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From Stylized to
Quantitative Spatial Models
of Cities

Sonya Ravindranath Waddell and Pierre-Daniel Sarte

1. INTRODUCTION

Understanding how and why factors of production locate within and
around urban areas has been compelling social scientists for at least
150 years. Within mainstream economics, urban economists have been
developing modern theories of city systems at least since the 1960s.
However, modeling spatial interactions is highly complex, and, there-
fore, the theoretical literature on economic geography has necessarily
focused on stylized settings. For example, a model may have a central
business district– where firms are assumed to be located– surrounded
by a symmetric circle or on a symmetric line. As the population grows,
the scarcity of land prevents consumers (who are also workers) from all
settling close to the center, so people move out to where commuting
costs are higher but housing costs are lower.

In the models of new economic geography (NEG), urban econo-
mists have incorporated advances developed in industrial organization,
international trade, and economic growth to remove technical barri-
ers to modeling cities. The field of NEG was initiated primarily by
three authors: Fujita (1988), Krugman (1991), and Venables (1996),
who all use general equilibrium models with some version of monop-
olistic competition. The NEG models have been useful in helping to
pin down preferences, technology, and endowments and have provided
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some fundamental theoretical explanation for the uneven distribution
of economic activity, for multiple equilibria in location choices, and for
a small (possibly temporary) asymmetric shock across sites to generate
a large permanent imbalance in the distribution of economic activities.
However, these models have also imposed structure that is not neces-
sarily evident in the data, and the limitation of the analysis to stylized
spatial settings has not enabled an empirical literature that could di-
rectly corroborate the theory. In other words, the stylized models have
only guided empirical estimation in a way that is divorced from the
structure of those models, resulting in empirical research that has been
devoid of strong structural interpretations.

More recently, the introduction of quantitative models of interna-
tional trade (in particular Eaton and Kortum [2002]) have served to
develop a framework that connects closely to the observed data. This
research does not aim to provide a fundamental explanation for the
agglomeration of economic activity but instead aims to provide an em-
pirically relevant quantitative model. This article describes the pro-
gression from a simple canonical model of NEG to its counterpart in
the quantitative spatial framework. Section 2 engages the literature
to develop and understand the progression from the stylized models of
the NEG literature to the quantitative spatial models. Section 3 walks
through a version of the stylized model, with a linear monocentric city.
Section 4 introduces its counterpart as a quantitative spatial model as
was laid out in Redding and Rossi-Hansberg (forthcoming). Section 5
provides an example of how the spatial model can be matched to de-
tailed microdata that describe actual interactions in the city. Section
6 concludes.

2. LITERATURE REVIEW

The standard monocentric model of cities came out of a history of
work to model spatial allocations. The prototype for understanding
how factors of production distribute themselves across land, and how
prices govern that distribution, was developed by Johann Heinrich von
Thünen in the mid-nineteenth century to describe the pattern of agri-
cultural activities in preindustrial Germany. Von Thünen’s model in-
cludes an exogenously located marketplace in which all transactions re-
garding final goods must occur and the differences in land rent and use
are determined predominantly by transport costs (Fujita and Thisse
2002). The von Thünen model was both formalized mathematically
and enhanced in the second half of the twentieth century– including
the formalization of bid-rent curves by William Alonso in his basic ur-
ban land model. This basic urban model includes a monocentric city
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with a center, home to the central business district (CBD), where all
jobs are located. The space surrounding the CBD is assumed to be ho-
mogenous with only one spatial characteristic: its distance to the CBD.
Both the work of von Thünen and that of Alonso depended upon the
monocentricity of production activities– i.e., the models rely on one
CBD (or market) with surrounding land used for residential (or agri-
cultural) purposes.

Although many early models assumed the existence of the CBD,
later work formalized mechanisms for the agglomeration forces that
create concentrations of economic activity. The models of NEG, as
summarized in Fujita et al. (1999), Fujita and Thisse (2002), and Otta-
viano and Thisse (2004), create the framework to explain the imbalance
in the distribution of economic activity and better understand how a
small shock can generate that imbalance. These NEG models went a
long way toward overcoming the fundamental problem that kept eco-
nomic geography and location theory at the periphery of mainstream
economic theory for so long: regional specialization and trade cannot
arise in the competitive equilibrium of an economy with homogenous
space. This spatial impossibility theorem is discussed more thoroughly
in Ottaviano and Thisse (2004) and articulated mathematically in Fu-
jita and Thisse (2002).

Important ideas underlie the development of the NEG models.
These ideas (as described in Ottaviano and Thisse [2004]) include that
the distribution of economic activity is the outcome of a trade-off be-
tween various forms of increasing returns and different mobility costs;
price competition, high transport costs, and land use foster the disper-
sion of production and consumption, and, therefore, firms are likely to
cluster in large metropolitan areas when they sell differentiated prod-
ucts and transport costs are low. Cities provide a wide array of fi-
nal goods and specialized labor markets that make them attractive to
consumers/workers, and agglomeration is the outcome of cumulative
processes involving both the supply and demand sides. The contribu-
tion of NEG was to link those ideas together in a general equilibrium
framework with imperfect competition. Some of the earliest work in
NEG came from Krugman (1991), who developed a model that showed
that the emergence of an industrialized “core”and an agricultural “pe-
riphery”pattern depends on transportation costs, economies of scale,
and the share of manufacturing in national income (i.e., in consump-
tion expenditures). More specifically, in his model, lower transporta-
tion costs, a higher manufacturing share, or stronger economies of
scale will result in the concentration of manufacturing in the region
that gets a head start compared to other regions. Venables (1996)
wrote a model where imperfect competition and transport costs create
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forward and backward linkages between industries in different loca-
tions. He finds that even without labor mobility, agglomeration can be
generated through the location decisions of firms in industries that are
linked through an input-output structure. The models above develop
an argument for agglomeration into a single center of activity. How-
ever, other NEG models, most notably Fujita and Ogawa (1982) and
Lucas and Rossi-Hansberg (2002), introduced nonmonocentric models
where businesses and housing can be located anywhere in the city. The
latter models constitute a first step toward building frameworks that
more accurately capture the heterogeneity in economic activity across
space.

Unfortunately, although the theoretical work on NEG has been rel-
atively rich, the empirical research has been comparatively less rich; es-
tablishing causality and controlling for confounding factors has proved
challenging in the empirical realm. One challenge, as articulated by
Redding and Rossi-Hansberg (forthcoming), is that the complexity of
the theoretical models has limited the analysis to stylized spatial set-
tings, such as a few locations, a circle, or a line, and the resulting em-
pirical research has been primarily reduced form in nature. As a result,
it is diffi cult to provide a structural interpretation of the estimated co-
effi cients, and the empirical models cannot either withstand the Lucas
critique (coeffi cients might change with different policy interventions)
or necessarily generalize to more realistic environments.

Empirical work, such as the spatial model laid out in Section 4, has
been instructed by another field of economics. Developments in the
international trade literature have offered mechanisms for better mod-
eling the distribution of economic activity across urban areas. Eaton
and Kortum (2002) developed a model of international trade that cap-
tures both the comparative advantage that encourages trade and the
geographic barriers that inhibit it (e.g., transport costs, tariffs and quo-
tas, challenges negotiating trade deals, etc.). They use the model to
solve for the the world trading equilibrium and examine its response to
policies.

This framework from the trade literature– combined with the avail-
ability of increasingly more granular data– enabled the emergence of
new quantitative spatial models in urban economics in which one can
carry out general equilibrium counterfactual policy exercises. In ad-
dition to offering methodological insights and a mechanism for policy
analysis, these quantitative spatial models have made substantive con-
tributions that borrow from, and contribute to, the theoretical litera-
ture. For example, Redding and Sturm (2008) provide evidence for a
causal relationship between market access and the spatial distribution
of economic activity. They show that the division of Germany after
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World War II led to a sharp decline in population growth in West Ger-
man cities close to the new border relative to other West German cities
and that this decline was more pronounced for small cities than for
large cities. As another example, models such as those developed in
Ahlfeldt et al. (2015) and Monte et al. (2016), allow for heterogenous
gradients of economic activity within cities that can be matched di-
rectly to microdata and that can only be approximated in models such
as Fujita and Ogawa (1982) and Lucas and Rossi-Hansberg (2002).

The next section walks through a canonical monocentric urban
model and highlights key features that made that model attractive
for thinking about the distribution of economic activity across space.
In particular, this urban model allows many of a city’s features to be
endogenous, including its size, population, employment, wages, and
commercial land rents. In addition, at different locations within the
city, residential population, residential prices, and the consumption of
housing services can also be endogenous. In this model, as in the av-
erage city, production is concentrated at the center, where the CBD
is located, rent gradients decline with distance from the CBD, and
population density tends to decrease away from the city center.

3. A STYLIZED MODEL OF CITIES

We consider a linear monocentric city with locations defined on the
interval [−B,B], where ` denotes the distance from the city center.
Each location ` is endowed with one unit of land available either for
residential housing or production. This analysis focuses on residential
localization decisions, i.e., the decisions of households rather than firms.

The Central Business District

All production takes place at the city center, ` = 0, which defines the
CBD. Production per unit of land is given by

Y = A(L)Lβ, (1)

where L denotes labor input and A(L) denotes a production external-
ity. For simplicity, let A(L) = ALα, α < 1 − β < 1, and denote the
wage paid to workers by w. This condition ensures that labor demand,
L, is decreasing in the wage, w. There exists a unit mass of firms (as-
suming firms are small and do not internalize the externality) where
the representative firm solves

max
L

A(L)Lβ − wL.
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It follows that

βA(L)Lβ−1 = w ⇔ L =

(
Aβ

w

) 1
1−α−β

. (2)

We assume a competitive market with free entry so that in equi-
librium firms obtain zero profits. Therefore, the commercial bid rent
faced by firms in the business district is

qb = (1− β)A
1

1−α−β

(
β

w

) α+β
1−α−β

. (3)

Residential Areas

Workers live in the city at different locations, ` ∈ [−B,B]\{0}, and
commute to the city center. Workers who reside at ` consume goods,
c(`), housing services, h(`), and experience a commuting cost, κ(`) ∈
[1,∞), that reduces the utility derived from housing and increases with
distance from the CBD. In particular, the utility of a worker commut-

ing from location ` to the CBD is given by s
(
c(`)
γ

)γ (
h(`)

(1−γ)κ(`)

)1−γ
,

where γ ∈ (0, 1) and s is a service amenity conferred by the city. This
approach to modeling commuting costs departs somewhat from the
more traditional approach of assuming that disposable income (thus
consumption of housing and nonhousing goods) declines with distance
from the CBD. In this case, similar to Ahlfeldt et al. (2015), commut-
ing costs enter the utility function multiplicatively, which, as they note,
is isomorphic to a formulation in terms of a reduction in effective units
of labor. Commuting costs are then ultimately proportional to wages
in the indirect utility function.

Conditional on living at location `, a worker then solves

u(`) = max
c(`),h(`)

s

(
c(`)

γ

)γ ( h(`)

(1− γ)κ(`)

)1−γ
,

γ ∈ (0, 1)

subject to c(`) + qr(`)h(`) = w,

where qr(`) is the price of a unit of residential housing services at
location `. Hence, we have that

c(`) = γw, (4)

h(`) =
(1− γ)w

qr(`)
, (5)
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and

u(`) = s [w]γ
[

w

κ(`)qr(`)

]1−γ

= sw [κ(`)qr(`)]γ−1 . (6)

The Residential Market

Let u denote the utility available to workers from residing in alternative
cities. To the extent that workers can move to or from another city and
are free to reside at any location within the city, it must be the case
that in equilibrium u(`) = u ∀` ∈ [−B,B]. Therefore, from equation
(6), we have that, for any location `,

sw [κ(`)qr(`)]γ−1 = sw [κ(B)qrB]γ−1 , (7)

where qrB is the price of land at the boundary of the city defined by the
opportunity cost of land at that location, such as an agricultural land
rent. Rewriting equation (7) gives residential land rents at different
locations within the city,

qr(`) =
κ(B)

κ(`)
qrB, (8)

where κ(B)
κ(`) ≥ 1 ∀` ∈ [−B,B], since κ(`) increases with distance from

the city center. Thus, residential land rents are highest near the CBD
and decrease toward the boundaries of the city as commuting becomes
more expensive. However, as seen from equation (5), total housing
expenditures in this framework are constant across all locations in the
city since qr(`)h(`) = (1−γ)w, where (1−γ) then represents the income
share of housing expenditures.

Recall that each location ` ∈ [−B,B] is endowed with one unit of
land available for housing. Let R(`) denote the residential population
living at `. We assume that all available land in the city is fully devel-
oped and used by residents. Then, equilibrium in the housing sector
requires that

R(`)h(`) = 1. (9)
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In addition, the residential population living at different locations ` in
the city must sum up to the supply of labor working in the CBD,

B∫
−B

R(`)d` = L

⇒
B∫
−B

1

h(`)
d` = L (10)

Solving for the City Equilibrium

We now describe the city equilibrium, first solving for equilibrium wages
as a function of the model parameters, from which all other city allo-
cations immediately follow.

Given equations (5) and (8), equation (10) becomes

B∫
−B

1

h(`)
d` =

B∫
−B

qr(`)

(1− γ)w
d` =

κ(B)qrB
(1− γ)w

B∫
−B

1

κ(`)
d` = L, (11)

which defines the boundaries of the city, B(L,w), as a function of its
population and wages given the model’s parameters.

Consider for instance the simple symmetric case where κ(`) = eκ|`|

so that κ(0) = 1 and κ(B) = eκB > 1. Then,

B∫
−B

1
κ(`)d` gives

B∫
−B

1

κ(`)
d` =

B∫
−B

e−κ|`|d` = 2

B∫
0

e−κ`d` = 2(
−e−κ`
κ
|B0 ) =

2

κ
(1− e−κB),

so that equation (11) becomes

2
κe

κBqrB(1− e−κB)

(1− γ)w
=

2
κq

r
B(eκB − 1)

(1− γ)w
= L

⇒ eκB = 1 +
κ(1− γ)wL

2qrB
.

Using the labor demand equation in equation (2), conditional on
the model parameters, the boundaries of the city may then alternatively
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be expressed in terms of wages only,

eκB = 1 +
κ(1− γ)w

2qrB

(
Aβ

w

) 1
1−α−β

= 1 +
κ(1− γ)(Aβ)

1
1−α−βw

−α−β
1−α−β

2qrB
.

Using this last expression, we can solve for equilibrium wages in
the city as a function of the model parameters only. Specifically, note
that residents’utility at the boundary is given by

u = sw

[
qrB +

κ(1− γ)(Aβ)
1

1−α−βw
−α−β
1−α−β

2

]γ−1

, (12)

which defines w∗ = w(s, κ, γ, A, α, β, qrB, u).

Proposition 1: There exists a unique w∗ that solves equation (12).

Proof: Define f(w) = sw

[
qrB + κ(1−γ)(Aβ)

1
1−α−β w

−α−β
1−α−β

2

]γ−1

. Then

limw→0 f(w) = 0, limw→∞ f(w) =∞, and, since f(w) is continuous
in w, there exists w∗ such that u = f(w∗). Moreover, since f(w) is
strictly increasing in w, w∗ is unique.

Given w∗, all other allocations in the city then immediately follow.
In particular, as mentioned in the proposition, given parameter restric-
tions, the RHS of equation (12) is increasing in w so that w∗ then in-
creases with u. Thus, as the reservation utility from living elsewhere, u,

increases, the city population, L∗ =
(
Aβ
w∗

) 1
1−α−β

, falls as residents leave

the city, and its boundaries, B∗ = 1
κ log(1 + κ(1−γ)(Aβ)

1
1−α−β w

−α−β
1−α−β

2qrB
),

shrink.
The stylized model described above is rich enough to allow for many

of a city’s features to be endogenous, including its size, population, em-
ployment, wages, and commercial land rents. In addition, at different
locations within the city, residential population, residential prices, and
the consumption of housing services can also be endogenous. These
allocations are such that there exists a very direct link between com-
muting costs to the CBD and residential prices. Specifically, taking
equation (8) and using the functional form for commuting costs de-
scribed above, we can derive a simple expression for the elasticity of
residential prices with respect to commuting costs.

Proposition 2: The elasticity of residential prices with respect to
commuting costs, εqr,κ, is given by κ(B − |`|).
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Proof:

qr(`) =
eκB

eκ|`|
qrB = eκ(B−|`|)qrB

εqr,κ =
∂qr(`)

∂κ
· κ

qr(`)
= (B − |`|)eκ(B−|`|)qrB ·

κ

eκ(B−|`|)qrB
= κ(B − |`|).

The proposition above highlights the effect of commuting costs on
prices; specifically, this effect is mitigated as we move away from the
employment center and is zero at the boundary. Intuitively, away from
the city center, residential prices become increasingly pinned down by
the agricultural land rent rather than economic activity near the center.

Despite its richness, the stylized model we have just described im-
poses a number of restrictions on the structure of the city, includ-
ing its monocentric nature with all production being concentrated in
the CBD. Furthermore, residential prices decline monotonically as one
moves away from the city center, and there exists a general symmetry
and an evenness in allocations and prices across space. This smooth
and symmetric aspect of the city is illustrated in Figure 1. In that
figure, residential population is highest near the CBD, where the com-
mute is relatively cheap, and decreases monotonically away from the
center with the fewest workers living near the boundaries of the city.

In practice, of course, economic activity is more unevenly distrib-
uted across space. For example, Figure 2 shows that the city of Rich-
mond, Virginia, has multiple employment clusters, one indeed in the
center of the city but two others to the south and west.

