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Time-Varying Skewness and
Real Business Cycles

Lance Kent and Toan Phan

A
growing literature in macroeconomics and finance has found
important economic effects of variations in risk, in particular
shocks to the volatility of key macroeconomic variables (such

as total factor productivity). However, much less is known about the
importance of shocks to the skewness of macroeconomic variables.1

In this paper, we seek to quantify the economic effects of skewness
shocks. To this end, we augment a small open economy real business
cycle model with a novel feature: discrete regime changes in the higher-
order moments of exogenous shocks, modeled as shocks to total factor
productivity (TFP). We assume that in each period the economy can
be in one of two possible Markov states: an unrest state or a quiet state.
The unrest state is assumed to be associated with a substantial increase
in volatility and negative skewness of shocks. This assumption is mo-
tivated by our empirical findings about the moments of business cycles
of many countries that experience political unrest (see the discussion
of our calibration below). Hence, unrest is effectively a shock to the
second-order and third-order moments of the distribution of economic
shocks.
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To solve the model, we develop a third-order perturbation method
to approximate the endogenous reactions to shocks to the second-order
and third-order moments of TFP. Existing methods to solve and sim-
ulate models (including global approximations to policy functions as
in Judd [1996] or Richter et al. [2014] or perturbation methods as
in Andreasen et al. [2017]) rely on Monte Carlo simulations to cal-
culate the dynamics of third-order moments of endogenous quantities
such as output and consumption. However, Monte Carlo simulations
are problematic for the computation of higher-order moments such as
skewness because these higher-order moments are more sensitive to sim-
ulation error.2 To overcome this problem, we build upon the method
of Andreasen (2017) to calculate generalized impulse response func-
tions (GIRF) of third-order approximations of third-order moments
of endogenous variables. Our solution method exploits computational
symbolic algebraic manipulation to calculate the third-order moments
without Monte Carlo simulations. This technical innovation is nontriv-
ial, since it requires solving for the dynamics of over 20,000 polynomials,
in the presence of a Markov-switching state, that are up to ninth order
in the state variables. Furthermore, our approach is readily applica-
ble to other DSGE models, especially those for which the dynamics of
higher-order moments of endogenous variables are of interest.

Calibration: To calibrate the model, we document and exploit the
substantial changes in higher-order moments of aggregate economic
variables during periods of mass political unrest. Unrest episodes,
which are well-documented by the political science literature (Chenoweth
and Lewis 2013), are helpful in identifying higher-order moment shocks
for several reasons. First, we find that these episodes are associated
with substantial increases in the volatility and negative skewness of
growth rates of output, consumption, and investment. For instance,
on average, a year during an unrest episode is associated with a more
than 50 percent increase in the volatility and a more than three times
increase in the negative skewness of output growth. The changes in
higher-order moments of aggregate variables (output growth, consump-
tion growth, and investment growth) associated with an episode of un-
rest can be estimated with reasonable precision, since the database
provides a relatively large number of country-year observations (with

2 The calculation of skewness and other higher-order moments is sensitive to the
tails of the distribution of interest. Since realizations on the tails are rare, many Monte
Carlo draws are needed to ensure that the tails are suffi ciently sampled. Therefore, for
a given simulation length, the influence of Monte Carlo simulation error is going to be
much more pernicious for higher-order moments, such as skewness, than for lower-order
moments, such as the mean.
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eighty-four unrest episodes between 1960 and 2006, each lasting more
than five years on average).

Second, since the model assumes that shocks are common knowl-
edge, we ideally want to identify shocks using events that are easily
observed for all agents, at home or abroad. Mass unrest episodes are
appropriate for this end, as they are major events, and agents in the
economy as well as investors abroad do not need to be econometri-
cians to learn that a campaign of mass political unrest is underway.
Hence, the onset of an unrest episode is likely to have a direct effect on
economic agents’perceptions of risk. Furthermore, since the impulse
response exercises assume unanticipated shocks, we ideally want to use
events that are ex-ante diffi cult to predict. Unrest episodes are again
appropriate for this end, as it has been well-documented that mass un-
rest is largely unanticipated because it requires unpredictable shocks
that enable a large number of nonstate actors to overcome informa-
tional and coordination problems.3

Results: Our model shows that the increase in volatility and espe-
cially negative skewness when the economy enters an episode of unrest
has quantitatively substantial impacts on economic activities. In the
baseline calibration, the observed changes in volatility and negative
skewness can explain 21 percent of the observed drop in average out-
put growth, 45 percent of the drop in average consumption growth,
and 51 percent of the drop in average investment growth during unrest
episodes. More importantly, the increase in negative skewness accounts
for about half of these drops in growth.

Intuitively, when shocks become more negatively skewed, risk-averse
agents know that realizations on the left tail of the distribution of
shocks have become more likely. The increase causes agents to shift
their portfolios to safer assets abroad and accumulate stocks of these
safer assets, leading to capital outflow and drops in domestic investment
and output. The consequences of this increased mass on the left tail
are heightened under Epstein-Zin preferences. A Taylor expansion of
the household’s Bellman equation reveals that Epstein-Zin preferences
punish and reward, respectively, the second and third central moments
of the future value function. To a second-order approximation, Epstein-
Zin preferences penalize the second central moment, i.e., variance. To
a third-order approximation, the preferences gain an additional term
that rewards the third central moment, which is the product of skewness
and variance raised to the power of 3/2. Therefore, the quantitative

3 See, e.g., Kuran (1989), Chenoweth and Stephan (2011), and Edmond (2013). We
also verify this in our probit analysis to predict the onset of unrest in Appendix A.2.
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effects of time-varying variance is amplified by time-varying negative
skewness.

We demonstrate the quantitative significance of skewness by com-
paring the losses in economic activities during unrest under a second-
order approximation to the same losses under a third-order approxi-
mation. The second-order approximation can account for only half of
the economic losses that the third-order approximation can. Therefore,
negative skewness is revealed as an important component of risk.

Related literature. Our paper is related to several strands of the
literature on higher-order moments of business cycles. First, there is a
growing body of research that emphasizes the importance of the time-
varying volatilities of economic variables (e.g., Justiniano and Prim-
iceri 2008; Caldara et al. 2012; Arellano et al. 2012; Christiano et
al. 2014; and Gilchrist et al. 2014. The study that is the closest to
ours in quantifying the impact of time-varying higher-order moments is
Fernández-Villaverde et al. (2011). They consider a stochastic volatil-
ity process for the real interest rate and explore the impacts of interest
rate volatility shocks to economic activities. The primary difference
between our paper and this literature is that while they focus only on
shocks to second moments, we focus on shocks to both second-order
and third-order moments.

Second, there is a related body of macro-finance research that
stresses the importance of skewness (e.g., Rancière et al. 2008; Barberis
and Huang 2008; Guvenen et al. 2014; Salgado et al. 2015; Feunou
et al. 2015; and Colacito et al. 2015). Our analysis is most related
and complementary to that of Colacito et al. (2015), who show the
importance of time-varying skewness in a macro-finance model with
Epstein-Zin preferences. The major difference is that while they fo-
cus on the effects of skewness on financial variables (implied equity
Sharpe ratios and equity risk premia), we focus on the effects on real
economic variables (the growth rates of output, consumption, and in-
vestment). Also, while they focus on the United States, we focus on
emerging and developing economies. Finally, while they calibrate the
model by looking at analysts’forecasts for the U.S. economy, we look at
the changes in higher-order moments of real economic variables during
unrest episodes.

Finally, our paper is also related to a body of literature that em-
phasizes the importance of rare disasters in explaining macroeconomic
phenomena (e.g., Barro 2006; Gourio 2012; Andreasen 2012; Gabaix
2012). A key insight from this literature is that variations in the prob-
ability of rare disasters, modeled as events on the far left tail of the
distribution of shocks, can have first-order macroeconomic effects, as
they influence the precautionary behaviors of risk-averse agents. Our
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paper points out that time-varying negative skewness has similar ef-
fects. This is because an increase in negative skewness implies a higher
probability of states with very low consumption. However, our estima-
tion approach is different and complementary to existing approaches in
this literature. Since rare disasters occur infrequently in data, the lit-
erature usually does not estimate the time variation in the probability
of disasters from data,4 or it employs calibrations to proxies such as
time-varying volatility of equity returns (e.g., Gourio et al. 2013). In
contrast, we exploit the uncertainty associated with episodes of unrest
to estimate the time variation in the skewness of economic shocks when
the economies enter and exit unrest.5

Our paper is organized as follows. Section 1 describes our data
sources and documents several stylized facts on business cycles during
unrest episodes. Section 2 introduces unrest to a standard small open
economy model and calculates how much of the stylized facts can be
explained by changes in the distribution of shocks. Section 3 concludes.

1. DATA AND STYLIZED FACTS

Data Sources and Definitions

For economics and other data, we use annual panel macroeconomic
data from 154 countries listed in the World Bank’s World Develop-
ment Indicators (WDI) database over the interval 1960-2006. This
includes three time series: real output, real investment, and real con-
sumption. We also use WDI data on the Gini coeffi cient and Alesina
et al.’s (2003) data on ethnic, linguistic, and religious fractionalization
as control variables

For mass unrest episodes, we use the Nonviolent and Violent Cam-
paigns and Outcomes (NAVCO) dataset, version 2.0 (Chenoweth and
Lewis 2013). NAVCO 2.0 provides a “consensus population” of all
known continuous and large (having at least 1,000 observed partici-
pants) organized unrest campaigns between 1945 and 20066 that satisfy
a series of conditions, as detailed in Appendix C. Each episode has an
onset year and an end year. The onset year is defined as the first year
with a series of coordinated, contentious collective actions with at least
1,000 observed participants. The episode is recorded as over when peak

4 E.g., Nakamura et al. (2013) allow disasters to be correlated across countries but
suppose that the probability of a given country entering into a disaster “on its own” is
fixed over time.

5 It is important to note that we do not identify unrest episodes themselves as
disasters.

6 More recent versions of the dataset include more recent years.
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Figure 1 Example of Business Cycles Around Unrest

Notes: Growth rates of output, consumption, and investment (dY, dC, and dI
respectively) of the Philippines around the People’s Power Revolution (1983-87).

participation drops below 1,000. Overall, the NAVCO dataset provides
157 episodes of nonviolent and violent mass political unrest around the
world between 1945 and 2006. Of these, there are eighty-four episodes
in the years between 1960 and 2006, the period for which we have both
unrest and economic data. Over this period, the average duration of
an episode is 5.99 years.

Examples include many pro-democracy movements of civil unrest
in Latin America, the Philippines’s People Power Revolution (1983-87),
Indonesia’s civil unrest against Suharto (1997-98), and Mozambique’s
RENAMO resistance movement (1979-1992); for a complete listing of
these episodes, see Appendix A.1. As an illustration, Figure 1 plots
the time series of the growth rate in aggregate economic variables for
the Philippines around the People’s Power Revolution.
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Stylized Facts on Business Cycles During
Unrest

We now investigate the relationship between unrest and macroeconomic
activities. The goal of this section is to arrive at a set of moments
that will be used as calibration targets for the structural model of
the following section. We focus on the contemporaneous association
between unrest in a given country-year and the growth rates of output,
consumption, and investment. We follow others in the macroeconomic
literature (e.g., Fernández-Villaverde et al. 2011) and do not explicitly
model why the higher-order moments change, nor do we attempt to
make any causal claims about the contemporaneous causal impacts of
unrest on output or vice versa.

We calculate the growth rates of output, consumption, and invest-
ment by the first difference in logs of the variable at constant 2005 USD
and then remove a country-specific average growth rate from each se-
ries. That is, if the real output for country i in year t is Yit, then we
calculate the raw growth rate as ∆Yit ≡ 100(lnYit − lnYit−1). Then
we take out the country’s average growth rate to yield a demeaned
output growth rate of gY,it ≡ ∆Yit − 1

Ti

∑
t ∆Yi. A similar method is

applied to demean consumption and investment growth. We demean
to isolate fluctuations at the business cycle frequency and to control
for differences in country-specific average growth rates.

We then contrast the distributions of growth rates during unrest
(git|Uit = 1) against moments during quiet times of no unrest (git|Uit =
0) in Figure 2. The left column of Figure 2 displays smoothed kernel
estimates of the empirical probability density functions for the growth
rates of output, consumption, and investment, and the right column
displays the corresponding empirical cumulative distribution functions.
The probability density functions are estimated by Epanechnikov ker-
nels with a bandwidth of 2 percentage points for output and consump-
tion, and 4 percentage points for investment. The figures suggest that
the distributions of the growth rates are more negatively skewed during
unrest episodes.

To have numerical comparisons, Table 1 displays the means, stan-
dard deviations, skewnesses, and kurtoses of (country-demeaned) out-
put growth, consumption growth, and investment growth during and
outside of unrest episodes. All confidence intervals are bootstrapped
with 500 replications and are reported at the 95 percent level. The
first two columns report the estimated moments. The third column re-
ports the difference in the estimated moments, along with the p-value
for a test of the null hypothesis that there is no difference between the
corresponding moments. The fourth column reports the ratio of the
estimated standard deviations, along with the p-value for the Levene
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Figure 2 Distribution Functions of Macro Variables

Notes: Smoothed empirical probability density functions and empirical cumulative
distribution functions of output, consumption, and investment growth, unrest vs.
no unrest.

test of the equality of variances. The fifth column reports the p-value
for the Kolmogorov-Smirnov test of whether the two distributions of
shocks (under unrest and no unrest) are the same.
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Table 1 Empirical Moments In and Out of Unrest

No unrest Unrest Difference Ratio K-S test
(c.i.) (c.i.) [p-value] [p-value] [p-value]

Output growth [0.00]
Mean 0.17 -1.75 -1.92

(0.03,0.32) (-2.46,-1.04) [0.00]
Standard Dev. 5.62 8.63 1.53

(5.30,5.95) (7.05,10.20) [0.00]
Skewness -0.69 -2.26 -1.57

(-1.68,0.30) (-4.16,-0.35) [0.15]
Kurtosis 23.61 23.38 -0.23

(15.95,31.27) (13.86,32.91) [0.97]

Consumption grth [0.00]
Mean 0.12 -1.10 -1.22

(-0.11,0.36) (-1.90,-0.31) [0.00]
Standard Dev. 8.34 9.80 1.17

(7.69,8.99) (7.30,12.29) [0.00]
Skewness 0.40 -2.96 -3.36

(-1.38,2.17) (-6.52,0.60) [0.10]
Kurtosis 33.46 39.88 6.42

(17.34,49.57) (6.66,73.10) [0.73]

Investment grth [0.00]
Mean 0.40 -3.56 -3.96

(-0.19,1.00) (-6.00,-1.12) [0.00]
Standard Dev. 20.29 27.45 1.35

(18.69,21.89) (22.93,31.96) [0.00]
Skewness -0.94 -0.71 0.24

(-2.52,0.64) (-2.14,0.73) [0.83]
Kurtosis 31.78 15.11 -16.66

(17.77,45.80) (11.21,19.00) [0.03]

Notes: Empirical moments in and out of unrest with bootstrapped 95 percent
confidence intervals (in brackets) and p-values (in square brackets) on hypothe-
sis tests that there is no difference between the two distributions. The first two
columns report the estimated moments. The third column reports the difference
in the estimated moments, along with the p-value for a test of the null hypoth-
esis that there is no difference between the corresponding moments. The fourth
column reports the ratio of the estimated standard deviations, along with the p-
value for the Levene test of the equality of variances. The fifth column reports
the p-value for the Kolmogorov-Smirnov test of whether the two distributions of
shocks (under unrest and no unrest) are the same.

