasticities of intertemporal substitution and labor supply
respectively; and ~g;t is a preference shock. Ct is a composite consumption index
"
Ct = (1

1

1

) CH;t +

1

1

1

CF;t

where CH;t and CF;t are Dixit-Stiglitz aggregates of the available domestic and foreign produced goods given by
21
3""1
Z
" 1
CH;t = 4 CH;t (i) " di5

and

CF;t

0

where

21
3""1
Z
" 1
= 4 CF;t (i) " di5
0

is the share of foreign goods in the domestic consumption bundle;

> 0 the elasticity

of substitution between domestic and foreign goods; and " > 1 is the elasticity of substitution
between types of di¤erentiated domestic or foreign goods.
Assuming the only available assets are one period domestic and foreign bonds, optimization
occurs subject to the ‡ budget constraint
ow
Pt Ct + Dt + et Bt = Dt

1

(1 + ~t 1 ) + et Bt
{

1

1 + ~t
{

1

t

(At ) + Wt Nt +

H;t

+

F;t

+ Tt

for all t > 0, where Dt denotes the household’ holding of one period domestic bonds, and Bt
s
holdings of one period foreign bonds with corresponding interest rates ~t and ~t . The nominal
{
{
exchange rate is et . Pt , PH;t , PF;t and P correspond to the domestic CPI, domestic goods
~
prices, the domestic currency price of imported goods and the foreign price respectively and
are formally de…ned below. Wages Wt are earned on labor supplied and

H;t

and

F;t

denote

pro…ts from holding shares in domestic and imported goods …rms. Tt denotes lump-sum taxes
and transfers. Following Benigno (2001), Kollmann (2002) and Schmitt-Grohe and Uribe
(2003), the function

t

( ) is interpretable as a debt elastic interest rate premium given by
h
i
~t
At +
t = exp
5

where
et 1 Bt 1
~
Y Pt 1

At

is the real quantity of outstanding foreign debt expressed in terms of domestic currency as a
fraction of steady state output and ~ t a risk premium shock. The adopted functional form
ensures stationarity of the foreign debt level in a log-linear approximation to the model.
Implicitly underwriting this expression for the budget constraint is the assumption that
all households in the domestic economy receive an equal fraction of both domestic and retail
…rm pro…ts. Hence, nominal income in each period is Wt Nt +
rium equals PH;t YH;t + (PF;t

H;t

+

F;t

which in equilib-

et Pt ) CF;t for all households. Absent this assumption, which
~

imposes complete markets within the domestic economy, the analysis would require modeling
the distribution of wealth across agents. That same assumption also ensures that households face identical decision problems and therefore choose identical state-contingent plans
for consumption.
The household’ optimization problem requires allocation of expenditures across all types
s
of domestic and foreign goods, both intratemporally and intertemporally. This yields the
following set of optimality conditions. The demand for each category of consumption good is
CH;t and CF;t (i) = (PF;t (i) =PF;t )

CH;t (i) = (PH;t (i) =PH;t )

CF;t

for all i with associated aggregate price indexes for the domestic and foreign consumption
bundles given by PH;t and PF;t : The optimal allocation of expenditure across domestic and
foreign goods implies the demand functions
CH;t = (1
where Pt = (1

) (PH;t =Pt )

and CF;t =

Ct

(PF;t =Pt )

Ct

(1)

1

1
1
) PH;t + PF;t

1

is the consumer price index. Allocation of expendi-

tures on the aggregate consumption bundle and optimal labor supply satisfy
t

= ~g;t (Ct
"

t

= ~g;t Pt Nt' =Wt
"

6

Ht )

1=

(2)
(3)

and portfolio allocation is determined by the optimality conditions
~
t et Pt
t Pt

for Lagrange multiplier

t.

= Et (1 + ~t )
{

(4)

~
t+1 t+1 et+1 Pt+1

= Et [(1 + ~t )
{

(5)

t+1 Pt+1 ]

The latter condition when combined with (2) gives the usual Euler

equation.

2.2

Domestic Producers

There are a continuum of monopolistically competitive domestic …rms producing di¤erentiated
goods. Calvo-style price-setting is assumed, allowing for indexation to past domestic goods
price in‡
ation. Hence, in any period t, a fraction 1
fraction 0 <

H

and

H;t

H

of …rms set prices optimally, while a

< 1 of goods prices are adjusted according to the indexation rule
log PH;t (i) = log PH;t

where 0

H

1

(i) +

H

(6)

H;t 1

1 measures the degree of indexation to the previous period’ in‡
s
ation rate

= log(PH;t =PH;t 1 ). Since all …rms having the opportunity to reset their price in
0

period t face the same decision problem they set a common price PH;t . The Dixit-Stiglitz
aggregate price index therefore evolves according to the relation
2
!1 " 31=(1
H
0 (1 ")
PH;t 1
5
PH;t = 4(1
+ H PH;t 1
H ) PH;t
PH;t 2

")

:

(7)

Firms setting prices in period t face a demand curve
yH;T (i) =

PH;t (i)
PH;T

PH;T
PH;t

1
1

H

!

"

(8)

CH;T + CH;T

for all t and take aggregate prices and consumption bundles as parametric. Good i is produced
using a single labor input Nt (i) according to the relation yH;t (i) = ~a;t Nt (i) where ~a;t is an
"
"
exogenous technology shock.
The …rm’ price-setting problem in period t is to maximize the expected present discounted
s
value of pro…ts
Et

1
X
T =t

T t
H Qt;T yH;T

"

(i) PH;t (i)
7

PH;T
PH;t

1
1

H

PH;T M CT

#

where M CT = WT =(PH;T ~a;T ) is the real marginal cost function for each …rm, assuming
"
homogenous factor markets, subject to the demand curve, (8). The factor

T t
H

in the …rm’
s

objective function is the probability that the …rm will not be able to adjust its price in the
next (T

2.3

t) periods. The …rm’ optimization problem implies the …rst order condition
s
"
#
1
X
PH;T 1 H
H
T t
Et
PH;T M CT = 0:
H Qt;T yH;T (i) PH;t (i)
PH;t 1
1
H
T =t

(9)

Retail Firms

Retail …rms import foreign di¤erentiated goods for which the law of one price holds at the
docks. In determining the domestic currency price of the imported good, …rms are assumed
to be monopolistically competitive. This small degree of pricing power leads to a violation of
the law of one price in the short run.
Retail …rms face a Calvo-style price-setting problem allowing for indexation to past in‡
ation. Hence, in any period t, a fraction 1
0<

F

F

of …rms set prices optimally, while a fraction

< 1 of goods prices are adjusted according to an indexation rule analogous to (6).

The Dixit-Stiglitz aggregate price index consequently evolves according to the relation
2
!1 " 31=(1 ")
F
0 (1 ")
PF;t 1
5
(10)
PF;t = 4(1
+ F PF;t 1
F ) PF;t
PF;t 2
and …rms setting prices in period t face a demand curve
CF;T (i) =

PF;T
PF;t

PF;t (i)
PF;T

1
1

F

!

"

(11)

CF;T

for all t and take aggregate prices and consumption bundles as parametric. The …rm’ prices
setting problem in period t is to maximize the expected present discounted value of pro…ts
"
#
1
X
PF;T 1 F
T t
Et
eT PF;T (i)
~
H Qt;T CF;T (i) PF;t (i)
PF;t 1
T =t
subject to the demand curve, (11). The factor

T t
F

in the …rm’ objective function is the
s

probability that the …rm will not be able to adjust its prices in the next (T

t) periods. The

…rm’ optimization problem implies the …rst order condition
s
"
#
1
X
PF;T 1 F
H
T t
Et
eT PH;T (i) = 0:
~
F Qt;T PF;t (i)
PF;t 1
1
H
T =t
8

2.4

International Risk Sharing

From the asset pricing conditions that determine domestic and foreign bond holdings, the
uncovered interest rate parity condition
Et

t+1 Pt+1 [(1

+ ~t )
{

(1 + ~t ) (~t+1 =~t )
{ e
e

t+1 ]

=0

(12)

follows, placing a restriction on the relative movements of the domestic and foreign interest
rate, and changes in the nominal exchange rate.
The real exchange rate is de…ned as qt
~
price fails to hold, we have ~ F;t

et Pt =Pt : Since Pt = PF;t , when the law of one
~

et Pt =PF;t 6= 1, which de…nes what Monacelli (2005) calls
~

the law of one price gap. The models of Gali and Monacelli (2005) and Monacelli (2005) are
respectively characterized by whether or not ~ F;t = 1.

2.5

General Equilibrium

Goods market clearing requires
YH;t = CH;t + CH;t

(13)

in the domestic economy. The model is closed assuming foreign demand for the domestically
produced good is speci…ed as
CH;t =
where

PH;t
P

Yt

> 0. This demand function is standard in small open economy models (see Kollmann

(2002) and McCallum and Nelson (2000)) and nests the speci…cation in Monacelli (2005) by
allowing

to be di¤erent from , the domestic elasticity of substitution across goods in the

domestic economy, in order to give additional ‡
exibility in the transmission mechanism of
foreign disturbances to the domestic economy. However, our results are una¤ected by the
parametrization of this demand function.3 Domestic debt is assumed to be in zero net supply
so that Dt = 0 for all t.4
3

Constraining to equal results in identical insights from the estimation, and therefore we report results
based on this more general speci…cation.
4
A similar condition holds for the foreign economy once it is noted that domestic holdings of foreign debt,
Bt , is negligible relative to the size of the foreign economy.

9

The analysis considers a symmetric equilibrium in which all domestic producers setting
prices in period t set a common price PH;t . Similarly, all domestic retailers choose a common
price PF;t . Finally households are assumed to have identical initial wealth, so that each faces
the same period budget constraint and therefore makes identical consumption and portfolio
decisions.
Finally, monetary policy is assumed to be conducted according to a Taylor-type rule
discussed in the subsequent section. Fiscal policy is speci…ed as a zero debt policy, with taxes
equal to the subsidy required to eliminate the steady state distortion induced by imperfect
competition in the domestic and imported goods markets.

2.6

Log-linear approximation to the model

The empirical analysis employs a log-linear approximation of the model’ optimality conditions
s
around a non-stochastic steady state. We here discuss the key structural equations that
emerge from this analysis. All variables are properly interpreted as log deviations from their
respective steady state values. Relations pertaining to the domestic economy are discussed,
followed by those for the foreign economy.
A log linear approximation to the domestic household’ Euler equation (5) provides
s
ct

hct

1

= Et (ct+1

hct )

1

(1

h)(it

Et

t+1 )

+

1

(1

h) ("g;t

Et "g;t+1 ) :

(14)

In the absence of habit formation, when h = 0, the usual Euler equation obtains. To derive
a relationship in terms of domestic output, a log-linear approximation to the goods market
clearing condition implies:
(1

) ct = yt

(2

) st

F;t

yt

(15)

where
F;t

(et + pt )

pF;t

denotes the law of one price gap, the di¤erence between the world currency price and the
domestic currency price of imports, and st = pF;t

pH;t gives the terms of trade. Time

di¤erencing the terms of trade de…nition implies
st =

F;t

10

H;t :

(16)

Equilibrium domestic consumption depends on domestic output and three sources of foreign
disturbance: the terms of trade, deviations from the law of one price and foreign output.
The terms of trade and the real exchange rate are related according to
qt = et + pt

pt =

F;t

+ (1

(17)

) st

so that the real exchange rate varies with deviations from the law of one price and also
di¤erences in consumption bundles across the domestic and foreign economies.
A log-linear approximation to domestic …rms’optimality conditions for price setting and
the price index, (7), imply the relation
H;t

H;t 1

=

1
H

(1

H ) (1

H

) mct + Et (

(18)

H;t )

H;t+1

where
mct = 'yt

(1 + ') "a;t + st + (1

h)

1

(ct

hct 1 )

is the real marginal cost function of each …rm. Thus domestic price in‡
ation,

H;t

= pH;t

pH;t 1 , is determined by current marginal costs, expectations about in‡
ation in the next period
and the most recent observed in‡
ation rate. The latter appears as a result of price indexation.
In the case of zero indexation to past in‡
ation,

= 0, the usual forward looking Phillips curve

arises. In contrast to a closed economy setting, domestic goods price in‡
ation depends on
three sources of foreign disturbance. There is a direct and indirect e¤ect of the terms of trade
on …rms’ marginal costs, with the latter operating through the terms of trade implications
for equilibrium consumption. There are also the e¤ects of foreign output and deviations from
the law of one price (recall relation (15)).
The optimality conditions for the retailers’pricing problem yields
F;t

F;t 1

=

1
F

(1

F ) (1

)

F

F;t

+ Et (

Here, in‡
ation in the domestic currency price of imports,
current marginal cost conditions given by

F;t

F;t

F;t+1

= pF;t

F;t )

+ "cp;t :

(19)

pF;t 1 , is determined by

and expectations about next period’ in‡
s
ation

rate. A cost-push shock has also been added, capturing ine¢ cient variations in mark-ups.
Again, that prices are indexed to past in‡
ation induces a history dependence on the most
11

recent observed in‡
ation rate. The domestic CPI and home goods prices are related according
to
=

t

H;t

+

(20)

st :

The CPI and domestic goods price in‡
ation di¤er insofar as imported goods prices deviate
from domestic goods prices, with the di¤erence weighted by the importance of those goods in
the CPI — recall equation (16).
The uncovered interest-rate parity condition gives
(it

Et

t+1 )

it

Et

t+1

= Et qt+1

at

t

(21)

while the ‡ budget constraint implies
ow
1

c t + at =

at

st +

1

F;t

+ yt

(22)

where at = log(et Bt =(Pt Y )) is the log real net foreign asset position as a fraction of steady
state output.5
The model is closed by specifying monetary policy which is conducted according to the
Taylor-type rule
it =

i it 1

+

t

+

y yt

+

y

yt +

e

et + "M;t :

(23)

The nominal interest rate is determined by past interest rates and also responds to the current
all goods CPI in‡
ation rate, output, output growth and the change in the nominal exchange
rate. The …nal term, "M;t , is a monetary policy shock or implementation error in the conduct
of policy.6
The domestic block of the economy is therefore given by equations (14)-(23) in the unknowns ct ; yt ; it ; qt ; st ;

t;

H;t ;

F;t ;

F;t ;

at : Combined with the processes for the ex-

ogenous disturbances f"a;t ; "M;t ; "g;t ; "s;t :"cp;t g and f t ; yt ; it g ; and the de…nitions
5

st =

In steady state, the foreign economy is assumed to have a zero debt-to-gdp ratio.
Policy is assumed to respond to the linear detrended level of output and the change in this measure as
opposed to the model theoretic measure of the output gap. This is motivated by recent research suggesting
that model theoretic output gap measures do not accord with more traditional measures of economic slack
used by actual policymakers — see Neiss and Nelson (2005) and Andreas, Nelson, and Lopez-Salido (2005).
This has relevance given our interest in assessing the historical stance of policy.
6

12

st

st

1

and

qt = qt

qt 1 , these relations constitute a linear rational expectations model

which can be solved using standard methods. Together these relations also comprise the equations used to construct the likelihood for estimation. The disturbances f"a;t ; "g;t ; "s;t g are
assumed to be independent AR(1) processes and f"M;t g an i.i.d. process. The determination
of the foreign block f t ; yt ; it g is discussed in the subsequent section. In estimation, we only
make use of observable series for fyt ; it ;

t;

qt ; s t ;

t;

yt ; it g and therefore exploit only a

subset of cross-equation restrictions implied by the model.

