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Monitoring Economic
Activity in Real Time Using
Diffusion Indices: Evidence
from the Fifth District
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I
nformation on the state of U.S. economic activity compiled by sta-
tistical agencies, such as the Bureau of Labor Statistics (BLS),
the Bureau of Economic Analysis, or even sections of the Federal

Reserve Board, is often released with a one-month lag and is subject
to further revisions, typically at the three-month and one-year mark.1

Moreover, information on economic activity collected by these agencies
at a more regional level is limited, so that data on wages, inventories,
or shipments at the level of a U.S. state, for example, are not easily
obtainable in real time. In part to compensate for this lack of in-
formation, several regional Federal Reserve Banks, including Atlanta,
Dallas, Kansas City, New York, Philadelphia, and Richmond, produce
survey-based diffusion indices that attempt to monitor in real time the
direction of change in various regional economic conditions. In this
article, we provide an assessment of this effort by the Federal Reserve
Bank of Richmond (FRBR) based on ex-post sectoral information re-
lated to employment and wages for the Fifth Federal Reserve District.
We also provide an assessment of the extent to which more disaggre-
gated regional diffusion indices, not currently constructed but under
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consideration, are likely to inform individual states within the Fifth
District.

Diffusion indices of the kind constructed by Federal Reserve Banks
as well as many other institutions, such as the widely publicized In-
stitute for Supply Management index (ISM) or the Michigan Survey
of Consumers index of consumer sentiment (MSC), aim to measure
the breadth of change in a variable of interest, say employment, based
on the proportions of its disaggregated component series that move
in different directions (increase, decrease, or remain unchanged). This
traditional interpretation relying on notions of optimism and pessimism
is discussed by Moore (1983) and is distinct from diffusion indices con-
structed using factor analytic methods in Stock and Watson (2002).

In this article, we build on work by Pinto, Sarte, and Sharp (2015)
and highlight the fact that appropriately scaled diffusion indices (de-
fined as the difference between the fractions of sectors that expanded
and contracted) capture the contribution of changes in the extensive
margin, or the breadth of change, to aggregate changes in a series of
interest. For the case of employment in the Fifth Federal Reserve Dis-
trict, we show that changes in this extensive margin, measured by a
synthetic diffusion index constructed from observed data, accounts for
the bulk of changes in aggregate employment growth. In this context,
a synthetic diffusion index is defined as the diffusion index that would
be obtained by way of a survey if the sampling were extensive enough
to capture the true performance of all sectors making up aggregate em-
ployment. Thus, a synthetic diffusion index is a diffusion index that
is constructed using disaggregated data that are actually observed ex
post.

The finding that a synthetic employment diffusion index for the
Fifth District closely follows aggregate employment growth in the Dis-
trict arises in part because aggregate employment growth is well ap-
proximated by a formula that uses uniform weights in place of sectoral
employment shares in the calculation of the aggregate series. These
uniform weights can then naturally be related to the proportion of in-
dividual series that move in different directions in a diffusion index. We
then show that the actual Fifth District employment diffusion index,
produced using firm-level surveys carried out by the FRBR, closely
tracks the corresponding ex-post diffusion index constructed using ob-
served data. A key difference is that the survey-based Fifth District
index, which proxies closely for aggregate employment growth in the
Fifth District (when scaled appropriately), is published in close to real
time, whereas the synthetic diffusion index may only be constructed
using ex-post data that are subject to revisions up to a year after their
initial release.
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This article also points to some limitations of using survey-based
diffusion indices to track economic changes in real time. In particular,
even if a survey-based index were to exactly mimic its “true”synthetic
counterpart constructed with data observed ex post, it may perform
poorly in tracking the aggregate series of interest. We illustrate this
point using a synthetic diffusion index constructed using sectoral data
on wages in the Fifth Federal Reserve District. Specifically, we show
that such an index fails to effectively track aggregate wage growth in
the District. This result follows from the fact that, in the case of
wages, changes over time are driven to a greater extent by the in-
tensive margin– the percent change in wages in sectors whose wages
are changing in a given month– rather than the extensive margin– the
number of sectors whose wages are either increasing or decreasing in
a given month. In that sense, the degree to which changes in the ex-
tensive margin contribute to changes in an aggregate series is a central
consideration in the interpretation of diffusion indices.

Finally, there is a persistent need for timely economic information
on U.S. states. Data at the state level are more sparse and less timely
than at the national level. At the same time, more granular measures
are generally more useful to local economic development practitioners,
who tend to be concerned with local information, than measures for
the entire Fifth District. Consequently, this article explores some of
the implications of producing more localized diffusion indices specific
to particular states. To gauge the potential information content of such
indices, we examine the behavior of synthetic employment diffusion in-
dices for each of the states within the Fifth Federal Reserve District
(District of Columbia, Maryland, North Carolina, South Carolina, Vir-
ginia, and West Virginia) constructed using observed data. Our find-
ings suggest that their behavior is far from uniform across indices. Both
the volatility of the growth rate in employment and the relative impor-
tance of the intensive and extensive margins differ considerably across
states. Moreover, the analysis shows that the informational content of
the aggregate Fifth District diffusion index would be relevant for states
such as Virginia and North Carolina, but much less so for DC and West
Virginia. In part, the latter result emerges because economic activity
in smaller states such as West Virginia tends to be more concentrated
in particular industries or sectors. Thus, in areas where the extensive
margin fails to explain a large portion of the overall variation in eco-
nomic activity, diffusion indices that capture economic information in a
larger region do not necessarily provide information that compensates
for the lack of real-time economic data on those areas.

This article is organized as follows. Section 1 describes the data
used in our analysis. Section 2 reviews key aspects of how aggregate
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economic performance relates to economic performance at a more gran-
ular level. Section 3 then decomposes economic performance at a dis-
aggregated level into extensive and intensive margins and uses these
margins to explain the relationship between diffusion indices and ag-
gregate growth rates. This section also highlights an example in which
these measures are closely related, thus providing an underpinning for
survey-based diffusion indices designed to capture changes in economic
activity in real time. Section 4 highlights some limitations of diffusion
indices. Section 5 explores the potential usefulness and other aspects
of producing diffusion indices at a more localized level, such as an in-
dividual state, rather than an entire Federal Reserve District. Section
6 provides some concluding remarks.

1. DATA

Because diffusion indices aim to provide a sense of the direction of
change, or breadth of change, in economic activity, these are most
often constructed from disaggregated data such as individual survey
data. Diffusion indices constructed using factor analytic methods, as
in Stock and Watson (2002), in fact also share this reliance on more
granular data. To assess the effectiveness of diffusion indices as real-
time estimates of changes in economic activity, this article makes use
of two sets of disaggregated data related to the Fifth Federal Reserve
District. It also makes use of diffusion indices constructed from surveys
of firms in the Fifth Federal Reserve District by the FRBR.

The first set of data is state employment by industry from the
Quarterly Census of Employment and Wages (QCEW) program at the
BLS. The QCEW data are derived from the quarterly tax reports sub-
mitted to state workforce agencies by employers subject to state unem-
ployment insurance laws. Employment covered by the unemployment
insurance (UI) programs represents about 97 percent of all wage and
salary civilian employment in the country. The employment data are
monthly, but are subject to a six-month lag in availability. For most
industries, the QCEW data is available from January 1990; therefore
the sample used in this analysis covers January 1990 through Decem-
ber 2014. The QCEW data are available at the state level for indus-
tries as granular as the six-digit North American Industry Classification
(NAICS) code. We include data on the six jurisdictions covered by the
Fifth Federal Reserve District (District of Columbia, Maryland, North
Carolina, South Carolina, Virginia, and West Virginia) starting at the
four-digit NAICS level, subject to data availability for the full time pe-
riod. To the extent that the data are not available for any industry at
the four-digit level, the industry is aggregated to the three-digit NAICS
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code, along with all of the other industries covered in that three-digit
code. This process is repeated, when necessary, by aggregating the
three-digit NAICS into two-digit NAICS codes. Therefore, the final
data set is a balanced panel that combines employment by state by
industry at the four-, three-, and two-digit NAICS classification levels.
Included are data on six regions and 868 industry/state series that are
broken down as follows: Washington, D.C. (30 industries), Maryland
(157 industries), North Carolina (207 industries), South Carolina (163
industries), Virginia (190 industries), and West Virginia (121 indus-
tries).

When the number of establishments in a particular industry in a
county or state are too few, the BLS suppresses data in order to pre-
serve confidentiality. Therefore, for certain four- and even three-digit
NAICS classification levels, some state data are not available. When
the data was combined to create three- or two-digit industries, there
were monthly jumps in employment in some of the aggregated indus-
tries that represented not an increase or a decrease in employment, but
the suppression (or addition) of an industry. For this reason, there were
a number of outliers (positive and negative) that created considerable
volatility in growth rates. We removed outliers by linearly interpolat-
ing growth rates that were above the 90th or below the 10th percentile
of the distribution. The data were then seasonally adjusted in SAS
using the Census Bureau’s X-12 ARIMA program. The adjustment
was consistent with the seasonal adjustment that the BLS uses for its
Current Employment Statistics payroll employment data.

The second set of data– data on wages– also comes from the QCEW
database. The sample period is the same (1990 through 2014); however,
the data are available only quarterly. This article uses total wages col-
lected in a state/industry combination over the quarter. The number
of industry sectors matches that in the employment data. All manip-
ulation of the data, such as aggregating industries, removing outliers,
and controlling for seasonality, is consistent with the employment data.

Finally, the third set of data is collected through the FRBRmonthly
surveys of manufacturing and service sector activity across the Fifth
Federal Reserve District. The survey of manufacturing firms began in
1986 but took its current monthly form in November 1993. The sur-
vey asks respondents questions about shipments of finished products,
new order volumes, order backlog volumes, capacity utilization (usage
of equipment), lead times of suppliers, number of employees, average
work week, wages, inventories of finished goods, and expectations of
capital expenditures. The services survey began in 1993 and reports
on revenues, number of employees, average wages, and prices received.
For retailers, the survey also includes questions on current inventory
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activity, big ticket sales, and shopper traffi c. For this analysis, the man-
ufacturing and services surveys are combined, and diffusion indices are
developed from the questions on employment and wages. The survey
data are seasonally adjusted according to the same process used to
adjust the QCEW data.

There is considerable variation in the number of respondents over
time in the Richmond surveys. In 1993, the number of respondents
started at around 250 but then fell to a low of 82 respondents by the
end of 2000. The number then rose to around 150 respondents by the
middle of 2001 and stayed between 150 and 200 respondents until a
large jump in 2011 that can be attributed to a consolidation of survey
contacts (until 2011, separate surveys were run for the North and South
Carolina and Maryland/Washington, D.C., regions). For the past few
years, the number of respondents has vacillated around 200 businesses.
For wages, the number of respondents jumped considerably from April
to May of 1997, since May 1997 was the first month that the question
on wages was asked in the manufacturing survey. It is also worth noting
that over the years, some questions on the surveys were added, changed,
or clarified. Finally, in March 2002, survey respondents began to be
able to respond online, although many responses were still faxed and
mailed. By December 2010, all responses had to be submitted online.

2. ECONOMIC ACTIVITY IN THE SMALL AND
THE LARGE

Formally, diffusion indices are summary statistics of the form,

µDt + κ, (1)

where Dt is the difference between the proportion of a set of disag-
gregated series that increased between two dates, t− 1 and t, and the
proportion that decreased over the same period,

Dt =
Nu
t

N
− Nd

t

N
, (2)

where N is the total number of series or categories being considered,
say sectors, and Nu

t and N
d
t are the number of series that increased

and decreased, respectively; µ and κ are normalizing constants. In
the case of the FRBR diffusion indices, µ = 100 and κ = 0. Thus,
index values greater than zero are interpreted as an expansion, say in
employment, and negative index values are conversely interpreted as a
contraction; upper and lower bounds of 100 and −100 are indicative
of all sectors expanding and contracting, respectively. Observe that
Nu
t /N in equation (2) also has the interpretation of an average over

all categories or sectors where each sector is assigned a value of 1 if
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reporting an increase in activity and zero otherwise, and similarly for
Nd
t /N .
One of the simplest ways in which performance in a given area of

the economy is assessed concerns the behavior of the aggregate growth
rate in the corresponding variable. Thus, the behavior of aggregate
employment growth over a given period, for example, gives us a sense
of the performance of the labor market over that period. Aggregate
employment growth in turn is a summary of employment growth at a
more granular level, say employment growth in the various labor mar-
kets across all sectors that make up the aggregate series. In that sense,
the estimate of overall growth in a given month hides the details of
how this estimate comes about. Put another way, aggregate employ-
ment growth may come in moderately high because of a few sectors
whose employment grew very rapidly while all other sectors muddled
through or even declined or because employment in a wide array of
sectors grew at a moderate rate. In contrast, diffusion indices give us
a sense of the breadth of economic performance through a summary
measure that combines the proportions of sectors whose employment
increased relative to those whose employment fell. In this section and
the next, we highlight important features of how these different mea-
sures of performance relate to each other.

Consider an economy composed of R regions, indexed by r =
1, ..., R, in which various sectors operate. There are Nr active sec-
tors in region r, indexed by n = 1, ..., Nr. The total number of sectors
across all regions is given by N =

∑R
r=1Nr.2 Denote employment in a

given region r in sector n at date t by xr,n,t, and its monthly annualized
growth rate by ∆xn,r,t = 1200 × ln(xr,n,t/xr,n,t−1). We assume obser-
vations over T periods. Because our concern centers around assessing
economic conditions in real time, our focus in this paper will be on the
highest-frequency data available for a given series, thus monthly in the
case of employment. Let ∆x̃t denote aggregate employment growth
across all sectors and regions. Then, it follows by way of an identity
that

∆x̃t =

R∑
r=1

Nr∑
n=1

ωr,n,t∆xr,n,t, (3)

2 For the purpose of our current analysis, the parameter values are given by R = 6,
NDC = 30, NMD = 157, NNC = 207, NSC = 163, NV A = 190, NWV = 121, and N =
868. In the present context, it does not really matter whether sectors are region specific
or not. Our analysis relies on aggregate data either at the Fifth District or state level.
As we will see later, the aggregation is performed weighting each observation uniformly.
Essentially, each sector-region observation is treated as an individual observation.
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Figure 1 Employment Growth Rate: Uniform Weights and
Residual

where ωr,n,t = xr,n,t/xt are weights that, in this case, represent the
employment share of a given sector in a given region at time period t.
Because the time variation in employment shares is typically small, in
the remainder of the paper we consider as a benchmark mean employ-
ment shares, ωr,n, independent of time.3

Since diffusion indices in (2) implicitly weight individual series uni-
formly, it is instructive to explore the behavior of a simple aggre-
gate growth rate similar to that in (3) but constructed using uniform
weights.4 In particular, we can write the actual aggregate growth rate,

3 Foerster, Sarte, and Watson (2011) follow a similar approach.
4 Observe that Nu

t /N is the sum of series that increase between t−1 and t weighted
by 1/N and similarly for Nd

t /N .
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∆x̃t, as

∆x̃t =
1

N

R∑
r=1

Nr∑
n=1

∆xr,n,t︸ ︷︷ ︸
∆xt

+
R∑
r=1

Nr∑
n=1

(
ωr,n −

1

N

)
∆xr,n,t, (4)

where∆xt = 1
N

R∑
r=1

Nr∑
n=1

∆xr,n,t is an approximate growth rate computed

using uniform weights, 1/N , and
R∑
r=1

Nr∑
n=1

(ωr,n− 1
N )∆xr,n,t is a residual

that indicates the importance of deviating from actual shares in using
uniform weights to arrive at an aggregate growth rate. Gabaix (2011)
refers to the second term on the right-hand side of equation (4) as
the granular residual. To provide intuition, in an extreme case where
overall performance, ∆x̃t, is mainly determined by a few large sectors in
different regions, this second term rather than the first term in equation
(4) would tend to dominate the decomposition in (4).

