AN approximate life-table for the united states
 ON THE BASIS OF THE NINTH CENSUS, 1870.
 [PLATES XXXVIII-IX; XLIII-IV.]

BY E. B. ELLIOTT, U. S. BUREAU OF STATISTICS.
[In a letter to the Supcrintendent of the Census, 1872.]

IN compliance with your request to be furnished with a "life-table," based on that portion of the returns of the United States census which purports to show distributed, according to age, the number of persons living on the first day of June, 1870, and the number of deaths which occurred during the twelve months which immediately preceded that date, I have prepared the following analysis and statement.

An important difficulty is encountered, at the outset of an attempt to arrive even approximately at a table which shall fairly represent the law of mortality obtaining in the general population, in the fact, manifest on intelligent inspection and confirmed by careful comparison with other analogous and trustworthy data, that the number of deaths reported as having occurred in the period above referred to falls far short of the number which must have taken place.*

In conducting the investigation proposed, this deficiency could only be supplied by resort to a somewhat arbitrary assumption, limited, however, by an investigation of the rates of mortality relative to population which obtain in other communities, so far as accessible, and in portions of our own country.

In the construction of the following tables the deficiency in the returns of deaths was assumed to be forty-one per cent of the full number of deaths which must have taken place. This assumed deficiency gives a general rate of mortality not differing greatly from that obtaining in England and Wales, and is also in substantial accord with the results of observation at different periods in the State of Massachusetts, in our own country. It is impossible to determine with precision the amount of deficiency in the return of deaths, but from the results herein computed on the assumption of a deficiency of forty-one per cent, it is easy to calculate corresponding values which shall conform to the assumption of any other supposed rate of deficiency.

The distribution of the aces of the living population, and of the deaths as furnished by the official returns of the census, although to some extent faulty, yield ratios which, augmented as above described, have been accepted in the construction of the following tables as satisfactorily correct.

TABLE I.
United States Census, 1870 .

	$\begin{gathered} \text { Population at specified } \\ \text { ages. } \end{gathered}$				2.	3.	4.
							(0irst
							-015588
x to ${ }^{\text {a }}$			$\mathrm{M}_{x: y}$.				(.025]
1.	2.	3.	4.			(14,49	.
$\begin{aligned} & \text { otor } \\ & \text { rot } 102 \\ & 2020 \\ & 3+04 \\ & 4 \text { to } \end{aligned}$			$\begin{aligned} & 17000 \\ & .06850 \\ & .03505 \\ & .02266 \end{aligned}$				-
				95 and over			
	${ }_{4}^{4,786,18,73}$	$\underbrace{}_{\substack{26,329 \\ 15,979}}$.00297		$\begin{aligned} & 38,553,210 \\ & 5,16 \mathrm{I} \end{aligned}$	$\begin{gathered} 491,243 \\ 1,2020 \\ 1,20 \end{gathered}$	0.0216
				All ages...			
				Alt ages,	38,558,371	499,263	