Table 1 shows that a period of unrest is associated with signifi-
cant losses in growth. The per-year loss in output growth (relative to
periods without unrest) is 1.92 percent, statistically significant at the
1 percent level. This estimated per-year loss is nontrivial, especially
given that unrest is persistent once started. The estimated cumulative
loss is relatively substantial at 11.50 percent of the base (pre-onset)
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year’s output.7 The annual loss in consumption growth is 1.22 per-
cent, which is smaller than that of output growth. At the same time,
investment growth losses are larger than output growth, at 3.96 per-
cent. In cumulative terms, consumption and investment losses amount
to 7.31 percent and 23.71 percent, respectively. Note that this ordering
of the loss in investment, output, and consumption is consistent with
the permanent income hypothesis, which predicts that investment is
more sensitive to shocks than output, which is in turn more sensitive
than consumption.

Furthermore, Table 1 shows that the standard deviations of the
growth rates of output, consumption, and investment substantially in-
crease during unrest episodes. The fourth column of Table 1 displays
the ratio of standard deviations. We can see that the standard devia-
tion of output growth is 53 percent larger in unrest, and the standard
deviations of consumption and investment growth are 17 percent and
35 percent larger, respectively. The column also reports the p-values
of Levene’s test of equality of variances between various forms of un-
rest against the baseline of no unrest. The p-values show that all of
these increases are highly statistically significant: well below 0.01 for
all three.

Table 1 also shows that both output and consumption growth be-
comes more negatively skewed during unrest. The difference in the
skewness between unrest and no unrest is −1.57 for output growth
and −3.36 for consumption growth. The bootstrapped p-value for the
hypothesis that the difference in skewness is equal to zero is 0.15 for
output growth and 0.10 for consumption growth. While it is gener-
ally diffi cult to estimate higher-order moments of relatively infrequent
events with great confidence, we believe that these differences in skew-
ness are economically significant. The greater variance and larger left
tail of many distributions are also visually discernible in Figure 2.8

This discernible mass on the left tail corresponds to a continuous range
from moderately to extremely bad outcomes. The difference between a
period of unrest and a period with no unrest then is not the increased
probability of a single disaster but an increase in the probability of a
whole range of bad outcomes.

7 If p is the continuation probability and x is the annual loss, then the cumulative
loss is estimated to be x

1−p .
8 While there is also a visibly larger left tail for the distribution of investment

growth, the bootstrapped difference in the skewness in investment growth between un-
rest and no unrest is not significantly different from zero, with a p-value of 0.83. This
is because there are a few observations of investment growth that are very large in ab-
solute value on both sides of the distribution (consistent with sharp falls in investment
and subsequent rebounds), and the bootstrapped estimate of the difference in skewness
is sensitive to these outliers.
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Finally, as the fifth column of Table 1 shows, under the Kolmogorov-
Smirnov test, we can reject the hypothesis that the two distributions
of shocks (under unrest and under no unrest) are the same, as the as-
sociated p-value is zero for each series (output growth, consumption
growth, or investment growth).

We summarize our results in the following stylized fact:
Fact: Episodes of mass political unrest are associated with statistically
and economically significant economic costs: the distributions of output,
investment, and consumption growth during unrest have lower means
and higher variances than the distributions in periods of no unrest. In
addition, the distributions of output and consumption growth are more
negatively skewed during unrest.

One potential mechanism that could explain the increased volatility
and negative skewness in economic activities is that unrest is associated
with substantial increases in the probability of institutional disruptions.
In Appendix A.3, we document that the probabilities of large political
and government changes, including major changes in polity and coups,
substantially increase during unrest episodes. Large political changes
are often associated with significant changes in legal and economic in-
stitutions, such as the protection of property and investment, which
are key determinants of investment and growth (Acemoglu and Robin-
son 2005; and Acemoglu et al. 2014). Therefore, unrest episodes can
increase the probability and severity of economic disasters.

2. QUANTITATIVE ANALYSIS

Model

How much of observed declines in average output, consumption, and
investment growth during unrest, as reported in the previous section,
can be attributed to volatility and skewness shocks? To answer this
question, we augment a standard small open economy with a regime-
switching process for the volatility and skewness of TFP. We calibrate
the regime-switching process to moments that were estimated from
data in the previous section.

Consider a canonical small open economy model with a represen-
tative household. Domestic firms competitively produce a numeraire
good Yt using capital Kt−1 and labor Ht, subject to TFP ζt:

Yt = ζtK
α
t−1(Ht)

1−α.

These firms take factor prices Rt and Wt as given. Their first-order
conditions on their optimal choices of capital and labor equate these
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factor prices with the corresponding marginal products in production:

Wt = (1− α)ζtK
α
t−1H

−α
t

Rt = αζtK
α−1
t−1 H

1−α
t .

Unrest shock. We introduce a regime-switching process. Let ut be
an exogenous two-state Markov process, with ut = 1 representing the
country being in unrest in period t and ut = 0 representing no unrest,
or a quiet time, in period t. Transitional probabilities are calibrated
to match the probability of unrest onset and the persistence of unrest
observed in data.

To model how unrest affects economic activities in the most tractable
way, we assume that unrest affects the TFP process. Intuitively, as un-
rest episodes are associated with significant economic and political in-
stability, they will affect the productivity of many economic sectors by,
for instance, affecting the effi ciency of resource allocation (Acemoglu et
al. 2014). Such effects can be captured in a reduced form by a wedge
to TFP, as in Chari et al. (2007).

Remark. Recall that our goal is to analyze the extent to which the
shocks to higher-order moments of aggregate macroeconomic variables
that we observe during unrest can explain the observed average losses in
output, consumption, and investment growth. To conduct this analysis
in the simplest and clearest possible way, we assume that unrest is a
shock only to higher-order moments of the TFP process and not to
the first moment. Obviously, this is a simplifying assumption and will
likely lead to underestimations of the economic impacts of unrest. The
model can be extended to allow for the possibility that unrest affects
the first moment as well, but this will complicate the analysis. We
will show that, even without an immediate associated fall in average
productivity, a higher-order moment shock is enough to generate large
changes in macroeconomic aggregates in line with the data.

Specifically, assume that TFP ζt consists of a growth component
(gt)1−α and a level component At:

ζt = (gt)1−αAt,

where, for numerical simplicity, we have assumed that growth rate is
a constant g. However, level component At follows an autoregressive
process with autoregressive parameter ρ and i.i.d. shocks εt:

lnAt = ρ lnAt−1 + εt.

The stochastic process for εt depends on whether the economy is cur-
rently experiencing unrest. While in unrest (ut = 1), shock εt is dis-
tributed Normal Inverse Gaussian with mean 0, standard deviation σu,
skewness su, and kurtosis κu. While not in unrest (ut = 0), shock εt
is distributed Normal Inverse Gaussian with mean 0, standard devia-
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tion σq, skewness sq, and kurtosis κq. The Normal Inverse Gaussian
distribution has been used in the finance literature to model skewed
distributions with fat tails (e.g. Barndorff-Nielsen 1997; Andersson
2001; and Mencía and Sentana 2012). The fact that the mean of εt is
the same whether ut = 0 or ut = 1 reflects the assumption that unrest
only affects higher-order moments of TFP.9

Preferences: As is now standard in the macro-finance literature
(e.g., Gourio 2012; and Colacito and Croce 2013), we assume the rep-
resentative household has recursive preferences as in Epstein and Zin
(1989). These preferences allow us to distinguish between the intertem-
poral elasticity of substitution and risk aversion (captured by ζ and γ
below). Moreover, these preferences nest the standard expected utility
with constant relative risk aversion (CRRA) as a special case.

Let Ct denote household consumption in period t, and let C̃t ≡
Ct − θω−1gt−1Hω

t denote labor-adjusted consumption, where θ and ω
are preference parameters. Then, we follow the sign convention of
Rudebusch and Swanson (2012) and define the representative house-
hold’s preferences as:

Ṽt ≡


(

(1− β)C̃1−ς
t + βEt

[
V 1−γ
t+1

] 1−ς
1−γ
) 1

1−ς
if C̃1−ς

t is always positive(
(1− β)C̃1−ς

t − βEt
[
(−Vt+1)1−γ] 1−ς1−γ

) 1
1−ς

if C̃1−ς
t is always negative

(1)
This convention ensures that the value function and the instantaneous
payoff have the same sign.

Households supply capital and labor to the domestic firms, consume
domestic goods, invest subject to an adjustment cost in capital, and
trade noncontingent bonds in the international credit market:

Vt = max
Ct,Dt,It,Ht

Ṽt,

subject to:

Ct +Dt−1 + It +
φ

2

(
Kt

Kt−1
− gt

)2

Kt−1 = RtKt−1 +WtHt +
Dt

1 + rt
Kt = (1− δ)Kt−1 + It.

9 The unrest shock in each period t affects the distribution of the TFP in period
t, and because TFP is autocorrelated, the unrest shock will affect the distribution of
future TFP terms too. This is different from a “news shock” that does not affect current
TFP, only future TFP.
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We assume that the interest rate households borrow at is a function of
the aggregate stock of debt Dt:

rt = r∗ + ψ(eDt/g
t−d̄ − 1),

where rt is the interest rate, r∗ is a constant representing the world’s
risk-free interest rate, and d̄ and ψ are exogenous constants. This
debt-elastic interest rate is a standard assumption to ensure that the
equilibrium is stationary (e.g., Schmitt-Grohé and Uribe 2003).

Finally, a recursive equilibrium is defined as a set of policy functions
for Ct, Vt, Kt, Dt, Yt, rt, It, Ht, Wt, and Rt as functions of Kt−1,
Dt−1, At, and ut such that all agent expectations are rational and the
optimality conditions, constraints, and laws of motion described above
hold.

Solution Method

One way to derive moments of output, consumption, and investment
growth from the model is to simulate a very long time series in which the
country transitions into and out of unrest with the same probabilities
as in the data. But since unrest is rare, we would need an extraordinar-
ily long simulated time series to reduce the Monte Carlo noise around
our estimates of those higher-order moments. Instead, we adapt the
pruning method from Andreasen et al. (2017) to get closed-form so-
lutions for the paths of conditional moments of endogenous variables,
the GIRF. We first describe how we calculate a GIRF and then how
we use the GIRF to compare the model against the data. All details
on the computational strategy, from approximation to pruning and the
GIRF, are given in the Appendix.

We define the GIRF as follows. Let yt denote the log-deviation of
output Yt from its steady-state value. Then ∆yt is the growth rate
of output Yt. Let Xt denote a vector of the first three powers of the
growth rates of output, consumption, and investment:

Xt ≡
(
∆yt,∆it,∆ct, (∆yt)

2, (∆it)
2, (∆ct)

2, (∆yt)
3, (∆it)

3, (∆ct)
3
)
.

The GIRF is the evolution over time of the difference of conditional
expectations of Xt between two conditioning sets, differing with respect
to two given time series of realizations of unrest, u = {ut,−∞ < t <∞}
and ũ = {ũt,−∞ < t <∞}:

GIRF u(Xt) ≡ E[Xt|u]− E[Xt|ũ].

The first path, u, represents a country that starts with no unrest
and then enters into unrest at t = 1 and stays there. That is, ut = 0
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∀t ≤ 0 and ut = 1 ∀t ≥ 1. The second counterfactual path, ũ, is one
where the country never enters unrest: ũt = 0 ∀t.

Remark. The GIRF is useful for our purposes for several reasons.
First, we want to calculate the moments that would be uncovered from
a simulation. The conditional expectations in the GIRF allow us to
consider the effects of shocks over the course of the GIRF. This is im-
portant, since under a nonlinear approximation to the policy function,
the presence of shocks will cause the ergodic moments of all variables
to differ from those in the absence of shocks. Second, since Xt contains
powers and products of endogenous variables, we can find paths not
just for conditional means, but also for conditional variances and skew-
nesses of the endogenous variables of interest given the paths for the
components of Xt. Moreover, the GIRF allows us to avoid measure-
ment error, which is a problem for estimating higher-order moments of
simulated series from a finite simulation length. While Andreasen et al.
(2017) rely on SMM for higher-order moments, we use the computer
algebra software Mathematica to calculate GIRFs for these moments
symbolically, term by term, and avoid Monte Carlo error.

The GIRF provides the conditional moments in the first year of an
unrest episode, the second year, and so on. The moments from the
data presented in the previous section are weighted averages over the
years in observed unrest episodes because years that are closer to the
beginning of an episode are more likely observed than years that are
many years after the beginning of an episode. If p = Pr(Ut|Ut−1 = 1),
then the probability of a given observed year of unrest being the nth
year of unrest (n ≥ 1) within its respective episode is (1−p)pn−1. Thus,
to construct the single value for average value of X on unrest, we take
a weighted average of a GIRF where a country enters into unrest and
stays there but with smaller and smaller weight given to later periods
of unrest. That is, we calculate

∑∞
t=1(1− p)pt−1GIRF u(Xt).

Calibrations

First, we calibrate the model’s basic parameters using standard values
from the small open economy literature. These numbers are listed
in the top panel of Table 2.10 We allow the values for Epstein-Zin

10 The sensitivity parameter of interest rate to debt is simply set to a small value
to avoid a unit root, as in García-Cicco et al. (2010) and Schmitt-Grohé and Uribe
(2003).
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Table 2 Calibrated Parameters

Parameter Value Source/Target

From literature
α Capital share in production 0.32 García-Cicco et al. (2010)
β Discount factor 0.922 —
δ Depreciation 0.126 —
φ Adjustment costs to capital 3.3 —
g Trend growth rate 1.005 —
θ Disutility from labor 0.224 —
ω Disutility from labor 1.6 —
d̄ Steady-state debt level 0.007 —
ψ Interest rate sensitivity to debt 10−5 —
ς Inverse intertemporal elasticity of substitution 0.9 to 5 Table 3
γ Risk aversion 5 to 20 Table 3

Estimates from data
ponset Probability of unrest onset 0.014 Appendix A.2
pcont. Probability of unrest continuation 0.833 Appendix A.2

Chosen to match target
σq Std. of TFP shock εt in quiet times 2.75 Table 1
sq Skewness of TFP shock εt in quiet times -1.10 Table 1
κq Kurtosis of TFP shock εt in quiet times 22 (*)
σu Std. of TFP shock εt during unrest 4.66 Table 1
su Skewness of TFP shock εt during unrest -2.83 Table 1
κu Kurtosis of TFP shock εt during unrest 22 (*)

Notes: (*) means chosen suffi ciently high to permit existence of Normal Inverse
Gaussian distribution.

