Monthly Labor Review
 JUNE 1955 VOL. 78 NO.

A Review of Automatic Technology
Union Security in 1954
New England Textile Unemployment

UNITED STATES DEPARTMENT OF LABOR

BUREAU OF LABOR STATISTICS

UNITED STATES DEPARTMENT OF LABOR

James P. Mitchell, Secretary

BUREAU OF LABOR STATISTICS
Aryness Jox Wickens, Acting Commissioner
Herman B. Byer, Assistant Commissioner
Henry J. Fitzgerald, Assistant Commissioner
Charles D. Stewart, Assistant Commissioner
Joseph P. Goldberg, Acting Special Assistant to the Commissioner
W. Duane Evans, Chief Statistician

Dorothy S. Brady, Chief, Division of Prices and Cost of Living
H. M. Douty, Chief, Division of Wages and Industrial Relations

Lron Greenberg, Chief, Division of Productivity and Technological Developments
Richard F. Jones, Chief, Division of Administrative Services
Walter G. Keim, Chief, Division of Field Service
Paul R. Kerschbaum, Chief, Office of Program Planning
Lawrence R. Klein, Chief, Office of Publications
H. E. Rriey, Chief, Division of Construction Statisties

Oscar Weioert, Chief, Division of Forelgn Labor Conditions
Faith M. Wilhiams, Chief, Office of Labor Economies
Seymour L. Wolfbein, Chief, Division of Manpower and Employment Statistics

Regional Offices and Directors

NEW ENGLAND REGION
Wendell D. Macdonald
18 Oliver Street
Boston 10, Mass.
Connecticut New Hampshire
Maine Rhode Island
Massachusetts Vermont

MID-ATLANTIC REGION
Robert R. Behlow
Room 1000
341 Ninth Avenue
New York 1, N. Y.
Delaware New York
Maryland Pennsylvania
New Jersey District of Columbia

SOUTHERN REGION
Brunswick A. Bagdon Room 664
50 Seventh Street NE.
Atlanta 5, Ga.

Alabama	North Carolina
Arkansas	Oklahoma
Florida	South Carolina
Georgia	Tennessee
Louisiana	Texas
Mississippi	Virginia

NORTH OENTRAL REGION
Adolph O. Berger
Tenth Floor
105 West Adams Street
Chicago 3, Ill.

Illinois	Missouri
Indiana	Nebraska
Iowa	North Dakota
Kansas	Ohio
Kentucky	South Dakota
Michigan	West Virginia
Minnesota	Wisconsin

WESTERN REGION
Max D. Kossoris
Room 802
630 Sansome Street
San Francisco 11, Calif.
Arizona New M

California

Colorado
Idaho
Washington
Nevada

The Monthly Labor Review is for sale by the Superintendent of Documents, U. S. Government Printing Office, Washington 25, D. C. Subscription price per year- $\$ 6.25$ domestic; $\$ 7.75$ foreign. Price 55 cents a copy.
The printing of this publication has been approved by the Director of the Bureau of the Budget (October 22, 1953.)

Monthly Labor Review

UNITED STATES DEPARTMENT OF LABOR • BUREAU OF LABOR STATISTICS

Lawrence R. Klein, Editor

CONTENTS

Special Articles

637 A Review of Automatic Technology
645 Unemployment in New England Textile Communities
649 Union-Security Provisions in Agreements, 1954

Summaries of Studies and Reports

659 Earnings in Synthetic-Textile Manufacturing, November 1954
663 Union Wage Scales in Local City Trucking, July 1, 1954
666 New Hires as a Source of Factory Workers, 1950-54
671 Family Income Distribution in the United States
658 Union Conventions Scheduled for July and August, 1955

Technical Note

673 The Collection and Analysis of Collective Bargaining Agreements

Departments

in The Labor Month in Review
679 Significant Decisions in Labor Cases
683 Chronology of Recent Labor Events
685 Developments in Industrial Relations
691 Book Reviews and Notes
700
Current Labor Statistics

Wage Differences and Establishment Practices (BLS Bulletin 1173)

Seven articles based on studies conducted by the Bureau of Labor Statistics during late 1953 and early 1954. They include:

- Wage Differences among Labor Markets
- Coverage of Labor-Management Agreements
- Health, Insurance, and Pension Plans
- Types of Wage Payment Plans
- Pay Provisions for Daily and Weekly Overtime
- Paid Holidays
- Paid Vacations

The articles analyze occupational pay levels and related practices among these 17 major labor markets: Atlanta, Boston, Chicago, Dallas, Denver, Detroit, Los Angeles, Memphis, Milwaukee, Minneapolis-St. Paul, Newark-Jersey City, New Orleans, New York City, Philadelphia, Portland (Oreg.), St. Louis, and San Francisco-Oakland.

Send your order, accompanied by check or money order, to any of these BLS regional offices:
New York Room 1000 341 Ninth Avenue

Chicago Tenth Floor 105 West Adams Street

San Francisco Room 802 630 Sansome Street or to the Superintendent of Documents, Washington 25, D. C.

Price, 35 Cenis a Copy

The Labor Month in Review

Abstract

As the first half of 1955 ended, the economy, stimulated by heavy consumer demand, had risen to levels which exceeded most expectations. The extremely receptive market for autombiles, other consumer durables, and housing was a major factor. Other important influences were the completion of inventory reductions and cessation of cuts in national security outlays. Employment had risen more than seasonally, with overtime work fairly widespread. While metal goods industries fared best, employment recovery was extensive; but, typical of all recoveries, the increase in employment lagged behind the output of goods and services, reflecting, in part, a longer workweek and rising productivity.

These developments have given many economists optimistic hopes for the second half of the year. Generally, those who presage continued prosperity base their predictions on the momentum of the upswing, increasing worker purchasing. power, and large-scale capital investment.

This was the improving economic milieu amidst which recent labor events transpired. The most dramatic of these was the collective bargaining between the CIO Auto Workers and the Ford Motor Co. Negotiations with both Ford and General Motors had proceeded in somewhat desultory fashion since the union's convention in early April. Extension of the General Motors contract beyond the terminal date of that with Ford enabled the union to concentrate its attention upon negotiations with the latter. Strike votes were taken among workers in plants of both companies, with more than 90 percent of those voting favoring strike action in support of the guaranteed wage demand. In the Ford plants, 73 percent of the potential vote was cast.

The Ford Company on May 26 made a startling offer to the union of both direct wage increases and a combination "income stabilization plan" which included company-aided investment savings
and severance pay. The union rejected the offer. The terminal date of the existing contract was extended and settlement was reached 4 days later, on June 6, with a 3-year contract.

The terms provide for a company-financed limited fund from which unemployment benefits will be paid to hourly employees with at least a year of service. The company contributes 5 cents per hour to the fund. Weekly payments will be paid after June 1, 1956, to eligible laid-off workers in relation to years of service. The payment will equal the difference between State unemployment insurance benefits and 65 percent of weekly takehome pay (for 40 hours) for the first 4 weeks, with the rate cut to 60 percent for the remaining 22 weeks. Duration of benefits is limited by seniority and the condition of the fund.
The entire plan will be discarded by June 1, 1957, if States in which two-thirds of Ford employees work have not sanctioned simultaneous payment of unemployment insurance with the fund benefits. It is also conditional on certain interpretations of the Federal wage-hour and in-come-tax laws. The annual improvement factor was raised by 1 cent and fringe benefits improved, among other gains.
On June 13 substantially the same terms were agreed to by General Motors.

