CONTENTS

Monetary Aggregates and Recent Economic Trends 2
Controlling Money in an Open Economy:
 The German Case 10
Summary of U.S. Balance of Payments, 1970 ... 28
Monetary Aggregates and Recent Economic Trends

The level of real economic activity continues below potential, with little change in trend during the past year. The rate of inflation appears to have slowed somewhat since last spring; the rate of increase in consumer prices has slowed more than the rate for wholesale industrial prices. More expansive monetary actions are reflected in the relatively rapid rates of growth in the monetary base and the money supply. Short-term interest rates have declined markedly; interest rates on long-term corporate bonds rose in March but are still below their recent peaks in mid-1970.

Recently there has been greater use of monetary aggregates, particularly various combinations of the money stock, time deposits, and savings deposits, in the formulation and measurement of monetary policy. Time and savings deposits have grown more rapidly than demand deposits in the past year, affecting the relative growth rates of these various monetary aggregates. The growth of time and savings deposits has altered the channels through which credit flows but not necessarily the total volume of credit extended.

Income, Employment, and Prices

Personal income has been growing moderately for about a year and a half without a discernible change in trend. Since August 1969, personal income has risen at about a 6 per cent annual rate, after rising at a 9 per cent rate in the previous two years. The 9.5 per cent rate of increase in personal income in the past three months partially reflects a recovery from work stoppages in the automobile industry and preparation for other possible strikes later this year.

Estimated retail sales increased 7 per cent in the year ending March 1971, compared with a 3.7 per cent annual rate of increase from July 1969 to March 1970. Considering price trends, it appears that there has been essentially no change in retail sales activity for a long time. Industrial production has declined at about a 3.3 per cent annual rate since July 1969. A sharper contraction last fall during the strike has since been offset by the increase since November 1970.

Total civilian employment has remained essentially unchanged during the past year. Payroll employment declined about one per cent in the past year. Payroll
employment generally falls faster than total civilian employment during periods of contraction, and increases faster during periods of expansion. The per cent of unemployed persons out of work 27 weeks or longer rose from about 8 per cent in February 1970 to nearly 8.3 per cent in February 1971.

Manufacturing earnings, adjusted for changes in consumer prices, overtime, and the industrial composition of the labor force, have risen at a 2.2 per cent rate during the past year, compared with no change in the year ending October 1970. Wage increases have been unequally distributed among workers in different industries. Hourly earnings in retail trade increased 5 per cent in the past year. Hourly earnings in contract construction rose 9 per cent in the past twelve months, compared with a 9.5 per cent annual rate of increase in the seven-month period ending March 1970.¹

Reduction in the rate of inflation has been proceeding gradually. Consumer prices rose at a 1.5 per cent annual rate from December to February and at a 4 per cent rate from June to February, compared with a 6 per cent rate from June 1969 to June 1970. Wholesale industrial prices have increased at a 3.4 per cent rate since May 1970, compared with a 3.9 per cent rate in the nineteen-month period ending May 1970.

Recent Monetary and Interest Rate Developments

Monetary stimulation to the economy has become greater in the last year. The money stock, defined to include private demand deposits and currency in the hands of the public, has increased at an 8.2 per cent annual rate in the past four months, after rising at about a 6 per cent rate in the previous nine months. By comparison, money increased at a 3 per cent rate from January 1969 to February 1970, and at an average 4.7 per cent rate from 1963 to 1968.

More expansive monetary actions have also been reflected in the growth of the monetary base. The base has increased at a 7.6 per cent annual rate since February 1970 and at about an 11 per cent rate in the past four months. By comparison, the base increased at a 3.7 per cent trend rate from 1957 to 1969. The largest source component of the base, Federal Reserve credit, has risen at an 8.8 per cent annual rate since February 1970 and at a 14.2 per cent rate over the past four months, compared with a trend rate of almost 8 per cent from 1957 to 1969.

Short-term market interest rates have declined markedly in recent months, reflecting both a weak-

¹The rates of change in hourly earnings in retail trade and contract construction are not adjusted for changes in consumer prices or overtime.
Interest rates on single-maturity deposits in amounts of less than $100,000 maturing in 30 days to 1 year. Prior to July 20, 1966 a separate ceiling (or these deposits did not exist. The Regulation Q rate shown is for "other time deposits" maturing in one year or less.

Latest data plotted: March

Interest in demand for credit accompanying the slack in economic activity and the more expansionary monetary developments. Three-month Treasury bill rates averaged 3.38 per cent in March, down from 4.4 per cent in January 1971 and 6.63 per cent in March 1970. Responding to the weakness in demand for loans relative to supply, banks have lowered the prime interest rate which they charge to their highest-rated business customers ten times since mid-September. The most recent decline (late March) was to 5 1/4 per cent, compared with 8 per cent last spring and summer.

Interest rates on longer-term issues have declined much less than rates on short-term obligations, reflecting continued great inflationary expectations and a desire by some borrowers to lengthen their debt to improve their liquidity. Yields on long-term Government bonds averaged 5.71 per cent in March, down about 20 basis points from January 1971. Last June interest rates on these bonds averaged about 7 per cent. Yields on seasoned Aaa corporate securities rose in March, averaging 7.21 per cent but still down about 130 basis points from June 1970.

Alternate Monetary Aggregates

In addition to continued use of interest rates and short-term credit-market conditions, recently there has been greater use of the money supply and various other measures of liquidity in the formulation and measurement of monetary policy. Currently, policy discussions frequently include references to the growth rates of three measures of the money supply:

\[M^1 = \text{demand deposits plus currency held by the public;} \]

\[M^2 = M^1 + \text{time deposits at commercial banks other than large negotiable certificates of deposit;} \]

\[M^3 = M^2 + \text{all savings and loan shares and mutual savings bank deposits.} \]

The growth rates of these three aggregates have diverged widely in recent years, which means that on the surface they have not provided consistent information regarding the thrust of monetary actions. These divergent growth rates have been largely the result of substantial swings in market interest rates, compared to the maximum rates that banks, savings and loan associations, and mutual savings banks are permitted to pay on deposits.

Alternate Monetary Aggregates

In addition to continued use of interest rates and short-term credit-market conditions, recently there has been greater use of the money supply and various other measures of liquidity in the formulation and measurement of monetary policy. Currently, policy discussions frequently include references to the growth rates of three measures of the money supply:

\[M^1 = \text{demand deposits plus currency held by the public;} \]

\[M^2 = M^1 + \text{time deposits at commercial banks other than large negotiable certificates of deposit;} \]

\[M^3 = M^2 + \text{all savings and loan shares and mutual savings bank deposits.} \]

The growth rates of these three aggregates have diverged widely in recent years, which means that on the surface they have not provided consistent information regarding the thrust of monetary actions. These divergent growth rates have been largely the result of substantial swings in market interest rates, compared to the maximum rates that banks, savings and loan associations, and mutual savings banks are permitted to pay on deposits.
The ceiling rates on various types of time and savings deposits currently in effect at commercial banks are shown in Table I. As indicated in the table, the ceiling rates on large negotiable CD’s bearing maturities of one month to three months were suspended in June last year. The ceiling rates on other time and savings deposits were last increased in January 1970, with the maximum interest rates allowed on most types of savings and small time deposits being raised by one-half to three-quarters of one per cent. The maximum rates payable on large negotiable CD’s were raised by increments ranging from three-quarters of one per cent to one and one-quarter per cent, depending on maturity.

Time Deposit Growth

Total time deposits at commercial banks generally grew very rapidly in the 1960’s, except for 1969. During the three years ending December 1968, both total time deposits and time deposits excluding large CD’s rose at a rapid 12 per cent average annual rate.

The accompanying chart, which shows the ratio of time deposits to demand deposits, indicates that time deposits declined more rapidly than demand deposits during the period of restrictive monetary policy in 1969 and early 1970. The decline in time deposits in 1969 and early 1970 was caused by market interest rates rising well above the rates at which commercial banks were able to compete under Regulation Q ceilings.

Early last year, short-term market interest rates began to decline, and Regulation Q ceiling rates on certain time deposits were raised. Due to this combination of developments, time deposits began a period of rapid increase which has continued to the present time. The growth of demand deposits also accelerated in 1970 as monetary actions became more stimulative; however, the much more rapid growth of time deposits is reflected in a significant increase in the ratio of time to demand deposits.

It is of interest to note the trend of the ratio of time to demand deposits in the year of reintermediation since early 1970, compared to the trend of this ratio in the six years prior to the inception of disintermediation in early 1969. The ratio of total time deposits to demand deposits rose at a 17 per cent annual rate from February 1970 to March 1971, much faster than
the 8 per cent annual rate of increase in this ratio from 1963 through 1968 when monetary policy was highly stimulative, but Regulation Q interest ceilings were impinging only for brief periods.

The series "time deposits at commercial banks" consists of several distinct types of interest-bearing deposits offered by banks. The various types of time deposits differ substantially with respect to size limitations, frequency of interest payments, maximum rates payable, and negotiability. It has recently become common practice to separate large negotiable certificates of deposit ($100,000 minimum denomination) from all other time deposits in analyzing the factors influencing time deposit growth. These two major classes of time deposits will be discussed separately below.

Large Certificates of Deposit — During the past few years, the outstanding volume of large negotiable CD's at large commercial banks has been subject to sharp swings, as market interest rates on substitute instruments fluctuated widely compared to the maximum rates banks were permitted to pay on these deposits. In 1969, market interest rates on commercial paper and U.S. Treasury bills were much higher than the ceiling rates on bank deposits. As a result, corporations, state and local governments, and others who hold large dollar amounts of short-term interest bearing assets turned to lending directly through the commercial paper market and to direct ownership of U.S. Treasury bills.

As shown in the charts of commercial paper and CD volumes and rates, the growth of outstanding commercial paper accelerated sharply in 1969 as the yield on this instrument rose relative to the ceiling on CD's. The rise in commercial paper volume closely mirrored the decline in CD volume. For several years prior to 1969, both CD's and commercial paper had grown steadily and rapidly. In the first half of 1969 the rates on commercial paper moved more than two percentage points above the official ceiling rates which could be paid on large CD's. Large CD's at commercial banks dropped over $12 billion during 1969, while growth of commercial paper accelerated and the outstanding volume rose over $11 billion in 1969.

Early in 1970 the trends were reversed as a result of changes in the relative yields of these instruments. In January the Regulation Q interest rate ceilings on these large time deposits were raised by increments of three-fourths to one and one-fourth percentage points, and in June the ceiling rates were completely suspended on certain maturities of large CD's. At the same time, the yield on commercial paper declined along with other short-term market interest rates. Also, in October 1970 reserve requirements were imposed on commercial paper issued by bank holding companies, and there was concern in the financial community about the risk associated with commercial
paper issued by some corporations because of their financial difficulties. The volume of CD's recovered $17 billion in 1970 and early 1971, while from May 1970 to February 1971 the volume of commercial paper outstanding dropped $6 billion.