Table 3 Epstein-Zin Parameter Calibrations in the
Literature

ς γ

Fernández-Villaverde et al. (2011) 5 5
Colacito et al. (2013) 0.9 10

Vissing-Jørgensen and Attanasio (2003) 0.9 20

preference parameters to vary within the standard range of values of
the literature, surveyed in Table 3.11

11 In Vissing-Jørgensen and Attanasio (2003), the estimated risk-aversion parameter
can take a wide range of values, as large as thirty. To be conservative, we only set the
maximum risk-aversion to be twenty.
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Second, we calibrate parameters for the unrest process and the
higher-order moments of TFP innovation εt to estimated moments from
our empirical analysis in Section 1. Care must be paid to the calibra-
tion of the higher-order moments of TFP, both in unrest and in quiet
times. The parameters chosen in the model govern the exogenous TFP
process, but they are chosen to match the moments of endogenous
quantities. It is relatively straightforward (as one could even rely on
closed-form solutions) to choose the volatility of a shock process given
a desired volatility of an endogenous quantity, such as output growth
under a log-linear approximation to equilibrium. However, it is much
less straightforward to choose higher-order moments of a shock process
to match higher-order moments of a nonlinear approximation of the
law of motion for an endogenous variable. Therefore, the parameters
σq, σu, sq, and su are chosen so that the ergodic standard deviation
and skewness of output growth, and the average generalized impulse
responses of the standard deviation and skewness of output growth,
match those in the data.12

Results

Model’s performance relative to data. We compare the average loss in
output, investment, and consumption growth from the GIRF

∑∞
t=1(1−

p)pt−1GIRF u(∆yt) to the corresponding observed average loss in growth
as documented in Section 1. Table 4 reports the percentage of observed
growth loss that can be explained by the calibrated model. The overall
effect is an endogenous response of endogenous variables to an unrest
shock that increases the volatility and negative skewness of TFP shocks,
with an interplay of capital adjustment costs and preferences over the
time resolution of risk. In each panel, we report the percentage ob-
tained by using the first-, second-, and third-order approximations of
the solution to the model. Note that by construction, the percentage
explained using a first-order approximation is zero, as we assume that
unrest does not affect the first moment of TFP shocks. The columns
report the results with different preference parameters.

Table 4 shows that, under the baseline specification (the first col-
umn), the model explains 21 percent of the average output growth loss,
45 percent of the average consumption growth loss, and 51 percent of
the average investment growth loss. This amounts to an output growth

12 We do not attempt to match kurtoses exactly, since we approximate equilibrium
only to third order. We choose the kurtosis of the TFP processes high enough to permit
existence of the Normal Inverse Gaussian distribution for the calibrated second-order and
third-order moments. The calibrated kurtosis of TFP is approximately equal to that of
the empirical distribution of output growth.
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Table 4 Numerical Results

Numerical Results
Baseline High risk av. No EZ, low risk av.
ς = 0.9, γ = 10 ς = 0.9, γ = 20 ς = 5, γ = 5

Output growth
First order 0 0 0
Second order 11 21 6
Third order 21 62 9

Consumption growth
First order 0 0 0
Second order 22 742 7
Third order 45 128 11

Investment growth
First order 0 0 0
Second order 27 51 16
Third order 51 148 23

Notes: Numerical results for the percentages of the empirically observed average
losses in the growth rates of output, consumption, and investment that are ex-
plained by the model. The rows show the percentage explained by using first-
order, second-order, and third-order approximations of the solution to the model.

loss of 0.40 percent per year, a consumption growth loss of 0.55 percent
per year, and an investment growth loss of 2.01 percent per year. In
cumulative terms over the average episode duration, this is an output
growth loss of 2.41 percent, a consumption growth loss of 3.28 percent,
and an investment growth loss of 12.09 percent.

The second column of Table 4 shows that, not surprisingly, the
model can explain more with a larger coeffi cient of risk aversion (γ = 20
instead of γ = 10). There, the fractions of growth losses explained
increase to 62 percent for output, 128 percent for consumption and 148
percent for investment (thus this calibration “overexplains”the losses
in consumption and investment). On the other hand, when we shut
down Epstein-Zin preferences and use a lower coeffi cient of risk aversion
(the third column), the fractions of growth losses explained decrease
to 9 percent, 11 percent, and 23 percent for output, consumption, and
investment, respectively.

It is not surprising that the model cannot fully explain the observed
losses, since we assume that unrest only affects higher-order moments
of TFP shocks, and not the first-order moment, thus abstracting away
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from factors such as reallocation of resources between sectors of the
economy that may directly affect the average productivity.13

However, the table shows that shocks to the higher-order moments
of TFP alone can still explain a substantial fraction of the observed
losses, especially in investment. Even without Epstein-Zin preferences
and with a relatively low risk-aversion index, the model can still explain
around a fourth of the observed loss in investment growth. Intuitively,
in the model, when risk increases (either through the second-order or
third-order moment of TFP), agents in the country shift away from
domestic capital and into the internationally traded asset. This mech-
anism explains the drop in investment.

Role of negative skewness. One of our main findings is that negative
skewness shocks play quantitatively important roles in driving business
cycles. To see this, in rows labeled “second order”in Table 4, we show
the fractions of observed losses explained under each calibration, but
using an approximation of the solution of the model only to the second
order, and thus effectively shutting down the endogenous response to
the shock to the skewness of TFP. As the baseline column shows, the
reaction to skewness is substantial : the fractions of average losses ex-
plained in the third-order rows are roughly doubling those explained in
the second-order rows. Differences of comparable magnitudes are also
found in the two other calibration columns.

Why does skewness matter? Intuitively, agents in our model dislike
negative skewness. To see this, let C̃t = Ct − θω−1gt−1Hω

t , the aggre-
gate of utility from consumption and labor to the household. By the de-

finition of household preferences, V 1−ς
t = (1−β)C̃1−ς

t +βEt

[
V 1−γ
t+1

] 1−ς
1−γ
.

Let vt ≡ V 1−ς
t so that when γ = ς and thus Epstein-Zin prefer-

ences reduce to expected utility preferences, vt is the usual defini-
tion of the value function for the household: vt = (1 − β)C̃1−ς

t +

βEt

[
v
1−γ
1−ς
t+1

] 1−ς
1−γ
. The third-order Taylor approximation for vt around

13 For example, if sectors of the economy differ not only with respect to average
productivity, but also exposure to political uncertainty under unrest, we might see a
reallocation of capital to relatively ineffi cient sectors, driving up the share of output
growth loss explained. Recent work by Acemoglu et al. (2014) provides evidence that,
during the Egyptian experience of the Arab Spring, firms that had closer ties to the
threatened regime suffered greater losses on the Egyptian stock market than firms that
did not. Exploring the macroeconomic significance of this and other micro risks asso-
ciated with political unrest would be complementary to our analysis and is outside of
the scope of this paper.
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vt+1 = µ ≡ Et[vt+1] is:

vt = (1− β)C̃1−ς
t

+ βEt [vt+1]

− β
γ − ς

2µ(1− ς)V art [vt+1]

+ β
(γ − ς)(γ + 1− 2ς)

6(µ(1− ς))2
Skewt [vt+1]V art [vt+1]3/2 . (2)

The first three terms of the continuation payoff are well-known in
the literature on Epstein-Zin preferences (e.g., Colacito et al. 2013).
The first term is current utility. The second is the same discounted
continuation payoff that appears in non-Epstein-Zin expected utility
preferences. The third term is a “correction” to expected utility that
penalizes future variance of the value function as long as γ > ς.14

The fourth term is novel to a third-order approximation. Under the
same assumption that γ > ς and ς < 1, this term rewards positive
skewness of the future value function and penalizes negative skewness.
As γ increases, the penalties for both volatility and negative skewness
increase.

The term Skewt [vt+1]V art [vt+1]3/2 is equal to Et[(vt+1−µ)3], the
third central moment of the value function. It shows that, for a given
amount of skewness, the size of the third central moment increases in
the variance. This is why skewness and variance are complementary in
giving rise to precautionary motives in equilibrium.

Expression (2) is another way to see how these higher-order mo-
ments relate to a disaster risk. A disaster is an outcome on the far
left tail. If variance increases, extreme events on both tails become
more likely. If in addition skewness becomes more negative, the events
far out on the lower tail specifically become more likely. Though we
do not calculate a fourth-order approximation to this model, one can
easily show that the next term in the above expansion would penalize
the fourth central moment of the value function. An increase in the
fourth-order moment, like an increase in negative skewness for a given
second-order moment, also makes outcomes on the tails more likely.
Therefore, by taking a higher-order approximation to the value func-
tion and by considering shock distributions with fat and skewed tails,
we can recover some of the effects of what has been explored in the rare
disaster literature.

Comparison with other studies. How do the results in Table 4 com-
pare with other studies in the literature on the macroeconomic effects

14 Remember, we are using a calibration where ς < 1, so µ > 0 and µ(1− ς) > 0.
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of risk? It is well-known that increases in second-order moments lead
to economic slowdowns, though the range of models in the literature
is wide and none are exactly comparable with the model in this paper
in terms of modeling assumptions or forcing processes. For example,
while using a very different model (a closed economy with heteroge-
neous firms, subject to a transitory shock to the second-order moment
of a composite of technology and demand, on the monthly frequency),
Bloom (2009) obtains effects of risk that are of the same order of magni-
tude as here, i.e., doubling the standard deviation of the forcing process
leads to a decline in the level of output by 2 percentage points within
the first six months. For the canonical small open economy model con-
sidered here, Fernández-Villaverde et al. (2011) find that a transitory
one-standard-deviation shock to second-order moment of innovations to
the global interest rate (the interest rate that households in the small
open economy pay on their international debt) can lead to declines in
output levels in Argentina of 1.16 percentage points below steady state
after sixteen quarters, or an average output growth loss of 0.29 per-
centage points per year, which is about 73 percent of what our baseline
model predicts. Just as in Gourio’s (2012) experiment with a tran-
sitory increase in the disaster probability, in our model, investment
experiences the most significant decline and output contracts by a few
percentage points. However, in that model, a disaster also entails some
destruction of capital, so it is diffi cult to directly compare the two sets
of numerical results.

Welfare. Finally, we evaluate the welfare loss due to the shock to
the distribution of TFP. The change in the value function Vt experi-
enced in the first period of an unrest episode corresponds to the wel-
fare loss from facing the more negatively skewed distribution of TFP.
The loss can be evaluated by considering the following counterfactual
scenario: suppose that household consumption is dictated by a social
planner who ensures that households enjoy labor-adjusted consump-
tion ¯̃C (the steady-state level of labor-adjusted consumption in the
model) during each period the economy is not in unrest and ¯̃C∆C ,
where ∆C < 1, during each period the economy is in unrest. Suppose
additionally that unrest follows the same stochastic switching process
as in the data and the model but there are no other sources of uncer-
tainty to the households. The value function of the household in this
scenario takes on two values: V̄ while not in unrest, and V̄∆V , where
∆V < 1, while in unrest. The value function takes the following form:

V̄∆V =

(
(1− β)( ¯̃C∆C)1−ς + β

(
p(V̄∆V )1−γ + (1− p)V̄ 1−γ) 1−ς1−γ

) 1
1−ς

.

(3)
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The log-linearization of the above:

V̄ 1−ς∆̂V ≈ (1− β) ¯̃C1−ς∆̂C + βpV̄ 1−ς∆̂V . (4)

For a given ∆̂V , we can calculate the change in labor-adjusted con-
sumption ∆̂C that would give rise to a fall of ∆̂V in the value function
below its steady-state value for each period spent in unrest. We take
∆̂V as calculated from our GIRF.

Our estimates imply a ∆̂C equal to -6.1 percent. In other words,
the welfare loss due to increased volatility and skewness during unrest
is equal to the welfare loss if consumption were 6.1 percent lower than
its steady-state value in each period of unrest. How does this number
compare with those in other studies? Lucas (1987) shows that elim-
inating all business cycle fluctuations for a representative agent with
expected-utility preferences corresponds to 0.1 percent to 0.5 percent
of steady-state consumption. Dolmas (1998) finds that the same ex-
ercise under Epstein-Zin preferences yields 2 percent to 20 percent of
steady-state consumption, depending on the degree of risk aversion.

3. CONCLUSION

We estimate shocks to the volatility and skewness of business cycles by
exploiting the uncertainty associated with episodes of political unrest.
A small open economy real business cycle model calibrated to the es-
timated moments from data shows that higher-order moment shocks,
especially increased negative skewness, play important roles in explain-
ing the observed average decline in economic activities. In short, the
paper demonstrates the quantitative importance of time-varying skew-
ness of shocks in the context of a small open economy real business cy-
cle model. Our paper makes several contributions to different threads
of the macroeconomic literature. In the context of real business cy-
cle and DSGE models, the mapping from the higher-order moments
of exogenous processes to moments of endogenous variables, such as
the mapping studied in this paper, is relatively underexplored. While
the literature has deployed a number of mechanisms (e.g., adjustment
costs on investment, debt-elastic interest rates, habit in consumption,
and interest rate smoothing; see Smets and Wouters 2007) to help
log-linearized models better replicate the first-order and second-order
moments of observed time series, it is less clear how these mechanisms
affect the model’s ability to match third-order moments as well. Our
paper suggests it may be important to know more about the endoge-
nous mechanisms that help or hinder matching higher-order moments
of models, given that these moments could be important for the conse-
quences of aggregate risk. Additionally, our method of accurately cal-
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culating the GIRF of third-order moments may help future researchers
analyze the dynamics of higher-order moments of macroeconomic ag-
gregates in DSGE models while avoiding Monte Carlo error.
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APPENDIX: A. ONLINE APPENDIX: DATA

A.1 Details of NAVCO Unrest Data

NAVCO provides detailed information on 250 nonviolent and violent
mass political campaigns between 1945 and 2006. These campaigns
constitute a “consensus population” of all known cases satisfying the
following conditions. Each episode is a series of observable (i.e., tac-
tics used are overt and documented), continuous (distinguishing from
one-off events or revolts) mass tactics or events that mobilize nonstate
actors in pursuit of a political objective. The NAVCO dataset also
provides, among other information, the country, the main participat-
ing groups, the documented objective of the movement in each year of
the campaign, the presence of violence in each year of the campaign,
and the degree to which the movement was successful at achieving the
documented objective. We focus on episodes whose objectives belong
to one of the following categories:

(0) Regime change indicates a goal of “overthrowing the state or sub-
stantially altering state institutions to the point that it would
cause a de facto shift in the regime’s hold on power.”

(1) Significant institution reform indicates a goal of “changing funda-
mental political structures to alleviate injustices or grant addi-
tional rights.”

(2) Policy change indicates a goal of “changes in government policy
that fall short of changes in the fundamental political structures,
including changes in a state’s foreign policy.”

For a complete listing of NAVCO unrest episodes, see the Online
Appendix C.