$$
\frac{100}{100-4 \times} \times \frac{491,243}{38,553,210}=0.0216
$$

* It is easy to explain the cause of the wholesale omissions from the returns of deaths in the census, which have been referred to. To take the recent census as an example, the census law required the return of all deaths occurring in families
from the Ist of June, 1869 , to the 3 Ist of May, 1870 ; in all, twelve months. The enumeration in the course of which this was from the 1st of June, 1869 , to the 3 1st of May, 1870 ; in all, twelve month. The enumeration in the course of which this was
to be accomplished began on the Ist of June, I870, and closed, nominally, on the ist of October, but really about the Ist of January, $\mathbf{1 8 7 1 \text { . Thus, the officers of the census were called upon to recover all the deaths occurring during the census year, }}$ at a distance in time ranging from one day to nineteen months from the dates at which such deaths severally occurred. The antecedent improbability of success in such an attempt would be of the strongest; while the actual experience of three cen-
suses has shown that assistant marshals fall short of the true number of deaths by not suses has shown that assistant marshals fall short of the true number of deaths by not far from 40 per cent, as a rule. In
some cases assistant marshals fail to put the question; in others, heads of families, or persons answering for them, fail to some cases assistant marshals fail to put the question; in others, heads of families, or persons answering for them, fail to
recall the fact of a death occurring during the year, especially when ten or eleven months have already elapsed since the date of death, and the mind, not unnaturally, refers to the event as having taken place a year or longer before. In still another large number of cases, persons die out of families, which class of cases seems not to have been in contemplation of the census law, which makes the return of mortality a family return. In still other cases, deaths occur in families, but the very
death itself breaks up the family and scatters the surviving members, leaving no one to reprt death itself breaks up the family and scatters the surviving members, leaving no one to report the death in the census. In
still other cases, deaths occur in what are constructively families for the purposes of the census, i. , boarding-houses, hotels etc., but the common tie of membership or association is here so casual and so slight that the chances are altogether against the circumstance being retained in memory sis or eight months after.

The dimensions attained by the life-insurance interest, within the past few years, make it peculiarly a matter of regret at the present time that the census should not afford the data for determining with absolute precision and certainty the death-rate
of the country, whether in the aggregate or by classes of the population. This can never be done without of the country, whether in the aggregate or by classes of the population. This can never be done without a national scheme
of registration, stringently enforced by penalties. Such a scheme, however, does not exist, and is, perhaps, in the nature of of registration, stringently enforced by penalties. Such a scheme, however, does not exist, and is, perhaps, in the nature of
our Government, wholly impracticable. The number of States which provide for themselves a system of registering births, deaths, and marriages, will probably increase from decade to decade, while the results of registration will improve steadily with each year for which the effort is continued, affording thus fuller and better material for corrrectiong errors and supplying
deficiencies in the census statistics ; but it is too much to expect, for many a decade to come, that all the States will join in deficiencies in the census statistics; but it is too much to expect, for
efforts to secure exact iniormation of this character.-[THE Complekr]

TABLE II.
Approximate Life-table, constructed on the basis of the United States Census of 1870, showing for different intervals of age the annual rate of mortality per i,OOO at the specified ages, the numbers living in a stationary population sustained by ioo,ooo annual births, and the number of annual deaths in such population.

Ages				1.	2.	3.	4.
				ro to 15 2502 3 to to 35 10 ros to 110			
Years.	Adjusted*	Calculated.	Calculated.				
x to y	$\mathrm{M}_{x: y}$.	$\mathrm{P}_{x: y}$.	${ }^{8} x: y$.				
1.	2.	3.	4.				
5 to 5	9.27	357.564					

TABLE III.
Approximate Life-table (continued), constructed on the basis of the United States Census of i870, showing, for different ages of life, the number of persons surviving out of IOO,OOO bORN ALIVE; THE NUMBER OF PERSONS LIVING at and over those ages in a stationary population sustained by ioo,000 anNual births; and the mean future duration of life.

Ages.				1.	2.	3.	4.
				5	73,179 60,864	$3,524,518$ $3,166,54$ 1	48.163 45.330
				10 15		- ${ }^{3,1662,954} \mathbf{2 , 1 5 9}$	45.330 41.556
				20	${ }^{6} 5,083$	2,489,305	38.248
				25 30	61,370 57,744	$2,173,260$ $1,875,498$	35.413 32.480
				35	54, 5	1,595.772	29.473
Years.				45	50,489	1, 334, 147	26.425
x	${ }^{\delta}{ }_{x: \omega}$	$\mathrm{P}_{x}: \omega$.	$\mathrm{Q}_{x} \div \mathrm{L}_{x}$.	50 55 60 65	${ }^{42,606}$		23.374 20.367 17.36
						665,725 487,254	
	L_{x}	Q_{x}	E_{x}.		33,159 27,616	${ }_{3}^{485,081}$	14.695 12.134
1.	2.	3.	4.	$\begin{aligned} & 70 \\ & 75 \\ & 80 \\ & 80 \end{aligned}$	21,585 15,369	211,906	- $\begin{aligned} & \text { 9.817 } \\ & 7.778\end{aligned}$
					9,544	57,580	6.033
1 2	100,000 84,468	$3,925,42$ $3,844,230$	39.254 45.392	$\begin{aligned} & 80 \\ & 85 \end{aligned}$	4,830	$\begin{array}{r}22,217 \\ 6,254 \\ \hline 1\end{array}$	4.582 3.416
	78,857	3,752,333	47.584	90 95	449.6	1,117.7	2.486
34	76,092	3,674,474	48.290	100	57.9	103.0	1. 779
	74,377	3.598,772	48.386	105	2.9	3.6	1. 260

