View original document

The full text on this page is automatically extracted from the file linked above and may contain errors and inconsistencies.

w o r k i n g
p

a

p

e

r

9 9 0 1

Maximum Likelihood
in the Frequency Domain:
A Time to Build Example
by Lawrence J. Christiano and
Robert J. Vigfusson

FEDERAL RESERVE BANK

OF CLEVELAND

M aximum Likelihood inthe Frequency Domain:
A T ime to B uild E xample

Law rence J .Christano and R ob ert J .Vigf
usson¤

Ab strac t
A w ellknow nresult isthat the G aussianlog-likelihood c anb e expressed asthe sum over
d i®erent f
requency c om ponents.T hisim pliesthat the likelihood ratio statistic hasa sim ilar
linear d ec om position.W e exploit these ob servationsto d evise d iagnostic m ethod sthat are
usef
ulf
or interpreting m aximum likelihood param eter estim atesand likelihood ratio tests.
W e apply the method sto the estim ationand testingoftw o realb usinessc yc le m od els.T he
stand ard realb usinessc yc le mod elisrejec ted inf
avor ofanalternative inw hich c apital
investment requiresa planningperiod .
J E L Cod es:E 2 ,E 2 2 ,E 1, C52 ,C32 ,C12

.

¤T

he ¯rst author isgratef
ulf
or ¯nancialsupport f
rom a NationalSc ience Found ation
grant to the NationalB ureauofE c onom ic R esearc h.O pinionsexpressed inthispaper
are those ofthe authorsand are not nec essarily those ofthe Fed eralR eserve B ank
ofCleveland or ofthe Fed eralR eserve System .

1

In
trod uc tion

Fullinf
orm ationec onom etric m ethod sinem piric alm ac roec onom ic s°ourished inthe early
19 80 s, stimulated inlarge part b y the w ork ofHansenand Sargent (1980 ). Sub sequently,
lim ited inf
orm ationm ethod sb ec am e m ore popular.A prom inent exam ple ofsuch m ethod s
isthe c alib rationm ethod ology ad voc ated b y K yd land and P resc ott (19 82 ).1 T hisshif
t in
interest re°ec ted increased c oncernw ith the notionthat, since m od els are ab strac tions,
any mod elisnec essarily misspec i¯ed onsom e d im ensions.A key perc eived shortc om ing of
f
ullinf
orm ationmethod sisthat these spec i¯c ationerrorshave unpred ic tab le and hard to
2
d iagnose im plic ationsf
or the parameter valuesand f
or m od el¯t.
M ore rec ently,it hasb een
emphasized that lim ited inf
orm ationm ethod shave their ow nprob lem s.For exam ple, their
3
sm allsample propertiesm ay b e poor c om pared w ith those off
ullinf
orm ationm ethod s.
Consid erationssuc h asthese have helped to renew interest inf
ullinf
orm ationm ethod sin
4
empiric alm ac roec onom ic s.
O ur ob jec tive isto d raw attentionto the potentialvalue ofthe f
requency d om ainf
or
d iagnosing estim ationand testing results b ased onf
ullinf
orm ation, G aussianm aximum
5
likelihood m ethod s.
Inthe proc essofillustrating these m ethod s, w e provid e evid ence in
f
avor ofa partic ular c lassofb usinessc yc le m od els.
W e propose a set oftoolsf
or evaluatingthe im pac t onparam eter estim ationand m od el
¯t ofd i®erent f
requency c om ponentsofthe d ata.W e exploit the w ellknow nf
ac t that the
log, G aussiand ensity f
unctionhasa linear d ec om positioninthe f
requency d om ain. T his
d ec ompositionhastw o implic ations.F irst, the likelihood ratio statistic f
or testing a m od el
c anb e represented asthe sum oflikelihood ratiosinthe f
requency d om ain.Asa result,ifa
m od elisrejec ted b ec ause ofa large likelihood ratio statistic ,thenit ispossib le to d eterm ine,
1

O ther, related methods include those based on H ansen and Singleton'
s (1 982)generalized method of
moments (G M M )framework. T hese include the exactly identi¯ed G M M methodology ofChristiano and
Eichenbaum (1 992),and theoveridenti¯ed G M M known as simulated method ofmoments (D u±eand Singleton1 993).Inaddition,therearethediagnosticmethodsproposedbyW atson(1 993)andD iebold,O hanian
and B erkowitz (1 998).
2
A recentexamplebyH ansenandSargent(1 993)illustratestheprinciple.T heyshowhowmisspeci¯cation
ofthe seasonalcomponentofa modelcan, usingmaximum likelihood methods, lead todistortions in the
estimated values ofallmodelparameters.
3
T he 1 996 issue ofthe JournalofB usiness and EconomicStatistics reports evidence on the smallsample properties oflimited information methods based on generalized method ofmomentestimators.Fora
particularempiricalapplication, Fuhrer, M oore, and Schuh (1 995)made the case that the smallsample
problems aresoseverethatmaximum likelihoodperforms betterthanlimitedinformationmethods,evenin
thepresenceofplausibleforms ofspeci¯cation error.Cogley(1 998),however,displays an examplein which
G M M performs betterthan maximum likelihood when thetechnologyshockis misspeci¯ed.
4
R ecentexamples includeA ltug(1 989);Christiano(1 988);Christiano,Eichenbaum,andM arshal(1 991 );
M cG ratten (1 994);H all (1 996);Ireland (1 997);Kim (1 998);L eeper and Sims (1 994);and M cG rattan,
R ogerson,and W right(1 997).
5
A notherpaperwhich does this is A ltug(1 989).H ermethods complementours.

