View original document

The full text on this page is automatically extracted from the file linked above and may contain errors and inconsistencies.

http://clevelandfed.org/research/workpaper/index.cfm
Best available copy

Working Paper 8403
FORECASTING USING CONTEMPORANEOUS
CORRELATIONS
by Michael L. Bagshaw

Working papers o f t h e Federal Reserve
Bank o f Cleveland a r e p r e l i m i n a r y
materials, circulated t o stimulate
d i s c u s s i o n and c r i t i c a l comment. The
views expressed h e r e i n a r e those o f
t h e a u t h o r and n o t n e c e s s a r i l y those
o f t h e Federal Reserve Bank o f
Cleveland o r t h e Board o f Governors o f
t h e Federal Reserve System.

September 1984
Federal Reserve Bank o f Cleveland

http://clevelandfed.org/research/workpaper/index.cfm
Best available copy

FORECASTING USING CONTEMPORANEOUS CORRELATIONS

Key words: Contemporaneous correlations, forecasting, multivariate time
-series.

Abstract

In this paper, we present a forecasting technique that uses
contemporaneous correlations for forecasting in a time series model when only
a subset of the variables are available for the current period. This method
potentially provides more accurate forecasts than the standard time series
forecasting method, which does not use contemporaneous data. This procedure
is illustrated with an example of forecasting the gross national product
(GNP), given current M-1 in a trivariate autoregressive moving average time
series model.

Results indicate that during the more stable economic period of

1976:IQ through 1979:IVQ, this method indeed provides forecasts with smaller
root mean square errors than the standard forecasts.

However, the results

during the more turbulent 1980s are mixed. This latter result indicates that
the relationship between the contemporaneous error terms from M-1 and GNP
changed during this period. However, the results for the period 1983:IIQ
through 1984:IIQ indicate that the relationship may have returned to pre-1980
form. The forecast errors during this latter period had smaller root mean
square errors when the contemporaneous errors were used.

http://clevelandfed.org/research/workpaper/index.cfm
Best available copy

I. I n t r o d u c t i o n

When f o r e c a s t i n g i n a m u l t i v a r i a t e framework, t h e r e a r e occasions
when d a t a a r e a v a i l a b l e o n l y f o r a subset o f t h e v a r i a b l e s i n t h e model f o r
the current time period.

I t i s d e s i r a b l e t o use t h e a d d i t i o n a l i n f o r m a t i o n i n

t h i s subset o f known v a r i a b l e s t o f o r e c a s t values t h a t a r e n o t c u r r e n t l y
available.

T h i s i n c l u d e s b o t h values o f t h e unknown v a r i a b l e s i n t h e c u r r e n t

p e r i o d and f u t u r e values o f a l l v a r i a b l e s .

I n m u l t i p l e t i m e s e r i e s models,

any contemporaneous c o r r e l a t i o n s among t h e v a r i a b l e s a r e modeled as p a r t o f
the e r r o r structure.

Consequently,

t h e standard f o r e c a s t s generated b y these

models cannot use t h e i n f o r m a t i o n f r o m c u r r e n t d a t a i n developing f o r e c a s t s .
However, t h e i n f o r m a t i o n i n t h e contemporaneously c o r r e l a t e d e r r o r terms can
be used t o o b t a i n f o r e c a s t s w i t h s m a l l e r e r r o r variances.

T h i s paper e x p l a i n s

how these f o r e c a s t s can be o b t a i n e d and presents an example where t h e
contemporaneous c o r r e l a t i o n between t h e money s u p p l y (M-1) and nominal GNP i s
used t o reduce t h e r o o t mean square e r r o r (RMSE) i n f o r e c a s t i n g c u r r e n t and
f u t u r e GNP, g i v e n c u r r e n t M-1.

While t h i s paper focuses on t h e m u l t i v a r i a t e

ARMA t i m e s e r i e s models, t h e r e s u l t s h o l d f o r any m u l t i v a r i a t e models t h a t do
n o t e x p l i c i t l y model t h e contemporaneous c o r r e l a t i o n s .