Figure 1 shows the decomposition in equation (4) for employment
growth over time across the Fifth Federal Reserve District. By and
large, the simple growth rate, ∆xt, represents a good approximation of
the actual growth rate, ∆x̃t, throughout the sample period. A notable
exception concerns the period covering the Great Recession, when em-
ployment fell dramatically and where the simple growth rate and the
granular residual moved in opposite directions. However, even in this
case, it is the granular residual that moves in a direction opposite the
actual growth rate and remains positive throughout the recession while
actual aggregate growth is negative. On the whole, Figure 1 suggests
that the uniform weighting of the simple growth rate, ∆xt, similar to
that of the diffusion indices in (2) whereby each series receives uniform
weight 1/N conditional on an increase or decrease, has relatively minor
implications for measuring overall performance. Figure 2 provides an
alternative illustration of the decomposition depicted in equation (4).
Specifically, the scatter plot in Figure 2, Panel A, shows that calcula-
tions of ∆xt using uniform weights for aggregate employment growth
line up closely with actual observations on ∆x̃t along the 45 degree line.
In contrast, the scatter plot in Figure 2, Panel B, depicting the gran-
ular residual in (4) is relatively flat with respect to ∆x̃t around zero.
In the Fifth Federal Reserve District, overall employment growth, ∆x̃t,
averages to 1.11 percent over our sample period, with the simple aggre-
gate growth rate, ∆xt, averaging 0.94 percent over the same period and
the granular residual 0.17 percent. From this point onward, therefore,
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Figure 2 Employment Growth Rate: Uniform Weights and
Residual

we rely on the simple growth rate, ∆xt, as our benchmark measure of
aggregate performance or activity.

3. INTENSIVE AND EXTENSIVE MARGINS OF
ECONOMIC ACTIVITY

In order to describe how the diffusion index in (2) for employment, say,
and correspondingly aggregate employment growth in (3) are related
as summaries of economic activity, let

∆xur,n,t =

{
∆xr,n,t if ∆xr,n,t ≥ 0

0 otherwise

and ∆xdr,n,t =

{
−∆xr,n,t if ∆xr,n,t < 0

0 otherwise
. (5)

Simply put, equation (5) distinguishes between those sectors in
particular regions that contribute positively to aggregate employment
growth, ∆xur,n,t (up sectors), and those that reduce aggregate growth,
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∆xdr,n,t (down sectors). Then, following Pinto, Sarte, and Sharp (2015),
and denoting we may write overall employment growth, ∆xt, in the
following way,

∆xt =
Nu
t

N
µut −

Nd
t

N
µdt , (6)

where

µat =

R∑
r=1

Nr∑
n=1

∆xar,n,t, a = u, d. (7)

In other words, overall growth across all sectors and regions, ∆xt, may
be thought of as a weighted sum of average cross-sectional growth rates,
where µut and µ

d
t are the average growth rates of all sectors that add to

and subtract from overall growth in a given period, respectively. The
weights in (6) are the relative proportions of those sector types.

We can further express each component, N
a
t
N µat , a = u, d, of ∆xt in

equation (6) as

Na
t

N
µat = µa

(
Na
t

N
− ϕa

)
+ ϕa(µat − µa)

+

(
Na
t

N
− ϕa

)
(µat − µa) + µaϕa, a = u, d, (8)

where µa = 1
T

∑T
t=1 µ

a
t , a = u, d, are time averages, or long-run cross-

sectional averages, of those sectors that contribute positively and neg-
atively to overall growth, and ϕa = 1

T

∑T
t=1

Na
t
N , a = u, d are the long-

run proportions of those sectors. Thus, equation (8) tells us that, at
a point in time, a large increase in overall employment growth by way
of Nu

t
N µut may come about from the proportion of expanding sectors

being higher than usual given their contribution, µu(
Nu
t
N − ϕu) > 0

corresponding to an increasing extensive margin; the cross-sectional
average growth rate from those expanding sectors being higher than
usual given the typical proportion of those sectors, ϕu(µut − µu) > 0
corresponding to an increasing intensive margin, or both when both
are true, (

Nu
t
N − ϕ

u)(µut − µu) > 0. The decline in overall growth by

way of N
d
t
N µdt may be described similarly.

5

Combining equations (6) and (8), it follows that

∆xt ∼= ϕu(µut − µu)− ϕd(µdt − µd)︸ ︷︷ ︸
Change in intensive margin

+ µuDt,︸ ︷︷ ︸
Change in extensive margin

(9)

5 Since the total number of series or sectors is fixed in this context, we should
perhaps be referring to a notion of quasi-extensive margin in the sense that entry and
exit are not operative.
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Figure 3 Employment Growth Rate Decomposition: Positive
and Negative Contributions

where Dt = (
Nu
t
N −

Nd
t
N ) is the difference in the proportions of sectors

experiencing positive growth and negative growth respectively defined
earlier. In other words, overall economic performance, as measured by
an aggregate growth rate, may be interpreted as approximately aris-
ing from changes in an intensive margin, the difference between the
intensity with which expanding sectors grew and that with which con-
tracting sectors declined, and changes in an extensive margin, the dif-
ference between the fractions of sectors that expanded and contracted
or the breadth of change in economic activity. The relationship in
equation (9) is only approximate in the sense that µu and µd are close
in practice but not necessarily identical so that (9) makes use of the
fact that µd = µu− δ for some small δ. Moreover, the difference in the
interaction between intensive and extensive margins in equation (8),
(
Na
t
N − ϕa)(µat − µa), a = u, d, may also matter at times.6 On the
whole, however, the question at hand at this point is: which of the two

6 Refer to Pinto, Sarte, and Sharp (2015) for a complete derivation of expression
(9).
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Figure 4 Employment Growth Rate Decomposition:
Intensive and Extensive Margins

margins in equation (9) tends to explain variations in ∆xt, if any, as a
summary of overall economic performance?

Figure 3, Panel A, shows the decomposition of the positive contri-
butions to aggregate employment growth in the Fifth Federal Reserve
District, Nu

t
N µut , in terms of intensive and extensive margins. In this

case, µu = 9.23, so that expanding sectors contribute about 9.2 percent
to employment growth on average, and ϕu = 0.54, so that expanding
sectors represent about 54 percent of all sectors on average. Figure 3,
Panel A, makes it clear that variations in Nu

t
N µut are to a large degree

influenced by variations in the extensive margin. Figure 3, Panel B,
shows the decomposition of the negative contributions to aggregate em-

ployment growth, N
d
t
N µd. As in Figure 3, Panel A, the extensive margin

dominates variations in Nd
t
N µd. Declining sectors represent about 46

percent of all sectors on average, ϕd = 0.46, while these sectors reduce
aggregate employment growth by 9 percent on average, µd = 8.95.
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Figure 4 combines Panels A and B of Figure 3 in the manner suggested
by equation (9). As expected from the behavior of the individual com-

ponents Nu
t
N µut and

Nd
t
N µdt of ∆xt, changes in the extensive margin ex-

plain most of the variations in aggregate employment growth in the
Fifth Federal Reserve District. It is interesting to note that in the pe-
riod following the Great Recession, even though the intensive margin
becomes positive, the employment growth rate is still negative. Our
analysis reveals that this outcome arises because a large number of sec-
tors are still experiencing a decline in employment (in other words, the
extensive margin is still negative), and this effect more than compen-
sates for the positive effect of the intensive margin on the employment
growth rate. As a result, the expansion in aggregate employment in
the Fifth District since 2009 is largely influenced by the behavior of the
extensive margin, or the percentage of sectors experiencing an increase
in employment.

The exercises above suggest that, insofar as variations in the ex-
tensive margin explain the bulk of aggregate growth in a variable of
interest, diffusion indices measuring the breadth of change in economic
activity, when appropriately scaled, may serve as a close indication of
aggregate growth. Equation (9) makes use of the mean cross-sectional
growth rate of expanding sectors, µu, to scale the diffusion index. As
explained earlier, without much loss of generality, µd could also have
been used since the two estimates are close. More generally, the scal-
ing factor might be chosen so as to maximize the explanatory power
of changes in the extensive margin, Dt, with respect to ∆xt based on
ex-post observations. In particular, let DS

t denote the “true”synthetic
diffusion index capturing actual changes in the proportions of expand-
ing and contracting sectors observed ex post. We might think of DS

t as
arising from a survey of firms with a large enough sample to capture
the true performance of all sectors making up aggregate employment.
Thus, we might then rewrite equation (9) as

∆xt = α+ εt︸ ︷︷ ︸
Change in intensive margin

+ µDS
t︸︷︷︸,

Change in extensive margin

(10)

and choose α and µ according to a least squares criterion. This yields
µ̂ = 10.80 instead of 9.23 used in Figure 4.

Figure 5 illustrates the behavior of the “true” synthetic diffusion
index DS

t , scaled by µ̂ from (10), against the employment diffusion
index produced by the FRBR for the Fifth Federal Reserve District.7

As discussed earlier, this employment diffusion index represents the

7 When µ is estimated using the diffusion index calculated by the FRBR instead
of DS

t in equation (10), we obtain µ̂ = 12.10.
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Figure 5 Employment Growth Rate: Synthetic and FRBR
Extensive Margins

share of respondents to the FRBR manufacturing and service sector
surveys who reported increased employment in the last month minus
the share of respondents who reported decreased employment. The
data for the month are collected from respondents through the third
Wednesday of every month and are available publicly on the fourth
Tuesday of every month; thus, they are the timeliest regional data
available.

As indicated by Figure 5, the survey-based diffusion index pro-
duced in real time by the FRBR lines up remarkably closely with the
synthetic diffusion index produced from employment data observed ex
post. Figure 5 also shows, however, that the performance of the FRBR
employment index improves over time. In the early years of the FRBR’s
index, from 1993 to 2001, the survey-based diffusion index and the syn-
thetic index are somewhat far apart. There have been a few changes to
the surveys over the years. As is clear from the earlier discussion, the
number of respondents and the sampling of the respondents changed
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Figure 6 Wage Growth Rate Decomposition: Positive and
Negative Contributions

over the years due to both economic changes in the region and changes
to the survey process. One such process change was that in March
2002, survey respondents began to be able to respond online, although
many responses were still faxed and mailed. By December 2010, all
responses had to be submitted online. Thus, with those changes, the
Richmond Fed’s employment diffusion index begins to track its syn-
thetic counterpart much more closely beginning in 2002. Between June
2002 and December 2014, the correlation between the survey-based dif-
fusion index and the synthetic index constructed from observed data is
0.77. In addition to the changes in the survey process explained ear-
lier, other reasons, including variations in the survey composition and
sample size, may also explain the shift observed in the survey series
starting in 2002.8

8 A more detailed analysis is required to identify such factors. We will revisit this
issue in future work.
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4. LIMITATIONS OF DIFFUSION INDICES

As the previous section suggests, the importance of the link between
diffusion indices and aggregate growth rates hinges crucially on the rel-
ative contribution of the extensive margin of activity to overall growth.
In the case of changes in employment in the Fifth Federal Reserve
District, we saw that changes in the extensive margin contributed sig-
nificantly to overall employment growth. There is nothing to suggest,
however, that this should be the case for all aggregate series of interest.
To highlight the potential limitations of diffusion indices, we consider
an effort to track wage pressures in real time by way of changes in the
extensive margin that keeps track of the proportion of sectors that are
seeing increases and decreases in average wages.

One natural definition of an overall average wage that takes into
account wages in all sectors and regions is given by

w̃t =

R∑
r=1

Nr∑
n=1

xr,n
x
wr,n,t (11)

where wr,n,t is the average wage in region r in sector n at date t, and
xr,n
x is the corresponding mean employment share in that region and
sector. Average wage growth, ∆w̃t, then follows approximately

∆w̃t =
R∑
r=1

Nr∑
n=1

Wr,n

W
∆wr,n,t, (12)

whereWr,n is the (mean) total wage bill in region r in sector n, and
W is the (mean) total wage bill across all sectors and regions. As in the
previous section, we can decompose average wage growth in equation
(12) into a uniformly weighted growth rate and a granular residual,

∆w̃t =
1

N

R∑
r=1

Nr∑
n=1

∆wr,n,t︸ ︷︷ ︸
∆wt

+
R∑
r=1

Nr∑
n=1

(
Wr,n

W
− 1

N

)
∆wr,n,t, (13)

and further decompose the simple average growth rate, ∆wt, into in-
tensive and extensive margin changes,

∆wt ∼=
[
ϕu(µut − µu)− ϕd(µdt − µd)

]
+ µuDt. (14)

Analogously to the decomposition of employment in the previous
section, changes in the intensive margin, [ϕu(µut − µu)− ϕd(µdt − µd)],
capture how high increasing wages are rising relative to how badly
declining wages are falling in those sectors and regions where wages
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Figure 7 Wage Growth Rate Decomposition: Intensive and
Extensive Margins

are changing. Changes in the extensive margin, µuDt, reflect the ex-
tent to which increasing wages are widespread across sectors relative
to decreasing wages.

Figure 6 shows the decomposition of the positive and negative con-
tributions to average wage growth into their respective intensive mar-

gins, ϕa(µat − µa), and extensive margins, µa
(
Na
t
N − ϕ

a
)
, a = u, d. A

salient feature of the positive contributions is that the intensive mar-
gin is at least as important at explaining Nu

t
N µut as the extensive mar-

gin, with periods in which the former even dominates the latter. The
negative contributions to the average wage growth rate are, however,
generally much smaller and mostly dominated by the extensive margin.

Figure 7 shows the overall decomposition of the growth rate in av-
erage wages into the intensive and extensive margins, as indicated by
(14). From the figure, we observe that changes in the extensive mar-
gin are, with only a few exceptions, always positive. The (demeaned)
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Figure 8 DC - Employment Growth Rate Decomposition:
Intensive and Extensive Margins

growth rate of average wages, however, is frequently negative, generally
coinciding with periods in which changes in the intensive margin are
negative. The decomposition in (14) reveals that the intensive margin
will tend to be negative whenever the average wage growth rate of sec-
tors reporting an increase at time period t, µut , becomes small relative
to the corresponding growth rate of those reporting a decline, µdt . In
our sample, the changes in µut dominate, especially in time periods in
which the economic activity is low or declining. For instance, average
wage growth is below its mean from the first quarter of 2008 until the
second quarter of 2009, coinciding with a time period in which µut was
also below its mean. The behavior of µdt is, however, more erratic,
with quarters in which µdt was even below its mean during that same
period.9

9 Also, note that while the correlation between µut and ∆wt is 0.80, the correlation
between µdt and ∆wt is -0.14.
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Figure 9 MD - Employment Growth Rate Decomposition:
Intensive and Extensive Margins

Put another way, in the case of average wages, changes in the ex-
tensive margin are frequently at odds with the behavior of its overall
growth rate, highlighting the limitations of diffusion indices as real-time
indicators of economic activity. One reason that explains the weak con-
nection between the extensive margin and the overall growth rate in
average wages is that wages seldom decline in nominal terms. Other
series may certainly show the same kind of pattern.10

10 Further examination of the underlying factors explaining the behavior of different
series of interest (specifically those series included in the FRBR survey) would allow
us to determine which ones are more like the employment series, where the extensive
margin plays a dominant role, and which ones share more closely the characteristics of
the wage series.
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Figure 10 NC - Employment Growth Rate Decomposition:
Intensive and Extensive Margins

5. STATE-LEVEL DIFFUSION INDICES

Although the survey-based diffusion index for the Fifth District aids
in understanding economic activity for the entire region, the dearth
of data available for individual states combined with the important
role that state boundaries play in economic activity and policymaking,
mean that measures of activity at the state level would be more use-
ful to many local policymakers or economic development practitioners
than measures related to the Fifth Federal Reserve District. The man-
ufacturing and service sector surveys provide information that is not
otherwise available at the state level (such as new orders of manufac-
tured goods or retail shopper traffi c) in a timely fashion and include
respondents’projections of future activity.