1

arithm etic ally,w hic h f
requenciesofthe d ata are responsib le f
or the poor m od el¯t.Sec ond ,
ifparam eter estim ateslook `strange',thenit ispossib le to d eterm ine w hich f
requenciesare
responsib le.
W e illustrate the method b y estim ating and testing sim ple realb usinessc yc le m od els
usingd ata onaggregate,quarterly,U S output grow th.W e start w ith a stand ard realb usiness
c yc le m od el,inw hic h the tec hnology shoc kisa geom etric rand om w alk.W e ¯rst w orkw ith
a versionofthe m od elinw hic h the only f
ree param eter isthe variance ofthe technology
shoc k. Allother param etersare ¯xed at the estim ated valuesreported inChristiano and
E ic henb aum (199 2 ).T he likelihood ratio statistic ,testingthism od elagainst anunrestric ted
alternative, rejec tsthe mod el.W henw e exam ine the likelihood ratio statistic inf
requency
d om ain, the reasonf
or the rejec tionisc lear. T he m od el¯t isvery poor intw o f
requency
b and softhe d ata: those c orrespond ingto period sofosc illationinthe range of2 .5 - 8 years
and those c orrespond ing to period sofosc illationinthe range of7- 7.5 m onths.W henw e
f
ree up som e ofthe other m od elparam eters, our G aussianestim ationc riteriond rivesthem
into regionsthat c ause the m od elto c onf
orm b etter to the d ata over allf
requency b and s.
How ever,the estim ated parameter valuesappear im plausib le onother ground s.O verall,our
resultsare c onsistent w ith the ¯nd ingsreported inChristiano (1988, p. 2 74 ), Cogley and
Nason(19 95),and W atson(19 93).T he poor ¯t inthe 2 .5- 8 year range re°ec tsthe d i± c ulty
the stand ard realb usinessc yc le m od elhasingeneratingoutput persistence.
W e next c onsid er a versionofthe realb usinessc yc le m od elw here c apitalinvestm ent
requires f
our period s to b uild . W e estim ate the f
rac tionofoverallresourc es that m ust
b e put into plac e ineac h ofthe ¯rst, sec ond , third , and f
ourth period s ofc onstruc tion.
T he parameter estim ates are plausib le f
rom the perspec tive ofm ic roec onom ic stud ies of
investment projec ts. T hey im ply that the am ount ofresourc esalloc ated inthe early part
ofaninvestm ent projec t isrelatively sm all.For reasonsexplained inChristiano and T od d
(19 96),incorporatingthisf
eature ofinvestm ent projec tsinto the tim e to b uild m od elallow s
that m od elto generate persistence inoutput grow th.T hisinturnhelpsthe m od elto m atch
the 2 .
5 - 8 year c omponent ofthe d ata.Inad d ition, the estim ated m od elalso d oesw ellin
m atc hingthe 7¡7:5 m onth c om ponent ofthe d ata.Asa result,our tim e to b uild m od elis
not rejec ted b y the d ata.
W e now c onsid er the relationship ofour paper to the existing literature.Severalother
papersexploit the f
ac t that the G aussiand ensity f
unctionc anb e d ec om posed inthe f
requencyd om ain.For example,Altug(1989) d em onstratesitsvalue f
or estim atingm od elsw ith
m easurement error.O ther papersem phasiz e itsvalue inthe estim ationoftim e-aggregated
6
m od els.
Christiano and E ic henb aum (1987) and Hansenand Sargent (199 3) exploit the d e6

See, forexample, H ansen and Sargent(1 980 a), Christiano(1 985), Christianoand Eichenbaum (1 987)

2

c om positionto evaluate the c onsequencesf
or m aximum likelihood estim atesofc ertaintypes
7
ofmod elspec i¯c ationerror.
T he value ofc omparing mod eland d ata spec tra hasalso b eenem phasized inthe rec ent c ontrib utionsofW atson(19 93) and Dieb old , O hanianand B erkow itz (19 98).W atson
(19 93)'sob jec tive isto provid e d esc riptive toolsonly, and so hisapproach isnot d esigned
f
or c ond uc tingstatistic alinf
erence.O ursis, since our m ethod sare sim ply d esigned to help
interpret the resultsofstand ard statistic alestim ationand testingproc ed ures.
O ur approac h ismost c losely related to that ofDieb old ,O hanianand B erkow itz (19 98).
T hey also d o estimationusingthe f
requency d om aind ec om positionofthe G aussiand ensity
f
unction. T heir paper d i®ersf
rom oursinthree respec ts. F irst, they use the f
requency
d om aind ec om positionasa c onvenient w ay to exc lud e f
requency b and sf
rom the analysis.
W e incorporate allf
requency b and sinto our analysis,and use the f
requency d om aind ec om positionasa d evic e f
or gaining insight into the resultsofanalysisb ased onallf
requencies.
Sec ond , their approac h to testing isd i®erent f
rom ours. W e f
oc usonthe likelihood ratio
statistic and the value ofthe f
requency d om ainf
or d iagnosing itsm agnitud e. T hird , the
applic ationw e use to illustrate the m ethod d i®ersf
rom theirs.
T he f
ollow ingsec tionpresentsour ec onom etric f
ram ew ork.Sec tion3presentsthe results.
Sec tion4 c onclud es.