The 72-day strike of the CIO Communications Workers against Southern Bell was settled May 24. The new contract included general weekly wage increases of $\$ 1$ to $\$ 4$, arbitration of suspensions and discharges, and some reduction in working hours. The union agreed to a no-strike clause, but won the right of members to refuse to cross picket lines of other companies. This will enable local operating employees of the Southern Bell system to respect picket lines established by Western Electric or long distance operators. At the end of May, Southern Bell sued the union for $\$ 5$ million for damages allegedly sustained during the strike.

The arbitration to end the nearly 2 -month-long strike against the Louisville \& Nashville Railroad by 10 AFL unions resulted in essentially the same health and welfare plan accepted last year by most other railroads; however, the award compelled the carrier to assume the full cost instead of half.

In other rail settlements in May, brakemen and conductors on both passenger and freight trains
won a long-contested demand for pay differentials based on length of train. The unions in the separate negotiations were the Brotherhood of Railway Trainmen and the Order of Railway Conductors and Brakemen. In the negotiations conducted by the Trainmen, dining-car stewards received a $\$ 5-\mathrm{a}$-month increase.

Railroads in England by mid-June had been virtually stopped by a strike of engineers over wage differentials. The situation was compounded by a jurisdictional strike of dock workers.
The first break in the Fall River-New Bedford textile strike came after 41 days, when the CIO Textile Workers Union and the Wamsutta Mills agreed to renew their contract with virtually no change. By mid-June, about 13,000 members of the union remained on strike against proposed wage cuts.

The American delegation to the fourth biennial congress of the International Confederation of Free Trade Unions, cooperating under the leadership of AFL president George Meany, achieved most of its organizational and political aims at the May meeting. On the eve of the conference the West German trade unions supported a resolution for military defense of the free world, reversing its previous stand; the ICFTU created a post of organization director whose task will be to intensify the anti-Communist activities of the body's constituent trade union centers representing 54 million members; the director will function through the Executive Board instead of through the General Secretary, who has been accused of not vigorous enough action in the organizational fields; three assistant organizational directors are expected to be appointed and the AFL may suspend its independent activities in the international field; it strongly urged the trade secretariats of miners and wood workers to eschew association with Yugoslavian unions. The ICFTU will move its headquarters from Brussels to Paris. Satisfied with the developments, the United States delegation supported an increase in dues.

Early in June another international conferencethe 38th session of the tripartite International

Labor Organization-got under way. As anticipated, some of the agenda items elicited sharp debate. In the Governing Body meeting preceding the Conference, the American delegation successfully pressed for investigation of forced labor by the ILO. Secretary of Labor James P. Mitchell made a vigorous attack against forced labor and the general state of labor relations in Communist countries. Meanwhile, the ILO named David L. Cole, prominent American industrial relations expert, adviser on a program emphasizing the "human" aspects of labor-management-relations.

The American employer delegation to the ILO, in protest against seating of employer delegates from the Soviet Union, withdrew from those committees on which Soviet employer delegates sat, claiming that employers in State controlled industries were indistinguishable from the Government itself. This led to a controversy within the United States delegation.

Somewhat lost in the welter of other labor news was the signing on May 20 of the Wisconsin Catlin Act. It prohibits labor unions in the State from contributing to political campaigns. Various labor organizations plan a court test of the law's constitutionality. A similar measure failed to reach a vote in the Michigan legislature.

In recent AFL union conventions, George Harrison was reelected president of the Brotherhood of Railway Clerks; Ralph Bellamy won a second term as president of the 42 -year-old Actors Equity Association.
A United States Circuit Court of Appeals on May 26 held that a worker, unless he positively disassociates himself from a strike, is in fact a striker. The case arose from a National Labor Relations Board decision that the Taft-Hartley law was not violated when the Marathon Electric Manufacturing Co. discharged strikers in a walkout which violated a union contract. The NLRB found that "nonparticipants" in the strike could be discharged unless they had declared their nonparticipation. The union was Local 1113 of the independent United Electrical Workers, expelled from the CIO some years ago as Communistdominated.

A Review of Automatic Technology

The Meaning, Outlook, and
Implications of America's Most Recent
Industrial Development

Edgar Weinberg *

Automatic technology, automation, or automatization are terms widely and interchangeably used to describe the most recent phase of American industrial development. They cover the increasing use, both in offices and factories, of various types of laborsaving equipment having virtually continuous and, in some instances, self-regulating operation. Instead of small changes to achieve greater efficiency, as in traditional management practice, recent innovations often involve extensively replanning the flow of work and the layout of plants and offices, and completely redesigning products for greater automaticity in production. While these changes are hailed as the beginning of a new era, they are in principle a continuation of past trends.

The purpose of this article is to describe the basic principles and some leading examples of automatic technology, to set forth some factors to be considered in estimating its rate of growth, and to discuss some general implications. ${ }^{1}$

Background

Today's technological developments carry forward the search begun in the 18th century for new mechanical ways of displacing man as a source of energy in production. The Industrial Revolution, the first phase of this movement, marked the transition from dependence on hand labor to the application of power-driven machinery. Many of the principles of automatic technology can be traced to such early developments as Oliver Evan's continuous flour mill, Babbage's calculator, Jacquard's card controlled loom, and Watt's auto-
matic controls for his steam engine. The 19th century saw the steady improvement in speeds, capacity, and efficiency of machines, and their use in virtually every activity of the economy.

The 1920's ushered in the mass-production phase of industrial development. Ewan Clague, in the July 1926 Monthly Labor Review, described improvements in machinery and processes of that period as a "new industrial revolution . . . the most remarkable advance in productivity efficiency in the history of the modern industrial system." Machine operations in mass-production plants were made uniform, reduced to routine, and subdivided into simple tasks. The worker's job became a machine-paced operation on a highly standardized product, with mechanical conveyors employed to bring the work and carry it to the next step of a sequence. This type of specialization resulted in great increases in productivity but also in greater monotony for the operator of production machines and the man on the assembly line.

Automatic technology, starting with the cumulative accomplishments of the past, introduces the possibility of eliminating direct human intervention in operating, guiding, and feeding machines and in controlling processes. Instead of the worker, specialized mechanisms with capacity for

[^0]elementary sensing, discriminating, and counting, can now perform routine tasks of handling materials and information with a high degree of reliability.

As this new movement progresses, job opportunities in more complex control, service, distributive, and creative functions become relatively more important in total employment. Many less skilled jobs become obsolete. A growing awareness of the readjustments that may be required to conserve human values is accompanying these industrial changes. Automatic technology, wisely applied, as Norbert Wiener suggests, holds promise of "more human use of human beings."

Recent Developments

Recent innovations leading toward more automatic technology in industry may be grouped in four categories: (a) automatic machinery; (b) integrated materials handling and processing equipment; (c) automatic control systems; and (d) electronic computers and data-processing machines. The first two categories cover examples of advanced mechanization based on engineering principles already familiar in industry. The latter two encompass innovations largely developed out of experience during World War II in the new fields of electronics, control, and communication engineering.

The emergence of this technology is part of the general acceleration of the Nation's economic growth following World War II. The availability of the results of wartime research, large expenditures for new plant and equipment, and the continued need for a large volume of defense items have greatly stimulated the production of new types of equipment. Like Eli Whitney's system of interchangeable musket parts manufacture, production principles found useful in speeding the output of arms are now used to good advantage in civilian industries.

Automatic Machinery. Some types of specialized machinery which carries out a pre-set cycle of operations with almost no human intervention is found today in virtually all plants having a large output of standardized goods. New models of automatic glassmaking, textile-spinning, and papermaking machinery, printing presses, and wire-drawing machines are constantly being intro-
duced. The basic principles are often unchanged, but improvements in speeds and capacity may greatly reduce the labor required for a unit of output.