In column (2) of Table III is shown the number surviving the different ages of life, out of 100,000 persons born alive. Thus, out of 100,000 born alive, 69,864 survive age 10 ; 65,083 survive age $20 ; 42,606$ survive age $50 ; 9,544$ survive age $80 ; 58$ reaching the advanced age of roo years. In column (4) of the same table is shown the mean after-life time, or mean future duration of life corresponding to the different ages specified. Thus. at birth, the mean future duration of life indicated is $39 \frac{1}{4}$ years; at age $20,38 \frac{1}{4}$ years; at age 40 , nearly $26 \frac{1}{2}$ years; at age 60 , nearly 15 years; and at age 80 , about 6 years.

TABLE IV.
Proportions Born and Surviving Certain Ages in Different Communities, compared.

$\frac{i x}{5}$						
4	Elliott.	Farr.	Elliott.	Milne.	Eliott.	Elliot.
1.	2.	3.	4.	5.	6.	7.
	10,000	10,000	10,039	10,000	10,000	10,060
${ }_{20}^{10}$	${ }_{\text {c, }}^{6,598}$	${ }_{6,628}^{7,025}$	6,589	6,460	${ }_{6}^{6.936}$	- 6.8 .83
30	$\substack{\begin{subarray}{c}{\text { c,7,74 } \\ \text { S.7,49 }} }} \end{subarray}$	$\substack{\begin{subarray}{c}{6,0037 \\ 5,386} }} \end{subarray}$		${ }_{5}^{5,0642}$		
50			¢,	(entions		cition
($\begin{gathered}60 \\ 70 \\ 7\end{gathered}$	${ }_{\substack{3,315 \\ 2,159}}$		${ }_{\substack{\text { c, } \\ 1,5731}}^{\text {3,41 }}$			3, 3.597
80 80 90	(184	cor	4 4	1933 142	${ }_{\text {107 }}^{787}$	$\underset{\substack{1,059 \\ 118}}{18}$
100	${ }_{5.8}$	${ }_{2}$	${ }_{1}$			2

[^0]TABLE V.
Mean Future Duration of Life at Certain Ages in Different Communities, compared.

		L_{1} 'sorem pue puifsug			
	Elliott.	Farr.	Elliott.	Milne.	Elliott.
	1870.	1838-'54	1839-40-415.	1779-87.	1855.
	Persons.	Persons.	Persons.	Persons.	Persons.
	${ }_{45.3}^{39.25}$	40.9 47.4	36.7 44.8	38.7 48.8	39.8 47.1
10 20	45.3 38.2	47.4 39.9	44.5 7.5	${ }_{415}^{48.8}$	47.1 39.9
30	32.5 2.4	33.3	30.6 30.6	34.3	34.0
40	26.4	26.7	23.8	27.6	27.9
50	20.1	20.1	17.1	${ }^{21.1}$	${ }^{21.3}$
60	147	13.9	11.2	14.3	15.0
70 80 80	9.8 6.0	8.7 8.1 1		${ }_{5}^{9.2}$	${ }_{5.0}^{9.4}$
80	6.0	5.1	48	5.5	5.0
90 95	3.4 2.5	2.9 2.2	3.0 \cdots	3.3	2.9 2.3

table VI.-Life Annuities-5 per cent. per annum.