2.7

The Foreign Economy

In Monacelli (2005) the foreign economy is speci…ed as the closed economy variant of the
model described above. However, because the foreign economy is exogenous to the domestic
economy, we have some ‡
exibility in specifying the determination of foreign variables. Rather
than take a literal interpretation of the Monacelli model, we instead assume that the paths
of f t ; yt ; it g are determined by a vector autoregressive processes of order two.

3

Data

For all three countries, estimation uses quarterly data on output, in‡
ation, interest rates,
the real exchange rate and the terms of trade. GDP is per capita in log deviations from
a linear trend. The in‡
ation series corresponds to the annualized quarterly log-di¤erence
in the consumer price index (all goods), which includes both home and imported goods.
For Australia, an adjustment is made to this series to take into account the e¤ects of the
introduction of the goods and services tax in 2000-2001.

For Canada, we use an in‡
ation

measure excluding food and energy, given numerous references to this core series in the conduct
of monetary policy by the Bank of Canada. Similar considerations to those in Australia dictate
adjusting the large outlier in the …rst quarter of 1991 with the use — for that year only —
of a measure that also excludes the e¤ects of indirect taxes. Finally, we use the cash rate in
Australia, and, for Canada and New Zealand, averages of 3-month bank rates (all expressed
in annualized percentages) for interest rates.
All Australian data were downloaded from the Statistical Tables published by the Reserve
13

Bank of Australia. For Canada and New Zealand all data were obtained from Data Stream
International. We constructed a model consistent real exchange rate using U.S. price data
discussed below, each country’ CPI — as described above — and the bilateral nominal
s
exchange rate. The real exchange rate is expressed in log-di¤erences for the estimation. The
terms of trade are measured as the price of imports to exports using the corresponding price
de‡
ators from the national accounts in each country. As with the real exchange rate, we use
the log-di¤erence of this series when taking the model to the data.
For speci…cations in which the foreign block is observable we assume it to be reasonably
proxied by U.S. data. The U.S. series are the annualized quarterly log percentage change
in the CPI, the log deviations of per capita GDP from a linear trend and the Fed Funds
rate (annualized percentage), all taken from the Database at the Federal Reserve Bank of
St. Louis. Our samples run from 1984:I until 2007:I for Australia, and 1988:III-2007:I for
New Zealand, following the move in each country towards a ‡
exible exchange rate regime.
For Canada, the sample covers the period 1982:I-2007:I, to coincide with the abandonment
of monetary targeting with the Bank of Canada.7
In summary, for each country the model is taken to the data using 8 observable series and
the same number of disturbances. We demean the series before the estimation.

4

Estimation

Our objective is not only to obtain point estimates for the parameters of the DSGE model
speci…ed in the previous section, but also to provide accurate measures of uncertainty surrounding these estimates. Therefore, using Bayesian methods, we aim to characterize the posterior distribution of the model parameters

2

. Given a prior, ( ), the posterior density

is proportional to the product of the likelihood and the prior. As described by Schorfheide
(2000), posterior draws for this density can be generated using a random walk metropolis
algorithm and the state-space representation implied by the solution of the linear rational
expectations model and the Kalman …lter. Measures of location and scatter are obtained
7

We use four observations before the start of the sample dates above listed to deal with the initialization
of the Kalman …lter. These four initial data points are excluded from the computation of the likelihood and
consequently from our estimates. Note that this does not represent the use of a training sample prior.

14

from the draws by computing, for instance, the median and standard deviations as well as
posterior probability bands. Furthermore, given the draws, it is possible to characterize the
posterior distribution of any functional of interest by computing the corresponding functional
for each of the draws. This property will later be exploited to analyze the implication of
model uncertainty on optimal policy.
An optimization algorithm is used to obtain an initial estimate of the mode. We start
the maximization algorithm from a number of random starting values — before launching
the MCMC chains — and check that the optimization routine always converges to the same
value.8 This is a useful diagnostic for the presence of identi…cation problems, conditional on
a given set of priors. Indeed, our experience is that this is crucial to identifying local modes
which may achieve almost identical values of the posterior with sometimes rather di¤erent
con…gurations of coe¢ cients. Of course, this procedure remains silent on the role of priors
in achieving local identi…cation, which may be discerned by looking at univariate or two
dimensional plots of the likelihood or the Hessian. The existence of multiple modes, related
identi…cation issues, and their implications for policy design are the focus of a later section.
Having ensured a unique mode for the baseline model, the Hessian from the optimization
routine is used as a proposal density, properly scaled to yield a target acceptance rate of
25%. For the MCMC results, …ve chains of 100,000 draws each were initialized by randomly
selecting starting values (using an over dispersed normal density centered at the mode with a
scaled-up Hessian as variance covariance matrix). For each chain, following a burn-in phase
of 40,000 draws, convergence is monitored using CUMSUM plots and, for the overall chains,
the potential scale reduction factors and con…dence interval variants of Brooks and Gelman
(1998).
The priors are described in the …rst three columns of Table 1. The same priors are used for
all countries except for the openness parameter, ; which we calibrate to the average share of
8

For the baseline model discussed over 50 optimization runs were launched using random draws from the
prior or an equally spaced grid covering the parameter space. All runs converged to the same mode. Note
that obtaining di¤erent modes with substantially di¤erent values of the posterior/likelihood need not re‡
ect
identi…cation issues but rather the properties of the optimization routine in place. In this respect, we di¤er
from Canova and Sala (2005) in that we view the convergence to multiple modes with similar …t as problematic,
not the convergence to multiple modes per se.

15

exports and imports to GDP in each country using national account data. Over our sample
period this results in values for

of 0.185, 0.28 and 0.29 for Australia, Canada and New

Zealand. Attempts to estimate this parameter often led to implausibly low values.
We adopt fairly loose Gamma priors, with large tails, for the inverse Frisch elasticity
of labor supply as well as the elasticity of substitution between domestic and foreign goods,
considering the diverse estimates emerging from macro and micro studies. Similarly, our prior
for the intertemporal elasticity of substitution easily accommodates values of 1 or 0.5 as used
in the international business cycle literature, as well as substantially larger estimates that
may result from the absence of capital and the consumption of durables in our model — see
Rotemberg and Woodford (1999). Priors for the Calvo price parameters assume the presence
of nominal rigidities, centered at a compromise between traditionally large values obtained in
macro studies and recent evidence of greater ‡
exibility in prices using disaggregated data for
the U.S. — see Bils and Klenow (2004). For imported goods, it may be reasonable to assume
a lower degree of stickiness. Nonetheless, estimated open economy models tend to produce
fairly large deviations from the law of one price. Therefore, just as in the case of domestic
prices, we opt for a compromise in choosing our prior. We follow Lubik and Schorfheide
(2003) in specifying the prior for the parameters of the Taylor rule, except for output growth
which is not considered in their analysis.
Habit and indexation have been found to be crucial for …tting closed economy models
which suggests considering possibly large values for the parameters governing these intrinsic
mechanisms of persistence. However, a prori it is possible that the dynamics in the foreign
block may provide an alternative source of persistence in the model. To allow for this possibility, we specify very ‡ priors on habit as well as the indexation coe¢ cients of both domestic
at
and imported goods.
The exogenous stochastic disturbances (risk premium, technology, preference and import
cost-push shocks) are assumed to be fairly persistent, re‡
ected in a beta prior with a mean of
0.8 for the autoregressive coe¢ cients. For the VAR(2) in the foreign block, we choose priors
suggested by pre-sample individual autoregressions.9
9

For the …rst order autoregressive coe¢ cients, we specify a N (0:59; 0:22 ) for in‡
ation and N (0:9; 0:12 ) for
2
output and interest rates. Second order own lags have a N (0; 0:25 ) prior, while the o¤-diagonal elements of

16

Finally, the priors for the standard deviations of the shocks are the same for foreign and
domestic shocks. To allow for a wide set of values a priori we specify Inverse-Gamma 1
densities, with in…nite variance by …xing the degrees of freedom at 2. The scale parameters
are chosen to obtain a mean of 0.5. We do not normalize the impact of any shocks as is
sometimes done in closed economy models.

5

Results

The following section details a number of properties of the estimated models. The baseline
estimates are presented for each country and the model’ ability to …t particular second order
s
characteristics of the data discussed.

5.1

Estimates

Table 1 reports the estimation results for the baseline model in which the foreign block is
observed. The intertemporal elasticity of substitution is a little below unity, taking values
around 0.75 for Australia and New Zealand, and a larger value of 1.1 in Canada. The inverse
elasticity of labor supply, a parameter notoriously poorly identi…ed in DSGE models, takes
values slightly above unity, although has fairly wide posterior probability bands. Optimal
price setting in the production of home goods displays some variation across countries. At
the median of our parameter estimates, …rms reoptimize prices approximately every 5, 3 and
3 quarters in Australia, Canada and New Zealand, respectively. The latter numbers accord
well with survey evidence for the U.S. in Blinder, Canetti, Lebow, and Rudd (1998) and
values reported in Woodford (2003). Prices in the imported goods sector for these countries
are adjusted more frequently than home goods prices, being reoptimized on average every 2.2,
1.7 and 1.4 quarters.
The elasticity of substitution between domestic and foreign goods is somewhat low, with
median estimates between 0.6 and 0.76, despite a prior that allows for far larger values.
These values have relevance for papers such as Obstfeld and Rogo¤ (2000) which proposes a
the …rst and second lag matrices are speci…ed a priori as N (0; 0:32 ) and N (0; 152 ) respectively. Results using
a prior centered at the pre-sample OLS estimates of a VAR(2) did not alter our results although it induced
some convergence problems in the mcmc chains in the case of Canada.

17

model in which a fairly large elasticity of substitution between domestic and foreign goods —
together with transaction costs — help explain a number of prominent puzzles in international
macroeconomics. In estimated open economy models inference on this parameter has tended
to produce either very small elasticities, particularly with complete markets, or seemingly
implausibly large values — see Rabanal and Tuesta (2005) and Adolfson, Laseen, Linde, and
Villani (2005) respectively.
Habit formation appears to play a less prominent role than in other studies, having a
maximum value of 0.33 in Australia. Even more surprisingly, price indexation presents a
limited source of endogenous persistence in both domestic and imported goods sectors, with
coe¢ cients values of at most 0.11. These …ndings contrast with many closed economy analyses — see, for example, Christiano, Eichenbaum, and Evans (2005) and Smets and Wouters
(2003) — and the closely related open economy analysis Justiniano and Preston (2006).10
The di¤erences relative to closed economy models are driven by the fact that the open economy dimension of the model explains some domestic ‡
uctuations. The di¤erences relative to
open economy models is most likely due to the chosen set of shocks: in particular, due to the
presence of a cost-push shock in the imported good sector as opposed to the pricing of domestically produced goods. Because of this assumption, the persistence of home goods in‡
ation
is in large part explained by real factors according to the assumed theory of marginal cost;
that is, the autocorrelation of technology and preference shocks imparts inertia in domestic
in‡
ation rather than relying on a cost-push shock for the high frequency variation for the
change in home goods prices and a high degree of indexation for its persistence. Regardless
of these modeling assumptions, the results on optimal policy are una¤ected.11
The policy parameters bear some resemblances across countries. Di¤erences emerge in
the responses to in‡
ation, the nominal exchange rate and output growth. The response to
10

An earlier version of this paper discussed this property of the estimates in great detail, using posterior
odds ratios to examine relative …t across a range of models. Due to the number of results now reported, this
discussion is excluded, but such model comparison exercises would reveal that models that excluded price
indexation provide a superior chacterization of the data for these three economies. The inclusion or exclusion
of these model features matters not for our policy conclusions.
11
Had a cost-push shock been included in home goods pricing, as in Justiniano and Preston (2006), it would
have explained a signi…cant part of in‡
ation variation and real factors would be less important. Moreover, an
earlier version of this paper excluded the cost-push shock in imports, yielding higher estimates of indexation
but with the same insights on policy design

18

in‡
ation is largest in New Zealand and smallest in Australia. The reverse is true for the
coe¢ cient on output growth. The estimated responses to the level of output are small,
consistent with substantial evidence from closed economy models. Finally, the response to
the nominal exchange rate is largest in Canada, with a coe¢ cient of 0.29. This is consistent
with the …ndings of Lubik and Schorfheide (2003).
As expected, the estimates of the foreign block (excluded due to space considerations) are
remarkably similar across countries. Even though the foreign block is exogenous, in the sense
that economic developments in each small country under consideration cannot feedback into
the foreign series, it is not true that the foreign block is exogenous econometrically speaking.
The cross-equation restrictions that result from uncovered interest parity tie the estimates of
the foreign data generating process to domestic parameters.
Finally, the cost-push, preference and the risk premium disturbances are highly persistent, having autoregressive coe¢ cients between 0.87 and 0.96 across all three countries. The
estimated standard deviations are for the most part plausible, with the biggest di¤erences
across countries emerging for the cost-push shock which is the most volatile disturbance for
all economies. The standard deviations are 1.6, 2.01 and 7.27 for Australia, Canada and New
Zealand. It is worth bearing in mind that the terms of trade and exchange rates (nominal
and real) in these countries are quite volatile, particularly for New Zealand. Moreover, as we
do not to normalize these shocks — e.g. modify them such that they enter the corresponding
equation with a unit coe¢ cient — their scale is a¤ected by other estimates and hence di¢ cult
to interpret at face value.