A recently developed automatic filling machine, for example, packages cans with 4 ounces of semisolid baby food, "untouched by human hands," at the rate of 800 per minute. The worker's function is limited to manual pushbutton starting and stopping, observing and adjusting the performance to correct malfunctioning, and repair and maintenance of the mechanism. Such routine decisions as determining when a can is filled are made by tireless, highly accurate, specially designed devices built into the machine.

New models of automatic machines frequently incorporate devices to save labor in inspecting, gaging, and testing, as well as fabricating operations. Also, labor in servicing machinery is now economized by means of automatic lubrication systems which distribute a precisely measured volume of oil to bearings at regular intervals without direct human intervention.

The possibility of mechanizing an industry through intensive research on the redesign of the product as well as of the fabricating machinery is illustrated by new techniques of producing electronic parts. Previously, it has not been practical to devise laborsaving mechanisms for duplicating the complex hand manipulations of producing and assembling electronic components. According to a BLS study, assembling operations employed, in January 1953, about 30 percent of the work force in the electronics industry. ${ }^{2}$ With the tremendous civilian and military demand for electronics output, the need for time-saving automatic fabricating methods has become urgent.

A key development in the mechanization of electronics manufacture is the fabrication of the printed circuit board. Instead of hand-wired circuits, conducting patterns are now etched or stenciled on plates by means of specially designed machines. The results are a considerable economy in time and a high degree of uniformity of manufacture.

Another important development is the manufacture of equipment for attaching standard electronic components to printed circuit boards. Assembling these parts can now be done mechani-

[^1]cally at significantly higher rates of speed than by manual methods. In Project Tinkertoy, a research program conducted by the National Bureau of Standards in cooperation with private firms, the components themselves are produced mechanically, using the modular principle of design. Thus, parts of standard circuits are printed on ceramic wafers which are then mechanically joined in various combinations into a variety of electronic components.

Integrated Materials Handling and Processing

 Equipment. As faster and larger automatic machines reduce the amount of labor directly engaged in fabricating operations, engineers are turning their attention to developing mechanical ways of saving labor in the movement and handling of materials. The importance of this function (in terms of man-hours of employment) is illustrated by the experience of one large manufacturer of electrical apparatus. (See table.) The trend toward more elaborate processing of raw materials serves to make the moving of goods within plants increasingly more significant. Manual loading and unloading of goods in process, moreover, are often too slow to permit full utilization of the new high-speed production machinery.The metalworking industries, notably automobiles and ordnance, provide some of the most striking examples of the integration of materials handling and processing to achieve continuous production. Indeed, the word "automation" was coined by D. S. Harder of the Ford Motor Co. to refer to "the automatic handling of discrete parts between progressive processing operations." Automation in this sense is now applied in the machining of engine blocks, pistons, ring gears, crankshafts, and $155-\mathrm{mm}$. shells. Like the assembly line of the 1920's, methods of materials handling used in the automobile industry are also being imitated by other metalworking plants producing large volumes of standardized goods.

A basic feature of this type of automatic production is the linking together of high-speed automatic machine tools so that a predetermined sequence of boring and drilling operations can be performed on a standardized part, such as an engine block, with virtually no direct human labor. Extensive use is made of specially built powered

[^2]Distribution of productive man-hours in a large electrical apparatus manufacturing company, by major operation,1948

Operation	Percent of total productive man-hours
Total	100.0
Assembling	27.3
Materials handling ${ }^{1}$	26.8
Testing ------------	12.9
Finishing	4.5
Other--	6.8

${ }^{1}$ Does not include materials-handling work performed by skilled labor as part of normal activities.
Source. Adapted from table 1 in an article entitled "Materials HandlingCurrent Experience and Evolving Principles," by R. W. Mallick, appearing in American Management Association Production Series 184: Organizational Teamwork in Production, New York, 1948.
conveyors, or "shuttles," to transport the work from machine to machine; of pneumatic, hydraulic, and electrical devices to turn, load, position, and unload; and of timing mechanisms to synchronize the movement of parts being processed. Inspection after certain operations is also done automatically. The result is a continuous flow of production, except for brief interruptions for changing wornout tools and making repairs.
Integrated handling and processing equipment is also being introduced to save labor in the metalforming and finishing departments of metalworking plants. Conveyors and chutes are now extensively used to move sand and heavy castings in foundries. "Iron fingers" automatically load and unload heavy presses and stamping machines. In one large plating plant, automobile bumpers pass continuously through á 31 -step process, guided by a combination of shuttles and elevators. Operators at an electrical control panel check the process at numerous points.

Significant advances toward more automatic operations have also been made in the handling of bulk materials. New plants for processing such bulk materials as cake mix and grain are now built around a system of belt conveyors, gravity chutes, and pneumatic tubes to provide a continuous flow from raw material to finished product. A fertilizer plant studied by the Bureau of Labor Statistics, ${ }^{3}$ for example, combines several processing operations into a single automatic sequence, from loading to bagging, by means of automatic weighing hoppers, screw conveyers, and chutes.
Longer, faster moving, and larger capacity belt conveyers are increasingly used to reduce manual handling in transporting coal in mines
and utilities, loading and unloading ships, and moving bulk materials at construction sites. The Riverlake Belt Conveyer Project proposes to carry coal and iron ore between Lake Erie and the Ohio River with a minimum of handling via a 103-mile continuously moving "rubber railroad."

In summary, increasing integration of materials handling and fabricating operations means fewer workers on jobs involving primarily physical strength. Greater use of machinery for these tasks, however, requires workers skilled in the repair and maintenance of costly equipment, engineers trained in designing new machinery and plant layouts, and management executives capable of directing technicians and coordinating mass production and mass distribution.

Wider Use of Automatic Controls. With the largescale use of automatic control devices in industry, a new phase of the long process of substituting mechanical for human energy begins. Hitherto, technological progress has been concerned primarily with the transfer of manual skills from man to machines, the worker remaining a controller and director. New developments involve the use of improved devices for such operations as sensing, measuring, comparing, and remembering, as well as operating in a predetermined manner. Control of machines by other machines or completely self-regulated production now becomes possible.

Although automatic control devices have long been used in the operation of the telephone system and industrial furnaces, their diffusion on a large scale was greatly speeded by new knowledge and experience gained during World War II. The collaboration of engineers, scientists, and mathematicians in designing servomechanisms for gun positioning, radar, and so forth, as Professors Brown and Campbell of the Massachusetts Institute of Technology have pointed out, "soon focused attention on the essential principles that apply to all control systems." ${ }^{4}$

The basis for automatic control of industrial processes is the technique of "feedback." Briefly, feedback control exists when information about the output at one stage of a process is returned or fed back to an earlier stage so as to influence the process and hence change the output itself. This closed loop between input and output contrasts with open-loop controls where a human
operator receives information about the results of a process, mentally compares it with the desired performance, and makes adjustments in the input, if necessary, to achieve the predetermined standard performance. Like the human nervous system, one scientist suggests, ${ }^{5}$ closed-loop systems have the remarkable ability to control the application of a substantial amount of force with a minimum expenditure of energy.

The operation of automatic control is exemplified by the simple closed-loop circuit used to control room temperature. In this familiar case, a sensing device of the thermostat measures the controlled variable, room temperature. The reading is then automatically compared with the preset desired value. If some deviation or error is detected, a signal is transmitted to the servomotor or starting switch of the furnace which operates until the desired temperature is reached and then stops. A new factor that alters the room temperature beyond the tolerance allowed sets off this self-regulating system anew.