This activity reflects a balance of agglomeration forces (e.g., pro-
duction externalities) and dispersion forces (e.g., commuting costs) that
play out in intricate and interrelated ways across space and that lead
to substantial variations in allocations and prices across a city. For ex-
ample, production may take place in different parts of the city so that
cities with multiple production centers are not uncommon. In fact,
some productive activity potentially takes place at every location in the
city. Moreover, residential prices, even if they tend to fall away from a
central point in the city, seldom fall monotonically with distance from
that center. Instead, residential rents can exhibit substantial variation
across locations within the city. This variation reflects the potential
complexity of linkages within the city where, for example, the resident
population at a given location may depend on the entire distribution of
wages offered across the city. Thus, in the next section, we show how
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Figure 1 Allocations and Prices in the Monocentric Model

to modify the stylized model presented in this section in a way that
can quantitatively account for the spatial allocations and prices it is
meant to study.

4. A QUANTITATIVE SPATIAL MODEL OF CITIES

In this section, we show how to adapt the stylized model of the pre-
vious section to allow for the heterogeneity in spatial allocations and
prices that is typically observed in cities. In doing so, we preserve the
basic assumptions on preferences, technology, and endowments of our
stylized model to keep the frameworks comparable. Instead of thinking
of the city as located on an interval [−B,B], we will think of the city
as composed of J distinct locations, indexed by j ∈ {1, ..., J} (or i). In
the mapping to data, these locations may represent city blocks, census
tracts, or counties. It is this key change that will allow us to ensure
that the model is at least able to match given observed spatial alloca-
tions of, for example, resident population, land rents, employment, or
wages across locations in a city. Any subsequent counterfactual exer-
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Figure 2 Density of Primary Jobs

cise involving a change to some exogenous aspect of the city is then
grounded in a model that is able to exactly replicate uneven spatial
observations that reflect, at least in part, complex linkages between
decisions involving where to reside and where to work within the city.
For example, the model would enable us to understand the effect of
a new urban policy, such as one that provides housing assistance or
subsidized transportation.
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In a model where every location could potentially be used for both
residential and production purposes, a central component of a quan-
titative spatial model is the representation and matching of distinct
pairwise commuting flows from any location j in the city to any other
location i. This step will rely on an approach developed by Eaton and
Kortum (2002) in modeling trade flows between locations. As in the
model developed in the previous section, this analysis will focus on res-
idential localization decisions, i.e., the decisions of households rather
than firms. Unlike in the previous model, the commercial bid rent
schedule is nondegenerate and reflects variations in productivity and
wages across locations.

Firms

Production per unit of land in the business district of each location i
is given by

Yi = A(Li)L
β
i , (13)

analogously to equation (1), where Li denotes labor input and A(Li)
denotes a production externality that we assume is local (so only em-
ployment in i affects the productivity of businesses in i). For simplicity,
let A(Li) = AiL

α
i , α < 1 − β < 1, and denote the wage paid to work-

ers in location i by wi. There exists a unit mass of firms (assuming
that firms are small and do not internalize the externality) where the
representative firm solves

max
Li

A(Li)L
β
i − wiLi.

It follows that

βA(Li)L
β−1
i = w ⇔ Li =

(
Aiβ

wi

) 1
1−α−β

. (14)

As in the previous model, firms operate in a competitive market with
free entry and thus obtain zero profits in equilibrium. The implied
commercial bid rent schedule faced by firms in the business district is

qbi = (1− β)A
1

1−α−β
i

(
β

wi

) α+β
1−α−β .

(15)

Note the similarities between equations (14) and (15), and the analo-
gous equations in the previous section, equations (2) and (3).
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Residents

In each location j of the city, there exists a residential area composed of
a continuum of residents who commute to the business areas of different
locations i for work. These residents differ in their preferences for where
to work in the city according to a random idiosyncratic component
s. Unlike the previous model where s was a city amenity distributed
uniformly across locations, in this model, s is an individual-specific
preference component. Conditional on living in a particular location
j, this preference component captures the idea that residents of j may
have idiosyncratic reasons for commuting to different locations i in the
city. We model the idiosyncratic preference component associated with
residing in location j and working in location i as scaling the utility of
the residents of region j, where s is drawn from a Fréchet distribution
specific to that particular commute,

Fij(s) = e−λijs
−θ
, λij > 0, θ > 0. (16)

Residents of j who commute to i incur an associated cost, κij ∈
[1,∞), that, analogous to the previous section, reduces the utility de-
rived from housing. Thus, conditional on living in j and working in i,
the problem of a resident having drawn idiosyncratic utility s is given
by

uij(s) = max
cij(s),hij(s)

s

(
cij(s)

γj

)γj ( hij(s)

(1− γj)κij

)1−γj
,

γj ∈ (0, 1)

subject to cij(s) + qrjhij(s) = wi,

where qrj is the price of a unit of residential housing services at location
j. Hence, we have that

cij(s) = γjwi, (17)

hij(s) =
(1− γj)wi

qrj
, (18)

and

uij(s) = s [wi]
γj

[
wi
κijqrj

]1−γj

= swi
[
κijq

r
j

]γj−1
. (19)

Note the similarities between equations (17), (18), and (19) and the
analogous equations in the previous sections, equations (4), (5), and
(6).
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Aggregation

The setup we have just described allows for a considerable degree of
heterogeneity within the city compared to the stylized model presented
earlier. In particular, all locations allow for simultaneous use by both
businesses and residents (mixed use), individuals living in any location
may commute to any other location for work, and commute costs be-
tween any two locations are specific to that pair of locations, so that
it is possible to take into account the particular geographical makeup
or road infrastructure of a city. However, having allowed for this high
level of heterogeneity in the city, it becomes important to be able to
aggregate economic activity at the level of a location, such as a census
tract for practical purposes. The steps in this subsection address this
question.

Distribution of Utility

Since residents of j who work in i have different preferences s, drawn
from equation (16), for commuting to that location, it follows that

Gij(u) = Pr(uij < u) = Fij

u
[
κijq

r
j

]1−γj

wi

 ,

or

Gij(u) = e−Φiju
−θ
, Φij = λijw

θ
i

[
κijq

r
j

](γj−1)θ
. (20)

Each resident of j chooses to commute to the location i that offers
maximum utility of all possible locations. Therefore,

Gj(u) = Pr(max
i
{uij} < u) =

∏
i

Pr(uij < u)

=
∏
i

e−Φiju
−θ
.

Thus, it follows that

Gj(u) = e−Φju
−θ
, Φj =

∑
i

Φij . (21)

In other words, the distribution of resident utility in each location j
of the city is itself a Fréchet distribution. The expected utility from
residing in j is then given by

uj = Γ

(
θ − 1

θ

)(
qrj
)γj−1

(∑
i

λijw
θ
i κ

(γj−1)θ

ij

) 1
θ

, (22)
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where Γ(.) is the Gamma function.1 The expected utility from living in
j, therefore, is a weighted average of the utility gained from commuting
to the different business areas (raised to the θ). Observe that in contrast
to utility in the stylized model, equation (6), the expected utility from
living in location j of the city now involves not only the price of housing
at that location, but also information about the entire city, including
the entire distribution of wages and associated commuting costs, since
residents of j can in principle commute to any other location i to work.

Commuting Patterns

Let πij represent the proportion of residents living at location j and
commuting to location i. Commuting patterns can then be described
by the following relationship,

Rij = πijRj ,

where Rij and Rj are, respectively, the number of residents commuting
from j to i and the total number of residents living at j. In particular,

πij = Pr

[
uij > max

n6=i
{unj}

]
.

From equation (20), we have that Gij(u) = e−Φiju
−θ
so that gij(u) =

θu−(θ+1)Φije
−Φiju

−θ
. It follows that

πij =

∞∫
0

θu−(θ+1)Φije
−Φiju

−θ
G̃j(u)du, (23)

where G̃j(u) is defined as in equation (21) but with Φ̃j =
∑
n6=j

Φnj ,

which also implies that Φj = Φ̃j + Φij . In Appendix B, we show that
this expression reduces to

πij =
λijw

θ
i κ

(γj−1)θ

ij∑
i

λijwθi κ
(γj−1)θ

ij

. (24)

In other words, the proportion of residents living in j and commuting to
i for work depends on wages earned in i adjusted for commuting costs
when coming from j, relative to a weighted average of wages earned
elsewhere adjusted for the corresponding commute (raised to the θ).

1 A derivation of this result is given in Appendix A.
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The residential price at location j does not affect commuting patterns
from j to i since it is specific to j and is faced by any resident who
wants to live at j regardless of commute. By construction,

∑
i

πij = 1.

The Residential Market

Recall that hij(s) = hij represents housing consumption for those living
in j and commuting to i. It follows that average housing per resident
at location j, hj , is given by

hj =
∑
i

πijhij

=
(1− γj)
qrj

∑
i

πijwi.

As in the stylized model of the previous section, we assume that each
location is endowed with one unit of land available for housing and that
this land is fully developed.2 In equilibrium, therefore, the residential
market must satisfy Rjhj = 1 similarly to equation (9) or

Rj =
qrj

(1− γj)
∑
i

πijwi
. (25)

As in the previous section, let u denote the utility available to indi-
viduals from residing in alternative cities. To the extent that workers
can move to or from another city, and are free to reside at any location
within the city, it must be the case that in equilibrium uj = u ∀j.
Therefore, we have that for any location,

u = Γ

(
θ − 1

θ

)(
qrj
)γj−1

(∑
i

λijw
θ
i κ

(γj−1)θ

ij

) 1
θ

⇒ qrj =

[
u

Γ
(
θ−1
θ

)] 1
γj−1

(∑
i

λijw
θ
i κ

(γj−1)θ

ij

) 1
θ(1−γj)

. (26)

Comparing the residential price at location j, qrj , with its simpler analog
in the stylized model in equation (8), it is clear that the quantitative
spatial model allows residential prices to be determined by many more

2 Owens et al. (2017) present a more flexible model in which residential land in
any one location may be vacant, partially developed with some areas left for developers
to build on, or fully developed. In that model, a coordination problem arises between
developers and residents (no one wants to be the first mover) that potentially traps
neighborhoods in an equilibrium where they remain vacant.
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factors, including the distribution of wages across all locations in the
city as well as all commuting costs. It is this richness that allows
for spatial variation in allocations and prices across locations in the
city that is unavailable in the more stylized framework of the previous
section.

The City Labor Market

Since πijRj denotes the number of residents living in location j who
commute to the business area of location i for work, labor market
clearing in the city requires that

Li =

J∑
j=1

πijRj ,

or alternatively (
Aiβ

wi

) 1
1−α−β

=
J∑
j=1

πijRj . (27)

Solving for the City Equilibrium

We represent the parameters of the quantitative spatial model in a
vector, P = (α, β, θ, u, γj , Ai, κij , λij). Conditional on P, equations
(24), (25), (26), and (27) then make up a system of J2 + 3J equations
in the same number of unknowns, πij(P), Rj(P), qrj (P), and wi(P).

Importantly, the equilibrium allocations in this model allow for con-
siderably more heterogeneity than in the stylized model of the previous
section. Since they are specific to locations within the city, equilibrium
allocations of the quantitative spatial model such as commuting pat-
terns, πij(P), or equilibrium prices, such as residential prices, qrj (P),
and wages, wi(P), may be directly matched to their data counterpart
at the block or census tract level. In contrast, equilibrium allocations
of the stylized model in the previous section could only be indexed by
distance, `, from a central point in the city. The next section addresses
this last point in more detail.

Unlike the conventional monocentric model of the previous section,
equilibrium existence and uniqueness are more challenging to prove in a
quantitative spatial framework. However, Appendix C summarizes the
key equations needed to compute the model equilibrium and provides
an algorithm that yields the corresponding numerical solution given
the model’s parameters, P. Moreover, despite its added complexity, the
quantitative spatial model retains some degree of analytical tractability.
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For instance, as in the monocentric model of the previous section, we
can derive a simple expression for the elasticity of residential prices
with respect to commuting costs.

Proposition 3: The elasticity of residential prices with respect to
commuting costs, εqrj ,κij , is given by −πij .

Proof: We have that qrj =

(
ū

Γ( θ−1θ )

) 1
γj−1

(∑
i λijw

θ
i κ

(γj−1)θ

ij

) 1
θ(1−γj) .

Then

∂qrj
∂κij

=(
ū

Γ
(
θ−1
θ

)) 1
γj−1 1

θ(1− γj)

(∑
i

λijw
θ
i κ

(γj−1)θ

ij

) 1
θ(1−γj)

−1

(γj−1)θλijw
θ
i κ

(γj−1)θ−1

ij

= −1 ·
λijw

θ
i κ

(γj−1)θ−1

ij∑
i λijw

θ
i κ

(γj−1)θ

ij

qrj

It follows that

εqrj ,κij =
∂qrj
∂κij

· κij
qrj

= −
λijw

θ
i κ

(γj−1)θ−1

ij qrj∑
i λijw

θ
i κ

(γj−1)θ

ij

· κij
qrj

= −πij .

This finding is intuitive. A 1 percent increase in commute costs
between any two locations, κij , lowers residential prices by the share
of residents affected by that commute. In this relatively simple spatial
environment, even if it allows for more flexibility than the monocentric
setup, the relationship is exact. More importantly, unlike the analogous
elasticity in the more stylized model, the share of residents is itself an
endogenous outcome that depends on all of the city’s characteristics,
P, and thus will move along with the entire distribution of wages and
population across locations in any policy experiment.

5. MATCHING THE QUANTITATIVE SPATIAL
MODEL TO URBAN MICRODATA

As elaborated upon in earlier sections, it is now possible to model cities
by matching these types of quantitative spatial models to available mi-
crodata. For the purpose of the discussion below, the parameters in P
fall into two broad classifications: citywide parameters and location-
or neighborhood-specific parameters. The parameters in P that are
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not location specific have generally accepted values in the literature.
For example, Monte et al. (2016) estimate θ (the parameter that gov-
erns the shape of the distribution of the idiosyncratic preference, s, of
commuting from i to j) to be 4.43. Ciccone and Hall (1996) estimate
α (the production externality) to be 0.06, and Ahlfeldt et al. (2015)
estimate β (the parameter that defines the relationship between labor
and output, separate from the externality) to be 0.80, while u is a
normalizing constant. The parameters that are location-specific poten-
tially present a greater computational challenge since there are many
of them. For example, in a city with 1, 000 census tracts, there are
1, 000, 000 λij’s. Other location-specific parameters, such as pairwise
commuting costs, κij , may be directly calibrated to data on distances
or commuting times.

The Longitudinal Employer-Household Dynamics Origin-Destination
Employment Statistics provide reliable data on cities at the census tract
level, including commuting patterns (πij), resident population (Rj),
employment (Li), and wages (wi). Other detailed data on cities are
also available; for example, residential prices (qrj ) are available from
CoreLogic or county assessors’offi ces. In general, such data show con-
siderable unevenness across space within a city.

We now describe how, in our simple framework, the location-specific
parameters of our quantitative spatial model may be calibrated to ex-
actly match, in equilibrium, all pairwise commuting patterns, πij , the
exact distribution of population across space, Rj , and thus also the
distribution of employment, Li, and the exact distribution of wages in
the city, wi, in a given benchmark period. In particular, we choose
the parameters of the model (λij , γj , Ai) to match the observations
(πij , Rj , wi) as equilibrium outcomes. In this way, counterfactual ex-
ercises involving a change to some exogenous aspect of the city, or a
change in urban policy, are rooted in a model that, as a benchmark, is
able to exactly match basic observed allocations and prices in the city
as equilibrium outcomes.

Recall that commuting patterns, πij , are given by equation (24),

πij =
λijw

θ
i κ

(γj−1)θ

ij∑
i

λijwθi κ
(γj−1)θ

ij

,

where κij ∈ [1,∞). If πij = 0, then either λij = 0 or κij → ∞.
Commuting patterns can be alternatively expressed in terms of the
Head and Ries (2001) index,

πij
πjj

=
λijw

θ
i κ

(γj−1)θ

ij

λjjwθjκ
(γj−1)θ

jj

.
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Then, conditional on θ = 4.43 and values for γj , the preference pa-
rameters, λij , can then be chosen to be consistent with commuting
patterns,

λij = πij

(
wj
wi

)θ ( κij
κmin

)(1−γj)θ (λjj
πjj

)
, (28)

where κmin is a lower bound on κjj .3 Since κij may be directly inferred
from commuting costs data, this approach to obtaining λij to match
commuting patterns presumes we are also able to match wages, wi, as
part of the model inversion. We show below that this can indeed be
done through the choice of location-specific productivities, Ai. With
this in mind, we first choose γj so as to match the distribution of
resident population across space, Rj , conditional on πij and wi.

The number of residents in location j is given by

Rj =
qrj

(1− γj)
∑

i πijwi
. (29)

Using equations (26) and (28) with κmin = 1, and the normalization(
λjj
πjj

)
= 1, for all locations j, equation (29) simplifies to

Rj(γj) =

(
Γ
(
θ−1
θ

)
wj

ū

) 1
1−γj 1

(1− γj)
∑

i πijwi
. (30)

Notice that as γj → 0+, Rj(γj)→
Γ( θ−1θ )wj
ū
∑
i πijwi

and as γj → 1−, Rj(γj)→

∞. Therefore, one may choose ū so that Rj >
Γ( θ−1θ )wj
ū
∑
i πijwi

for all j and
numerically solve the expression in equation (30) to obtain a set of γj
that exactly matches the distribution of Rj , conditional on πij and wi.
Since the distribution of γj then depends on ū, and γj represents the
share of income spent on housing in a given census tract j, we choose
ū so that the mean of γj is 0.76 as in Ahlfeldt et al. (2015).