A.2 Estimates of Onset and Continuation
Probabilities

We investigate how likely unrest is to start and how persistent it is
once it starts. We establish that unrest is rare but persistent. These
facts are important for understanding the economic consequences of
higher-order shocks to business cycles.

Let a dummy variable Uit take the value of one during episodes of
unrest and zero during years with no unrest, where i denotes a country
and t denotes a year. We estimate both the probability of unrest onset
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(i.e., the probability of unrest conditional on no unrest the previous
year) and the probability of unrest continuation (i.e., the probability
of unrest conditional on there being unrest in the previous year). To
assess whether the probability of unrest is a function of other observ-
able characteristics of a country, we estimate two probit models, one
for onset and one for continuation. Each probit predicts Uit = 1 as a
function of a constant and a vector Zit of control variables, including
lagged real GDP growth minus the country-specific average growth rate
∆Yi,t−1 − 1

Ti

∑
t ∆Yit, religious, ethnic, and linguistic fractionalization

(all on a scale of 0 to 1), and income inequality (measured with the
Gini coeffi cient). To control for region-specific factors that might influ-
ence the overall probability of a given country experiencing unrest, we
include a term γRegion(i) as a region-fixed effect.

15 We do not include
country-fixed effects because this would effectively exclude any country
from our sample that has never experienced unrest. Instead, we want to
include all countries in our sample to exploit not just variation within
countries but between them as well. The fact that many countries never
experience unrest is informative to estimating the probability of onset.
The two probit regressions are:

Pr(Uit|Uit−1 = 0) = Φ
(
γZ0Zit + γ0 + γ0,Region(i)

)
(onset) (5)

Pr(Uit|Uit−1 = 1) = Φ
(
γZ1Zit + γ1 + γ1,Region(i)

)
(continuation)

(6)

where Φ is the cumulative distribution function of the standard normal
distribution.

Our baseline estimations, reported in Table 5, indicate that the
onset of unrest is rare: the estimated onset probability is 1.4 percent
per year. However, once it starts, unrest tends to last for several years:
the estimated continuation probability in Table 6 is 83.3 percent per
year. This continuation probability implies that the average duration
of unrest episodes is 5.99 (= 1

1−0.833).
In summary, we find that the onset of unrest is rare. But once

started, unrest is persistent, leading to relatively lengthy episodes.

A.3 Political Risks Associated with Unrest

We document that the probability of large political changes increases
significantly in each year of unrest. To the extent that any large po-

15 The regions, as classified by the World Bank, are: East Asia and Pacific, Europe
and Central Asia, Latin America and Caribbean, Middle East and North Africa, South
Asia, and sub-Saharan Africa.
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Table 5 Estimated Onset Probability

Onset Baseline (2) (3) (4) (5)

∆Yi,t−1 − 1
Ti

Σt∆Yit -0.003 -0.004 -0.005 -0.001
(0.01) (0.01) (0.02) (0.01)

Ethnic Frac 0.500**
(0.24)

Language Frac -0.050
(0.21)

Religion Frac -0.227
(0.18)

Gini -0.014
(0.01)

Europe, Central Asia -0.095
(0.15)

Latin America, Caribbean 0.021
(0.15)

Middle East, North Africa -0.005
(0.18)

North America no obs.

South Asia 0.432**
(0.19)

Sub-Saharan Africa 0.125
(0.14)

constant -2.209*** -2.147*** -2.240*** -1.386*** -2.182***
(0.03) (0.04) (0.11) (0.46) (0.11)

Pr(Ui,t|Ui,t−1 = 0) 0.014 0.016 0.013 0.083 0.01
(0.00) (0.00) (0.00) (0.07) (0.00)

N 9272 5910 5357 599 5771

Notes: Probit coeffi cient estimates to predict onset of unrest, Uit, and derived
probabilities. ∆Yit denotes real GDP growth (= 100 x (lnYt−lnYt−1)). Standard
errors in parentheses. East Asia is the baseline region for the specification with
region FE. *: p < 0:10. **: p < 0:05. ***: p < 0:01.

litical change entails at least a temporary disruption of the economy,
an increase in the probability of disruptive events might help make
sense of the increase in the left tail of the distributions of output and
consumption growth documented in the next section. We estimate a
series of probit regressions to predict a set of political disruptions: (1)
coups, (2) positive changes in the Polity index, (3) negative changes in
the Polity index, (4) large positive changes in the Polity index (greater
than five points), and (5) large negative changes in the Polity index
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Table 6 Estimated Continuation Probability

Continuation Baseline (2) (3) (4) (5)
∆Yi,t−1 − 1

Ti
Σt∆Yit 0.011* 0.009 -0.016 0.010

(0.01) (0.01) (0.03) (0.01)
Ethnic Frac’n 0.423

(0.34)
Language Frac’n 0.406

(0.27)
Religion Frac’n -1.022**

(0.32)
Gini 0.006

(0.02)
Europe, Central Asia -0.800***

(0.26)
Latin America, Caribbean 0.317

(0.22)
Middle East, North Africa -0.044

(0.28)
North America no obs.

South Asia -0.199
(0.30)

Sub-Saharan Africa 0.007
(0.20)

constant 0.967*** 0.995*** 0.974*** 0.694 1.001***
(0.06) (0.06) (0.18) (0.75) (0.18)

Pr(Ui,t|Ui,t−1 = 1) 0.833 0.840 0.835 0.756 0.842
(0.01) (0.02) (0.04) (0.24) (0.04)

N 732 590 558 74 590

Notes: Probit coeffi cient estimates to predict onset of unrest, Uit, and derived
probabilities. ∆Yit denotes real GDP growth (= 100 x (lnYt−lnYt−1)). Standard
errors in parentheses. East Asia is the baseline region for the specification with
region FE. *: p < 0:10. **: p < 0:05. ***: p < 0:01.

(greater than five points).16 Each probit regression is specified as in
equation (6), as a function of a constant, an indicator for current unrest,
the difference between lagged real GDP growth and a country-specific
average real GDP growth, and the interaction between current unrest
and lagged real GDP growth. Let Xit be an indicator for one of the
political disruptions. We estimate:

Pr(Xit) = Φ (γUUit + γZZit + γZUZitUit + γ0) (7)

16 Data for coups come from Marshall and Marshall (2011) and data for Polity
come from Marshall and Jaggers (2002).
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Table 7 Estimated Probability of Political Events

Coupit ∆Polit > 0 ∆Polit < 0 ∆Polit > 5 ∆Polit < −5

Ui,t 0.494*** 0.802*** 0.431*** 0.849*** 0.420**
(0.07) (0.07) (0.09) (0.10) (0.13)

Lagged output growth† -0.005 -0.017*** -0.005 -0.019** -0.007
(0.00) (0.00) (0.01) (0.01) (0.01)

Ui,t∗Lagged output growth† -0.002 0.004 0.002 0.003 0.003
(0.01) (0.01) (0.01) (0.01) (0.02)

constant -1.585*** -1.696*** -1.937*** -2.397*** -2.437***

N 6500 6500 6500 6500 6500

Notes: Probit coeffi cient estimates to predict other political upheavals as functions
of current unrest and derived probabilities. † relative to country-specific average
output growth: ∆Yi,t−1− 1

Ti
Σt∆Yit. Probabilities evaluated at lagged real output

growth equal to country-specific average. Standard errors in parentheses. *: p <
0:10. **: p < 0:05. ***: p < 0:01.

There are a few differences between this specification and the spec-
ification of unrest onset and continuation in equation (6). First, we
estimate one probit for each political disruption Xit. Second, in equa-
tion (6), we estimate the probits conditional on the presence of lagged
unrest and the absence of lagged unrest separately. Here, we estimate
one probit including both unrest and its interactions with the controls
in one step. We do this to test hypotheses that the probability of each
political disruption is significantly different in the presence and absence
of unrest. Third, for simplicity, we include in the vector of controls
Zit just one control: the difference between lagged output growth and
country-specific average output growth. We find that unrest is associ-
ated with increases in the probability of all kinds of political changes.
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APPENDIX: B. ONLINE APPENDIX: MODEL DETAILS

B.1 Derivation of the Household Problem

First, we pose the problem in recursive form

V (K,D)1−ς = max
C,D′,K′,H

(1− β)
(
C − θω−1ZHω

)1−ς
+ βE

[
V (K ′, D′1−γ

] 1−ς
1−γ

+ λ

(
(R+ 1− δ)K +WH +

D′

1 + r
−D − C −K ′ − φ

2

(
K ′

K
− g
)2

K

)
.

The associated first-order conditions and envelope condition are:

λ = (1− β)(1− ς)
(
C − θω−1ZHω

)−ς
− λ

1 + r
= β(1− ς)E

[
V (K ′, D′1−γ

] 1−ς
1−γ−1

E
[
V (K ′, D′−γVD(K ′, D′)

]
(1− ς)V (K,D)−ςVD(K,D) = −λ

λ

(
1 + φ

(
K ′

K
− g
))

= β(1− ς)E
[
V (K ′, D′1−γ

] 1−ς
1−γ−1

E
[
V (K ′, D′−γVK(K ′, D′)

]
(1− ς)V (K,D)−ςVK(K,D) = λ

(
R+ 1− δ + φ

(
K ′

K
− g
)
K ′

K
− φ

2

(
K ′

K
− g
)2
)
.

These lead to:

V 1−ς = (1− β)C̃1−ς + βṼ 1−ς

Ṽ 1−γ = E
[
V ′1−γ

]
C̃ = C − θω−1ZHω

1 = βE

[(
V ′

Ṽ

)ς−γ ( C̃ ′
C̃

)−ς
(1 + r)

]

1 = βE

(V ′
Ṽ

)ς−γ ( C̃ ′
C̃

)−ς R′ + 1− δ + φ
(
K′′

K′ − g
′
)
K′′

K′ −
φ
2

(
K′′

K′ − g
′
)2

1 + φ
(
K′
K − g

)

 .
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B.2 Full Set of Equilibrium Conditions

The equilibrium conditions are (with additional variables introduced
for convenience):

V 1−ς
t = (1− β)C̃1−ς

t + βṼ 1−ς
t (8)

Ṽ 1−γ
t = E

[
V 1−γ
t+1

]
(9)

C̃t = Ct − θω−1Zt−1H
ω
t (10)

Wt = θZt−1H
ω−1
t (11)

1 = βEt

[(
Vt+1

Ṽt

)ς−γ ( C̃t+1

C̃t

)−ς
(1 + rt)

]
(12)

1 = βEt


(
Vt+1
Ṽt

)ς−γ (
C̃t+1
C̃t

)−ς(
Rt+1+1−δ+φ

(
Kt+1
Kt
−gt+1

)
Kt+1
Kt
−φ
2

(
Kt+1
Kt
−gt+1

)2
1+φ

(
Kt
Kt−1

−gt
)

)


(13)

Yt = AtK
α
t−1(ZtHt)

1−α (14)

Wt = (1− α)AtK
α
t−1Z

1−α
t H−αt (15)

Rt = αAtK
α−1
t−1 Z

1−α
t H1−α

t (16)

Yt +
Dt

1 + rt
= Dt−1 + Ct + It +

φ

2

(
Kt

Kt−1
− gt

)2

Kt−1 (17)

It = Kt − (1− δ)Kt−1 (18)

rt = r∗ + ψ(e(D̃t/Zt−d̄) − 1). (19)

The equilibrium conditions, scaled (ct = Ct/Zt−1, c̃t = C̃t/Zt−1,
ht = Ht, wt = Wt/Zt−1, vt = Vt/Zt−1, ṽt = Ṽt/Zt−1, yt = Yt/Zt−1,
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kt = Kt/Zt , at = At ) and simplified:

v1−ς
t = (1− β)c̃1−ς

t + βṽ1−ς
t (20)

ṽ1−γ
t = E

[
(gtvt+1)1−γ] (21)

c̃t = ct − θω−1hωt (22)

wt = θhω−1
t (23)

κt =
kt
kt−1

− 1 (24)

1 = βg−γt Et

[(
vt+1

ṽt

)ς−γ ( c̃t+1

c̃t

)−ς
(1 + rt)

]
(25)

1 = βg−γt Et

[(
vt+1

ṽt

)ς−γ ( c̃t+1

c̃t

)−ς (Rt+1 + 1− δ + φg2
t+1(κt+1 + 1

2κ
2
t+1)

1 + φgtκt

)]
(26)

yt = atk
α
t−1(gtht)

1−α (27)

wtht = (1− α)yt (28)

Rtkt−1 = αyt (29)

yt = dt−1 −
dtgt

1 + rt
+ ct + it +

φ

2
g2
t κ

2
tkt−1 (30)

it = ktgt − (1− δ)kt−1 (31)

rt = r∗ + ψ(e(dt−d̄) − 1) (32)

log(at+1) = ρ log(at) + η(utσu + (1− ut)σq)εt+1 (33)

log(gt) = log(gq) + ηut log(gu) (34)

εt+1 ∼ i.i.d.N(0, 1) (35)

ut+1 ∼ Markov, 0 or 1 with constant transition matrix. (36)
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Steady state at η = 0:

v =

(
1− β

1− βg1−ς

) 1
1−ς

c̃ (37)

ṽ = gv (38)

c̃ = c− θω−1hω (39)

w = θhω−1 (40)

1 = βg−ς(1 + r) (41)

r = R− δ (42)

y = akα(gh)1−α (43)

wh = (1− α)y (44)

Rk = αy (45)

y = d
1 + r − g

1 + r
+ c+ i (46)

i = k(g − 1 + δ) (47)

r = r∗ (48)

a = 1 (49)

κ = 0 (50)

g = gq. (51)

B.3 Notes on Solution Method and GIRFs

To approximate the solution to equilibrium of our model, we use a
higher-order perturbation method with the pruning algorithm of An-
dreasen et al. (2017). Because we calculate GIRFs for higher-order
moments of endogenous variables, deriving analytic representations for
the GIRFs, as Andreasen et al. (2017) do, would be extremely alge-
braically tedious. Instead, we rely on the computer algebra software
Mathematica to compute these higher-order moments. This section
describes our computational strategy.

The equilibrium conditions can be stated in the following form:

0 = Et[F (yt+1,yt,xt+1,xt, ut+1, ut)]. (52)

The vector of equations F includes all optimality conditions, con-
straints, and the law of motion for the exogenous process. The vector yt
is the vector of control variables: [log(yt), log(ct), log(it), log(ht), log(rk,t),
log(wt), log(rt), log(c̃t), κt, log(vt), log(ṽt)]. The perturbation parame-
ter, η, is 1 in the model of interest but set to 0 at the point of approxi-
mation. The vector xt is the vector of continuous states, including the
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perturbation parameter17: [log(kt−1), dt−1, log(at), η]. ut is the indica-
tor for unrest, which can only take the values 0 and 1.

The solution to this model is a set of policy functions of the fol-

lowing form, where εt+1 =

[
εut+1

εqt+1

]
and the two shocks εut+1 and ε

q
t+1

follow two i.i.d. Normal Inverse Gaussian processes, described in the
text:

yt = g(xt, ut) (53)

xt+1 = h(xt, ut) + ηS(ut+1)εt+1. (54)

More specifically, for the state vector,
log(kt)
dt

log(at+1)
η

 = h




log(kt−1)
dt−1

log(at)
η

 , ut
+η


0 0
0 0

ut+1 (1− ut+1)
0 0

[ εut+1

εqt+1

]
.