Plants converting raw materials into finished products through some form of chemical processing are making increasing use of automatic control instruments. Self-regulation of the temperature, pressure, flow, and level of liquids and gases in these processes is often achieved by networks of control instruments. Materials handling in and out of processing tanks, pipes, and chambers is naturally continuous. The result is completely automatic production, from the input of raw material to the output of finished products.

Notable examples of whole plants built around automatic controls are found in the petroleum refining and chemical industries, including atomic processing, which have expanded their capacity fairly rapidly since the end of World War II. Other industries where scientific experts believe advanced planning now aims at fully automatic plants are cement, beverages, paper products, telephone and telegraph, and electric power. Some industries, such as steel, make extensive use of instrument control in important steps of the processing.

As chemical processing is substituted for mechanical operations in other industries such as

[^3]metal refining, the use of automatic controls no doubt will be extended. Improvements in measuring instruments also promise new applications. For example, a new gage employing radioactivity for continuous noncontact measurement of thickness makes possible more exact automatic control in coating paper, plastics, or rubber with abrasives, varnish, or adhesives.

An important objective of using automatic controls in many of these already highly mechanized operations is the finer adjustment and better quality of products made possible, rather than any large-scale saving of direct labor. Direct labor is already a relatively small proportion of the work force. A BLS study of synthetic rubber plants, for example, indicated that workers directly engaged in process operation in 1949 comprised only about a quarter of total plant labor. ${ }^{6}$ Maintenance, administrative, engineering, and other overhead labor were the most important occupational categories.

The application of feedback controls to machine tools introduces the possibility of automatic production in industries other than those having continuous processes. While suitable for mass production of standardized parts, the automatic, though not self-regulated, materials-handling equipment and custom-built machine tools described earlier are generally not economical for job-lot production.
Tape control of machine tools provides a flexible method for producing small lots. With this type of automatic control, the tool is guided over the work without human intervention in response to a series of instructions previously recorded in code on such media as cards, paper tape, magnetic tape, or film. These instructions can be changed after each job. Punched-tape programming, for example, is being applied to standard precisionboring machines. While the advantages of such flexible automatic controls are recognized, "much development work still remains," according to one expert, "before control systems can be developed that are low cost, accurate, and versatile enough for all-around use." ${ }^{7}$

[^4]Electronic Computers and Data-Processing Machines. As the economy grows in size and complexity, the work of information handling becomes increasingly important. Although mechanization of recordkeeping, accounting, and computing has advanced, the proportion of the labor force engaged in clerical and related work has continued to increase. Scientists and engineers in the past 10 years have therefore devoted considerable effort to developing new and faster tools in this field.

A major advance is the electronic computer or data-processing machine. The direct result of organized research for military purposes, the electronic computer applies principles of communication engineering to the tasks of counting and control. The broad stream of scientific research that produced radio and television also contributed to the development of this remarkable new tool.

Two general types of electronic computers are the analog and the digital. The analog, the first to be developed, is essentially a measuring device and is used to derive answers to engineering problems from the operations of a physical analogy of the problem. Analog computers allow engineers to study the operation and improve the design of a complicated process, without costly experimentation, by simulating its behavior. They are now widely used tools for such problems as designing guided missiles and analyzing the distribution network of utilities.

The digital computer operates as a counting rather than measuring device. Its principal feature is the use of electrical impulses to perform arithmetical operations at speeds far beyond human capabilities. The electronic computer combines several data-processing operations into one machine. The entire processing of data goes on automatically, without the manual transferring of data from one step to the next as in mechanical systems.

The high computing speeds and reliability of these machines have steadily been improved. According to the Stanford Research Institute, "figures can be handled electronically at more than 1,000 times the speed of conventional punched card equipment." 8 A machine introduced in 1953 had 25 to 35 times the speed and capacity of the first large electronic computer produced by the same company in 1948.

Two types of digital computers may also be distinguished: the special purpose and general
purpose. Special purpose computers consist of specially designed parts to perform a few fixed sequences of computing operations or programs. A large mail order firm, for example, uses a memory unit and computer to keep an up-to-the-minute inventory analysis, item by item, of 12,000 different lines. An airline employs a similar high-speed computer to handle seat reservations. Special purpose, high-speed computers are also used in air traffic control and to analyze unit demand for retail merchandise in department stores.

The general purpose computer can be used for a variety of operations not having a fixed built-in program. Instead, a new program must be developed in each application. Programming for the computer, however, involves time-consuming analysis of procedures and operations which is not subject to mechanization.

The first digital computers were developed for scientific and engineering research purposes in connection with military defense. Their ability to telescope tremendous series of computations taking months into a few hours' work has been of incalculable value in preparing ballistic tables, evaluating airplane designs, and solving problems in nuclear physics. New pathways in scientific research are open because mathematical computations for weather forecasts, interindustry economics, astronomy, seasonal trend analysis-too costly with conventional methods-are now practical.

The marketing and rental in 1953 of high-speed electronic machines specially designed for processing business data probably marked the beginning of a new era in office work. According to a survey made early in 1955, about a dozen large companies have installed data-processing machines and nearly 30 others may have machines installed in the near future. ${ }^{9}$

Although many firms eventually expect to use the computers to obtain new information for management, the first applications are being made on tasks now being performed by slower methods. A large appliance company uses its electronic computer for preparing its payroll, scheduling materials, and controlling inventories. A utility prepares customers' bills. Insurance companies plan to use high-speed computers on premium billing, premium accounting, and actuarial computations.

The possibilities of savings in routine clerical labor appear to be substantial. A chemical company recently reports that its computer produces a
financial report in 2 hours that formerly took 320 man-hours and prepares 1,200 manufacturing cost reports in 12 machine-hours, in contrast to the 1,800 man-hours formerly required. Although these comparative figures take no account of the long period needed for developing the complex instructions for the machine, there is little doubt that the electronic data-processing machine is a highly efficient tool for handling the ever increasing volume of information needed in business enterprises for making decisions.

Outlook

Although the general direction of technological change is toward greater automaticity, the actual time it will take each industry to adopt automatic equipment now commercially available depends on a wide variety of economic factors and hence is difficult to forecast. Piecemeal progress, with some industries and processes affected more than others, seems more probable than any abrupt changeover in a short period.

Fragmentary data on past experience with mechanization illustrate the gradualness of technological change. "One of the interesting results," Carroll D. Wright observed in his 1898 study of Hand and Machine Labor, ${ }^{10}$ after several decades of mechanization, "is the extent of the hand method of production, even at the present time." W. Duane Evans estimated that hand methods were still used in 1936 in making about one-quarter of all long filler cigars, 19 years after more economical machine methods had been introduced. ${ }^{11}$ Boris Stern, on the other hand, in his study of the glass industry found that in 8 years a machine for making glass tubing had entirely displaced the old hand process in the industry. ${ }^{12}$ Other studies revealed a similar pattern of gradual change, with variations from industry to industry, depending on economic circumstances.

So far as the immediate future is concerned, a brief review of some general factors accelerating and retarding the spread of technological improve-

[^5]ments suggests the likelihood of a fairly steady growth but no economywide revolution. A significant accelerating factor is the increasing supply of new equipment. A McGraw-Hill survey made in $1955{ }^{13}$ found that firms in the electricalmachinery industry (covering producers of automatic control equipment as well as others) expect to sell about 29 percent more in 1958 than in 1954. Competition and large research and development expenditures by this industry group promise a continued flow of improvements.