2

E c onom etric Fram ew ork

T his sec tiond esc rib es the ec onometric f
ram ew ork ofour analysis. F irst, w e d isplay the
f
requency d omaind ec om positionofthe G aussiand ensity f
unction. Sec ond , w e d erive the
log-likelihood f
unctionofthe unrestric ted representationofthe d ata.T hird ,w e d isplay the
likelihood ofthe representationrestric ted b y the variousrealb usinessc yc le m od elsthat w e
c onsid er.F inally, w e d isplay the linear, f
requency d om aind ec om positionofthe likelihood
ratio statistic .

2.
1

Spec tralDec om positionofthe G aussianLikel
ihood

T he logarithm ofthe G aussiand ensity f
unctionf
or a T d im ensionalvec tor ofob servations,
y1 ;:::;yT ; is:
T
1
1
L(y) = ¡ log2 ¼ ¡ logjV j¡ y0V
2
2
2

¡1

y

and Christiano,Eichenbaum and M arshall(1 991 ).
7
T heseapproaches tospeci¯cationerroranalysis aresimilarinspirittotheearlyapproachtakeninSims
(1 972).

3

w here V isthe T b y T c ovariance m atrixofy = [y1 ;:::;yT ]0.It isw ellknow n(Harvey,19 89,
p.193) that f
or T large,thisexpressionis,approxim ately,
"

#

1 TX¡1
I (! j)
L(y) = ¡
2 log2 ¼ + logf (! j) +
2 j= 0
f (! j)

(1)

w here I (!) isthe period ogram ofthe d ata:
I (!) =

1 XT
j ytexp(¡i!t)j;
2 ¼ T t= 1

(2 )

and

2 ¼j
; j= 0 ;1;:::;T ¡1:
T
F inally,f(!) isthe spec trald ensity ofy at f
requency ! im plied b y V f
or large T:8
W e ¯nd it c onvenient,f
or later purposes,to expressthe likelihood f
unctionasa w eighted
likelihood ,asinDieb old ,O hanianand B erkow itz (1998):
!j =

"

#

1 TX¡1
I (! j)
L(y) = ¡
w j 2 log2 ¼ + logf (! j) +
:
2 j= 0
f (! j)

(3)

Inour analysis,w e w illc onsid er w j 2 f0 ;1g:

2.
2

Likel
ihood Fun
c tionf
or T he Struc turalM od el

T hissub sec tiond erivesthe restric ted red uc ed f
orm representationf
or output grow th im plied
b y tw o struc turalm od els,and their assoc iated loglikelihood f
unctions.
2.
2.
1

R ealB usinessCyc l
e M od el
P

T he representative agent inour mod elhaspref
erences,E0 1t= 0 ¯ t[log(C t) + Ã log(1 ¡n t)];
w here C t d enotesc onsumptionand n t d enoteshoursw orked .T he tim e end ow m ent isnorm aliz ed to unity and the param eters ¯ and à satisf
y 0 < ¯ < 1; Ã > 0 :T he resourc e
c onstraint isC t+ I t·Y t; w here
Y t= K tµ (z tn t)(1¡µ) ; 0 < µ < 1;
w ith a tec hnology shoc k z
8

t

L etV lj denotethejth elementofthelth rowofV :T hen,
f(!)= V ll+ 2

1
X

j=l+ 1

foranyl:

4

V lj cos(!(j ¡l));

log(z t) = log(z

t¡1 ) +

´t

w here ´t isi.
i.d . Norm alw ith m ean¹ and variance ¾ 2 . Inthe realb usinessc yc le (R B C)
versionofthism od el,
K t+ 1 ¡(1 ¡±)K t = I t; 0 < ± < 1:
W e d enote the unknow nparam eter valuesofthe R B C m od elb y the vec tor © :Inthe next
sec tion's estim ationexerc ise, w e c onsid er tw o c ases. Inone, µ = 0 :34 4 ; Ã = 3:92 ; ± =
0 :0 2 1;¯ = 1:0 3¡0 :2 5 and © = ¾ ´ :Inthe other, Ã = 3:92 ; ¯ = 1:0 3¡0 :2 5 and © = (¾ ´ ;±;µ):
T hese c hoic esare mad e to enhance the illustrative value ofthe applic ationstud ied inSec tion
T hree.
2.
2.
2

T ime to B uil
d M od el

T he time to b uild mod eld i®ersf
rom the R B C m od elonly inthe investm ent technology.
P eriod tinvestment is:
I t= Á 1 xt+ Á 2 xt¡1 + Á 3xt¡2 + Á 4 xt¡3;
w here Á i ¸0 f
or i= 1;2 ;3;4 ; and
Á 1 + Á 2 + Á 3 + Á 4 ´1:
T he investm ent tec hnology requiresthat ifxt unitsofnet investm ent are to oc c ur d uring
period t+ 3,i.e.,
K t+ 4 ¡(1 ¡±)K t+ 3 = xt;
then, resourc esinthe am ount Á 1 xt m ust b e applied inperiod t, Á 2 xt must b e applied in
period t+ 1; Á 3xt must b e applied inperiod t+ 2 ,and ¯nally Á 4 xt m ust b e applied inperiod
t+ 3:O nce initiated , aninvestm ent projec t'ssc ale c annot b e expand ed or c ontrac ted .As
inthe R B C m od el, © d enotesthe vec tor ofparam etersto b e estim ated :Inour analysis,
© = (¾ ´ ;Á 1 ;Á 2 ;Á 3).
2.
2.
3 R ed uc ed Form R epresen
tationand Likel
ihood Function
W e used the und eterm ined c oe± c ient m ethod d esc rib ed inChristiano (19 98) to approxim ate
the polic y rulesf
or em ploym ent and c apitalthat solve the planningprob lem assoc iated w ith
the ab ove tw o m od elec onom ies.W e m anipulated these approxim ate polic y rulesto ob tain
a red uc ed f
orm representationf
or yt = log(Y t=Y t¡1 ):
yt = ® (L;© )´t = ® 0 (© )´t+ ® 1(© )´t¡1 + ® 2 (© )´t¡2 + :::::
5