Present Value of One Dollar, payable at the end of each year during the life of a person of specified age, the Rate of Interest on Investments being assumed at 5 per cent. per annum.

	Persons.	Males.	Females.	Persons.
\bigcirc	${ }^{822} 16$	${ }^{812} 5$	\$13,2	${ }_{\text {Pr }}^{12.6}$
coin	16.0 14.9 1.9	${ }_{\substack{16.5 \\ 15.5}}^{10}$	${ }_{\substack{16.5 \\ 15.5}}$	${ }_{\substack{15.3 \\ 15.3}}^{\substack{\text { a }}}$
30	(14.1,		(13.6.	(14.5
40	${ }_{\substack{12.9 \\ 11.1}}$	cis	(13.3	13.4.
(60	${ }_{6.6}^{9.0}$	8.6 5.9	${ }_{6.2}^{9.0}$	${ }_{6.5}^{9.3}$
(\%o	${ }_{4}^{2.6}$	5.9 36	${ }_{3.9}^{6.2}$	${ }_{3.6}^{6.5}$
(100	2.4	$\underset{\substack{2.1 \\ \text { I,I }}}{\text { d }}$	${ }_{2}^{2.2}$	2.1
100		1.1	1.2	r. 0

Note.-For explanation of the process by which these adjustments are reached, reference is made to pp. xiv and $\mathbf{x v}$ Vol. on "Vital Statistics," Ninth Census, 1870.

In this connection the Compiler has deemed it desirable to introduce the following abstract of Mr. Elliott's letter to the Superintendent of the Census [see Vol. on Vital Statistics, Ninth Census, pp. 5^{15}-3I], respecting the distribution of the population at the earlier years of life. [Pl. XXXVIII, XXXIX, XL.]

In the examination of the numbers of population returned during the first two years of life, especially during the latter half of the first year, a very marked irregularity is observable.

It was desired that the data be so adjusted as to present approximately a correct exhibit of the distribution of the population of the United States during the first few years of life, more especially during the first five years. This task was undertaken, with the following general results:

The calculation is based upon the assumption that in a community comprising a large population, the number of persons existing within successive equal intervals of age, as a rule, gradually diminishes with advancing age. Under a strictly accurate census, involving large numbers, this rule will, in general, be found to hold, not merely with respect to a stationary population-that is, with respect to a population in which the loss at each interval of age caused by advancing age, by death, and by emigration, is exactly compensated by the gain arising from births, from advancing age, and from immigration, but also with respect to a population fluctuating by reason of excess or deficiency in the number of births, as compared with the number of deaths, and by any ordinary excess or deficiency in the number of immigrants as compared with the number of emigrants.

Inspection of the tabulated returns shows that the numbers purporting to represent the population at the earlier years of life, especially under the age of five years, do not conform to this standard, and the deviations are so marked and extreme as to impress the conviction that they are, to a notable extent, erroneous.

According to the returns, the number under I year of age (that is, for the first year of life) and the number from 1 to 2 (that is, for the second year of life) are each smaller than the numbers for the third and fourth years of life. From the third year of life onward, however, the general progress does not conflict with the test above assigned, the number diminishing by somewhat regular gradations with advancing age.

The following table shows, according to the United States census of 1870 , the numbers for each of the first five years of life, and the annual mean of the first two years, compared with that of the three years next following, the number returned as of unknown ages $(5,16 \mathrm{I})$ being proportionately distributed among those of specified ages, the addition amounting to about $\mathrm{I} \frac{1}{3}$ for every $\mathrm{I}, 000$ of the population.

Age in years.	Number of persons living for each annual interval of age.	Yearly mean.
\bigcirc to 1.	1,100,622.	1,089,785
1 to	1,078,947	
3 to $4 \cdots \cdots$.	1,113,931	1,111,960
4 to $5 \cdots \cdots$.	1,078,658	

From this table it will be seen that the mean of the numbers of the first two years of life (to wit, $1,089,785$) is less by two per cent. than the mean of the numbers of the three years next following (to wit, $1,111,960$).