5.2

Second order properties

Table 2 presents a set of second order moments for the data and the corresponding statistics
implied by the estimated model. We report medians as well as (5; 95) percent probability
bands for the moments of DSGE which account for both parameter and small sample uncertainty.12 Providing information on second order properties provides a measure of absolute …t
rather than posterior odds ratios, for example, that characterize relative …t.
12

For each paramater draw obtained with the MCMC chains we simulate 500 samples of length equal to
the data after discarding the …rst 50 observations.

19

Taking Australia …rst, the small open economy model matches the second order properties of the data quite well. The median implied standard deviations for in‡
ation, the real
exchange rate and output are very close to their empirical counterparts. While this is not
true for interest rates and the terms of trade, the empirical standard deviations are nonetheless contained in the 90 percent posterior bands generated by the model, albeit close to their
edges. As for persistence, the model does very well once again for in‡
ation and output, with
the 90 percent interval for the remaining observable series encompassing the autocorrelations
in the data except for the interest rate which is marginally outside its band. Although we
use …rst di¤erences in the real exchange rate and the terms of trade in the estimation, we
wish to check that the model can account for the persistence in their levels, since this has
been a challenge for open economy models. In both cases the autocorrelation in the data fall
comfortably within the estimated 90 percent bands for the same parameter in the model.
For Canada, the model provides a similarly reasonable characterization of the data. The
model matches the volatility of in‡
ation, output, real exchange rate and interest rate. The
only exception is the terms of trade which is somewhat over predicted in the model. The serial
correlation properties are for the most part well matched, except for the autocorrelation in
the real exchange rate, which is outside the posterior bands particularly for …rst di¤erences.
Finally, for New Zealand similar remarks to Australia apply for the standard deviations. For
the autocorrelations, the model matches the corresponding sample moments, with the exception of real exchange rate and terms of trade growth. This is not surprising, given the random
walk hypothesis of the exchange rate, and the associated di¢ culty that structural models have
…tting the persistence and volatility of these series — see, for example, Chari, Kehoe, and
McGrattan (2002) and Justiniano and Preston (2006) for calibration and estimation based
studies.
Overall, the model performs reasonably well for all three countries, perhaps with the
exception of the serial correlation properties of the log di¤erence in the real exchange rate,
a feature shared by most structural and reduced form open economy models. Nonetheless in
all countries the level of the real exchange rate is correctly characterized as a very persistent
process.

20

6

Monetary Policy Design and Uncertainty

Recent theoretical analyses have emphasized the importance of pricing to market assumptions
for optimal exchange rate and monetary policy. Whether a country has producer currency
pricing or local currency pricing can give rise to di¤erent policy recommendations, even when
the sole objective of policy is to stabilize the aggregate in‡
ation rate. For instance, Devereux
and Engel (2003) show in a two country model with local currency pricing that optimal
monetary policy stipulates stabilization of the nominal exchange rate. Similarly, Monacelli
(2005), in a model nested by the one estimated in this paper, shows that deviations from
the law of one price lead to a trade-o¤ in the stabilization of in‡
ation and output in the
absence of ine¢ cient variations in markups. His analysis overturns the closed economy result
that stabilizing the in‡
ation rate serves to simultaneously stabilize economic activity and
introduces an explicit motive to respond to the exchange rate even when consumer prices are
the sole objective of policy.
Despite these theoretical contributions there has been relatively little work on policy evaluation in empirical open economy models. In the small open economy literature, Smets and
Wouters (2002) consider the implications of imperfect pass through for optimal monetary
policy, demonstrating that welfare maximizing policies introduce a motive to stabilize the
exchange rate (see also the references therein). Lubik and Schorfheide (2003), rather than
explore the question of optimal policy, instead seek to identify if in the small open economies
considered here (as well as the United Kingdom) there is evidence that monetary authorities
have responded to nominal exchange rate ‡
uctuations. They …nd that only in the case of
Canada does there exist strong evidence supporting such responses.
The following sections build on these analyses by considering optimal policy in our estimated model. Two exercises are pursued. First we look at the design of optimal monetary
policies within the class of Taylor-type rule adopted in the empirical model. Policy rule coe¢ cients are chosen to minimize a quadratic loss function assuming that the remaining estimated
model parameters take their median values. This elucidates whether optimal policy requires
nominal interest rates to be adjusted in response to nominal exchange rate ‡
uctuations or
not.
21

Second, we determine the optimal policy rule that takes into account all parameter uncertainty implied by the estimated model. That is, we compute the policy rule that minimizes
the expected loss, where expectations are also taken with respect to the posterior distribution of the remaining model parameters. As explained later, this analysis is facilitated by
a Bayesian approach, which also allows taking into account the covariance between inferred
parameters when quantifying the dispersion around our estimates. This permits addressing
an old question of whether parameter uncertainty leads to more cautious policy prescriptions,
as suggested by the seminal analysis of Brainard (1967).

6.1

The Optimal Policy Problem

The policymaker seeks to minimize the objective function
W0 = E0

1
X

t

(24)

Lt

t=0

where 0 <

< 1 coincides with the household’ discount factor and
s
Lt =

is the period loss at any date t

t

2

+

y yt

2

+

i it

2

(25)

0. The policymaker is therefore assumed to stabilize variation

in aggregate consumer price in‡
ation, output and nominal interest rates, where the weights
x;

i

> 0 determine the relative priority given to each of these objectives. To simplify

further, we consider the limiting case of this objective when

goes to unity. This transforms

the analysis of the loss function (25) into the analysis of the objective
W0 ( ) = var ( t ) +
a weighted sum of variances, and

y var (yt )

+

i var (it )

makes explicit the dependency of the variance calculation

on model parameters.
The assumption of arbitrary weights ( y ;

i ),

and the assertion that consumer price in‡
a-

tion, output and nominal interest rate variation ought to be stabilized is questionable. To
address these concerns the robustness of our conclusions is gauged by analyzing the above
loss function as the weights ( y ;

i)

are varied over a …ne grid on the unit square. Our con-

clusions are largely una¤ected by the precise choice of weights in the objective function. For
22

presentation purposes, we focus on how varying the relative weight on output stabilization
a¤ects outcomes, since this dimension has played a prominent role in the analysis of optimal
policy — see Svensson (1999, 2000).
Attention is restricted to optimal policies within a class of Taylor-type rules of the form
it =

i it 1

+

t

+

y yt

+

y

yt +

e

(26)

et :

As in estimation, policy is assumed to adjust nominal interest rates in response to contemporaneous values of in‡
ation, output, output growth, the nominal exchange rate growth and
lagged observations of the nominal interest rate. Note that the response coe¢ cients in equation (26) are not multiplied by (1
of rules having

i)

as in (23) since we wish to consider the possibility

very close to one. Care should be taken in comparing the optimal policy

i

coe¢ cients described in subsequent sections to the corresponding estimated policy parameters
of section 5.
To …x notation, partition the estimated parameters for a given model as
where

s

i;

;

p;

13
s g.

f

6.2

= f p;

collects structural parameters other than those determining policy, denoted
y;

y;

Let

s

e

.

Conformably partition the associated parameter space as

sg
p

=
=

denote the estimated median value of the structural parameters.

Optimal Policy under Parameter Certainty

In our …rst policy experiment the optimal policy coe¢ cients are chosen assuming the structural
parameters are known and equal to

s;

the median of the MCMC draws. Thus the e¤ects of

parameter uncertainty are ignored and optimal policy is determined as
p

= arg min W0
p2

p

p

j

s

where the minimization is subject to the constraints that policy is given by (26) and aggregate
dynamics are as determined in section 2. The …nal restriction placed on the policy design is
that the coe¢ cient on the lagged nominal interest rate must satisfy 0

i

1. The study of

super-inertial interest rate rules is left for future research.
13

Note that the MCMC posterior simulator produces joint and marginal posterior densities which validate
this approach.

23

Table 3 provides results for this optimal policy problem for three di¤erent objective functions, which di¤er according to the weight assigned to output stabilization.14 Consider the
results for Australia when output is assigned a weight of

y

= 0 in the objective function.

Optimal policies are highly inertial, characterized by a unit coe¢ cient on the lagged interest
rate, prescribing the stance of policy in terms of the evolution of the …rst di¤erence of nominal interest rates, rather than the level. The optimal response to in‡
ation may seem smaller
relative to typical estimates of this parameter and the estimated policy reaction function in
section 5. Recall, however, that these are not multiplied by one minus the coe¢ cient on
lagged interest rates, and that optimal policies exhibit a greater degree of inertia. In contrast,
the response to output, output growth and the nominal exchange rate is zero to the second
decimal place.
The second and third columns give results for an objective function that places greater
weight on output stabilization. The response to output and output growth tends to rise with
greater concern for output variability. For a unit weight on output in the objective function,
both coe¢ cients are roughly ten times that observed in the …rst column. Concomitantly, the
variances of in‡
ation and output under optimal policy increase and decline respectively as
greater weight is placed on output stabilization. Hence a Taylor frontier is mapped out, delineating the inherent in‡
ation-output stabilization trade-o¤ present in this model. Regardless
of the relative weights appearing in the objective function, it is never optimal to respond
strongly to nominal exchange rate variations.
This last result is particularly surprising: despite the open economy dimension of the
model and the existence of deviations from the law of one price, optimal policy does not
prescribe a direct response to exchange rate ‡
uctuations to ensure that its objectives of stable
output and in‡
ation are met. This is at odds with the theoretical literature which underscores
models characterized by local currency pricing should give cause to respond to exchange rate
‡
uctuations. Furthermore, it also suggests the …nding of Lubik and Schorfheide (2003), of
14

As throughout the paper, the variances correspond to median volatilities from 100 samples of length equal
to the data after discarding the …rst 50 observations. Qualitatively, results are unchanged when using the
asymptotic variances instead. The approach pursued here has the advantage of incorporating small sample
uncertainty into the analysis.

24

little evidence that the Reserve Bank of Australia has responded to exchange rate ‡
uctuations,
is part of an optimal policy framework, at least in this restricted family of Taylor-type rules.
The broad theme of these results are applicable to Canada and New Zealand. Policies
are highly inertial, leading to a di¤erence rule for the nominal interest rate. Both countries
respond more aggressively to in‡
ation than does Australia, and both show little response to
the level of real economic activity regardless of the objective function. Higher preference for
output stabilization is associated with stronger responses to output growth. Again there is
little evidence supporting the desirability of policies responding to the nominal exchange rate.
These conclusions are valid regardless of the weight placed on output and interest rate
stabilization. Figure 1 plots the optimal exchange rate coe¢ cient as the weights ( y ;

i)

are

varied on the unit square. This coe¢ cients attains maximum values of 0.01, 0.05 and 0.02 for
Australia, Canada and New Zealand.15
Further insights into the characteristics of these optimal rules emerge from comparing
the standard deviations under optimal policy and the volatility observed in the data. For
a zero weight on output stabilization, the standard deviations of in‡
ation implied by these
policy rules are 0.13, 0.03 and 0.06 for Australia, Canada and New Zealand — see Table
3. Comparison to Table 2 makes clear that optimal policy implies very limited variation in
in‡
ation relative to historical data, roughly approximating in‡
ation targeting. As output
stabilization becomes relatively important, the case for strict in‡
ation targeting weakens for
obvious reasons — though the implied volatilities for in‡
ation are close those observed in
the data for the case of Australia and Canada. This is consistent with the notion of ‡
exible
in‡
ation targeting — see Svensson (1997, 1999).

6.3

Sourcing the Result

The striking result from these optimal policy exercises is the lack of response of nominal
interest rates to exchange rate ‡
uctuations. One interpretation of this …nding is that the trade15

Note that the coe¢ cient magnitudes themselves are not su¢ cient to infer the relevance of the exchange
rate — one also must consider the magnitude of exchange rate variations. Furthermore, a one standard
deviation change in nominal exchange rate growth would imply – partial equilibrium– the most a 10 basis
in
at
point increase in nominal interest rates for the case of Canada. The response coe¢ cients for Australia and
New Zealand are considerably smaller.