(4 )

T hisrepresentationisa restric ted AR M A(4 ;8) m od el9 .T hat is, ® (L;© ) isthe ratio ofan
8th ord er polynomialinthe lagoperator,L; and a 4 th ord er polynom ialinL.W e restric t ©
so that
1
X
® i(© )2 < 1 ;
i= 0

guaranteeing that the spec trald ensity ofyt exists.W e also restric t © so that ® (z ;© ) = 0
impliesjz j¸1:
T he spec trald ensity ofyt at f
requency ! is
¾ ´2
® (e ¡i! ;© )® (e i! ;© );
2¼

fr (!;© ) =

w here the supersc ript, r; ind ic atesthe restric ted m od elf
or yt:T he f
requency d om ainapproxim ationto the restric ted likelihood f
unctionis(1) w ith f(!) replac ed b y fr (!;© ):

2.
3 Un
restric ted R ed uc ed Form Likel
ihood
Inord er to test our mod el,w e need to estim ate anunrestric ted versionof(4 ):
yt= ® u(L)"t;

(5)

w here
2
® u(L) = 1 + ® 1uL + ® u
:::
2L + :

Also,

1
X

i= 0

u

2
(® u
i) < 1 ;

and ® (z ) = 0 im pliesjz j¸1:T hese c orrespond to the analogousrestric tionsim posed onthe
restric ted red uc ed f
orm .T he polynom ialinL; ® u(L); isthe ratio ofan8th ord er polynom ial
and a 4 th ord er polynom ial, w ith c onstant term snorm aliz ed to unity. T hisspec i¯c ation
neststhe realb usinessc yc le m od eland the tim e to b uild m od el.It has13 f
ree param eters:
the 12 param etersof® u(L); and ¾ ":W e d enote these b y the 13 d im ensionalvec tor, °:Let
fu(!;°) d enote the spec trald ensity ofyt:
fu(!;°) =

® u(e ¡i! )® u(e i! ) 2
¾ ";
2¼

T he f
requencyd omainapproxim ationto the unrestric ted likelihood f
unctionis(1) w ith f(!)
replac ed b y fu(!;°):
9

T heappendixpresents thederivation ofthis A R M A representation.

6

2.
4

Cumul
ative Likel
ihood R atio

T he likelihood ratio statistic is
¸ = 2 (L u¡L r );

w here L r and L u are the m axim ized valuesofthe restric ted and unrestric ted loglikelihood s,
respec tively.U nd er the nullhypothesisthat the restric ted m od elistrue,thisstatistic hasa
c hi-square d istrib utionw ith d egreesoff
reed om equalto the d i®erence b etw eenthe numb er
ofparam etersinthe restric ted and unrestric ted m od els(Harvey,1989,p.2 35).De¯ne
"

#

fr (!;©b)
1
1
¸ (!) = log u
+ I (!) r
¡ u
;
(6)
b
b)
b)
f (!;°
f (!;© ) f (!;°
w here a hat over a variab le ind ic atesitsestim ated value.T hen,it iseasily c on¯rm ed that,
¸=

TX
¡1

¸(! j):

j= 0

T hisexpressionc anb e sim pli¯ed b ec ause ofthe sym m etry propertiesof¸(!) :
T
¸(! T ¡l) = ¸(! T + l); l = 1;2 ;:::; ¡1:
2
2
2
T hese imply that ¸ c anb e w ritten:
T
2

¸ = ¸(0 ) + 2

¡1

X

¸(! j) + ¸(¼):

(7)

j= 1

T hisisour linear,f
requency d om aind ec om positionofthe likelihood ratio statistic .
If¸ islarge,thenw e should b e ab le to d eterm ine w hich ! j'sare responsib le f
or this.T o
assist inthis,w e d e¯ne the c umulative likelihood ratio:
¤ (!) =

¸(0 ) + 2

¤ (0 ) =

¸(0 );

¤ (¼ ) =

¸:

X

! j·!

¸(! j); 0 < ! < ¼
(8)

A sharp increase in¤ (!) insom e regionof!'ssignalsa f
requency b and w here the m od el
¯tspoorly.