Net Time Deposits—The growth of time deposits at commercial banks net of large negotiable certificates of deposit has also been affected by the level of market interest rates relative to the ceiling rates, but to a lesser extent than CD's. These net time deposits declined somewhat from mid-1969 to early 1970 before resuming a rapid upward trend. From February 1970 to March 1971 net time deposits rose at an 18 per cent annual rate, following a 1 per cent rate of change from December 1968 to February 1970, and a 13 per cent rate of increase from December 1966 to December 1968. These broader measures of money plus near-moneys, in addition to the narrowly defined money stock, may be considered by policymakers in assessing the influence of monetary actions on economic activity. Thus, it is useful to look at the relative growth of net time deposits and deposits at thrift institutions in recent years.

Savings Deposits

Household and small business savings deposits at commercial banks, savings and loan associations, and mutual savings banks are generally considered to be close substitutes for each other, although their growth rates have diverged substantially on occasion. During the 1950's savings and loan shares and mutual savings bank deposits rose relative to time deposits at commercial banks; however, in the decade of the Sixties, net time deposits at commercial banks have risen more rapidly. As shown in a chart of the ratio of net time deposits to the total of deposits at thrift institutions, from mid-1964 to the end of 1968 the proportion of household and small business savings flowing into commercial banks rose rather steadily relative to such deposits in the thrift institutions, that is, savings and loan associations and mutual savings banks.

On balance since the end of 1968, the ratio of net time deposits to deposits in thrift institutions has not risen significantly, although this ratio has recently been following an upward trend. All of such deposits have risen rapidly from early 1970 to the present, following the increase in the ceiling rates on savings deposits and the general decline in market interest rates. In the period February 1970 to March 1971, the volume of net time deposits at commercial banks rose 17 per cent annual rate, savings and loan shares increased 13 per cent, and mutual savings bank deposits increased 9 per cent.

A factor contributing to the very rapid reintermediation of deposits at financial intermediaries in 1970 was establishment of a $10,000 minimum denomination on the purchase of U.S. Treasury bills. Effective beginning with the Treasury bill auction of March 2, 1970, $10,000 became the smallest denomination of Treasury bills offered. The smallest denomination of Treasury notes and bonds, which carry maturities greater than one year, has continued to be $1,000.

The effect of raising the minimum denomination of Treasury bills to $10,000 is that individuals and small businesses with less than $10,000 increments of savings to lend can no longer obtain these highly liquid...
Table II
Summary of Funds Raised and Advanced in U.S. Credit Markets
(Billions of Dollars)

<table>
<thead>
<tr>
<th></th>
<th>1968</th>
<th>1969</th>
<th>1970</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Funds Raised by Nonfinancial Sectors</td>
<td>$96.9</td>
<td>$90.4</td>
<td>$95.4</td>
</tr>
<tr>
<td>U.S. Government</td>
<td>13.4</td>
<td>-3.6</td>
<td>12.7</td>
</tr>
<tr>
<td>All Other Nonfinancial Sectors</td>
<td>83.5</td>
<td>94.1</td>
<td>82.7</td>
</tr>
<tr>
<td>By Instrument</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corporate Equity Shares</td>
<td>-0.7</td>
<td>4.8</td>
<td>6.6</td>
</tr>
<tr>
<td>State and Local Government Sector</td>
<td>9.6</td>
<td>8.1</td>
<td>11.8</td>
</tr>
<tr>
<td>Corporate and Foreign Bonds</td>
<td>14.0</td>
<td>13.1</td>
<td>22.4</td>
</tr>
<tr>
<td>Mortgages</td>
<td>27.3</td>
<td>27.9</td>
<td>24.6</td>
</tr>
<tr>
<td>Other Bank Loans</td>
<td>13.4</td>
<td>15.7</td>
<td>7.7</td>
</tr>
<tr>
<td>Consumer Credit</td>
<td>11.1</td>
<td>9.3</td>
<td>4.3</td>
</tr>
<tr>
<td>Open Market Paper</td>
<td>1.6</td>
<td>3.3</td>
<td>3.8</td>
</tr>
<tr>
<td>Other</td>
<td>7.3</td>
<td>11.8</td>
<td>8.4</td>
</tr>
<tr>
<td>Total Funds Advanced</td>
<td>$96.9</td>
<td>$90.4</td>
<td>$95.4</td>
</tr>
<tr>
<td>U.S. Government</td>
<td>4.9</td>
<td>2.5</td>
<td>3.3</td>
</tr>
<tr>
<td>U.S. Government Credit Agencies</td>
<td>-2.2</td>
<td>2.2</td>
<td>1.2</td>
</tr>
<tr>
<td>Federal Reserve System</td>
<td>3.7</td>
<td>4.2</td>
<td>5.0</td>
</tr>
<tr>
<td>Commercial Banks, net</td>
<td>39.5</td>
<td>12.2</td>
<td>31.1</td>
</tr>
<tr>
<td>Savings Institutions, net</td>
<td>14.6</td>
<td>10.4</td>
<td>14.9</td>
</tr>
<tr>
<td>Other Private Nonbank Finance</td>
<td>19.6</td>
<td>20.0</td>
<td>22.4</td>
</tr>
<tr>
<td>Foreign</td>
<td>2.5</td>
<td>1.3</td>
<td>1.0</td>
</tr>
<tr>
<td>Business</td>
<td>7.4</td>
<td>13.8</td>
<td>19.9</td>
</tr>
<tr>
<td>State and Local Government</td>
<td>-0.4</td>
<td>6.1</td>
<td>2.7</td>
</tr>
<tr>
<td>Households</td>
<td>5.8</td>
<td>18.0</td>
<td>7.0</td>
</tr>
<tr>
<td>Total Sources</td>
<td>$96.9</td>
<td>$90.4</td>
<td>$95.4</td>
</tr>
<tr>
<td>Demand Deposits and Currency</td>
<td>14.8</td>
<td>7.1</td>
<td>5.5</td>
</tr>
<tr>
<td>Time and Savings Accounts</td>
<td>33.7</td>
<td>-2.4</td>
<td>56.4</td>
</tr>
<tr>
<td>At Commercial Banks</td>
<td>20.8</td>
<td>-10.5</td>
<td>39.8</td>
</tr>
<tr>
<td>At Savings Institutions</td>
<td>12.9</td>
<td>8.1</td>
<td>16.6</td>
</tr>
<tr>
<td>Credit Market Instruments, net</td>
<td>12.3</td>
<td>39.5</td>
<td>7.5</td>
</tr>
<tr>
<td>U.S. Government Securities</td>
<td>7.7</td>
<td>15.0</td>
<td>-6.8</td>
</tr>
<tr>
<td>Private Credit Market Instrument</td>
<td>13.4</td>
<td>26.9</td>
<td>14.2</td>
</tr>
<tr>
<td>Foreign Funds</td>
<td>4.3</td>
<td>9.6</td>
<td>2.3</td>
</tr>
<tr>
<td>At Banks</td>
<td>1.8</td>
<td>8.3</td>
<td>-7.8</td>
</tr>
<tr>
<td>Direct</td>
<td>2.5</td>
<td>1.3</td>
<td>10.0</td>
</tr>
<tr>
<td>Change in U.S. Government Cash Balance</td>
<td>-1.1</td>
<td>.4</td>
<td>2.4</td>
</tr>
<tr>
<td>U.S. Government Loans</td>
<td>4.9</td>
<td>2.5</td>
<td>3.3</td>
</tr>
<tr>
<td>Private Insurance and Pension Reserves</td>
<td>18.5</td>
<td>18.7</td>
<td>20.0</td>
</tr>
<tr>
<td>Other Sources</td>
<td>9.5</td>
<td>15.0</td>
<td>-1.9</td>
</tr>
</tbody>
</table>

securities. Prior to this action by the Treasury, individuals and small businesses had acquired significant holdings of Treasury bills, usually with maturities of six months to one year. After March 2, 1970 such holdings in less than $10,000 increments could not be renewed as they matured, so the individuals were forced to accept repayment from the Treasury for maturing securities. Small savers then sought alternative sources to earn interest on short-term funds. Although it is not possible to identify the amounts involved, commercial banks and thrift institutions were undoubtedly beneficiaries of this Treasury Department action.

Credit Flows and Reintermediation

The disintermediation-reintermediation process shows up dramatically in the Flow of Funds Accounts for the past three years. Table II shows summary data for these flows in the past three years. According to those accounts, private holdings of time and savings deposits increased in 1970 by the largest amount ever recorded after declining slightly in 1969. Most of the reversal is accounted for by deposits at commercial banks, specifically corporate holdings of negotiable CD's, state and local government holdings of both CD's, and other time deposits. Households resumed acquisition of time deposits at commercial banks and savings and loan associations. The other side of the reintermediation process is represented by a decline in the holding of credit market instruments. Households and state and local governments switched from rapid acquisition of U.S. Government securities to liquidation. Also, nonfinancial corporate business moved from rapid acquisition of open market paper to liquidation.

Along with an easier monetary policy in 1970, total funds raised by nonfinancial sectors was larger than in 1969, but not as much as in 1968. U.S. Government borrowing resumed levels of earlier periods after supplying net funds in 1969. This increased borrowing by the U.S. Government of $16 billion was offset by an $11 billion decline in household borrowing.

Lenders altered their participation in the credit markets in 1969. Commercial banks recovered from a low level of lending, while businesses and households reduced sharply the amount of funds they advanced to the credit market. Foreign lenders advanced directly an unusually large amount of funds during 1970, principally through the acquisition of U.S. Gov-
eminent securities. However, a large part of these funds represents a transfer of foreign holdings out of Eurodollars and other financing assets as well as a reduction in foreign exchange liabilities held in the U.S.

Summary

Production and employment remain below capacity levels, with little change in trends in the past year after allowance for strike effects. Inflation remains strong and is receding slowly in response to the downward pressure from excess capacity. Monetary actions have become more expansionary in the last fifteen months, with a view to stimulating growth in sales, production, and employment without intensifying inflationary pressures.

There has recently been a greater use of monetary aggregates, composed of the narrowly defined money supply and time and savings deposits, in the formulation and measurement of monetary policy. Time and savings deposits increased at a rapid rate in the past year, causing a divergence between the growth rates of the money stock and other monetary aggregates. Individuals and firms invested a larger share of their wealth in time and savings deposits as market interest rates fell relative to the interest ceilings of these deposits. Total credit, total funds raised by borrowers over a period of time, has not been affected as much as the channels of credit flows during the period of reintermediation in the past year.
Controlling Money in an Open Economy:
The German Case*
by MANFRED WILLMS

In recent years inflation has been a world-wide problem. To stem the tide of rising prices, stabilization authorities have called on all the economic tools available to them. During this period, there has been growing reliance on controlling growth of the money supplies of nations to prevent inflationary increases in total spending. However, it has been contended frequently that a country with a large foreign trade position could not effectively control its money stock in order to avoid “imported inflation.” This is particularly important if a relatively large country, such as the United States, has persistent inflation and balance-of-payments deficits.

In the following article, Professor Manfred Willms presents a framework within which the various factors influencing growth of the money stock in open economies (possessing a relatively large and fluctuating stock of foreign reserves) can be analyzed. The ways that actions of the monetary authorities and the behavior of commercial banks and the nonbank public affect a nation’s money stock are discussed, and the relative influence of these groups on the growth of money is estimated.

The article shows how changes in a nation’s trade balance and/or net capital flows influence its stock of foreign reserves and growth of its monetary base. Next, there is a discussion of the conditions under which monetary authorities would be able to control the money stock.