Mainly due to data limitations, the FRBR is unable to construct
and report state-level diffusion indices for manufacturing and services
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Figure 11 SC - Employment Growth Rate Decomposition:
Intensive and Extensive Margins

separately.11 The FRBR combines survey responses from every state
and calculates a Fifth District diffusion index. However, the evolution
of this aggregate indicator may not accurately track the performance
of each individual state in the District. To understand the implica-
tions of conducting an analysis at the level of the District rather than
individual states, we use state employment data from QCEW and ap-
ply the methodology introduced in Section 3 to each of the states in
the Fifth District. Specifically, we decompose state employment growth
rates into their intensive and extensive margins and construct synthetic
state-level employment diffusion indices.

Figures 8 through 13 show the evolution of the employment growth
rate and changes in the intensive and extensive margins for each state
in the Fifth District. Table 1 presents their standard deviations, and

11 However, the FRBR conducts a survey of general business activity for the Car-
olinas and for Maryland.
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Table 1 Employment: Standard Deviation

∆xr,t Intensive Margin Extensive Margin
5E 1.52 0.45 1.24
DC 3.26 2.44 2.23
MD 1.98 1.14 1.42
NC 1.92 0.81 1.55
SC 2.03 0.74 1.67
VA 1.79 0.85 1.36
WV 2.02 1.21 1.36

Table 2 the cross-correlations between the calculated synthetic diffu-
sion indices (or extensive margins). A few remarks are worth making.
First, the volatility of the employment growth rate differs considerably
across states. The standard deviation of ∆xr,t throughout the period
under consideration is almost twice as high in DC (3.26) as it is in Vir-
ginia (1.79). Second, the relative importance of intensive and extensive
margins in explaining state-level employment growth also differs con-
siderably across states. While changes in the extensive margin explain
the bulk of variations in state employment growth in North Carolina,
South Carolina and Virginia, they seem much less relevant to employ-
ment growth in DC, Maryland, and West Virginia, where the intensive
and extensive margins play essentially similar roles. For the states in
the Fifth District, economic activity tends to be concentrated in a lower
number of sectors in smaller states, with the extensive margin thus be-
coming relatively less important. Third, the correlation between the
synthetic Fifth District diffusion index DS

t calculated earlier and the
state-level diffusion indices also differs across states, as suggested by
Table 2.
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Table 2 Correlation Matrix: State and Fifth District
Diffusion Indices (Extensive Margin)

5E DC MD NC SC VA WV
5E 1.0000
DC 0.4450 1.0000
MD 0.8174 0.4221 1.0000
NC 0.8969 0.2924 0.6184 1.0000
SC 0.8511 0.3197 0.5878 0.7580 1.0000
VA 0.9095 0.3881 0.7364 0.7400 0.7110 1.0000
WV 0.5443 0.1884 0.3823 0.4122 0.2816 0.4673 1.0000

In particular, the diffusion indices for Virginia and North Carolina
seem to closely follow the performance of DS

t , with correlation coeffi -
cients of about 0.90. The correlation is also relatively high for South
Carolina and Maryland (0.85 and 0.82, respectively). However, the cor-
relations between state and Fifth District indices are much lower for
DC and West Virginia (0.45 and 0.54, respectively). Thus, in regions
where the extensive margin fails to explain a large component of the
overall variation in economic activity, broader-based diffusion indices
capturing economic information in surrounding regions do not neces-
sarily make up for the lack of real-time information. Even though the
synthetic diffusion index may not accurately represent the behavior of
aggregate growth in states where economic activity is concentrated in
a few sectors (such as West Virginia), an index based on a large enough
sample of survey respondents may perform satisfactorily.

6. CONCLUDING REMARKS

In this article, we provide an analysis of diffusion indices that parses
out the conditions under which they are likely to serve as reliable real-
time indicators of economic activity. In particular, building on Pinto,
Sarte, and Sharp (2015), we highlight the fact that diffusion indices,
appropriately scaled, capture the contribution of changes in the exten-
sive margin to aggregate changes in a series of interest. For the case
of employment in the Fifth District, we show that changes in this mar-
gin in fact account for the bulk of changes in aggregate employment
growth.

This article also highlights the potential limitations of diffusion
indices. Specifically, since diffusion indices capture changes in an ex-
tensive margin, these indices are of limited usefulness in cases where
aggregate changes are driven by the intensive margin. That is, the in-
tensity with which economic activity increases in particular sectors, for
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Figure 12 VA - Employment Growth Rate Decomposition:
Intensive and Extensive Margins

example, rather than the number of sectors in which economic activity
increases. In the case of average wages, for example, we show that
changes in the extensive margin are frequently opposite that its overall
growth rate. Finally, we explore the potential usefulness and other as-
pects of producing diffusion indices at a more localized level, such as an
individual state, rather than an entire Federal Reserve District. Given
that economic activity is typically more concentrated across sectors in
smaller states, and changes in the extensive margin play a smaller role,
relying on broader diffusion indices capturing activity in surrounding
regions remains of limited use for such states.
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Figure 13 WV - Employment Growth Rate Decomposition:
Intensive and Extensive Margins
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Does Bank Lending Matter
for Large Firms’ Investment?

Marios Karabarbounis

1. INTRODUCTION

D
oes bank lending matter for corporate investment? On the one
hand, if corporations have easy access to alternative sources of
finance such as internal financing, external equity, or bond

issuance, then investment will be less affected by how much banks are
willing to lend. On the other hand, if corporations are strongly attached
to bank lending, then disruptions in bank financing might affect firms’
investment.

Starting from Kashyap, Stein, and Wilcox (1993), this question has
spurred a large literature.1 Most studies are subject to the criticism
of being unable to distinguish between pure supply variations in bank
lending and changes in credit demand. However, the increasing trend
of focusing away from macro-level to firm-level data has offered new
opportunities to deal with this endogeneity. For example, in a recent
article, Chodorow-Reich (2014) used cross-sectional variation in dis-
ruptions of banking relationships to analyze the employment effects of
the recent financial crisis. His findings point toward significant effects
of bank lending for the employment of small firms.

This article uses similar identification techniques to address whether
bank lending matters for corporate investment. To my knowledge, there
is no work employing microdata on banking relationships to analyze the
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1 Other significant papers analyzing the effect of bank lending are Bernanke and 
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effect of bank lending on firm investment. The exercise combines in-
come statement and balance sheet information on publicly listed firms
from Compustat with information from Loan Pricing Corporation’s
DealScan. Following Chodorow-Reich (2014), I use DealScan data to
identify the banking institutions in lending relationships with the firms
in the Compustat sample. For each bank, I construct an index– the
bank lending ratio– summarizing how much banks decreased lending
after the crisis compared to their pre-recession level. I then construct a
firm-specific measure of bank lending supply: the relative exposure of
each firm to banks that faced severe lending disruptions. Intuitively, a
firm heavily borrowing from a bank that experienced diffi culties would
find it harder to expand its credit compared with a firm that was bor-
rowing from healthier banks.

The key idea is that disruptions in credit could be considered an
exogenous event for a particular firm. For example, banks that expe-
rienced financial turmoil did so mainly due to their exposure to risky
financial instruments such as toxic mortgage loans. Using this type of
variation, one can abstract from traditional measures of bank lending
that are more likely to suffer from endogeneity. An example of such
measure is the aggregate bank share of debt issuance (Kashyap, Stein,
and Wilcox 1993).

It turns out that the two measures yield completely different results.
The aggregate bank share is strongly correlated with the change in
investment. During periods of lower bank share, firm-level investment
decreases. In sharp contrast, our “exposure”measure (a proxy for a
firm’s ability to borrow) does not affect investment in a significant way.

A caveat of our exercise is that we focus on publicly listed firms from
Compustat. These firms are typically large firms that can substitute
more easily bank lending with not only external equity financing but
also internal equity. As a result, it would be a mistake to extrapolate
our findings for the universe of U.S. firms. It is very likely that bank
lending can have significant effects on smaller firms, which are not
included in the sample.

This paper contributes to the literature analyzing the effect of bank
lending on macroeconomic variables. Bernanke and Blinder (1988) de-
velop a model that allows roles for both money and bank loans. Ramey
(1993) studies the importance of the credit channel on the transmis-
sion of monetary policy. Kashyap, Stein, and Wilcox (1993) explore
the existence of a loan supply channel using bank loan and commercial
paper measures.

Berger and Udell (1995) show that small firms with longer banking
relationships borrow at lower rates and are less likely to pledge collat-
eral than other small firms. Ivashina and Scharfstein (2010) show that
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banks cut their lending less if they were not reliant on short-term debt
and had better access to deposit financing. Jiminez, Mian, Peydro, and
Saurina (2014) analyze the impact of securitization of real estate assets
on the supply of credit to non-real estate firms. Becker and Ivashina
(2014) also use firm-level evidence from DealScan. While their main
focus is to provide evidence of bank supply shocks, they also related
the aggregate bank share to investment. As mentioned, we consider
this measure to be prone to endogeneity. Hence, this paper exploits a
different measure based on bank lending relationships.

2. EMPIRICAL ANALYSIS

Data Description

To analyze the effect of bank lending on investment, we combine two
datasets. The first is the Compustat annual database, which includes
balance sheet information on publicly listed companies. Since these
companies are much larger than the representative firm, our analysis
is better viewed as applying to large firms. The second dataset is the
Loan Pricing Corporation’s DealScan from Thomson Reuters. This
dataset includes daily information on new bank loan issuances for a
large set of companies both private and public. The information on
loan characteristics includes (among others) the name of the firm un-
dertaking the loan, the amount issued, the issue date, the type and
purpose of the loan, and the cost and maturity of the loan. Moreover,
there is information on the name of the banks that act as a syndicate
to lend money as well as which bank(s) act as book manager (leader
of deal). Being able to identify where the loan originates is crucial for
the analysis.

We will focus only on nonfinancial U.S. firms for the period between
2000—13. Investment is defined as capital expenditures on property,
plant, and equipment (Compustat data item #30). Within DealScan,
I exclude firms in financial- and government-affi liated industries and
only include loans used for construction of capital buildings or other
construction, capital expenditures, and property development. This
way I exclude loan deals not used for real investment purposes such as
refinancing, stock buyback, or mergers. We deflate all variables by the
Producer Price Index.

After these restrictions, we are left with a total of 2,022 firms and
a total of 11,390 observations. As mentioned, the DealScan sample in-
cludes a much larger set of firms both private and public. In particular,
it includes 21,457 firms and a total of 114,989 observations. Table 1
provides summary statistics for loan issuance. We report these statis-
tics for both our sample (the intersection of Compustat and DealScan)
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Table 1 Summary Statistics for Loan Issuances (2000—13)

DealScan DealScan & Compustat
Deals # 29,447 7,670
Average Amount (Millions $) 168.9 263.6
Maturity (Years) 3.8 3.8
Spread over LIBOR (bps) 166.4 132.4
Firms # 21,457 2,022
Observations # 114,989 11,390

and the complete DealScan dataset. During our period, there are a
total of 7,670 loans issued to Compustat firms. The total number of
loan deals in all firms in DealScan is 29,447. The average amount of a
loan deal is $263 million in our sample. In the full DealScan dataset,
the average amount is $169 million. In both, the average loan deal
matures in 3.8 years. We measure the cost of a loan deal as the spread
over the LIBOR of the respective maturity. To compute the average,
we weight each deal by its size relative to the total amount issued in
the given year. In our sample the average spread is 132 basis points.
In DealScan it is higher, around 166 basis points.

Figure 1 plots several patterns of bank loan financing during 2000—
13. The most striking pattern is the sharp reduction in bank loan
issuance during the recent crisis. Issuance decreased from $215 billion
in 2007 to $156 billion in 2009 (upper left panel). By 2011, bank
lending had returned to the pre-recession levels. The procyclicality of
bank financing is also evident in the 2001 recession. The upper right
panel plots the number of loan deals per year. The number decreased
from 551 in 2007 to 288 in 2009, almost one-half of the pre-recession
level. I also compute the average amount per loan deal, although it
is not plotted in Figure 1. The per-deal amount also decreased from
$338 million in 2007 to $156 million in 2009. Hence, the sharp decline
in loan financing was the result of both fewer firms getting a loan and
of those that borrowed less.

In parallel with the decline in loan financing, the cost of loans rose
sharply. The lower left panel of Figure 1 plots the average yield as the
spread over LIBOR and the loan yield, which is defined as the spread
plus LIBOR. The difference between the two lines gives the LIBOR
path. As mentioned, deals are weighted by their size. Loan spreads
increased from 92 bps in 2007 to 315 bps in 2009. Although the spreads
decreased in 2010, they stabilized at a higher level compared with the
pre-recession level. However, the overall yield did not increase as much
due to the decreasing interest rates of LIBOR. In 2013, the yield was
significantly lower than the pre-recession level. Finally, the lower right
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Figure 1 Loan Issuance

Notes: Upper left panel shows the total loan issuance in billions of dollars. Upper
right panel shows the total number of loan deals. All amounts are deflated using
the PPI. Lower left panel shows the yield to maturity in BPS. Dotted line shows
the spread over LIBOR, while the solid shows spread + LIBOR. Lower right panel
shows the average maturity of loan deals.

panel of Figure 1 plots the average maturity of loan deals in our sample,
which decreased from 4.7 years in 2007 to 3.2 years in 2009.

Note that the patterns outlined above seem to hold for the 2001
recession as well. Total loan issuance and number of deals decreased
(but not as sharply). The loan yield decreased, but the spread over
LIBOR increased. The only difference is that average loan maturity
was increasing from a low rate even from 2001 and accelerated once
the recession was over.

The Identification Scheme

Our main goal is to understand how variations in bank loan supply af-
fect the firms’investment decisions. A simple approach is to regress the
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change in investment by firm i in period t on some aggregate measure
of bank loan supply in period t:

∆Investmenti,t = β0 + β1 Bank Loan Supplyt + εi,t

The coeffi cient β1 gives the causal effect of the change in firms’invest-
ment due to changes in banks’loan supply if there are no underlying
factors affecting both variables. Hence, the identification assumption
is that Cov(Bank Loan Supplyt, εi,t) = 0. This is a strong assump-
tion that may very likely be violated. For example, changes in both
investment and bank loan supply may be driven by business cycle con-
ditions. In particular, firms may decrease their investment due to lower
expected demand and consequently decrease their demand for credit.
Hence, investment may be responsible for the decrease in bank lending,
not the other way around.