3 R esul
ts
T his sec tionpresents our results f
or estim ating and testing the R B C and tim e to b uild
m od els. T he period ogram ofthe d ata, (2 ), and the spec trald ensity ofthe unrestric ted
red uc ed f
orm are important ingred ientsinthe analysis,and so w e b eginb y presentingthese.
T he f
ollow ingtw o sub sec tionspresent the analysisofthe R B C and the tim e to b uild m od els,
respec tively.
7

3.
1

P eriod ogram and Spec trum ofU nrestric ted R ed uc ed Form

10
F igure 1 presentsa sm oothed versionofI (!) f
or ! 2 (0 ;2 ¼ ); b ased on(2 ).
T he thic ksolid
line inF igure 1 isthe spec trum ofour unrestric ted AR M A(4 ;8) representationofU S G DP
grow th.Note how sim ilar these are.T hisisto b e expec ted ,since b oth represent c onsistent
estim atesofthe spec trum ofthe d ata.
Vertic alb arsd raw attentionto three f
requency b and s, the low f
requencies(those c orrespond ing to period 8 yearsto in¯nity), the b usinessc yc le f
requencies(period 1 year to 8
years) and the high f
requencies(period 2 quartersto 1 year).Note that the low and b usiness
c yc le f
requencieshave high pow er. Inad d ition, the spec trum haspronounced d ipsinthe
7¡7:5 months(near ! = 2 :5) range and inthe higher f
requency c om ponent ofthe b usiness
c yc le (near ! = 1:5):

F igure 1: E stim ated Spec tralDensity

Smoothed
Periodogram

log f(ω)

Unrestricted
ARMA(4,8)

-5

10

Low
Frequencies
0

3.
2

Business Cycle
Frequencies
0.5

1

High
Frequencies
1.5

2

ω

2.5

3

E stim ationand T estin
gofR B C M od el

W e b eginb y estim atingthe versionofthe R B C m od elinw hich only the innovationvariance
ofthe tec hnology shoc k,¾ ´ ; isf
ree.W e c allthisthe r̀estric ted R B C' m od el.W e thenturn
to the version(the `unrestric ted R B C'm od el) inw hich ± and µ are also f
ree.
T he spec trum ofthe estimated restric ted R B C m od elisd isplayed inF igure 2 .For c onvenience,F igure 2 reprod uc esthe spec trum ofthe unrestric ted AR M A(4 ;8) representationof
the d ata f
rom F igure 1.Asem phasiz ed inW atson(199 3),the spec trum ofthe R B C m od el
10

T hedataareseasonallyadjusted,covertheperiod1 955Q 3 to1 997Q 1 ,andarefrom theCitibasedatabase.
T hesamplemean ofyt is subtracted from thedata,sothatI(0 )is zero.W epresentthesmoothed version
oftheperiodogram because,as is wellknown,theunsmoothedperiodo
gram is quitevolatile.T hesmoothed
P
periodogram atfrequency!j is acentered,equallyweighted average, 3i=¡3 I(!j+ i)=7:

8

isessentially °at.T o a ¯rst approxim ation,the m od elim pliesthat aggregate output inherits
the persistence propertiesofthe tec hnology shoc k,w hich isa rand om w alk b y assum ption.
F igure 2 Spec tra R elevant to the Analysisofthe R B C M od el
Unrestricted ARMA(4,8)

Unrestricted RBC, Low

log f(ω)

Unrestricted RBC, High
Restricted RBC

-5

10

Unrestricted RBC, All

Unrestricted RBC, Business Cycle
0

0.5

1

1.5

2

ω

2.5

3

For a f
ormalevaluationofm od el¯t, c onsid er F igure 3 w hich d isplaysthe c umulative
likelihood ratio, (8). Note that ¸ isjust und er 2 5 (see the c umulative likelihood ratio f
or
! = ¼).U nd er the nullhypothesisthat the restric ted R B C m od elistrue,¸ isthe realiz ation
ofa c hi-square statistic w ith 12 d egreesoff
reed om .T he statistic hasa p-value of1.5perc ent
and hence the m od elisrejec ted at the ¯ve perc ent signi¯c ance level.T o see w hy the m od el
isrejec ted , note that the c umulative likelihood ratio d isplays sharp increases inthe low
f
requency c om ponent ofthe b usinessc yc le,and inthe f
requenciesc orrespond ingto period s
7-7.5 m onths.
F igure 3: Cumulative Likelihood R atio
30
Business Cycle
Frequencies

Low
Frequencies

High
Frequencies

25

Λ(ω)

20

15

Time To Plan Model

Restricted RBC Model

10
Estimated Time to Plan Model
5

0

0

0.5

1

1.5

2

ω
9

2.5

3

W e now turnto the unrestric ted R B C m od el.T he estim ated param eter valuesare µb=
0 :37and ±b= 0 :73:Although the estim ated value ofc apital'sshare isreasonab le,the estim ated
value of± ismuc h larger thanseemsplausib le inlight ofd ata oninvestm ent and the stock
ofc apital(Christiano and E ic henb aum ,19 92 ).T o see w hat f
requency c om ponent ofthe d ata
b±
bseveraltim esusin
d rivesthisresult,w e rec omputed µ;
galternative w eightsinthe w eighted
likelihood f
unction,(3).T he estim ationresultsare d isplayed inT ab le 1 and F igure 2 .
T ab l
e 1: W eighted Likelihood E stim ationR esults
Frequencies
µ
±
¾´
¸
¸w
O b servations
U sed
High
0.
2 5 0 .99 0 .
0 12 6 9.6 3.
7 50 %
B usinessCyc le 0 .
51 0 .99 0 .
0 170 2 6.
1 2.
3 4 3%
Low
0.
15 0
0.
0 10 0 37.
3 -0 .
2 7%
All
0.
37 0 .73 0 .
0 14 4 8.5 8.
5 10 0 %
²Notes:T hesearethe results ofestimatingtheunrestricted R B C modelby weighted maximum likelihood (i.
e.
,by maximizing(3)).L owfrequencies: w j equals 1 only forw j'
s that
belongtofrequenciescorrespondingtoperiods 8 years andup.B usiness cyclefrequencies:w j
equals 1 onlyforw j'
s thatbelongtofrequencies correspondingtoperiods 1 to8 years.H igh
frequencies: w j equals 1 only forw j'
s thatbelong tofrequencies corresponding to periods
2 quarters to 1 year;A llfrequencies: w j equals 1 forall j. P ercentofobservations used:
fraction of j2 f0 ;1;:::;T ¡1g equalto unity in the weighted likelihood estimation. ¸ :
likelihood ratiostatistic.¸ w :likelihood ratiostatisticbased only on thesubintervalforthe
weighted likelihood function.