Finally, the article presents empirical evidence which indicates that monetary authorities in Germany have maintained effective control in the short run over that nation’s money stock, even though foreign reserves have fluctuated sharply and grown very rapidly on balance. The article also presents some special developments in Germany, such as an application of fiscal actions to control the money stock, which illustrate the interacting and opposing forces at work between monetary authorities, commercial banks and the public in a country with a large and volatile foreign sector. To help the general reader follow the main points in this article, the mathematical formulation of the money supply model and the statistical evidence supporting the conclusions are presented in footnotes and in appendices.

Professor Willms served as visiting scholar at this Bank for one year, and was engaged in research concerning monetary theory and policy in Germany. Professor Willms received his Ph.D. in Economics from the University of Hamburg in 1963. He has taught economics at the University of Hamburg, the University of Bonn, and the University of Illinois, and for the past year has been on leave from his position as Professor of Economics at the University of Bonn.
UNDER THE PRESENT international monetary system of fixed exchange rates and free convertibility among major Western currencies, countries with a balance of payments deficit lose foreign reserves (gold and foreign currencies) and those with a surplus acquire foreign reserves. Such flows of foreign reserves may affect the growth of a nation's money stock. A controversial issue for each open economy (an economy with a large foreign sector) is whether its monetary authorities can offset the impact of an outflow or inflow of foreign reserves on the money stock, or whether the present system of fixed exchange rates constrains the domestic monetary policy of these economies. This question is especially relevant in some Western European countries which have accumulated very large U.S. dollar reserves over the last few years, and are also confronted with substantial swings in their dollar flows.

This article analyzes the controllability of the money supply in Germany, a country whose economy is both highly dependent on foreign trade, and well integrated into international financial markets. The article (1) examines two major hypotheses on the controllability of the money supply in an open economy; (2) describes the relationship between the balance of payments of a country and its foreign reserve position; (3) shows the relationship between the foreign reserve position of the central bank and the total amount of base money; (4) develops a model of the money supply process for an open economy; and (5) presents some empirical estimates for the money supply process in Germany.

By arranging the article in this manner, the interrelationship between the balance of payments and the money supply is developed step by step. First, balance-of-payments influences on the stock of foreign reserves at the central bank are described; then the impact of foreign reserves on the creation of base money is discussed; and finally the influences of changes in base money and the money multiplier on the money stock are analyzed.

*For valuable comments on an earlier draft of this paper, I would like to thank Leonall Andersen, Christopher Bach, Karl Brunner, Albert Burger, Otmar Emminger, Michele Fratianni, Donald Hodgman, Harry G. Johnson, Jerry Jordan, Michael Keran, Allan Meltzer, George Morrison, and Case Sprenkle. I also gratefully acknowledge the assistance of Anita Cooper with respect to computer work and language corrections. Any errors in the analysis are, of course, the responsibility of the author.

1"Base money" is defined as the net monetary liabilities of the central bank and the government held by commercial banks and the nonbank public. It is similar to the magnitude which Friedman, Schwartz, and Cagan call "high-powered money."

Two Views Regarding Money Control in an Open Economy

There are two alternative hypotheses concerning the controllability of the money supply in an open economy under fixed exchange rates. One hypothesis states that the money supply cannot be controlled in an open economy because any change in the interest rate differential between countries will lead to an inflow or outflow of foreign reserves, neutralizing the desired monetary impact on the domestic economy. According to this hypothesis, the interest rate elasticity of international capital flows is relatively high. The other hypothesis states that the interest rate elasticity of international capital flows is not so high that countries lose control over their money supply.

Hypothesis I

Those who suggest the first hypothesis argue that the monetary authorities, of a country such as Germany with continuous balance-of-payments surpluses, are unable to control the money supply and hence are unable to escape inflation without an adjustment in the exchange rate. Economists of this group are in favor of more flexible exchange rates as a means of permitting greater national autonomy in the determination of the money supply and the price level. They blame fixed exchange rates for preventing national economies from adjusting to one another and from reconciling internal employment and price level objectives with external balance-of-payments objectives by using "sound" policy decisions.

To illustrate this viewpoint let us assume that world market prices for a country's major export goods are rising relative to prices in that country. Exports of this country will increase as foreign customers direct their demand to the relatively cheaper goods. The country realizes a trade surplus and receives foreign
reserves which, unless offset by central bank actions, increase the stock of base money and hence exert an expansionary influence on the money stock. The outflow of goods and the expansion of the money stock increase the demand pressure in the country and lead to an increase in its price level. If the country introduces a restrictive monetary policy in the short run, domestic interest rates will rise relative to interest rates in other countries. This will attract international capital, which will increase the stock of base money and hinder attempts of the monetary authorities to slow the growth of the money stock and curb inflation.

A critical point in the argument of this group of economists is that capital flows between the advanced industrialized countries are highly responsive to changes in international interest rate differentials. Any restriction of the growth of a country’s money stock which causes a deviation in its domestic interest rate from the international rate results in an increased inflow or outflow of foreign reserves until the previous interest rate differential is restored.

However, premiums and discounts in forward exchange markets indicate that interest rate differences do exist between countries, and that countries have some freedom to exercise independent monetary policy. This fact is not overlooked by the economists who question the feasibility of a fixed exchange rate system. Nevertheless, they consider the degree of independence of national economic policy to be rather small. Due to its impact on interest rates, monetary policy is considered to be of particularly limited effectiveness in a system of fixed exchange rates. Because the interest rate effect can be softened if fiscal policy is used, restrictive fiscal actions are considered to be more appropriate than monetary actions in reducing domestic demand in a country with balance-of-payments surpluses.3

To achieve this effect the fiscal actions must meet two necessary conditions: (1) they must restrain domestic demand; and (2) they must relieve any upward pressure on interest rates. These conditions are met if a tax increase is used to repay government debt held by the private sector or if government spending is reduced. However, as long as domestic prices are not adjusted to prices in the world market, a growing volume of domestic goods is absorbed by other countries. Foreign demand merely replaces domestic demand without any relief in total demand pressure.

According to the above analysis, in a system of fixed exchange rates monetary and fiscal policies can have only a short-run effect in restricting domestic demand in countries with a balance-of-payments surplus. Sooner or later the domestic rate of inflation will reflect the price level trends in the world market. Only for a very limited period can an economy which is highly integrated in the world economy control its money stock and resist inflationary pressures from abroad.

Hypothesis II

A second group of economists have suggested the hypothesis that the monetary authorities can control the money stock in an open economy even under a system of fixed exchange rates.4 Economists of this group assume that the amount of foreign reserves attracted by a rise in domestic interest rates caused by monetary contraction is smaller than the reduction of base money by the monetary authorities. Thus, there will be a net restrictive effect on the growth of base money and the money stock. According to this view, short-term international capital flows will not react to the observed interest rate differential between two countries, but rather to the interest rate differential adjusted for the forward exchange rate. Movements of interest rates and the forward exchange rate have a tendency to offset each other, reducing the incentive for large movements of short-term international capital. Transaction costs and risks also restrict the mobility of international capital flows. For all these reasons, the interest elasticity of short-term international capital movements does not appear so high that a country would not be able to control its money supply.

The above discussion indicates that the main difference between the two viewpoints is that the first group assumes a rather high interest elasticity of international capital flows, while the second group considers this elasticity to be small. Which viewpoint is correct must be decided by empirical evidence. Before presenting evidence on this issue, the relationship

4See J. Herbert Furth, “International Monetary Reform and the Crawling Peg—Comment,” this Review (July 1969), pp. 21-25. The German Bundesbank and the German Government are obviously also very close to this view. See the official “Comments” by the German Federal Government on the (1964/65) Annual Report of the German Council of Economic Experts, p. 197.
between the balance of payments and the money stock of a nation will be explained.

The Balance of Payments and the Central Bank’s Foreign Reserve Position

The simplest relationship between the balance of payments and the money stock is given by the classical gold standard mechanism. Whenever a country’s exports of goods and services exceeded its imports, its gold stock tended to increase. Since there was a close relationship between the gold stock and the money stock, an increase in gold led to an increase in the country’s money stock. On the other hand, a country which imported more than it exported, lost gold, and its money stock was reduced. Under such a mechanism, the money stock would be primarily a function of the country’s balance of payments.

Under the present international monetary system, the close relationship between a nation’s gold stock and its domestic money stock is broken. A country’s stock of base money can be altered quite independently from changes in the stock of foreign reserves at the central bank.

Changes in foreign reserves at the central bank are the result of the total balance-of-payments situation. They are the joint reflection of conditions in domestic and foreign markets for goods and financial assets as well as of the domestic economic policy actions of the monetary authorities. To show this interrelationship and the impact of the balance-of-payments situation on the holdings of foreign reserves at the central bank, three broad categories of international transactions are distinguished. The first category consists of the current account items, primarily exports and imports of goods and services. The second category consists of two capital account items: changes in foreign assets and changes in foreign liabilities. Changes in these stocks reflect direct investments in real assets, portfolio investments in long-term financial assets, and investments in short-term financial assets. The third category of international transactions consists of monetary transactions involving changes in foreign currencies, official gold holdings, gold tranche positions and special drawing rights. These transfers can be considered the balancing items because they represent the means by which a surplus or deficit in the current account or the capital account is financed.

Changes in the stock of foreign reserves at the central bank occur within the following balance-of-payments constraint:

\[(Ex - Im) - \Delta(FA - FL) = \Delta FR\]

The preceding equation shows that a surplus in the current account does not necessarily lead to an increase in the stock of foreign reserves at the central bank. Changes in foreign reserves also depend on the capital account. Foreign reserves at the central bank can increase with a balance or even a deficit in the current account. These situations require a surplus in the capital account, and in the latter case this surplus has to be greater than the deficit of the current account.

Factors Affecting the Different Balance-of-Payments Items

The items of the current account are primarily dependent upon domestic prices relative to prices in the world market and on domestic income as well as income in the rest of the world. For the purpose of this paper, the current account is treated as an exogenous variable. Therefore, the functional relationship is not discussed in detail.

The stocks of foreign assets and liabilities desired by private economic units are a function of domestic and foreign interest rates as well as uncovered and covered international interest rate differentials. The desired stock of foreign assets is postulated to be negatively related to domestic interest rates and positively related to interest rates in foreign markets as

\[i_{diff} = i^{US} - i^{GE} + \delta\]

The forward discount or premium on the dollar(\(\delta\)) is expressed as a per cent per annum of the spot rate of exchange:

\[\delta = \frac{p_t - p_0}{p_0 \cdot t}\]

where:

- \(Ex\) = Flow of exports of goods and services
- \(Im\) = Flow of imports of goods and services
- \(FA\) = Stock of real and financial foreign assets
- \(FL\) = Stock of real and financial foreign liabilities
- \(FR\) = Stock of foreign reserves at the central bank
- \(\Delta\) = Change in stock variables in one period

The first term in parentheses represents the current account, and the second term, the capital account.
well as to international interest rate differentials. The desired stock of foreign liabilities is dependent on the same variables, however, with the opposite signs.

In addition, the desired stocks of foreign assets and foreign liabilities are influenced by speculation in connection with expected changes in the pegged foreign exchange rate. An expected revaluation reduces the desired stock of foreign assets and increases the desired stock of foreign liabilities.