Marketing by producing firms also appears to be vigorous. Easier methods of financing the purchase of machine tools, such as tool lease and installment arrangements, are offered to purchasers as incentives to modernization. Four technical journals, devoted exclusively to the field of automatic controls, are now being published. ${ }^{14}$ New equipment is described in trade journals and discussed before engineering societies, and management and trade associations.

The demand for laborsaving equipment in the near future, on the basis of overall figures on capital investment, is also likely to be fairly strong. According to the survey of business expectations by the United States Department of Commerce and the Securities and Exchange Commission, investment in new plant and equipment in 1955 by all industry may be close to the 1953 record level. ${ }^{15}$ With competition and high operating costs spurring the search for cost-cutting equipment, many firms plan to spend larger amounts on modernization rather than on expansion.

The continued expansion of the chemicalprocessing and petroleum-refining industries may mean greater demand for automatic control, particularly in new plants. Progress may also occur in insurance and banking, Federal tax collection, patent processing, and postal service, where special committees are now studying ways of introducing electronic data-processing machines. In several large metalworking companies, separate auto-

[^6]mation departments have been charged to find new ways and areas for using laborsaving equipment.

Certain economic factors tend to retard the development of automation. Because of the high cost of the new types of equipment, automation is generally limited to plants producing a large volume of standardized goods of fairly stable design. Most goods therefore may continue to be produced on a mechanized but job-lot basis. Because of the complexities, progress toward greater mechanization of assembly work is likely to be slower than in fabricating.

Another obstacle to rapid diffusion of automatic technology is the long time needed for designing and custom building the complex specialized machinery. A large scale electronic scientific computer, for example, took about 5 years of research and development and involved the production and assembly of thousands of components from nearly 300 manufacturers. A large insurance company required 2 years for analyzing its methods in order to install a data-processing machine.

Finally, internal factors within the modern corporation often create delays in introducing largescale changes. ${ }^{16}$ The purchase of costly automatic equipment involves long-range planning and complex decisions in the fields of corporate finance, marketing, and personnel. Conflicting interests of stockholders, executives, supervisors, and workers need to be resolved. Installing a high-speed electronic data-processing machine in a large company, for example, means changes in the duties and status of certain executives as well as workers, and their resistance to change may be an obstacle. In brief, the elusive and sensitive human factor may prove one of the important brakes on the rapid diffusion of the new technology.

Some Broad Implications

To clarify the broad implications of the growth of automatic technology, it is useful to distinguish between man's role as a consumer and as a producer. Concerning his welfare as a consumer, it is clear that the per capita amount of goods and services consumed in any economy basically depends on the percent of the population em-
ployed, average hours worked, and the output per man-hour. An increase in the annual rate of productivity growth of the private nonfarm economy from 2 percent, the long-term rate, to 3 percent would mean an additional $\$ 54$ billion (based on constant prices) in national output in 1965 , or on a per capita basis, $\$ 287$ more. This gain in material wealth would also allow for some increase in leisure through shorter workweeks and longer vacations. In short, increased productivity as a result of technological change may be the source of higher living standards in the United States.

The implications of the new technology for man as a producer are more difficult to assess. Broadly considered, one probable effect will be to intensify the shifting of productive resources of workers, management, and capital among various activities of the economy. In this process of change, some individual workers inevitably suffer losses as a result of displacement; others are benefited, as a result of up-grading. Employees in firms that do not adopt advanced techniques of production may become unemployed. Firms that are able to adopt cost-cutting equipment may gain a significant competitive advantage and expand their employment. The total extent of displacement as a result of technological changes will always be difficult to disentangle from other factors that cause economic unbalance.

The record of the past provides considerable support for believing that technological progress may be accompanied by high levels of employment. Carroll D. Wright in the 1890's used the phrase "expansion of labor" to describe the rise and growth of new industries providing new opportunities to offset displacement in older and declining industries. The shift of home activties to the factory, the growth of urban transportation and utilities, and the expansion of distributive, service, and government activities opened new opportunities in the past. In industries in an early stage of growth, such as rayon, autos, and chemicals in the 1920's, Dr. Solomon Fabricant found that productivity and employment both rose rapidly, the gain in total output offsetting the reduction in unit man-hour requirements. ${ }^{17}$

In the future, some accommodation to job displacement, as automatic technology is gradually
introduced, may come from a shorter workweek and new sources of industrial expansion such as atomic energy, aircraft, instruments, electronics, and other industries producing equipment for the new technology; industries catering to the leisure needs (travel, home repair equipment, and recreation); new products from industrial research and development; and public programs for highway building and school construction. If the progress of automatic technology is gradual, these industries may provide a source of new opportunities. Public and private policies that contribute to growth of the economy and to high levels of employment will be a major contribution in meeting the problems of job losses occasioned by greater use of laborsaving equipment.

The need for adequate measures to ease the hardships of displaced individuals, to train workers with new skills, and to adjust conflicting interests on the job are likely to be important issues of the transition. These problems were discussed by Professors Baldwin and Shultz in the February 1955 Monthly Labor Review. They constitute a new framework for all groups having an interest in the labor market. Labor, management, and government agencies, responsible for education, vocational training, employment services, unemployment insurance, apprenticeship, wages and hours, and industrial relations, therefore, are likely to be increasingly concerned with the problems created by technological change.

One conclusion that follows is the ever increasing importance of information about the human aspects of technological change. Carroll D. Wright, was aware of the pervasive influence of technology on labor problems when he initiated his pioneering studies of mechanization at the end of the last century. Today a sound basis for policies and programs for easing the transition to the new technology requires a comprehensive system of timely information about such subjects as productivity, employment, unemployment, labor turnover, occupations, consumption, production, and leisure. With broader understanding, automatic technology and greater productivity become the basis for enriching life in a free society.

[^7]
Unemployment in New England Textile Communities

William H. Miernyk*

Editor's Note.-This article reviews the employment problems faced by the unemployed textile worker. It is excerpted from a paper presented at the spring meeting of the Industrial Relations Research Association in Philadelphia, April 29, 1955. Suspension marks to denote unused portions of text have been omitted in the interest of easier reading.

New England textile employment has been declining since the early 1920's. Except during World War II and the immediate postwar years, the decline has been almost continuous. Competition from the low-wage South, technological change, the loss of export markets, increasing imports, the changing pattern of consumer preferences, and interfiber competition have drastically reduced the number of textile jobs in New England. ${ }^{1}$ Some of these factors have also contributed to the general decline of textile employment in the Nation as a whole. ${ }^{2}$

The loss of textile jobs has been primarily responsible for the decline in New England manufacturing employment in recent years. Manufacturing employment in the region decreased by 141,000 workers, or 9 percent, between the first quarter of 1947 and the first quarter of 1955 (see table). During the same period, 129,000 textile jobs were lost, accounting for 91.5 percent of the net decline in manufacturing employment.