Since commuting patterns πij can be exactly matched, given γj and
wages wi, through the choice of λij in equation (28), it remains only
to ensure that the model is consistent with the spatial distribution
of wages in an equilibrium benchmark version of the model. Using
equation (26), we can write the city labor market clearing condition,
equation (27) as (

Aiβ

wi

) 1
1−α−β

=

J∑
j=1

πijRj ,

3 Since
∑
i

πij = 1, one needs to also normalize the λij’s, for example,
λjj
κjj

= 1 ∀j.
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in which case we can simply choose location-specific productivities,
Ai, to ensure that equilibrium benchmark wages exactly match the
distribution of wages in the city,

Ai =
wi
β


J∑
j=1

πijRj


1−α−β

. (31)

Observe that on the righthand side of equation (31), we are free to use
the data on commuting patterns, πij , and residential population, Rj ,
since those are matched by construction through the choices of λij and
γj in equations (28) and (30).

6. CONCLUSION

The development of the new quantitative equilibrium models has initi-
ated a more robust and realistic framework with which to model cities.
This framework will enable urban economists to provide empirically
driven insight into future theoretical or structural work on how cities
grow, shrink, and change. By offering a more accurate grounding for
empirical models, it will also allow for more robust counterfactual pol-
icy exercises that can inform practitioners and policymakers regarding
strategies for urban development.
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APPENDIX: APPENDIX A

Under the maintained assumptions, expected utility at location j is
given by

uj =

∞∫
0

θΦju
−θe−Φju

−θ
du.

Consider the change in variables,

y = Φju
−θ, dy = −θΦju

−(θ+1)du.

Then, we have that

uj =

∞∫
0

Φ
1
θ
j y
−1
θ e−ydy = Γ

(
θ − 1

θ

)
Φ

1
θ
j ,

from which equation (22) in the text follows.

APPENDIX: APPENDIX B

From equation (23), we have that

πij =

∞∫
0

θu−(θ+1)Φije
−Φiju

−θ
e−Φ̃ju

−θ
du

=

∞∫
0

θu−(θ+1)Φije
−Φju

−θ
du.

Consider the change of variables,

y = Φju
−θ, dy = −θΦju

−(θ+1)du.
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It then follows that

πij = Φij

∞∫
0

θu−(θ+1)e−Φju
−θ
du

=
Φij

Φj

∞∫
0

e−ydy

=
Φij

Φj
,

where recall that Φij = λijw
θ
i

[
κijq

r
j

](γj−1)θ
and

Φj =
(
qrj

)(γj−1)θ∑
i

λijw
θ
i κ

(γj−1)θ

ij . Equation (24) in the text directly

follows.

APPENDIX: APPENDIX C

The Basic Set of Equations and Unknowns

Let LDi and LSi represent, respectively, labor demand and labor sup-
ply in location i. Given a benchmark or counterfactual set of para-
meters, P, each endogenous variable in the model can ultimately be
expressed as depending only on a vector of wages across all locations,
w = (w1, ..., wJ)′, and P,

πij(w) =
λijw

θ
i κ

(γj−1)θ

ij∑
i λijw

θ
i κ

(γj−1)θ

ij

,

qrj (w) =

[
ū

Γ
(
θ−1
θ

)] 1
γj−1

(∑
i

λijw
θ
i κ

(γj−1)θ

ij

) 1
θ(1−γj)

,

Rj(w,π, q) =
qrj

(1− γj)
∑

i πijwi
,

LDi (w) =

(
Aiβ

wi

) 1
1−α−β

,

LSi (π,R) =
∑
j

πijRj .
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Then, finding an equilibrium of the model is equivalent to finding a
vector of wages that clears the labor market; LDi (w) = LSi (w) for all
locations i = 1, ..., J . Put another way, the task is to find a vector
w∗ ∈ RJ+ such that

(LDi − LSi )(w∗) =

(
Aiβ

wi

) 1
1−α−β

−
∑
j

λijw
θ
i κ

(γj−1)θ

ij∑
i λijw

θ
i κ

(γj−1)θ

ij

[
ū

Γ( θ−1θ )

] 1
γj−1

(∑
i λijw

θ
i κ

(γj−1)θ

ij

) 1
θ(1−γj)

(1− γj)
∑

i

λijwθi κ
(γj−1)θ
ij∑

i λijw
θ
i κ

(γj−1)θ
ij

wi

= 0

Several algorithms exist to numerically solve nonlinear system of equa-
tions, and MATLAB’s fsolve function handles this particular system
well.

Numerical Algorithm

Some quantitative spatial models can result in systems whose features
(such as nondifferentiability in the presence of thresholds or binding
constraints on available land) make traditional algorithms diffi cult to
apply. In such cases, a simple “guess-and-iterate”method can be con-
structed to calculate solutions. We outline such a method here as it
applies to our model.

1. Choose a tolerance level ε > 0 and guess a vector of wages, wn.

2. Calculate the implied matrix of flows: πij(wn) =
λijw

θ
n,iκ

(γj−1)θ
ij∑

i λijw
θ
n,iκ

(γj−1)θ
ij

.

3. Calculate the implied prices:

qrj (wn) =

[
ū

Γ( θ−1θ )

] 1
γj−1

(∑
i λijw

θ
n,iκ

(γj−1)θ

ij

) 1
θ(1−γj) .

4. Using the prices and flows calculated in steps two and three, cal-

culate the implied number of residents: Rj(wn) =
qrj (wn)

(1−γj)
∑
i πij(wn)wi

.

5. Using the residents calculated in step four, calculate the implied
labor supply in each labor market: LSi (wn) =

∑
j πij(wn)Rj(wn).

6. Calculate the implied labor demand in each labor market: LDi (wn) =(
Aiβ
wi

) 1
1−α−β

.
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7. At the vector of wages, wn, calculate the implied excess demand
for labor in each market: LDi (wn)− LSi (wn).

8. If the aggregate labor market fails to clear,
∑

i|LDi (wn)−LSi (wn)| >
ε, then update the vector of wages as follows:

wn+1 = wn + δ
(
LDi (wn)− LSi (wn)

)
,

for some δ > 0. This updating rule raises wages in markets
where there is excess demand for labor or reduces it where there
is excess supply.

9. Repeat steps two through eight until
∑

i|LDi (wn)−LSi (wn)| ≤ ε.
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A
t first glance, many macroeconomic time series exhibit some
form of nonlinearity. For instance, output growth and infla-
tion show less volatility in the 1980s and 1990s than during

the Great Inflation period of the 1970s, an observation that has been
labeled the Great Moderation. Over the business cycle, the unemploy-
ment rate exhibits an asymmetric sawtooth pattern whereby it rises
rapidly during downturns and declines only gradually during a recovery.
Many price variables, such as exchange rates or commodity prices, ap-
pear stable for a long period followed by sudden level shifts. The liter-
ature has studied various specific forms of nonlinearity– such as struc-
tural breaks, time-varying volatility, or business cycle asymmetries–
using sophisticated time-series methods ranging from threshold and
Markov switching to vector-autoregressions (VARs) with time-varying
parameters and stochastic volatility. The result as to whether there is
nonlinearity in the data has been mixed.1 A key issue in this
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Amir-Ahmadi, Matthes, and Wang (2016), who use a wide range of empirical method-
olgies, data sets, and sample periods.
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literature is that tests for nonlinearity tend to have low power against
linear alternatives.

Against this background, time-varying parameter vector-
autoregressions (TVP-VARs) with stochastic volatility have emerged
as a promising framework to analyze a wide range of underlying non-
linearities.2 In this class of models, the coeffi cients of the time-series
representation for economic data are allowed to vary over time. The
idea is that this feature approximates the underlying nonlinearity in
the data-generating process to a satisfactory degree and in a parsimo-
nious manner. For instance, a structural break in a deep parameter, or
a switch in regimes, could be captured by a shock to the innovation in
a random-walk VAR coeffi cient. Since TVP-VARs offer this flexibility,
that is, since they can be understood as approximations to a wide range
of underlying nonlinear behavior, they have become increasingly popu-
lar in recent years as empirical modeling devices.3 TVP-VARs are esti-
mated almost exclusively using Bayesian methods. This is necessitated
by the fact that, as with any model that features many parameters,
the use of prior information is crucial to deliver sensible estimates. In
TVP-VARs the choice of priors is of special importance because, with
standard sample sizes, they have a substantial impact on how much of
the variation in observables is attributed to stochastic volatility versus
time variation in other coeffi cients.4 At the same time, there is a grow-
ing sense, e.g., Lubik and Matthes (2015), that the conclusions drawn
from the TVP-VAR literature warrant skepticism. More specifically,
TVP-VARs often find not much time variation in the lag coeffi cients.
Instead, they attribute the variation seen in the data to movements in
volatilities as the right incidence of shocks can in principle capture a
range of time-series patterns.

The purpose of this article is to investigate the extent to which an
inherently nonlinear TVP-VAR with stochastic volatility does, in fact,
pick up nonlinear features in the underlying data. We do so by apply-
ing the TVP-VAR methodology to data generated from a simple (but
nonlinear) search and matching model that is designed to generate
endogenous shifts in parameters. We thus ask whether a TVP-VAR
is capable of detecting the resulting nonlinearity in Beveridge curve
dynamics. We follow standard procedure and prescriptions in the lit-
erature to specify the TVP-VAR and to choose the prior. The results
from these benchmark exercises show that the concerns about proper

2 See Lubik and Matthes (2015) for an introduction and survey of TVP-VARs.
3 See Canova, Ferroni, and Matthes (2015) for a discussion of these issues.
4 This point is demonstrated by means of a simple example in Lubik and Matthes

(2015).
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Figure 1 The Beveridge Curve over the Great Recession

attributions of the sources of nonlinearity are warranted. We attempt
to resolve some of these concerns by means of an alternative strategy
in choosing priors with only partial success. While these findings are
largely negative and are also highly conditional on the chosen theoret-
ical model environment, we argue that they serve as a cautionary tale
when conducting and interpreting TVP-VAR studies.

Our chosen framework to analyze these issues is the labor market
regularity captured by the so-called Beveridge curve. It describes the
joint behavior of unemployment and vacancies over the business cy-
cle and is often seen as indicative of the state of the labor market.
The Beveridge curve depicts a negative relationship between these two
variables, whereby movements along this curve reflect expansions and
recessions. The behavior of the curve over the course of the Great
Recession and its aftermath has attracted much interest in the liter-
ature (e.g., Barlevy 2011; Lubik 2013; or Şahin et al. 2014). Figure
1 shows the Beveridge curve for data over the Great Recession pe-
riod. The unemployment-vacancies relationship is often represented
by a scatter plot of the two series against each other, resulting in a
downward-sloping curve. For purposes of illustration, in Figure 1 we
fitted a regression line to data from 2001 up to September 2008, which
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cluster tightly around the Beveridge curve. At the onset of the Great
Recession, the unemployment rate rises rapidly and vacancies fall. In
the graph, the data points start moving off the normal curve and ap-
pear to settle at a location above their normal, or expected, level. In
other words, during the Great Recession, the Beveridge curve appears
to have shifted outward in a discrete manner, which could be indicative
of a structural break in a labor market parameter.

More generally, the Beveridge curve over the last sixty years reveals
a substantial degree of nonlinearity (see Benati and Lubik 2014). There
are discernible inward and outward shifts, tilts, and even the occasional
slope reversal over short periods. This is not necessarily prima facie
evidence of the presence of nonlinearities since these patterns can be ra-
tionalized through the right incidence of various shocks (e.g., Blanchard
and Diamond 1989; Barlevy 2011; or Lubik 2013). It is nevertheless
suggestive of underlying structural changes in the labor market. We
take this observation as a starting point for our investigation into the
practice of TVP-VAR estimation.

We develop a simple search and matching model of the labor mar-
ket, where we allow for endogenous threshold switching in a key para-
meter, namely in the effi ciency of a match between employer and job
seeker. This match effi ciency is captured by a level parameter in the
matching function and summarizes the effi cacy of the labor market.
We assume that it can take on two values, which indicate different but
parallel locations of the Beveridge curve. A high level of match effi -
ciency translates into a location of the Beveridge curve closer to the
origin, whereby a lower level shifts it outward. Under high effi ciency,
employers need to open fewer vacancies for the same number of job
seekers to fill a desired number of positions. The economy switches be-
tween the two effi ciency parameters when a threshold embedded in the
model is crossed endogenously. We assume that this threshold is given
by a low level of output that we associate with a weak labor market
performance. This threshold can be reached with a sequence of bad
and persistent productivity draws; that is, in this case, the labor mar-
ket exhibits damage to the extent that the Beveridge curve shifts only
when a recession is deep and drawn out. In terms of the behavior of
the model, this threshold switch implies nonlinearity in the dynamics
of the economic variables.

In order to study the implications of this specific form of nonlin-
earity for empirical modeling, we solve the full nonlinear model and
simulate data on unemployment and vacancies. We then estimate a
Bayesian TVP-VAR with stochastic volatility on these data and assess
how well the nonlinear atheoretical time-series model captures the un-
derlying nonlinearity in the model. Given a standard initialization and
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choice of priors, the evidence suggests that the TVP-VAR attributes al-
most all of the changes in the simulated data to changes in the reduced-
form innovation variances. We argue that this raises doubts as to the
validity of TVP-VAR models with standard priors in detecting shifts.
In order to address this shortcoming, we suggest an approach that tries
to elicit priors for the TVP-VAR, but it is only moderately successful.
In order to better capture the time variation in parameters, researchers
will need to adapt the priors to the question at hand in more sophis-
ticated ways. One possibility that delivers better performance is to
estimate the hyperparameters associated with the parameters govern-
ing the amount of time variation in the model (Amir-Ahmadi, Matthes,
and Wang 2017).

The contribution of this article is twofold. First, using simulated
data, we study to what extent a generic TVP-VAR with stochastic
volatility deals with a specific form of nonlinearity in these underlying
data. Our results suggest that some findings of this literature should be
regarded with skepticism since they attribute too much of this nonlin-
earity to time variation in the shocks rather than to structural breaks
in the underlying model parameters. Second, and of independent in-
terest, we demonstrate how Beveridge curve shifts can be explained
conceptually via an endogenous mechanism that moves the economy
between a high-performing and a low-performing labor market. This
mechanism can thus be used to address issues like hysteresis, where
temporary shocks, such as business cycle shocks, can have permanent
effects.

The article is structured as follows. In the next section, we lay out
our simple modeling framework of the standard search and matching
model and describe how we introduce the threshold-switching mech-
anism that leads to nonlinearity in the model. The second section
describes how we calibrate the model. In this section, we also describe
simulation results from the model and discuss the TVP-VAR that we
use to estimate the simulated data. Section 3 presents the estimation
results and details the shortcomings of the TVP-VAR approach in this
environment, while Section 4 introduces an alternative method to elicit
priors for the TVP-VAR. The final section concludes.

1. A STRUCTURAL MODEL OF BEVERIDGE
CURVE SHIFTS

We now describe the simple structural labor market framework that we
use to model the Beveridge curve. We hereby draw heavily from the
existing literature, most prominently Shimer (2005). The specification
of the model follows Lubik (2013). Our working assumption is that
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the Beveridge curve has experienced a structural shift, as seen by the
evolution of unemployment and vacancies in Figure 1. We model the
structural break in terms of a threshold-switching process: when a tar-
get variable, aggregate output in our case, hits a threshold in terms of
deviations from its long-run level, it triggers a shift in a structural labor
market parameter. The idea is to capture the observation that Bev-
eridge curve shifts appear to occur during strong and deep recessions
and expansions (see Benati and Lubik 2014).

We assume that in our model economy time is discrete and the time
period is a quarter. The labor market in this economy is characterized
by search and matching frictions, which help rationalize the existence
of equilibrium unemployment. Specifically, a job, that is, a relationship
between a worker and a firm for the purpose of engaging in production,
is the outcome of a matching process. New jobs M are generated by
combining unemployed job seekers U with job openings (vacancies)
V . This process can be represented by a constant returns matching
function, Mt = m(st)U

ξ
t V

1−ξ
t , where 0 < ξ < 1 is the match elasticity.

m(st) > 0 is the match effi ciency that captures the ease with which the
unemployed are transformed into workers.

We assume that match effi ciency is subject to structural shifts.
Specifically, the level parameter in the matching function m(st) can
switch between two values, st ∈ {sH , sL}, with m(sL) < m(sH). In our
framework, the switch is generated endogenously by a trigger mecha-
nism, in contrast to the exogenous regime changes in Markov-switching
models. We implement this trigger by tying it to the severity of the
business cycles. Whenever GDP deviates too much from its current
target level, the labor market experiences a structural shift in terms
of a change in the matching effi ciency. As Lubik (2013) argues, Bev-
eridge curve shifts are most parsimoniously and plausibly modeled by
a change in this one parameter. More specifically, one can show that
declines in match effi ciency are associated with outward shifts of the
curve.