Besides the independent variables mentioned above, the desired stocks of foreign assets and liabilities have been influenced by actions of the monetary authorities. Until September 1969, one of the most important instruments used by the German central bank for neutralizing the inflow of short-term foreign capital was to vary the forward exchange rate for U.S. dollars and to alter the maturity of its forward contracts with commercial banks. The Bundesbank fixed the forward dollar rate according to the spot exchange rate, the interest rate differentials between the domestic and foreign money markets, and the forward exchange rate in the free forward market for U.S. dollars. The fixed forward rate was only applied to forward transactions with commercial banks. Its main purpose was to increase commercial banks' holdings of short-term foreign assets.

While the forward exchange policy was undertaken to stimulate short-term capital exports of commercial banks, other measures were introduced to discourage capital imports. One of these measures was a higher legal reserve ratio for deposits of nonresidents than for residents. New deposits of nonresidents sometimes have been charged with a required reserve ratio of 100 per cent. Furthermore, interest payments on deposits of nonresidents were forbidden during certain periods.

According to the above discussion, the desired stocks of foreign assets and foreign liabilities are a function of the domestic interest rates, the foreign interest rates, the uncovered interest rate differential, the covered interest rate differential in the free and controlled forward market, the free and controlled forward rate, and a variable indicating speculative expectations with respect to an upward variation in the exchange rate.

The symbols λ_1 and λ_2 in Table I stand for adjustment coefficients indicating the proportion of the gap between the actual and desired stock which is eliminated in one period. The closer λ is to 1, the faster is the adjustment. The adjustment process implies that for given values of the variables determining the desired stock, the rate of change of the stock variables decreases as the actual stock approaches the desired stock. The same variables determining the desired stocks of foreign assets and foreign liabilities influence the stock of foreign reserves at the central bank through their impact on the capital account.

In Germany, fluctuations in the stock of foreign reserves at the Bundesbank are dominated by international capital movements. This is shown in the following chart, where the data for the current account, the capital account, and changes in foreign reserve holdings of the Bundesbank are plotted for the period

Table I

<table>
<thead>
<tr>
<th>Dependent Variables</th>
<th>Independent Variables</th>
<th>Functional Relationships</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreign Assets (FA^*)</td>
<td>domestic interest rate (i_d)</td>
<td>negative</td>
</tr>
<tr>
<td></td>
<td>foreign interest rate (i_f)</td>
<td>positive</td>
</tr>
<tr>
<td></td>
<td>uncovered interest rate differential (Δi_d)</td>
<td>positive</td>
</tr>
<tr>
<td></td>
<td>controlled forward rate ($\Delta \delta$)</td>
<td>positive</td>
</tr>
<tr>
<td></td>
<td>speculation variable (ρ)</td>
<td>negative</td>
</tr>
<tr>
<td>Foreign Liabilities (FL^*)</td>
<td>domestic interest rate (i_d)</td>
<td>positive</td>
</tr>
<tr>
<td></td>
<td>foreign interest rate (i_f)</td>
<td>negative</td>
</tr>
<tr>
<td></td>
<td>uncovered interest rate differential (Δi_d)</td>
<td>negative</td>
</tr>
<tr>
<td></td>
<td>controlled forward rate ($\Delta \delta$)</td>
<td>positive</td>
</tr>
<tr>
<td></td>
<td>speculation variable (ρ)</td>
<td>positive</td>
</tr>
</tbody>
</table>

Changes in the stock of foreign assets and foreign liabilities are assumed to follow an adjustment process of the type:

$$FA_t - FA_{t-1} = \lambda_1 (FA^* - FA_{t-1})$$

$$FL_t - FL_{t-1} = \lambda_2 (FL^* - FL_{t-1}) ; 0 < \lambda_1, \lambda_2 < 1$$
from 1958 to 1970. During the periods 1958 through 1962 and 1969 through 1970, changes in the stock of foreign reserves at the central bank followed very closely the movements of the capital account. During the period 1963 through 1968, the impact of the heavy fluctuations in the current account on the foreign reserve position of the Bundesbank, to a large extent, was neutralized by offsetting movements in the capital account.

The movements in the capital account, to some extent, are the result of monetary policy actions. The Bundesbank used forward exchange policy very effectively in periods of increasing balance of payments surpluses. In 1960-61, when German interest rates were higher than U.S. rates, the Bundesbank fixed a premium for forward dollars, even though forward dollars were traded with a small discount in the free forward market. In 1968-69, interest rates in the United States exceeded those in Germany, and the Bundesbank offered the commercial banks a discount on forward U.S. dollars which was lower than the discount in the free forward market.

Sources and Uses of Base Money

In the preceding section, the impact of the balance of payments on changes in the stock of foreign reserves was described. Now the relationship between foreign reserves and base money will be examined.9

In Germany, base money consists of the net monetary liabilities of the Bundesbank and the Federal Government issued to the private sector. Consolidating the monetary accounts of the Bundesbank and the Government, a balance sheet can be constructed for deriving the sources and uses of base money.

A consolidated balance sheet for base money is illustrated in Table II on the following page. The left side of the balance sheet shows the different sources of base money. The right side shows the uses.

Sources of Base Money

The different terms of the source base reflect the impact of the foreign sector, the behavior of the central bank, the behavior of the government, the behavior of the commercial banks or a combination of these influences.

As indicated above, the stock of foreign reserves at the central bank is equal to the accumulated sum of

9Base money is defined in footnote 1.
Table II

Monetary Base in Germany
December 31, 1970
(Billions of marks)

<table>
<thead>
<tr>
<th>Sources of the Base</th>
<th>Uses of the Base</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreign reserves (FR)</td>
<td>Currency held by the nonbank public (C)</td>
</tr>
<tr>
<td>Gold</td>
<td>14.3</td>
</tr>
<tr>
<td>Foreign currency</td>
<td>28.4</td>
</tr>
<tr>
<td>Others*</td>
<td>7.9</td>
</tr>
<tr>
<td>Discount borrowing (DB)</td>
<td>18.7</td>
</tr>
<tr>
<td>Government securities (GS)</td>
<td>1.2</td>
</tr>
<tr>
<td>Government advances (GA)</td>
<td>2.0</td>
</tr>
<tr>
<td>Government deposits (GD)</td>
<td>-6.7</td>
</tr>
<tr>
<td>Special anticyclical deposits**</td>
<td>-5.4</td>
</tr>
<tr>
<td>Others</td>
<td>-1.3</td>
</tr>
<tr>
<td>Coin (CN)</td>
<td>3.0</td>
</tr>
<tr>
<td>Others (U)</td>
<td>-2.1</td>
</tr>
<tr>
<td>Source base (B*</td>
<td>66.7</td>
</tr>
<tr>
<td>Reserve adjustment (B'*)</td>
<td>-1.6</td>
</tr>
<tr>
<td>Monetary base (B)</td>
<td>65.1</td>
</tr>
</tbody>
</table>

*Mainly nonbank foreign assets, plus the reserve position at the IMF adjusted for special drawing rights.
**Special anticyclical deposits consist of (1) balances acquired by the Federal Government and the State Governments (2.9 billion marks), and (2) accumulated revenues from an anticyclical surtax on income (25 billion marks). Both measures were introduced in 1970 in order to reduce the growth of the money supply.

Note: In equation form, the source base is defined as:

\[B* = FR + DB + GS + GA - GD + CN - U \]

Commercial banks' borrowings through the discount window are controlled by the Bundesbank through changes in the discount rate and the discount quota. The discount quota is a limit for discount borrowings. It is fixed by the Bundesbank for each commercial bank according to its asset and liability structure. This limit for discount borrowings has been so high in the past that, with the exception of some short periods, it has had very little restrictive effect.

Open market policy works in a way similar to discount policy. Instead of determining the quantity of government securities it wants to sell or buy, the Bundesbank establishes the interest rate at which it sells or buys short-term government securities. With respect to the quantity, the Bundesbank is dependent on the behavior of the commercial banks to which open market operations are restricted.10

Government advances and government deposits can be considered as exogenous variables.11 Both are under the direct control of the Government. Particularly, Government deposits are an important instrument to influence the growth of base money. They consist of three items: regular deposits, special anticyclical deposits of the Federal Government and the State Governments, and deposits related to an anticyclical surtax on income. The last two measures were made available to the Government by the Stabilization Law of 1967.

The most important instrument of monetary policy with respect to its quantitative impact on the money supply has been required reserve policy.12 Changes in required reserves do not influence the stock of the source base. However, they affect the money stock through the ability of commercial banks to create money. An increase in the average required reserve ratio increases required reserves and, for a given stock of source base, exerts a contractionary influence on the money supply. The quantitative impact of changes in reserve requirements is reflected in the monetary base. The monetary base is equal to the source base adjusted for changes in reserve requirements.13

Table II shows the sources of the monetary base at the end of 1970, and the following chart illustrates the growth of the monetary base and its domi-

10For a theoretical analysis of the impacts of the two different types of open-market policy, see Manfred Willms, "Bankenverhalten und Offenmarktpolitik" (Commercial Bank Behavior and Open-Market Policy), in Jahrbucher fuer Nationaloekonomie und Statistik (June 1970), pp. 159-172.
11The German Constitution limits government advances to a total of 6 billion marks.
13\[B = B* + Br \]
\[B = \text{Monetary base} \]
\[B* = \text{Source base} \]
\[Br = \text{Adjustment component for changes in required reserves} \]

The adjustment component \(B' \) is the sum of monthly
nent source components for the period 1958 through 1970. It is obvious that foreign reserves are the largest source component of the monetary base, contributing on the average 84 per cent to the monetary base (the corresponding figure for the U.S. economy is 24 per cent). Foreign reserves were at times greater than the monetary base. During these periods, the impact of foreign reserves was offset by an increase in government deposits at the Bundesbank. Government deposits exceeded the stock of government securities held by the central bank, and the Bundesbank became a net debtor to the government.

Discount borrowings were relatively small until 1964. Since then their contribution to the monetary base has become more important, with a sharp increase in 1969-70. Over the last five years, borrowings through the discount window typically have moved inversely to foreign reserves. This indicates that the commercial banks reacted to any decline in base money due to a reduction in foreign reserves with an increase in discount borrowings.

The net government position consists of the stock of government securities at the Bundesbank plus government deposits at the Bundesbank. Quantitatively, this variable is relatively unimportant in Germany compared with the United States or England. However, in periods like 1961, 1965-66, and 1970, it was effectively used to offset at the margin changes in the volume of required reserves due to changes in reserve requirement ratios:

\[B^r_t = \sum_{T=t_0}^{T=t} \Delta B^r_T \]

where \(t_0 = \text{February 1949} \)

\[\Delta B^r_T = -\left(\bar{r}_T - \bar{r}_{T-1} \right) \cdot RV_{T-1}, \]

where \(\bar{r} \) stands for the average required reserve ratio and RV for the deposits of commercial banks for which reserves are required.

For a detailed analysis see Leonall C. Andersen and Jerry L. Jordan, "The Monetary Base - Explanation and Analytical Use," this Review (August 1968) pp. 7-11.
the impact of an inflow and outflow of foreign reserves on the monetary base.