25

o¤ generated by deviations from the law of one price is not particularly important for imported
goods price in‡
ation dynamics and therefore CPI in‡
ation dynamics. However, this is not
generically true for the presented theoretical model. Consequently, it is worth considering
further why the empirical model identi…es a parameter con…guration that engenders optimal
policies without an active role for exchange rate stabilization.
The …nding that it is not optimal to respond to the exchange rate can be sourced to two
features of the empirical model. First, there exists a “disconnect” of the real and nominal
exchange rates from the remaining domestic series — see Obstfeld and Rogo¤ (2000), among
others, for a detailed discussion. Indeed, variance decompositions reveal that cost-push shocks
in the imported goods sector and risk premium shocks together account for 84, 69 and 83
percent of the variation in nominal exchange rates in Australia, Canada and New Zealand,
with almost identical shares for the real exchange rate. At the same time, both shocks
play a substantially more muted role for in‡
ation, output and domestic interest rates.16 A
consequence of this disconnect is that by responding to the exchange rate, monetary policy
ties the evolution of the domestic economy to cost-push and risk premium shocks, and may
give rise to increased variability.
Second, even if risk premium and cost-push shocks are not negligible for output, in‡
ation
and interest rate variations, policy responses to stabilize the exchange rate exacerbate variability in these series. Figures 2 and 3 shed light on these mechanisms, presenting impulse
responses of various series for cost-push and risk premium shocks in the case of Australia.
Similar insights hold for the other two countries. Three impulse responses are shown for each
variable, each being associated with three di¤erent policy coe¢ cients on the exchange rate.
The baseline with

e

= 0 corresponds to the optimal policy coe¢ cients when

y

= 0:5 and re-

maining model parameters as shown in Table 1.17 The second and third impulse responses are
generated assuming, counterfactually, that

e

= 0:2 and

= 0:4; holding all other parameters

…xed.
16
For Australia the combined variance share for risk premium and cost-push shocks in output, in‡
ation
and interest rates are 16, 17 and 22 percent respectively; for Canada and the same series order: 3, 15 and 16
percent; while for New Zealand these shocks combined explain 1, 21 and 19 percent respectively.
17
Similar insights result from using the estimated — as opposed to optimal — policy coe¢ cients.

26

Consider the case of the cost-push shock when

e

= 0 (solid lines). An innovation to

this disturbance causes an appreciation (i.e. decline) in the exchange rate (nominal and real)
and a negative deviation in the law of one price gap. Because the latter is the marginal
cost of imported goods some of the direct e¤ect of the cost-push shocks on imported goods
price in‡
ation is o¤set. Regardless, imported goods prices rise substantially leading domestic
demand to shift towards domestically produced goods, although price responses in the home
goods sector are rather muted. Nominal and real interest rates fall slightly to counteract the
rise in all goods in‡
ation engendered by this shock.
Increasingly strong responses to the exchange rate (dashed lines) tend to counteract the
degree of exchange rate appreciation, which reduces the decline in the marginal costs of
imported goods and leads to larger price pressures in this sector. Greater declines in real
rates also exacerbate domestic price in‡
ation: a given sized cost-push shock is therefore more
in‡
ationary. Moreover, the stronger response to the exchange rate triggers larger variations in
nominal interest rates and output. As a result, responding to exchange rates induces increased
variability and larger losses in equation (25).
In the case of risk premium shocks, the depreciation (i.e. increase) in the exchange rate
calls for an interest rate tightening. This has two counteracting e¤ects on in‡
ation. On
the one hand, responding to exchange rate movements serves to stabilize imported goods
price in‡
ation. On the other hand, higher nominal and real interest rates tend to cause a
contraction in domestic activity: output and domestic in‡
ation fall. This might suggest that
there is some scope to stabilize in‡
ation through an exchange rate channel. However, two
points should be made. First, responding more aggressively to exchange rate variations leads
to larger movements in nominal rates and a larger contraction in domestic activity — these
e¤ects outweigh the positive stabilizing in‡
uence on import goods price in‡
ation leading to
larger losses.
Second, the optimal policy rules determined in the previous section are not conditional on
a given shock. They are unconditional optimal policies. While our discussion of the e¤ects
of cost-push shocks and risk premium shocks can provide intuition for why more aggressive
exchange rate policy is undesirable, it by no means rules out the possibility that, conditional

27

on a single shock, there may be welfare improvements from managing exchange rate variations.
However, taking into account all sources of variation and the associated property of exchange
rate disconnect, our results suggest that stabilizing exchange rate ‡
uctuations is undesirable.
These …ndings di¤er from Smets and Wouters (2002) which presents evidence in an empirical small open economy model with local currency pricing that optimal policy does respond
to exchange rate ‡
uctuations.18 While the precise details of the underlying models di¤er, they
do have the same basic elements. There are two sources of discrepancy in the two studies
worth mentioning. First, Smets and Wouters use the theoretical based output gap for their
analysis, while we work with detrended output — see footnote 6. Second, our analyses di¤er
in the estimation methodology. Smets and Wouters estimate a small subset of model parameters by matching impulse response functions. Our conjecture is that confronting the model
with data on a greater number of dimensions, as done in the likelihood-based estimation procedure of this paper, engenders considerably di¤erent second order moments which in turn
delivers di¤erent optimal policy prescriptions. Given these di¤erences in policy implications,
future research should attempt to sort out the e¤ects of these alternative assumptions and
estimation procedures on the characterization of optimal policy.

6.4

Optimal Policy under Parameter Uncertainty

We now determine the optimal policy that takes into account the e¤ects of uncertainty regarding

s

on the choice of optimal policy coe¢ cients. The policy problem is:
Z
^ = arg min
W0 p j s p( s j Yt )d s
p
p2

p

s

where minimization is subject to the same constraints as before and where p( s j Yt ) is the estimated posterior distribution of the structural parameters. In determining the optimal policy
coe¢ cients the policymaker integrates out the uncertainty surrounding structural parameters
by making use of the posterior distribution for these parameters obtained from model estimation.19 In contrast to section 6.2 this problem accounts for the covariance across all estimated
18

This accords with the analysis of Batini and Pearlman (2007) which considers the role of balance sheet
e¤ects in a calibrated model.
19
It is important to note that this second approach to policy design, which entails discarding the draws of
the policy parameters and retaining those of the non-policy block to represent p( s j Yt ), is consistent with our

28

model parameters, including the standard deviations of the shocks, which are part of

s:

Columns 4 - 6 of Table 3 report results of this exercise based on 5,000 draws for three
objective functions.20 For Australia, and a zero weight on output in the objective function,
there is little evidence of attenuated policy responses once parameter uncertainty is taken
into account — compare column 1. Indeed, optimal policies are virtually identical. As
the preference for output stabilization increases, the response to both output growth and
in‡
ation rise, while other coe¢ cients are roughly unchanged. Hence, optimal policy under
parameter uncertainty demands more aggressive policy in response to in‡
ation variations
when output stabilization is relatively important. Concomitantly, the in‡
ation and output
variances attached to these policies are lower and higher than when model parameters are
known with certainty to the policymaker. Brainard’ seminal insight appears not to hold true
s
in this estimated small open economy model. Note that uncertainty does e¤ect outcomes,
judging from the substantially larger losses in output in the last three columns, which is
rationalized by the larger responses to in‡
ation already mentioned.
For Canada, results are broadly similar. In the case of a low weight on output stabilization,
y

= 0, there is little change in the optimal policy coe¢ cients relative to the certain parameter

case. As output stabilization becomes a greater priority, policy becomes more aggressive when
compared to the certain parameter case not only for output but, as in Australia, for in‡
ation
as well. As before, uncertainty does not engender attenuated policy responses. And, in
contrast to the Australian case, the variability of output need not increase once uncertainty
is taken into account.
New Zealand reveals yet a di¤erent pattern of results. For objective functions giving less
weight to output stabilization, policy response coe¢ cients tend to be attenuated. This is
true for both

y

= 0 and

y

= 0:5. When a unit weight is given to output stabilization,

estimation of the DSGE models. This is because Bayesian MCMC methods yield draws that correspond to
the marginal densities of the model parameters. What we would have not been able to do, given our approach
to inference, is to make any statements that required the conditional densities, say p( s j Yt ; p ), since we do
not have samples from these ordinates in the estimation.
20
As in section 6.2 we also account for small sample uncertainty. For each parameter draw we generate
100 arti…cial samples of length equal to the data, after discarding the initial 50 observations. Optimal policy
hence minimizes the average loss over 250,000 samples. Computational capacity prevents using all parameter
draws generated by the MCMC. However, the dispersion in a sample of 5000 is almost identical to that in the
pooling of all draws since the former are closer to an ideal independent sample.

29

the optimal policy coe¢ cients under uncertainty are roughly equal to those obtained ignoring
the dispersion in the non-policy parameters. Despite this near equality on policy coe¢ cients,
taking into account uncertainty produces larger output losses.
Taken together the results indicate that parameter uncertainty fails to have clear implications for the design and outcomes of simple optimal monetary rules. Depending on the
country at hand, more or less aggressive policy responses might obtain. As Chow (1975)
notes, in a multivariate setting the conclusions of Brainard (1967) for attenuation in policy
need not hold, depending on the covariance properties of the uncertain model parameters.
Similarly, the robust control literature on optimal policy design, demonstrates that model
uncertainty can lead to more aggressive policy settings — see Giannoni (2002). In addition,
the associated losses may be larger or smaller once we account for parameter uncertainty,
with di¤erences stemming mostly from the variability of output. It follows that resolution of
the implications of uncertainty for policy design is largely an empirical matter.
What is clear from the present analysis is that regardless of whether policymakers face
parameter uncertainty or not, the optimal coe¢ cients on the exchange rate are always small.
This is because of the exchange rate disconnect property and the additional variability in output, in‡
ation and interest rates engendered by stabilizing the exchange rate in this estimated
model described earlier.

7

Robustness and Identi…cation

This section turns to some robustness exercises and discussion of identi…cation in our empirical
model.

7.1

Unobserved Foreign Block

Rather than modeling the foreign block as being driven by a VAR in observed U.S. in‡
ation,
output and nominal interest rates, we instead treat this component of the model as unobserved following the analysis of Lubik and Schorfheide (2003). Two observations motivate
this alternative speci…cation. First, while for Canada the use of U.S. data as proxy for the
foreign block may be plausible, it seems less appropriate in the case of Australia and New
30

Zealand where construction of trade-weighted indices of the relevant foreign variables — including, for instance, Japan — would be more desirable. Furthermore, this renders the model
more agnostic about the precise nature of the foreign disturbances and allows evaluating the
sensitivity of results to the choice of observables used in estimation. Second, and related to
this last point, the estimated model of section 2 is prone to some of the di¢ culties detailed in
Justiniano and Preston (2006). In particular, variance decompositions reveal a limited role
for foreign sourced disturbances in the evolution of domestic variables. The following investigates whether it is this feature of the model which engenders a negligible role for stabilizing
exchange rate ‡
uctuations in the design of optimal policy rules.
We assume that foreign output, in‡
ation and interest rate shocks follow second order
autoregressive processes. The priors used in estimation coincide with those employed in
section 4, with appropriate adjustments arising from the di¤erent treatment of the foreign
block.
Table 4 presents the resulting estimates. For all three countries, while the intertemporal
elasticity of substitution is very similar to the baseline model (observable foreign block), the
inverse Frisch elasticity is slightly higher here. The Calvo parameters are quite stable as well,
except for the degree of stickiness in home goods prices for Canada which is substantially larger
with an unobserved foreign block. Canada also exhibits a greater degree of habit persistence
and more aggressive responses to in‡
ation relative to the baseline model. Regarding the
properties of shocks, risk premium disturbances are less persistent for all three countries,
while disturbances to foreign interest rates are somewhat more volatile.
These parameter shifts largely take place to exploit the ‡
exibility permitted by having an
unobserved foreign block. Because the model is no longer constrained to …t the U.S. time
series it is free to exploit the variation inherent in these shocks to …t the domestic observable
series. In particular, the restriction imposed by interest parity would seem to be substantially
loosened here. Not surprisingly, foreign disturbances are now found to explain a greater
fraction of the variation in domestic observables than in the model with an observable foreign
block.
Given these estimates, we revisit the optimal policy exercises conducted earlier: the results

31

are reported in Table 5. Casual inspection reveals the optimal policy coe¢ cients on the
nominal exchange rate to be less than 0.02 when model parameters are known with certainty
to policymakers and less than 0.05 when model parameters are uncertain. As noted earlier, for
these response coe¢ cients, a one standard deviation movement in the exchange rate implies
a very small change in nominal interest rates. The intuition for this …nding is similar to
the baseline case: exchange rate disconnect divorces movements in the exchange rate from
movements in other domestic series. With the foreign block unobserved this disconnect is less
striking, particularly for output, than when the foreign block is observed. Nonetheless, having
monetary policy respond to exchange rate movements forces in‡
ation and interest rates to
inherit the variability of risk premium and particularly cost-push shocks. This increase in
their variance results in larger losses.21
As to the question of whether parameter uncertainty leads to cautious or aggressive policy,
the results portray a mixed message once again. Depending on the country; the weight given
to output stabilization; and the particular policy coe¢ cient under consideration, policy can
be more or less aggressive. This is consistent with the theory referenced earlier.

As for

outcomes, the resulting losses may di¤er, sometimes substantially, once parameter uncertainty
is accounted for. This is mostly due to the variance of output and aligns well with the changes
in optimal coe¢ cients. We conclude that the policy implications of parameter uncertainty
are model and data speci…c and must be examined carefully on a case-by-case basis.

7.2

Matters of Identi…cation

A number of recent papers have addressed identi…cation problems and conditions for identi…cation in medium scale dynamic stochastic general equilibrium models. Lubik and Schorfheide
(2005) and Justiniano and Preston (2006) discuss speci…c identi…cation issues in open economy
models. More general discussions are provided by Beyer and Farmer (2005), Fukac, Pagan,
and Pavlov (2006), Canova and Sala (2005), Cochrane (2007) and Iskrev (2007). These papers explore a range of identi…cation issues emerging from both the nature of estimation —
21

In an earier version of this paper we did not use the terms of trade and had also arbitrarily removed a
few shocks, to force an even greater role for the unobserved foreign disturbances. Nonetheless, optimal policy
was once again characterized by a lack of response to the exchange rate.