To distinguish pure bank loan supply movements from other vari-
ations, such as demand variations for credit, I consider two empirical
measures of bank lending supply. The first is the bank loans share– the
share of corporate debt issuance financed via bank loans. This measure
is very likely subject to the endogeneity described above.

The second measure is based on bank lending relationships: it cap-
tures the exposure of firms to “unhealthy” banks. Typically, banks
lend to a large number of firms. Hence, the decision of a bank to lend
is likely to be unrelated to a specific firm’s performance. Moreover,
banks that experienced financial turmoil did so mainly due to their
exposure to risky financial instruments such as toxic mortgage loans.
Hence, this measure could be considered as an exogenous event for the
particular firm and, hence, less prone to endogeneity.

Empirical Proxies for Bank Lending Supply

The Bank Share of Debt Issuance

Our first measure of bank lending supply is an aggregate measure: the
share of corporate debt issuance financed via bank loans. In particular,
we define the bank loan share in period t as

Bank Loan Sharet =
$ Total Bank Loan Issuancet
$ Total Debt Issuancet

Total debt issuance is defined as the total bank loan issuance plus
corporate bond issuance. For corporate bond issuance we use the Secu-
rities Data Corporations’New Bond Issuance database, which is again
available through Thomson Reuters. Similar to loan issuance, we have
information on the amount, issue date, maturity, cost, and issuer name
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Figure 2 Loan and Bond Issuance

Notes: Left panel shows the total loan and bond issuances in billions of dollars.
Right panel shows the bank loan share of debt issuance. All amounts are deflated
using the PPI.

for corporate bond issuances. The screening of bond issuance follows
similar steps to the ones for loan issuance.

The left panel of Figure 2 plots the aggregate bond issuance along-
side aggregate loan issuance. In contrast to bank loan lending, bond
issuance increased between 2007—09. Issuance of new bonds totaled
around $80 billion in 2007 and went up to $130 billion during the cri-
sis. This was the result of more firms choosing bond issuance as a means
of financing. In particular, the annual number of bond deals increased
from around 200 to 400 per year. In contrast, given bond issuance,
the average amount of issuance decreased (but less than the decrease
in the average loan issuance). In particular, the average amount per
bond deal decreased from around $350 million to around $300 million.
That means that on average firms substituted bank loan financing with
corporate debt issuance. This is consistent with the findings of Adrian,
Colla, and Shin (2012).

The right panel of Figure 2 plots the bank share of debt issuance.
During the period 2002—07 firms financed (on average) nearly 80 per-
cent of their borrowing using bank loans. During the financial crisis,
this share decreased dramatically to 30 percent. As mentioned, this
was the result of firms assuming less bank loan debt and at the same
time partially substituting loan issuance with corporate debt issuance.
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The bank share of debt issuance is a traditional measure of aggre-
gate bank lending conditions also used by Kashyap, Stein, and Wilcox
(1993). While the latter paper considers only short-term debt (com-
mercial paper), I consider bonds of all maturities.

Bank Lending Relationships

The second measure of bank lending is based on Chodorow-Reich (2014).
While the bank share is an aggregate measure (indexed by period t)
this measure is firm-specific. In particular, I measure a firm’s exposure
to banks that experienced reductions in their lending during the crisis.
Being exposed to a bank means being in a business relationship with
the bank in the form of acquiring a loan.

Disruptions are measured by the difference in a bank’s loan issuance
before and after the crisis. Some banks exhibited a sharp reduction in
their lending while others maintained a constant flow. An extreme
example is Lehman Brothers, which went out of business in September
2008. If a firm was borrowing primarily from Lehman Brothers, then
this firm experienced a more severe tightening in its borrowing capacity
compared to other firms that were borrowing from other institutions.

The key identification assumptions are 1) the continuation of bank-
ing relationships are unrelated to the individual firm’s performance,
and 2) a disruption in bank lending is firm-specific, i.e. it directly
affects a small set of firms.

1. Banks’ performance and firms’ performance. One question is
whether a disruption in a bank’s lending is caused by a dete-
riorating performance of a firm doing business with the bank.
There are a couple of reasons why we would expect this not to
be the case. First, banks lend to a very large number of firms
often from different industries. In our sample, the median bank
lends to 1,996 different firms. Hence, a particular firm may be
too small to affect the banks’balance sheet. Second, in the re-
cent crisis, banks experienced financial problems depending on
their exposure to particular assets such as toxic mortgage loans.
Hence, the continuation of lending by a particular bank is likely
to not be related to an individual firm’s performance.

2. Bank shocks as firm-specific shocks. A typical loan is provided
by a group of banks (syndicate). One of these banks– the book
manager– leads, originates, structures, and runs the books of the
deal. The book manager typically provides the largest portion
of the loan. It is rare for a deal to include more than one book
manager. The main question here is whether firms use different
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Table 2 Total Fraction of Firms Borrowing From a Given
Number of Banks

Number of Banks Fraction of Firms Average Number of Deals
1 76% 1.9
2 16% 4.4
3 5% 7.2
4 1% 9.9

Note: The table calculates the fraction of firms borrowing from a given number of
banks for the period 2000—13. The table also reports how many loan deals have
these firms made.

banks for different deals or use the same set of banks for all
their deals. In Table 2, I calculate the number of banks that a
typical firm uses for borrowing. In our sample, 76 percent of firms
are borrowing from just one bank. These firms have made, on
average, 1.9 deals, which means there are many firms applying to
the same bank for a new loan. Sixteen percent of firms are using
two banks for an average of 4.4 deals. Finally, 5 percent and
1 percent of firms are using three and four banks, respectively.
These numbers corroborate the hypothesis that firms typically
borrow repeatedly from the same set of banks. Hence, it may
be natural to think of a bank’s performance as a “firm-specific”
shock.

The following section describes the construction of our empirical
measure for bank lending. First, I calculate how many loans a bank
made before and after the crisis. A loan deal is associated with a bank if
the bank’s name appears as a primary writer of the deal. I perform this
calculation for the period October 2005 to June 2007 and the period
October 2008 to June 2009. Then for every bank j, I calculate the
ratio:

Bank Lending Ratioj =
18

8
×

# Loans given by bank j in October 2008 - June 2009
# Loans given by bank j between October 2005 - June 2007

(1)

The ratio is multiplied by 18
8 to adjust for the fact that the numer-

ator accounts for a shorter period (in months) than the denominator.
Figure 3 plots the bank lending ratio for a selected group of banks.
The median lending ratio is 0.55: after 2008, the median bank gave
almost half as many loans as it gave before the crisis. However, there
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Figure 3 Bank Lending Ratio

Notes: The figure plots the bank lending ratio: the number of loan deals issued
by a bank during October 2008 to June 2009 to the number of loan deals issued
by the same bank during October 2005 to June 2007

is a lot of heterogeneity in the lending ratio, with some banks per-
forming much better than others. Lehman Brothers did not give any
loans in the period October 2008 to June 2009, so its lending ratio is
0 and the same holds for Bear Stearns. In contrast, institutions such
as Wells Fargo, Societe Generale, Rabobank, and Fortis experienced
strong lending growth even after the crisis.2

The next step is to construct a firm-specific measure of exposure to
“unhealthy”banks. To do so, we calculate how much a firm borrowed
from a particular bank over the entire sample period 2000—13. We
define the weight as

wi,j =
$ Borrowed by firm i through bank j

Total $ Borrowed by firm i

We then define the exposure measure as

2 The growth of Wells Fargo does not reflect its acquisition of Wachovia in October
2008 since in our data Wachovia exhibits positive growth in loan issuance even after
October 2008.
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DLi =
∑
j

wi,j × Bank Lending Ratioj

DLi summarizes the change in borrowing opportunities by firm i
before and after the crisis. If a firm is borrowing heavily from a bank
with a low lending ratio, then its borrowing opportunities decreased
during the recession and vice versa. If a firm used a balanced borrowing
strategy, it is more likely to have a DLi close to the average lending
ratio. It turns out that the average firm has an exposure measure equal
to 0.40 with a standard deviation of 0.38.

3. EMPIRICAL SPECIFICATIONS AND RESULTS

In section 2.3, we defined supply-side disruptions to bank lending using
two measures: 1) the aggregate bank share and 2) a firm’s exposure
to “unhealthy”banks. I have argued so far that the second measure is
less prone to endogeneity than the first measure. The purpose of this
section is to explore how bank lending affects firm-level investment
using both measures.

There is a vast literature on the determinants of investment. The
prototype paper of Fazzari, Hubbard, and Petersen (1988) tested whether
investment depends solely on Tobin’s Q or if a firm’s cash flows matters
as well. Our empirical specification builds on their framework but also
includes our variable of interest: bank lending.

In particular, the first specification is

(
∆I

K
)i,t = β0 + β1 (

Cash Flow
K

)i,t + β2 log(Q)i,t + β3 Bank Share t+

+ β4 Bank Sharet × (
Cash Flow

K
)i,t + X′i,tγ + εi,t (2)

Equation (2) uses the “aggregate bank share” as a measure of bank
lending. In this specification, we make use of the panel dimension of
our data between 2000—13. Hence, we have information for every firm i
at year t. We drop firms that are in our sample for less than four years
or firms that do not appear in all consecutive years. The dependent
variable ∆I

K for firm i in period t is the change in investment for firm i
between year t and t − 1 normalized by the firm’s total assets in year
t− 1.

As mentioned, we control for the firm’s cash flows and Tobin’s Q in
period t. Tobin’s Q for firm i in period t is defined as the firm’s com-
mon shares outstanding multiplied by the stock price at closing time
in period t divided by firm’s assets in period t. The main regressor of
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interest is “Bank Share,”our proxy for bank lending in this specifica-
tion. Note that bank lending is an average over firms for every period,
so it is only indexed by t. We also control for other firm character-
istics. In particular, X ′i,t is a vector including log-assets, the leverage
ratio (debt-to-assets ratio), and a dummy variable indicating whether
the firm paid some cash dividends during the year. Also note that this
specification allows the inclusion of fixed effects.

In the second specification, the main regressors are a firm’s “expo-
sure to unhealthy banks,”which serves as a proxy for access to borrow-
ing. The “exposure”measure is firm-specific and is constructed using a
ratio over years. Hence, the specification relies on cross-sectional vari-
ation (variables only indexed by i but not t). So we cannot include
fixed effects here. The regression is

(
∆Ii

Ki,2006
) = β0 + β1 (

Cash Flow

K
)i,2006 + β2 log(Q)i,2006 + β3 DLi +

+ β4 DLi × (
Cash Flow

K
)i,2006 + X′i,2006γ + εi (3)

The dependent variable in equation (3) is defined as

∆Ii =
Average Investment between 2009 - 2010
Average Investment between 2006 - 2008

(4)

Since investment is affected with a lag, we compare investment between
2006—08 to 2009—10. We divide this ratio by assets in our base year
2006. In our specification, we also include the cash flow ratio, Tobin’s
Q, and covariates for the base year 2006.

For convenience we present in Table 3 the coeffi cients from a simple
regression of bank lending (using both measures) to investment with-
out any controls. The main takeaway is that results change sharply
when we switch from one bank lending measure to the other. In the
first specification (“aggregate bank share”) bank lending is highly pro-
cyclical and significant. When the aggregate bank share decreases by
1 percentage point, investment (normalized by assets) decreases by 6.6
percentage points. In contrast, in the second specification (“firm’s ex-
posure”) the coeffi cient on bank lending is significant.

As mentioned, Tables 4-12 in the Appendix provide the full set
of coeffi cients for both regressions. In all specifications that include
the aggregate bank share, bank lending is strongly correlated with the
change in investment. The coeffi cient is statistically significant and
varies between [0.056-0.066]. Consistent with the results of Fazzari,
Hubbard, and Petersen (1988), cash flow is an important determinant
of investment alongside Tobin’s Q. However, when we include the ag-
gregate bank share, cash flow loses its significance.



M. Karabarbounis: Does Bank Lending Matter for Investment? 315

Table 3 Investment and Bank Lending

Dependent variable = Change in
investment

Bank Lending Measure Aggregate Bank Share Firm’s Exposure

Specification Equation (2) Equation (3)

Bank Lending 0.066*** -0.001
(0.003) (0.000)

Notes: One, two, or three stars represent significance at 1 percent, 5 percent, and
10 percent, respectively.

There does not seem to be any interaction between cash flows and
changes in the bank share for the whole sample. However, when we
divide the sample between firms with and without access to the bond
market (Tables 6-9), surprisingly, the interaction becomes significant
for firms with access to bond markets. Moreover, when fixed effects
are included (Table 5), size (as proxied by log-assets) is positively re-
lated with the change in investment and leverage is negatively related.
Dividend payout is negatively related, albeit less statistically signifi-
cant.

Results from regression 3 are presented in Tables 10-12 in the Ap-
pendix. In all specifications the firm’s exposure to unhealthy banks is
not significant. However, in this specification, the interaction between
cash flow and bank supply is positive, which seems to go against the
intuition that high-cash-flow firms must be less affected by changes in
borrowing opportunities.

4. CONCLUSION

In this article, I examine if bank lending matters for corporate in-
vestment. Following Chodorow-Reich (2014), I use DealScan data to
construct a firm-specific measure of bank lending supply: the relative
exposure of each firm to banks that faced severe lending disruptions.
I find that bank lending does not significantly affect investment. In
contrast, a traditional measure of bank lending, such as the aggregate
bank share of debt issuance, points to a strong relation between bank
lending investment.