Uses of Base Money

Base money is used by the public as currency and by the commercial banks as reserves (that is, $B^s = C + R$). The distribution of base money between currency and reserves is shown in the preceding chart. The amount of notes and coins held by the public follows a relatively stable growth path. The major fluctuations in the source base are related to changes in the reserve position of commercial banks. Both the total amount of base money and its distribution between currency and reserves play an important role in the determination of the money supply. The relationship between these variables is derived in the model presented below.

A Model of the Money Supply Process

The above analysis indicated how the monetary base is influenced by the balance of payments and the actions of the monetary authorities. The analysis showed that some components of the monetary base, discount borrowings and net short-term foreign borrowings of commercial banks, are only indirectly controlled by the Bundesbank.\(^1\) Net short-term foreign borrowings of the nonbank public are completely uncontrolled.

In order to formulate a hypothesis on the controllability of the money supply process in an open economy, the monetary base has to be adjusted for these variables.\(^1^5\) This adjusted base series will be referred to as the "net monetary base."

The net monetary base \((B^n)\) is defined as:

\[B^n = B - DB + (FA^B - FL^B) + (FA^P - FL^P)\]

where:

- \(B\) = Monetary base
- \(DB\) = Discount borrowings
- \(FA^B\) = Short-term foreign assets of commercial banks
- \(FL^B\) = Short-term foreign liabilities of commercial banks
- \(FA^P\) = Short-term foreign assets of the nonbank public
- \(FL^P\) = Short-term foreign liabilities of the nonbank public

\(^1\)Within the German institutional framework, the term commercial banks includes private banks, savings banks and their central institutions the giro banks, state banks, credit cooperatives and mortgage banks.

\(^1^5\)In this adjustment it is assumed that all foreign transactions culminate in changes in foreign reserves at the central bank.

The net monetary base can be considered as the exogenous part of the monetary base. The quantity of money supplied (currency and demand deposits in the hands of the public), and the quantity of domestic earning assets (bank credit) demanded by commercial banks, can be expressed, respectively, as the product of the net monetary base and a money multiplier, and the product of the net monetary base and a credit multiplier.\(^1^6\)

\[
\begin{align*}
M &= m^B \cdot B^s \\
K^B &= k^B \cdot B^s \\
B^s &= \text{Net monetary base} \\
M &= \text{Money stock} \\
m^B &= \text{Money multiplier related to net monetary base} \\
K^B &= \text{Credit multiplier related to net monetary base}
\end{align*}
\]

The determination of these multipliers \((m^B\) and \(k^B\)) is explained in Appendix II. The multipliers reflect the behavior of the commercial banks and the public with respect to the supply of money and bank credit. They are assumed to depend on the market interest rate, the different rates on deposits, the short-term foreign rate, the covered interest rate differential in the free forward market, the covered interest rate differential in the controlled forward market, the free forward rate, the controlled forward rate, the discount rate, national income, nonhuman wealth, and the expected rate of inflation.

The policy variables exercise a direct and an indirect effect on the supply of money and bank credit. The direct effect consists of the impact of discount policy and forward market policy on the multipliers, and the impact of required reserve policy on the net monetary base. The indirect effects are on the multipliers, related to base-induced changes in the interest rates.

Interest rates affect the money multiplier and the credit multiplier through their impact on the behavior ratios which determine each multiplier. The desired ratio of discount borrowings to total deposits is assumed to depend on the market interest rate and the discount rate. The desired ratios of short-term foreign assets and short-term foreign liabilities to total deposits are a function of the market interest rate, the short-term foreign rate, the covered interest rate dif-

The demand for bank credit by the public is assumed to be a function of the market interest rate, the interest rates in other financial markets, the foreign money market rate, the expected rate of inflation, national income, and nonhuman wealth.

Equilibrium in the bank credit market occurs when the quantity of credit supplied by commercial banks is equal to the quantity of credit demanded by the public. The equilibrium in this market determines the market interest rate. Thus, the equilibrium interest rate can be derived by equating the supply function of credit and the demand function for credit. Appropriate substitution of the equilibrium value for the rate into the money supply equation leads to the determination of the equilibrium money stock. Thus, according to this approach, for a given net monetary base and other predetermined variables, the money stock is determined in the process of reaching equilibrium in the bank credit market.

The interest rate elasticities of the money multiplier, the bank credit multiplier, and the demand for bank credit by the public play an important role in the determination of the money supply elasticities. The ratio of these elasticities will be referred to as the “q-factor.” Because of their importance, it is necessary to analyze these elasticities in more detail. The interest rate elasticity of the bank credit multiplier \([\varepsilon(k^B,i)] \) is postulated to be positive, while the interest rate elasticity of the public’s demand for bank credit \([\varepsilon(k^B,i)] \) is assumed to be negative. Consequently, the denominator of the q-factor is positive. Therefore, the sign of the q-factor depends on the elasticity of the money multiplier with respect to the market interest rate \([\varepsilon(m^n,i)] \).

The interest rate elasticity of the money multiplier is the sum of the following elasticities:

\[
\varepsilon(m^n,i) = \varepsilon(m^n,b) \cdot \varepsilon(b,i) + \varepsilon(m^n,f) \cdot \varepsilon(f,i) + \varepsilon(m^n,a) \cdot \varepsilon(a,i) + \varepsilon(m^n,r) \cdot \varepsilon(r,i) + \varepsilon(m^n,t) \cdot \varepsilon(t,i) + \varepsilon(m^n,s) \cdot \varepsilon(s,i)
\]

The signs of the different elasticities are specified above each term. According to this equation, an increase in the market interest rate affects the money multiplier positively through its impact on the ratio for discount borrowings \((b) \), the short-term foreign liability ratio \((f) \), the short-term foreign asset ratio \((a) \), and the total reserve ratio \((r) \). A negative effect on the money multiplier emanates from the impact of an increase in the interest rate on the time deposit ratio \((t) \) and the savings deposit ratio \((s) \).

Determining the sign of the q-factor enables us to derive conclusions regarding the controllability of the money supply in an open economy. As long as the

Table III

Using logarithmic forms of the equations, elasticities of the money supply with respect to each of the predetermined variables can be derived. Some of the elasticities are shown below.

Elasticity of M with respect to the net monetary base	\(\varepsilon(M,B^n) = 1 - q \)
Elasticity of M with respect to the discount rate	\(\varepsilon(M,i) = \varepsilon(m^n,i) + q\varepsilon(k^B,i) \)
Elasticity of M with respect to the foreign money market rate	\(\frac{\varepsilon(M,i)}{\varepsilon(k^B,i)} = \frac{\varepsilon(m^n,i) + q\varepsilon(k^B,i)}{\varepsilon(k^B,i)} \)

Note: \(q = \frac{\varepsilon(k^B,i)}{\varepsilon(k^B,i)} \)

For instance, the notation \(\varepsilon(Y,X) \) is read: “the elasticity of Y with respect to X.”

The elasticity is defined as the ratio of the relative percentage change in Y to the relative percentage change in X.
value of the q-factor does not become equal to one, the elasticity of the money supply with respect to the net source base is still positive, and the central bank maintains control over the money supply. Only if the q-factor equals one does the response of the money supply to changes in the net monetary base become zero.

Those who argue that the monetary authorities are not able to control the money stock in an open economy implicitly assume that the q-factor is equal to one, and that such a value of the q-factor only results from the interest rate elasticity of short-term international capital movements. In other words, the interest rate elasticities of the money multiplier and the credit multiplier of commercial banks are dominated by the elasticities of short-term international capital transfers.

Others, who assert that the monetary authorities can control the money stock in an open economy, assume a value of the q-factor which is smaller than one. They may argue that any increase in the multiplier due to foreign borrowings of commercial banks can be neutralized by a reserve requirement of 100 per cent, and that foreign borrowings of private enterprises cannot be expanded indefinitely.

Some Empirical Observations of the Money Supply Process

The empirical section begins with some estimates of elasticities which are important for the explanation of the money supply process in an open economy. The estimates are derived as reduced-form regression equations determining the market interest rate and the money supply. The estimates are presented in Table IV.

To conserve degrees of freedom given the limited number of sample observations, a much smaller number of independent variables appear in these reduced-form equations than in the theoretical analysis. Therefore, in the regressions the market interest rate is a function only of the net monetary base and national income, while the money supply is a function only of the net monetary base, real nonhuman wealth, the rate of change in the price level, and the domestic money market rate. In the estimates, the market interest rate has been approximated by the yield on long-term government securities, and nonhuman wealth by the sum of financial assets held by the public at commercial banks. To avoid spurious correlation between the money stock and the proxy variable for wealth, the latter has been lagged by one quarter. A similar lag was introduced for the rate of change in the price level. This variable is assumed to be a proxy for price expectations.

The regressions are performed in this manner in order to obtain estimates of the value of the q-factor, that is, the interest elasticity of the money multiplier divided by the interest elasticity of the credit multiplier minus the interest elasticity of the public’s demand for bank credit. From the regression results the
value of the q-factor was estimated to be 0.77.\(^\text{18}\) Although this value of the q-factor is much greater than the corresponding values for the United States, it is smaller than its critical value of one.\(^\text{19}\) Thus, it can be

\(^{18}\)The elasticities for the determination of the q-factor are calculated in the following way:

\[
e(\alpha B, i) = -0.427 \text{ (according to regression No. 1, Table IV)}
\]

\[
e(kB, i) - e(M, B) - e(\alpha B, i) = \frac{-1}{e(\alpha B, i)} = 2.34
\]

\[
e(M, B) = 0.228 \text{ (according to regression No. 2, Table IV)}
\]

\[
e(M, B) = 1 + e(M, B) - e(\alpha B, i) = \frac{-0.772}{-0.427} = 1.81
\]

\[
q = \frac{e(M, B)}{e(\alpha B, i)} = 0.77
\]

\(^{19}\)Karl Brunner and Allan H. Meltzer obtained a value of the q-factor for the United States of 0.48. Their regression estimate was 0.94 for the interest elasticity of the money

concluded that the Bundesbank had control over the money supply in the period I/1960-II/1970. However, this statement is only true for the average of the period in consideration, a period which included two devaluations of the German mark against the U.S. dollar. For some sub-periods of speculative inflows of foreign currencies related to an expected devaluation, the possibility cannot be excluded that the marginal value of the q-factor approached its critical value of one.

The above estimates indicate the total impact of the market interest rate on the money multiplier. They do not provide information on the interest elasticities of the different ratios which determine the multiplier. In order to obtain information about the extent to which the interest elasticity of the money multiplier and 1.96 for the interest elasticity of bank credit. See their "Liquidity Traps for Money, Bank Credit, and Interest Rates," in *Journal of Political Economy* (January/February 1968), Appendix III.
multiplier was influenced by the interest elasticities of international capital transfers and discount borrowings, some estimates have been made of the interest elasticities of the foreign asset ratio, the foreign borrowings ratio, and the domestic borrowings ratio for borrowings through the discount window. The results are summarized in Table V.

The regressions indicate that commercial banks do in fact respond to changes in domestic and foreign interest rates according to the hypotheses developed in the model of the money supply process. Particularly, their behavior with respect to short-term foreign assets and discount borrowings can be explained by foreign and domestic interest rates.