In England, according to the census of 1861 , the mean of the earlier two years (to wit, 568,380) is in excess of the mean of the three years next following (to wit, $5^{21,340}$) by nine per cent.

In France, Italy, and Norway the corresponding rates of excess, according to the censuses of 186 I $_{\text {and }}$ and 185 $_{5}$, respectively, are ten, seventeen, and fourteen per cent.

In the calculated series of numbers for the United States, hereinafter given, the corresponding rate of excess is from II to I2 per cent., manifestly a more probable rate than that furnished directly by the census.

The following table exhibits by quarters and half-years the number and the monthly mean of persons returned, under the United States census of 1870, as surviving during the first year of life, commencing with the month of May, 1870, (the month immediately preceding the date of the census,) and reckoning backward; and also the number and monthly mean for the entire second year of life, the number of persons returned as of unknown ages being proportionally distributed among those of specified ages.

Ages by months.	Months.	Number of persons surviving.	Monthly mean.
o to 3 ..	May, 1870 April, 1870 March, 1870 February, 1880	\} 355,177 $\ldots \ldots \ldots$	118,390
3 to 6	$\begin{array}{ll}\text { February, } & 1870 \\ \text { January, } & 1870\end{array}$	346	115,396
	December, 1869		
6 to $9 \cdots\}$			
	$\begin{array}{ll} \text { October, } & 1869 \\ \text { September, } & 1889 \end{array}$	$\}^{273,309}$	91,103
$9 \text { to } 12 \ldots .$	July, 1869 June, 1869		41,893
		$\}^{125,948} \ldots \ldots \ldots$	41,893
oto 6......	May back to December inclusive.	701,365	116,894
6 to 12 .	December back to		
	June, inclusive.. Entire year.....	399,257 1,100,622	66,543
12 to 24	Second year.. ...	1,078,947	91,719 89,912

The irregularity noticeable in the first year of life, and the apparent defect in the returns of the United States census for the last half of that year, are very marked. During the first six months, the tabulated number returned is 701,365 , being a monthly mean of I 16,894 , numbers not varying greatly from, but probably in excess of, the actual numbers within that half-year interval of age. During the last six months of the year the number returned is 399,257 , showing a monthly mean of only 66,543 , an incredible falling off of 43 per cent. from the number returned for the first six months.

The number returned during the second year of life is $\mathrm{I}, 078,947$, a monthly mean of 89,912 ; this mean being 35 per cent. in excess of the mean of the preceding six months, but 2 per cent. less than the mean of the preceding twelve months, and 23 per cent. less than the mean of the first six months of life

An important influencing cause of the irregularities is believed to be found in the fact that, although the enumeration was made with reference to the population as it existed on the ist day of June, 1870, yet the actual collection of the facts by the marshals was extended over a period of several months subsequent to that date, some of the enumerations having been made as late as nine months after the date designated by law. Inquiries, therefore, relative to the month of birth of children under the age of twelve months, living on the first day of June, 1870, required not unfrequently that investigation be made relative to the month of birth of children who were, at the date of actual enumeration, from 16 to 20 months of age. With respect to these more distant months of birth, it is believed that there was less effort in general by the enumerator to secure the requisite information, and greater difficulty encountered in successfully conducting the inquiries.

It is earnestly hoped that, in future censuses of the population, the system will be followed which has proved so successful in England and certain other countries of Europe, to wit, that of taking the census in one day, or as nearly so as possible, through the instrumentality of a prior distribution of schedules, to be filled up with reference to a single night ; such schedules to be collected by the enumerators on the following day, or as soon thereafter as practicable.