The exercise focuses on large, publicly listed firms from Compustat.
These firms can typically substitute more easily bank lending with other
financing tools such as external and internal equity. Hence, it would
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be useful for one to use the same methodology to examine the effect of
bank lending on small firms. Unfortunately, to my knowledge, data on
the investment decision of small firms is not readily available. Hence,
we leave this as a future research question.
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Table 4 Investment and Bank Lending: Bank Debt Share

Cash Flow/Assets 0.005*** 0.006 0.006 0.006 0.007
(0.001) (0.006) (0.006) (0.006) (0.006)

log (Q) 0.014*** 0.013*** 0.013*** 0.014*** 0.014***
(0.000) (0.000) (0.000) (0.000) (0.000)

Bank Share 0.056*** 0.056*** 0.056*** 0.056***
(0.003) (0.003) (0.003) (0.003)

Bank Share -0.001 -0.001 -0.001 -0.002
x Cash Flow/Assets (0.009) (0.009) (0.009) (0.009)
Log Assets 0.0002 0.0000 0.0003

(0.0002) (0.0002) (0.0002)
Leverage 0.006*** 0.005***

(0.002) (0.002)
Dividend Payout -0.002***

(0.0008)

Observations 23106 23106 23106 23106 23106
Fixed Effects No No No No No
Access to Bond Market Yes/No Yes/No Yes/No Yes/No Yes/No

Table 5 Investment and Bank Lending: Bank Debt Share

Cash Flow/Assets 0.005** 0.014 0.019* 0.018* 0.018*
(0.002) (0.009) (0.009) (0.006) (0.009)

log (Q) 0.029*** 0.026*** 0.027*** 0.027*** 0.027***
(0.001) (0.001) (0.001) (0.001) (0.001)

Bank Share 0.057*** 0.061*** 0.062*** 0.062***
(0.003) (0.003) (0.003) (0.003)

Bank Share -0.012 -0.001 -0.014 -0.014
x Cash Flow/Assets (0.012) (0.012) (0.012) (0.012)
Log Assets 0.007*** 0.007*** 0.007***

(0.001) (0.001) (0.001)
Leverage -0.009** -0.009**

(0.004) (0.004)
Dividend Payout 0.003**

(0.001)

Observations 23106 23106 23106 23106 23106
Fixed Effects Yes Yes Yes Yes Yes
Access to Bond Market Yes/No Yes/No Yes/No Yes/No Yes/No
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Table 6 Investment and Bank Lending: Bank Debt Share

Cash Flow/Assets 0.005*** 0.005 0.006 0.006 0.006
(0.001) (0.007) (0.007) (0.007) (0.007)

log (Q) 0.016*** 0.015*** 0.015*** 0.016*** 0.015***
(0.001) (0.001) (0.001) (0.001) (0.001)

Bank Share 0.052*** 0.052*** 0.052*** 0.052***
(0.004) (0.004) (0.004) (0.004)

Bank Share -0.000 -0.000 -0.001 -0.001
x Cash Flow/Assets (0.009) (0.009) (0.009) (0.009)
Log Assets 0.0004 0.0002 0.0007

(0.0003) (0.0003) (0.0003)
Leverage 0.007** 0.006**

(0.002) (0.002)
Divident Payout -0.004***

(0.001)

Observations 15994 15944 15944 15944 15944
Fixed Effects No No No No No
Access to Bond Market No No No No No

Table 7 Investment and Bank Lending: Bank Debt Share

Cash Flow/Assets 0.004* 0.001 0.016* 0.015 0.015
(0.002) (0.009) (0.009) (0.009) (0.009)

log (Q) 0.030*** 0.027*** 0.028*** 0.027*** 0.027***
(0.002) (0.002) (0.002) (0.002) (0.002)

Bank Share 0.054*** 0.058*** 0.058*** 0.058***
(0.004) (0.004) (0.004) (0.004)

Bank Share -0.011 -0.012 -0.012 -0.012
x Cash Flow/Assets (0.012) (0.012) (0.012) (0.012)
Log Assets 0.006*** 0.006*** 0.006***

(0.001) (0.001) (0.001)
Leverage -0.009 -0.008

(0.005) (0.005)
Dividend Payout 0.002

(0.002)

Observations 15944 15944 15944 15944 15944
Fixed Effects Yes Yes Yes Yes Yes
Access to Bond Market No No No No No
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Table 8 Investment and Bank Lending: Bank Debt Share

Cash Flow/Assets 0.012*** -0.264** -0.264** -0.264** -0.264**
(0.012) (0.106) (0.105) (0.105) (0.106)

log (Q) 0.009*** 0.007*** 0.007*** 0.007*** 0.007***
(0.001) (0.001) (0.001) (0.001) (0.001)

Bank Share 0.056*** 0.057*** 0.057*** 0.057***
(0.006) (0.006) (0.006) (0.006)

Bank Share 0.540*** 0.553*** 0.555*** 0.555***
x Cash Flow/Assets (0.143) (0.144) (0.144) (0.144)
Log Assets 0.001** 0.001** 0.001**

(0.000) (0.000) (0.000)
Leverage 0.004 0.004

(0.004) (0.004)
Dividend Payout 0.0003

(0.001)

Observations 7162 7162 7162 7162 7162
Fixed Effects No No No No No
Access to Bond Market Yes Yes Yes Yes Yes

Table 9 Investment and Bank Lending: Bank Debt Share

Cash Flow/Assets 0.070 -0.114 -0.102 -0.102 -0.103
(0.053) (0.184) (0.197) (0.197) (0.195)

log (Q) 0.026*** 0.022*** 0.027*** 0.027*** 0.027***
(0.003) (0.003) (0.003) (0.002) (0.003)

Bank Share 0.060*** 0.066*** 0.066*** 0.066***
(0.006) (0.006) (0.006) (0.006)

Bank Share 0.252 0.295 0.293 0.294
x Cash Flow/Assets (0.285) (0.291) (0.292) (0.288)
Log Assets 0.013*** 0.013*** 0.013***

(0.002) (0.002) (0.002)
Leverage -0.005 -0.004

(0.009) (0.009)
Dividend Payout 0.005

(0.002)

Observations 15944 15944 15944 15944 15944
Fixed Effects Yes Yes Yes Yes Yes
Access to Bond Market Yes Yes Yes Yes Yes
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Table 10 Investment and Bank Lending: Exposure Measure

Cash Flow/Assets 0.086*** 0.063*** 0.040*** 0.040*** 0.040***
(0.004) (0.005) (0.006) (0.006) (0.006)

log (Q) -0.001*** -0.001*** -0.001** -0.012** -0.012**
(0.000) (0.000) (0.000) (0.000) (0.000)

DL -0.001 -0.001* -0.001* -0.001*
(0.000) (0.000) (0.000) (0.000)

DL 0.050*** 0.053*** 0.053*** 0.052***
x Cash Flow/

Assets (0.009) (0.009) (0.009) (0.009)
Log Assets -0.001*** -0.001*** -0.001***

(0.000) (0.000) (0.000)
Leverage 0.0001 0.0001

(0.001) (0.001)
Dividend Payout 0.0005

(0.0003)

Observations 819 819 819 819 819
Access to Bond
Market Yes/No Yes/No Yes/No Yes/No Yes/No

Table 11 Investment and Bank Lending: Exposure Measure

Cash Flow/Assets 0.087*** 0.057*** 0.016 0.016 0.017
(0.007) (0.010) (0.012) (0.012) (0.012)

log (Q) -0.003*** -0.003*** -0.001 -0.0008 -0.0008
(0.001) (0.001) (0.001) (0.001) (0.001)

DL -0.002* -0.001* -0.001 -0.001
(0.001) (0.000) (0.000) (0.000)

DL 0.059*** 0.053*** 0.052*** 0.052***
x Cash Flow/

Assets (0.015) (0.014) (0.014) (0.014)
Log Assets -0.003*** -0.003*** -0.003***

(0.000) (0.000) (0.000)
Leverage 0.002 0.002

(0.02) (0.02)
Dividend Payout 0.0001

(0.0008)

Observations 322 322 322 322 322
Access to Bond
Market No No No No No
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Table 12 Investment and Bank Lending: Exposure Measure

Cash Flow/Assets 0.065*** 0.057*** 0.034*** 0.034*** 0.034***
(0.004) (0.009) (0.009) (0.009) (0.012)

log (Q) -0.0002 -0.0003 -0.000 -0.000 -0.000
(0.0002) (0.0002) (0.0002) (0.0002) (0.0002)

DL 0.000 0.000 0.000 0.000
(0.0004) (0.0002) (0.0002) (0.0002)

DL 0.026 0.026 0.024*** 0.022
x Cash Flow/

Assets (0.024) (0.023) (0.023) (0.023)
Log Assets -0.0006*** -0.0006*** -0.0007***

(0.000) (0.000) (0.000)
Leverage -0.0007 -0.0007

(0.0005) (0.0005)
Dividend Payment 0.0003

(0.0002)

Observations 497 497 497 497 497
Access to Bond
Market Yes Yes Yes Yes Yes



Economic Quarterly– Volume 101, Number 4– Fourth Quarter 2015– Pages 323—352

Time-Varying Parameter
Vector Autoregressions:
Specification, Estimation,
and an Application

Thomas A. Lubik and Christian Matthes

T
ime-varying parameter vector autoregressions (TVP-VARs) have
become an increasingly popular tool for analyzing the behav-
ior of macroeconomic time series. TVP-VARs differ from more

standard fixed-coeffi cient VARs in that they allow for coeffi cients in
an otherwise linear VAR model to vary over time following a specified
law of motion. In addition, TVP-VARs often include stochastic volatil-
ity (SV), which allows for time variation in the variances of the error
processes that affect the VAR.

The attractiveness of TVP-VARs is based on the recognition that
many, if not most, macroeconomic time series exhibit some form of
nonlinearity. For instance, the unemployment rate tends to rise much
faster at the start of a recession than it declines at the onset of a recov-
ery. Stock market indices exhibit occasional episodes where volatility,
as measured by the variance of stock price movements, rises consider-
ably. As a third example, many aggregate series show a distinct change
in behavior in terms of their persistence and their volatility around
the early 1980s when the Great Inflation of the 1970s turned into the
Great Moderation, behavior that is akin to a structural shift in certain
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moments of interest. All these examples of nonlinearity in macroeco-
nomic time series have potentially distinct underlying structural causes.
But they can all potentially be captured by means of the flexible frame-
work that is a TVP-VAR with SV.

A VAR is a simple time series model that explains the joint evolu-
tion of economic variables through their own lags. A TVP-VAR pre-
serves this structure but in addition models the coeffi cients as stochastic
processes. In the most common application, the maintained assumption
is that the coeffi cients follow random walks, specifically the intercepts,
the lag coeffi cients as well as the variance and covariances of the error
terms in the regression. Conditional on the parameters, a TVP-VAR is
still a linear VAR, but the overall model is highly nonlinear. While the
assumption of random walk behavior may seem restrictive, it provides
for a flexible functional form to capture various forms of nonlinearity.

The main challenge in applying TVP-VAR models is how to con-
duct inference. In this article, we therefore discuss the Bayesian ap-
proach to estimating a TVP-VAR with SV.1 Bayesian inference in this
class of models relies on the Gibbs sampler, which is designed to easily
compute multivariate densities. The key insight is to break up a com-
putationally intractable problem into sequences of feasible steps. We
will discuss these steps in detail and show how they can be applied to
TVP-VARs.

The article is structured as follows. We begin with a discussion of
the specification of TVP-VARs and how they are developed from fixed-
coeffi cient VARs. We show how to introduce stochastic volatility in the
covariance matrix of the errors and present an argument for why time
variation in the lag coeffi cients needs to be modeled jointly with sto-
chastic volatility. The main body of the article presents the Gibbs sam-
pling approach to conducting inference in Bayesian TVP-VARs, which
we preamble with a short discussion of the thinking behind Bayesian
methods. Finally, we illustrate the method by means of a simple ap-
plication to data on inflation, unemployment, and the nominal interest
rate for the United States.

1. SPECIFICATION

VARs are arguably the most important empirical tool for applied macro-
economists. They were introduced to the economics literature by Sims
(1980) as a response to the then-prevailing large-scale macroecono-
metric modeling approach. What Sims memorably criticized were the

1 Nakajima (2011) and Doh and Connolly (2012) provide similar overviews of the
TVP-VAR methodology.
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incredible identification assumptions imposed in these models that
stemmed largely from a lack of sound theoretical economic underpin-
nings and that hampered structural interpretation of their findings.
In contrast, VARs are deceptively simple in that they are designed
to simply capture the joint dynamics of economic time series without
imposing ad-hoc identification restrictions.

More specifically, a VAR describes the evolution of a vector of n
economic variables yt at time t as a linear function of its own lags up
to order L and a vector et of unforecastable disturbances:

yt = ct +
L∑
j=1

Ajyt−j + et. (1)

It is convenient to assume that the error term et is Gaussian with mean
0 and covariance matrix Ωe. ct is a vector of deterministic components,
possibly including time trends, while the Aj are conformable matrices
that capture lag dynamics.

VAR models along the lines of (1) have proven to be remarkably
popular for studying, for instance, the effects and implementation of
monetary policy (see Christiano, Eichenbaum, and Evans 1999, for
a comprehensive survey). However, VARs of this kind can only de-
scribe economic behavior that is approximately linear and does not
exhibit substantial variation over time. The linear VAR in (1) con-
tains a built-in notion of time invariance: conditional forecasts as of
time t, such as Etyt+1, only depend on the last L values of the vector
of observables but are otherwise independent of time. More strongly,
the conditional one-step-ahead variance is fully independent of time:
Et[(yt+1 − Etyt+1)(yt+1 − Etyt+1)′] = Ωe.

Yet, in contrast, a long line of research documents that conditional
higher moments can vary over time, starting with the seminal ARCH
model of Engle (1982). Moreover, research in macroeconomics, such as
Lubik and Schorfheide (2004), has shown that monetary policy rules
can change over time and can therefore introduce nonlinearities, such
as breaks or shifts, into aggregate economic time series.2 The first
observation has motivated Uhlig (1997) to introduce time variation in
Ωe. The second observation stimulated the work by Cogley and Sargent
(2002) to introduce time variation in Aj and c in addition to stochastic
volatility.

2 This feature would make a linear model less suited to capture the true dynamics of
the economy. Whether and to what extent linear approximations can be used to analyze
environments with time-varying parameters has been studied by Canova, Ferroni, and
Matthes (2015).
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We will now describe how to model time variation in each of these
sets of parameters separately. In the next step, we will discuss why
researchers should model changes in both sets of parameters jointly. We
then present the Gibbs sampling algorithm that is used for Bayesian
inference in this class of models and which allows for easy combination
of the approaches because of its modular nature.

A VAR with Random-Walk Time Variation
in the Coefficients

Suppose a researcher wants to capture time variation in the data by
using a parsimonious yet flexible model as in the VAR (1). The key
question is how to model this time variation in the coeffi cients Aj and
c. One possibility is to impose a priori break points at specific dates.
Alternatively, break points can be chosen endogenously as part of the
estimation algorithm. Threshold VARs or VARs with Markov switch-
ing in the parameters (e.g., Sims and Zha 2006) are examples of this
type of model, which is often useful in environments where the eco-
nomic modeler may have some a priori information or beliefs about
the underlying source of time variation, such as discrete changes in
the behavior of the monetary authority. In general, however, a flexi-
ble framework with random time variation seems preferable for a wide
range of nonlinear behavior in the data. Following Cogley and Sargent
(2002), a substantial part of the literature has consequently opted for a
flexible specification that can accommodate a large number of patterns
of time variation.

The standard model of time variation in the coeffi cients starts with
the VAR (1). In contrast to the fixed-coeffi cient version, the parameters
of the intercept and of the lag coeffi cient matrix are allowed to vary
over time in a prescribed manner. We thus specify the TVP-VAR:

yt = ct +
L∑
j=1

Aj,t yt−j + et. (2)

It is convenient to collect the values of the lagged variables in a matrix
and define X ′t ≡ I ⊗ (1, y′t−1..., y

′
t−L), where ‘⊗’denotes the Kronecker

product. We also define θt to collect the VAR’s time-varying coeffi cients
in vectorized form, that is, θt ≡ vec([ct A1,t A2,t ... AL,t]′). This allows
us to rewrite (2) in the following form:

yt = X ′tθt + et. (3)

The commonly assumed law of motion for θt is a random walk:

θt = θt−1 + ut, (4)



T.A. Lubik and C. Matthes: TVP-VARs 327

where ut ∼ N (0, Q) and is assumed to be independent of et. A random-
walk specification is parsimonious in that it can capture a large number
of patterns without introducing additional parameters that need to be
estimated.3 This assumption is mainly one of convenience for reasons of
parsimony and flexibility as (4) is rarely interpreted as the underlying
data-generating process for the question at hand, but it can approxi-
mate it arbitrarily well (see Canova, Ferroni, and Matthes 2015).