(55)
At the point of approximation, the system is at a nonstochastic steady
state in xt and yt: xt = xss = [log(kss), dss, 0, 0] and yt = yss. Since
the unrest and no-unrest states are completely symmetric at η = 0 by
construction, the process ut is irrelevant for the steady states of xt and
yt. Therefore, the following is true for all values of ut+1 and ut:

0 = F (yss,yss,xss,xss, ut+1, ut). (56)

We use a standard third-order perturbation method (e.g., Judd
1996) to construct Taylor series approximations to h(·, 0), h(·, 1), g(·, 0),
and g(·, 1). Those Taylor series approximations yield the coeffi cients

h0x = ∂h(x,0)
∂x |x=xss ,H0xx = ∂2h(x,0)

∂x2
|x=xss , andH0xxx = ∂3h(x,0)

∂x3
|x=xss ,

conformably reshaped:

h(x, 0) ≈ h0xx +
1

2
H0xx(x⊗ x) +

1

6
H0xxx(x⊗ x⊗ x). (57)

This implies that the law of motion for xt and yt can be approxi-
mated to third order as:

xt+1|ut, ut+1 = hutxxt +
1

2
Hutxx(xt ⊗ xt) +

1

6
Hutxxx(x⊗ x⊗ x) + ηSut+1εt+1

(58)

yt|ut, ut+1 = gutxxt +
1

2
Gutxx(xt ⊗ xt) +

1

6
Gutxxx(xt ⊗ xt ⊗ xt).

(59)

17 We include the perturbation parameter in the definition of the state vector to
simplify notation. Andreasen et al. (2017) include a brief discussion of this notation in
the extensive appendix to their paper.
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However, it is well-known (e.g., in Kim et al. 2008; and Den Haan
and De Wind 2012) that third-order approximations like the above
can have undesirable statistical properties, such as explosive simulated
paths and spurious steady states. Andreasen et al. (2017) extend
Kim et al. (2008) and use a pruning algorithm to eliminate these
undesirable properties. The second-order pruning algorithm separates
simulated components of xt and yt into first-order components xft and
yft , second-order components xst and yst , and third-order components
xrt and yrt . The simulated quantities of interest are xft + xst + xrt and
yft + yst + yrt , and the components evolve linearly.

Let Ct+1 = Sut+1εt+1 + [0, 0, 0, 1]′. The constant vector [0, 0, 0, 1]′

reflects the fact that the law of motion for the perturbation parameter
is simply η = 1.

Following the approach in Andreasen et al. (2017), we have:

xft+1 = hx,utx
f
t + Ct+1 (60)

xst+1 = hx,utx
s
t +

1

2
Hxx,ut(x

f
t ,x

f
t ) (61)

xft+1 ⊗ xft+1 = (hx,utx
f
t + Ct+1)⊗ (hx,utx

f
t + Ct+1) (62)

xrt+1 = hx,utx
r
t + Hxx,ut(x

f
t ⊗ xst ) +

1

6
Hxxx,ut(x

f
t ⊗ xft ⊗ xft )

(63)

xft+1 ⊗ xst+1 = (hx,utx
f
t + Ct+1)⊗ (hx,utx

s
t +

1

2
Hxx,ut(x

f
t ⊗ xft ))

(64)

xft+1 ⊗ xft+1 ⊗ xft+1 = (hx,utx
f
t + Ct+1)⊗ (hx,utx

f
t + Ct+1)⊗ (hx,utx

f
t + Ct+1).

(65)

At this point, we deviate from the notation in Andreasen et al.
(2017). Let

zt =



xft
xst

xft ⊗ xft
xrt

xft ⊗ xst
xft ⊗ xft ⊗ xft


.

Expanding the above, we find that

zt+1 = Aut,ut+1(εt+1)zt + But+1(εt+1).

Remember that Ct+1 is a function of εt+1.
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Aut,ut+1(εt+1) =

hx,ut 0 0 0 0 0
0 hx,ut

1
2Hxx,ut 0 0 0

H̃3,1 0 hx,ut ⊗ hx,ut 0 0 0
0 0 0 hx,ut Hxx,ut

1
6Hxxx,ut

0 Ct+1 ⊗ hx,ut Ct+1 ⊗ 1
2Hxx,ut 0 hx,ut ⊗ hx,ut hx,ut ⊗ 1

2Hxx,ut

H̃6,1 0 H̃6,3 0 0 hx,ut ⊗ hx,ut ⊗ hx,ut


where

H̃3,1 = hx,ut ⊗Ct+1 + Ct+1 ⊗ hx,ut (66)

H̃6,1 = hx,ut ⊗Ct+1 ⊗Ct+1 + Ct+1 ⊗ hx,ut ⊗Ct+1 + Ct+1 ⊗Ct+1 ⊗ hx,ut
(67)

H̃6,3 = Ct+1 ⊗ hx,ut ⊗ hx,ut + hx,ut ⊗Ct+1 ⊗ hx,ut + hx,ut ⊗ hx,ut ⊗Ct+1.
(68)

But+1(εt+1) =



Ct+1

0
Ct+1 ⊗Ct+1

0
0
0

Ct+1 ⊗Ct+1 ⊗Ct+1


.

Similarly, for controls yt, we have (yft +yst +yrt )|ut = Dutzt, where

Dut =

[
gut,x gut,x

1
2Gut,xx gx,ut Gxx,ut

1
6Gxxx,ut

]
.

In this paper. we are interested in the growth rates of the controls.

(∆yt+1)|ut, ut+1 =
[
(yft+1 − yft ) + (yst+1 − yst ) + (yrt+1 − yrt )

]
|ut, ut+1

= Dut+1zt+1 −Dutzt

= Dut+1(Aut,ut+1(εt+1)zt + But+1(εt+1))−Dutzt

= (Dut+1Aut,ut+1(εt+1)−Dut)zt + Dut+1But+1(εt+1)

= A∆y
ut,ut+1(εt+1)zt + B∆ y

ut+1(εt+1).

To calculate the average change in the first three moments of out-
put, investment, and consumption growth during unrest, we use the
concept of GIRF from Andreasen et al. (2017) and Koop et al. (1996).
In particular, we calculate the unconditional moments of all endoge-
nous variables for two fixed paths for the unrest process. The first
path is for a country that starts with no unrest and then enters into
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unrest at t = 1 and stays there. That is, ut = 0 ∀t ≤ 0 and ut = 1
∀t ≥ 1. Denote this path for ut as u. The second counterfactual path
is one where the country never enters unrest: ut = 0 ∀t. Denote this
path for ut as ũ. Andreasen et al. (2017) condition on an initial value
of the state vector z0. We instead focus on an unconditional expecta-
tion over the entire range of t to be able to arrive at a single path of
moments for our exercise. The generalized IRF for the state variables
zt is the difference, at each point in time t, of the unconditional mean
of zt along the path u and the unconditional mean of zt along the path
ũ:

GIRF u(∆yt+1) = E[∆yt+1|u]− E[∆yt+1|ũ]. (69)

Andreasen et al. (2017) derive separate expressions for the evo-
lution over time of the variances of controls. We take a different ap-
proach, which we find to be simpler, especially in dealing with third-
order moments. We expand the set of objects we find a GIRF of

from ∆yt to Yt =

 ∆yt
(∆yt)⊗ (∆yt)

(∆yt)⊗ (∆yt)⊗ (∆yt)

, so that we can com-
pute one GIRF for all the moments of interest in one pass. For exam-
ple, vec(V ar(∆yt)) = E[(∆yt) ⊗ (∆yt)] − E[∆yt] ⊗ E[∆yt], and the
skewness of ∆yt is similarly a function of E[(∆yt) ⊗ (∆yt) ⊗ (∆yt)].
Using the expression ∆yt = A∆y

ut,ut+1(εt+1)zt+B∆y
ut+1(εt+1) and expand-

ing the Kronecker products in Xt, we have matrices Ã∆y
ut,ut+1(εt+1) and

B̃∆y
ut+1(εt+1) such that

{Xt+1 = Ã∆y
ut,ut+1(εt+1){Zt + B̃∆y

ut+1(εt+1) (70)

where Zt =

 zt
zt ⊗ zt

zt ⊗ zt ⊗ zt

.
To calculate the law of motion for Zt, we expand the Kronecker

products in the definition of Zt using the law of motion Zt+1 = Aut,ut+1(εt+1)zt+

But+1(εt+1) and arrive at the law of motion Zt+1 = Ãut,ut+1(εt+1)Zt|+
B̃ut+1(εt+1) for matrices Ãut,ut+1(εt+1) and B̃ut+1(εt+1).

For any Z0, the independence of εt+1 and Zt implies for states and
controls (noting that E[Ãut,ut+1(εt+1)|Z0, u] = E[Ãut,ut+1(εt+1)|u] and
similarly for E[Ã∆y

ut,ut+1(εt+1)|Z0, u], E[B̃ut+1(εt+1)|Z0, u] and E[B̃∆y
ut+1(εt+1)|Z0, u]):

E[Zt+1|Z0, u] = E[Ãut,ut+1(εt+1)|u]E[Zt|Z0, u] + E[B̃ut+1(εt+1)|u]

(71)

E[Yt+1|Z0, u] = E[Ã∆y
ut,ut+1(εt+1)|u]E[Zt|Z0, u] + E[B̃∆y

ut+1(εt+1)|u].

(72)
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Let Z0 be the fixed point of the law of motion for E[Zt+1Z0, u],
conditional on t < 0, in other words, conditional on no unrest at time
t or t+ 1.

Z0 = E[Ã0,0(εt+1)]Z0 + E[B̃0(εt+1)]. (73)

From the elements of Z0, we can calculate the ergodic means, vari-
ances, covariances, skewnesses, and sundry third moments of all ele-
ments of zt conditional on no unrest. This is the starting point of our
GIRF. For t = 1, 2, 3..., use the laws of motion for Xt and Zt to iterate
forward, conditional on both the path u and the counterfactual path
ũ, and use those paths to calculate the GIRF for Xt:

GIRF u(Xt) = E[Xt|u]− E[Xt|ũ]. (74)

This notation is very condensed. For example, B̃∆y
ut+1(εt+1) is a

very large matrix, with very large polynomials containing terms with
order as high as ε9t+1. There are a large number of terms in every
element of these matrices, even if expressed as Kronecker products;
that is why we rely on the symbolic manipulation of Mathematica to
expand these polynomials. Even after exploiting the very high degree
of symmetry and redundant terms in Zt, there are over 20,000 unique
elements in that vector. Mathematica can handle these calculations
very quickly, calculating the GIRFs for both states and controls in
under two minutes.
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1. C. ONLINE DATA APPENDIX: LIST OF NAVCO
UNREST EPISODES

Table 8 List of Episodes of Mass Political Campaigns



Kent and Phan: Time-Varying Skewness and Real Business Cycles 97

Table 9 List of Episodes of Mass Political Campaigns
(continued)
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Table 10 List of Episodes of Mass Political Campaigns
(continued)
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CDS Auctions: An Overview

Erica Paulos, Bruno Sultanum, and Elliot Tobin

A
credit default swap (CDS) is a credit derivative that can be
used as insurance against a reference entity’s credit risk, where
a reference entity is either a government or corporation that

has issued debt. If a party owns equal amounts of bonds and CDSs
for a particular reference entity, then the party is completely insured
against a negative credit event. However, unlike insurance, it is possible
to own more of the CDS protection than of the underlying bond. In
this way, CDS contracts make it possible to trade on an entity’s credit
risk without having exposure to the entity’s actual bonds.

Figure 1 summarizes how CDS contracts work. A CDS contract
is a bilateral agreement between a protection seller and a protection
buyer. The former is taking a short position in the CDS, while the
latter is taking a long position. The protection seller compensates the
protection buyer if there is a credit event with respect to any of the
bonds issued by the contract’s reference entity. Credit events include
bankruptcy, failure to pay, and restructuring, among others. In ex-
change, the protection buyer makes periodic interest payments to the
protection seller until the contract expires.

CDS auctions are the main settlement mechanism for CDS con-
tracts. The auction provides a unique price for the defaulted bond,
which directly impacts the amount that the protection seller needs to
pay the protection buyer if a credit event occurs. In this way, CDS
auctions have direct influence on payouts in the CDS market, a market
that had approximately $10 trillion in contracts outstanding by the
end of 2007.1 Considering the size of the CDS market, understanding
how CDS auctions function is extremely important for CDS users and
regulators.

Any opinions expressed are those of the authors and do not necessarily reflect those
of the Federal Reserve Bank of Richmond or the Federal Reserve System.

1 See Aldasoro and Ehlers (2018).
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Figure 1 A CDS Contract

In this paper, we discuss the historical background of the CDS
market, why CDS auctions were developed, and the most recent CDS
literature. We then describe the auction rules and use the recent Toys
R Us auction as an example. In order to illustrate frontier research on
the topic, we discuss the theoretical results presented in Chernov et al.
(2013) and extend their empirical findings.

Chernov et al. (2013) highlight important incentives that partici-
pants have during CDS auctions.2 In particular, they show that dealers
have an incentive to manipulate the auction price to get better terms
when they settle their CDS contracts. These theoretical predictions can
be empirically tested, and Chernov et al. (2013) successfully tested one
of them. After extending their data to include more recent auctions, we
show that their empirical results are also consistent when more recent
data are included.

One diffi culty that Chernov et al. (2013) face in testing some of
their empirical predictions is that they do not observe dealers’CDS po-
sitions. If dealers do not actually own CDSs, they have little incentive
to manipulate the auction. We further extend their work using regula-

2 A CDS auction “participant” is anyone who wants to make a bid or offer during
the auction, including dealers. “Dealers” are typically big banks that participate directly
in the auction. Dealers make bids for themselves and the other auction participants.
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tory data from the Depository Trust and Clearing House Corporation
(DTCC) on dealers’CDS positions. Using these data, we show that
some dealers have large CDS positions. This supports the theoretical
findings in Chernov et al. (2013) that some dealers have an incentive
to manipulate the auction price.

1. HISTORICAL BACKGROUND AND RECENT
LITERATURE

JPMorgan created the first CDS contract to help manage its credit risk.
After the 1989 Exxon Valdez oil spill, Exxon needed a large loan to pay
for the spill’s damages. Since Exxon was an important client, JPMor-
gan wanted to serve them but did not want the risk associated with the
loan. In order to both serve Exxon and not take risk, JPMorgan made
the loan to Exxon and entered into a CDS contract with the European
Bank of Reconstruction and Development (EBRD). The EBRD was
now responsible for covering losses resulting from Exxon defaulting on
its obligation to JPMorgan. In exchange, JPMorgan agreed to pay the
EBRD for the protection. In this way, CDS contracts allowed JPMor-
gan to transfer the loan’s risk off of its books, while the EBRD was
able to get exposure to the loan without having Exxon as a client.