32

method of moments and likelihood based estimation — and economic structure. Adolfson
and Linde (2007) performs a number of Monte Carlo exercises to examine local identi…cation
in a medium scale small open economy model. Collectively, these papers underscore that
identi…cation problems can plague estimation of models of the kind developed here.
While considerable care was taken to ensure estimation resulted in a unique mode for our
baseline model, when the foreign block is treated as unobserved a non-trivial identi…cation
issue arises for Australia. Two modes are estimated that achieve almost identical posterior
densities. Table 6 reports parameters that exhibit di¤erences across these two modes, together
with the associated log posteriors. Most notable are the higher degree of nominal rigidity
in home good prices,

H,

for the …rst mode and the greater persistence and volatility of

technology shocks for the second mode (

a

and sda )

The variance decompositions in Table 7 evidence that these two parameter con…gurations
imply rather di¤erent contributions of shocks for output and in‡
ation. Preference shocks
explain almost half of in‡
ation variability in the second mode, compared to 34 percent of its
variance in the …rst mode. The reverse pattern is true for technology shocks (20 versus 38
percent). In contrast, technological disturbances explain the bulk of output variations in the
second mode (92 percent variance share) while they retain an important but more modest
role in the …rst mode (38 percent).
It is di¢ cult to isolate how individual parameters a¤ect these results. Scrutiny of unreported impulse response functions suggests that for in‡
ation the changing contribution of
shocks is mostly attributable to di¤erences in the estimated Calvo parameter for home goods.
Indeed, the lower degree of price stickiness in the second mode rationalizes larger responses
to preference shocks all else equal, and a more muted response to technology disturbances.
This is a salient di¤erence of the impulse response functions across these two modes. As for
output, the higher variance and autocorrelation of technology shocks accounts, at least in
part, for the drastic increase in the contribution of these shocks for the second mode, despite
the lower degree of nominal rigidities.
Table 8 characterizes optimal policy assuming policymakers treat as certain the parameters from each individual mode, as opposed to the median of the draws reported in table 5.

33

While policy remains highly inertial — a di¤erence rule for the nominal interest rate is optimal — the prescribed optimal policy coe¢ cients are rather di¤erent for in‡
ation and output
growth. The …rst mode has much weaker response coe¢ cients to in‡
ation for all weights on
output stabilization. In contrast, optimal policy tends to respond more strongly to output
growth. Intuitively, it would be reasonable to conjecture — given the di¤erences in estimated
H;

a

and sda — that optimal policy would prescribe strong responses to in‡
ation in the …rst

mode and a weaker response in the second. That this is not the case stems from the changing
contribution of shocks adduced above, which calls for more activist monetary policy in response to preference shocks — hence, variations in in‡
ation — in the second mode. Overall,
as evidenced by the …nal row of Table 8, which reports the losses, the policy implications of
these two parameter con…gurations are clearly di¤erent.
Comparing the optimal policy results of Table 5 to those in Table 8 permits an additional
insight on how identi…cation impacts policy design. The calculations in Table 5 were based
on estimates from the MCMC Metropolis-Hastings algorithm using as starting values for the
multiple chains draws around the …rst, highest, mode in Table 7. Focusing on the in‡
ation
response coe¢ cients in each of these tables, an interesting pattern emerges: for the cases in
which

y

> 0, the optimal coe¢ cients of Table 5 lie between the policy coe¢ cients associated

with each of the two modes reported in Table 8. The identi…cation problem a¤ects inference
in the neighborhood of the …rst mode as the MCMC algorithm takes some draws from the
posterior distribution of the second mode.22 Indeed, the posterior distribution of

a,

for in-

stance, is clearly bimodal. Even though it may appear that local identi…cation is achieved, a
second local peak a¤ects inference and policy design.
This example underscores that identi…cation problems can have implications for policy
design. Moreover, it emphasizes the importance of using additional data to mitigate identi…cation issues. In our baseline, using observed series to …t the foreign block of this small open
economy model, helps to better disentangle the e¤ects of various latent variables and exoge22

We use a t distribution, rather than a normal, as a proposal for the MCMC and use very low degrees of
freedom to allow for possibly large steps that may facilitate the transition across modes. We have also tried
starting the MCMC sampler around the second, lower, mode. In both cases the draws are still mostly drawn
from the higher mode although for some parameters Kernel estimates reveal the presence of a second peak.

34

nous shocks. By dropping these observables, there is insu¢ cient information in the domestic
series, the terms of trade and the real exchange rate to pin down the e¤ects of the various
disturbances. This leads to the possibility of multiple modes.
As a …nal example, an earlier version of this paper estimated the unobserved foreign block
model without using terms of trade data but reducing the number of domestic shocks. In
this case identi…cation problems appeared to be ameliorated. Nonetheless, the absence of a
response to the nominal exchange rate in optimal policy was seen once again, for the reasons
discussed earlier.

8

Conclusions

This paper analyzes optimal policy design in an estimated small open economy for Australia,
Canada and New Zealand. Motivated by the theoretical literature on local currency pricing,
the central question is whether optimal policy responds to nominal exchange rate variations
in a class of generalized Taylor rules. The role of parameter uncertainty in policy design is
also evaluated.
The central …ndings are twofold. First, within the class of rules that we consider, it is not
optimal for policy to respond to nominal exchange rate variations. This is true regardless of
country, whether policymakers face parameter uncertainty or not, the precise set of observables
and shocks used to estimate the model, as well as the relative weight of the objectives in the
loss function. This result is somewhat surprising given the presence of frictions in import
goods markets that generate departures from the law of one price. Several recent papers have
focused on this aspect of the speci…cation to provide a rationale for managing exchange rate
‡
uctuations in order to achieve in‡
ation and output stabilization.
Second, parameter uncertainty may lead policymakers to respond more or less aggressively
to variables that appear in their policy rule. Depending on the country; model; and speci…c
policy weights under consideration, either outcome is possible. This suggests that generic
empirical implications of parameter uncertainty for policy design are unlikely to be available,
consistent with the theoretical predictions of Chow (1975).
Finally, we provide an example of how parameter identi…cation may a¤ect policy design
35

and its associated outcomes. A more thorough and general analysis of this last issue is required
given the growing role of DSGE models as inputs for the conduct of monetary policy in various
central banks.

References
Adolfson, M., S. Laseen, J. Linde, and M. Villani (2005): “Bayesian Estimation of
an Open Economy DSGE Model with Incomplete Pass-Through,” unpublished, Sveriges
Riksbank.
Adolfson, M., and J. Linde (2007): “Going Forward: Parameter Identi…cation in an
Estimated New Keyneian Open Economy Model,”unpublished, Sveriges Riksbank.
Ambler, S., A. Dib, and N. Rebei (2004): “Optimal Taylor Rules on an Estimated Model
of a Small Open Economy,”unpublished, Bank of Canada.
Andreas, J., E. Nelson, and D. Lopez-Salido (2005): “Sticky Price Prices Models and
the Natural Rate Hypothesis,”Journal of Monetary Economics, 52, 1025–
1053.
Batini, N., and J. Pearlman (2007): “Monetary Rules in Emerging Economies with
Financial Market Imperfections,” in International Dimensions of Monetary Policy, ed. by
J. Gali, and M. Gertler. NBER.
Benigno, P. (2001): “Price Stability with Imperfect Financial Integration,” unpublished,
New York University.
Bergin, P. (2003): “Putting the ‘
New Open Economy Macroeconomics’to a Test,”Journal
of International Economics, 60(1), 3–
34.
(2004): “How well can the New Open Economy Macroeconomics Explain the Exchange Rate and the Current Account,”unpublished, University of California Davis.
Beyer, A., and R. Farmer (2005): “On the Indeterminacy of New Keynesian Economics,”
unpublished, UCLA.

36

Blinder, A. S., E. R. D. Canetti, D. E. Lebow, and J. B. Rudd (1998): Asking
about prices: A new approach to understanding Price Stickiness. New York: Russell Sage
Foundation.
Brainard, W. (1967): “Uncertainty and the E¤ectiveness of Policy,” American Economic
Review Papers and Proceedings, pp. 411–
425.
Brooks, S., and A. Gelman (1998): “General Methods for Monitoring Convergence of
Iterative Simulations,”Journal of Computational and Grahpical Statistics, 7, 434–
456.
Canova, F., and L. Sala (2005): “Back to Square One: Identi…cation Issues in DSGE
Models,”IGIER Working Paper 303.
Chari, V., P. J. Kehoe, and E. R. McGrattan (2002): “Can Sticky Price Models
Generate Volatile and Persistent Real Exchange Rates?,” Review of Economic Studies,
69(3), 533–
563.
Chow, G. C. (1975): Analysis and Control of Dynamic Economic Systems. New York: Wiley
and Sons.
Christiano, L. J., M. Eichenbaum, and C. L. Evans (2005): “Nominal Rigidities and
the Dynamic E¤ects of a Shock to Monetary Policy,”Journal of Political Economy, 113, 1.
Clarida, R., J. Gali, and M. Gertler (1999): “The Science of Monetary Policy: A New
Keynesian Perspective,”Journal of Economic Literature, 37, 1661–
1707.
Cochrane, J. H. (2007): “Identi…cation with Taylor Rules: A Critical Review,”University
of Chicago mimeo.
Del Negro, M. (2003): “Fear of Floating? A Structural Estimation of Monetary Policy in
Mexico,”unpublished, Federal Reserve Bank of Atlanta.
Devereux, M. B., and C. Engel (2003): “Monetary Policy in the Open Economy Revisted:
Exchange Rate Flexibility and Price Setting Behavior,” Review of Economic Studies, 70,
765–
783.
37

Dib, A. (2003):

“Monetary Policy in Estimated Models of Small Open and Closed

Economies,”Bank of Canada, Working Paper 2003-27.
Fukac, M., A. Pagan, and V. Pavlov (2006): “Econometric Issues Arising From DSGE
Models,”Working Paper, Australian National University.
Gali, J., and T. Monacelli (2005): “Monetary Policy and Exchange Rate Volatility in a
Small Open Economy,”Review of Economic Studies, 72.
Ghironi, F. (2000): “Towards and New Open Economy Macroeconometrics,”Boston College
Economics Department Working Paper No. 469.
Giannoni, M. P. (2002): “Does Model Uncertainty Justify Caution? Robust Optimal Monetary Policy in a Forward-Looking Model,”.
Iskrev, N. (2007): “How Much Do We Learn from the Estimation of DSGE Models? A Case
Study of Identi…cation Issues in a New Keynesian Business Cycle Model,” unpublished,
Michigan University.
Justiniano, A., and B. Preston (2004): “Small Open Economy DSGE Models: Speci…cation, Estimation and Model Fit,” unpublished, Columbia University and Board of
Governors of the Federal Reserve.
(2006): “Can Structural Small Open Economy Models Account for the In‡
uence of
Foreign Shocks,”unpublished, Columbia University and Board of Governors of the Federal
Reserve.
Kollmann, R. (2002): “Monetary Policy Rules in the Open Economy: E¤ects on Welfare
and Business Cylces,”Journal of Monetary Economics, 49, 989–
1015.
Levin, A., A. Onatski, J. C. Williams, and N. Williams (2005): “Monetary Policy
under uncertainty in Micro-Founded Macroeconometrics Models,”.

38

Lubik, T. A., and F. Schorfheide (2003): “Do Central Banks Respond to Exchange
Rate Movements? A Structural Investigation,” unpublished, Johns Hopkins University
and University of Pennsylvania.
(2005): “A Bayesian Look at New Open Economy Macroeconomics,” in NBER
Macroeconomics Annual, ed. by M. Gertler. NBER.
Lubik, T. A., and W. L. Teo (2005): “Do World Shocks Drive Domestic Business Cycles?
Some Evidenec from Structural Estimation,”unpublished, Johns Hopkins University.
McCallum, B. T., and E. Nelson (2000): “Monetary Policy for an Open Economy:
An Alternative Framework with Optimizing Agents and Sticky Prices,” Oxford Review of
Economic Policy, (16), 74–
91.
Monacelli, T. (2005): “Monetary Policy in a Low Pass-through Environment,”Journal of
Money, Credit and Banking, 37, 1047–
1066.
Neiss, K., and E. Nelson (2005): “In‡
ation Dynamics, Marginal Cost, and the Output
Gap: Evidence from Three Countries,” Journal of Money, Credit and Banking, volume =
37, number = 6, pages = 1019-1045,.
Obstfeld, M., and K. Rogoff (2000): “The Six MAjor Puzzles in International Macroeconomics: Is there a Common Cause?,” in NBER Macroeconomics Annual, ed. by B. S.
Bernanke, and K. Rogo¤. The MIT Press.
Rabanal, P., and V. Tuesta (2005): “Euro-Dollar Real Exchange Rate Dynamics in
an Estimated Two-country Model: What is Important and What is Not,” unpublished,
International Monetary Fund and Banco Central de Reserva del Peru.
Rotemberg, J., and M. Woodford (1999): “Interest-Rate Rules and an Estimated StickyPrice Model,” in Monetary Policy Rules, ed. by J. Taylor. University of Chicago Press,
Chicago.
Schmitt-Grohe, S., and M. Uribe (2003): “Closing Small Open Economy Models,”Journal of International Economics, 61, 163–
195.
39

Schorfheide, F. (2000): “Loss Function-Based Evaluation of DSGE Models,” Journal of
Applied Econometrics, 15, 645–
670.
Smets, F., and R. Wouters (2002): “Openness, imperfect exchange rate pass-through and
monetary policy,”Journal of Monetary Economics, 49, 947–
981.
(2003): “An Estimated Dynamic Stochastic General Equilibrium Model of the Euro
Area,”Journal of the European Economic Association, 1(5), 1123–
1175.
Svensson, L. E. (1997): “In‡
ation Forecast Targeting: Implementing and Monitoring In‡
ation Targets,”European Economic Review, 41, 1111–
1146.
(1999): “In‡
ation Targeting as a Monetary Policy Rule,” Journal of Monetary
Economics, 43, 607–
654.
(2000): “Open-Economy In‡
ation Targeting,” Journal of International Economics,
50, 155–
183.
Woodford, M. (2003): Interest and Prices: Foundations of a Theory of Monetary Policy.
Princeton University Press.