For the purposes of capturing Beveridge curve dynamics, we assume
that the threshold mechanism is attached to aggregate output. More
specifically, we assume that match effi ciency mt = m(st) follows a
threshold process:

mt =

{
m(sH) if Yt ≥ Y
m(sL) if Yt < Y

,where m(sH) > m(sL). (1)

Yt is aggregate output and Y is the threshold at which the labor mar-
ket experiences a structural shift. In the simple search and matching
framework, we assume linear production so that Yt is given by:

Yt = AtNt, (2)
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where Nt is the stock of employed workers, and At is an aggregate
productivity process that obeys the law of motion:

logAt = (1− ρA) logA+ ρA logAt−1 + εA,t, (3)

where 0 < ρA < 1 and εA,t ∼ N (0, σ2
A). We normalize the mean of the

process A to a value of unity without loss of generality.
The dynamics of the model are such that sequences of low and

persistent productivity draws– in other words, a recession– will occa-
sionally move aggregate output below the threshold Y . This damages
the labor market in the sense that match effi ciency declines and the
Beveridge curve shifts outward. This shift is persistent because of the
persistence in the productivity process and the inherent persistence of
employment in the search and matching framework. Once the reces-
sion abates, the labor market recovers in terms of a switch back to a
“normal”level of match effi ciency. In that sense, our framework shares
similarities with the “plucking”model of recessions, where the economy
is plucked away occasionally from its normal evolution due to a deep
recession but then transitions back over time.

The dynamics of employment are governed by the following rela-
tionship:

Nt = (1− χt)
[
Nt−1 +m(st−1)U ξt−1V

1−ξ
t−1

]
. (4)

This is a stock-flow identity that relates the stock of employed workers
N to the flow of new hires, M = mU ξV 1−ξ, into employment. The
timing assumption is such that variations in match effi ciency do not
affect employment contemporaneously. Unemployment is defined as:

Ut = 1−Nt, (5)

where the labor force is normalized to 1. Inflows to unemployment
arise from exogenous job destruction at rate 0 < χ < 1. We assume
that the separation rate χ follows the process:

logχt = (1− ρχ) logχ+ ρχ logχt−1 + εχ,t, (6)

where 0 < ρχ < 1 and εχ,t ∼ N (0, σ2
χ).

The matching function can be used to define the job-matching rate,
i.e., the probability that a firm is matched with a worker:

q(θt) =
Mt

Vt
= mtθ

−ξ
t , (7)

where θt = Vt/Ut is labor market tightness. From the perspective of an
individual firm, the aggregate match probability q(θt) is exogenous, and
hence new hires are linear in number of vacancies posted for individual
firms: Mit = q(θt)Vit.
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A firm chooses the optimal number of vacancies Vt to be posted
and its employment level Nt by maximizing the intertemporal profit
function:5

E0

∞∑
t=0

βt [AtNt − wtNt − κVt] , (8)

subject to the employment accumulation equation (4). Profits are dis-
counted at rate 0 < β < 1. Wages paid to the workers are w, while
κ > 0 is a firm’s fixed cost of opening a vacancy. The first order
conditions are:

Nt : µt = At − wt + βEt(1− χt+1)µt+1, (9)

Vt : κ = q(θt)βEt(1− χt+1)µt+1, (10)

where µt is the multiplier on the employment equation. Combining
these two first-order conditions results in the job-creation condition:

κ

q(θt)
= βEt

[
(1− χt+1)

(
At+1 − wt+1 +

κ

q(θt+1)

)]
, (11)

which captures the trade-off faced by the firm. The marginal, effective
cost of posting a vacancy, κ

q(θt)
, that is, the per-vacancy cost κ ad-

justed for the probability that the position is filled, is weighed against
the discounted benefit from the match. The latter consists of the sur-
plus generated by the production process net of wage payments to the
workers plus the benefit of not having to post a vacancy again in the
next period.

Wages are determined based on the Nash bargaining solution: sur-
pluses accruing to the matched parties are split according to a rule
that maximizes the weighted average of the respective surpluses. We
relegate the full discussion of the derivation to the Appendix (see also,
Lubik 2013). The resulting wage equation is:

wt = η (At + κθt) + (1− η)b. (12)

Wage payments are a weighted average of the worker’s marginal prod-
uct At, of which the worker can appropriate a fraction η, and the out-
side option b, of which the firm obtains the portion (1− η). Moreover,
the presence of fixed vacancy posting costs leads to a hold-up problem
where the worker extracts an additional ηκθt from the firm.

5 For ease of exposition and notation, we will drop the firm-specific subscripts and
discuss the problem of a representative optimizing firm with the understanding that
firms are ex-ante heterogeneous in this framework.
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We can substitute the wage equation and the job-matching rate
into the job-creation condition to obtain:

κ

mt
θξt = βEt

[
(1− χt+1)

{
(1− η) (At+1 − b)− ηκθt+1 +

κ

mt+1
θξt+1

}]
.

(13)
Firms are more willing to post vacancies if productivity shocks increase
the wedge to the outside option of the worker; they are less willing if
there are expected separations as this will reduce the present value of
a hired worker.

In our simulation and empirical analysis, we make use of the sim-
ple structure of the model. The dynamics can be fully described by
two equations, the employment accumulation equation (4) and the
job-creation condition (13), after convenient substitutions. Intuition
for why an outward shift of the Beveridge curve is generated by a fall
in match effi ciency can be gleaned from equation (4) and the logic of
the matching function. At any given unemployment rate, firms would
need to post more vacancies to achieve a target hiring quota since the
matching process is now less effi cient.6 However, there is also a coun-
tervailing effect, namely through the influence of match effi ciency on
firms’vacancy posting decisions. A fall in m raises effective vacancy
posting costs as captured by the left-hand side of the job-creation condi-
tion (13). This implies that vacancies are increasing in match effi ciency.
The overall effect of a change in m therefore depends on the interaction
of these two margins. As Lubik (2013) shows, the stock-flow identity of
the law of motion has to hold in equilibrium, so that the first effect via
the matching function dominates and shifts the Beveridge curve out-
ward for a smaller m, whereas the effect via the job-creation margin
generates movements along this equilibrium relationship. We now turn
to a discussion of our solution and simulation approach.

2. SIMULATION AND ESTIMATION

Calibration

We calibrate our model to representative parameter values in the lit-
erature. Our benchmark calibration rests on the parameter estimates

6 Formally, this can also be seen from the steady-state representation of the em-
ployment equation (4), which describes an equilibrium locus of combinations of U and
V such that inflows and outflows to (un)employment are balanced:

V =

(
1

m

χ

1− χ

) 1
1−ξ

(
1− U
U

) 1
1−ξ

U.
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Table 1 Calibration

Parameter Value Source

Separation Rate χ 0.036 Shimer (2005); Monthly JOLTS Data

Match Elasticity ξ 0.49 Beveridge Curve Estimation: Lubik (2013)
Match Effi ciency mH 0.90 Beveridge Curve Estimation: Lubik (2013)
Match Effi ciency mL 0.70 Beveridge Curve Estimation: Lubik (2013)

Benefit b 0.90 Hagedorn and Manovskii (2008)
Bargaining η 0.49 Hosios-Condition: η = ξ
Job Creation Cost κ 0.18 Imputed from Steady-State Sample Means

V = 2.6% and U = 5.2%.

Discount Factor β 0.99 Annual Real Interest Rate
Productivity A 1.00 Normalized
Threshold Value Y 0.91 Cumulative Decline in U.S. GDP 2008—10

AR(1) Coeffi cient ρA 0.95 Standard Value
AR(1) Coeffi cient ρs 0.95 Standard Value
StD Productivity σA 0.01 Standard Value
StD Separation Rate σs 0.01 Standard Value

in Lubik (2013) for the period 2000—08, after which a potential shift
in the Beveridge curve appears evident from the data (see Figure 1).
The calibrated parameters are reported in Table 1. We set the mean of
the separation rate to a value of 0.036. This follows the value reported
in Shimer (2005) for monthly data. We choose the match effi ciency in
the high state mH = 0.90 and in the low state mH = 0.70 based on
the estimate in Lubik (2013). The match elasticity is set to ξ = 0.49.
These values broadly determine the slope and the location of the Bev-
eridge curve in a scatter plot of vacancies and unemployment. We set
the discount factor β = 0.99 and choose the bargaining parameter by
imposing the Hosios-condition for social effi ciency, η = ξ = 0.49. As
mentioned before, we normalize the mean of the level of productivity
to A = 1. Next, we assume that the outside option of the worker makes
up 90 percent of the productivity level, b/A = 0.9. The calibration is
therefore close to that of Hagedorn and Manovskii (2008), who argue
that a high outside option for the worker is needed to match the cycli-
cal properties of the data. The job-creation condition can then be used
to back out the cost parameter κ for a given level of unemployment
and vacancies. We compute these from the sample averages for the
period 2000—08, V = 2.6 percent and U = 5.2 percent. This implies
κ = 0.18. Finally, we set the threshold value for Y = 0.91 to approxi-
mate the cumulative decline in U.S. GDP over the course of the Great
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Figure 2 Policy Functions

Recession of 2007—09. We set the persistence parameter of the technol-
ogy process and the separation rate to 0.95 and the standard deviations
of the respective innovations to 0.01.

Model Simulation and Discussion

We solve the search and matching model with threshold switching in
match effi ciency fully nonlinearly by means of the monotone mapping
algorithm. The algorithm computes an approximation of the firm’s de-
cision rule, which determines the number of vacancy postings given the
economy’s state variables: employment Nt, the exogenous productivity
shock At, and the separation rate process χt. The algorithm is detailed
in the Appendix.

In order to understand the underlying dynamics of the model before
we turn to the estimation exercise, we compute the policy functions un-
der the baseline calibration for given realizations of the shocks. The key
driving force behind the shifts in the Beveridge curve are movements
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in productivity. An adverse enough realization of productivity At can
drive output below the threshold value, which then generates a switch
to a lower match effi ciency. However, equilibrium outcomes across the
threshold and within the distinct regions depend on the subtle interplay
between the state variables. To give a sense of the nonlinearities present
in our model, we plot the policy function for vacancies in Figure 2. For
the purposes of this exercise, we hold the productivity shock fixed at its
unconditional mean A = 1. Vacancies are graphed against the model’s
sole endogenous state variable, namely the level of employment. We
plot this relationship for different realizations of the separation rate χ.

Figure 2 shows the key aspect of the model. The policy function
has two distinct regions that coincide with the two distinct states of
the labor market. For given productivity, the policy function is discon-
tinuous at the implied threshold level, N = Y = 0.91. To the right
of the threshold, the labor market is in its normal state with match
effi ciency m(sH), and to the left, it has suffered from a deterioration of
the latter. We also note that vacancies are decreasing in employment.
When employment is high (and unemployment low), few vacancies are
being posted because the vacancy-unemployment ratio θ is high and
the labor market is tight. That is, the firm’s probability of finding a
worker is low relative to the costs of hiring him. When employment
is low, the labor market is awash with job seekers, so firms can more
easily recoup the implicit hiring costs. We also note that the vacancy
policy function is increasing in the productivity shock.

The policy function for the high match effi ciency case tends to lie to
the right and above the respective function in the low effi ciency regime.
Other things being equal, a lower match effi ciency reduces the firm’s
hiring probability and thereby the incentive to post vacancies relative
to the high effi ciency scenario. An interesting pattern emerges when we
additionally vary the policy function across separation rates. We find
that the higher the separation rate, the higher the vacancy postings
for given productivity and employment. More separations mean higher
churn, so for given employment, more vacancies need to be posted. The
differences between the policy functions, however, are quantitatively
small for the low effi ciency case and almost nonexistent under high
effi ciency.7 What is interesting is that the relationship between the
separation rate and levels of match effi ciency appears nonlinear in its
effect on vacancy postings.

7 This is consistent with the empirical finding in Lubik (2009) and the assumption
and interpretation in Shimer (2005) that movements in the separation rate are not key
drivers of labor market fluctuations.
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Table 2 Selected Moments

σ(V ) σ(U) σ(V/U) ρ(V,U)
Sample 1 0.53 1.88 0.32 -0.35
Sample 2 0.49 2.10 0.39 -0.51
Sample 3 0.43 1.22 0.41 -0.47
Sample 4 0.39 0.57 0.41 -0.43
Sample 5 0.35 1.09 0.66 -0.69

We now simulate the model for 590 periods under the benchmark
calibration. We discard the first 450 periods as burn-in. We are thus
left with a sample of size 140, of which we will use the first forty obser-
vations as a training sample in the estimation of the VAR. This leaves
us with 100 periods, or twenty-five years, of data for the actual esti-
mation. Table 2 reports moments for five representative samples. We
present this as a first pass for whether our regime-switching framework
can potentially capture salient labor market facts. The last column
shows the correlation between unemployment and vacancies, which is
considerably negative and ranges from -0.35 to -0.69 but is below the
correlation found in U.S. data. Nevertheless, the model can replicate
to some extent the strongly negative comovement between these two
labor market variables.

The model is less successful in terms of volatilities. The first two
columns of Table 2 report the standard deviations of vacancies and un-
employment relative to the standard deviation of (labor) productivity
At = Yt/Nt as in Shimer (2005). Vacancies are roughly half as volatile
as productivity, while unemployment is twice as volatile for samples 1
and 2. The standard deviation drops considerably in sample 4, while
samples 3 and 5 show the volatilities of the driving process and the
endogenous variables as roughly equal. The low volatility of vacancies
is also reflected in that of labor market tightness V/U . Our framework
thus falls prey to the critique espoused in Shimer (2005), namely that
the basic search and matching model has diffi culty replicating the ob-
served high volatility of unemployment and vacancies. As Lubik (2009)
shows, this can be remedied by additional shocks to the model such as
the exogenous variations in the separation rate, but this comes at the
price of reducing the correlation between U and V since a shock to
separations moves unemployment and vacancies in the same direction.

Figure 3 shows data plots of the five simulation samples, including
the training sample, in the same order as presented in Table 2. Each
row in the graph represents one simulation. The panels on the left show
time series plots of unemployment (in red) and vacancies (in blue).
The middle column shows the same data as a scatter plot in order to
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Figure 3 Simulated Data

highlight shifts in the Beveridge curve that are potentially induced by
the mechanism in our framework. The last column shows aggregate
output Yt for each simulation along with its threshold value for the
regime switch. The graphs confirm that the simulated model repro-
duces the negative correlation between unemployment and vacancies;
that is, the model generates a Beveridge curve. What is notable vi-
sually from the middle column of Figure 3 is that there are generally
two separate clusters of data (with the exception of the sample in the
fourth row). On the face of it, this lends support to the mechanism in
our framework as it can replicate the shift patterns seen in actual data.
This outcome is not preordained, however, as is evident from sample
4. In this simulation, the threshold is never reached despite values of
output persistently below its mean for extended periods. The model
economy suffers from a recession, but not one that is deep enough to do
damage to the labor market.8 Consequently, a stable Beveridge curve

8 This is consistent with the interpretation of Benati and Lubik (2014) that most
shifts of the Beveridge curve during recessions are too small to be plausibly and statis-
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pattern arises over the full simulation period. We also note that this
sample stands out in Table 2 because of the low volatilities of unem-
ployment and vacancies.9

In the other sample paths, output falls below the threshold for
lengthy periods. For instance, in the first row, the initial productivity
draw pushes output below the threshold and keeps it there for fifty pe-
riods. During this period, there are two opposing forces at play. First,
the productivity process is mean-reverting; that is, eventually there will
be enough positive innovations to push productivity above its mean and
thereby drag output back above the threshold.10 The strength of this
effect depends on the degree of persistence in productivity. If it is high
enough, very large negative draws can have staying power to keep the
economy below the threshold. Low persistence, on the other hand,
leads to faster mean reversion. The second, endogenous force works
against this pattern. If the economy is below the threshold, vacancy
postings are lower than they otherwise would be (see Figure 2 and the
discussion above). Consequently, matching with lower match effi ciency
reinforces the threshold switch. The observed Beveridge curve shift
would thus be consistent with the hypothesis that prolonged periods
of high unemployment are generated by mismatch in the labor market
(see Şahin et al. 2014).

To summarize, we show that the simple model with an endoge-
nous threshold switch can qualitatively and, with some qualifications,
quantitatively replicate the business cycle patterns of key labor market
variables. More importantly for our purposes, we demonstrate that our
model can generate structural shifts in the Beveridge curve. This raises
two questions. First, are these shifts large enough to be statistically dif-
ferent from a standard adjustment pattern, such as a counterclockwise
loop as discussed in Blanchard and Diamond (1989)? Using different
methodologies and sample periods, Lubik (2013) and Benati and Lubik
(2014) answered this question in the negative. In this paper, we ask a
second question, namely whether the shifts are even detectable as such
in a flexible time-series framework.

tically judged as structural. They are thus more consistent with the counterclockwise
loop identified by Blanchard and Diamond (1989). Yet, a few recessions, notably the
most recent one, fall outside this pattern.

9 What drives this pattern, that is, the lack of a Beveridge curve shift, is the com-
bination of not-large-enough random shocks in the simulation and a lack of adjustment
dynamics to the new (conditional) steady state associated with lower match effi ciency.

10 An alternative specification would have productivity also obey a threshold switch,
so that the effect of very bad recessions would be much more protracted. This would
render the model closer to the implications of a Markov-switching model such as Hamil-
ton (1989).
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A TVP-VAR for the Simulated Data

Given the simulated data, we now turn to assessing whether statistical
approaches can uncover the underlying shifts in the Beveridge curve.
For this purpose, we rely on a TVP-VAR with stochastic volatility,
which has proved to be a flexible and useful tool to study nonlinear
behavior in aggregate time series. It has recently been applied to the
question of Beveridge curve shifts by Benati and Lubik (2014). Our
specific time-series model builds on Cogley and Sargent (2005) and
Primiceri (2005). The exposition below follows Lubik and Matthes
(2015), who provide further details on the implementation.