Employment in other industries increased. The greatest gains were made by the electrical machinery, transportation equipment, apparel, and miscellaneous manufacturing industries. But

Employment in New England by industry group, first quarter 1947 and first quarter 1955

Industry group	Employment (in thousands)		Change from first quarter 1947 to first quarter 1955	
	$\begin{aligned} & \text { First } \\ & \text { quarter } \\ & 1947 \end{aligned}$	$\begin{aligned} & \text { First } \\ & \text { quarter } \\ & 1955 \end{aligned}$	Num- ber (in thousands)	Percent
Nonagricultural, total	3,273. 0	3,377. 5	+104.5	+3.2
Manufacturing, tot	1, 566. 2	1, 425.3	-140.9	-9.0
	706.3	1,680.1	-26.2	-3.7
Ordnance and accessories Furniture and fixtures	14.2 18.2	15.7 19.7	+1.5 +1.5	+10.6 +8.2
Furniture and fixtures Electrical machinery and	18.2	19.7	+1.5	+8.2
equipment.--.-.-.-.----------	114.1	126.6	$+12.5$	$+11.0$
Transportation equipment-	58.3	92.2	+33.9	+58.1
instruments and related products.	41.2	41.3	+. 1	+. 2
Lumber and wood products.	52.5	40.4	-12.1	-23.0
Stone, clay, and glass products	21.8	20.8	-1.0	-5.6
Primary metal industries.-..--	66.6	56.3	-10.3	-15.5
Fabricated metal products-	116.3	101.2	-15.1	-13.0
Machinery (except electrical).-	202. 3	165.8	-37.5	-18.0
Nondurable goods .-.-.--..---------	859.9	745.2	-114.7	-13.3
Apparel and other finished textile products	78.0	87.5	$+9.5$	12.3 +12.2
Printing, publishing, and allied industries	54.7	58.8	+4.1	$+7.5$
Leather and leather products .--	115.5	115.7	+.2	+. 2
Miscellaneous manufacturing industries.	92.5	102.8	+10.3	+11.1
Food and kindred products..--	67.5	62.5	-3.2	-4.9
Textile-mill products....-.....-	301.3	172.4	-128.9	-42.8
Paper and allied products--	72.6	71.7	-. 9	-1.2
Chemicals and allied products.-	29.1	28.7	$-.4$	-1.4
Rubber products.-.-.-....-.-.--	50.7	45.3	-5.4	-10.7
Nonmanufacturing, total	1,706. 7	1,952.2	$+245.5$	+14.4
Contract construction.	103.7	128.3	+24.6	+23.7
Wholesale and retail trade.	595. 9	653.6	+57.7	+9.7
Finance, insurance, and real estate.-	126. 7	158. 1	+31.4	+24.8
Service and miscellaneous	327.2	378.2	$+51.0$	$+15.6$
Government	327.3	422.2	+94.9	$+29.0$
Transportation and public utilities.	225.9	211.8	-14.1	-6.2

Note: Individual items may not add to totals because of rounding. Source: U. S. Department of Labor, Bureau of Labor Statistics.
these gains failed by a considerable margin to offset the loss of textile jobs. Total nonagricultural employment, however, increased during the 8 -year period because of an increase in the number of nonmanufacturing jobs. ${ }^{3}$

[^8]Because of the rising employment in other manufacturing industries, many New Englanders feel that the displaced textile workers are being absorbed by the region's growth industries, such as electronics. Others have assumed that the workers are finding jobs in the expanding trade and service occupations. A number of recent studies of the experience of displaced textile workers provide us with data to test the validity of these assumptions.

Surveys of Displaced Workers

Professors Myers and Shultz of the Massachusetts Institute of Technology studied the experience of a sample of workers who lost their jobs through the liquidation of a cotton-textile mill in New Hampshire in 1948. They found that a small group of younger workers, who quit when the liquidation was announced, were more successful in finding jobs than those who waited to be laid off. Eighty-six percent of the former were employed when interviewed, but only 35 percent of the latter. There was relatively little movement out of manufacturing employment, and among the workers who found new jobs, there was considerable downgrading in skill classification and earnings. Fortythree percent of the employed quit-group and 68 percent of the employed workers in the layoffgroup found new textile jobs. ${ }^{4}$

The Massachusetts Division of Employment Security studied the experience of a sample of 416 millworkers who were displaced by the closing of a worsted mill in 1952. Most of the workers had been laid off at least 18 months by the time of the survey. About two-thirds of the sample workers were employed, 20 percent were unemployed, and 15 percent were no longer in the labor force. One-third of the employed were still attached to the textile industry, although they had had to move or commute to other textile communities. As in the previous study, there was a downgrading in skills, and 69 percent of the employed workers were earning less than they had in the liquidated mill. ${ }^{5}$

The most recent study of the postliquidation employment experience of textile workers was made by the Bureau of Business and Economic Research at Northeastern University. This survey included 6 case studies- 5 in Massachusetts and 1 in Rhode Island-covering more than 1,700 workers over the period from 1951 to the middle
of 1954. About 45 percent of the sample workers were employed at the time of the survey, 12 percent had withdrawn from the labor force, and 43 percent were seeking jobs. Seventy-five percent of the employed were in manufacturing and 36 percent were still in textiles. The electrical machinery industry employed 7 percent and apparel 6 percent. Employment in both of these industries was expanding during the period covered by this survey. Sixty-four percent of the employed workers reported lower earnings. Again, a shift to lower skill classifications was found and many of the workers claimed a loss of job satisfaction. ${ }^{6}$

In another instance, a New Hampshire woolen mill, which was liquidated during the last quarter of 1948 , displaced 175 workers. It was the only manufacturing establishment of any size in the community. In 1951, an attempt was made to contact all of the displaced workers through their records in the New Hampshire Division of Employment Security. ${ }^{7}$ A followup survey of a sample of workers remaining in the community was made in the summer of 1953. (This is the only textile-mill inquiry known to the writer where a repeat survey was conducted some time after the initial study was completed.)

After the mill closed, the building was occupied by a firm which manufactures industrial leather belting and packing. At the time of the first survey, 69 percent of the original group were known to have found employment. Of these, 43 percent were at work in the leather products establishment; 26 percent had found other textile jobs which involved moving or commuting to other textile communities. Altogether, 82 percent of the employed were still in manufacturing.

Five years after the liquidation, only 13 percent of the sample workers were still in textiles, and the proportion employed by the leather products establishment had increased to 47 percent. During the intervening years there had been a sharp decline in textile employment in New Hampshire, as many small woolen mills throughout the State

[^9]were liquidated. ${ }^{8}$ After the mill closed some of the younger, single workers left the community. Fifty-eight percent of the workers in the original mill were married at the time, and nearly half were under 45 . But of the sample workers remaining in the community 5 years later, 81 percent were married and 66 percent were past the age of 45 .

In general, the displaced workers have exhibited a relatively low degree of geographical and occupational mobility. To a large extent this is a function of age rather than occupational attachment. Younger workers, particularly those without family responsibilities, will move elsewhere to seek employment, but the older worker is more reluctant to move. Younger workers, too, are better able to find employment in nontextile manufacturing industries. Many of the older workers who have found nonmanufacturing jobs are doing unskilled and relatively low-paying work as janitors, porters, hospital attendants, and so forth.

The continued loss of textile jobs and the relative immobility of the displaced workers have produced a high level of chronic unemployment in many New England textile towns since the end of World War II. A number have been classified as areas of "very substantial labor surplus" (12 percent or more of the local labor force unemployed) even during periods of high level employment in the Nation as a whole. In 1954, for example, the four textile towns of Lawrence, Lowell, Fall River, and New Bedford accounted for 9.2 percent of nonagricultural employment in Massachusetts, but 25 percent of the State's unemployed. In the Providence labor market area, monthly unemployment averaged 43,000 throughout 1954. There was one unemployed worker for each 6.5 workers employed in nonagricultural occupations. ${ }^{9}$
Depressed conditions in the industry have exerted downward pressure on textile wages.

[^10]Following arbitrated wage cuts in Maine and in the Fall River-New Bedford area in 1952, the unions voluntarily accepted wage reductions throughout the cotton and rayon industry. These came at a time of rising wages in the more prosperous durable-goods industries. This year the workers went on strike against some mills which proposed a further reduction of 10 cents an hour in wages and fringe benefits.