It was possible to adjust the irregularities in the data under consideration by one of two methods-the one based on the assumption that there is no actual deficiency in the number of persons enumerated, but that the irregularities observed are due exclusively to an erroneous distribution of the numbers as regards age; that there may be, for some cause, or combination of causes, a general tendency on the part of the enumerators to record the ages of those under two years, and especially those of the second half of the first year of life as either less advanced or more advanced than accords with fact. The other method is based on the assumption that the irregularities in question are not to be wholly accounted for by imperfect distribution as respects age ; but that, in addition to a faulty distribution, there were, with regard to the younger ages, actual deficiencies in the
returns, and that some considerable portion of those who were under the age of two years escaped enumeration.

The latter assumption is deemed the more probable.
An adjustment of the data under the age of five years has, however, been prepared in accordance with each of these two assumptions, and is herewith presented : the one, on the assumption that the irregularities in question are due entirely to faults in distribution; the other, that they are due in part to defective distribution of the numbers returned, and, in part, to actual omissions.

In the following table the third column exhibits the reported number of the population in 1870, according to the officially published abstract, the number of persons returned as of "Unknown Ages" being proportionately distributed among those of specified ages.

The fourth and fifth columns give adjusted values, the adjustment being made in conformity with the rule that the numbers of the population, in equal intervals of age, diminish gradually with advancing years. In the preparation of the former of these two columns, there has been no addition from without to supply supposed omissions; but the average number under the age of 5 years, and also from ages 5 to 25 in this adjusted column, are retained the same as furnished by the returns. In the second of the adjusted columns, however, the number expressing the aggregate of the adjusted values, under the age of five years, has been augmented by an addition of 100,000 to supply supposed omissions.

TABLE
Showing the Number of Persons surviving within each specified Age-interval, according to the Census of 1870, the Number of Persons (5i6i) returned as of "Unknown Ages" being proportionately distributed among those of Specified Ages ($38,553,2$ 10).*

Age.	Periods of Birth.	Observed.		Adjusted.			
				Without addition.		With 100,000 added un der the age of 5 years.	
1.	2.	3.		4.		5.	
Months.							
- to I	May,1870						
		\ldots	117.097 115,436 122,64	\ldots.	109,661 Io6,266 10	\ldots	111,314 108,169
$\begin{array}{ll}2 & \text { to } \\ 3 \\ 3 & \text { to } \\ 4\end{array}$		\ldots	122,644 115,168 1	$\ldots \ldots .$.	104,455 IO3,113	…......	
 4 to 5 5 5	January,............1870	…......	114.507	102,021	105,094 104,016
$\begin{array}{ll}5 & \text { to } \\ 6 \\ \text { to } \\ 7\end{array}$		116,513 91,605	\ldots	1ot,089 100,269	(103,088
7 70 8	Novencer, 1869	…......	91,605 93,404	\ldots		\cdots	102,267
8 8 to to 10		\ldots	88,30	${ }_{988,866}$...	100,855
	${ }_{\text {August, } 1869} 1869$	\ldots	69,688 42.469	\ldots	98,249 97.678	,	100,226
II to 12	June,................. 1869	…......	${ }_{13,791}^{42}$.	${ }_{9}^{97,143}$		99,096

*The addition for those of unknown ages is slightly in excess of $\mathrm{r} \frac{1}{2}$ in every $\mathrm{ro}, 000$ of the number at specified ages more exactly, o.ocoor 3387 .