We define a CDS’s underlying assets as the assets (usually bonds or
loans) that trigger a CDS payout if a credit event occurs with respect
to them. In the example above, JPMorgan’s loan to Exxon is the
underlying asset.

CDS contracts allow banks to manage credit risk without trading,
or even owning, the CDS’s underlying bonds; however, banks are not
the only possible users of CDSs. A wide variety of users, such as hedge
funds, that wish to exchange credit risk trade CDSs. The initial lack
of common standards for CDS contracts made it hard to trade CDSs;
as a result, the market lacked liquidity. In the late 1990s, the In-
ternational Swaps and Derivatives Association (ISDA) issued a set of
standard credit derivatives definitions for use in connection with the
ISDA Master Agreement. Combined with guidance from financial reg-
ulators, these standards helped the market grow from $632 billion in
the early 2000s to $20 trillion in 2006. During the same time period,
other financial and nonfinancial investors joined the CDS market, de-
creasing the market share of the banks. In 2000, banks accounted for
81 percent of all protection sold and 63 percent of all protection bought
through CDS contracts. In 2006, banks’respective market shares fell
to 59 percent and 44 percent, respectively.3

3 See Mengle (2007).
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In the early 1990s, most protection buyers (that is, those making a
payment to transfer the credit risk) were banks carrying the underlying
asset. In case of a credit event, the protection buyer could transfer
the asset to the protection seller and get paid the protection amount,
which was the par value of the bond. This agreement is called a physical
settlement. Of course, if both sides agree to a payment, they could also
settle the contract with a cash transfer and no asset transfer.4 This
agreement is called a cash settlement.

With the market growing rapidly in the late 1990s and early 2000s,
issues regarding the settlement of CDS contracts emerged. By the mid-
2000s, the CDS market was very different than it was in the 1990s. In-
vestors were not necessarily carrying both the underlying asset (which
at this point was mostly bonds) and the CDS. Many investors only held
the CDS (naked CDS holders). For naked CDS holders, a physical set-
tlement was not attractive. Protection buyers would have to buy bonds
in the market in order to settle the CDS, and protection sellers would
have to sell the bonds in order to cash its value. Buying and selling the
bonds exposed both the long and short positions to price fluctuations.
Moreover, with the volume of CDSs outstanding higher than the vol-
ume of bonds issued, the same bond had to be traded many times in the
market to settle all CDS contracts. Given the over-the-counter nature
of the bond market, the rush to buy the deliverable bonds artificially
raised the price well above the expected recovery value. A particularly
striking example of this followed the bankruptcy of Delphi Corporation
in 2005. Delphi only had $2 billion in deliverable bonds for $28 billion
in CDS contracts outstanding.5

Starting in 2005, CDS auctions were designed to solve these prob-
lems by providing a unified settlement mechanism. Investors can use
CDS auctions for both physical and cash settlements. The auction
identifies a price for the underlying bond, which then can be used for
a cash settlement and the exchange of bonds. In a cash settlement,
protection sellers pay protection buyers the par value of the underlying
asset minus the auction price. Auction participants who prefer physical
settlement sell their bonds in the auction and then settle in cash. The
auction’s cash settlement mechanism, combined with selling the bond
at the auction price, replicates the payout of a physical settlement.

To see how this works, consider a participant with $100 in a par-
ticular bond and equivalent CDS protection in the same amount. Say
the result of the auction is p dollars per 100 notional. If the participant
submitted an order to sell his bonds in the auction, then his payout

4 Typically, the cash transfer will be 100 minus bond price per 100 notional.
5 See Augustin et al. (2014).
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would be 100-p from the cash settlement, plus p from selling the bond,
resulting in a 100-p+p=100 payout. This is the same outcome of a
physical settlement, regardless of the final auction price, p.6

With CDS auctions determining the payouts of trillions of dollars
in contracts, market participants, policymakers, and researchers began
analyzing the auction. In particular, dealers and other large CDS auc-
tion participants can manipulate the price of the bond to favor their
own CDS position. For example, a participant with a long (short)
position in CDSs receives a higher return as the bond’s auction price
decreases (increases). As a result, a net buyer (seller) of protection has
incentive to manipulate the auction price downward (upward). The
ISDA recognized the possibility of price manipulation and designed the
auction to prevent it from happening,7 but whether the current design
prevents price manipulation is a matter of theoretical and empirical
research.

On the theoretical side, three recent papers have made significant
progress toward understanding CDS auctions. Du and Zhu (2017)
study a model of CDS auctions with restrictions to participation. They
show that these restrictions bias the auction price, where bias is the
difference between the asset price and its fundamental value. On the
other hand, investors do not have price impact and do not bid strate-
gically in order to manipulate the auction price because the authors
consider an economy with a continuum of investors.8 Peivandi (2017)
allows for endogenous participation in the auction and solves for the
optimal auction design. Peivandi shows that a CDS trader has incen-
tives to prevent his counterparties from participating in the auction.
By settling contracts in advance of the auction at better terms for his
counterpart, the CDS trader can manipulate the auction price to his
advantage. The better price resulting from the auction more than com-
pensates the trader for the pre-auction settlement losses. As a result,
neither full participation nor an unbiased price can be achieved. In
Chernov et al. (2013), the authors consider an environment where the
auction participants not only have price impact, but also have restric-
tions when buying/selling assets. They show that participants have

6 Buying or selling bonds in the auction and then performing a cash settlement
mimics a physical settlement regardless of the bond and CDS position of the participant.

7 We interpret price manipulation as any participation in the auction with the in-
tention to move the auction price of the bond away from its market price. We discuss
the auction design later in the paper.

8 Another interesting feature of Du and Zhu’s (2017) model is that investors are
heterogeneous in valuations, which has implications for the effi ciency of the asset allo-
cation. We find this interesting; however, we focus on the determinants of the auction
price.
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incentive to manipulate the auction price to profit from their existing
CDS positions, resulting in a biased final price.

On the empirical side, four papers study bias in the auction price.
That is, whether the auction price differs from the true fundamental
price. Helwege et al. (2009) and Coudert and Gex (2010) investigate
an early sample of CDS auctions, while Gupta and Sundaram (2012)
and Chernov et al. (2013) investigate a more current sample. To
approximate the fundamental price, these papers compare the market
bond price near the time of the auction (the true price) to the final
auction price. In their early sample, Helwege et al. (2009) do not find
evidence of bias in the auction price. Coudert and Gex (2010), Gupta
and Sundaram (2012), and Chernov et al. (2013) all find evidence of
some bias in the auction price.

2. THE AUCTION

Participants in CDS auctions include nondealer participants (investors)
and dealers. Since dealers are the only entities allowed to participate
directly in the auction, nondealer participants must submit their re-
quests and orders through the dealers.

CDS auctions have two stages, and each stage focuses on pricing
the bonds deliverable in the auction. The auction’s result is a uniform
price for the auction’s underlying bonds, which is the bond price used
to cash settle all CDS contracts. That is, all CDS protection holders
are paid 100 minus auction price per 100 notional by participants who
are protection sellers. The final auction price is also used to settle all
bids (offers) to buy (sell) the underlying bonds in the auction. This
process is designed to mimic physical settlement, even though all CDS
contracts are settled via cash.

We use the Toys R Us CDS auction as an example to clarify how
the auction proceeds. We review the events leading up to their auction
here. After Toys R Us filed for Chapter 11 bankruptcy on September
18, 2017, a set of fifteen dealers voted that a credit event did occur with
respect to Toys R Us. This vote triggered CDS payouts and therefore
a CDS auction. The Toys R Us CDS auction took place on October
11, 2017, twenty-three days after the company filed for bankruptcy.

The First Stage of the Auction

Participants may submit physical delivery requests and dealers must
submit initial market quotations during the auction’s first stage. Phys-
ical delivery requests are bids (offers) to buy (sell) the auction’s un-
derlying bonds at the auction’s final price. The requests are used to
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find the net open interest (NOI), which determines whether partici-
pants will be submitting bids or offers in the second stage. For the
initial market quotations, all of the auction’s dealers submit both bids
and offers on a predetermined amount of the underlying bonds. These
quotes help find the initial market midpoint (IMM), a price for the
underlying bond that restricts second-stage orders. In this section, we
detail how to calculate the NOI and IMM from the physical settlement
requests and initial market quotations. Subsequently, we demonstrate
how the price cap and adjustment amounts are calculated.

Physical Settlement Requests

Participants make physical settlement requests restricted by their CDS
position. These physical settlement requests are used to calculate the
NOI, which is carried over to the auction’s second stage.
Submitting Physical Settlement Requests

All participants may submit a physical settlement request– an or-
der to buy or sell the underlying bond at the price determined through
the two-stage auction. Participants can only submit the quantity of
bonds they are willing to buy or sell in these requests. They do not
submit a price.

Dealers submit their physical settlement requests directly; mean-
while, nondealer participants may submit physical settlement requests
through a dealer. Additionally, all participants are not allowed to sub-
mit requests above, or in the opposite direction of, their CDS position.
That is, the participant can only offer (bid) to sell (buy) the under-
lying bonds using physical settlement if they are net buyers (sellers)
of CDSs.9 For example, a net buyer of $100 in protection can only
offer to sell bonds via a physical settlement request, and the request
cannot exceed $100. Note that a participant is not obligated to submit
a physical settlement request, regardless of bond position.

Figure 2 displays the physical settlement requests submitted by
the ten participating dealers in the Toys R Us auction. In total,
four dealers submitted physical settlement requests. Bank of Amer-
ica, BNP Paribas, and Goldman Sachs submitted physical settlement
offers. These offers could not exceed the amount of CDSs the dealers
owned, indicating that these three dealers either had a long position in
Toys R Us CDSs (they owned protection) or another participant who
submitted a physical settlement offer through one of these dealers did.
In particular, several news stories around that time mentioned that

9 Recall from Section 1 that CDS protection holders must give the protection seller
the underlying bond in exchange for par value during physical settlement. As a result,
protection sellers bid to buy bonds and protection holders offer to sell bonds.
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Figure 2 Toys R Us Auction Physical Settlement Requests
by Dealer

Goldman Sachs had a large long position in Toys R Us CDSs, which is
consistent with their large offer to sell the underlying bond via phys-
ical delivery. Barclays was the only dealer who submitted a physical
settlement bid.

Net Open Interest (NOI)
Once the physical settlement requests have been received, we calcu-

late the NOI. Any offer during physical settlement is considered posi-
tive, while any bid is negative. We sum the physical settlement requests
to find the NOI. If the sum of physical settlement offers exceeds bids
(NOI is positive), then the NOI is to sell by the difference between the
offers and bids. Likewise, the NOI is to buy by the difference between
the bids and offers whenever physical settlement bids exceed offers (NOI
is negative). If the NOI is zero, the auction ends in the first stage and
the final price is set equal to the IMM. Otherwise, the NOI is taken to
the second stage of the auction, where participants can bid (offer) to
buy (sell) the remaining open interest depending on whether the NOI
is to sell (buy).

In the Toys R Us auction, there were $5.12 million in bids and
$86.292 million in offers via physical settlement requests. When offers
exceed bids, the NOI is to sell and equals the amount of offers less the
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amount of bids. As a result, the NOI was $81.172 million to sell,10 so
dealers submitted limit order bids in the second stage of the auction to
fill the positive NOI.

Initial Market Quotations

In addition to submitting physical settlement requests during the first
stage, each dealer must submit an initial market quotation, which is
composed of a bid-offer pair for the underlying bonds. The first-stage
quotations are used to calculate the IMM and a price cap, both of which
affect the auction’s second round. Additionally, either the dealer’s bid
or offer is carried over to the second stage, depending on the NOI.
Using the Toys R Us example, we first describe the process through
which dealers submit their initial market quotations; subsequently, we
show how both the IMM and price cap are calculated directly from the
initial quotations.
Submitting Initial Market Quotations

Dealers must submit both bids to buy and offers to sell a prede-
termined amount of the auction’s deliverable bonds. Nondealer par-
ticipants cannot submit initial quotations, even via the dealers. ISDA
sets the maximum bid-ask spread prior to the auction based on asset
liquidity. Any rational dealer would maximize their bid-ask spread in
their quotation; therefore, each dealer’s bid-ask spread should equal
the maximum allowable bid-ask spread. Moreover, ISDA also sets the
predetermined quotation size, which is the amount of underlying bonds
for which dealers submit initial quotations.

In the Toys R Us auction, the quotation size was $2 million and
the maximum bid-offer spread was 2 percent. Figure 3 displays the
initial market quotations for the ten dealers who participated in the
Toys R Us auction, with their bids in blue and their offers in green. As
expected, each dealer’s bid exceeded their offer by exactly 2 percent.
Bank of America had the highest bid-offer pair (highest bid and highest
offer), while Goldman Sachs and Barclays tied for the lowest (lowest
bid and lowest offer).
The Initial Market Midpoint (IMM)

The dealers’initial quotations are used to calculate the IMM. Con-
sider ordering the initial bids in descending order and the initial offers
in ascending order. Then, pair the highest bid with the lowest offer,
the second highest bid with the second lowest offer, and so on, until
the lowest bid is paired with the highest offer. We define the bid-ask

10 Offers are positive, and bids are negative. NOI = Offers-Bids = $86.292 million
- $5.12 million = $81.172 million.
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Figure 3 Toys R Us Auction Initial Quotations by Dealer

pairs created in this process as ordered bid-offer pairs. Any ordered
bid-offer pair whose bid is greater than or equal to its offer is defined
as a crossing bid-offer pair. In contrast, any bid-offer pair whose bid
is less than its offer is a noncrossing bid-offer pair. The best half is
the set of ordered bid-offer pairs whose bids are the highest among
the noncrossing bid-offer pairs. In the case of an odd number of non-
crossing bid-offer pairs, we round up. For instance, if there are seven
noncrossing bid-offer pairs, the best half would be the four noncrossing
bid-offer pairs with the highest bids (or lowest offers).

The IMM is the average of the bids and offers that make up the
ordered bid-offer pairs in the best half. In other words, we first discard
ordered bid-offer pairs until the ordered offer is strictly higher than the
ordered bid. Then, the IMM is the average of the highest half of the
remaining bids and the lowest half of the remaining offers.

Figure 4 illustrates how the IMM was calculated in the Toys R
Us auction. Bids were put in descending order and offers were put
in ascending order to create ordered bid-offer pairs (a bid and offer
that were part of the same bid-offer pair have the same x-axis value).
From the graph, a crossing bid-offer pair was identified when the bid
was as high, or higher, than the offer in the ordered pair. In ordered
pair 1, the highest bid (Bank of America) was equal to the lowest offer
(either Barclays or Goldman Sachs) at a price of 30.5 per 100 notional.
Because the bid was greater than or equal to the offer, we removed
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Figure 4 Toys R Us Initial Quotation Cross to Find the IMM

this ordered bid-offer pair (as represented by the triangle on Figure 4).
There were no other crossing bid-offer pairs; therefore, only the first
ordered bid-offer pair was removed. The other nine ordered bid-offer
pairs made up the noncrossing pairs.