Remedies

What has been the reaction in the textile towns to the adversity they have experienced since the end of World War II? Local industrial development commissions have been formed to create new jobs for the displaced workers. They have relied heavily upon promotional activities, however, and the development of industrial tracts with a few small modern factory buildings offered as inducements to manufacturers to locate in these areas. But, in general, they have assumed that the labor market will take care of itself. They evidently feel that if new industry can be attracted to the textile towns, the displaced workers will find jobs in the new factories.

To some extent this has been true. But the growth industries have, in the main, offered jobs to new entrants into the labor market or to younger workers in general. Many of the displaced textile workers are past the age of 45 , however, and they find their age a barrier to further factory employment. ${ }^{10}$ Finally, much of the growth of new industries has taken place outside the textile towns.

The most recent Economic Report of the President recommended that, "for the time being, at least, it is . . . desirable to continue the policy of granting special tax amortization benefits for new defense facilities located in surplus labor areas and of placing Government contracts as far as feasible in these areas." ${ }^{11}$ Unfortunately, however, neither accelerated tax amortization nor special Government contracts have reduced the level of unemployment in the distressed textile communities of New England. ${ }^{12}$ In 4 of the 6 communities included in the survey conducted by the writer last year, unemployment was higher at the beginning of 1955 than it was at the beginning of 1954. In only one of the communities, a nontextile area in which the sole textile mill had
been liquidated about a year before the survey, was there a substantial drop in unemployment. This community, however, has not been among the surplus labor areas in recent years. This was recognized in the President's report which stated that "these programs can make only a limited contribution to relieving 'spot' unemployment . . ." It was the belief "that a large part of the adjustment of depressed areas to new economic conditions both can and should be carried out by the local citizens themselves." ${ }^{13}$ It concluded that the major contribution which the Federal Government can make is to pursue policies that will promise a high and stable level of employment in the Nation as a whole.
Undoubtedly, a high level of employment in the Nation is a prerequisite to a successful attack on localized unemployment. Nonetheless, judging by the experience to date, it is doubtful that the distressed communities can solve their unemployment problems entirely on their own. For one thing, the surplus labor areas of New England compete with many other communities throughout the Nation as eager as they to attract new manufacturing establishments. Secondly, they have done little to increase the occupational or geographical mobility of the displaced textile workers.

Normal turnover in those mills which continue to operate in the region has provided jobs for many workers displaced by the liquidation of other mills. However, take a community such as Lawrence, Mass., where textile employment declined from a peak of more than 25,000 workers in the last quarter of 1950 to fewer than 5,000 during the first quarter of 1955 . The only answer is to help the displaced workers find nontextile jobs locally or aid them in moving to other areas where employment is available. ${ }^{14}$

The Textile Workers Union of America (CIO) has been sharply critical of the Federal Government for failing to take specific measures to deal with the textile problem. They have suggested Government purchases of American textiles for shipment to needy peoples abroad and have urged Congress to make a full-scale investigation of the problems facing the textile industries. Union
spokesmen also have criticized the public relations approach adopted by many of the depressed communities. These communities, union leaders say, "offer inducements to the locating firms, build new plants, grant tax exemptions; protect the firms. But don't insist upon aid or special provisions for the unemployed and the distressed. Such petitions might discourage the potential new firms. A conspiracy of silence envelops the areas only to be broken by the facts of reality and the despair of the people. ${ }^{115}$

A program to encourage mobility should provide for retraining and assistance in job placement outside the depressed communities. This is not a particularly novel suggestion. Such a program would require extremely careful planning. There would be little point in retraining textile workers for nonexistent jobs. But a careful inventory of job vacancies in the Nation, and an analysis of the changing occupational structure of American industry, might provide a clue to the type of retraining necessary to bring vacant jobs and idle workers together. Also, it might be necessary to provide financial assistance to those otherwise unable to relocate in other communities.

New England has had a decade of experience with community efforts to solve local unemployment problems. While there have been some individual successes, the overall results have not been impressive. Efforts to provide employment by attracting industry to surplus labor areas are laudable and should be encouraged, but we should also recognize the limitations of this approach. There is no reason to believe that a balanced labor supply can be achieved in every community by bringing jobs to the workers. Unemployed workers in surplus labor areas should also be encouraged, and assisted if necessary, to move to other areas where job opportunities are more plentiful.

[^11]
Union-Security Provisions in Agreements, 1954

Rose Theodore*

Federal labor legislation since 1935 has safeguarded the right of a majority of the employees in a given unit to choose representatives for collective bargaining purposes who would speak for all employees. Through collective bargaining union members have traditionally sought more specific guarantees of the status of their unions by the negotiation of clauses requiring that all employees should be or become union members. Federal and some State statutes currently in effect, however, restrict the degree to which union membership may be established by employers and unions as a condition of employment.

The union-shop clause usually requires employees already on the payroll to become union members and new employees to join within a specified time after hiring. It is the principal type of union-security provision now found in labor-management contracts, according to an analysis made by the Bureau of Labor Statistics of 1,716 collective bargaining agreements in effect during all or part of 1954. Nearly two-thirds contained union-shop clauses. ${ }^{1}$ Of the 7,405,000 workers covered by the agreements studied, 64 percent were employed under union-shop provisions.

Maintenance-of-membership clauses, which do not require employees to join the union but to maintain membership once acquired, appeared in 14 percent of the agreements. The remainder of the agreements studied (21 percent) contained sole-bargaining clauses which recognize the union as the exclusive bargaining agent, but do not specify membership requirements. In the South, where the union-shop and maintenance-of-membership provisions are prohibited in a number of

States under so-called "right to work" laws, union status in two-thirds of the contracts examined was limited to sole-bargaining clauses.

Three-fourths of the agreements had checkoff provisions under which employers agreed to deduct union dues from employees' pay for transfer to the union.

Most of the agreements analyzed for this study covered 1,000 or more workers. ${ }^{2}$ No attempt was made to balance the distribution of agreements studied between those affected by the unionsecurity regulations of the Labor Management Relations (Taft-Hartley) Act of 1947 (LMRA) and those not covered by that act. The act applies to establishments engaged in industries affecting interstate commerce, excepting railroads and airlines. ${ }^{3}$

A comparison of results of the present study with the Bureau's 1952 report ${ }^{4}$ reveals little change in the prevalence of the union shop. To some extent, this may be a reflection of the increased use of long-term agreements in recent years, which tended to stabilize certain aspects of collective bargaining.
Since 1952, 5 additional States have adopted legislation outlawing union-security provisions, ${ }^{5}$ bringing the total with such laws to 18 as of March 1955. However, passage of these five new statutes had little effect on the results of the present study, since agreements in these States represented a relatively small proportion of the agreements studied. Moreover, enactment of the State laws did not affect agreements already in existence.

[^12]
The Union Shop

When an employer negotiates a union-shop provision, he agrees to require, as one of the conditions of employment, that all, or nearly all, employees must join the union within a specified time and must remain members in good standing. ${ }^{6}$ The development of harmonious relationships between management and labor is often advanced as one of the benefits to be gained from such arrangements. One contract phrased this attitude as follows:
(a) Both the company and the union feel that the greatest amount of harmony will exist, that better labor relations will prevail, and that employee interests will be more adequately represented and better served if all eligible employees become members of the union.
(b) Accordingly it is agreed that all eligible employees should within 30 days from their hiring date become and remain members of the union in good standing . . .