Introducing Stochastic Volatility

A second source of time variation in time series can stem from variation
in second or higher moments of the error terms. Stochastic volatility,
or, specifically, time variation in variances and covariances, can be in-
troduced into a model in a number of ways. Much of the recent liter-
ature on stochastic volatility in macroeconomics has chosen to follow
the work of Kim, Shephard, and Chib (1998). It is built on a flexible
model for volatility that uses an unobserved components approach.4

We start from the observation that we can always decompose a
covariance matrix Ωe as follows:

Ωe = Λ−1ΣΣ′
(
Λ−1

)′
. (5)

Λ is a lower triangular matrix with ones on the main diagonal, while
Σ is a diagonal matrix. Intuitively, the diagonal matrix ΣΣ′ collects
the independent innovation variances, while the triangular matrix Λ−1

collects the loadings of the innovations onto the VAR error term e,
and thereby the covariation among the shocks. It has proven to be
convenient to parameterize time variation in Ωe directly by making the
free elements of Λ and Σ vary over time. While this decomposition
is general, once priors on the elements of Σ and Λ are imposed, the
ordering of variables in the VAR matters for the estimation of the
reduced-form parameters, which stands in contrast to the standard
time-invariant VAR model (see Primiceri 2005).

We now define the element of Λt in row i and column j as λijt and
a representative free element j of the time-varying coeffi cient matrix
Σt as σ

j
t . It has become the convention in the literature to model the

3 Different specifications for the time-varying lag coeffi cients are entirely plausible.
For instance, a stationary VAR(1) representation, such as θt = θ+Bθt−1+ut, can easily
be accommodated using the estimation algorithms described in this article.

4 The approach to modeling stochastic volatility outlined here is the most com-
mon in the literature on TVP-VARs, but there are alternatives such as Rondina (2013).
Moreover, stochastic volatility models of the form used here are more flexible than
ARCH models in that they do not directly link the estimated level of the volatility
to realizations of the error process that is being captured.
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coeffi cients σjt as geometric random walks:

log σjt = log σjt−1 + ηjt . (6)

For future reference, we collect the σjt in a vector σt =
[
σ1
t , ..., σ

n
t

]′
and the ηjt in ηt =

[
η1
t , ..., η

n
t

]
, with ηnt ∼ N (0,W ) and W diagonal.

Similarly, we assume that the nonzero and nonunity elements of the

matrix Λt, which we collect in the vector λt =
[
λ21
t , ..., λ

n,n−1
t

]
, evolve

as random walks:

λt = λt−1 + ζt, (7)

where ζt ∼ N (0, S) and S block-diagonal.
The error term et in the TVP-VAR representation (3) can thus be

decomposed into:

et = Λ−1
t Σtεt, (8)

which implicitly defines εt. It is convenient to normalize the variance
of εt to unity. It is thus assumed that the error terms in each of the
equations of the model are independent. In more compact form, we
can write:

V = V ar

 εt
ζt
ηt

 =

 I 0 0
0 S 0
0 0 W

 . (9)

The TVP-VAR literature tends to impose a block-diagonal struc-
ture for V , mainly for reasons of parsimony since the TVP-VAR is
already quite heavily parameterized. Allowing for a fully generic cor-
relation structure among different sources of uncertainty would also
preclude any structural interpretation of the innovations. Following
Primiceri (2005), the literature has therefore adopted a block-diagonal
structure for S, which implies that the nonzero and non-one elements of
Λt that belong to different rows evolve independently. Moreover, this
assumption simplifies inference substantially since it allows Kalman
smoothing on the nonzero and non-one elements of Λt equation by
equation, as we will discuss further below.

Why We Want to Model Time Variation in
Volatilities and Parameters

A TVP-VAR with stochastic volatility is a heavily parameterized ob-
ject. While it offers flexibility to capture a wide range of time variation
and nonlinear features of the data, it also makes estimation and infer-
ence quite complicated. In practice, modelers restrict the covariance
matrix of the innovations to the laws of motion for the time-varying
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coeffi cients in order to sharpen inference. Moreover, Bayesian priors
are often used to aid inference. Given a need to impose some structure
to aid inference, this naturally raises the question whether a TVP-VAR
with stochastic volatility is not overparameterized.

One answer to this question relies on the idea that a TVP-VAR can
be regarded as the reduced-form representation of an underlying Dy-
namic Stochastic General Equilibrium (DSGE) model, in which there
is time variation. This time variation in the underlying data-generating
process (DGP) carries over to its reduced form, which might be, or is
approximated by, a TVP-VAR.5 More specifically, changes, discrete or
continuous, in structural parameters carry over to changes in lagged
reduced-form coeffi cients and parameters of the covariance matrix.6

Hence, a TVP-VAR specification should a priori include stochastic
volatility to be able to represent an underlying DSGE model.

A second response is essentially a corollary to the previous point.
Sims (2002) argues that a model with only time variation in parameters
could mistakenly result in a substantial amount of time variation even
though the true DGP only features stochastic volatility. This insight
can be illustrated by means of the following simple example, which
also shows that the reverse can hold: a modeler could mistakenly esti-
mate stochastic volatility even though the true DGP only features time
variation in coeffi cients.

Consider a univariate AR(1)-process with stochastic volatility:

zt = ρzt−1 + σtεt, (10)

where |ρ| < 1, εt ∼ N (0, 1), and σt is a generic stochastic volatility
term, such as the one described above. Suppose an econometrician
has access to a sample of data from this DGP, but does not know
the true form of the underlying model. In order to investigate the
time variation in the data, he proposes a model with only time-varying
coeffi cients instead of stochastic volatility. As a simple rewriting of
equation (10) suggests, he could indeed find evidence for time variation
in the parameters:

zt = ρtzt−1 + σ̃εt, (11)

5 It is well-known that in some cases a linear VAR is an exact representation of
the reduced form of a DSGE model (see Fernandez-Villaverde et. al. 2007). It is less
well-known to what extent this is true for TVP-VARs. For instance, Cogley, Sbordone,
and Matthes (2015) show that DSGE models with learning have a TVP-VAR as reduced
form.

6 This insight underlies Benati and Surico’s (2009) critique of Sims and Zha’s (2006)
Markov-switching VAR approach to identifying monetary policy shifts and also Lubik
and Surico’s (2010) critique of standard empirical tests of the validity of the Lucas
critique.
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where ρt = ρ+ (σt−σ̃)εt
zt−1

.
If the DGP is instead of the form:

zt = ρtzt−1 + σεt, (12)

and estimates a stochastic volatility model on data generated from this
model, he would erroneously find evidence of stochastic volatility:

zt = ρ̃zt−1 + σtεt, (13)

where σt = σ+ (ρt−ρ̃)zt−1
εt

. Including time variation jointly in coeffi cients
and stochastic volatility therefore allows economists to let the data
speak on which of the two sources are more important.

2. ESTIMATION AND INFERENCE

A TVP-VAR with stochastic volatility is a deceptively simple object
on the surface, as it superficially shares the structure of standard linear
VARs. Estimation and inference in the latter case is well-established
and straightforward. Since a linear VAR is a seemingly unrelated re-
gression (SUR) model, it can be effi ciently estimated equation by equa-
tion using ordinary least squares (OLS). Conducting inference on trans-
formations of the original VAR coeffi cients, such as impulse response
functions, is somewhat more involved yet well-understood in the liter-
ature. Estimation and inference in a TVP-VAR, however, reaches a
different level of complexity since the model is fundamentally nonlin-
ear due to the time variation in the coeffi cients and in the covariance
matrix of the error terms.

We now describe in detail the standard approach to inference in
TVP-VARs. It relies on Bayesian estimation, the basic concepts of
which we introduce briefly in the following. Bayesian estimation and
inference is conducted using the Gibbs sampling approach, which we go
on to discuss at some length. Finally, we discuss how researchers can
report and interpret the results from TVP-VARmodels in a transparent
and effi cient manner.

Why a Bayesian Approach?

The standard approach to estimating and conducting inference in TVP-
VARs uses Bayesian methodology. The key advantage over frequentist
methods is that it allows researchers to use powerful computational
algorithms that are particularly well-adapted to the treatment of time
variation. Moreover, the use of prior information in a Bayesian frame-
work helps researchers to discipline the behavior of the model, which
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is especially relevant in high-dimensional problems such as those dis-
cussed in this article.7

Bayesian and frequentist inference are fundamentally different ap-
proaches to describing and making assessments about data and empiri-
cal models. Bayesian inference starts by postulating a prior distribution
for the parameters of the model. This prior is updated using the in-
formation contained in the data, which is extracted using a likelihood
function. The object of interest in Bayesian estimation is the posterior
distribution, which results from this updating process. Estimators in a
Bayesian context are thus defined as statistics of this distribution such
as the mean or mode.

We can describe these basic principles in a somewhat more compact
and technical form. Suppose that a Bayesian econometrician is inter-
ested in characterizing his beliefs about parameters of interest Θ after
having observed a sample of data yT of length T . The econometrician
holds beliefs prior to observing the data, which can be described by the
prior p(Θ). Moreover, he can summarize the data by computing the
likelihood function p(yT |Θ), which describes how likely the observed
data are for any possible parameter vector Θ. The beliefs held by the
econometrician after seeing the data are summarized by the posterior
distribution p(Θ|yT ). The relationship between those three densities is
given by Bayes’law :

p(Θ|yT ) =
p(yT |Θ)p(Θ)∫
p(yT |Θ)p(Θ)dΘ

, (14)

which describes how to optimally update the beliefs contained in p(Θ)
using data summarized by p(yT |Θ). The posterior p(Θ|yT ) is a dis-
tribution on account of normalization by the marginal data density∫
p(yT |Θ)p(Θ)dΘ, which is the joint distribution of data yT and para-

meters Θ after integrating out Θ. It can serve as a measure of fit in
this Bayesian context.

Bayesian estimation ultimately consists of computing the posterior
distribution. Bayesian inference rests on the moments of this distri-
bution. It does not require any arguments about limiting behavior
as T → ∞, since from a Bayesian perspective yT is fixed and is all
that is needed to conduct inference. On the other hand, the challenges
for Bayesian econometricians are virtually all computational in that:
(i) the likelihood function has to be evaluated; (ii) the joint distribu-
tion of prior and likelihood has to be computed; and (somewhat less

7 This is not to say that frequentist inference does not introduce prior information
by, for instance, imposing bounds on the parameter space. The use of Bayesian priors,
however, makes this more explicit and generally more transparent.
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crucially) (iii) the marginal data density has to be obtained. What
aids in this process is the judicious use of priors and fast and robust
methods for characterizing p(yT |Θ)p(Θ). This can be accomplished in
Bayesian VARs by means of the Gibbs sampler.

Gibbs Sampling of a TVP-VAR

Characterizing a posterior distribution is a daunting task. Except in
special cases, analytical solutions for given prior and likelihood den-
sities are not available. Conducting inference via describing the pos-
terior with its moments is thus not an option. As evidenced by the
seminal textbook of Zellner (1971), much of Bayesian analysis before
the advent of readily available computing power and techniques was
concerned with finding conjugate priors for a large variety of problems.
A conjugate prior is such that when confronted with the likelihood
function, the posterior distribution is of the same family as the prior.
However, as a general matter this path proved not to be a viable option
as many standard Bayesian econometric models do not easily yield to
analytical characterization.

This changed with the development of sampling and simulation
methods that allow researchers to characterize the shape of an unknown
distribution. These methods are built on the idea that when a large
sample from a known density is available, sample moments approximate
population moments very well by the laws of large numbers. Conse-
quently, Bayesian statisticians have developed methods to effi ciently
sample from unknown posterior densities indirectly by sampling from
known densities. Once the thus-generated sample is at hand, sampling
moments can be used to characterize the posterior distribution.8

The basic idea behind the Gibbs sampler is to split the parameters
Θ of a given model into b blocks Θ1,Θ2,...,Θb.9 The Gibbs sampler pro-
poses to generate a sample from p(Θ|yT ) by iteratively sampling from
p(Θj |yT ,Θ−j), ∀j = 1, ..., b, where Θ−j denotes the entire parameter
vector except for the jth block. This approach rests on the idea that
the entire set of conditional distributions fully characterizes the joint
distribution under fairly general conditions. At first glance, nothing

8 The exposition here is intentionally, but unavoidably, superficial. Readers inter-
ested in the technical issues underlying the arguments we make here are referred to some
of the excellent textbooks on Bayesian inference such as Robert and Casella (2004) or
Gelman et al. (2014).

9 Generally, there are no restrictions placed on the relative size of the blocks. In
fact, the blocking scheme, that is, its individual size, could be random. However, for
time-varying parameter models, one particular blocking scheme turns out to be especially
useful.
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much has been gained: we have broken up one large inference problem
into a sequence of smaller inference problems, namely characterizing
the conditional distributions p(Θj |yT ,Θ−j) instead of the full distrib-
ution. In the end, there is no guarantee that this makes the inference
problem more tractable.

However, Bayesian statisticians have developed closed forms for
posterior distributions for some special cases. The ingenuity of the
Gibbs sampler is thus to break up a large intractable inference prob-
lem into smaller blocks that can then be evaluated independently and
sequentially. The challenge is to find a blocking scheme, a partition of
the set of parameters, that admits closed-form solutions for the pos-
teriors conditional on all other parameters of the model. In the case
of TVP-VARs, such blocking schemes have been developed by Cogley
and Sargent (2002), Primiceri (2005), and Del Negro and Primiceri
(2015).10

A Motivating Example for the Gibbs Sampler

In order to illustrate the basic idea behind Gibbs sampling, we consider
a simple fixed-coeffi cient AR(1) model:

zt = ρzt−1 + σεt, (15)

where εt ∼ N (0, 1). The parameters of interest are ρ and σ, on which
we want to conduct inference. The first step in deriving the Gibbs sam-
pler is to specify priors for these parameters. We assume the following
priors:

ρ ∼ N (µρ, Vρ), (16)

σ2 ∼ IG(a, b), (17)

where IG denotes the inverse Gamma distribution with scale and lo-
cation parameters a and b, respectively.

The likelihood for this standard AR(1) model is given by L(ρ, σ) =
p(z0)

∏
t=1T p(zt|zt−1), which is written as the product of conditional

distributions p(zt|zt−1) and the likelihood of the initial observation
p(z0). As is common practice, we drop the term p(z0) and instead
work with the likelihood function L(ρ, σ) =

∏T
t=1 p(zt|zt−1). Defin-

ing Y = [z1 z2 z3 . . . zT ]′ and X = [z0 z1 z2 . . . zT−1]′, the likelihood is
given by:

L(ρ, σ) = (2π)−T/2(σ2)−T/2 exp

[
− 1

2σ2
(Y −Xρ)′(Y −Xρ)

]
. (18)

10 Computer code to estimate this class of mod-
els is available from Gary Koop and Dimitris Korobilis at:
http://personal.strath.ac.uk/gary.koop/bayes_matlab_code_by_koop_and_korobilis.html
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Combining this expression with the priors listed above using Bayes’
Law gives the joint posterior of ρ and σ2, conditional on the data:

p (ρ, σ|Y,X) ∝ L(ρ, σ)×

exp

[
−1

2

(
ρ− µρ

)′
V −1
ρ

(
ρ− µρ

)]
×
(
σ2
)−[a+1]

exp

(
− 1

bσ2

)
, (19)

where the first term is the likelihood function, the second is the prior
on the autoregressive coeffi cient ρ, and the third term is the prior on
the innovation variance σ2. Although we can identify and compute
analytically the individual components of the posterior, the posterior
distribution for ρ, σ|Y,X is unknown.