We stack the unemployment rate Ut and the vacancy rate Vt in a
column vector yt, which we assume is determined by the following law
of motion:

yt = µt +

L∑
j=1

Aj,tyt−j + et. (14)

µt is a drift term that can contain deterministic and stochastic com-
ponents. The Aj,t are conformable coeffi cient matrices that contain
time-varying parameters. et is a vector of residuals. Most of the lit-
erature on TVP-VARs that use quarterly data pick the lag length in
the reduced-form specification as L = 2. We follow this convention
since we use a quarterly calibration for our matching model. We define
X ′t ≡ I ⊗ (1, y′t−1..., y

′
t−L) to provide a concise representation of the

dynamics of yt. We thus rewrite equation (14) as:

yt = X ′tθt + et. (15)

We assume that the law of motion for the time-varying parameters
in the coeffi cient matrices Aj,t is given by:

θt = θt−1 + ut, (16)

where ut is a zero mean i.i.d. Gaussian process. To characterize sto-
chastic volatility, we assume that the covariance matrix of the one-
step-ahead forecast error et can be decomposed using two matrices
such that:

et = Λ−1
t Σtεt, (17)

where the standardized residuals are distributed as εt ∼ N(0, I). Λt is
a lower triangular matrix with ones on the main diagonal and represen-
tative nonfixed element λit. Σt is a diagonal matrix with representative
nonfixed element σjt . The dynamics of the nonfixed elements of Λt and
Σt are given by:
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λit = λit−1 + ζit. (18)

log σjt = log σjt−1 + ηjt . (19)

We assume that all these innovations are normally distributed with
covariance matrix V . In order to provide some structure for the esti-
mation, we restrict the joint behavior of the innovations as follows (see
Primiceri 2005):

V = V ar




εt
ut
ζt
ηt


 =


I 0 0 0
0 Q 0 0
0 0 S 0
0 0 0 W

 . (20)

S is further restricted to be block diagonal, which simplifies inference.
We use a Gibbs-sampling algorithm to generate draws from the pos-
terior. The implementation of the Gibbs-sampling approach used for
Bayesian inference follows Del Negro and Primiceri (2013).

A key choice for TVP-VAR modeling is how to set the prior. In
order to achieve sharp inference, given the multiple sources of variation
in TVP-VAR models, a researcher needs to impose restrictions on the
relationship between the covariance matrices of the parameters. The
trade-off, however, is that a too restrictive prior may not leave room
for the time variation to appear. In our benchmark, we impose a typ-
ical choice of prior as recommended in, for instance, Primiceri (2005).
Specifically, we assume the following:

Q ∼ IW (κ2
Q ∗ 40 ∗ V (θOLS), 40), (21)

W ∼ IW (κ2
W ∗ 2 ∗ I, 2), (22)

S ∼ IW (κ2
S ∗ 2 ∗ V (ΛOLS), 2), (23)

where IW denotes the Inverted Wishart distribution priors for all other
parameters are the same as in Primiceri (2005). For the prior hyper-
parameters κQ, κW , and κS, we use the values κQ = 0.01, κW = 0.01,
and κS = 0.1. We will discuss alternative prior choices below.

3. ESTIMATION RESULTS

We report estimation results for our benchmark TVP-VAR on simu-
lated unemployment and vacancies data in Figures 4 and 5. In each
figure, we report posterior mean estimates from the five representative
data samples discussed in the previous section. Since we specify a two-
variable VAR with two lags, we report eight series overall for the lag
coeffi cients, two series for the variances, and one for the covariance.
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Figure 4 Posterior Means of VAR Coefficients

Figure 4 shows the median posterior estimates of the coeffi cients in the
lagged matrices Aj,t in (14) for each sample and over the entire sam-
pling horizon. Figure 5 shows additional estimated statistics. The left
column of Figure 5 reports the estimated off-diagonal elements of the
covariance matrix of the one-step-ahead forecast errors, while the mid-
dle column depicts the posterior means of the diagonal elements, that
is, the variances. We also report the implied regression coeffi cients of a
period-by-period population regression of unemployment on vacancies
for each sample.
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Figure 5 Summary of Benchmark Results: Estimated
Posterior Means

The results are almost unequivocal. Across all simulations, the
TVP-VAR attributes the shifts in the simulated Beveridge curve to
changes in the forecast error variance only. While both volatilities and
contemporaneous correlations change with shifts in the underlying se-
ries, all lag coeffi cients are estimated to be unvarying and effectively
constant (see Figure 4). The estimates for the individual samples show
that when there appears to be a shift in the Beveridge curve it is asso-
ciated with a gradual drift in the coeffi cients of the variance-covariance
matrix. Consider as a baseline case the simulated sample in the fourth
row of Figures 3 and 5. As discussed before, this sample path includes
declines in output that never cross the threshold and therefore do not
lead to Beveridge curve shifts. The TVP-VAR produces essentially
constant variances of the shock innovations and an implied population
regression coeffi cient (i.e., a Beveridge curve slope) that is fairly con-
stant at -0.4. There is some variation in the covariance, which rises
from -1.2 to -1.0 before retreating again. This seems commensurate
with the increase in unemployment and the fall in vacancy postings as
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the economy enters a downturn in the first half of the simulated sam-
ple. The resulting pattern is that of a movement along the Beveridge
curve but not a shift.

These patterns are noticeably different when we consider sample
paths that include movements of output across the threshold. First,
the population regression coeffi cients exhibit more variation and are
smaller (in absolute value) over the full sample period compared to
those of a sample path that does include a switch. Along a given Bev-
eridge curve, unemployment and vacancies move in opposite directions.
But in the transition between the two Beveridge curves, unemployment
and vacancies tend to move in the same direction as vacancy postings
rise in order to counteract the lower match effi ciency. Shifts in the Bev-
eridge curve are associated with shifts in the elements of the covariance
matrix. In particular, periods of high volatility and positive covariation
are associated with unemployment-vacancy combinations arising from
low match effi ciency. As discussed above, because of the constant mean
and the mean-reversion of the productivity process, large and persis-
tent enough negative shocks are required to push output below the
threshold. These shocks also induce high volatility in unemployment
and vacancies. The TVP-VAR then attributes this increased volatil-
ity to time-variation in the innovation covariance matrix. The positive
correlation in the innovations thus mirrors the lower implied regression
coeffi cient.

To summarize our findings, we posit that an econometrician who
attempts to discover shifts in the Beveridge curve using a standard
TVP-VAR would come to an erroneous conclusion. What appears in
the data as a parallel shift in the curve is interpreted by the TVP-VAR
as the outcome of time-variation in the variance-covariance matrix of
the shocks. Large shocks drive the labor market variables away from
their present location. Given the inherent persistence in the search
and matching model, this would then cluster temporally close data
points in a pattern that indicated a shift.11 In the logic of the search
and matching model, this outcome would be consistent with a higher
incidence and severity of shocks that primarily affect the matching
process and transitional labor dynamics as captured in equation (4)
(see Barlevy 2011; Lubik 2013).

11 Incidentally, this reasoning is consistent with the argument in Lubik (2013) that
the degree of estimation, parameter, and model uncertainty in the empirical model is
large enough that it would be diffi cult to distinguish statistically between competing
hypotheses, especially when compared to the relatively short time span of a Beveridge
curve cycle in the data. On the other hand, Benati and Lubik (2014) impose further
restrictions and utilize longer samples to show that a few Beveridge curve cycles do
allow for sharper inference, including the Great Recession.
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However, and to reiterate this point, the underlying data are gener-
ated from a model where the presence of a structural shift for lengthy
periods of time is quite noticeable. The TVP-VAR thus attributes these
shifts erroneously to changes in volatility. This observation is consistent
with many studies using TVP-VARs that tend not to find substantial
changes in the lag coeffi cient matrices, but rather apportion excess
volatility and breaks in behavior to stochastic volatility. Our finding is
also reminiscent of the critique by Benati and Surico (2009) of Sims and
Zha’s (2006) argument that the switch from the Great Inflation of the
1970s to the Great Moderation of the 1980s and beyond was not driven
by a break in policy but by a decline in the volatility of the shocks.
By means of a simulation study, Benati and Surico (2009) show that
a regime-switching VAR cannot recover a break in policy coeffi cients
in the underlying model. Instead, it erroneously attributes the change
in reduced-form behavior to changes in the innovation variance, in a
manner similar to our results.

This naturally leads to the deeper question of why the TVP-VAR
we use is not capable of picking up these shifts seen in the theoretical
model. TVP-VARs are a very flexible modeling framework that, in
theory, can certainly capture substantial shifts in parameters. At the
same time, they also possess many moving parts, and the contribution
of each to the ultimate estimation result is not trivial to disentan-
gle. One important aspect is certainly the length of the sample over
which the model is estimated. It is well-known that inference under
heteroskedasticity (or time variation in the innovation covariance ma-
trix) is quite problematic in short sample (e.g., Toyoda 1974). For that
reason, TVP-VARs generally perform better in longer samples, as in
Amir-Ahmadi, Matthes, and Wang (2016). A second aspect is that in
models with many parameters, the choice of priors can be very impor-
tant. In particular, priors in TVP-VARs encode a particular view of
how much of the variation in the data is due to changes in parameters,
changes in volatilities, or additive shocks. The following section shows
one alternative to the standard practice that could be used to elicit
priors. With standard priors, we would need drastic and sudden shifts
in the data to have the estimated coeffi cients move substantially. Our
search and matching model can generate those shifts, but they would
arguably not be regarded as realistic for many developed economies.

4. ELICITING PRIORS FOR A TVP-VAR

A key element of TVP-VAR modeling is the choice of the prior on the
time-varying components. In our benchmark specification, we follow
the generally accepted practice in the literature going back to Primiceri
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(2005). However, for data with considerably different properties than
those commonly used in the literature or to which TVP-VAR models
have been applied, our chosen values might not capture a researcher’s
prior view on time variation in the data set at hand. More specifically,
the prior on the lag coeffi cient matrices Aj,t may be too tight in our
framework, so the true underlying time variation in the reduced-form
coeffi cients is instead forced into the covariance matrix. We therefore
consider an alternative that is based on a prior predictive analysis.12

Our alternative approach proceeds as follows. We first estimate
fixed-coeffi cient VARs on rolling samples of the same length as our
training sample (forty periods) to get paths for the time-varying coeffi -
cients and volatilities. In a separate exercise, we then simulate paths for
those coeffi cients based on the benchmark priors described above. The
hyperparameters of the alternative prior are chosen to match a set of
moments from the paths of the time-varying coeffi cients and volatilities
obtained from the rolling window estimation. We choose the average
volatilities of the three sets of time-varying coeffi cients and volatili-
ties. For each set of κ values that govern the tightness of the prior
distribution on the covariance matrix, we run twenty-five simulations
to generate paths of the same length as the paths from our rolling win-
dow estimation and average over the moments obtained in those sim-
ulations. We then pick the vector of κ coeffi cients that minimizes the
quadratic distance between the moments from the simulations and the
rolling window estimation. The difference in the moments obtained by
simulation and the rolling window estimation is rescaled by their value
obtained in the rolling window estimation. This avoids one set of mo-
ments dominating our calculation since the coeffi cients have different
scales. We use a grid of values for the κ parameters. As lower bounds
for the grid, we impose the values used by Primiceri (2005) since we
are worried about not capturing enough time variation. Upper bounds
are roughly ten times the values chosen by Primiceri (2005).

Figure 6 shows the resulting values for the prior hyperparameters
for our full set of twenty-five simulated samples. The horizontal green
line shows our benchmark values. As it turns out, there are, in fact,
substantial differences between the values chosen by Primiceri (2005)
and the values implied by our approach. In the case of the innovation
variance in the law of motion for the time-varying parameters in the
coeffi cient matrices Aj,t, equation (16), there are only two samples for
which our prior choice deviates from the one chosen by this approach;

12 An alternative would be to directly estimate the prior hyperparameters with the
rest of the parameters of the model. A Gibbs sampler to do this is described in Amir-
Ahmadi, Matthes, and Wang (2017).
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Figure 6 Eliciting Priors: Values of Prior Hyperparameters

the deviation is only κQ = 0.03 when compared to our benchmark
choice of κQ = 0.01. The hyperparameter scaling the variance of the
innovation in the triangular decomposition matrix of the forecast-errors
covariance matrix shows more deviations. They can be larger by a
factor of up to five, but this is not consistent across each simulation.
The largest difference to our benchmark choice can be found for the
innovations on the process of the error variances. As can be seen from
the bottom graph in Figure 6, the hyperparameter κW is larger by an
order of magnitude.

This raises the question of whether this alternative prior choice has
an effect on the implications derived from the TVP-VAR. We therefore
reestimate our model with the much wider priors chosen by the proce-
dure described above. The estimation results are reported in Figure 7,
which can be compared directly with Figure 5. We find that the para-
meter estimates using the alternative prior are almost identical to those
obtained using the benchmark specification. The estimated entries of
the VAR companion form matrix (not reported) are also virtually iden-
tical to the benchmark case. Our conclusion that the Beveridge curve



220 Federal Reserve Bank of Richmond Economic Quarterly

Figure 7 Summary of Results: Estimated Posterior Means
from Alternative Choice of Hyperparameters

shifts in the simulated data are erroneously attributed by the TVP-
VAR to time variation in the covariance matrix of the one-step-ahead
prediction errors therefore remains intact. In order to get substantial
differences in estimated parameters, the prior hyperparameters need
to be increased dramatically (e.g. κQ = 1). For our application, the
benchmark values consistent with the existing literature therefore seem
to be a good choice as far as a naive exercise– that is, without knowl-
edge of the underlying dynamics– is concerned.

5. CONCLUSION

This article makes a simple point. TVP-VARs appear to be predisposed
to capture time variation in the underlying data by means of changes
in the innovation terms and not via movements in lag coeffi cients. We
arrived at this conclusion by means of a simulation study where we
generate a specific form of nonlinearity that would imply time variation
in the data. This conclusion holds for a standard choice of priors as well
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as an alternative set of priors that we obtain from a prior predictive
analysis.

Naturally, the results derived in this article are model dependent
and should therefore be taken with a grain of salt. As our model
analysis shows, the degree of nonlinearity in the policy function or in
the simulated data does not appear to be, heuristically speaking, large.
It thus may very well be that the posterior sampler in the Bayesian es-
timation attributes this type of variation in the data to residual shocks,
just as a fixed-coeffi cient VAR would. What supports this argument is
that during times of economic upheaval, chiefly the Great Depression
period, TVP-VARs do tend to exhibit considerable time variation in
the lag coeffi cients (Benati and Lubik 2014; Amir-Ahmadi, Matthes,
and Wang 2016). That said, we argue that the basic point still ap-
plies as to the interpretability of TVP-VAR results. At the very least,
researchers should consider a more careful approach to prior selection.

In addition, and independently of the TVP-VAR angle, we pro-
pose in this article a modeling framework that conceptualizes struc-
tural changes in the labor market and links them to business cycle
movements. The mechanism works via an endogenous regime shift in a
key labor market parameter, whereby the shift is driven by the interac-
tion of shocks and the intrinsic dynamics of the model. In the case of
a simple labor market model, we show that a deep and long recession
that originates in adverse productivity realizations can be prolonged by
deterioration in the labor market matching process. This mechanism
thus offers a convenient setup for studying the behavior of the labor
market over the business cycle.
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APPENDIX: DERIVATION OF THE WAGE SCHEDULE

The wage that firms pay to workers is derived as the outcome of a Nash
bargaining process. Denoting the workers’weight in the bargaining
process as η ∈ [0, 1], this implies the sharing rule:

Wt − Ut =
η

1− ηJt, (A1)

where Wt is the asset value of employment, Ut is the value of being
unemployed, and Jt is, as before, the value of the marginal worker to
the firm. In models with one-worker firms, the net surplus of a firm is
given by Jt − Vt, with Vt the value of a vacant job. By free entry, Vt
is then assumed to be driven to zero. The value of employment to a
worker is described by the following Bellman equation:

Wt = wt + βEt[(1− χt+1)Wt+1 + χt+1Ut+1]. (A2)

Workers receive the wage wt and transition into unemployment in the
next period with probability s. The value of searching for a job, when
currently unemployed, is:

Ut = b+ βEt[χt(1− χt+1)Wt+1 + (1− χt(1− χt+1))Ut+1]. (A3)

An unemployed searcher receives benefits b and transitions into employ-
ment with probability χt(1 − χt+1). It is adjusted for the probability
that a completed match gets dissolved before production begins next
period. Substituting the asset equations into the sharing rule (A1),
results, after some algebra, in the wage equation found in the text:

Wt = η (At + κθt) + (1− η)b. (A4)
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APPENDIX: MODEL SOLUTION

We solve the simple search and matching model fully nonlinearly by
means of the monotone mapping algorithm. The algorithm computes
an approximation of the decision rule ĥV (Nt, At, χt), which determines
the number of vacancy postings given the state variables: employ-
ment Nt, the exogenous productivity shock At, and the separation rate
process χt. The algorithm contains the following steps:

1. Specify a threshold switching value Y and discretize the state
space S. Formulate an initial guess for the decision rule: ĥV0 (N,A, χ)
∀{N,A, χ} ∈ S.

2. Compute a residual function R(Vt; {Nt, At, χt}) based on the fol-
lowing:

(a) Yt is calculated and mt is given according to the threshold
process (1).

(b) Calculate next period’s employment from (4).