40

G
G
B
B
G
B
B
B
B
G
G
G
G

σ
φ
θH
θF
η
h
δH
δF
ψi
ψπ
ψy
ψΔe
ψΔy

Inverse Frisch

Calvo domestic prices

Calvo import prices

Elasticity H-F goods

Habit

Indexation domestic

Indexation foreign

Taylor rule, smoothing

Taylor rule, inflation

Taylor rule, output

Taylor rule, exchange rate

Taylor rule, output growth

0.25

0.25

0.25

1.50

0.50

0.50

0.50

0.50

1.50

0.50

0.50

1.50

1.20

Prior
Density 1/ Mean

Inverse Intertemporal
Elasticity of Substitution

Coefficients

Prior

0.13

0.13

0.13

0.30

0.25

0.25

0.25

0.25

0.75

0.10

0.10

0.75

0.40

Std

0.74

0.14

0.09

1.83

0.84

0.07

0.05

0.33

0.58

0.55

0.79

1.12

1.31

Median
[5,95] Prob

0.23 [ 0.38 , 1.15 ]

0.04 [ 0.08 , 0.21 ]

0.05 [ 0.03 , 0.20 ]

0.20 [ 1.52 , 2.18 ]

0.03 [ 0.78 , 0.88 ]

0.07 [ 0.01 , 0.22 ]

0.05 [ 0.01 , 0.16 ]

0.09 [ 0.17 , 0.47 ]

0.07 [ 0.52 , 0.74 ]

0.06 [ 0.45 , 0.65 ]

0.08 [ 0.60 , 0.87 ]

0.57 [ 0.45 , 2.27 ]

0.31 [ 0.89 , 1.89 ]

Std

AUSTRALIA

0.67

0.29

0.08

2.01

0.74

0.10

0.06

0.30

0.80

0.41

0.68

1.26

0.88

Median
[5,95] Prob

/2

0.16 [ 0.44 , 0.96 ]

0.07 [ 0.20 , 0.42 ]

0.03 [ 0.04 , 0.13 ]

0.15 [ 1.78 , 2.27 ]

0.04 [ 0.66 , 0.80 ]

0.09 [ 0.02 , 0.31 ]

0.05 [ 0.01 , 0.17 ]

0.06 [ 0.20 , 0.40 ]

0.08 [ 0.68 , 0.95 ]

0.06 [ 0.32 , 0.51 ]

0.05 [ 0.60 , 0.77 ]

0.57 [ 0.54 , 2.42 ]

0.18 [ 0.63 , 1.22 ]

Std

CANADA

Posterior

0.45

0.07

0.06

2.33

0.82

0.11

0.11

0.08

0.67

0.29

0.68

1.12

1.42

Median

[5,95] Prob

0.13 [ 0.25 , 0.68 ]

0.03 [ 0.03 , 0.13 ]

0.03 [ 0.03 , 0.12 ]

0.24 [ 1.99 , 2.78 ]

0.03 [ 0.77 , 0.86 ]

0.11 [ 0.02 , 0.35 ]

0.09 [ 0.02 , 0.32 ]

0.05 [ 0.02 , 0.18 ]

0.07 [ 0.58 , 0.81 ]

0.06 [ 0.19 , 0.38 ]

0.07 [ 0.57 , 0.79 ]

0.65 [ 0.41 , 2.44 ]

0.33 [ 0.94 , 2.01 ]

Std

NEW ZEALAND

Table 1: Prior Densities and Posterior Estimates for Baseline (Observed Foreign Block)

B
B
B
I
I
I
I
I
I
I
I

ρg
ρrp
ρcp
sdπ*
sdy*
sdi*
sda
sdmp
sdg
sdrp
sdcp

Preferences

Risk premium

Import cost-push shock

sd foreign inflation

sd foreign output

sd foreign interest rates

sd technology

sd taylor rule

sd preferences

sd risk premium

sd import cost-push

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.80

0.80

0.80

inf

inf

inf

inf

inf

inf

inf

inf

0.25

0.10

0.10

0.10

Std

1.58

0.35

0.16

0.26

0.37

0.12

0.48

0.35

0.94

0.94

0.93

0.69

Median

[5,95] Prob

0.51 [ 0.99 , 2.59 ]

0.09 [ 0.22 , 0.52 ]

0.03 [ 0.12 , 0.22 ]

0.03 [ 0.22 , 0.32 ]

0.11 [ 0.27 , 0.62 ]

0.01 [ 0.10 , 0.13 ]

0.04 [ 0.43 , 0.55 ]

0.03 [ 0.31 , 0.40 ]

0.04 [ 0.87 , 0.97 ]

0.02 [ 0.89 , 0.97 ]

0.02 [ 0.88 , 0.96 ]

0.13 [ 0.50 , 0.92 ]

Std

AUSTRALIA

2.01

0.20

0.17

0.29

0.42

0.15

0.52

0.36

0.97

0.95

0.95

0.90

Median

[5,95] Prob

[

0.53 [ 1.30 , 3.02 ]

0.03 [ 0.15 , 0.26 ]

0.02 [ 0.13 , 0.20 ]

0.03 [ 0.25 , 0.36 ]

0.09 [ 0.27 , 0.56 ]

0.01 [ 0.14 , 0.17 ]

0.04 [ 0.46 , 0.59 ]

0.03 [ 0.32 , 0.41 ]

0.01 [ 0.94 , 0.99 ]

0.03 [ 0.90 , 0.98 ]

0.02 [ 0.92 , 0.98 ]

0.04 [ 0.83 , 0.95 ]

Std

CANADA

/2

7.27

0.23

0.22

0.23

0.77

0.10

0.48

0.34

0.98

0.95

0.94

0.85

Median

[5,95] Prob

2.86 [ 4.40 , 12.85 ]

0.05 [ 0.17 , 0.32 ]

0.04 [ 0.17 , 0.31 ]

0.03 [ 0.19 , 0.28 ]

0.24 [ 0.49 , 1.24 ]

0.01 [ 0.08 , 0.12 ]

0.04 [ 0.42 , 0.55 ]

0.03 [ 0.30 , 0.39 ]

0.01 [ 0.97 , 0.99 ]

0.03 [ 0.90 , 0.98 ]

0.02 [ 0.90 , 0.97 ]

0.06 [ 0.73 , 0.93 ]

Std

NEW ZEALAND

2/ Corresponds to median and posterior percentiles from 5 MCMC chains of 100,000 draws each, in which 40,000 draws were used as an initial burn-in phase, and only one in
every ten draws retained from the remaining 60,000, in each chain. Convergence diagnostics were assessed using trace plots and the potential scale reduction factors for the
variance and 95% posterior intervals.

1/ Distributions, N Normal, B Beta, G Gamma, I Inverse-Gamma 1. Calibrated β=0.99 and χ=0.01. Also, the share of openness is calibrated to the average share of exports and
imports to GDP in our sample, which equals 0.185 for Australia, 0.28 for Canada and 0.29 for New Zealand.

B

ρa

Prior
Density 1/ Mean

Technology

Coefficients

Prior

Posterior

Table 1: Prior Densities and Posterior Estimates for Baseline (Observed Foreign Block)

Table 2: Data and model implied standard deviations and first
order autocorrelations
Median and [5,95] posterior band implied by the estimated baseline model

/1

AUSTRALIA
Inflation
Real exchange rate (fd)

/2

Interest Rate
Output
Terms of trade (fd)

Inflation
Real Exchange Rate (fd)
Interest Rate
Output
Terms of trade (fd)
Real exchange rate (level)
Terms of trade (level)

Data Standard Deviation
0.76
4.72
1.09
1.98
1.98

Model Standard Deviation
0.79
[ 0.63
4.78
[ 4.04
0.70
[ 0.46
1.82
[ 1.27
2.43
[ 1.96

,
,
,
,
,

1.00
5.66
1.10
2.79
3.01

]
]
]
]
]

Data Autocorrelations
0.63
0.15
0.97
0.92
0.44
0.93
0.93

Model Autocorrelation
0.59
[ 0.42
0.00
[ -0.17
0.91
[ 0.82
0.88
[ 0.78
0.56
[ 0.40
0.92
[ 0.81
0.96
[ 0.91

,
,
,
,
,
,
,

0.74
0.18
0.96
0.94
0.70
0.97
0.98

]
]
]
]
]
]
]

,
,
,
,
,

0.78
2.84
1.05
3.80
2.08

]
]
]
]
]

, 0.75
0.23
, 0.96
, 0.97
, 0.63
, 0.97
, 0.98

]
]
]
]
]
]
]

,
,
,
,
,

0.99
5.22
1.23
4.48
3.08

]
]
]
]
]

, 0.72
0.19
, 0.97
, 0.95
, 0.54
, 0.97
, 0.97

]
]
]
]
]
]
]

CANADA
Inflation
Real exchange rate (fd)
Interest Rate
Output
Terms of trade (fd)

Inflation
Real Exchange Rate (fd)
Interest Rate
Output
Terms of trade (fd)
Real exchange rate (level)
Terms of trade (level)

Data Standard Deviation
0.61
2.25
0.88
2.88
1.32

Model Standard Deviation
0.61
[ 0.48
2.42
[ 2.06
0.65
[ 0.42
2.34
[ 1.53
1.74
[ 1.45

Data Autocorrelations
0.66
0.27
0.92
0.97
0.18
0.98
0.98

Model Autocorrelation
0.60
[ 0.42
0.07
[ -0.10
0.91
[ 0.81
0.93
[ 0.87
0.49
[ 0.33
0.93
[ 0.85
0.95
[ 0.90

NEW ZEALAND
Inflation
Real exchange rate (fd)
Interest Rate
Output
Terms of trade (fd)

Inflation
Real Exchange Rate (fd)
Interest Rate
Output
Terms of trade (fd)
Real exchange rate (level)
Terms of trade (level)

Data Standard Deviation
0.56
4.05
0.73
2.34
2.09

Model Standard Deviation
0.77
[ 0.61
4.38
[ 3.68
0.76
[ 0.48
2.80
[ 1.88
2.55
[ 2.11

Data Autocorrelations
0.40
0.41
0.92
0.88
-0.05
0.96
0.87

Model Autocorrelation
[ 0.36
0.55
0.02
[ -0.15
0.93
[ 0.85
0.89
[ 0.79
0.39
[ 0.21
0.93
[ 0.83
0.94
[ 0.88

/1 Model standard deviations and first order autocorrelations are computed by generating, for each parameter
draw, 100 replications of length equal to the sample size for each country, after discarding the first 50
observations. For each replication and parameter pair we compute the standard deviation and autocorrelations.
We report medians and [5,95] posterior bands of the implied statistics.
/2 fd corresponds to the log first-difference

Table 3: Optimal Policy and Uncertainty for Baseline
MEDIAN OF DRAWS /1

OVER DRAWS /2

Relative Weight on Output

Relative Weight on Output

0

0.5

1

Inflation
Output
Nominal Exchange Rate
Output Growth
Variance
Inflation
Interest rates
Output
Loss

Inflation
Output
Nominal Exchange Rate
Output Growth

1

1.00
1.01
0.00
0.00
0.28

1.00
0.91
0.06
0.00
2.02

1.00
0.80
0.10
0.00
3.15

1.00
1.02
0.00
0.00
0.25

1.00
1.14
0.06
0.00
2.06

1.00
1.07
0.08
0.01
3.07

0.13
0.31
4.38
0.44

0.59
0.35
1.44
1.66

0.87
0.47
0.89
2.22

0.11
0.29
5.18
0.40

0.53
0.34
2.39
2.06

0.78
0.45
1.80
3.04

Panel B: Canada

Coefficients
Interest Rate

0.5

Panel A: Australia

Coefficients
Interest Rate

0

1.00
2.18
0.00
0.00
0.25

1.00
2.27
0.01
0.02
2.57

1.00
1.57
0.04
0.01
3.10

1.00
2.09
0.00
0.00
0.24

1.00
2.38
0.01
0.00
2.72

1.00
1.85
0.03
0.02
3.62

0.03
0.20
7.38
0.23

0.39
0.20
5.59
3.39

0.85
0.30
4.83
5.97

0.03
0.22
7.14
0.25

0.38
0.22
5.31
3.26

0.79
0.32
4.62
5.73

1.00
1.49
0.00
0.00
0.18

1.00
1.91
0.03
0.02
1.88

1.00
1.48
0.07
0.01
2.56

1.0
1.4
0.0
0.0
0.1

1.0
1.7
0.0
0.0
1.7

1.0
1.5
0.1
0.0
2.5

0.06
0.34
10.53
0.40

0.72
0.28
7.81
4.90

1.56
0.37
6.53
8.45

0.07
0.32
11.59
0.39

0.73
0.28
8.63
5.33

1.54
0.37
7.40
9.31

Variance
Inflation
Interest rates
Output
Loss

Panel C: New Zealand

Coefficients
Interest Rate
Inflation
Output
Nominal Exchange Rate
Output Growth
Variance
Inflation
Interest rates
Output
Loss

1/ Optimal coefficients are obtained by minimizing the weighted sum of variances for inflation, nominal interest rates and output, with equal weights on
inflation and interest rates, but varying the relative weight on output. All parameters other than those in the Taylor-type rule are fixed at the median of
the MCMC estimates. The variances are obtained by simulation with the same settings as reported in Table 2.
2/ In optimizing over the draws, we use a subset of 5000 draws, taken at equally spaced intervals, from the generated samples obtained with the
MCMC simulator. For each candidate set of policy parameters we compute the loss over these draws and average the resulting loss. Once again,
variances are obtained by simulation.