The Gibbs sampler allows us to partition the parameter set into
separate blocks for ρ and σ, for which we can derive the conditional
distributions. After some algebra, we can find the conditional posterior
distributions:

ρ|σ, Y,X ∼ N
[ (

X ′X/σ2 + V −1
ρ

)−1
(X ′Y/σ2 + V −1

ρ µρ),(
X ′X/σ2 + V −1

ρ

)−1

]
, (20)

σ2|ρ, Y,X ∼ IG
[
T/2 + a, b−1 +

1

2
(Y −Xρ)′(Y −Xρ)

]
. (21)

The conditional posteriors for ρ and σ have known distributions, which
can be sampled by using standard software packages. The procedure
would be to start with an initial value for σ2 and then draw from the
conditional distribution ρ|σ, Y,X. Given a draw for ρ, in the next
step we would sample from the conditional distribution σ2|ρ, Y,X. Re-
peated iterative sampling in this manner results in the joint posterior
distribution ρ, σ|Y,X.

The Gibbs sampler can be applied to models with time-varying
parameters in a similar manner, the key step being the application of
a blocking scheme for which the conditional distributions are either
known or from which it is easy to generate samples. The additional
challenge that TVP-VARs present is that the parameters of interest are
not fixed coeffi cients, but are themselves time-series processes that are a
priori unobservable. The general approach to dealing with unobservable
components is the application of the Kalman filter if the model can be
cast in a state-space form. In the following, we discuss how these two
additional techniques can be used to estimate TVP-VARs.

Linear Gaussian State-Space Systems

Bayesian estimation relies on the ability of the researcher to cast a
model in a form such that it is amenable for sampling. The Gibbs
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sampler provides one such technique. A second crucial component of
inference in a TVP-VAR is the state-space representation, which con-
nects variables that are observed, or are in principle observable, to
those that are unobserved. Conceptually, Bayesian estimation pro-
duces a time series and its density for the time-varying components
of the TVP-VAR by means of the Kalman filter as applied to a linear
Gaussian state-space system. This specification has the advantage that
the posterior distribution is known analytically for a Gaussian prior on
the initial state.

Specifically, a state-space system can be defined as follows:

yt = Atxt +Btvt, (22)

xt = Cxt−1 +Dwt, (23)

where yt denotes a vector of observables and xt a vector of possibly
unobserved states. vt and wt are Gaussian innovations, each element
of which is independent of the others with mean 0 and variance 1. At,
Bt, C, and D are known conformable matrices. The standard approach
for deriving the posterior for xt in this system was developed by Carter
and Kohn (1994), which builds on the Kalman filter and which we
discuss in the next section.

Application of the Kalman filter to a state-space system allows the
modeler to construct a sequence of Gaussian distributions for xt|yt, that
is, the distribution of the unobservable state x at time t, conditional
on the observables yt, where a superscript denotes the entire sample up
to that point.11 As it turns out, various blocks of the Gibbs sampler
for a TVP-VAR model take the form of linear Gaussian state-space
systems. The challenge is to find blocks for the parameters in the
TVP-VAR such that each block fits this Gaussian state-space structure.
The fundamental nonlinearity of the TVP-VAR can thus be broken up
into parts that are conditionally linear and from which it can be easily
sampled. As long as each block has a tractable structure conditional
on other blocks of parameters, the Gibbs sampler can handle highly
nonlinear problems.

The Kalman Filter

The Kalman filter is a widely used method for computing the time paths
of unobserved variables from a Gaussian state-space system. We now
briefly review and present the equations used for drawing a sequence
of the unobserved states (conditional on the entire set of observations

11 If the modeler is instead interested in the distributions xt|yT , where T denotes
the sample size, the Carter-Kohn algorithm draws paths of the unobserved state variable
xt for t = 1, ..., T conditional on the entire sample of observables yT .



336 Federal Reserve Bank of Richmond Economic Quarterly

y1, ..., yT ). A more detailed discussion and explanation can be found in
Primiceri (2005).

The system is assumed to take the form (22)-(23). We want to draw
from the distribution p(x1, ..., xT |y1, ..., yT ).12 It can be shown that
p(x1, ..., xT |y1, ..., yT ) = p(xT |yT )

∏T
t=1 p(xt|xt+1, y1, ..., yt). To gener-

ate draws from each of these densities, we first run the Kalman filter
to calculate the mean and variance of the state xt conditional on data
up to time t. We assume a prior for x0 that is Gaussian with mean
x0|0 and variance V0|0. The Kalman filter is then summarized by the
following equations:

xt|t−1 = Cxt−1|t−1 (24)

Vt|t−1 = CVt−1|t−1C
′ +DD′ (25)

Kt = Vt|t−1A
′
t

(
AtVt|t−1A

′
t +BtB

′−1
t

)
(26)

xt|t = xt|t−1 +Kt(yt −Atxt|t−1) (27)

Vt|t = Vt|t−1 −KtAtVt|t−1 (28)

These equations produce xt|t = E(xt|y1, ..., yt) and the associated con-
ditional variance Vt|t. The conditional distributions of the states are
Gaussian.

We can generate a draw for xT |y1, ..., yT by using the conditional
mean and variance for period T . Once we have such a draw, we can
recursively draw the other states (xt+1 denotes a draw of the state for
period t+ 1):

xt|t+1 = xt|t + Vt|tCV
−1
t+1|t(xt+1 − Cxt|t) (29)

Vt|t+1 = Vt|t − Vt|tC ′V −1
t+1|tCVt|t (30)

In the following, we will now discuss each Gibbs sampler step in turn,
which builds on the Kalman filter.

The Choice of Priors

The first step in Bayesian analysis is to choose the priors on the para-
meters of the model. In contrast to a frequentist approach, the model
parameters in a Bayesian setting are random variables. Since a Gibbs
sampler proceeds iteratively, we impose priors on the initial values of
the TVP-VAR parameters. Conceptually, it is therefore useful to dis-
tinguish between two sets of parameters: the parameters associated
with the coeffi cients and innovation terms in the representation (4)

12 We do not explicitly state the dependence of the densities in this section on the
system matrices A, B, Ct, and Dt, but as we show later this can be handled by the
right conditioning and sequencing within the Gibbs sampler.
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and the parameters governing the law of motion of the time-varying
terms. More specifically, we impose priors on (θ0,Λ0, log Σ0) and on
(Q,W,S), respectively.

The initial values of the lag coeffi cient matrices θ0, of the free el-
ements of the loading matrix in the innovation terms Λ0, and of the
independent innovation variances log Σ0 are assumed to have normally
distributed priors:

θ0 ∼ N (θ, κθVθ), (31)

Λ0 ∼ N (Λ, κΛVΛ), (32)

log Σ0 ∼ N (Σ, I), (33)

where θ, Λ, and Σ are the prior means of the respective variables, while
Vθ and VΛ are their prior covariance matrices. The covariance matrix
of the prior on log Σ0 is normalized at unity. κθ and κΛ are scaling
parameters that determine the tightness of the priors.

We also have to choose priors for the covariance matrices of the
innovations in the law of motions for the above-referenced TVP-VAR
parameters. These are, respectively, the innovation variance for the lag
coeffi cient matrices, Q; for the error variance, W ; and for the loading
matrix, S. As is common for covariance matrices in Bayesian analysis,
the priors follow an Inverted Wishart distribution:

Q ∼ IW(κ2
QdfQVQ, dfQ), (34)

W ∼ IW(κ2
WdfWVW , dfW ), (35)

S ∼ IW(κ2
SdfSVS , dfS), (36)

where κ are the scaling factors, df the degrees of freedom, and the
matrices V the respective variances.

A key issue is how to choose the parameters for the priors. Cogley
and Sargent (2005) and Primiceri (2005) propose using a constant-
coeffi cient VAR estimated on a training sample to initialize the prior
means and the matrices V . The coeffi cients

(
θ,Λ,Σ

)
and (Vθ, VΛ) can

then be directly computed from a least-squares regression. Neverthe-
less, this still leaves substantial degrees of freedom as there is no clear
guideline on how to choose the training sample. The scaling parame-
ters κ turn out to be important as they govern the prior amount of
time variation. Primiceri (2005) estimates the κ on a small grid of
values using a time-consuming reversible-jump MCMC algorithm that,
as a preliminary step, requires estimation of the model for each possi-
ble combination of parameters. Following Primiceri, most researchers
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have chosen to use his estimated values regardless of the application at
hand.13

The Ordering of Blocks in a TVP-VAR

Once the priors have been chosen, the next step involves combining
the prior distribution with the likelihood function. In a Bayesian ap-
proach, the resulting posterior distribution contains all information
that is available to the researcher, which includes the prior and the
observed data as encapsulated in the likelihood. Moreover, and in con-
trast to a frequentist approach to inference, Bayesian estimation does
not involve an actual estimation step, where an estimator, that is, a
mapping from data to the object of interest that satisfies some desirable
criteria, is derived. Bayesian estimation simply involves characterizing
the posterior distribution, which can be accomplished in the case of a
TVP-VAR by means of the Gibbs sampler. A Bayesian econometrician
then finds it often convenient to report moments of the posterior as
estimation results.

The Gibbs sampler relies on the idea that it is often much easier to
sequentially sample from conditional distributions, whose probability
laws may be known, than from an unknown distribution. The tricky
and often diffi cult part of this approach is to partition the parameter
space into blocks such that this sampling is feasible and can be ac-
complished effi ciently. To wit, in the full TVP-VAR model with both
time-varying parameters and stochastic volatility, we need to estimate
the following set of parameters: θT , ΣT , ΛT , Q, S, and W , where
the T superscripts indicate that there can be in general sample size T
parameters.

In the following, we describe the Gibbs sampler proposed by Del
Negro and Primiceri (2015), which is based on the original contribution
of Primiceri (2005). As a matter of notation, we also introduce a set of
auxiliary variables sT that are used for the estimation of the stochastic
volatilities. In subsequent sections we discuss the drawing of each of
those blocks in more detail. Even more detailed descriptions can be
found in Primiceri (2005) or Koop and Korobilis (2010).

Conceptually, the two main steps of the Gibbs sampler involve
drawing the covariance matrix of the independent innovations in the
TVP-VAR, ΣT , conditional on the data, the other coeffi cient vectors,

13 In the recent literature, there has been much interest in the role that these scal-
ing parameters play, in particular the hyperparameters for Q, S, and W . As it turns
out, choice of these parameters can affect estimation results along many dimensions. For
a recent application that studies the importance of these hyperparameters in producing
the ‘correct’ inference see Lubik, Matthes, and Owens (2016).
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and the covariance matrices of the processes governing time variation.
In the second step, the remaining parameters are drawn from a distri-
bution conditional on the data and on the draw from the first step ΣT .
Specifically, the procedure is to

1. draw ΣT from p(ΣT |yT , Q, S,W,ΛT , θT , sT )

2. draw ΛT , θT , sT , Q, S, andW from p(Q,S,W,ΛT , θT , sT |yT ,ΣT ).

The second step is implemented as a sequence of intermediate steps.
First, the algorithm draws from p(Q,S,W,ΛT , θT |yT ,ΣT ), while the
auxiliary variables sT are then drawn from p(sT |Q,S,W,ΛT , θT , yT ,ΣT ).
This second step is split up into these two parts since this blocking
scheme allows drawing θT without having to condition on sT . Specifi-
cally, the sequence is to

i) draw ΛT from p(ΛT |yT ,ΣT , Q, S,W, θT )

ii) draw Q, S and W from p(Q,S,W |yT ,ΛT ,ΣT , θT )

iii) draw θT from p(θT |yT , Q, S,W,ΛT ,ΣT )

iv) draw sT from p(sT |yT , θT , Q, S,W,ΛT ,ΣT ).

Drawing ΣT

The first step of the Gibbs sampler involves generating draws of the
elements of covariance matrix ΣT from a distribution that is conditional
on the data yT and the remaining coeffi cient matrices. This conditional
distribution conflates elements of the prior and the likelihood function;
it is, in fact, a marginal density of the posterior. Draws are realizations
of the random variable ΣT and are accordingly recorded. We now
describe how a known conditional probability distribution for ΣT can
be derived under this blocking scheme.

We can rewrite equation (3) under the assumption that et features
stochastic volatility:

Λt
(
yt −X ′tθt

)
= y∗t = Σtεt, (37)

where we have made use of the decomposition of the errors in equation
(8). Given the conditioning set of this block in Step 1 above, y∗t is
known. We can nowcast this representation into a Gaussian state-
space system to draw the elements of ΣT . Squaring each element of
this vector and taking natural logarithms yields for each element i of
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y∗t :
14

log
(
(y∗i,t)

2
)

= y∗∗i,t . (38)

We define σt as the vector of the diagonal elements of Σt.
We then get the state-space system:

y∗∗t = 2 log(σt) + 2 log(εt), (39)

log(σt) = log(σt−1) + ηt. (40)

This is a linear state-space system with y∗∗t being the observable vari-
able, while log(σt) is the unobserved state variable. However, it is not
Gaussian: each element of 2 log(εt) is distributed as logχ2 since it is the
log of the square of a standard-normal random variable. These shocks
can be approximated with a mixture of seven normal variables, as sug-
gested by Kim, Shephard, and Chib (1998). In this step, the auxiliary
variables sT are introduced to provide a record of which of the seven
mixture components is ‘active’for each element of 2 log(εt). Given this
approximation, we have another Gaussian state-space system, which
can now be evaluated using the Kalman filter. The prediction formulas
listed above can be used to generate realizations, that is, draws, of the
unobservable σt over time.

Drawing ΛT

Given the draws for the matrix ΣT , which is a component of the
reduced-form error matrix Ωe,t per equation (8), we can now sample its
other component, namely the loadings ΛT . The first step is to rewrite
equation (3) but utilizing a different blocking:

Λt(yt −X ′tθt) = Λtŷt = Σtεt. (41)

The difference to the previous sampling scheme for ΣT is that we now
condition on ΣT and are interested in sampling the free elements of the
lower-triangular matrix Λt.

We can therefore rewrite the equation above by moving elements
of Λtŷt to the right-hand side. We can write:

ŷt = Ztλt + Σtεt, (42)

where Zt is a selection matrix that contains elements of the vector ŷt.
Together with the set of equations (7), this equation forms a linear
Gaussian state-space system. The fact that Zt depends on elements
of ŷt poses no problem for the sampling step under the assumption

14 In practice, and in order to improve numerical stability, we instead define
log((y∗i,t)

2 + c) = y∗∗i,t, where c is a small ‘offset’ constant.
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that the innovation covariance matrix for λ, S, is block diagonal. The
Kalman filter can then be used to obtain draws for ΛT .

Drawing Innovation Covariance Matrices

In the next step, we are drawing from the innovation covariance ma-
trices for the processes governing the time variation of the VAR pa-
rameters. As discussed above, each of the matrices Q, S, and W is
assumed to have an inverse-Wishart prior to facilitate the application
of the Kalman filter within a Gaussian state-space system. In combina-
tion with a normally distributed likelihood, this prior forms a conjugate
family since the innovations in the laws of motion for parameters and
volatilities are Gaussian. Consequently, the posterior will also be of the
inverse-Wishart form, which has a closed-form representation.15 It is
then straightforward to sample the innovation covariance matrices by
drawing from the known inverted-Wishart posterior.