(c) Expected values of next-period values in the firm’s first-order
condition appear as:

Et

[
(1− η)

(
A
ρA
t eεAt − b

)
− ηκ( Vt+1

1−Nt+1 ) + ( κ
mt+1

)( Vt+1
1−Nt+1 )ξ

Yt+1

]
= Xt,

which can be approximated with the truncated distribution:

X̂t =
ε∗∫
ε
φ(ε;σ2

ε)
Φ (Nt+1, At)

Ψ (Nt+1, At)
dε+

ε∫
ε∗
φ(ε;σ2

ε)
Φ (Nt+1, At)

Ψ (Nt+1, At)
dε,

where:

Φ (Nt+1, At) = (1− η)
(
A
ρA
t eεAt − b

)
−

ηκ(
ĥV0 (Nt+1, A

ρA
t eεAt)

1−Nt+1
) +

+(
κ

ml
)(
ĥV0 (Nt+1, A

ρA
t eεAt)

1−Nt+1
)ξ,

Ψ (Nt+1, At) = A
ρA
t eεAtNt+1 − κĥV0 (Nt+1, A

ρA
t eεAt).

Estimate this expression with a trapezoid rule. Linear inter-
polation is used in the implementation of the decision rule.
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(d) Given the expectations, the residual function is:

R(Vt; {Nt, At, χt}) =

∣∣∣∣∣(1− χt)βYt X̂ − κ

mt

(
Vt

1−Nt

)ξ∣∣∣∣∣ ,
which can be interpreted as the absolute value of the differ-
ence between the right-hand side and left-hand side of the
firm’s first-order condition.

3. This residual function is minimized over Vt for every triple
{Ni, Aj , χk} in S. The decision rule is then updated based on:

ĥV2 (Ni, Aj , χk) = arg min{R(Vt; {Ni, Aj , χk})} ∀{ni, Aj , χk} ∈ S.

4. The algorithm is repeated until:

max
∣∣∣ĥVk+1(Ni, Aj , χk)− ĥVk (Ni, Aj , χk)

∣∣∣ < ε.
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The Heterogeneous
Business-Cycle Behavior of
Industrial Production

Jackson Evert and Felipe Schwartzman

I
ndustry-level data can provide a window into the sources of busi-
ness cycles as well as propagation mechanisms. This is because
depending on what determines those, one might expect different

industries to behave differently. One notable example of the use of
industry-level data for that purpose is Gertler and Gilchrist (1994),
who pointed to the relatively larger impact of monetary shocks in in-
dustries with relatively smaller sized firms as evidence for the role of
financial frictions in propagating those shocks. Another example is
Bils et al.’s (2013) comparison of markup fluctuations in durable vs.
nondurable sectors as a means to assess whether demand fluctuations
could cause fluctuations in markups.

The use of industry-level variation can also provide advantages over
the use of even more disaggregated firm-level data. First, since indus-
tries are to a large extent defined by the nature of their products,
differences between industries are more plausibly determined by stable
differences in technology and preferences than differences across firms
within an industry. Second, because industry-level data already allow
for some aggregation, they capture at least part of the general equi-
librium effects that are likely to be important at the aggregate level.
Third, industry-level data are more readily available, allowing for a
useful first pass before acquiring harder-to-obtain firm-level data. The
clear disadvantage is that because industries are different from one
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another along several dimensions, one needs to be always concerned
about the possibility that industry variation is driven by some omitted
characteristic. Thus, any work using industry-level data must incorpo-
rate extensive controls.

The purpose of this article is to present some stylized facts for how
the business-cycle behavior of sectoral output differs with sectoral char-
acteristics. Those stylized facts can be informative either as a means to
determine sources of fluctuations and transmission channels or as indi-
cations of important sources of sectoral heterogeneity that ought to be
controlled for in any study that attempts to uncover those sources and
channels. We construct these stylized facts by first calculating stan-
dard business-cycle statistics such as relative volatility and correlation
with GDP for each of the seventy-two sectors for which industrial pro-
duction data are available separately. With those statistics in hand,
we can then ask which industry-level characteristics are most likely to
predict how these moments vary.

The measures of sectoral characteristics we focus on fall into four
categories. The first category includes determinants of the demand for
products in different sectors. Those may be informative about the role
of fluctuations in the composition of demand for different types of prod-
ucts on business cycles. For example, the extent to which sectors that
have the government as a main customer fluctuate more or less with
aggregate GDP provides some information about the role of govern-
ment consumption in business cycles (Ramey [2011] provides a recent
review of the literature). The second category includes determinants of
production costs. Those can provide a window into the role of cost fluc-
tuations in business cycles. For example, a wide literature has pointed
to energy cost fluctuations as an important driver of business cycles
(see Hamilton [2003] for a seminal example). Variables in the two cate-
gories, demand and cost, can provide information about the role of the
integration of different industries in production chains. This can help
shed light on theories of business-cycle propagation that emphasize the
input-output structure of the economy, such as Acemoglu et al. (2012).
The third category includes measures of pricing distortions, including
measures of market power and of price stickiness. Those can shed light
on theories of business cycles that emphasize markup fluctuations as a
key propagation mechanism (Rotemberg and Woodford [1999] provide
a review). The fourth category includes firm-level characteristics that
the literature has pointed to as correlated with sensitivity to financial
frictions. Those are relevant for theories of business cycles that em-
phasize financial shocks and financial frictions (Bernanke and Gertler
1989; and Kiyotaki and Moore 1997). Those different categories are
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constructed in order to obtain a wide scope of cross-industry differences
that the existing literature has pointed out as potentially important.

Some of the most salient findings are as follows:
1) Industries that are more oriented toward the production of con-

sumer goods, which produce goods that are nondurable, and that
produce necessities tend to be less volatile and less correlated with
business cycles than other industries. Furthermore, they also tend to
lead them. A similar pattern is present in firms that intensively use
agricultural inputs.

2) Industries that are more oriented toward the production of goods
consumed by the government are less correlated with business cycles
relative to other industries and tend to lag business cycles. At the same
time, industries that are more oriented toward the private sector tend
to lead business cycles.

3) Industries in which nominal prices change infrequently tend to
lag business cycles.

4) Industries whose characteristics are likely to be correlated with
sensitivity to financial frictions are likely to lag business cycles, whereas
those that are less likely to be exposed to those frictions tend to lead
them.

5) The position of different industries in the production chain mat-
ters. Industries that are highly integrated in the production chain either
by being intensive in the use of intermediate inputs or by dedicating a
large fraction of their output to intermediate inputs are more likely to
lead GDP.

The first section provides a more careful description and justifica-
tion of the methodology. The subsequent section represents the core of
the paper. First, it presents a description of how the different moments
are distributed across sectors. Then, in four subsections we provide
more detail on the findings for each of the four categories described
above and provide some discussion of those findings in light of existing
literature. After those, we perform a multivariate analysis to account
for the fact that industry characteristics might be correlated among
themselves. The last section summarizes the results. In the Appendix,
we present a detailed description of how we constructed the various
measures of industry characteristics.

1. METHODOLOGICAL DETAILS

In this section, and in all sections that follow, we will examine statistics
for detrended time series. The detrending process follows Hodrick and
Prescott (1997) and involves fitting a curve through the time series
that strikes a balance between staying close to the data and remaining
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relatively smooth.1 This trade-off is controlled by a parameter that, in
one extreme, makes the estimated trend perfectly smooth and, hence,
linear and, on the other extreme, leads to an estimated trend that
is identical to the data. The commonly used parameter for quarterly
data is 1600. The detrended series is then the log difference between the
series and the estimated trend. In what follows we refer to a moment
as being a “business-cycle”moment whenever it is constructed using
HP-filtered time series.

In order to gather a better understanding of how different moments
provide different information about the comovement of sectoral output
and business cycles, consider first the following model of detrended
sectoral output in which, for simplicity, we abstract from dynamics:

Yi,t =
R∑
r=1

λi,rεr,t,

where Yi,t is output in sector i, εr,t are the values at time t of each of
R shocks potentially affecting all sectors, and λi,r is the sensitivity of
sectoral output to each of the aggregate shocks. Shocks εr,t are uncor-
related with one another, i.e., cov(εr,t, εr′,t) = 0 for all r 6= r′ and all t.
Note that this specification is quite flexible, since we do not restrict R
to be a small number relative to the number of sectors. In particular,
the shocks εr,t can include idiosyncratic shocks, i.e., shocks that affect
only one sector. It also accommodates setups in which shocks that af-
fect primarily one sector also affect other sectors through input-output
linkages, etc.2 For simplicity, assume that detrended aggregate output
can be approximated as a simple average of sectoral output, so that

Yt =
I∑
i=1

Yi,t
I
.

The simplest moment of interest is the business-cycle variance of
sectoral output relative to that of aggregate GDP. If we normalize the
variance of the aggregate shocks εr,t to 1, this is

1 As a robustness test, we also generated the tables using a Band-Pass filter (see
Baxter and King [1999] for details on that kind of filtering). They are available upon
request.

2 See Acemoglu et al. (2012) for analytical and quantitative explorations. We refer
the reader to these papers for further details. For the purposes of this essay, one can
accommodate that view by reinterpreting some of the aggregate shocks as shocks that
affect primarily particular sectors but do not “wash out” in aggregate due to linkages.
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std(Yi,t)

std(Yt)
=

√√√√ ∑R
r=1 λ

2
i,r∑R

r=1(
∑I

i=1 λi,r/I)2

or, more compactly,

std(Yi,t)

std(Yt)
=

√√√√∑R
r=1 λ

2
i,r∑R

r=1 λ̄
2
r

,

where λ̄r ≡
∑I

i=1 λi,r/I is the average sensitivity of sector i to aggregate
shock r. In this benchmark case, the relative variance of a sector is large
if λ2

i,r is on average large relative to λ̄
2
r . Note that this measure does

not allow us to distinguish whether the large relative variance stems
from a relatively large sensitivity to shocks that are also important
for other sectors (i.e., λi,r > λ̄r >> 0) or from a high sensitivity to a
shock that is not relevant for other sectors (i.e., λi,r > λ̄r ' 0). The
latter case would correspond to a case in which sector-specific shocks
are very large for individual sectors as compared to aggregate shocks
but “wash-out”in aggregate.

The correlation of industrial output with GDP provides an alter-
native view on the cyclical sensitivity of a sector. If business cycles
were predominantly caused by a single common shock to all sectors,
with sector-specific shocks playing a very small role, one would expect
the correlation of all sectoral output with aggregate GDP to be very
close to one. Contrariwise, if sectoral shocks play a disproportionate
role in individual sector output, one would expect the correlation of
that sector with GDP to be relatively smaller. Similarly, one may find
small correlations if output in a given sector is driven by an aggregate
shock that is not the main driving force of aggregate business cycles.
In terms of our simple model with I →∞, the correlation between any
given sector and aggregate output is

corr(Yi,t, Yt) =

∑
r λi,rλ̄r

(
∑

r λi,r)
2(
∑

r λ̄r)
2
.

If λi,r and λ̄r have mean zero, the correlation between Yi,t and Yt
would be simply given by the correlation between between λi,r and λ̄r.
More generally, it is an increasing function of that correlation. Thus,
the correlation between sectoral output and aggregate output measures
the extent to which the two are driven by the same shocks.

Note that it is possible for the output of a given industry to be at the
same time much more volatile than aggregate output and to have a low
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contemporaneous correlation. This would happen if such an industry’s
output is largely determined by idiosyncratic shocks, which have little
effect on the output of other industries. Conversely, an industry might
be less volatile than aggregate output but also highly correlated if it
is mostly driven by the same shock that drives other industries but is
comparatively less sensitive to those.

Finally, apart from relative variances and correlation with GDP, we
also provide statistics for the correlation of sectoral output and leads
and lags of output. Interpreting those requires a dynamic model. This
is a straightforward generalization of the model described above, in
which industrial output depends on shocks that occurred in the past:

Yi,t =
∞∑
s=0

R∑
r=1

λi,r,sεr,t−s,

where we now also impose that cov(εi,t, εj,t−s) = 0 ∀i, j, s; that is, we
impose that shocks are i.i.d., with all persistence a function of λi,r,s.
The model above is fairly general, as it corresponds to a moving average
representation of a vector-valued time-series model (see, for example,
Hamilton [1994] for a detailed discussion).

Note that under this more general framework, it is possible for two
variables to be contemporaneously uncorrelated even if they are driven
by the same shock, so long as that occurs at different lags. For ex-
ample, if Yi,t = ε1,t and Yi∗,t = ε1,t−1, those two processes will have
zero contemporaneous correlation. However, the correlation of Yi,t and
Yi∗,t+1 will be equal to one. More generally, examining lead and lagged
correlations may provide us with some indication of whether certain
industries are more likely to respond more sluggishly with shocks than
overall GDP, a fact that is likely to be reflected in relatively low con-
temporaneous correlations by relatively high correlations with lagged
output. Conversely, examining correlations with leads and lags of out-
put may provide us a sense of variables that react more rapidly to
shocks, thus forecasting output.

2. THE CROSS-SECTORAL DISTRIBUTION OF
BUSINESS-CYCLE MOMENTS

Table 1 shows some descriptive statistics for the distribution of various
business-cycle moments across sectors. The first observation is that in
all sectors, business-cycle variance is larger than that of aggregate out-
put, and for the median sector it is four times as large. This observation
is consistent with the notion that output in individual sectors is largely
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Table 1 Summary Statistics

Variance Mean Median 25th Percentile 75th Percentile
Std. Dev. 3.38 3.93 4.03 2.54 4.80
t-8 0.03 -0.21 -0.23 -0.31 -0.12
t-6 0.03 -0.07 -0.08 -0.21 0.04
t-4 0.04 0.15 0.14 0.02 0.27
t-3 0.04 0.28 0.26 0.13 0.45
t-2 0.05 0.40 0.40 0.23 0.57
t-1 0.06 0.49 0.54 0.33 0.69
t 0.07 0.53 0.63 0.32 0.74
t+1 0.06 0.47 0.53 0.30 0.69
t+2 0.05 0.36 0.39 0.18 0.54
t+3 0.04 0.24 0.25 0.08 0.41
t+4 0.04 0.14 0.14 0.00 0.28
t+6 0.03 0.00 0.00 -0.16 0.15
t+8 0.03 -0.11 -0.13 -0.24 0.02

Note: The cells refer to descriptive statistics of moments across industries. For
each industry, we calculate a standard deviation and correlations with leads and
lags of output. We then report statistics summarizing the cross-industry distrib-
ution of those moments.

driven by idiosyncratic shocks that are to a large extent averaged out
in aggregate.

The second observation is that the correlation of sectoral output
with aggregate GDP is mostly positive (animal food manufacturing
and dairy product manufacturing being the only sectors with a negative
correlation). The median sector has a correlation of 0.63 with GDP,
and 75 percent of the sectors have a correlation of more than 0.32.

Third, the median correlation with leads and lags of GDP declines
as the number of leads or lags increase in a fairly symmetrical fash-
ion. At six-quarter leads and lags, the median sector has a correlation
with output that is fairly close to zero. In the next subsection, we
will describe how those business-cycle moments correlate with various
measures of industry characteristics.

Demand

We start our investigation of stylized facts by examining how business-
cycle moments depend on determinants of sectoral demand. There is
no a priori reason why the demand for different products should vary
in the same way with business cycles. In fact, sectoral variation in
sensitivity to different demand components can provide a way to test
theories of propagation of demand shocks. For example, Bils et al.
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(2013) use cross-industry variation in sensitivity of demand as a means
to assess the ability of demand shocks to lead to markup variations.

It is a well-known stylized fact of business cycles that consumption
of nondurable goods varies less than output over the business cycle,
whereas the demand for durable consumer goods and investment goods
varies more than output. This suggests that sectors whose production
is more dedicated to consumption ought to experience relatively lower
business-cycle variation. We check whether this simple prediction is
true by constructing for each sector a measure of the importance of
household consumption in its output. Roughly speaking, it corresponds
to the share of the output of each industry that is purchased by house-
holds as consumer goods (see Appendix for a detailed discussion of
how this and other measures are constructed). As we can observe, the
prediction is born out by the data, with consumption-oriented sectors
exhibiting lower business-cycle variance, although the negative corre-
lation is relatively small in absolute value. Interestingly, however, the
correlation of sectoral output with the business cycle also declines with
its orientation toward household consumption. This suggests that com-
pared to other sectors, sectors oriented toward household consumption
are more likely to be driven by shocks other than the ones determining
overall GDP. Interestingly, the pattern disappears and, in fact, reverses
itself once one compares business-cycle fluctuations at the sectoral level
with that of future GDP. It appears that, relatively speaking, house-
hold consumption-oriented sectors tend to lead business cycles. This
may imply some ability on the part of households to forecast business
cycle shocks and adjust their consumption accordingly early on.