1.37
1.15
0.80
0.52
0.63
0.35
0.05
0.07
0.84
1.82
0.09
0.13
0.71

σ
φ
θH
θF
η
h
δH
δF
ψi
ψπ
ψy
ψΔe
ψΔy

Inverse Frisch

Calvo domestic prices

Calvo import prices

Elasticity H-F goods

Habit

Indexation domestic

Indexation foreign

Taylor rule, smoothing

Taylor rule, inflation

Taylor rule, output

Taylor rule, exchange rate

Taylor rule, output growth

Median

Inverse Intertemporal
Elasticity of Substitution

Coefficients

0.23 [ 0.36

0.04 [ 0.07

0.06 [ 0.03

0.22 [ 1.48

0.03 [ 0.77

0.08 [ 0.01

0.05 [ 0.01

0.09 [ 0.19

0.07 [ 0.55

0.07 [ 0.40

0.08 [ 0.61

0.60 [ 0.46

1.14 ]

0.20 ]

0.22 ]

2.19 ]

0.88 ]

0.25 ]

0.16 ]

0.50 ]

0.77 ]

0.62 ]

0.87 ]

2.37 ]

2.01 ]

[5,95] Prob

0.35 [ 0.88

Std

AUSTRALIA

0.63

0.33

0.10

1.79

0.77

0.11

0.05

0.54

0.69

0.38

0.82

1.46

0.91

Median

/2

0.16 [ 0.39

0.07 [ 0.23

0.04 [ 0.04

0.18 [ 1.53

0.04 [ 0.70

0.10 [ 0.02

0.05 [ 0.01

0.09 [ 0.39

0.07 [ 0.61

0.06 [ 0.28

0.06 [ 0.69

0.65 [ 0.64

0.91 ]

0.46 ]

0.16 ]

2.10 ]

0.82 ]

0.33 ]

0.15 ]

0.68 ]

0.82 ]

0.48 ]

0.89 ]

2.74 ]

1.50 ]

[5,95] Prob

0.30 [ 0.53

Std

CANADA

Posterior

Median

0.42

0.06

0.05

2.26

0.81

0.10

0.13

0.09

0.73

0.29

0.65

1.29

1.24

/1

0.13 [ 0.23

0.03 [ 0.03

0.03 [ 0.02

0.25 [ 1.90

0.03 [ 0.76

0.10 [ 0.02

0.12 [ 0.03

0.06 [ 0.02

0.08 [ 0.62

0.05 [ 0.21

0.07 [ 0.53

0.69 [ 0.46

0.65 ]

0.12 ]

0.11 ]

2.71 ]

0.86 ]

0.33 ]

0.39 ]

0.21 ]

0.87 ]

0.38 ]

0.77 ]

2.71 ]

1.79 ]

[5,95] Prob

0.30 [ 0.80

Std

NEW ZEALAND

Table 4: Posterior Estimates for Unobserved Foreign Block

0.92
0.86
0.96
0.26
0.34
0.28
0.37
0.26
0.17
0.30
1.86

ρg
ρrp
ρcp
sdπ*
sdy*
sdi*
sda
sdmp
sdg
sdrp
sdcp

Preferences

Risk premium

Import cost-push shock

sd foreign inflation

sd foreign output

sd foreign interest rates

sd technology

sd taylor rule

sd preferences

sd risk premium

sd import cost-push

0.73 [ 1.11

0.11 [ 0.16

0.03 [ 0.13

0.03 [ 0.22

0.11 [ 0.28

0.09 [ 0.17

0.38 [ 0.16

0.11 [ 0.15

0.03 [ 0.90

0.10 [ 0.64

0.02 [ 0.87

3.45 ]

0.51 ]

0.23 ]

0.32 ]

0.62 ]

0.47 ]

1.47 ]

0.50 ]

0.98 ]

0.95 ]

0.95 ]

0.92 ]

[5,95] Prob

0.14 [ 0.46

Std

2.36

0.18

0.20

0.25

0.27

0.17

0.41

0.30

0.98

0.81

0.90

0.78

Median

[

0.71 [ 1.50

0.04 [ 0.12

0.03 [ 0.15

0.03 [ 0.21

0.08 [ 0.20

0.04 [ 0.12

0.29 [ 0.17

0.27 [ 0.16

0.01 [ 0.95

0.12 [ 0.58

0.03 [ 0.85

3.79 ]

0.26 ]

0.26 ]

0.31 ]

0.45 ]

0.25 ]

1.07 ]

0.84 ]

0.99 ]

0.94 ]

0.94 ]

0.91 ]

[5,95] Prob

0.10 [ 0.59

Std

CANADA

/2

7.10

0.22

0.24

0.23

0.90

0.21

0.58

0.27

0.98

0.81

0.92

0.87

Median

0.37 ]

0.32 ]

0.28 ]

1.65 ]

0.37 ]

2.60 ]

0.66 ]

0.99 ]

0.94 ]

0.96 ]

2/ Corresponds to median and posterior percentiles from 5 MCMC chains of 100,000 draws each, in which 40,000 draws were used as an initial burn-in phase,
and only one in every ten draws retained from the remaining 60,000, in each chain. Convergence diagnostics were assessed using trace plots and the potential
scale reduction factors for the variance and 95% posterior intervals.

]

2.13 [ 4.33 10.97 ]

0.08 [ 0.14

0.04 [ 0.17

0.03 [ 0.19

0.34 [ 0.53

0.10 [ 0.14

0.81 [ 0.18

0.19 [ 0.15

0.01 [ 0.97

0.11 [ 0.58

0.03 [ 0.87

0.95 ]

[5,95] Prob

0.06 [ 0.76

Std

NEW ZEALAND

/1

1/ Priors and calibrated parameters are the same as in table 1, except for the foreign block which is now driven by independent AR(2) processes for the latent
foreign variables.

0.66

ρa

Median

Technology

Coefficients

AUSTRALIA

Posterior

Table 4: Posterior Estimates for Unobserved Foreign Block

Table 5: Optimal Policy and Uncertainty when Foreign Block is Unobserved
MEDIAN OF DRAWS

OVER DRAWS /2

/1

Relative Weight on Output

0.0

0.5

1.0

0.0

0.5

1.0

1.00
0.92
0.00
0.00
0.24

1.00
0.81
0.09
0.01
1.88

Panel A: Australia
1.00
1.00
0.73
0.71
0.00
0.14
0.01
0.00
0.14
3.01

1.00
0.82
0.07
0.04
1.58

1.00
0.79
0.10
0.05
2.58

0.13
0.30
4.37
0.43

0.58
0.38
1.22
1.57

0.82
0.50
0.70
2.02

0.15
0.42
6.91
0.56

0.56
0.51
3.80
2.97

0.87
0.64
3.18
4.69

1.00
1.05
0.00
0.00
0.13

1.00
0.59
0.05
0.01
1.94

Panel B: Canada
1.00
1.00
0.90
0.53
0.00
0.06
0.02
0.00
0.01
3.29

1.00
0.83
0.04
0.02
1.98

1.00
0.85
0.01
0.02
3.59

0.06
0.21
8.95
0.27

0.78
0.42
1.96
2.17

1.13
0.64
1.14
2.91

0.06
0.24
11.04
0.31

0.78
0.41
3.43
2.91

1.23
0.67
2.46
4.35

1.00
1.52
0.00
0.00
0.12

1.00
1.86
0.02
0.02
1.75

Panel C: New Zealand
1.00
1.00
1.38
1.56
0.00
0.05
0.00
0.01
0.10
2.58

1.00
2.01
0.01
0.02
1.62

1.00
1.54
0.01
0.02
2.13

0.04
0.27
13.01
0.31

0.63
0.24
10.44
6.08

1.44
0.33
9.20
10.96

0.06
0.27
12.24
0.33

0.58
0.24
9.91
5.78

1.25
0.29
8.92
10.46

Coefficients
Interest Rate
Inflation
Output
Nominal Exchange Rate
Output Growth
Variance
Inflation
Interest rates
Output
Loss

Coefficients
Interest Rate
Inflation
Output
Nominal Exchange Rate
Output Growth

Relative Weight on Output

Variance
Inflation
Interest rates
Output
Loss

Coefficients
Interest Rate
Inflation
Output
Nominal Exchange Rate
Output Growth
Variance
Inflation
Interest rates
Output
Loss

1/ Optimal coefficients are obtained by minimizing the weighted sum of variances for inflation, nominal interest rates and output, with
equal weights on inflation and interest rates, but varying the relative weight on output. All parameters other than those in the Taylor-type
rule are fixed at the median of the MCMC estimates in Table 4. The variances are obtained by simulation with the same settings as
reported in Table 2.
2/ In optimizing over the draws, we use a subset of 5000 draws, taken at equally spaced intervals, from the generated samples obtained
with the MCMC simulator. For each candidate set of policy parameters we compute the loss over these draws and average the resulting
loss. Once again, variances are obtained by simulation.

Table 6: Selected Coefficients from the Two Modes for Australia when
Foreign Block is Unobserved /1
Coefficients

First Mode

Second Mode

Inverse Intertemporal ES

σ

1.43

1.30

Calvo domestic prices

θH

0.82

0.62

Elasticity H-F goods

η

0.59

0.71

Habit

h

0.38

0.23

Taylor rule, inflation

ψπ

1.71

1.91

Taylor rule, output growth

ψΔy

0.75

0.52

Technology

ρa

0.65

0.93

sd technology

sda

0.31

0.51

sd import cost-push

sdcp

1.88

2.22

-870.07

-870.54

Log Posterior

/1 Priors are as in table 4.

Table 7: Variance Decomposition for all-goods Inflation and Output in
Australia for Two Modes when Foreign Block is Unobserved /1
Panel A. First Mode

Series \ Shock
Inflation
Output

Foreign
Shocks

Neutral

Monetary
Policy

Preference

Risk
Premium

Import Costpush

0.11

0.38

0.10

0.34

0.02

0.04

0.08

0.30

0.08

0.25

0.00

0.29

Panel B. Second Mode
Series \ Shock

Inflation
Output

Foreign
Shocks

Neutral

Monetary
Policy

Preference

Risk
Premium

Import Costpush

0.10

0.20

0.19

0.46

0.03

0.02

0.01

0.92

0.01

0.02

0.00

0.03

/1 Stationary variance decomposition at each of the modes reported in Table 6 for Australia

Table 8: Optimal Policy for Two Modes in Australia when Foreign
Block is Unobserved
First Mode

Second Mode

Relative Weight on Output

Relative Weight on Output

0.0

0.5

1.0

0.0

0.5

1.0

Inflation

0.79

0.74

0.68

1.76

2.01

1.83

Output

0.00

0.07

0.09

0.00

0.00

0.01

Nominal Exchange Rate

0.00

0.00

0.00

0.00

0.00

0.02

Output Growth

0.20

1.98

3.34

0.00

1.69

2.71

Inflation

0.13

0.49

0.67

0.02

0.22

0.51

Interest rates

0.28

0.39

0.49

0.27

0.25

0.27

Output

4.24

1.14

0.71

6.13

5.18

4.75

0.41

1.45

1.87

0.29

3.06

5.53

Coefficients
Interest Rate

Variance

Loss

1/ Optimal coefficients are obtained by minimizing the weighted sum of variances for inflation, nominal interest rates and
output, with equal weights on inflation and interest rates, but varying the relative weight on output. As in Tables 3 and 5, the
variances are obtained by simulation. The two modes are reported in Table 6.