On the other hand, it is difficult to explain short-term foreign borrowings by reference only to interest rates or interest rate differentials. The best estimates of the short-term foreign borrowing ratio of commercial banks are reported in Table V. These estimates suggest that other variables are necessary for the explanations of the foreign borrowing ratio. For one thing, the foreign borrowing ratio is to a large extent influenced by expectations regarding the revaluation of the German mark. Due to the forward market operations of the Bundesbank, the same speculative impact on the foreign asset ratio was almost completely neutralized.

The estimates of Table V show that the interest elasticities of commercial banks with respect to foreign and domestic funds do not deviate substantially in absolute values.\(^{20}\) This implies that commercial banks are indifferent with respect to foreign and domestic funds. It also implies that international capital movements, insofar as they are related to commercial banks, disturb the money supply process in the same way, and with a similar impact, as domestic sources of borrowing.

The previous analysis has been developed in order to formulate and test a hypothesis of the controllability of the money supply process in Germany. Particular attention was paid to the interest elasticities of endogenous variables related to the money supply process. A discussion of the technical details of the money supply process has been avoided. However, a few remarks with respect to the control process of the money supply seem to be appropriate.

Within the framework of the above model, the monetary authorities are assumed to be able to measure and control the net monetary base, while the money multiplier summarizes the endogenous non-policy controlled factors influencing the money supply process. If the monetary authorities, in the context of that model, want to control the growth of the money stock, they have to forecast the value of the money multiplier. Once the multiplier is predicted, the amount of base money which is needed to achieve the desired money stock is determined.\(^{21}\)

In order to obtain the desired money stock, it is important to make correct estimates of the money multiplier. As can be seen in the following chart, the money multiplier derived by the use of the above model is relatively unstable and its contribution to the money stock fluctuates considerably. Prediction of this multiplier would be difficult. Therefore, it is worthwhile to consider a slightly modified formulation of the multiplier-base concept in which the money multiplier is more predictable. The concept of the monetary base could be an alternative. The monetary base includes the discount borrowings and the net short-term foreign borrowings which the net monetary base does not include.

If the monetary base concept is used instead of the net monetary base concept, changes in the money multiplier reflect primarily the behavior of the public with respect to the allocation of their funds between currency and demand deposits and the allocation of their deposits between demand deposits, time deposits and savings deposits. Since these factors do not fluctuate significantly within short periods of time, the multiplier relating the monetary base and the money stock would be much more stable and predictable than the multiplier which relates the net monetary base to the money stock. The chart shows that the relationship between the monetary base and the money stock is much closer than the relationship between the net monetary base and the money stock. Regression estimates for the period I/1958 to II/1970 indicate that 80 per cent of the variance of quarterly changes in the money stock resulted from changes in the monetary base, while only 16 per cent of the variance of changes in the money stock were explained by changes in the net monetary base.

\[\Delta M = 0.195 + 1.222\Delta B \quad (12.189)\]
\[\Delta M = 1.232 + 0.407\Delta B^n \quad (2.841)\]

\(^{20}\)That is, \(|\varepsilon(a^b,x)|\) is approximately equal to \(|\varepsilon(b,x)|\), where \(x = (\delta^c, \delta^d, \delta^e, \delta^f, \delta^g, \delta^h, \delta^i, \delta^j, \delta^k, \delta^l, \delta^m, \delta^n)\).

\(^{21}\)For a further analysis of a control process of the money supply along these lines, see Lionel Kalish, “A Study of Money Stock Control,” *Journal of Finance* (September 1970), pp. 761-776.
Of course, the observed close relationship between the monetary base and the money stock does not solve the control problem. In order to control the monetary base the monetary authorities have to offset movements in the uncontrolled components of the monetary base through changes in the controlled components. However, the monetary authorities gain information by predicting the multiplier which is related to the monetary base. The probability of a wrong forecast is much smaller for the base multiplier than for the net base multiplier.

To analyze whether, and to what degree, the German monetary authorities have in the past been neutralizing undesired influences on the monetary base, a regression equation was estimated in which it was assumed that discount borrowings and net short-term foreign borrowings are the noncontrolled components of the monetary base. If the monetary authorities offset all or part of the movements of the monetary base components which are not subject to their direct control, the regression coefficient in the following equation should be negative and statistically significant. For a perfect offset, the regression coefficient should be equal to minus one.

\[\Delta(B_{DB+FA+FL}) = \alpha_0 + \alpha_1 \Delta(DB_{DB+FA+FL}) \]

Using central differences of quarterly data for the period I/1958-II/1970 produced the following results:

\[\Delta(B_{DB+FA+FL}) = 0.824 - 0.873 \Delta(DB_{DB+FA+FL}) \]

The estimates indicate that the monetary authorities responded to changes in the components of the monetary base which are not under their direct control. According to these results, the monetary authorities neutralized on the average 87 marks for each 100 mark change in discount borrowings and net foreign borrowings in the period under consideration.

With respect to the question of the controllability of the monetary base in an open economy, it is of interest to analyze the offsetting behavior of the monetary authorities with respect to changes in the total amount of foreign reserves. If a change in the stock of foreign reserves is considered to be the variable to which the monetary authorities adjust the domestic component of the monetary base, the regression coefficient for changes in foreign reserves should be negative and statistically significant.

\[\Delta(B_{FR}) = \beta_1 + \beta_2 \Delta FR \]
Using quarterly central differences of data for the period I/1958-II/1970, the estimates for this equation are:

\[
\Delta(B - FR) = 0.795 - 0.863\Delta FR
\]

\[\text{R}^2 = 0.79, \quad \text{D-W} = 1.693, \quad \text{S.E.} = 0.70
\]

According to the results obtained, the monetary authorities on average offset about 86 marks out of each 100 mark change in foreign reserves through opposite changes in the domestic component of the monetary base.

The offsetting behavior of the monetary authorities with respect to changes in the stock of foreign reserves also becomes obvious in the above chart. Quarterly first differences of seasonally adjusted data of foreign reserves and the domestic part of the monetary base are plotted for the period from 1958 to 1970. The chart shows that the variations of these variables are more or less mirror images of each other, indicating that the monetary authorities responded strongly to the inflow or outflow of foreign reserves.

Conclusions

In recent years the German economy has experienced a heavy inflow of foreign reserves, primarily U.S. dollars. In real terms the cost of this inflow is a loss in goods and services. In financial terms the primary influence of the flow of foreign reserves in the short-run is on the money supply process. One way to eliminate the continuing inflow of foreign reserves into Germany is to develop a more flexible exchange rate policy. The other alternative is to maintain the present fixed exchange rate system and have the monetary authorities neutralize the impact of changes in foreign reserves on the money supply process.

In the past the German monetary authorities have been relatively successful in neutralizing the impact of the noncontrolled or indirectly controlled components of the money supply process by changing the directly controlled components. The most important instruments for offsetting the impact of changes in the noncontrolled components of the money supply process have been the required reserve policy and a change in Government deposits or special anticyclical deposits at the Bundesbank. According to the theoretical analysis of this paper, if the monetary authorities can control the net monetary base, very extreme conditions must occur before the money supply cannot be controlled. The empirical estimates of the interest elasticities of the endogenous variables of the money supply process indicate that the observed elasticities are sufficiently low that control of the money supply can be maintained in the short-run.

In the long-run the use of monetary and fiscal policies to offset domestic inflationary pressure arising from an inflow of foreign reserves means that Germany trades investment and consumption goods for foreign currency. Hence, in real terms a policy of controlling inflation in a fixed exchange rate system results in welfare losses for the German economy.

This article is available as Reprint No. 67.
APPENDIX I

Alphabetical List of Symbols

aB Ratio of short-term foreign assets of commercial banks to total deposits
aP Ratio of short-term foreign assets of the nonbank public to total deposits
B Monetary base
B′ Adjustment of source base for changes in required reserves
Bρ Source base
b Ratio of discount borrowings to total deposits
C Currency in the hands of the nonbank public
CN Coin
c Ratio of currency to demand deposits of the nonbank public
D Demand deposits
DB Discount borrowings
Ex Exports of goods and services
eB Ratio of bank credit to total deposits
FA Short-term foreign assets
FL Short-term foreign liabilities
FR Foreign reserves at the central bank
fB Ratio of short-term foreign liabilities of commercial banks to total deposits
fP Ratio of short-term foreign liabilities of the nonbank public to total deposits
GA Advances of the central bank to the government
GD Government deposits at the central bank
GSB Government securities in the hands of commercial banks
GSZ Government securities in the hands of the central bank
gB Ratio of government securities in the hands of commercial banks to total deposits
Im Imports of goods and services
i Market interest rate
i Discount rate
id Interest rate on deposits
ig Rate on government securities
it Foreign money market rate
iDifc Covered interest rate differential
Kρ Supply of bank credit to the public
kB Credit multiplier
kP Demand function for bank credit by the public
M Money stock
m Money multiplier related to monetary base
mρ Money multiplier related to net monetary base
p Domestic price level
R Total reserves of commercial banks
Rρ Required reserves related to domestic deposits
Rf Required reserves related to foreign deposits
R′ Excess reserves
r Ratio of total reserves to domestic and foreign deposits
rρ Average required reserve ratio on domestic and foreign deposits
rρρ Average required reserve ratio for domestic deposits
rρρρ Required reserve ratio on foreign deposits
rρρρρ Required reserve ratio on demand deposits
rρρρρρ Required reserve ratio on time deposits
rρρρρρρ Required reserve ratio on savings deposits
r′ Ratio of reserve adjustment component to total deposits
S Savings deposits
s Ratio of savings deposits to demand deposits
T Time deposits
T Ratio of time deposits to demand deposits
Y National Income
W Nonhuman wealth
δ Forward rate
π Expected rate of return on real capital

APPENDIX II

Behavior Functions and Multipliers

Determining the Money Supply Model

In the model developed in this article the money supply is determined by the joint behavior of the monetary authorities, the commercial banks and the nonbank public.

The behavior of the monetary authorities is mainly reflected in the movement of the net monetary base:

(A1) \[B = B - DB + (FA - FL) + (FA - FL) \]

The commercial banks influence the money supply process through their portfolio behavior, that is, through the adjustment of their assets and liabilities according to changes in policy variables and relative prices of financial assets. In the following analysis the consolidated balance sheet of all commercial banks consists of these items:

(A2) \[GSB + KB + FA + R = D + T + S + DB + FL \]
The assets and the borrowings from the central bank and from abroad are related by coefficients to the total amount of deposits. The following functions and their derivatives specify the hypothesis regarding the behavior of commercial banks:

Supply function of commercial banks’ funds to the government (= demand function of commercial banks for Government securities)

(A3) \[\text{GS}^B = g^B(i, i_3, i_6, i_{d, i, c}) (D + T + S) \]

with \(g^B > 0 \) and \(\frac{\partial g^B}{\partial i} < 0 \)

Equation (A3) indicates that commercial banks will increase their demand for Government securities if the central bank raises the rates for these assets. On the other hand, an increase in the market interest rate, the discount rate, the rate in foreign money markets, the covered interest rate differential in the controlled forward market, or the average required reserve ratio will induce a reduction in the demand for Government securities by commercial banks.