Age.	Periods of Birth.	Obsrrved.		Adjusted.			
				Without additiov.		With 100,000 added under the age of 5 years.	
1.	2.	3.		4.		5.	
Years.	$\begin{array}{cc} \text { From } \\ \text { May }{ }_{3 I} & \text { June I } \end{array}$		Average per month.		Average per month.		Average per month.
$\begin{array}{llll}1 & \text { to } \\ 2 & \text { to } \\ 2 & \\ & \text { do }\end{array}$	1869 1868 to 188888 to 1867	$\underset{\substack{1,078,947 \\ 1,143,292}}{1}$	$\overbrace{89,912}$	\%,132,498	$\widetilde{94,375}$	I,154,849	
2 3 3 4 4 to	18688 1867 to 1887 1866 1866 to 1865	(1,143,292		coiol	90,559 87,733 8	1,106,899 $1,070,828$ 1	${ }_{89,236}^{92,242}$
4 to 5		1,078,658	89,888	1,025,102	85,425	1,041,192	86,766
5. to 10	1865 1860 to to 18850		80,256 79780	${ }_{4,448,765}^{4,892}$	80,330 74,146	4,873,056	S1,218 74,385
15 to 20	1855 to 1850		7, 67,352	4,773,668	${ }_{69,565}$	${ }_{4,154,678}^{4,46368}$	74,385 60,245
20 to 25	1850 to 1845	3,748,801	62,480	3,949,863	$65,83 \mathrm{I}$	3,901, 298	65022
All other ages.	Prior to June I, 1845.	15,650,803		15,650,803		15,650,803	
All ages.	$\stackrel{\text { From }}{\text { May }{ }^{\text {I }}}$	38,558,371		38,558,371		38,658,371	
Years.							
- to I	1870 to 1869 (one year)	1,100,622	91,719	1,218,344	rot,529		
	1870 to 1868 (two years) 1868 to 1865 (three years)	${ }_{\substack{\text { 2,179,569 } \\ 3,33588 \mathrm{I}}}$	${ }_{0}^{90,815}$	${ }_{\text {2 }}^{2,350,842}$	${ }_{8}^{97,959}$	2,396,531	${ }^{998} 855$
- ${ }^{2}$		${ }_{5}^{3,555,450}$	${ }_{9}^{92,924}$	5,5104,450	87,906 97,924	3,218,919 $5,615,450$	89,414 93.592

It will be seen, on comparing, at the foot of the preceding table, the observed series of values (column 3) with the first of the adjusted series of values (column 4), that 171,273 of the number of persons reported as surviving in the last three years of the first five-year group are transferred to the first two years of that group, making the entire number under two years of age, in the adjusted series, $2,350,842$ instead of $2,179,569$ as in the observed or unadjusted series.

On comparing the values in the observed series (column 3) of that table with those in the second series of adjusted values (column 5), it will be seen that the number in the first two years of life has been augmented by $216,962,100,000$ of which were added from without for supposed omissions, and the remaining II $_{16,962}$ transferred from the group of three years of age next following, the number of persons in the adjusted series, under the age of two years, thereby becoming $2,396,531$ instead of the observed number, $2,179,569$.

Each of these adjusted series conforms, as already stated, to the test of progressive and gradual diminution with advancing years.

The mean annual number of births calculated in accordance with each of these adjustments ($1,404,040$ according to the first method of adjustment, and $1,408,721$ according to the second method), is somewhat in excess of the mean annual number of survivors ($1,402,730$), indicated by the numbers returned for the first six months of life.

Note.-By reference to the Volume on Vital Statistics, of the census 1870 , pp. 524-531, will be found an appendix to the letter of Mr. Elliott there published, showing in detail the process of arriving at the adjustments of the population at the
younger years of life. On comparing the tables as now printed with the earlier tables there presented, it will be seen that in the later tables the numbers at Unknown Ages are distributed proportionately among the different periods of life ; while in
the earlier tables they are not so distributed.

[^0]: * The numbers in this column, from the age of 20 years to the extreme of old age, are the result of careful adjustment.
 The sum of the numbers between the ages of 20 and 45 , of 45 and 70 , and of 70 and 95 , respectively, in the unadjusted series
 numbers from the age of 20 years to the extreme limit of old age,
 numbers above the age of 20 are left as in Table I , undisturbed.
 + Sce
 + See published proceedings of American Association for the Advancement of Science, at its meeting held in Buffalo,
 in 1856.
 \ddagger See
 in ${ }^{1856 .}$. \ddagger.ee published proceedings of American Association for the Advancement of Science, at its meeting held in Moatreal,
 in 1857 .