11.

M u l t i v a r i a t e ARMA Time S e r i e s Models

The f o l l o w i n g i s a v e r y b r i e f d e s c r i p t i o n o f m u l t i v a r i a t e
a u t o r e g r e s s i v e moving average t i m e s e r i e s models (ARMA); T i a o and Box (1981)
p r o v i d e a more d e t a i l e d d e s c r i p t i o n .

The ARMA models can i n c l u d e seasonal

http://clevelandfed.org/research/workpaper/index.cfm
Best available copy

components;

however, t h i s paper uses o n l y examples of nonseasonal models and,

thus, p r e s e n t s o n l y a d e s c r i p t i o n o f t h e nonseasonal models.
nonseasonal m u l t i v a r i a t e ARMA model o f o r d e r (p,q)

The general

i s given by

where

e (B) = I - e B
-4
- -1

-

... - -4
e B ~ ,

where
B = b a c k s h i f t o p e r a t o r ( i .e.,

S

B

Zi,t

= Z

i,t - s

>

9

I = k x k i d e n t i t y matrix,
z =
-

v e c t o r o f k v a r i a b l e s i n t h e model,

@ . I s and e . ' s = k x k m a t r i x e s o f unknown parameters,
-J
-J
e = k x 1 v e c t o r o f unknown parameters, and
-0
a = k x 1 v e c t o r o f random e r r o r s t h a t a r e i d e n t i c a l l y and
independently d i s t r i b u t e d as N ( O , C ) .

Thus, i t i s assumed t h a t t h e a

j ,t

I s a t d i f f e r e n t points i n time are

independent b u t n o t n e c e s s a r i l y t h a t t h e elements o f gt a r e independent a t a
g i v e n p o i n t i n time.
The n- period- ahead f o r e c a s t s from these models a t t i m e t ( z t ( n ) )
a r e g i v e n by

http://clevelandfed.org/research/workpaper/index.cfm
Best available copy

where f o r any v a l u e o f t,n,m,

[ L ~ +] i~m p-l i~
e s t h e c o n d i t i o n a l expected

- e~t.
values o f t h e random v a r i a b l e s L ~ +a t~t i m

I f n-m i s l e s s t h a n o r

equal t o 0, t h e n t h e c o n d i t i o n a l expected values a r e t h e a c t u a l values o f t h e
random v a r i a b l e s and t h e e r r o r terms.

I f n-m i s g r e a t e r t h a n 0, t h e n t h e

expected v a l u e s a r e t h e b e s t f o r e c a s t s a v a i l a b l e f o r t h e s e random v a r i a b l e s
and e r r o r terms a t t i m e t.

Because t h e e r r o r terms a r e u n c o r r e l a t e d w i t h

p r e s e n t and p a s t i n f o r m a t i o n , t h e b e s t f o r e c a s t s ( i n standard t i m e s e r i e s
f o r e c a s t i n g ) o f t h e e r r o r terms f o r n-m g r e a t e r t h a n 0 a r e t h e i r c o n d i t i o n a l
means, which a r e 0.

The f o r e c a s t s can be generated i t e r a t i v e l y w i t h t h e

one- period- ahead f o r e c a s t s depending o n l y on known values o f t h e v a r i a b l e s and
e r r o r terms.

The l o n g e r - l e n g t h f o r e c a s t s i n t u r n depend on t h e s h o r t e r - l e n g t h

forecasts.

111.