Drawing θT

In a penultimate step, we are now ready to sample from the conditional
distribution for the TVP-VAR coeffi cient matrices. Given the prelim-
inary work up this point and the use of the conditioning scheme that
we describe above, this is now straightforward. Since we condition on
draws for the covariance matrix of et, which in the general model with
stochastic volatility will consist of draws for Λt and Σt, equations (3)
and (4) form a Gaussian state-space system. We can sample from the
posterior distribution for θT in the manner described above by using
the Kalman prediction equations to sequentially construct the draws.

Drawing sT

The final step that brings everything together involves the auxiliary
variables sT that we use to track the stochastic volatilities. As we
discuss above, each element of st is drawn from a discrete distribution,
a mixture of normals, with seven possible outcomes. Denote the prior
probability for outcome j as qj . The conditional posterior probability
used to drawing outcome j for each element of sT is then proportional
to

qjfN (y∗∗it , 2 log(σi,t) +mj , v
2
j ), (43)

15 See, for example, Gelman et al. (2014).
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where mj and vj are the given mean and standard deviation of each
element of the Gaussian approximation and fN (x, a, b) is the Gaussian
density with argument x, mean a, and variance b.

Reporting the Results

Estimating a Bayesian TVP-VAR is tantamount to sampling from a
posterior distribution. While the posterior summarizes all information
available in the data and in the prior, it is an unwieldy object in that
it is a multivariate distribution of which only the conditional distrib-
utions are known. The Gibbs sampling algorithm solves this problem
by sequentially building up the joint distribution from the conditional
distributions. Yet, what Bayesian estimation delivers are distributions
and not point estimates. Reporting the results in a manner that is use-
ful for economic interpretation therefore requires some thought. The
Bayesian literature focuses on posterior means or medians as counter-
parts to frequentist point estimates. Instead of standard errors and
confidence intervals, Bayesians report coverage regions that essentially
are regions of the posterior distribution in which a given percentage of
draws fall around a focal point such as the mean or the median.

The results from Bayesian fixed-coeffi cient VARs can be reported in
a similar manner as for frequentist approaches. The reporting problem
is compounded, however, in the case of TVP-VARs, since the distrib-
ution of the VAR parameters potentially changes at every data point,
which is the very definition of time variation. Instead of reporting a
single distribution in the case of a fixed-coeffi cient VAR, the Bayesian
econometrician now faces the challenge of reporting a sequence of dis-
tributions. We describe in the following how to approach this issue for
the case of impulse response functions, which are key objects in the
toolkits of time series econometricians.

Impulse Responses

VARs can be used to study the effects of exogenous shocks, that is,
of unpredictable changes in the economy. For this purpose, the main
tool in VAR analysis is the impulse response function that describes
the behavior of a variable in response to a shock over time. In order to
understand the sources of business cycles or to analyze policy, it is often
desirable to give these shocks a structural interpretation. By doing so,
researchers can link the shocks to economic theories.16 However, the

16 In line with time-invariant VARs, the literature usually focuses on studying the
effects of shocks to observables, not shocks to the parameters that vary over time.
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shocks that are estimated as residuals from a regression of the type
(1) are generally not useful for this purpose as they conflate the effects
of underlying structural disturbances. That is, the estimated residuals
are generally correlated, in which case it is not possible to identify the
effects of an individual disturbance.

More specifically, a researcher may be interested in uncovering un-
correlated disturbances wt that are a linear function of the regression
errors et:

Htwt = et, (44)

where it is assumed that wt is Gaussian with mean zero and a covariance
matrix that is normalized to unity, wt ∼ N (0, I). The conformable ma-
trix Ht is used to transform the errors et into the structural shocks wt.
How to derive and impose restrictions on Ht is one of the key issues
in VAR analysis. For instance, the economic theories used to define
the shocks, e.g., DSGE models, can be used to derive restrictions on
Ht. For the most part, it is common practice in the VAR literature
to focus on imposing few enough restrictions so that the restrictions
do not alter the likelihood function of the model. This has the advan-
tage that the researcher can first estimate a statistical, ‘reduced-form’
model without worrying about the restrictions used to derive structural
shocks. Structural shocks can then be studied after the estimation step
is completed.17

For purposes of exposition we now discuss the most common and
straightforward method for identifying structural shocks. It only as-
sumes restrictions on the within-period-timing of shocks. The specific
idea is that some shocks may be causally prior to other shocks in the
sense that they have an impact on some variables and not on others
within the period. The easiest way to implement this restriction is
to make Ht lower triangular. This can be achieved by calculating the
Cholesky decomposition of the covariance matrix of the forecast errors.

In the context of TVP-VARs, this type of recursive ordering is ap-
pealing because Λ−1

t Σt already has lower triangular form so that the
matrix Ht can be directly calculated from the output of the Gibbs
sampler. Given Ht, the impulse responses can then be calculated
by simulation.18 In contrast to fixed-coeffi cient VARs, it is thus not

17 Using more restrictions so that the likelihood function is altered relative to the
estimation of a reduced-form model means that the restrictions have to be imposed
during estimation, that is, a ‘structural model’ has to be estimated directly. This is
not often carried out, even though algorithms are now available even in the context of
TVP-VARs, for instance in Canova and Perez-Forero (2015).

18 A simpler method to approximate impulse responses is to draw a set of para-
meters from the Gibbs sampler output for each time period t and then compute im-
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possible to separate the estimation from the identification stage. In this
case, the estimated variance-covariance matrix can be decomposed into
its recursive components after the VAR is estimated. A detailed de-
scription of the algorithm is available in Canova and Gambetti (2009).
We briefly describe the algorithm below.

Conceptually, we can define an impulse response as the difference
between the expected path of the variables in the model when a shock
of a given size hits and the expected path of the same variables when
all shocks are drawn randomly from their distributions. In order to
calculate impulse responses starting at time t, the first step is to draw
a set of parameters from the Gibbs sampling output. Next, paths of
future time-varying parameters and volatilities and a sequence of w
shocks are simulated once the identification matrix Ht is computed.
These objects are then used to calculate one path for the variables of
interest using equation (2). The same exercise is repeated, but with the
value of one structural shock fixed at one point in time, leaving all other
structural shocks at the simulated values. This yields another path for
the variables of interest, so that the difference between the paths is
one realization of the impulse response. This sequence is repeated a
large number of times for different parameter draws from the posterior
and different simulated values of parameter paths and shocks. The
approach produces a distribution of a path for the impulse responses
for each time period in the sample. To report the results, the literature
usually either picks a subset of time periods and then plots the median
response as well as posterior bands for each time period separately or
authors focus on the posterior median responses and plot those over
time and for different horizons in a three-dimensional plot.19

3. APPLICATION: A SIMPLE TVP-VAR MODEL
FOR THE UNITED STATES

We now apply the methods discussed above to three key economic
variables: the inflation rate, the unemployment rate, and a nominal
interest rate. These three variables form the core of many models that
are used to analyze the effects of monetary policy, such as the standard
New Keynesian framework. Moreover, they are staples in most VARs
that are used for the analysis of monetary policy. In his seminal paper,

pulse responses as if those parameters at time t were parameters of a fixed coeffi cient
VAR. This approach is computationally easier but neglects the fact that parameters and
volatilities can change in the future.

19 An example of the former can be found in Benati and Lubik (2014), while the
latter approach is used in Amir-Ahmadi, Matthes, and Wang (2016).
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Primiceri (2005) estimates a TVP-VAR in these three variables to study
the effects of monetary policy in the post-World War II period in the
United States. We base our application on his specification.

We update the data set to include more recent observations. The
full sample ranges from the first quarter of 1953 to the first quarter of
2007, before the onset of the Great Recession. The data are collected
quarterly, whereby percentage changes are computed on a year-over-
year basis. As our measure of inflation, we use the (log-difference of
the) GDP deflator, reported in percentage terms. As our economic
activity variable, we pick the headline unemployment rate, while we
use the three-month Treasury bill rate as the nominal interest rate
variable. The data series are extracted from the FRED database at
the Federal Reserve Bank of St. Louis.

We follow Primiceri (2005) in selecting a lag length of two for the
TVP-VAR. This choice has become common in the TVP-VAR liter-
ature. In fixed-coeffi cient VARs, a higher number of lags is usually
used, but the higher degree of complexity and dimensionality imposes
nontrivial computational constraints. A lag length of two thus seems a
good compromise and also allows for direct comparison of our results
with other key papers in the literature. As discussed above, we need to
provide an initialization for the prior. We follow common practice and
use the first ten years of data for this purpose. The remaining priors
are as in Primiceri (2005).

The first set of results that we extract from our TVP-VAR is con-
tained in Figure 1. We report the median coeffi cient estimates from
our model in three separate panels. The plots start with the first quar-
ter of 1963 because the first ten years of the sample were used for
the initialization of the prior. The upper panel contains plots of the
time-varying lag coeffi cients Aj,t and the intercept ct from equation
(2). The overriding impression is that there is not much time variation
in the lag coeffi cients. This is a finding that occurs throughout much
of the TVP-VAR literature. However, evidence of some more time
variation is apparent from the middle and lower panels, which report
the time-varying components of the reduced-form innovation variance
Ωe,t = Λ−1

t ΣtΣ
′
t

(
Λ−1
t

)′
.

The middle panel contains the nonzero and nonunity elements of the
lower triangular matrix Λ−1

t . The three off-diagonal elements are thus
related to the correlation pattern in the estimated covariance matrix of
the shocks. The panel shows that the relationship between inflation and
the interest rate errors is consistently negative throughout the sample,
while it is positive between the interest rate and unemployment. This
observation corresponds to the notion, at least in a reduced-form sense,
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Figure 1 Estimated Coefficients

that the interest rate and unemployment move in the same direction
while the interest rate and inflation rate move in the opposite direction.

The coeffi cient λπ,u for the relationship between inflation and un-
employment in the middle panel exhibits more variation. It is positive
from 1976 until 2002 and negative before and after. Despite uncertainty
surrounding this estimate (not reported), it reveals changes in how un-
employment and inflation have interacted over the sample period. This
observation is of particular interest since the relationship between these
two variables is sometimes described as the Phillips curve, which may
embody a trade-off for the conduct of monetary policy. That this trade-
off apparently changed in the late 1970s and again in the early 2000s is
noteworthy. Finally, the lower panel of Figure 1 depicts the series for
the elements of the Σt, which is a diagonal matrix. Movements in these
terms indicate the extent to which volatility of the estimated errors has
changed. The most variation is attributed to the interest rate, followed
by the inflation rate.

Figure 1 summarizes all coeffi cient estimates θt from the TVP-
VAR with stochastic volatility in a comprehensive manner. The lesson
to take away from this is that almost all of the time variation in the
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post-World War II history of the three variables appears to be due to
stochastic volatility and not to changes in the lag coeffi cients. This
observation is thus conceptually in line with the argument presented
in Sims and Zha (2006), who use a Markov-switching VAR and also
attribute changes in the behavior of the U.S. business cycle to regime
changes in the shocks.

However, we want to raise some caveats for this interpretation.
First, the relative importance of variations in the shocks versus changes
in the parameters is a long-standing issue in econometrics, ranging
from test for structural change (Lubik and Surico 2010) to the proper
conditioning of state-space models including unobserved components
(Stock and Watson 2003). Disentangling the relative importance of
time-variation in the shocks and in lag coeffi cients is a challenge that
a Bayesian approach has not overcome, but the judicious use of priors
gives some structure to the issue. Specifically, the choice of an initial
prior is informed by a pre-sample analysis, whereby the data stem from
the same underlying data-generating process as the latter part of the
sample.

Second, there is a concern that TVP-VARs with SV have a ten-
dency to attribute time variation in the data to the stochastic volatility
part of the model and not to the lag coeffi cients. In a simple example
above, we argue that the inclusion of stochastic volatility is necessary
to avoid a pitfall in the opposite direction. Lubik, Matthes, and Owens
(2016) address this aspect in a simulation study based on an underlying
nonlinear model and judge that a TVP-VAR does in fact come to the
right conclusion as to the sources of time variation, but that a judicious
choice of prior is crucial.

The second set of results are reported in Figure 2. These are
the impulse response functions of inflation, unemployment, and the
interest rate itself to a unit, that is, a 1 percentage point, increase in
the three-month nominal rate bond rate. As discussed above, there
are impulse responses functions at every single data point, so reporting
the full set becomes a challenge. We therefore pick three dates from
each decade that are associated with, respectively, the height of a deep
recession, the onset of the Volcker disinflation, and at the early stages
of a long expansion: 1975:Q1, 1981:Q3, and 1996:Q1. For identification
purposes, the variables are in the order: inflation, unemployment, and
the interest rate. This implies that the interest rate has no contem-
poraneous effect on inflation and unemployment, but that it responds
contemporaneously to shocks in these two variables. In discussing the
result, we focus on the effects of monetary policy shocks.

Figure 2 shows that the impulse responses are remarkably similar
across all three time periods. This has already been indicated by the
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Figure 2 Impulse Response Functions

observation from Figure 1 that the estimated lag coeffi cients exhibit
virtually no time variation. Since the impulse responses are functions
of the lag coeffi cients, this clearly carries over. The structural responses
are also functions of the matrix Ht and therefore related to the factors
of the reduced-form error covariance matrix, Λ−1

t and Σt, which show
more variation; yet, this does not carry over to the impulse responses
despite the sign change of the elements of Λ−1

t .
Following a unit innovation, the interest rate returns slowly over

time to its long-run level, which it reaches after five years. The re-
sponse is fairly tightly estimated based on the 90 percent coverage
regions. The interest rate’s own response in the last column of the fig-
ure is very much the same in all periods. On impact, the response of
the unemployment rate to a contractionary interest rate shock is zero
by construction. Afterward, unemployment starts to rise slowly until
hitting a peak around the two-year mark. It returns to its starting
value after five years. The unemployment response is much less pre-
cisely estimated, with zero included in the coverage region for the first
year after impact. Again, the responses across episodes are remarkably
similar. An additional point to note is that the median extent of a 1
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percentage point interest rate rise is a 0.12 percentage point increase in
the unemployment rate. Finally, the interest rate hike reduces inflation
over time with a fairly wide coverage region and very similar responses
in each of the three time periods.

4. CONCLUSION

This article discusses and reviews the concept and the methodology
of time-varying parameter VARs. This class of empirical models has
proved to be a flexible and comprehensive approach to capturing the
dynamics of macroeconomic series. We focus on the specification and
implementation of TVP-VARs in a Bayesian framework since it offers
unique computational challenges. To this effect, we present the Gibbs
sampler as a convenient and adaptable method for inference. We il-
lustrate the approach by means of a simple example that estimates a
small-scale TVP-VAR for the United States.

The TVP-VAR literature is still in its infancy, and there are several
issues we plan to address in further detail in a companion article to the
present one. Identification of structural shocks is a key element of time-
series analysis. The application in the present article uses a simple, yet
widely used, recursive identification scheme that is not without its prob-
lems. Alternative identification schemes, such as long-run restrictions
and sign restrictions, warrant additional consideration although they
present unique challenges in a TVP-VAR with SV context. A second
issue is to what extent TVP-VARs are able to capture a wide variety
of nonlinear behavior in macroeconomic time series, especially when
compared to alternative methods, such as regime-switching VARs.
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