T he b usinessc yc le and high f
requency c om ponentsofthe d ata d rive ± to nearly unity.
W ith ± near one,the m od elred uc esto the sc alar versionofthe m od elinLongand P losser
(19 83),inw hic h output grow th isa ¯rst ord er autoregressionw ith autoregressive param eter
µ:W ith the spec trum ofthisproc ess, proportionalto 1=(1 + µ2 ¡2 µ c os(!)); the m od elis
ab le to matc h the shape ofthe d ata spec trum inthe b usinessc yc le and high f
requencies(see
Ù nrestric ted R B C, B usinessCyc le' and Ù nrestric ted R B C, High' inF igure 2 ).How ever,
d i®erent valuesofµ w ork b etter inthe tw o f
requency ranges.
T o matc h the low f
requencies,a very d i®erent param eteriz ationisneed ed ,w ith ± nearly
0 and µ sm all(see Ù nrestric ted R B C,Low 'inF igure 2 ).T he param eter estim atesb ased on
allf
requenciesare roughly anaverage ofthe resultsover the variousf
requencies.

3.
3 T im e T o B uil
d M od el
R esultsf
or estim ating the time to b uild m od elare d isplayed inF igure 4 .For c onvenience,
F igure 4 d isplaysthe spec trum ofthe restric ted R B C m od el,and ofthe d ata.B oth ofthese
are takend irec tly f
rom F igure 2 .O ur estim atesofthe w eightsare: Á 1 = 0 :0 1, Á 2 = 0 :2 8,
Á 3 = 0 :4 8; and Á 4 = 0 :2 3:Note that the ¯rst w eight isalm ost z ero. T hisim pliesthat in
10

the ¯rst period ofaninvestm ent projec t, essentially no resourc esare used .T hism otivates
ref
erringto this¯rst period asa planningperiod ,one inw hich plansare d raw nup,perm its
11
are sec ured ,etc .
W e ref
er to thisasthe estim ated tim e to planm od el.
Note how w ellthe spec trum ofthe tim e to planm od elc onf
orm sw ith the spec trum of
the d ata.T he time to planm od elevenm atc hesthe d ip inthe spec trum inthe 7-7.5 m onth
range.T hisisre°ec ted inthe good perf
orm ance ofthe m od el'sc um ulative likelihood ratio
(see F igure 3).T he c umulative likelihood ratio risesslow ly w ith f
requency and achievesa
m aximum value just und er 10 .U nd er the nullhypothesisthat the m od elistrue,thisisthe
realiz ationofa c hi-square d istrib utionw ith 9 d egreesoff
reed om .U nd er these c ond itions,
the p-value is35 perc ent.Asa result,the m od elisnot rejec ted at c onventionallevels.
F igure 4 E stimationR esultsf
or the T im e to B uild M od el
Unrestricted ARMA(4,8)

log f(ω)

Estimated Time to Plan Model

Restricted
RBC Model
-5

10

0

0.5

1

1.5

2

ω

2.5

3

W e c om pare the estim ated tim e to b uild m od elw ith tw o others: the tim e to b uild m od el
suggested inK yd land and P resc ott (1982 ),w here Á i = 0 :2 5; i= 1;2 ;3;4 ;and the versionof
the tim e to planm od elanalyz ed inChristiano and T od d (199 6), w here Á 1 ¼ 0 ; Á i = 1=3,
i= 2 ;3;4 :W e d o not d isplaythe spec trum im plied b yK yd land and P resc ott'sm od el,b ec ause
that essentially c oincid esw ith the spec trum ofthe restric ted R B C m od el(K ing, 19 95).As
a result, K yd land and P resc ott'sm od elisrejec ted like the restric ted R B C m od el. For a
d etailed d isc ussionofthe similarity ofthese m od els, see Christiano and T od d (199 6) and
R ouw enhorst (19 91).T he Christiano and T od d (199 6) param eteriz ationofthe tim e to plan
m od elisanimprovement over the restric ted R B C m od elinthe b usinessc yc le c om ponents
ofthe d ata (F igure 3).O ver allf
requencies,the tw o m od els,how ever,have a c om parab le ¯t.
11

See Christianoand T odd (1 996), who argue thatthe notion ofa planning period conforms wellwith
studies ofinvestmentprojects.