Using Contemporaneous C o r r e l a t i o n s

I f some o f t h e v a r i a b l e s a t t i m e t+l a r e known, t h e n t h e expected
values o f t h e a s s o c i a t e d e r r o r terms a r e n o t n e c e s s a r i l y 0 i f t h e r e i s
contemporaneous c o r r e l a t i o n between t h e e r r o r terms.
t e r m c u r r e n t stands f o r t i m e t+l, i.e.,

t h e t i m e p e r i o d f o r which t h e f i n a l

v a l u e o f some o f t h e v a r i a b l e s i s known b u t n o t a l l . )
t h e f o l l o w i n g s i m p l e model:
Zl,t=

d2 1z 2,t- 1

+

al,t'

( I n the following, the

For example, c o n s i d e r

http://clevelandfed.org/research/workpaper/index.cfm
Best available copy

where each e r r o r t e r m has a v a r i a n c e o f 1 and t h e contemporaneous c o r r e l a t i o n
between al

and a2 i s 0.5.

The standard n- period- ahead f o r e c a s t s a t t i m e t

f r o m t h i s model a r e g i v e n by

where t h e c o n d i t i o n a l expected values o f t h e e r r o r terms a r e 0 i n t h e standard
m u l t i v a r i a t e forecasts.
I n p a r t i c u l a r , t h e one- period- ahead f o r e c a s t s a r e

Thus, i n standard t i m e s e r i e s f o r e c a s t i n g , t h e one- period- ahead f o r e c a s t o f
Zz't+l

which has a standard e r r o r o f u2 ( t h e standard

=12zl,t'

e r r o r o f a2), which f o r t h i s model i s assumed t o be 1.
i s known and z

However, i f z

~ i s ~not, ~t h e n +a b e ~t t e r f o r e c a s t o f zZytcl

o b t a i n e d b y u s i n g t h e contemporaneous c o r r e l a t i o n between al
i s t r u e because al,t+l,

a

l,t+1°

can be
and a2.

This

which equals t h e f o r e c a s t e r r o r made a t t i m e t f o r

z1 a t t i m e t+l (al, t+l = z
c o r r e l a t i o n between al

1, t+l

l,t+l

- z

1,t ( I ) ) , i s known.

Thus, t h e

and a2 can be used t o e s t i m a t e aZytcl

given

For t h i s model, t h e r e l a t i o n s h i p ( d e r i v e d from t h e

variance- covariance m a t r i x of t h e e r r o r terms) between t h e two e r r o r terms i s
given by

http://clevelandfed.org/research/workpaper/index.cfm
Best available copy

where e

is the error in predicting a
using al t. For this model,
2,t
2,t
this error will have a variance of 0.75. Thus, given z ~ , ~ the
+ ~ best
,
Y

forecast of a2,t+l is given by 0.5
Or

* al,t+l; consequently, the forecast

Z2,t+l is modified to be

This forecast will have an error of e2,t+l, which has a variance of
0.75 compared with the error variance of 1 for the forecast from the original
model, using only z

to forecast zZyt. Thus, knowing z
~ reduces
~
~
l,t
the error variance in forecasting z ~ , by
~ 25
+ ~percent for this example.

+

Also, the forecast using contemporaneous data will remain unbiased. In this
model, because the forecast of zl depends on z2, this reduction in
forecast error variance for one-period-ahead forecasts of z2 will lead to a
reduction of forecast error variance for forecasts of zl. For example, the
one-period-ahead forecast at time t+l for zl using contemporaneous
correlations is given by

~

http://clevelandfed.org/research/workpaper/index.cfm
Best available copy

T h i s f o r e c a s t has an e r r o r el,t+2

S i m i l a r l y , t h e f o r e c a s t e r r o r al,t+l

given by

(1) for

ZlYtc2

without using

contemporaneous d a t a i s

Thus, t h e one- period- ahead f o r e c a s t o f zl
2
d a t a has a v a r i a n c e o f ol

+

2
2
qiZ1*oe2 = 1 + 0.75*qig1

u s i n g contemporaneous
while the forecast

2
v a r i a n c e n o t u s i n g contemporaneous d a t a has a v a r i a n c e o f ol +