Supply function of bank credit to the public (= demand function of commercial banks for private domestic earning assets):

(A4) \[\text{KB} = e^B(i, i_3, i_6, i_{d, i, c}) (D + T + S) \]

with \(e^B > 0 \) and \(\frac{\partial e^B}{\partial i} > 0 \)

Supply function of commercial banks’ funds to foreign markets (= demand function of commercial banks for foreign earning assets):

(A5) \[\text{FA}^B = a^B(i, i_3, i_6, i_{d, i, c}) (D + T + S) \]

with \(a^B > 0 \) and \(\frac{\partial a^B}{\partial i} < 0 \)

Supply function of commercial banks for discount borrowing:

(A6) \[\text{DB} = b(i, i_3, i_6, i_{d, i, c}) (D + T + S) \]

with \(b_1, b_3, b_4, b_5 > 0 \) and \(b_2 < 0 \)

Demand function of commercial banks for foreign liabilities:

(A7) \[\text{FL}^B = f^B(i, i_3, i_6, i_{d, i, c}) (D + T + S) \]

with \(f^B > 0 \) and \(\frac{\partial f^B}{i} < 0 \)

Demand function of commercial banks for reserves:

(A8) \[R = r(i, i_3, i_6, i_{d, i, c}) (D + T + S) \]

with \(r_2, r_3 > 0 \) and \(r_1 < 0 \)

Total reserves (R) consist of reserves required against domestic deposits (R_d), reserves required against foreign deposits (R_f), and excess reserves (R_e), where

The independent variables with a bar are policy variables.

\[R_d = r_d D + r_f T + r_e S = r_h (D + T + S), \]
\[R_f = r_f + FL^p, \]
\[R_e = r_e (D + T + S) \]

Since \(R = R_d + R_f + R_e \),
and \(FL^p = f^B (D + T + S) \),
then \(R = r_h (D + T + S) + r_f [f^B (D + T + S)] + r_e (D + T + S) \); simplifying
\[R = r_h + r_f (f^B + r_e) (D + T + S) \]

The behavior of the public is described by three allocation parameters and the demand function for commercial bank credits.** Equations (A9) through (A11) relate currency and two different types of deposits by allocation parameters to demand deposits of the public.

Demand function for currency by the public:

(A9) \[C = c(i, i_d, Y, W)D \]

Demand function for time deposits by the public:

(A10) \[T = t(i, i_d, Y, W)D \]

Demand function for savings deposits by the public:

(A11) \[S = s(i, i_d, Y, W)D \]

The demand for bank credit by the public is assumed to be positively related to the interest rate in another financial market, to the expected rate of return on real capital, as well as to national income and nonhuman wealth, while it is negatively related to the market interest rate and the foreign interest rate.

Demand function for bank credit by the public:

(A12) \[KP = k^P(i, i_{in}, i_{i, i, c}, Y, W) \]

with \(k_1 k_2 k_3 k_4 k_5 k_6 k_7 > 0 \) and \(k_1 k_2 < 0 \)

Using the following definition of the net monetary base

(A13) \[B^p = C + R + B^* - DB + (FA^B - FL^P) + (FA^P - FL^P) = [c + (r + f - b + a - f^B + a - f^P) (1 + t + s)] D \]

and the definition of the money stock

(A14) \[M = C + D = (1 + c) D \]

de the relation between \(B^p \) and \(M \) is given by

(A15) \[M = \frac{1 + c}{(1 + r + t + s)(1 + t + s)} B^p \]

The term in the brackets is the money multiplier which is related to the net monetary base. The money multiplier related to the monetary base is described in (A16).

(A16) \[M = \frac{1 + c}{(1 + r + t + s)(1 + t + s)} B^p \]

** Short-term foreign assets and liabilities of the nonbank public in this model are related to total deposits of commercial banks by allocation coefficients similar to those in equations (A5) and (A7). The reasoning is that short-term international capital transactions of commercial banks and the nonbank public are considered to be close substitutes for each other. In addition, they are to a large extent dependent on the same arguments with the same signs of the derivatives of the behavior functions.
The explicit formulation of the credit multiplier is derived from the balance sheet of the commercial banks. According to this balance sheet, bank credit is defined as:

$$(A17) \quad K^n = D + T + S + FL^B + FL^P + DB - R - GS^n - FA = (1 + f^n + f^P + b - r - g^n - a) (1 + t + s)D$$

The relation between bank credit and the net monetary base is given by:

$$(A18) \quad K^n = \left[\frac{1 + f^n + f^P + b - r - g^n - a}{c + (r + f^P - b - f^n - f^P + a)} \right] B^n$$

The term in brackets is the credit multiplier.

APPENDIX III

Calculation of the Elasticities

The equilibrium condition in the bank credit market is specified by equating the credit supply and the credit demand functions. In logarithmic form this can be written as:

$$(A19) \quad \log B^n + \log k^P = \log k^P$$

Total differentiation leads to:

$$(A20) \quad \frac{dB^n}{B^n} + \frac{1}{k^P} \left(\frac{\partial k^P}{\partial i} \right)_i d_1 + \frac{\partial k^P}{\partial i_1} d_{i_1} + \frac{\partial k^P}{\partial i_2} d_{i_2} + \frac{\partial k^P}{\partial i_3} d_{i_3} + \ldots \right) = \frac{1}{k^P} \left(\frac{\partial k^P}{\partial i} \right)_i d_1 + \frac{\partial k^P}{\partial i_1} d_{i_1} + \frac{\partial k^P}{\partial i_2} d_{i_2} + \frac{\partial k^P}{\partial i_3} d_{i_3} + \ldots$$

Equation (A20) can be written as:

$$\log B^n + \frac{\epsilon(k^P, i)}{\partial i} d_1 + \frac{\epsilon(k^P, i_1)}{\partial i_1} d_{i_1} + \frac{\epsilon(k^P, i_2)}{\partial i_2} d_{i_2} + \frac{\epsilon(k^P, i_3)}{\partial i_3} d_{i_3} + \ldots$$

Solving for the bank credit rate gives:

$$(A22) \quad \frac{d \log i}{i} = \frac{1}{\epsilon(k^P, i) - \epsilon(k^B, i)} \left(-\frac{\partial B^n}{\partial i} + \frac{\epsilon(k^P, i)}{\partial i} d_1 + \frac{\epsilon(k^P, i_1)}{\partial i_1} d_{i_1} + \frac{\epsilon(k^P, i_2)}{\partial i_2} d_{i_2} + \frac{\epsilon(k^P, i_3)}{\partial i_3} d_{i_3} + \ldots \right)$$

Total differentiation of the logarithmic form of the money supply equation leads to:

$$(A23) \quad d \log M = d \log B^n + \epsilon(m^n, i) d \log i + \epsilon(m^n, i_1) d \log i_1 + \ldots$$

Substitution of equation (A22) into (A23) results in:

$$(A24) \quad d \log M = (1 - q) d \log B^n + \epsilon(m^n, i_1) d \log i_1 + \epsilon(m^n, i_2) d \log i_2 + \epsilon(m^n, i_3) d \log i_3 + \ldots$$

The elasticities in Table V in the text are derived from the last equation.
Summary of U.S. Balance of Payments, 1970

Balance of Payments Accounts

The Balance of Payments Accounts are a double-entry record of goods, services, and financial transactions between United States and foreign residents. Because it is based on double-entry bookkeeping principles, the balance of payments always balances in the sense that receipts equal payments. The double-entry nature of the balance of payments is illustrated on the left-hand side of the table on the next page. This accounting balance must not be confused, however, with a meaningful economic balance, because the economic behavior underlying some of these transactions may not be sustainable. For example, the receipt of $2.2 billion in 1970 from the sale of convertible currencies (IV.4.c) can only continue as long as the United States' stock of convertible currencies lasts.

There are two officially recognized measures of the economic balance of payments: the Liquidity Balance and the Official Settlements Balance. They represent alternative ways of arranging the balance-of-payments accounts, and are shown on the righthand side of the table. In recent years the appropriateness of both methods of measurement has been questioned, because temporary factors have obscured more basic economic trends. These measurement problems caution one not to rely solely on summary statements about the balance of payments of a reserve currency country like the United States.

The accounts are divided into four categories: Goods and Services, Private Capital, Government, and Other. These accounts are of course, interrelated; an export of goods can be financed by an import of goods, private capital, a Government loan or grant, or by a private transfer.

(I) Goods and Services — The surplus of receipts over payments in the goods and services account increased to $3.7 billion in 1970 from $2.0 billion in 1969 and $2.5 billion in 1968. A reduced rate of U.S. economic expansion in late 1969 and 1970 slowed the rate of import growth, while continuing strength in foreign economic activity encouraged export growth. In addition, a faster rate of price increase of internationally traded goods manufactured by foreigners, and a slower rate of price increase of internationally traded goods manufactured by U.S. residents, were also conducive to an improved goods and services balance in 1970. Merchandise exports rose 15 per cent, or $5.5 billion, to $42 billion while merchandise imports rose 12 per cent, or $4.1 billion, to $39.9 billion in 1970 (I.I). There was little change in the services account surplus from the preceding year (I.2).

(II) Private Capital — A larger deficit on capital account in 1970 offset the increased surplus on goods and services account. The private capital balance was in deficit by $2.6 billion, compared to a deficit of $1.3 billion in 1969 and a surplus of $1.6 billion in 1968. The primary reason was continuing net long-term capital outflows, particularly direct investment. Direct investment by U.S. corporations (mainly plant and equipment expenditures for their foreign affiliates) was $4 billion in 1970, $9 billion higher than in 1969 (II.1.a). Portfolio investment resulted in a net capital inflow of $1.3 billion in 1970, slightly less than in the previous year (II.1.b).

(III) Government — The net outflow of government loans, grants, and transfers was slightly lower in 1970 than in 1969. Special liabilities (net sales of $5 billion of nonconvertible U.S. Treasury securities to foreign official institutions) produced an offsetting inflow of funds (III.2), and thereby lowered the government capital deficit in 1970 from $4.1 billion to $3.6 billion.

(IV) Other — Private transfers (IV.1) represent gifts and similar payments by American residents to foreign residents. The allocation of special drawing rights (IV.2) represents the receipt of a new international monetary reserve asset that can be used in settling international accounts. Errors and Omissions (IV.3) is the statistical discrepancy between all specifically identifiable receipts and payments. The significance of this item is discussed below. Changes in U.S. Reserve Assets (IV.4) represent official transactions of the United States Government with foreign governments and the International Monetary Fund (IMF). The $2.5 billion decrease in reserve assets (mainly a decrease in convertible currencies) is recorded with a plus sign because the United States received dollars when foreign governments exchanged their dollar holdings in order to reacquire their national currencies. Special drawing rights are analogous to any other reserve asset; a minus sign implies an addition to the stock of reserve assets. Changes in U.S. Liquid Liabilities (IV.5) represent increased foreign holdings of liquid dollar liabilities of U.S. banks and the Treasury. The major difference between the Liquidity and the Official Settlements Balances is in the different categorizing of U.S. Liquid Liabilities.

Balance of Payments Measures

The Net Balance columns show the source and overall size of the deficit or surplus, while the Financing columns show how the deficit is financed or the surplus is disposed.