Bils et al. (2013) focus on durability of the goods produced in
different sectors as a major source of variation in sensitivity to demand
shocks. Demand for durable goods is particularly sensitive to shocks
because stocks of durables are much larger than purchases in any given
period, so large changes in those purchases are necessary in order to
change the stock in use. More concretely, suppose a car depreciates at a
rate δ, and aggregate household demand for cars is given by Xcar,t. For
simplicity of exposition, suppose demand follows an exogenous process.
Then, if demand for cars increases by 1 percent, this requires increasing
the stock of cars in circulation by 1 percent. However, if we take a stable
demand for cars as a baseline, households must increase their purchase
of cars from δXcar,t (the amount that they need to purchase in order
to make up for depreciation) to (δ + 0.01)Xcar,t, an increase of 1/δ
percent. Thus, if cars depreciate at a rate of 5 percent per quarter, this
implies an increase in car purchases of 20 percent. Consistently with
those calculations, output volatility does seem to be tightly linked to
the durability of the good produced in a given sector.
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Figure 1 Demand Correlates
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Table 2 Demand Correlates

Std. Dev. t-8 t-4 t-3 t-2 t-1 t t+1 t+2 t+3 t+4 t+8
Household Share -0.19 0.35 0.16 0.04 -0.1 -0.23 -0.34 -0.41 -0.43 -0.38 -0.28 0.03
Government Share -0.04 -0.27 -0.37 -0.39 -0.38 -0.34 -0.26 -0.18 -0.06 0.09 0.24 0.38
Construction Share 0.02 0.00 0.34 0.41 0.46 0.48 0.46 0.4 0.32 0.23 0.15 -0.17
Export Share 0.36 -0.4 -0.34 -0.26 -0.16 -0.05 0.05 0.15 0.22 0.27 0.26 0.15
Intermediate Share -0.15 -0.06 0.19 0.28 0.34 0.39 0.40 0.36 0.27 0.14 0.02 -0.23
Inputs Sold -0.27 0.05 0.1 0.08 0.04 0.02 -0.01 0.04 -0.05 -0.06 -0.04 -0.04
Engel Curve 0.45 -0.44 0.01 0.17 0.34 0.5 0.63 0.68 0.64 0.54 0.37 -0.22
Durability 0.62 -0.44 -0.03 0.11 0.25 0.36 0.45 0.48 0.45 0.38 0.26 -0.12

Note: Table reports the correlations between industry characteristics and business-cycle moments (either relative
volatility or business-cycle correlation for various industry leads/lags).
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The findings for the correlation between depreciation and various
moments largely resemble those for household consumption orientation,
with sectors producing more durable goods being more contemporane-
ously correlated with GDP and less-durable sectors leading aggregate
GDP. The main difference between the two measures is that durability
is a much better predictor of the relative volatility of different sectors
than consumption orientation.

Another household-demand-related dimension that one might ex-
pect to be predictive of the sensitivity of output in different sectors
to business-cycle variations is the income elasticity of demand for that
good (or the slope of the Engel Curve). Bils et al. (2013) estimate this
elasticity using cross-sectional data. Using their estimates, we find that
sectors with steeper Engel Curves are also more volatile and more cor-
related with output. The result is interesting in that it suggests that
business-cycle variation in national income has a qualitatively simi-
lar impact on household demand composition as variation in income
across households at a given point in time. It is also noteworthy that
necessary goods (i.e., those with low income elasticity) are particularly
good predictors of business cycles. Those goods also tend to be more
household-oriented and have higher depreciation rates. Interestingly,
the magnitude of the correlations between Engel coeffi cients and output
correlations stands out when compared to the other metrics.

Given the focus of much of business-cycle analysis on the role of
fiscal shocks, one further demand-side related metric of interest is
orientation of a given sector toward government consumption. That
metric is especially interesting since it provides a window into the role of
fiscal shocks in driving sectoral output. Sectors oriented toward govern-
ment consumption do not appear to be more or less volatile than other
sectors. However, they are less contemporaneously correlated with
business cycles, as one would expect if government purchasing decisions
were largely disconnected from broader economic conditions. Interest-
ingly, however, they become more correlated with lags, implying that
the impact of shocks affecting output in most sectors only affect those
that are oriented toward government consumption with delay.

The orientation of individual industries toward construction
provides a further dimension of industry demand that is likely to be
informative about theories of the business cycle. We find that those
sectors do tend to be more correlated with business cycles, in line with
theories that have gained prominence after the Great Recession, consis-
tent with housing demand playing a prominent role in driving business-
cycle fluctuations. Furthermore, they appear to lead business cycles
slightly.
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A further source of industry-level variation is motivated by recent
work on the interplay between industry-level and aggregate dynamics,
which has emphasized the importance of input-output linkages in the
propagation of shocks. This suggests that it could be interesting to in-
vestigate whether industry-level business-cycle moments correlate with
a measure of how “upstream” an industry is, meaning what fraction
of its output is sold as inputs to other industries. We find that such
industries, while not more or less volatile than others, tend to be more
correlated with business cycles. They also are slightly more correlated
with future output than with past output, hinting at timing delays
between the production of intermediate inputs and final outputs.3

Finally, we investigate the extent to which the foreign orientation
of a sector makes it more or less correlated with business cycles. We
find that sectors that are less export-oriented tend to lead the business
cycle relative to sectors that are more export-oriented. Thus, export-
oriented sectors appear to be more insulated from business-cycle shocks
in early stages.

Cost

We now turn to measures capturing the intensity of use of different in-
puts in production. We start by focusing on those input categories that
are likely to have the most volatile prices, including energy, food, and
mining. To the extent that industries that are intensive in those inputs
are correlated with business cycles, this may indicate that shocks to
the supply of these inputs may help drive business-cycle fluctuations.
Of those three, the one that appears to have the most predictive power
over industry-level business-cycle statistics is the fraction of agricul-
tural inputs used in production. However, rather than implying that

3 Following Acemoglu et al. (2012), we also examine the role, if any, of hetero-
geneity in industry “degree,” as measured by the fraction of industry intermediate input
production in total production of intermediate inputs in the economy. For that measure,
we did not find that this has any predictive impact on business-cycle moments.
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Figure 2 Cost Correlates

Note: Figures report the correlations between industry characteristics and
business-cycle moments (either relative volatility or business-cycle correlation for
various industry leads/lags).

agricultural cost shocks drive business cycles, the main finding is that
industries intensive in agricultural inputs appear to be more discon-
nected from business cycles, with contemporaneous correlations being
smaller the more agricultural inputs are used. Interestingly, however,
their volatility is also relatively smaller. Industries with agricultural
inputs also tend to lead business cycles, in a pattern reminiscent of low
Engel elasticity sectors. This occurs in part because sectors that use
agricultural goods in production are in part producing exactly such
necessities. The multivariate analysis in Section 2.5 should help us
disentangle those effects.
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Table 3 Cost Correlates

Std. Dev. t-8 t-4 t-3 t-2 t-1 t t+1 t+2 t+3 t+4 t+8
Energy Inputs -0.24 0.01 -0.02 -0.04 -0.08 -0.1 -0.12 -0.12 -0.1 -0.07 -0.02 0.12
Agricultural Inputs -0.36 0.43 -0.03 -0.18 -0.31 -0.44 -0.53 -0.55 -0.52 -0.44 -0.3 0.13
Mining Inputs 0.04 -0.01 0.07 0.11 0.15 0.17 0.19 0.16 0.13 0.1 0.06 -0.03
Intermediate Inputs 0.00 0.39 0.38 0.32 0.24 0.14 0.02 -0.12 -0.26 -0.36 -0.39 -0.32
Imported Inputs 0.30 -0.01 0.15 0.15 0.16 0.16 0.16 0.13 0.07 0.01 -0.04 -0.22
Imp. Share of Inputs 0.32 -0.17 -0.01 0.02 0.05 0.09 0.13 0.15 0.15 0.13 0.1 -0.1
Capital Share -0.18 0.07 -0.25 -0.3 -0.33 -0.34 -0.33 -0.31 -0.25 -0.16 -0.05 0.21
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Comparatively speaking, sectors with high intensity in energy and
mining inputs do not seem to be more or less correlated with business
cycles than other sectors. The low correlation with energy intensity is
somewhat surprising in light of the common notion that energy shocks
are an important source of business-cycle fluctuations. We also examine
what happens when we eliminate the three industries with the highest
use of energy inputs, since those have a level of energy use that is
much higher than the others and are themselves involved in energy
production. Eliminating those sectors does not increase the extent to
which business-cycle correlations are associated with energy use.4

We also investigate whether capital intensity and intermediate in-
put intensity are predictive of business-cycle correlations. Capital-
intensive sectors appear to be less correlated with business cycles con-
temporaneously but more correlated after eight quarters. This suggests
a sluggish response of those sectors to business-cycle shocks in line with
capital-adjustment costs and planning lags.

Furthermore, we examine the correlation between the fraction of
intermediate inputs in total output and business cycles. We find that
sectors that use more intermediate inputs are no more or less correlated
with business cycles than sectors that use fewer intermediate inputs.
However, they do tend to lead business cycles, whereas sectors that use
proportionately less intermediate inputs tend to lag business cycles.

Lastly, we investigate how the use of imported inputs affects business-
cycle moments. We find that sectors with a high share of imported
inputs are also relatively more volatile. This is in line with the notion
that the price of imported inputs is likely to be more volatile since part
of that is tied to exchange rate fluctuations. At the same time, we find
that the share of imported inputs is not predictive of business-cycle
correlations.

Goods Market Pricing Distortions

The third category of industry characteristics that we examine are those
capturing goods market distortions. One measure attempts to capture
the competitive pressures faced by firms in different industries, the idea
being that firms in more concentrated industries have more scope to
vary their markups over the business cycle. The second one is a mea-
sure of nominal stickiness based on microeconomic price data. Bils et
al. (2014) have defended time-varying goods market distortions as a

4 For brevity, we do not report the numerical results for these exercises. The re-
moved sectors are i) electric power generation, transmission and distribution; ii) oil and
gas extraction; iii) natural gas distribution; and iv) petroleum and coal manufacturing.
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Figure 3 Goods Market Distortion Correlates

Note: Figures report the correlations between industry characteristics and
business-cycle moments (either relative volatility or business-cycle correlation for
various industry leads/lags).

key element in business-cycle propagation. As for nominal rigidities,
they of course underlie a large literature on monetary policy and busi-
ness cycles. To measure those, we use the average frequency of price
adjustment as measured in the CPI data by Nakamura and Steinsson
(2008).

We first examine how market concentration in different industries is
related to their business-cycle behavior. We measure market concentra-
tion by the share of the top four firms in each industry. This provides a
measure of the potential role for goods market pricing distortion under
the assumption that firms in more concentrated industries have more
scope for markup variation. We find that firms in more concentrated
industries are also less cyclical.
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Table 4 Goods Market Distortion Correlates

Std. Dev. t-8 t-4 t-3 t-2 t-1 t t+1 t+2 t+3 t+4 t+8
Four-Firm Concentration 0.11 0.09 -0.21 -0.28 -0.32 -0.33 -0.36 -0.38 -0.35 -0.25 -0.11 0.23
Eight-Firm Concentration 0.07 0.12 -0.17 -0.25 -0.3 -0.33 -0.36 -0.4 -0.38 -0.28 -0.15 0.18
20-Firm Concentration 0.02 0.13 -0.15 -0.24 -0.29 -0.34 -0.38 -0.41 -0.39 -0.3 -0.17 0.18
50-Firm Concentration -0.01 0.12 -0.14 -0.21 -0.27 -0.32 -0.37 -0.41 -0.39 -0.33 -0.21 0.16
Price Stickiness -0.08 0.2 -0.01 -0.09 -0.18 -0.25 -0.30 -0.33 -0.34 -0.31 -0.24 0.11
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We then examine the correlation of business-cycle statistics with
the average frequency of price changes. The data indicate that in-
dustries with less sticky prices (higher frequency of price adjustment)
are less correlated with business cycles. This is in line with the view
that nominal rigidities play a role in the propagation of business-cycle
shocks.

Financial Sensitivity

The last category we measure includes the industry characteristics that
are likely to be correlated with their sensitivity to financial shocks.
The most prominent one is average firm size, proposed by Gertler and
Gilchrist (1994), under the idea that smaller firms are more likely to
be financially constrained. We also examine firm age and a financial
frictions index proposed by Hadlock and Pierce (2010) using both size
and age. Two further measures of financial sensitivity are external
financial dependence, proposed by Rajan and Zingales (1998) to study
the role of financial development in growth, and the inventory/sales
ratio, used by Schwartzman (2014), Raddatz (2006), and others to
study the impact of financial shocks in less-developed economies.

We find that industries with smaller firms (and, presumably, facing
higher financial frictions) tend to lag business cycles by about three
quarters, but even there, the correlation is relatively moderate. On
the other hand, older firms (which presumably face lower financial fric-
tions) tend to lead business cycles. The net effect is that the size-age
index implies that industries in which financial constraints are less se-
vere lead business cycles, whereas those where they are more severe
lag business cycles. This pattern does not suggest a simple story of
financial frictions amplifying business cycles, but it does suggest some
possibly interesting implications for the role of financial frictions in
their propagation. Of course, this interpretation presumes that suscep-
tibility to financial constraints is the major difference between firms
of different ages and sizes. Presumably, those characteristics might be
correlated with many other aspects of firm behavior.

A similar pattern is apparent when we use external financial de-
pendence as a measure of sensitivity to financial conditions. External
financial dependence is equal to one minus the median ratio between
cash flow and capital expenditures for firms within an industry. It
measures how much firms need to raise over and above their internally
generated cash flow in order to finance their typical investment. We
find that fluctuations in industries in which firms are more dependent
on external finance are more likely to lag fluctuations in output.
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Figure 4 Financial Correlates

Note: Figures report the correlations between industry characteristics and
business-cycle moments (either relative volatility or business-cycle correlation for
various industry leads/lags).
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Table 5 Financial Correlates

Std. Dev. t-8 t-4 t-3 t-2 t-1 t t+1 t+2 t+3 t+4 t+8
Assets -0.13 0.12 -0.02 -0.03 -0.04 -0.07 -0.11 -0.15 -0.18 -0.2 -0.17 0.00
Age -0.12 0.18 0.22 0.25 0.26 0.25 0.20 0.13 0.07 -0.01 -0.06 -0.22
Size-Age Index 0.12 -0.25 -0.16 -0.15 -0.12 -0.08 -0.02 0.06 0.12 0.16 0.16 0.15
Ext. Fin. Ratio -0.08 -0.08 -0.12 -0.14 -0.14 -0.14 -0.13 -0.11 -0.07 -0.04 0.02 0.21
Cash Flow -0.08 0.24 -0.14 -0.2 -0.23 -0.26 -0.27 -0.29 -0.26 -0.2 -0.12 0.13
Capital Exp. 0.01 0.26 0.01 -0.06 -0.1 -0.15 -0.20 -0.26 -0.29 -0.28 -0.22 -0.03
Invt.-Sales Ratio 0.25 -0.28 -0.07 0.07 0.2 0.32 0.42 0.48 0.47 0.4 0.26 -0.14
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The final industry characteristic we examine is the inventory/sales
ratio. In contrast to the other measures, the business-cycle correlation
for firms with a high inventory/sales ratio is fairly large. It is also
particularly pronounced contemporaneously, although the peak occurs
at one- or two-quarter lags.

Multivariate Analysis

The analysis so far is based off the comparison of business-cycle mo-
ments across industries taking one industry characteristic at a time.
To disentangle those, we turn now to multivariate analysis, i.e., we
run a simple OLS regression with the different business-cycle statis-
tics as a dependent variable and all the industry characteristics that
we explored on the right-hand side. Here we use the measure of en-
ergy intensity after excluding the four outlying sectors. This sharpens
the interpretation of the results since, as pointed out by Bils et al.
(2013), those very high energy intensity sectors are also sectors with
very flexible prices, leading to a strong multicolinearity between en-
ergy intensity and frequency of price changes. This multicolinearity
problem is eliminated once we exclude those outliers. Tables 6 and 7
present the results for the different statistics, with coeffi cients that are
significant at a 10 percent level marked in bold. Before running the
regression, all right-hand-side variables were normalized by their stan-
dard deviation, so the coeffi cients can be interpreted as the effect of a
one standard deviation change in the value of those regressors on the
various business-cycle statistics. Focusing on these statistically signif-
icant coeffi cients, we obtain the following results, which are robust to
the introduction of multivariate controls:

1) Volatility is higher in sectors with durable goods, imported inputs,
and high frequency of price adjustment.

The findings for durable goods and imported inputs conform to
the findings from the univariate analysis above. The correlation with
frequency of price adjustment only emerges in the context of the multi-
variate analysis. It conforms to the notion that, all else constant, firms
in industries that are subject to more variable shocks will choose to
adjust prices more frequently.

2) The sectors least correlated with aggregate GDP are those produc-
ing necessities (low Engel elasticity), those that have their production
oriented toward government consumption, and those that intensively
use agricultural and mining inputs. Sectors oriented toward the pro-
duction of intermediate inputs are more correlated with output.
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Table 6 Regression Coefficients (1)

Std.
Dev. t-8 t-6 t-4 t-3 t-2 t-1

Four-Firm
Concentration
Ratio -0.117 0.002 -0.006 -0.032 -0.043 -0.044 -0.034
Durability 0.655 -0.051 -0.068 -0.058 -0.053 -0.046 -0.033
Energy Inputs -1.663 -0.065 -0.056 -0.079 -0.099 -0.108 -0.093
Ext. Fin. Ratio -0.126 -0.005 -0.009 -0.024 -0.029 -0.03 -0.032
Household
Share -0.137 0.033 0.049 0.048 0.035 0.016 -0.01
Government
Share -0.382 -0.037 -0.060 -0.083 -0.089 -0.093 -0.090
Construction
Share -0.406 0.015 0.03 0.045 0.058 0.073 0.086
Inv.-Sales Ratio 0.077 -0.043 -0.058 -0.061 -0.047 -0.031 -0.01
Median Assets 0.397 -0.022 -0.033 -0.018 -0.001 0.016 0.021
Median Age -0.357 0.021 0.031 0.025 0.027 0.029 0.03
Engel Curve 0.004 -0.002 0.044 0.063 0.071 0.083 0.099
Agricultural
Inputs -0.373 0.026 0.023 -0.035 -0.062 -0.080 -0.094
Mining Inputs 0.443 0.125 0.087 0.048 0.018 -0.015 -0.047
Intermediate
Inputs -0.128 0.036 0.057 0.078 0.078 0.073 0.062
Imported Inputs 0.980 0.037 0.056 0.056 0.056 0.058 0.051
Capital Share -0.034 0.015 -0.004 -0.005 -0.007 -0.008 -0.017
Price Stickiness 0.971 0.037 0.038 0.057 0.074 0.076 0.07

Note: Tables report OLS coeffi cients for business-cycle moments against the set
of industry characteristics. Coeffi cients significant at the 10 percent level are in
bold. Each column is a separate regression.