2

2

@21*02

=

1

+

mZ1.2

S i m i l a r l y , i t can be shown t h a t t h e r e i s a r e d u c t i o n i n t h e f o r e c a s t v a r i a n c e
f o r f u t u r e p e r i o d s when u s i n g contemporaneous c o r r e l a t i o n s f o r t h i s model.
Thus, t h e use o f contemporaneous d a t a reduces n o t o n l y t h e f o r e c a s t e r r o r o f
t h e contemporaneous v a l u e o f t h e o t h e r v a r i a b l e i n t h i s model b u t a l s o t h e
f o r e c a s t s o f t h e observed v a r i a b l e i n f u t u r e periods.
I n general, t h e amount of r e d u c t i o n i n t h e contemporaneous p e r i o d
and f u t u r e p e r i o d s w i l l depend on t h e c o r r e l a t i o n s between t h e e r r o r terms i n
t h e known v a r i a b l e s and those i n t h e unknown v a r i a b l e s , as w e l l as t h e
s t r u c t u r e o f t h e model.

http://clevelandfed.org/research/workpaper/index.cfm
Best available copy

I n t h e general case, t h e v a r i a b l e s can be d i v i d e d i n t o two s e t s

--

those f o r which i n f o r m a t i o n i s a v a i l a b l e f o r t h e c u r r e n t t i m e p e r i o d (LA)
and those f o r which c u r r e n t i n f o r m a t i o n i s n o t a v a i l a b l e

(zNA).I n

the

f o l l o w i n g d i s c u s s i o n , i t i s assumed t h a t t h e f i r s t kA v a r i a b l e s have d a t a
a v a i l a b l e f o r t h e c u r r e n t t i m e p e r i o d and t h a t t h e r e m a i n i n g k-kA v a r i a b l e s
do n o t .

The e r r o r s i n t h e second group t h e n can be f o r e c a s t from t h e known

e r r o r s i n t h e f i r s t group.
t h e known e r r o r s ( a
-4,t

(6)

ai
,t

= b.a

-I-A,t

The r e l a t i o n s h i p between t h e unknown e r r o r s and

-

a kA x 1 v e c t o r ) can be r e p r e s e n t e d as

+

'i ,t

for i = k

+

A

l,k

A

+

2,

...

where bi w i l l be a 1 x k v e c t o r o f e s t i m a t e d c o e f f i c i e n t s .

,k,

Because t h e

e r r o r terms i n e q u a t i o n 6 g e n e r a l l y w i l l be c o r r e l a t e d across e q u a t i o n s ( t h a t
is, e
and e
w i l l g e n e r a l l y be c o r r e l a t e d ) , these e s t i m a t e s s h o u l d be
i ,t
j,t
determined b y u s i n g a g e n e r a l i z e d l e a s t squares e s t i m a t o r ( T h e i l 1971).
Given t h e s e t o f equations p r e s e n t e d i n e q u a t i o n 6, t h e f o r e c a s t s
(or, equivalently,

ai,
t+l

(7)

t h e c o n d i t i o n a l expected v a l u e s ) o f t h e unknown e r r o r s

are

aiYt(l)

f o r i = kA+ 1, kA+ 2,

= bi%,t+l

...

,k.

The f o r e c a s t s u s i n g contemporaneous c o r r e l a t i o n s a r e t h u s g i v e n b y
e q u a t i o n 3, where [$.t+n-j,~A,t+n-j]

I

(a,
t+l ,bi$,

t+l ) i f n - j = l

=

(1)if n - j i s

greater than

(versus a f o r e c a s t o f 1 f o r t h e unknown

v a r i a b l e s i n normal m u l t i v a r i a t e t i m e s e r i e s f o r e c a s t i n g ) , and cit+n-j

i f n- j

http://clevelandfed.org/research/workpaper/index.cfm
Best available copy

i s l e s s t h a n 1.