Liquidity Balance — The underlying assumption about economic behavior is that all foreign liquid dollar holdings (IV.5), both private and official, are a potential claim on United States reserve assets. The liquidity balance in 1970 was in deficit by $3.8 billion (including the allocation of SDR), compared to a $7.0 billion deficit in
1969 and a $1 billion surplus in 1968. Much of the improvement in 1970 represented the absence of factors which enlarged the liquidity deficit in 1969. With the absence of tight money conditions in the U.S., the removal of some interest rate ceilings on domestic deposits, and a current yield on short-term money market paper well below remaining ceilings, U.S. banks were no longer forced to turn to the Eurodollar market where their branches could bid freely for funds and transfer them to the home office as nondepository advances not subject to the usual cash reserve requirements. Additional reserves and sources of nondeposit funds were available in the United States to help banks meet a reduced loan demand in 1970. As U.S. banks repaid $6.3 billion of liabilities to their foreign branches in 1970, liquid claims on the United States were reduced. Simultaneously, errors and omissions, which had picked up some of the unrecorded Eurodollar flows which were outside the normal Department of Commerce reporting channels, declined from an outflow of $2.8 billion to an outflow of

U.S. BALANCE OF PAYMENTS, 1970*

(In Billions of Dollars)

<table>
<thead>
<tr>
<th>Transactions</th>
<th>Balance of Payments Accounts</th>
<th>Balance of Payments Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Receipts</td>
<td>Payments</td>
</tr>
<tr>
<td>I. Goods and Services</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Merchandise Trade (goods)</td>
<td>63.0</td>
<td>59.3</td>
</tr>
<tr>
<td>2. Services</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Military</td>
<td>42.0</td>
<td>39.9</td>
</tr>
<tr>
<td>b. Investment Income</td>
<td>21.0</td>
<td>19.4</td>
</tr>
<tr>
<td>c. Travel</td>
<td>1.5</td>
<td>4.8</td>
</tr>
<tr>
<td>d. Other</td>
<td>9.6</td>
<td>5.1</td>
</tr>
<tr>
<td>II. Private Capital</td>
<td>7.5</td>
<td>5.6</td>
</tr>
<tr>
<td>1. Long term</td>
<td>3.1</td>
<td>3.3</td>
</tr>
<tr>
<td>a. Direct Investment</td>
<td>.9</td>
<td>4.0</td>
</tr>
<tr>
<td>b. Portfolio Investment</td>
<td>2.2</td>
<td>.9</td>
</tr>
<tr>
<td>c. Bank and Other Loans (Net)</td>
<td>.0</td>
<td>.4</td>
</tr>
<tr>
<td>2. Short term</td>
<td>.7</td>
<td>1.1</td>
</tr>
<tr>
<td>III. Government</td>
<td>1.8</td>
<td>5.4</td>
</tr>
<tr>
<td>1. Loans</td>
<td>1.3</td>
<td>3.3</td>
</tr>
<tr>
<td>2. Special Liabilities**</td>
<td>.5</td>
<td></td>
</tr>
<tr>
<td>3. Grants and Transfers</td>
<td>2.1</td>
<td>2.1</td>
</tr>
<tr>
<td>IV. Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Private Transfers</td>
<td></td>
<td>.9</td>
</tr>
<tr>
<td>2. Allocation of Special</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Gold (outflow is receipt)</td>
<td>.9</td>
<td></td>
</tr>
<tr>
<td>b. Special Drawing Rights (SDR)</td>
<td></td>
<td>.9</td>
</tr>
<tr>
<td>c. Convertible Currencies</td>
<td>.4</td>
<td></td>
</tr>
<tr>
<td>5. Changes in U.S. Liquid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Foreign Official Holders</td>
<td>7.8</td>
<td>6.4</td>
</tr>
<tr>
<td>b. Foreign Private Holders</td>
<td>7.6</td>
<td>6.4</td>
</tr>
<tr>
<td>c. International Organizations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other than I M F</td>
<td>.2</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>80.6</td>
<td>80.6</td>
</tr>
</tbody>
</table>

*Preliminary
**Certain non-liquid liabilities to foreign official agencies.

Note: Figures may not add because of rounding.
$1.3 billion, a figure much closer to historical levels. An increase in special liabilities, which is recorded as a capital inflow, improved the liquidity balance of $.5 billion in 1970 compared to a reduction of $.2 billion in 1969, which was recorded as an outflow. The sources of improvement in the liquidity balance in 1970 indicate there has been little fundamental change in the liquidity position in the past two years, even though the recorded liquidity balances fluctuated widely.

Official Settlements Balance — The underlying assumption about economic behavior is that only official holdings of dollars represent a meaningful potential claim on U.S. reserve assets. The official settlements balance was in deficit by $9.8 billion (including the allocation of SDR) in 1970 compared to a surplus of $2.7 billion in 1969 and a surplus of $1.6 billion in 1968. In 1968 and 1969 the rapid increase in Eurodollar borrowings by U.S. banks resulted in a drain of dollar holdings from foreign central banks as foreign private holders converted local currencies into dollars at their central bank and deposited them in institutions abroad. Foreign central banks tried to rebuild their dollar position by selling gold to the United States and drawing dollars from the International Monetary Fund. In 1970, when monetary conditions at home and abroad induced U.S. banks to repay to their foreign branches many of their Eurodollar borrowings, foreign private holders presented the dollars to their central banks for conversion back into local currencies. Foreign central banks financed the official settlements deficit in 1970 primarily by accumulating $7.6 billion of liquid claims on the United States. Only $2.5 billion of the deficit was financed by drawing on U.S. reserve assets, and $.5 billion by special liabilities. As with the liquidity balance, the shift in the official settlements balance between 1969 and 1970 was the result of the reversal of Eurodollar flows, and reflected little basic change in the underlying strength of the official U.S. external position.
ERRATA

The gray-screened portion of the following table was incorrect as published on page 18 of the March 1971 issue of this Review. The outlined portion of the table shows the correct figures (with the incorrect figures, as originally published, in parentheses). All other figures in the table were correct, and are reproduced below. The conclusions of the article, though not altered fundamentally, were modified in the direction of making the difference between the CEA projection and the St. Louis model projection, based on the CEA total spending assumption, slightly less pronounced than indicated in the article. We thank Frank C. Ripley, Senior Staff Economist, Council of Economic Advisers, for pointing out this error.

Table VII

PROJECTED CHANGES IN SPENDING, OUTPUT, PRICES AND UNEMPLOYMENT — 1970 to 1972
(Per Cent*)

<table>
<thead>
<tr>
<th></th>
<th>1971</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>1972</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>IV</td>
<td>Year</td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>IV</td>
<td>Year</td>
</tr>
<tr>
<td>CEA Projection</td>
<td></td>
</tr>
<tr>
<td>(2/2/71) **</td>
<td></td>
</tr>
<tr>
<td>Total Spending</td>
<td>13.0%</td>
<td>11.5%</td>
<td>11.8%</td>
<td>11.3%</td>
<td>9.0%</td>
<td>11.7%</td>
<td>11.2%</td>
<td>11.0%</td>
<td>10.5%</td>
<td>11.4%</td>
</tr>
<tr>
<td>Real Product</td>
<td>9.4</td>
<td>6.8</td>
<td>7.7</td>
<td>7.3</td>
<td>4.6</td>
<td>8.0</td>
<td>7.8</td>
<td>7.7</td>
<td>7.5</td>
<td>7.7</td>
</tr>
<tr>
<td>Prices</td>
<td>3.2</td>
<td>4.4</td>
<td>3.8</td>
<td>3.7</td>
<td>4.2</td>
<td>3.4</td>
<td>3.1</td>
<td>3.1</td>
<td>2.8</td>
<td>3.4</td>
</tr>
<tr>
<td>Unemployment Rate</td>
<td>5.7</td>
<td>5.5</td>
<td>5.2</td>
<td>4.9</td>
<td>5.3</td>
<td>4.7</td>
<td>4.5</td>
<td>4.2</td>
<td>4.0</td>
<td>4.4</td>
</tr>
</tbody>
</table>

St. Louis Model Projections

1) with CEA total spending assumption

<table>
<thead>
<tr>
<th></th>
<th>1971</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>1972</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>IV</td>
<td>Year</td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>IV</td>
<td>Year</td>
</tr>
<tr>
<td>Total Spending</td>
<td>9.3(8.5)</td>
<td>6.8(6.1)</td>
<td>7.0(6.3)</td>
<td>6.5(5.9)</td>
<td>4.4(3.9)</td>
<td>6.8(6.2)</td>
<td>6.3(5.9)</td>
<td>6.1(5.8)</td>
<td>5.7(5.5)</td>
<td>6.5(6.0)</td>
</tr>
<tr>
<td>Real Product</td>
<td>3.5(4.1)</td>
<td>4.5(5.1)</td>
<td>4.6(5.2)</td>
<td>4.6(5.2)</td>
<td>4.4(4.9)</td>
<td>4.6(5.2)</td>
<td>4.7(5.1)</td>
<td>4.7(5.0)</td>
<td>4.7(4.9)</td>
<td>4.6(5.2)</td>
</tr>
<tr>
<td>Prices</td>
<td>5.6(5.6)</td>
<td>5.6(5.6)</td>
<td>5.4(5.5)</td>
<td>5.2(5.4)</td>
<td>5.5(5.5)</td>
<td>5.1(5.3)</td>
<td>4.9(5.1)</td>
<td>4.7(5.0)</td>
<td>4.6(4.9)</td>
<td>4.8(5.1)</td>
</tr>
</tbody>
</table>

2) with 6 per cent money growth and Government spending based on fiscal 1972 budget (CEA policy assumptions)

<table>
<thead>
<tr>
<th></th>
<th>1971</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>1972</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>IV</td>
<td>Year</td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>IV</td>
<td>Year</td>
</tr>
<tr>
<td>Total Spending</td>
<td>11.1</td>
<td>6.4</td>
<td>9.1</td>
<td>7.2</td>
<td>6.9</td>
<td>6.9</td>
<td>8.1</td>
<td>7.3</td>
<td>7.0</td>
<td>7.5</td>
</tr>
<tr>
<td>Real Product</td>
<td>7.6</td>
<td>2.0</td>
<td>4.7</td>
<td>3.0</td>
<td>2.5</td>
<td>2.9</td>
<td>4.4</td>
<td>3.7</td>
<td>3.7</td>
<td>3.5</td>
</tr>
<tr>
<td>Prices</td>
<td>3.2</td>
<td>4.3</td>
<td>4.2</td>
<td>4.1</td>
<td>4.3</td>
<td>3.9</td>
<td>3.7</td>
<td>3.4</td>
<td>3.2</td>
<td>3.8</td>
</tr>
<tr>
<td>Unemployment Rate</td>
<td>5.6</td>
<td>5.8</td>
<td>5.9</td>
<td>5.9</td>
<td>5.8</td>
<td>6.0</td>
<td>6.1</td>
<td>6.1</td>
<td>6.1</td>
<td>6.1</td>
</tr>
</tbody>
</table>

*Per cent changes for total spending, output and prices are at compounded annual rates; unemployment rates are levels.

**Quarterly pattern estimated by this Bank based on the 1971 Annual Report of the Council of Economic Advisers and amplifying statements by the CEA.
SUBSCRIPTIONS to this bank’s Review are available to the public without charge, including bulk mailings to banks, business organizations, educational institutions, and others. For information write: Research Department, Federal Reserve Bank of St. Louis, P. O. Box 442, St. Louis, Missouri 63166.