Figure 1: Optimal Coefficient on Exchange Rate as Weights Vary
Australia
0.2

0.1

0
1

0.8

0.6

0.4

0.2

0

0

0.2

weight output

0.4

0.6

0.8

1

weight nominal interest

Canada
0.2

0.1

0
1

0.8

0.6

0.4

0.2

0

0

0.2

weight output

0.4

0.6

0.8

1

weight nominal interest

New Zealand
0.2

0.1

0
1

0.8

0.6

0.4

weight output

0.2

0

0

0.2

0.4

0.6

weight nominal interest

0.8

1

Figure 2: Impulse Responses to Import Cost−Push Shock
as Coefficient on Exchange Rate Varies
Inflation all goods

Nominal interest rate

0.3
0

0.2

−0.05

0.1

−0.1

0
0

1

2

3

4

0

Output

1

2

3

4

Nominal exchange rate growth
0

0.15
0.1

−1

0.05
0

−2

−0.05
0

1

2

3

4

0

1

Terms of trade growth

2

3

4

3

4

3

4

LOP

0.8

−3

0.6

−3.2

0.4
0.2

−3.4

0

−3.6
0

1

2

3

4

0

1

Inflation home goods

2
Inflation Imports

0.8
0.6
0.4
0.2
0

0.1
0.05
0
0

1

2

3

4

0

1

2

Real interest rate
0
0

−0.1

0.20
0.40

−0.2
0

1

2

3

4

For Australia using optimal coefficients when weight on output is 0.5 (table 3)
Optimal coefficient on exchange rate: solid ; counterfactually increased
to 0.2: longer dash; further counterfactual increase to 0.4: shorter dash

Figure 3: Impulse Responses to Risk Premium Shock
as Coefficient on Exchange Rate Varies
Inflation all goods

Nominal interest rate

0.15

0.25

0.1

0.2

0.05

0.15

0

0.1

-0.05

0.05
0

1

2

3

4

0

Output

1

2

3

4

Nominal exchange rate growth

0

3

-0.1

2

-0.2

1

-0.3

0
0

1

2

3

4

0

1

Terms of trade growth

2

3

4

3

4

3

4

LOP
1.5

1

1
0.5
0.5
0
0

1

2

3

4

0

1

Inflation home goods

2
Inflation Imports

-0.05
1
-0.1
0.5

-0.15
-0.2

0
0

1

2

3

4

0

1

2

Real interest rate
0.3
0.25

0
0.20

0.2

0.40

0.15
0.1
0

1

2

3

4

For Australia using optimal coefficients when weight on output is 0.5 (table 3)
Optimal coefficient on exchange rate: solid; counterfactually increased
to 0.2: longer dash; further counterfactual increase to 0.4: shorter dash

Working Paper Series
A series of research studies on regional economic issues relating to the Seventh Federal
Reserve District, and on financial and economic topics.
U.S. Corporate and Bank Insolvency Regimes: An Economic Comparison and Evaluation
Robert R. Bliss and George G. Kaufman

WP-06-01

Redistribution, Taxes, and the Median Voter
Marco Bassetto and Jess Benhabib

WP-06-02

Identification of Search Models with Initial Condition Problems
Gadi Barlevy and H. N. Nagaraja

WP-06-03

Tax Riots
Marco Bassetto and Christopher Phelan

WP-06-04

The Tradeoff between Mortgage Prepayments and Tax-Deferred Retirement Savings
Gene Amromin, Jennifer Huang,and Clemens Sialm

WP-06-05

Why are safeguards needed in a trade agreement?
Meredith A. Crowley

WP-06-06

Taxation, Entrepreneurship, and Wealth
Marco Cagetti and Mariacristina De Nardi

WP-06-07

A New Social Compact: How University Engagement Can Fuel Innovation
Laura Melle, Larry Isaak, and Richard Mattoon

WP-06-08

Mergers and Risk
Craig H. Furfine and Richard J. Rosen

WP-06-09

Two Flaws in Business Cycle Accounting
Lawrence J. Christiano and Joshua M. Davis

WP-06-10

Do Consumers Choose the Right Credit Contracts?
Sumit Agarwal, Souphala Chomsisengphet, Chunlin Liu, and Nicholas S. Souleles

WP-06-11

Chronicles of a Deflation Unforetold
François R. Velde

WP-06-12

Female Offenders Use of Social Welfare Programs Before and After Jail and Prison:
Does Prison Cause Welfare Dependency?
Kristin F. Butcher and Robert J. LaLonde
Eat or Be Eaten: A Theory of Mergers and Firm Size
Gary Gorton, Matthias Kahl, and Richard Rosen

WP-06-13

WP-06-14

1

Working Paper Series (continued)
Do Bonds Span Volatility Risk in the U.S. Treasury Market?
A Specification Test for Affine Term Structure Models
Torben G. Andersen and Luca Benzoni

WP-06-15

Transforming Payment Choices by Doubling Fees on the Illinois Tollway
Gene Amromin, Carrie Jankowski, and Richard D. Porter

WP-06-16

How Did the 2003 Dividend Tax Cut Affect Stock Prices?
Gene Amromin, Paul Harrison, and Steven Sharpe

WP-06-17

Will Writing and Bequest Motives: Early 20th Century Irish Evidence
Leslie McGranahan

WP-06-18

How Professional Forecasters View Shocks to GDP
Spencer D. Krane

WP-06-19

Evolving Agglomeration in the U.S. auto supplier industry
Thomas Klier and Daniel P. McMillen

WP-06-20

Mortality, Mass-Layoffs, and Career Outcomes: An Analysis using Administrative Data
Daniel Sullivan and Till von Wachter

WP-06-21

The Agreement on Subsidies and Countervailing Measures:
Tying One’s Hand through the WTO.
Meredith A. Crowley

WP-06-22

How Did Schooling Laws Improve Long-Term Health and Lower Mortality?
Bhashkar Mazumder

WP-06-23

Manufacturing Plants’ Use of Temporary Workers: An Analysis Using Census Micro Data
Yukako Ono and Daniel Sullivan

WP-06-24

What Can We Learn about Financial Access from U.S. Immigrants?
Una Okonkwo Osili and Anna Paulson

WP-06-25

Bank Imputed Interest Rates: Unbiased Estimates of Offered Rates?
Evren Ors and Tara Rice

WP-06-26

Welfare Implications of the Transition to High Household Debt
Jeffrey R. Campbell and Zvi Hercowitz

WP-06-27

Last-In First-Out Oligopoly Dynamics
Jaap H. Abbring and Jeffrey R. Campbell

WP-06-28

Oligopoly Dynamics with Barriers to Entry
Jaap H. Abbring and Jeffrey R. Campbell

WP-06-29

Risk Taking and the Quality of Informal Insurance: Gambling and Remittances in Thailand
Douglas L. Miller and Anna L. Paulson

WP-07-01

2

Working Paper Series (continued)
Fast Micro and Slow Macro: Can Aggregation Explain the Persistence of Inflation?
Filippo Altissimo, Benoît Mojon, and Paolo Zaffaroni

WP-07-02

Assessing a Decade of Interstate Bank Branching
Christian Johnson and Tara Rice

WP-07-03

Debit Card and Cash Usage: A Cross-Country Analysis
Gene Amromin and Sujit Chakravorti

WP-07-04

The Age of Reason: Financial Decisions Over the Lifecycle
Sumit Agarwal, John C. Driscoll, Xavier Gabaix, and David Laibson

WP-07-05

Information Acquisition in Financial Markets: a Correction
Gadi Barlevy and Pietro Veronesi

WP-07-06

Monetary Policy, Output Composition and the Great Moderation
Benoît Mojon

WP-07-07

Estate Taxation, Entrepreneurship, and Wealth
Marco Cagetti and Mariacristina De Nardi

WP-07-08

Conflict of Interest and Certification in the U.S. IPO Market
Luca Benzoni and Carola Schenone

WP-07-09

The Reaction of Consumer Spending and Debt to Tax Rebates –
Evidence from Consumer Credit Data
Sumit Agarwal, Chunlin Liu, and Nicholas S. Souleles

WP-07-10

Portfolio Choice over the Life-Cycle when the Stock and Labor Markets are Cointegrated
Luca Benzoni, Pierre Collin-Dufresne, and Robert S. Goldstein

WP-07-11

Nonparametric Analysis of Intergenerational Income Mobility
with Application to the United States
Debopam Bhattacharya and Bhashkar Mazumder

WP-07-12

How the Credit Channel Works: Differentiating the Bank Lending Channel
and the Balance Sheet Channel
Lamont K. Black and Richard J. Rosen

WP-07-13

Labor Market Transitions and Self-Employment
Ellen R. Rissman

WP-07-14

First-Time Home Buyers and Residential Investment Volatility
Jonas D.M. Fisher and Martin Gervais

WP-07-15

Establishments Dynamics and Matching Frictions in Classical Competitive Equilibrium
Marcelo Veracierto

WP-07-16

Technology’s Edge: The Educational Benefits of Computer-Aided Instruction
Lisa Barrow, Lisa Markman, and Cecilia Elena Rouse

WP-07-17

3

Working Paper Series (continued)
The Widow’s Offering: Inheritance, Family Structure, and the Charitable Gifts of Women
Leslie McGranahan
Demand Volatility and the Lag between the Growth of Temporary
and Permanent Employment
Sainan Jin, Yukako Ono, and Qinghua Zhang

WP-07-18

WP-07-19

A Conversation with 590 Nascent Entrepreneurs
Jeffrey R. Campbell and Mariacristina De Nardi

WP-07-20

Cyclical Dumping and US Antidumping Protection: 1980-2001
Meredith A. Crowley

WP-07-21

Health Capital and the Prenatal Environment:
The Effect of Maternal Fasting During Pregnancy
Douglas Almond and Bhashkar Mazumder

WP-07-22

The Spending and Debt Response to Minimum Wage Hikes
Daniel Aaronson, Sumit Agarwal, and Eric French

WP-07-23

The Impact of Mexican Immigrants on U.S. Wage Structure
Maude Toussaint-Comeau

WP-07-24

A Leverage-based Model of Speculative Bubbles
Gadi Barlevy

WP-08-01

Displacement, Asymmetric Information and Heterogeneous Human Capital
Luojia Hu and Christopher Taber

WP-08-02

BankCaR (Bank Capital-at-Risk): A credit risk model for US commercial bank charge-offs
Jon Frye and Eduard Pelz

WP-08-03

Bank Lending, Financing Constraints and SME Investment
Santiago Carbó-Valverde, Francisco Rodríguez-Fernández, and Gregory F. Udell

WP-08-04

Global Inflation
Matteo Ciccarelli and Benoît Mojon

WP-08-05

Scale and the Origins of Structural Change
Francisco J. Buera and Joseph P. Kaboski

WP-08-06

Inventories, Lumpy Trade, and Large Devaluations
George Alessandria, Joseph P. Kaboski, and Virgiliu Midrigan

WP-08-07

School Vouchers and Student Achievement: Recent Evidence, Remaining Questions
Cecilia Elena Rouse and Lisa Barrow

WP-08-08

4

Working Paper Series (continued)
Does It Pay to Read Your Junk Mail? Evidence of the Effect of Advertising on
Home Equity Credit Choices
Sumit Agarwal and Brent W. Ambrose

WP-08-09

The Choice between Arm’s-Length and Relationship Debt: Evidence from eLoans
Sumit Agarwal and Robert Hauswald

WP-08-10

Consumer Choice and Merchant Acceptance of Payment Media
Wilko Bolt and Sujit Chakravorti

WP-08-11

Investment Shocks and Business Cycles
Alejandro Justiniano, Giorgio E. Primiceri, and Andrea Tambalotti

WP-08-12

New Vehicle Characteristics and the Cost of the
Corporate Average Fuel Economy Standard
Thomas Klier and Joshua Linn

WP-08-13

Realized Volatility
Torben G. Andersen and Luca Benzoni

WP-08-14

Revenue Bubbles and Structural Deficits: What’s a state to do?
Richard Mattoon and Leslie McGranahan

WP-08-15

The role of lenders in the home price boom
Richard J. Rosen

WP-08-16

Bank Crises and Investor Confidence
Una Okonkwo Osili and Anna Paulson

WP-08-17

Life Expectancy and Old Age Savings
Mariacristina De Nardi, Eric French, and John Bailey Jones

WP-08-18

Remittance Behavior among New U.S. Immigrants
Katherine Meckel

WP-08-19

Birth Cohort and the Black-White Achievement Gap:
The Roles of Access and Health Soon After Birth
Kenneth Y. Chay, Jonathan Guryan, and Bhashkar Mazumder

WP-08-20

Public Investment and Budget Rules for State vs. Local Governments
Marco Bassetto

WP-08-21

Why Has Home Ownership Fallen Among the Young?
Jonas D.M. Fisher and Martin Gervais

WP-09-01

Why do the Elderly Save? The Role of Medical Expenses
Mariacristina De Nardi, Eric French, and John Bailey Jones

WP-09-02

Using Stock Returns to Identify Government Spending Shocks
Jonas D.M. Fisher and Ryan Peters

WP-09-03

5

Working Paper Series (continued)
Stochastic Volatility
Torben G. Andersen and Luca Benzoni

WP-09-04

The Effect of Disability Insurance Receipt on Labor Supply
Eric French and Jae Song

WP-09-05

CEO Overconfidence and Dividend Policy
Sanjay Deshmukh, Anand M. Goel, and Keith M. Howe

WP-09-06

Do Financial Counseling Mandates Improve Mortgage Choice and Performance?
Evidence from a Legislative Experiment
Sumit Agarwal,Gene Amromin, Itzhak Ben-David, Souphala Chomsisengphet,
and Douglas D. Evanoff

WP-09-07

Perverse Incentives at the Banks? Evidence from a Natural Experiment
Sumit Agarwal and Faye H. Wang

WP-09-08

Pay for Percentile
Gadi Barlevy and Derek Neal

WP-09-09

The Life and Times of Nicolas Dutot
François R. Velde

WP-09-10

Regulating Two-Sided Markets: An Empirical Investigation
Santiago Carbó Valverde, Sujit Chakravorti, and Francisco Rodriguez Fernandez

WP-09-11

The Case of the Undying Debt
François R. Velde

WP-09-12

Paying for Performance: The Education Impacts of a Community College Scholarship
Program for Low-income Adults
Lisa Barrow, Lashawn Richburg-Hayes, Cecilia Elena Rouse, and Thomas Brock
Establishments Dynamics, Vacancies and Unemployment: A Neoclassical Synthesis
Marcelo Veracierto

WP-09-13

WP-09-14

The Price of Gasoline and the Demand for Fuel Economy:
Evidence from Monthly New Vehicles Sales Data
Thomas Klier and Joshua Linn

WP-09-15

Estimation of a Transformation Model with Truncation,
Interval Observation and Time-Varying Covariates
Bo E. Honoré and Luojia Hu

WP-09-16

Self-Enforcing Trade Agreements: Evidence from Antidumping Policy
Chad P. Bown and Meredith A. Crowley

WP-09-17

Too much right can make a wrong: Setting the stage for the financial crisis
Richard J. Rosen

WP-09-18

Can Structural Small Open Economy Models Account
for the Influence of Foreign Disturbances?
Alejandro Justiniano and Bruce Preston

WP-09-19

6

Working Paper Series (continued)
Liquidity Constraints of the Middle Class
Jeffrey R. Campbell and Zvi Hercowitz

WP-09-20

Monetary Policy and Uncertainty in an Empirical Small Open Economy Model
Alejandro Justiniano and Bruce Preston

WP-09-21

7