Thus, t h e b a s i c change i n t h e f o r e c a s t s i s t h a t t h e

c o n d i t i o n a l expected v a l u e o f ai , t+l (i=kA+l,kA+2,
from t h e known e r r o r s ($,t+l

)

...

,k) i s e s t i m a t e d

T h i s has an obvious impact on t h e f o r e c a s t s

a t t i m e t+l. However, as p r e v i o u s l y i l l u s t r a t e d , i t a l s o may improve t h e
f o r e c a s t s f o r l o n g e r t i m e p e r i o d s f o r a l l v a r i a b l e s , because f u t u r e f o r e c a s t s
f o r a l l v a r i a b l e s may depend on t h e f o r e c a s t s a t t i m e t+l.

IV.

F o r e c a s t i n g GNP Using Contemporaneous M-1

To i l l u s t r a t e t h i s method o f f o r e c a s t i n g , we have a p p l i e d i t t o a
t h r e e - v a r i a b l e , q u a r t e r l y model t h a t was e s t i m a t e d i n another ongoing r e s e a r c h
p r o j e c t (Bagshaw and Gavin 1984).
s u p p l y M-1,

The v a r i a b l e s i n t h i s model a r e t h e money

GNP i n c u r r e n t d o l l a r s , and t h e bond- equivalent y i e l d on Treasury

b i l l s w i t h t h r e e months t o m a t u r i t y (RTB3).

M-1 and GNP a r e b o t h s e a s o n a l l y

a d j u s t e d and measured i n b i l l i o n s of c u r r e n t d o l l a r s ; RTB3 i s n o t s e a s o n a l l y
a d j u s t e d and i s measured i n percentage p o i n t s .
ln(1

+

The model was e s t i m a t e d i n

RTB3) and i n changes i n t h e n a t u r a l l o g a r i t h m o f M-1 and GNP, o r

vln(M-1)

and vln(GNP)).

Because of t h e c r e d i t c o n t r o l s d u r i n g 1980, t h e s h i f t

i n monetary p o l i c y d u r i n g t h e 1980s, and t h e D e p o s i t o r y I n s t i t u t i o n s
D e r e g u l a t i o n and Monetary C o n t r o l A c t o f 1980, t h e r e i s some q u e s t i o n whether
t h e l a s t t h r e e o r f o u r y e a r s would be adequately represented b y a model
e s t i m a t e d over an e a r l i e r t i m e p e r i o d .

Consequently, we developed t i m e s e r i e s

models c o v e r i n g two o v e r l a p p i n g t i m e p e r i o d s t o t e s t f o r t h i s problem.

The

two t i m e p e r i o d s were from 1959:IQ through 1976:IVQ and 1959:IQ t h r o u g h
1979:IVQ.

These a l l o w f o r e c a s t s t o be produced f o r t h e t i m e p e r i o d s f r o m

http://clevelandfed.org/research/workpaper/index.cfm
Best available copy

1977:IQ t h r o u g h 1979:IVQ and 1980:IQ t h r o u g h 1984:IIQ.

I f t h e s e changes d i d

indeed have an impact, t h e n t h e e a r l i e r p e r i o d should be more s t a b l e t h a n t h e
l a t t e r p e r i o d and t h e model should p e r f o r m b e t t e r d u r i n g t h i s p e r i o d r e l a t i v e
t o t h e l a t t e r period.
The models were e s t i m a t e d u s i n g t h e Tiao- Box procedure t o e s t i m a t e
t h e parameters o f a m u l t i v a r i a t e simultaneous e q u a t i o n model.

The procedure

i s an i n t e r a c t i v e one s i m i l a r i n p r i n c i p l e t o t h a t used i n s i n g l e Box- Jenkins
modeling (Box and Jenkins 1976).

The s t e p s i n v o l v e d a r e (1) t e n t a t i v e l y

i d e n t i f y a model b y examining a u t o c o r r e l a t i o n s and c r o s s - c o r r e l a t i o n s o f t h e
series;

( 2 ) e s t i m a t e t h e parameters of t h i s model; and ( 3 ) a p p l y d i a g n o s t i c

checks t o t h e r e s i d u a l s .