Once the crossing bids were removed, we found the best half of the
remaining ordered bid-offer (noncrossing) pairs by dividing the non-
crossing bid-offer pairs by two and excluding the half of pairs farthest
from the cross. Since there were nine noncrossing bid-offers pairs in
the Toys R Us auction, we divided by two and rounded up to get five
ordered bid-offer pairs in the best half. Thus, the four ordered bid-offer
pairs farthest from the cross (represented by squares in Figure 4) were
also excluded from the IMM calculation. In the Toys R Us auction,
there were five ordered bid-offer pairs (ten total bids and offers, repre-
sented by circles in Figure 4) comprising the best half. The IMM was
the average of these ten quotations, which is 30.25 per 100 notional.

First-Stage Calculations Utilizing both the
NOI and IMM

The NOI and IMM are calculated exclusively from an auction’s physical
settlement requests and initial quotes, respectively. In what follows, the
calculation of an auction’s price cap and adjustment amounts use both
the NOI and IMM.
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Price Cap
The price cap (floor) sets the maximum (minimum) possible auc-

tion price. When calculating a price cap, the direction of the NOI
determines whether a price cap or price floor is imposed; meanwhile,
the IMM determines the amount. Specifically, a price cap (floor) equal
to the IMM plus (minus) half the size of the predetermined bid-offer
spread is imposed if the NOI is to sell (buy). Therefore, the auction
price cannot exceed (be lower than) the price cap (floor).

In the Toys R Us auction, the NOI was to sell; therefore, the auction
had a price cap. The IMM was 30.25, and the bid-offer spread was
2 percent. Therefore, the second-stage price cap was 31.25 per 100
notional.11 The brown line on Figure 4 represents the price cap in the
Toys R Us auction.
Adjustment Amounts

The auction also penalizes dealers that submit initial quotes in the
wrong direction of the market, via adjustment amounts. In contrast
to price caps, adjustment amounts are onetime fees paid by certain
dealers and therefore do not influence the auction’s second stage.

The NOI determines the direction of the market, while the IMM
impacts the cutoff at which dealers must pay an adjustment amount.
Explicitly, if the NOI is to sell (buy), then we analyze all initial bids
(offers). If a dealer’s bid (offer) is higher (lower) than the IMM, then
the dealer’s quote is in the wrong direction of the market and they
must pay the adjustment amount. It is only possible for a dealer to
pay an adjustment amount if there are crossing ordered bid-offer pairs.
Therefore, not every auction has a dealer that needs to pay an adjust-
ment amount. If a dealer pays an adjustment amount, it equals the
quotation amount multiplied by the amount the dealer’s quote differed
from the IMM.

In the Toys R Us auction, the NOI was to sell; therefore, we
searched Figure 3 for any initial bids that exceeded the IMM. Bank
of America’s bid of 30.5 was the only initial bid (blue dots) that ex-
ceeded the IMM of 30.25 (the black horizontal line). Only Bank of
America was on the wrong side of the market and paid an adjustment
amount equal to the quotation amount ($2 million) multiplied by the
amount their bid differed from the IMM (0.25 percent). As a result,
Bank of America paid an adjustment amount of $5,000 to penalize them
for being off-market.12

11 Price Cap = IMM + (Bid-Offer Spread)/2 = 30.25 + 2/2 = 31.25.
12 ISDA says that they round the IMM to the nearest 0.125. When calculated

with greater precision, the IMM was actually 30.3125, which is equidistant to 30.25 and
30.375. We found no offi cial rules that indicate why the IMM was rounded down instead
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Figure 5 Toys R Us Initial Quotation Cross to Find the IMM

First-Stage Logistics

Participants have fifteen minutes to submit their physical settlement
requests and initial quotations online via ISDA’s electronic platform.
Within thirty minutes of the end of this period, ISDA publishes the
IMM, NOI, and any adjustment amounts on creditfixings.com. Then,
participants have two to three hours to evaluate the results before the
second stage begins.

The Second Stage of the Auction

In the second stage, dealers submit limit orders to fill the NOI estab-
lished in the first stage to find the final auction price. This price is
used to settle all outstanding CDS contracts and the auction’s bond
trades. In what follows, we discuss how the direction of the second
stage is determined, the two ways that limit orders are submitted, and
the method for determining the auction’s final price. Throughout, we
reference the Toys R Us auction and Figure 5.

of up. However, rounding down, as opposed to up, cost Bank of America $2,500, or 50
percent of their adjustment amount. What a rounding tragedy!
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Determining the Direction of the Second
Stage

The direction of the second stage depends on the NOI. If the NOI is to
sell (buy), participants can only submit bids (offers) to buy (sell) the
bonds. In this way, all first-round physical settlement requests that
were not matched by other physical settlement requests in the first
stage (NOI) are filled by limit orders in the second stage. In the Toys
R Us auction, the NOI was to sell; therefore, participants submitted
bids in the second stage.

Limit Orders Carried Over From First Round

The relevant side of dealers’ initial quotes carry over to the second
stage at the predetermined size of the initial quotation. ISDA calls
these carried over quotes: limit orders that were derived from inside
markets. If the NOI is to sell (buy), then dealers’initial bids (offers)
are automatically submitted in the second stage. More specifically,
as long as the relevant quote was noncrossing,13 the relevant side of
the dealer’s initial quote is carried directly to the second stage. If
the relevant quotation is part of a crossing bid-offer pair, then that
quotation is carried forward in a different way. If this is the case and the
NOI is to sell (buy), then the limit order is the minimum (maximum)
of the initial bid (offer) and the IMM.

In the Toys R Us auction, dealers’initial bids for $2 million of the
underlying bond were automatically carried over to the second round,
since the NOI was to sell. All dealers, except Bank of America, had
their initial bids carried directly to the second stage. Bank of America
had the only crossing bid. For Bank of America, their mandatory
second-stage bid was the minimum of the IMM (30.25) and their initial
bid (30.5). As a result, Bank of America’s bid derived from inside
markets was 30.25 per 100 notional.

Submitting Limit Orders in the Second Stage

Any participant can submit additional limit orders by submitting a
price-quantity pair in the relevant direction of the market. Unlike first-
stage initial quotations, these limit orders have no predetermined size.
Dealers may submit both their own limit orders and those of other par-
ticipants. Each dealer can submit as many unique price-quantity pairs
to buy or sell the underlying asset as they (or the participants they are

13 Recall that a quote is noncrossing if the ordered offer is strictly greater than the
ordered bid.
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submitting for) want. In the Toys R Us auction, there were forty-five
total limit order bids. Ten of them were derived from inside markets;
meanwhile, the other thirty-five bids were submitted by participants
specifically for the auction’s second stage. None of the forty-five bids
exceeded the price cap of 31.25 per 100 notional (brown horizontal line
on Figure 5).

Some of a dealer’s orders are their own, while others are those
of other participants. On creditfixings.com, it is impossible to tell
the orders of nondealer participants from a dealer’s own orders.14 For
example, Goldman Sachs bid $81.172 million at a price of 25 in the
Toys R Us auction and had smaller bids at other prices. Although it is
likely that most of the smaller bids were from nondealer participants
submitting bids through Goldman Sachs, it is impossible to be certain.

Finding the Auction Price

Second-stage limit orders determine the auction’s bond price, which
is used to cash settle the CDS contracts. The auction price is also
used to settle any request to trade the underlying bond during the
auction, whether through first-stage physical settlement requests or
second-stage limit orders.

When the NOI is to sell (buy), we match the highest bid (lowest
offer) to the amount of open interest that is equivalent to the size
associated with the limit order. We continue matching the limit orders
in this fashion until we match the entire NOI or run out of limit orders.
In the likely case that there are suffi cient limit orders to fill the NOI, the
last limit order that fills the NOI is the auction price. In the unlikely
scenario that there are not enough limit orders to fill the NOI, the
bond price is zero (par value) when the NOI is to sell (buy). The final
price is compared with the price cap. If the NOI is to sell (buy) and
the final auction price is higher (lower) than the price cap (floor), then
the final price is the price cap (floor)– reducing second-round price
manipulation.

Dealers who submit bids (offers) that are higher (lower) than the
auction price are obligated to buy (sell) the underlying bond at the
final auction price along with those who submitted first-stage physical
settlement requests. In this way, those who submit either a physical
settlement request or a limit order in the auction exchange the relevant
amount of bonds at the auction price. If there are multiple participants
who made a limit order at the auction price, the amount of bonds each
exchanges is proportional to the size of their limit order at the auction

14 With the exception of the orders derived from insider markets.
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price (pro rata at the margin rule). These are partially filled orders.
All CDS contracts are then settled via cash, with the underlying bond
price being the final auction price.

In the Toys R Us auction, second-stage bids were ordered from
largest to smallest, creating a downward-sloping demand curve of bids
(blue line in Figure 5). The NOI was a vertical supply line at $81.172
million. The point at which the downward-sloping demand curve of bids
and the NOI meet is the price and quantity pair that filled the NOI
(black dot in Figure 5). The equilibrium price was 26 per 100 notional,
which was below the price cap of 31.25; therefore, the intersection point
was the final auction price. Moreover, Barclays bid $25 million and
Goldman Sachs bid $2 million at the final price of 26. When settling
bond trades, Barclays and Goldman Sachs split the remaining NOI on
a pro rata basis, meaning Barclays bought 25/27 of the remaining NOI
from another participant who submitted a physical settlement offer in
the first round.

How the Auction Prevents Manipulation

Five auction rules reduce the extent to which participants can manip-
ulate the auction. The first three rules reduce the amount that par-
ticipants can manipulate the Initial Market Midpoint (IMM) and the
NOI. Rules four and five directly constrain participants’second-stage
behavior.

1. Dealers’ initial quotes are limited to a predetermined size and
maximum spread.

2. Participants are not allowed to submit settlement requests ex-
ceeding, or in the opposite direction of, their CDS position.

3. Dealers are penalized for submitting quotes in the wrong direc-
tion of the market.

4. Based on the direction of the NOI determined in the first stage,
there is a price cap (floor) on the final auction price.

5. The relevant side of all dealers’initial quotes is carried over to
the second stage of the auction.

3. THE MODEL

This section and the subsequent section that together describe Cher-
nov et al.’s (2013) model and theoretical results may be skipped. The
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empirical results and main findings of this paper in Section 5 can be
understood without Section 3 and 4.

In this section, we describe the basic environment (players, payoffs,
etc.), the auction game, and trading frictions of CDS auctions, as dis-
cussed in Chernov et al. (2013). This section formalizes the auction
rules discussed in Section 2.

Environment

Chernov et al. (2013) build their auction analysis on the work of Wil-
son (1979) and Back and Zender (1993). CDS auctions are two-sided
auctions. There are two periods, t = 1, 2. The first stage of the auc-
tion happens in period t = 1, and the second in period t = 2. There
is a set N of participants, from which a subset Nd ⊂ N are dealers.
Each participant i ∈ N starts period 1 holding an endowment ni of
CDS contracts and bi of bonds. One unit of the bond pays a value ν
between zero and 100 in period t = 1. If ν is 100, the bond is paying
the par value; if ν is zero, the bond has no residual value after default.

Holdings of CDS contracts can be zero, positive, or negative; mean-
while, bond holdings cannot be negative. Participants with positive
holdings of CDS contracts are protection buyers, and participants with
negative holdings are protection sellers. The net supply of CDS con-
tracts is zero, while the supply of bonds is strictly positive. Participants
have common knowledge of CDS and bond holdings.

The Auction Game

We start by describing the actions that an auction’s participants can
take in the first part of the auction (period t = 1), the second part
of the auction (period t = 2), and the payoffs associated with such
actions.

The First Stage of the Auction

In the first stage of the auction, each participant i ∈ N submits a
settlement request yi. When yi is positive (negative), the settlement
request is an order to sell (buy) yi units of the bond at the auction
price, pA.

The auction has restrictions on the settlement requests participants
are allowed to make. A participant i with a long (short) CDS position,
ni > 0 (ni < 0), can only submit selling (buying) orders. These orders
cannot exceed their CDS position. That is, a participant with a long
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position must submit a request yi ∈ [0, ni], and a participant with a
short position must submit a request yi ∈ [−ni, 0].

In addition to settlement requests, each dealer i ∈ Nd submits a
quote πi. Dealers must be ready to buy L units of the bond at their
quoted price πi minus a spread s or to sell L units of the bond at their
quoted price πi plus a spread s. The quotation size L and the spread s
are parameters determined in advance of the auction; however, dealers
do select their quote price, πi.

After all participants submit their settlement requests and dealers
submit their initial quotes, we compute the NOI and the IMM . The
NOI is the sum of all settlement requests; that is, NOI =

∑
i∈N yi.

The IMM is the average of dealers’ quotes, πi, after excluding any
crossing bids and offers.

The Second Stage of the Auction

There are three possibilities for the auction’s second stage depending
on the NOI. If the NOI = 0, the auction ends and the price pA is set
to the IMM . If NOI > 0, participants bid to buy NOI units of the
bond. If NOI < 0, participants offer to sell |NOI| units of the bond.

When NOI > 0, each participant i ∈ N submits a left-continuous
weakly decreasing demand schedule xi(p) : [0, IMM + s]→ R+. Note
that the price cap is IMM + s. Let X(p) =

∑
i xi(p) denote the

aggregate demand for the asset at the price p. The equilibrium price
is the highest price p ∈ [0, IMM + s] such that the aggregate demand
X(p) matches the supply, which is the NOI. That is,

pA = max{p|p ∈ [0, IMM + s] and X(p) ≥ NOI}. (1)

If X(p) < NOI for all price p ∈ [0, IMM + s], then pA is set to
zero. Let qi(pA) be the asset allocation to participant i ∈ N at the
auction price pA. The allocation is determined using a pro rata at the
margin rule. Formally,

qi(p
A) = x+

i (pA) +
xi(p

A)− x+
i (pA)

X(pA)−X+(pA)
(NOI −X+(pA)), (2)

where x+
i (pA) = limp↓pA xi(p) and X

+(pA) = limp↓pA X(p).
When NOI < 0, each participant i ∈ N submits a left-continuous

weakly increasing supply function xi(p) : [IMM − s, 100] → R−;
IMM − s is the price floor. In this case, let X(p) =

∑
i xi(p) de-

note the aggregate supply for the asset at the price p. The equilibrium
price is the lowest price p ∈ [IMM − s, 100] such that the aggregate
supply X(p) matches the demand NOI. That is,

pA = min{p|p ∈ [IMM − s, 100] and X(p) ≤ NOI}. (3)
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If X(p) > NOI for all price p ∈ [IMM − s, 100], then pA is set
to 100. Let qi(pA) be the bond allocation to participant i ∈ N at the
auction price pA. As before, the allocation is determined using a pro
rata at the margin rule. Formally,

qi(p
A) = x−i (pA) +

x−i (pA)− xi(pA)

X−(pA)−X(pA)
(NOI −X+(pA)), (4)

where x−i (pA) = limp↑pA xi(p) and X
−(pA) = limp↑pA X(p).