11

4

Concl
usions

W e have d esc rib ed som e ad vantages, f
or d iagnosing m od elestim atesand ¯t, ofusing the
f
requency d om aind ec om positionofthe likelihood f
unction. W e illustrate the approach
w ith anem piric alanalysisofthe stand ard R B C m od eland a versionw ith a tim e to b uild
tec hnology.W e rejec t the f
orm er inf
avor ofthe latter.T he tim e to b uild tec hnologythat ¯ts
the d ata b est appearsto b e one inw hic h investm ent projec tsb eginw ith a planningperiod ,
d uringw hic h relatively f
ew resourc esare expend ed .Christiano and T od d (1996) em phasize
that thisspec i¯c ationc onf
orm sw ellw ith m ic roec onom ic stud iesofinvestm ent projec ts,and
d isc ussother ad vantagesto thism od elf
or b usinessc yc le analysis.

5 Append ix: Show ingthat y isanAR M A(4 ,8)
T he polic y rulesthat solve the tim e-to-b uild m od elare linear equationsinthe logofc apital
lnK and ofhours-w orked lnn and the technology shoc ks(w here lnz t equalslnz t¡1 + ´t).
lnK t =

(1 ¡A(1))lnK + A(L)lnK t+ (1 ¡A(L))lnz t¡4 + + B (L)(´t¡4 ¡¹ )

lnn t =

lnn ¡C (1)lnk+ C (L)lnK t+ 4 ¡C (L)lnz t+ D(L)(´t¡¹)

T he term sA(L) and B (L) are polynom ialsofd egree f
our and C (L) and D (L) are polynom ialsofd egree three inthe lagoperator.Capitalisa f
unctionofthe past c apitaland the
shoc ksto tec hnology f
rom f
our to eight period sago.Hoursw orked isa f
unctionoff
uture
c apital(since youhave to w orkf
or the investm ent that youhave alread y c om m itted to m aking) and the c urrent and lagged shocks. T he variab lesw ithout the tim e sub sc ript are the
variab lesat stead y state.
T akingthe ¯rst d i®erence ofthe ab ove tw o equationselim inatesthe stead y state values.

4 lnK t =
=

A(L) 4 lnK t+ (1 ¡A(L)) 4 lnz t¡4 + B (L) 4 (´t¡4 ¡¹)
(1 ¡A(L) + B (L)(1 ¡L))L 4
´t
1 ¡A(L)

4 lnn t =
=

C (L) 4 lnK t+ 4 ¡C (L) 4 lnz t+ D(L) 4 (´t¡¹)
!
C (L)B (L)(1 ¡L)
+ D(L)(1 ¡L) ´t
1 ¡A(L)

Ã

T he next step isto d erive anequationf
or y:O utput isprod uc ed usinga Cob b -Douglas
prod uc tionf
unction.Hence,output c anb e w rittenas
12

lnY t = µ lnK t+ (1 ¡µ)lnn t+ (1 ¡µ)lnz t
T akingthe ¯rst d i®erence
yt = 4 lnY t = µ 4 lnK t+ (1 ¡µ) 4 lnn t+ (1 ¡µ)´t
Sub stitutinginthe valuesf
or 4 lnK t and 4 lnn t w e have
(1 ¡A(L))yt =

Ã

µ (1 ¡A(L) + B (L)(1 ¡L))L 4 +
(1 ¡µ)(C (L)B (L)(1 ¡L) + (1 ¡A(L))D(L)(1 ¡L) + 1)

!

´t

T he polynomialsA and C are f
ourth ord er and the polynom ialsD and B are third ord er.
Asthe ¯rst d i®erence operator isalso present, the m oving average c om ponent isaneighth
ord er polynom ial.T he autoregressive term isthe sam e ord er asA.T he tim e-to-b uild m od el,
theref
ore, c anb e c harac teriz ed asa restric ted versionofanAR M A(4 ,8) m od el.T he R B C
m od elnestsinsid e thisspec i¯c ation.