These d i a g n o s t i c checks i n c l u d e checks o f

c o r r e l a t i o n s i n t h e r e s i d u a l s , n o r m a l i t y of r e s i d u a l s , e t c .

If the residuals

do n o t pass t h e d i a g n o s t i c checks, t h e n t h e t e n t a t i v e model i s m o d i f i e d and
s t e p s 2 and 3 a r e repeated.

T h i s process c o n t i n u e s u n t i l a s a t i s f a c t o r y model

i s obtained.
When a p p l i e d t o t h e two t i m e p e r i o d s , t h i s t e c h n i q u e r e s u l t e d i n t h e
same f u n c t i o n a l f o r m f o r t h e model, w i t h s l i g h t l y d i f f e r e n t e s t i m a t e d
parameters.

The r e s u l t i n g model was

A l l o f t h e e s t i m a t e d parameters o f t h e model a r e s i g n i f i c a n t a t t h e 0.001
l e v e l (see t a b l e 1 ) .

There a r e no s i g n i f i c a n t c o r r e l a t i o n s r e m a i n i n g i n t h e

http://clevelandfed.org/research/workpaper/index.cfm
Best available copy

r e s i d u a l s , except f o r t h e contemporaneous c o r r e l a t i o n between t h e e r r o r terms
i n M-1 and GNP, and t h e models passed t h e usual d i a g n o s t i c t e s t s .
Because o n l y t h e contemporaneous c o r r e l a t i o n between t h e e r r o r terms
i n GNP and M-1 was s i g n i f i c a n t , we developed a f o r e c a s t o f t h e e r r o r i n t h e
GNP equation given o n l y t h e e r r o r i n t h e M-1 equation.

That i s , even though

t h e d a t a f o r RTB3 were a v a i l a b l e even b e f o r e t h e d a t a f o r M-1,

these d a t a do

n o t p r o v i d e u s e f u l i n f o r m a t i o n i n f o r e c a s t i n g e i t h e r contemporaneous GNP o r

M-1.

( I n f a c t , we estimated regressions u s i n g b o t h contemporaneous e r r o r s i n

M-1 and RTB3 as independent v a r i a b l e s and t h e e r r o r i n GNP as t h e dependent
variable.

The RTB3 term was n o t s i g n i f i c a n t a t t h e 0.05 percent l e v e l , and

t h e a d d i t i o n o f t h e RTB3 term d i d n o t s i g n i f i c a n t l y improve t h e regression.)
The r e s u l t i n g r e l a t i o n s h i p was

where bl was estimated t o be 0.792 i n t h e p e r i o d through 1976:IVQ and 0.768
i n t h e p e r i o d through 1979:IVQ.

The standard d e v i a t i o n o f el

was 0.0078

versus a standard d e v i a t i o n o f 0.0089 f o r a3 i n t h e p e r i o d through 1976:IVQ
and 0.0080 versus 0.0090 i n t h e p e r i o d through 1979:IVQ.

Thus, we would

expect approximately a 12 percent r e d u c t i o n i n t h e RMSE f r o m f o r e c a s t i n g GNP
when contemporaneous M-1 i s a v a i l a b l e , compared w i t h u s i n g o n l y lagged M-1

.

To t e s t t h e r e s u l t s on out- of- sample forecasts, we used t h e model
f i t t e d through 1976:IVQ t o f o r e c a s t GNP over t h e p e r i o d 1977:IQ through
1979:IVQ.

I n one case, we used o n l y lagged M-1 and i n t h e second case, we

used contemporaneous M-1.

Also, we used t h e model f i t t e d through 1979:IVQ t o

http://clevelandfed.org/research/workpaper/index.cfm
Best available copy

f o r e c a s t over t h e p e r i o d 1980:IQ t h r o u g h 1984:IIQ.