Preferences

Agents are risk neutral and maximize their total payoff from the auc-
tion. The payoff of a player i given his CDS position ni, bond holding
bi, settlement request yi, bond allocation in the auction qi, and final
auction price pA is

Πi = qi(ν − pA) + (ni − yi)(100− pA) + yi(100− ν) + biν, (5)

where ν ∈ [0, 100] is the player’s valuation for the bond. The term
qi(ν − pA) is the player’s gain from buying qi units of bonds at the
auction price pA, (ni− yi)(100−pA) is the player’s gains from the cash
settlement of ni− yi units of CDS contracts. yi(100− ν) is the player’s
gains from the physical settlement of yi units of CDS contracts, and
biν is the player’s gains from his bond holdings.

Trading Frictions

To add realism to the environment, Chernov et al. (2013) consider two
trading frictions. First, because short-selling bonds is extremely hard
in practice, the authors impose the following assumption.

Assumption 1 Each player i ∈ N can sell at most his endowment bi
of bonds.

Second, because some investors, such as pension funds, are not
allowed to hold defaulted bonds, the authors impose the following as-
sumption.

Assumption 2 Only a subset of players N+ ⊂ N , satisfying N+ 6= ∅,
can hold a positive amount of bonds after the auction.

Solution

We analyze the model by backward induction; consequently, we start
from the second stage of the auction. In the second stage, partici-
pants take all CDS positions, {ni}i, physical settlement requests, {yi}i,
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and the NOI as given. Each participant i chooses his demand/supply
schedule xi(p) in the auction to maximize his utility in equation (5),
given the demand schedules of all players in the auction other than
player i. In the first stage of the auction, participants again take all
CDS positions, {ni}i, as given and submit settlement requests, {yi}i.
Dealers also optimally submit their quotes {πi}i in the first part of the
auction.

All players understand that the settlement requests and dealers’
quotes will determine price and quantities in the auction’s second stage.
This happens directly since the price in equations 1 and 3, as well as
the quantities in equations 2 and 4, depend on the NOI. It also oc-
curs indirectly since the demand/supply schedules that players submit
in the auction’s second stage are a function of the outcomes in the
first stage. Therefore, an equilibrium is then composed of settlement
requests ({yi}i), dealers quotes ({πi}i∈Nd), and demand/supply sched-
ules ({xi}i) that maximize players profits given in equation (5).

4. THEORETICAL RESULTS

In this section, we describe the main theoretical results of Chernov et
al. (2013). Additionally, we provide intuition for why participants have
incentive to manipulate the auction price and why under/over pricing
in the auction can be an equilibrium outcome. We refer the reader to
Chernov et al. (2013) for the formal arguments and proofs.

Price Manipulation and the Frictionless
Economy

The trading frictions implied by Assumptions 1 and 2 create limits on
arbitrage. This is necessary for the result that some players manipulate
the auction price to their advantage. Without market frictions, the
price cannot differ from fundamentals in a meaningful way. We can
conclude this result from Proposition 2 in Chernov et al. (2013), which
we restate below.

Proposition 1 (2 in Chernov et al. [2013]) Suppose there are no
trading frictions, that is, Assumptions 1 and 2 are not imposed. Then,
in any equilibrium, one of the following three outcomes can be realized:
(1) p ∈ (ν, 100] and NOI ≥ 0; (2) p ∈ [0, ν) and NOI ≤ 0; and (3)
p = ν and any NOI. Moreover, in all equilibria, players achieve the
same expected utility as in the equilibrium with p = ν.
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Proposition 1 states that, without imposing Assumptions 1 and 2,
the equilibrium price for the auction, pA, can differ from the funda-
mental value of ν but not in a meaningful way. In this case, every
equilibrium is payoff equivalent to an equilibrium where pA = ν. In-
tuitively, if some equilibrium has pA 6= ν and is not payoff equivalent
to an equilibrium where pA = ν, players can gain from buying/selling
bonds at the auction price. As a result, the initial allocation cannot be
an equilibrium.

Price Manipulation and Trading Frictions

Once we impose trading frictions– that is, Assumptions 1 and 2– then
participants can manipulate the auction price to their advantage. In
this subsection, we show that manipulation is possible for the more
empirically relevant case with a positive NOI (NOI > 0). An analogous
result can be obtained when NOI < 0.

Proposition 2 (4 in Chernov et al. [2013]) Suppose that there are
trading frictions, that is, Assumptions 1 and 2 are imposed. Moreover,
assume that ∑

i:ni>0

ni +
∑

i∈N+:ni<0

ni > 0

and that for any player i who is a protection buyer, ni satisfies

ni >

∑
j:nj>0 nj +

∑
j∈N+:nj<0 nj

K + 1
,

where K is the total number of players with initial long positions (ni >
0). Then, there exist a multitude of equilibria for the two-stage auction,
in which NOI > 0 and pA is decreasing in the NOI. In particular,
there exists a subset of equilibria in which the second stage of the auc-
tion leads to a final price that is a linear function of the NOI:

pA = ν − δ ×NOI, (6)

where δ is defined in Chernov et al. (2013).

In general, if participants anticipate underpricing (pA < ν), pro-
tection buyers will prefer to settle in cash because they gain 100− pA
from the settlement instead of 100 − ν, while protection sellers will
prefer physical settlement because it costs them only 100 − ν instead
of 100− pA. This would lead to a negative NOI (NOI < 0). However,
if some of the protection sellers cannot hold bonds at the end of the
auction, they will not be able to do a physical settlement. Moreover,
if the protection buyers anticipate that the auction price is a negative
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function of the NOI, then they will have incentive to do some physi-
cal settlement to lower the price. As a result, under some parametric
restrictions, there exist equilibria where the NOI is positive and the
auction price is a decreasing function of the NOI. This results in
underpricing when the NOI is positive.

5. EMPIRICAL RESULTS

We replicate the test in Table 4 of Chernov et al. (2013), but we
extend their data. We have their original twenty-six auctions that
occurred prior to December 2011 and an additional thirteen auctions
that occurred between January 2012 and December 2017.

We also look at the CDS position of dealers to verify that some
dealers have long CDS positions and therefore have incentive to lower
the auction price. For the dealers’CDS positions, we only have data
for 2013 forward since this is when reporting CDS positions became
mandatory.15

Data

We collect data for our regressions to replicate Chernov et al.’s (2013)
results with our extended dataset. We also find dealer-level CDS posi-
tions to add to their findings.

Replication Data

To replicate Chernov et al.’s (2013) regressions, we need data for the
auction’s NOI, number of participants (N), aggregate CDS position
(NETCDS), notional amount of bonds outstanding (NAB), bond
price the day before the auction (p−1), and the auction price (pA).

We use creditfixings.com to find NOI, pA, and N . They directly
report each auction’s NOI and pA. Finding the number of partici-
pants is more tricky. Creditfixings.com lists all second-stage orders by
dealer. Nondealers submit their bids through dealers, so we use the
amount of second-stage orders and the number of dealers to estimate a
lower bound for the total number of participants, following an approach
proposed by Chernov et al. (2013).16

15 In fact, our data have positions prior to 2013; however, since the report was not
mandatory (the regulation was not in place), we are not confident the data are accurate
for this period.

16 Specifically, we get the second-stage bid/offer list, remove all orders from inside
markets (dealer bids derived from the first round), and add an additional participant
to the auction if a dealer submits two bids/offers at the same price (unless the dealer
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The NAB represents the sum of the notional amount of bonds
outstanding among each auction’s deliverable obligations. Deliverable
obligations are the sets of bonds that are exchanged and priced via
the CDS auction at the uniform auction price, pA. To find the NAB,
we first find the Committee on Uniform Security Identification Proce-
dures (CUSIP) number for the deliverable obligations, as listed in each
auction’s protocol. Then, on Fidelity’s “CUSIP Look Up,”we deter-
mine the initial amount of bonds offered for each deliverable obligation.
Subsequently, we sum the respective initial amounts of bonds for all de-
liverable obligations in each auction to obtain the auction’s NAB. The
NAB could differ from the initial amount of bonds issued; however, the
two values are unlikely to be significantly different for distressed enti-
ties. While Chernov et al. (2013) use a slightly different method for
calculating the NAB, using the initial amount of bonds outstanding
is a good estimate, since there is little difference between our NAB
estimates and theirs for the sixteen auctions common to both samples.

We obtain an auction’s NETCDS from the DTCC. NETCDS is
at the market level. We download the weekly CDS trade data and
sum the trades by week and by entity to find the NETCDS position
the week prior to the auction. Because Chernov et al. (2013) include
auctions in which there were no NETCDS data, there are fewer than
thirty-seven observations of NETCDS with nonmissing values.

We get the bond prices the day before the auction for the deliverable
obligations (p−1) using the Trade Reporting and Compliance Engine,
which we access using Wharton Research Data Services. To find p−1,
we exclude trades below $100,000 because these trades are likely to be
noninstitutional. We also remove deliverable obligations that were not
the cheapest to deliver (which we define as the obligations whose prices
are two standard deviations above the average price the day before the
auction). Finally, p−1 is the average of the remaining trades.

To make sure that our data are consistent with Chernov et al.
(2013), we compare the variables of interest for the twenty-six auctions
that are in both datasets. Even though we do not always use the same
data source as Chernov et al. (2013),17 all the variables match well.

was submitting for another party, there is no reason they would submit two bids/offers
at the same price). In this sense, this estimate of auction participants is a lower bound
of the total possible participants.

17 For example, Chernov et al. (2013) use Mergent data to compute the NAB and
we use Fidelity’s CUSIP Look Up.
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Dealers’NETCDS Position

When extending Chernov et al.’s (2013) results, we find the position
of individual dealers in each auction. The Dodd-Frank Wall Street
Reform and Consumer Protection Act requires real-time reporting of
all swap contracts to a registered swap data repository (SDR). The
DTCC operates a registered SDR on CDS. The Dodd-Frank Act also
requires SDRs to make all reported data available to the appropriate
prudential regulators.18 As a prudential regulator, the Federal Reserve
has access to the transactions and positions involving individual parties,
counterparties, or reference entities that are regulated by the Federal
Reserve. Using the DTCC data, we recover the CDS position for dealers
(Dealers’NETCDS) in fifteen auctions since 2013– a total of seventy-
three observations of auction/dealer pairs or about five dealers per
auction.

Regressions

In their empirical analysis, Chernov et al. (2013) investigate whether
equation (6) holds in CDS auctions (Table 4). To be specific, they
estimate the linear regression:

pA

p−1
= α+ β × NOI

S
+ ε, (7)

where pA is the auction price, p−1 is the bond price the day before
the auction, NOI is the net open interest, and S is a variable to
normalize the net open interest. Since it is not clear what the nor-
malization should be, the authors try four different specifications: no
normalization (S = 1), number of auction participants (S = N),
net notional amount of bond outstanding (S = NAB), and net CDS
(S = NETCDS).

Table 1 depicts the empirical results in Chernov et al. (2013) and
our extended dataset. The main prediction of the theory is that the β
coeffi cient is negative. That is, pA relative to p−1 is decreasing in the
NOI.

In general, our results are consistent with the findings from Chernov
et al. (2013). The exception is the regression in which we do not
normalize the NOI. In this case, we obtain a coeffi cient β that is
not significant, while Chernov et al. (2013) get significance at the 10
percent level. Note, however, that our p-value is 15 percent, while their

18 See Sections 727 and 728 of the Dodd-Frank Wall Street Reform and Consumer
Protection Act.
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Table 1 Regression (7) for Chernov et al. (2013) and
Extended Dataset

NOI NOI/N NOI/NETCDS NOI/NAB

Chernov et al. (2013)

α 0.90*** 0.93*** 0.98*** 0.99***
(20.58) (21.59) (17.20) (25.29)

β -0.07* -3.32*** -0.41*** -0.91***
(-1.65) (-2.77) (-3.07) (-4.85)

Using data up to December 2017

α 0.87*** 0.90*** 0.92*** 0.93***
(23.89) (26.48) (17.99) (23.96)

β -0.06 -7.36*** -0.37** -0.71***
(-1.51) (-3.43) (-2.65) (-3.26)

Notes: Sample in Chernov et al. (2013) includes twenty-six CDS auctions up to
December 2011. Extended dataset includes thirty-seven CDS auctions up to De-
cember 2017. *** p<0.01, ** p<0.05, * p<0.1.

p-value is 10 percent, so our results are relatively close. Overall, we
both find evidence of downward price manipulation when the NOI is
positive.

Dealers’ CDS Positions

The above results are consistent with the theory of price manipulation
we discussed in Section 4. It also has implications for the CDS position
of participants. Proposition 2 tells us that there is an equilibrium in
the auction where the NOI is positive and participants with positive
CDS holdings bid to lower the auction price. In our fifteen auctions,
the average auction price relative the bond price the day before is 0.87,
suggesting underpricing of 13 percent. Since we do observe underpric-
ing, according to the theory, we should also have participants who are
protection buyers.

Figure 6 depicts the distribution of dealers’CDS positions for the
fifteen auctions for which we have dealer-level CDS positions.19 On
average, we have data for five dealers per auction; in comparison, each
auction usually has ten dealers. The NOI is positive in thirteen of
the fifteen auctions. After netting long and short positions for each

19 We only have data for the auction’s dealers (those directly participating in the
auction). This is okay as they are likely the only ones who could have large enough
positions to manipulate the auction.
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Figure 6 CDS Position of Dealers in the Auction

dealer, dealers own $8.23 million in protection per auction on average.
Not only do dealers own protection on average, dealers also own pro-
tection in 68.5 percent of the observations. Sometimes, dealers have
very large positive positions. Moreover, the CDS positions of dealers
are not small in comparison to the NAB or NETCDS. The total
notional amount of CDS holdings of dealers is 34 percent of the de-
liverable bonds’NAB, or 11.5 percent of the NETCDS– just among
the dealers we observe. It seems some dealers have significant positive
CDS positions and therefore have incentive to manipulate the auction
price downward when the NOI is positive– supporting Chernov et al.’s
(2013) empirical findings.

6. CONCLUSION

We first introduced the historical background of CDSs and CDS auc-
tions. We then explained the auction’s rules in great detail, including
an example of the Toys R Us auction. These auctions are under the
radar, diffi cult to understand, and rarely explained fully; as a result,
we believe the auction details provided here will be a helpful starting
point for those looking to understand CDS auctions.

After discussing three relevant CDS auction papers, we focus on
Chernov et al. (2013). We provide a summary of their theoretical
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model and test their empirical predictions using data through 2017.
Our findings concur with theirs and indicate that CDS auction prices
are being manipulated in the downward direction when the NOI is to
sell.

Finally, we use regulatory data on CDS positions from the DTCC
to demonstrate that dealers sometimes hold CDS positions significant
enough to provide incentive to manipulate the auction. This finding
provides further support for the conclusions in Chernov et al. (2013).
In future work, we aim to leverage our DTCC dataset to analyze CDS
auctions at the dealer holdings and bid level in a much more quanti-
tative manner. This analysis will provide better insight into how CDS
auctions are manipulated.
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