13

R ef
erences
[1] Altug,Sumru,1989 ,T̀ im e to B uild and Aggregate F luc tuationsSom e New E vid ence',
InternationalE conomic R eview , 30 (4 ),Novem b er,889 -92 0 .
[2 ] Christiano,Law rence J .
,1985,`A M ethod f
or E stim atingthe T im ingIntervalina Linear
E c onom etric M od el, W ith anApplic ationto T aylor'sM od elofStaggered Contrac ts.
'
J ournalofE conomic Dynamic sand Control, 9,363-4 0 4 .
[3] Christiano,Law rence J .
, 1988, `
W hy DoesInventory Investm ent F luc tuate So M uc h?',
J ournalofM onetary E conomic s,2 1(2 /3),M arch/M ay,2 4 7-80 .
[4 ] Christiano, Law rence J .
, 199 8, `
Solving Dynam ic E quilib rium M od elsb y a M ethod of
U nd eterm ined Coe± c ients',NB E R T ec hnicalW orkingpaper 2 2 5.
[5] Christiano, Law rence J .and M artinE ichenb aum , 19 87, T̀ em poralAggregationand
Struc turalInf
erence inM ac roec onom ic s',Carnegie R oc hester Conference SeriesonP ublic P olic y, 2 6(0 ),Spring,63-130 .
[6] Christiano, Law rence J .
, M artinE ichenb aum , and David M arshall, 19 91, T̀ he P erm anent Income HypothesisR evisited ',E conom etrica,59 (2 ),M arch,397-4 2 3.
.
[7] Christiano, Law rence J .and M artinE ic henb aum , 19 92 , `Current R eal-B usiness-Cyc le
T heories and Aggregate Lab or-M arket F luc tuations', Am erican E conom ic R eview ,
82 (3),J une,4 30 -50 .
[8] Christiano, Law rence J .and R ic hard M .T od d , 199 6, T̀ im e to P lanand Aggregate
F luc tuations',F ed eralR eserve B ankofM inneapolisQuarterly R eview , W inter,14 -2 7.
[9] Cogley, T im othy, and J am esNason, 19 95, Ò utput Dynam ic sinR ealB usinessCyc le
M od els',AmericanE conomic R eview , 85(3),J une,4 92 -511.
[10 ] Cogley,T imothy,199 8,È stim atingand T estingDynam ic R ationalE xpec tationsM od els',unpub lished m anusc ript.
[11] Dieb old , FrancisX.
, Lee E .O hanian, and J eremy B erkow itz , 1998, `Dynam ic E quilib rium E c onom ies: A Fram ew ork f
or Com paringM od elsand Data', R eview ofE conom ic
Stud ies,65(3),J uly,4 33-51.
[12 ] Du± e, Darrell, and K enneth J .Singleton, 19 93, `Sim ulated M om ents E stim ators of
M arkov M od elsofAsset P ric es',E conom etrica, 61(4 ),9 2 9-52 .
[13] Fuhrer,J e®reyC.,G eorge R .M oore,and Sc ott D.Schuh,1995,È stim atingthe LinearQuad ratic Inventory M od el: M aximum Likelihood versusG eneraliz ed M ethod ofM om ents', J ournalofM onetary E conom ic s,35(1),Feb ruary,115-57.
[14 ] Hall,G eorge J .,199 6,Ò vertim e,E ®ort,and the P ropagationofB usinessCyc le Shocks',
J ournalofM onetary E conomic s,38 (1),August,139 -60 .
[15] Hansen, LarsP eter, and T hom asJ .Sargent, 19 80 , F̀orm ulating and E stim ating Dynamic Linear R ationalE xpec tationsM od els',J ournalofE conom ic Dynam ic sand Control,2 ,Feb ruary,7-4 6.
[16] Hansen,LarsP eter,and T homasJ .Sargent,19 80 a,M̀ ethod sf
or E stim atingContinuous
T im e R ationalE xpec tationsM od elsf
rom Disc rete Data', R esearch Departm ent Sta®
report 59 ,Fed eralR eserve B ank ofM inneapolis.
14

[17] Hansen, Lars P eter, and T hom as J .Sargent, 19 93, `Seasonality and Approxim ation
E rrorsinR ationalE xpec tationsM od els', J ournalofE conom etric s, 55(1-2 ), J anuaryFeb ruary,2 1-55.
[18] Hansen,LarsP eter,and K enneth J .Singleton,1982 ,G̀ eneraliz ed Instrum entalvariab les
E stim ationofNonlinear R ationalE xpec tationsM od els',E conom etrica, 50 ,Septemb er,
12 69 -86.
[19] Harvey,And rew ,1989,ForecastingStruc turalT im e SeriesM od elsand the K almanF ilter,Camb rid ge U niversity P ress.
[2 0 ] Ireland , P eter N., 199 7, `
A Sm all, Struc turalQuarterly M od elf
or M onetary P olic y
E valuation', Carnegie R oc hester Conference SeriesonP ublic P olic y, 4 7(0 ),Dec emb er,
83-10 8.
[2 1] K im,J inil,19 98,`
Construc tingand E stim atinga R ealistic O ptim iz ingM od elofM onetary P olic y',unpub lished manusc ript.
[2 2 ] K ing,R ob ert,19 95,`
Quantitative T heory and E c onom etric s',Fed eralR eserve B ankof
R ic hmond E conomic Quarterly,81(3),53-10 5.
[2 3] K yd land , F innE .and E d w ard C.P resc ott, 19 82 , T̀ im e to B uild and Aggregate F luc tuations',E conometrica, 50 ,Novemb er,134 5-70 .
[2 4 ] Leeper, E ric M ., and Christopher A.Sim s, 199 4 , T̀ ow ard a M od ernM ac roec onom ic
M od elU sab le f
or P olic y Analysis', F isc her, Stanley, J ulio J .R otemb erg, ed s.NB E R
M ac roeconomic sAnnual1994 Camb rid ge and Lond on: M IT P ress,pages81-118.
[2 5] Long, J ohn, and Charles P losser, 1983, `R ealB usiness Cyc les', J ournalofP olitical
E conom y 9 1(1),Feb ruary,39-69.
[2 6] M c G rattan, E llenR .
, 1994 , T̀ he M ac roec onom ic E ®ec tsofDistortionary T axation',
J ournalofM onetary E conomic s,33,573-60 1
[2 7] M c G rattan, E llenR .
, R ic hard R ogerson, and R and allW right, 1997, `AnE quilib rium
M od elofthe B usinessCyc le w ith Household P rod uc tionand F isc alP olic y', InternationalE conomic R eview ,38 (2 ),M ay,2 67-90 .
[2 8] R ouw enhorst,K .G eert,1991,T̀ im e to B uild and Aggregate F luc tuationsA R ec onsid eration' J ournalofM onetary E conom ic s, 2 7,2 4 1-54 .
[2 9] Sim s, Christopher, 1972 , `Approxim ate P rior R estric tionsinDistrib uted Lag E stim ation',J ournalofthe AmericanStatisticalAssoc iation,67(337),169 -175.
[30 ] W atson,M ark,199 3,M̀ easuresofF it f
or Calib rated M od els',J ournalofP oliticalE conomy,10 1(6),10 11-10 4 1.

15