I n a l l cases, t h e models

were used t o f o r e c a s t b o t h contemporaneous changes i n ln(GNP) and changes i n
ln(GNP) from t i m e t t o t i m e t+2, t h a t i s , t h e change f r o m t h e l a s t known v a l u e
o f ln(GNP) t o t h e f o r e c a s t v a l u e f o r two q u a r t e r s a f t e r t h a t known v a l u e
o c c u r r e d (see t a b l e 2 ) .
From these r e s u l t s , we see t h a t d u r i n g t h e p e r i o d 1977:IQ through
1979:IVQ t h e r e was a decrease i n RMSE o f r o u g h l y 8 p e r c e n t u s i n g
contemporaneous M-1 i n f o r e c a s t i n g c u r r e n t GNP, as compared w i t h u s i n g o n l y
lagged M-1.
percent.

T h i s agrees q u i t e w e l l w i t h t h e t h e o r e t i c a l r e d u c t i o n o f 12
However, d u r i n g t h e p e r i o d 1980:IQ through 1 9 8 4 : I I Q t h e RMSE was

a c t u a l l y m a r g i n a l l y l a r g e r u s i n g contemporaneous M-1.

For t h e two- quarter

change f o r e c a s t s , t h e r e was a r e d u c t i o n of r o u g h l y 4 p e r c e n t i n t h e f i r s t
p e r i o d and an i n c r e a s e o f r o u g h l y 3 p e r c e n t i n t h e l a t t e r p e r i o d .
As mentioned e a r l i e r i n t h i s paper, t h e 1980s i s a t i m e when many
events would p o t e n t i a l l y a f f e c t t h e r e l a t i o n s h i p s among M-1,

GNP, and RTB3.

However, i t i s t h o u g h t t h a t t h e s e events have changed again f r o m r o u g h l y
1 9 8 3 : I I I Q t o t h e p r e s e n t i n such a way t h a t t h e r e l a t i o n s h i p s would be back t o
pre-1980 form.

Table 3 p r e s e n t s t h e contemporaneous f o r e c a s t e r r o r s from

1980:IQ t o 1984:IIQ.

From these e r r o r s , we see t h a t d u r i n g t h e p e r i o d o f

1 9 8 3 : I I Q through 1 9 8 4 : I I Q t h e f o r e c a s t u s i n g contemporaneous M-1 has done much
b e t t e r than t h e one u s i n g o n l y lagged M-1.

I n f a c t , t h e RMSE f o r t h e

f o r e c a s t s u s i n g o n l y lagged M-1 was 0.0131 over t h i s period, w h i l e t h a t f o r
t h e f o r e c a s t s u s i n g contemporaneous M-1 was 0.0101,
a p p r o x i m a t e l y 22 percent.

a reduction o f

For t h e two- quarter change f o r e c a s t s , t h e t i m e

p e r i o d over which t h e l a t e s t change would a f f e c t t h e outcome i s f r o m 1983:IVQ

http://clevelandfed.org/research/workpaper/index.cfm
Best available copy

t o 1984:IIQ, because t h e t w o - q u a r t e r change f o r 1983:IIIQ depends on t h e d a t a
f r o m 1983:IIQ.

The RMSE f o r t h e p e r i o d 1983:IIQ t h r o u g h 1984:IIQ u s i n g o n l y

lagged M-1 was 0.0210; t h a t f o r t h e f o r e c a s t u s i n g contemporaneous M-1 was

0.0188.

Thus, u s i n g contemporaneous M-1 reduced t h e RMSE f o r t h i s p e r i o d b y

r o u g h l y 10 p e r c e n t .

V.