The multivariate analysis suggests that the low correlation of sec-
tors intensive in agricultural inputs is not a simple artifact of those
sectors also being oriented toward household consumption.

The last two facts concern the dynamic relationships between sec-
toral output and aggregate output:

3) Sectors that are oriented toward the private sector (have a low
government share), that sell a large fraction of their output as inter-
mediate inputs, use fewer agricultural inputs, use intermediate inputs
intensively, adjust prices frequently, and are not dependent on external
finance tend to lead business cycles.

and
4) Sectors that are government-oriented, sell a small fraction of

their output as intermediate inputs, are not intensive in mining in-
puts, adjust prices less frequently, and are more dependent on external
finance tend to lag business cycles.
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Table 7 Regression Coefficients (2)

t t+1 t+2 t+3 t+4 t+6 t+8
4-firm
Concentration
Ratio -0.031 -0.035 -0.027 -0.01 0.012 0.046 0.051
Durability -0.021 -0.013 -0.007 0.001 0.015 0.046 0.054
Energy Inputs -0.067 -0.018 0.036 0.087 0.136 0.182 0.150
Ext. Fin. Ratio -0.028 -0.026 -0.018 -0.008 0.008 0.03 0.035
Household
Share -0.034 -0.058 -0.068 -0.061 -0.042 -0.005 0.002
Government
Share -0.075 -0.054 -0.03 -0.001 0.029 0.061 0.063
Construction
Share 0.082 0.058 0.033 0.013 0.001 -0.011 -0.01
Inv. Sales Ratio 0.018 0.037 0.045 0.043 0.036 0.02 0.011
Median Assets 0.024 0.028 0.022 0.008 -0.003 -0.027 -0.026
Median Age 0.026 0.013 0.005 0.003 0.005 0.006 -0.01
Engel Curve 0.108 0.095 0.063 0.034 0.009 -0.036 -0.06
Agricultural
Inputs -0.086 -0.065 -0.039 -0.012 0.011 0.022 0.044
Mining Inputs -0.086 -0.131 -0.162 -0.177 -0.172 -0.117 -0.069
Intermediate
Inputs 0.036 -0.002 -0.039 -0.059 -0.059 -0.049 -0.061
Imported Inputs 0.050 0.04 0.032 0.018 -0.002 -0.055 -0.085
Capital Share -0.019 -0.019 -0.019 -0.015 -0.012 -0.009 -0.012
Price Stickiness 0.048 0.005 -0.048 -0.095 -0.135 -0.146 -0.082

Note: Tables report OLS coeffi cients for business-cycle moments against the set
of industry characteristics. Coeffi cients significant at the 10% level are in bold.
Each column is a separate regression.

Those two latter sets of facts add some interesting details to the
first two. For example, it becomes clear that having demand oriented
toward government consumption does not insulate a sector’s output
from business cycles but rather leads it to react with a lag. It is also
interesting to note that sectors that are very integrated in the produc-
tion chain (in the sense of using intermediate inputs intensively) tend
to lead business cycles, whereas those that do not use as many interme-
diate inputs tend to lag. The relatively low correlation of sectors with
high financial dependence also hides the fact that they respond with a
lag. Finally, the regressions also point to an early response of flexible
price sectors and a delayed response of sticky price sectors.

3. CONCLUSION

We asked a simple question: How do business-cycle statistics vary with
sectoral characteristics? Some of the answers were predictable, others
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less so. The results highlight the promise and pitfalls of using industry-
level data to identify driving forces and propagation mechanisms in
business cycles. On the one hand, the results help focus the analysis
on channels that are more likely to be relevant and take away from
others that do not appear so relevant. For example, the analysis points
to pricing and financial frictions as channels worth investigating but
provides very little evidence of a prominent role for oil shocks. On the
other hand, the results highlight the need to interpret results with care,
since differences in business-cycle behavior between industries may be
dominated by differences in durability or demand composition that may
be correlated with other characteristics of interest.
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APPENDIX

A.1 List of Industries

Our industrial classification is primarily based on the four-digit 2007
NAICS codes, with certain four-digit industries consolidated into a sin-
gle category to facilitate the construction of either the PCE/industry
crosswalk or the industry controls. The full list of industries used is
displayed in Table 8.

A.2 PCE/Industry Crosswalk

We use the 2007 PCE Bridge Table published by the Bureau of Eco-
nomic Analysis to match PCE expenditure categories to industries.
The Bridge Table contains consumer spending levels by PCE category
and commodity pairs. For each pair, the level of total spending going
to producers, wholesalers, retailers, and transport is provided.

Also included in the Bridge Table file is a concordance of com-
modity categories with NAICS codes. This allows the commodities to
be matched with our industry groups. However, this concordance is
less granular in many cases than our industry classification– these in-
dustries are pooled for the purposes of constructing the PCE/industry
crosswalk. In addition, while the analysis in the paper focuses pre-
dominantly on manufacturing and related sectors, for the purpose of
constructing this crosswalk, it is important to capture all sectors of the
economy in order to construct a more detailed PCE/industry crosswalk.
For this purpose, we make use of all the commodities and industries
present in the Bridge Table.

Using this commodity/NAICS concordance with the expenditure
data in the bridge table, we obtain expenditure estimates for producer
margins by PCE category and industry. No observations for the whole-
sale, retail, or transport industries exist, as their expenditure is con-
tained in the corresponding wholesale, retail, and transport margins for
each PCE/industry pair. To create observations for these industries,
we total the entire margin across a given PCE category and use this
total as the value for that PCE/industry category pair. For instance,
we total all wholesale margins across the “auto leasing”PCE category,
and this is taken as the value for the wholesale/auto leasing pair. We
do this for each PCE category and for wholesale, retail, and transport.

For these, we sum the total wholesale margin across all industries
for a given PCE category and construct an additional observation des-
ignating the total as the expenditure for a given PCE category and
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wholesale industry pair. We repeat this process for all PCE categories
and do the same for retail and transport as well.

Given total consumer expenditure broken down by PCE category/
industry pairs, we construct a crosswalk between the two categories
using expenditure share weights. This allows the translation of some
set of values at the PCE level to the industry level, or vice versa. For
each PCE/industry pair, the crosswalk contains two weights; one is the
proportion of the total industry expenditure that is also from the PCE
category, and the other is the proportion of total PCE category expen-
diture that is also from the industry. The former is used to translate
PCE-level data to the industry level and the latter from the industry
to the PCE level.

As an example of how this occurs, consider a set of data at the
industry level with one value per industry. This dataset is merged with
the crosswalk so that now each PCE category/industry pair contains
both the expenditure-share weights and the industry-level data value.
The PCE-level data are then estimated as the weighted average for the
PCE category across all industries. This provides an estimate of the
PCE value by imputing the data from the constituent industries that
make up the PCE category. Using the other weight that exists for each
PCE category/industry pair, the same process can occur in reverse,
with PCE data translated to the industry level.

Note that, as stated above, some industries do not have a unique
commodity code in the original Bridge Table and were thus pooled
for the construction of the crosswalk. For these industry groups, the
crosswalk will provide a single value for the group rather than a separate
value for each industry. In these cases, we assume that all industries
share this value in common.

A.3 Controls

A.3.1 Concentration Ratios

Industry-concentration data are taken from the 2007 Economic Census.
For each 2007 NAICS industry at the six-digit level, the census con-
tains the percentage of total industry sales from the largest four, eight,
twenty, and fifty firms, along with total industry revenue. We match
each six-digit NAICS category to the industry in which it is contained
and take the revenue-weighted mean across all six-digit NAICS within
the industry as the concentration ratio for that industry. This provides
a four-firm, eight-firm, twenty-firm, and fifty-firm concentration ratio
for each of our industries.
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For robustness, we construct additional concentration measures
from the same data: in addition to taking the revenue-weighted mean,
we also take both the median and the maximum concentration ratio
across six-digit NAICS industries. This leaves us with twelve values,
corresponding to either four, eight, twenty, or fifty-firm concentration
ratios, and to either the mean, median, or maximum across subindus-
tries.

A.3.2 Durability

The BEA publishes depreciation/durability estimates for consumer
durables, equipment, and structures. We match each PCE category
to a durable good, equipment, or structure category if a corresponding
category exists. We then take the service life estimate published by the
BEA as a measure of the durability of the item. Nondurable goods are
assigned a durability of zero. Values are then translated to the industry
level using the PCE category/industry crosswalk.

A.3.3 Inputs

From the 2007 Benchmark Input/Output Use Table, we calculate the
exposure of an industry to energy, agriculture, mining, as well as the
industry’s use of intermediate inputs. Using the commodity/NAICS
crosswalk provided with the Use Table, we match each commodity to
its corresponding industry and aggregate the Use Table to our industry
classification. Where the provided concordance is not granular enough
for our industry classification, we pool industries and assign the corre-
sponding values to all industries in the group.

Energy Inputs: We take the proportion of total intermediate in-
puts that are from (1) electrical power generation, (2) oil and gas
extraction, (3) natural gas distribution, and (4) petroleum and coal
products manufacturing as a measure of each industry’s energy expo-
sure.

Agricultural Inputs: We take the proportion of total intermediate
inputs that are from (1) crop production, (2) animal production and
aquaculture, and (3) support activities for agriculture and forestry as
a measure of each industry’s exposure to agriculture.

Mining Inputs: We take the proportion of total intermediate inputs
that are from (1) metal ore mining and (2) nonmetallic mineral mining
and quarrying as a measure of each industry’s exposure to mining.
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Total Intermediate Inputs: We construct a measure of the total
intermediate inputs used by the industry by taking the ratio of all
industry inputs to the industry’s output.

A.3.4 Capital Share

Also from the Use Table, we estimate the relative intensity of capital
as opposed to labor in each sector. As for the input measures, we
first aggregate the Use Table to our industrial classification. To do so,
we compute the ratio of gross operating surplus over the sum of gross
operating surplus and compensation to employees.

A.3.5 Output Shares

Again from the Use Table, we estimate several measures related to the
destination of each industry’s output. As before, we aggregate the Use
Table to our industry classification.

Household Output: We calculate the household share as the pro-
portion of industry output that goes to PCE.

Government Output: We calculate the government share as the
total output sold to all federal, state, and local government categories
listed in the Use Table as a ratio to total industry output.

Construction Output: We calculate the construction share as the
proportion of each industry’s output that is purchased by the construc-
tion sector.

Total Intermediate Output: We construct the proportion of total
industry output that was used as an intermediate inputs by any other
industry. For robustness, we also take the raw number of intermediate
inputs sold without normalizing by industry output.

A.3.6 Imports and Exports

The Use Table also contains information on imports and exports by
industry and can therefore also be used to calculate several measures
describing the international linkages of each sector.

Import Penetration: For each industry, we take the value of in-
dustry outputs that are imported into the United States and divide by
total industry production plus imports minus exports. This provides
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the share of each industry’s final goods sold domestically that were
produced internationally.

Exports: We calculate the export ratio as the share of industry out-
put that is exported.

Imported Inputs: To measure the level of input connections to for-
eign markets, we calculate the ratio between imported intermediate
inputs to total industry output.

Imported Share of Inputs: As an alternative measure of the in-
put connections to foreign markets, we calculate the ratio of the total
industry inputs that are imported.

A.3.7 External Financing Ratio, Cash Flow,
and Capital Expenditure

Using capital expenditure and cash flow by firm and year from Com-
pustat for 1979 through 2015, we can construct the external financing
ratio as in Rajan and Zingales (1998), as one minus the ratio between
cash flow to capital expenditure. Matching each firm to an industry, we
take the median capital expenditure value across firms for each indus-
try and year. Then, we take the median again across years to obtain a
single value for each industry. The same procedure is used to obtain a
median cash flow and median capital expenditure value for each indus-
try. Rajan and Zingales (1998) describe the construction of the cash
flow variable in greater detail.

A.3.8 Inventory Sales Ratio

From Compustat we take firm-level data on annual inventories and total
sales from 1979 through 2015. From this, we normalize inventories by
total sales for each firm. Matching firms to industries, we then take the
median value for each industry and year and then select the median
across years as the final industry value.

A.3.9 Size-Age Index

To construct measures of industry-specific financial constraints, we fol-
low Hadlock and Pierce (2010), who show that an index that is linear
in firm age and quadratic in firm asset size can capture the degree
of firm financing constraints. Specifically, the index is calculated as
−.737 ∗ size+ .043 ∗ size2 − .04 ∗ age. We calculate this index for each
firm and year between 1979 and 2015. Matching firms to industries,
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we take the median for each industry/year pair and again for each
industry. We do the same for asset size and age separately.

A.3.10 Luxury Goods

We construct two measures of the degree to which the outputs of each
industry are luxury goods. First, we use BLS data from the Consumer
Expenditure Survey, which details the consumption expenditures for
various goods by income decile. Matching these expenditure categories
with PCE categories, we construct estimates of expenditures for each
PCE category for the fourth and sixth income deciles and take the ratio
of these values as an estimate of the luxury status of a PCE category.
We then use the PCE/industry crosswalk to map these values to the
industry level.

As an alternate measure of the income elasticity of industry output,
we also take the Engel Curve slopes estimated by Bils et al. (2013).
They estimate these Engel Curve values for PCE categories, which we
map into the industry level using our PCE/industry crosswalk.

A.3.11 Price Stickiness

To capture the frequency of price changes within an industry, we take
the price-adjustment durations estimated by Nakamura and Steinsson
(2008). The estimates are provided at the Entry Line Item (ELI) level.
By using the ELI/PCE crosswalk provided by the BLS, we can transfer
these ELI-level duration values to the PCE classification. For each PCE
category, we assign the average of the duration values for the set of
ELIs with which the PCE category is matched. Following this, we can
match PCE-level values to the industry level using the PCE/industry
crosswalk.
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Table 8 Industries

Industry 2007 NAICS
Oil and gas extraction 211-
Coal mining 2121
Metal ore mining 2122
Nonmetallic mineral mining and quarrying 2123
Support activities for mining 213-
Electric power generation, transmission, distribution 2211
Natural gas distribution 2212
Animal food manufacturing 3111
Grain and oilseed milling 3112
Fruit and vegetable preserving and specialty food manufacturing 3114
Dairy product manufacturing 3115
Animal slaughtering and processing 3116
Bakeries and tortilla manufacturing 3118
Other food manufacturing 3119
Beverage manufacturing 3121
Tobacco manufacturing 3122
Textile mills and textile product mills 313-, 314-
Apparel, leather, and allied manufacturing 315-, 316-
Sawmills and wood preservation 3211
Veneer, plywood, engineered wood product manufacturing 3212
Other wood product manufacturing 3219
Pulp, paper, and paperboard mills 3221
Converted paper product manufacturing 3222
Printing and related support activities 323-
Petroleum and coal products manufacturing 324-
Basic chemical manufacturing 3251
Resin, synthetic rubber, artificial synthetic fibers and

filaments manufacturing 3252
Pesticide, fertilizer, other agricultural chemical manufacturing 3253
Pharmaceutical and medicine manufacturing 3254
Paint, coating, and adhesive manufacturing 3255
Soap, cleaning compound, and toilet paper manufacturing 3256
Plastics product manufacturing 3261
Rubber product manufacturing 3262
Clay product and refractory manufacturing 3271
Glass and glass product manufacturing 3272
Cement and concrete product manufacturing 3273
Lime, gypsum and other nonmetallic mineral

product manufacturing 3274, 3279
Alumina and aluminum production and processing 3313
Nonferrous metal (except aluminum) production and processing 3314
Foundries 3315
Forging and stamping 3321
Cutlery and handtool manufacturing 3322
Architectural, construction, and mining machinery manufacturing 3323
Hardware manufacturing 3325
Spring and wire product manufacturing 3326
Machine shops, turned product, screw, nut, bolt manufacturing 3327
Coating, engraving, heat treating, and allied activities 3328
Other fabricated metal product manufacturing 3329
Agricultural, construction, and mining machinery manufacturing 3331
Industrial machinery manufacturing 3332
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Table 8 (Continued) Industries

Ventilation, heating, air conditioning, and commerical refrigeration
equipment manufacturing 3334

Metalworking machinery manufacturing 3335
Engine, turbine, power transmission equipment manufacturing 3336
Computer and peripheral equipment manufacturing 3341
Communications equipment manufacturing 3342
Audio and video equipment manufacturing 3343
Semiconductor & other electronic component manufacturing 3344
Navigational, measuring, electromedical, and control

instruments manufacturing 3345
Electric lighting equipment manufacturing 3351
Household appliance manufacturing 3352
Electrical equipment manufacturing 3353
Other electrical equipment and component manufacturing 3359
Motor vehicle manufacturing 3361
Motor vehicle body and trailer manufacturing 3362
Motor vehicle parts manufacturing 3363
Aerospace product and parts manufacturing 3364
Railroad rolling stock manufacturing 3365
Ship and boat building 3366
Other transportation equipment manufacturing 3369
Household and institutional furniture and kitchen

cabinet manufacturing 3371
Medical equipment and supplies manufacturing 3391
Newspaper, periodical, book, and directory publishers 5111