Summarv

Because m u l t i v a r i a t e t i m e s e r i e s models i n c l u d e t h e contemporaneous
c o r r e l a t i o n s i n t h e e r r o r s t r u c t u r e , t h e s e models do n o t use contemporaneous
data t o f o r e c a s t v a r i a b l e s t h a t are n o t a v a i l a b l e f o r t h e c u r r e n t period.
However, as demonstrated i n t h i s paper, t h e s e d a t a can s u c c e s s f u l l y be used t o
o b t a i n more a c c u r a t e f o r e c a s t s f o r t h e c u r r e n t and f u t u r e t i m e p e r i o d s .
Indeed, f o r e c a s t s of GNP u s i n g contemporaneous M-1 had r o u g h l y an 8 p e r c e n t
s m a l l e r RMSE d u r i n g t h e p e r i o d 1977:IQ t h r o u g h 1979:IVQ t h a n t h a t u s i n g o n l y
lagged M-1.
mixed.

The r e s u l t s d u r i n g t h e p e r i o d 1980:IQ t h r o u g h 1984:IIQ a r e

However, t h e r e s u l t s i n d i c a t e t h a t u s i n g contemporaneous M-1 p r o v i d e d

more a c c u r a t e f o r e c a s t s d u r i n g 1983:IIQ t h r o u g h 1984:IIQ, s u g g e s t i n g t h a t
u s i n g contemporaneous M-1 d a t a would p r o v i d e more a c c u r a t e f o r e c a s t s i n t h e
future.

http://clevelandfed.org/research/workpaper/index.cfm
Best available copy

Table 1 Estimated Parameters

Time period

Parameter

Standard
devi a t i ons and
c o r r e l a t ions

1959:IQ - 1976:IVQ

1959:IQ - 1979:IVQ

http://clevelandfed.org/research/workpaper/index.cfm
Best available copy

Table 2 Forecast Error Statistics for GNP using M-1

Time ~ e r i o d

Contemporaneous forecasts
Lagged

Contemporaneous

Lagged

Contemporaneous

Mean error

0.0009

-0.0003

-0.0072

-0.0080

RMSE

0.0095

0.0087

0.0142

0.0143

MAE

0.0068

0.0068

0.0122

0.0129

Two-quarter change forecasts

Lagged

Contemporaneous

Lagged

Mean error

0.0036

0.0010

-0.0155

-0.0157

RMSE

0.0114

0.0109

0.0260

0.0267

MAE

0.0093

0.0093

0.0212

0.0214

NOTE: RMSE - root mean square error of the forecast.
MAE - mean absolute error of the forecast.

Contemporaneous

http://clevelandfed.org/research/workpaper/index.cfm
Best available copy

Table 3 Forecast Errors for GNP using M-1 for 1980:IQ through 1982:IVQ

Contemporaneous
forecast

Two-quarter change
forecast

Time
peri od

Lagged

Contemporaneous

Lagged

Contemporaneous

1980: I I IQ

0.0163

-0.0115

0.0038

0.0242

1980: I V Q

0.0080

0.0125

0.0243

-0.0035

1981:I I I Q

0.0046

0.0107

-0.0003

-0.0040

1982: I1 IQ
1982: I VQ
1983: IQ
1983: I I Q
1983: I I IQ
1983: I V Q
1984: IQ
1984: I IQ

http://clevelandfed.org/research/workpaper/index.cfm
Best available copy

References

Bagshaw, Michael L., and William T. Gavin.
S e r i e s Approach, " Working Paper.

" Velocity:

A M u l t i v a r i a t e Time

Federal Reserve Bank o f C l eve1 and,

forthcoming.
Box, G.E.P.,

and G.M.

Jenkins.

Time S e r i e s Analysis, Forecasting and Control,

San Franci sco: Hol den-Day, 1 976.
T h e i l , Henri.

P r i n c i p l e s o f Econometrics, New York:

John Wiley & Sons, Inc.,

1971.
Tiao, G.C.,

and G.E.P.

Box.

"Modeling Multiple Time S e r i e s with

Applications," Journal o f t h e American S t a t i s t i c a l Association, vol.
76, no. 376 (1 981 1, pp. 802-1 6.