Types of Provisions. Provisions for a union shop were found in 1,122 or nearly two-thirds of the 1,716 agreements examined. (See tables 1 and 2.) A similar proportion of the workers were covered by the union-shop provisions, which were of several types. The type most common (60 percent of the union-shop agreements) required that all present employees be or become union members within a specified time ${ }^{7}$ and that all newly hired employees join within a specified time after starting work. Under such agreements there is no limitation on the employer in the selection of new workers, either in terms of hiring only union members or of giving preference or consideration to union members. For example, one company guaranteed the union that it would require:
(1) All present employees who are members of the union, as a condition of continued employment, to maintain their membership in the union during the life of this agreement through payments to the union of uniformly required initiation fees and dues, and (2) all other present and future employees who, during the life of this agreement, are members of the bargaining unit but who are not members of the union, as a condition of continued employment, to join the union 30 days after the date of their employment or the effective date of this agreement, whichever is later, and thereafter maintain their membership in the union through payments to the union of uniformly required initiation fees and dues.

Exemption from the membership requirement was granted to certain groups in the bargaining
unit (commonly designated as a modified union shop) in 204 , or 18 percent, of the 1,122 contracts. In most instances, employees who were not union members when the agreements became effective were not required to join the union. A few contracts exempted only employees with relatively long service; a few others required a specific proportion of new employees (e. g., 9 out of every 10) to become union members within a specified time.

An escape period after 1 year, during which new employees were permitted to withdraw from the union, was provided in 42 agreements. These covered about one-half of the workers under all modified union-shop contracts, including a large segment of the automobile industry. The following illustrates a modified union-shop clause with an escape period:
(4a) Any employee who is a member of the union in good standing on the effective date of this agreement shall, as a condition of employment, maintain his membership in the union to the extent of paying membership dues and international and local union general assessments uniformly levied against all union members . . .
(4b) Any employee who on the effective date of this agreement is not a member of the union shall not be required to become a member of the union as a condition of continued employment. Any such employee, however, who during the life of this agreement joins the union must maintain his membership thereafter as provided in paragraph (4a).
(4c) Any employee hired on or after the effective date of this agreement shall become a member of the union upon acquiring seniority and he shall, as a condition of employment, maintain his union membership for 1 year . . . subject to the following:
(1) If not more than 20 days and not less than 10 days immediately preceding the first anniversary date of his acquisition of seniority such employee notifies the corporation and the union in writing that he has resigned from union membership . . . [he] shall not be obligated thereafter to maintain his membership in the union . .
(2) In case no such notice is given, such employee shall maintain his membership in the Union as a condition of employment during the life of this agreement . . .

In 30 companywide or association agreements which covered some plants in States banning

[^13]union-shop arrangements, provision was made for a union shop but workers in these States were exempted.

The provisions of sections 1 and 2 of this article [union shopl shall be deemed to be of no force and effect in any State to the extent to which the making or enforcement of such provisions is contrary to statute or constitutional amendment of such State; provided, however, that whereever any such statute or constitutional amendment is declared by the court of last resort having jurisdiction of such questions to be invalid, the provisions of sections 1 and 2 of this article immediately thereupon will be deemed to cover the employees directly affected by such declaration of invalidity; and provided, further, that in any State
where the making or enforcement of such provisions is lawful only after compliance with certain conditions precedent, sections 1 and 2 of this article shall be deemed to take effect as to the employees concerned immediately after such conditions have been complied with.

Union-shop provisions in 69 agreements stipulated some degree of preference in hiring for union members. Usually the union was permitted to refer union members for job vacancies who would be considered with other applicants on the basis of their qualifications.

When the employer requires employees, the employer agrees to notify the union of the number of employees and

Table 1.-Union-security and checkoff provisions in collective bargaining agreements, by industry and union affiliation, 1954

classifications required. When the Union is requested to furnish employees, the union agrees to supply the employer with the most competent employees available.

A smaller group of agreements (47) required that new employees have previous training or employment in the industry. Such clauses were generally found in situations in which employment tended to be intermittent. Against a background of extensive unionization prevailing for a long period of time, such clauses may indirectly provide a preference in hiring to union members. Under these agreements, any nonmembers hired were required to join within a specified time. An illustrative clause from a contract in the construction industry states:
. . . the parties hereto mutually agree that there shall be no limitation upon the individual employer as to whom he shall employ or discharge, except that in the hiring of employees covered by this agreement preference shall be given by the employer and the individual employers covered hereby to persons who have been employed in northern California between May 1, 1947, and April 30, 1953, on any work covered by the . . . master agreements . . .

The closed shop, which is the strongest form of union security agreed to by employers in collective bargaining, usually requires that only union members may be hired; however, if no union members are available, other workers may be taken on provided that they join the union prior to or shortly after starting work. The closed shop is forbidden in industries subject to the LMRA, but
it is still found in establishments not covered by the act or by State bans. In the present study, 87 agreements, concentrated largely in local trade and service industries, contained closed-shop provisions. These accounted for less than 8 percent of the union-shop agreements.
(a) All employees, steady or extra, covered by this agreement, shall be hired only through the office of that union having jurisdiction over the particular employee. Such employees shall be and remain in good standing in the union and must obtain a work slip from the union before going to work. If within a reasonable time, under the circumstances, the union is unable to supply satisfactory help to the employer upon request, then the employer may hire outside of the union, provided such employee so hired shall obtain a work slip from the union before going to work except in cases of emergency, then the employee so hired shall obtain a work slip within 72 hours, and further provided that such employee makes application to become a member of the union within 15 days after his employment and completes the application within 30 days from date of employment.
(b) In the event an employee neglects, fails, or refuses to comply with the provisions of section (a), the employer agrees upon demand to remove any employee from the job who is on the job in violation of section (a).

Legislation Affecting the Union Shop. Unionstatus provisions are negotiated within a framework of Federal and State legislation and are affected by decisions of the National Labor Relations Board (NLRB) and court rulings. ${ }^{8}$ The

[^14]Table 2.-Types of union-shop provisions in collective bargaining agreements, 1954

Type of union-shop provision	Agreements			Workers covered		
	Number	Percent of total studied	Percent of unionshop agreements	Number (thou- sands)	Percent of all workers covered in agreements studied	Percent of workers under union-shop agreements
Total studied.	1,716	100.0		7, 404.6	100.0	
Union-shop agreements ${ }^{1}$	1,122	65.4	100.0	4,752.8	64.2	100.0
Employees must be union members before date of employment ${ }^{2}$	87	5.1	7.7	338.3	4.8	7.4
Previous training or employment in industry required ${ }^{3}$ ald	47	2.7	4.2	233.0	2.9	4.6
All employees required to join union within a specified time, and union members given some degree of consideration in hiring	69	4.0 39.9	6.1	347.0 $2,285.3$	4.7 30.9	7.3 48.1
All employees required to join union within a specified time....................-...-.-...-	685	39.9	61.1	2,285. 3	30.9	48.1
Interstate agreements covering some States which ban union shop; all employees required to join within a specified time except in States where provision is illegal	30	1.7	2.7	420.1	5.7	8.8
Modified union shop (certain groups in bargaining unit exempted from membership requirements)	162	9.5	14.5	580.2	7.8	12.2
Modified union shop, and withdrawal of new employees permitted after 1 year	42	2.4	3.7	548.8	7.4	11.5

[^15]of the prevalence of the closed shop in major agreements, they are not necessarily representative of all agreements, because of the underrepresentation in this study of agreements for small establishments.
${ }^{3}$ Prevalence of unionization in the industry would grant indirect preference to union members.

Note.-Bocause of rounding, totals in columns may not equal the sum of components.

Labor Management Relations Act of 1947, applicable to industries affecting interstate commerce, bans the closed shop but permits union-shop and maintenance-of-membership provisions. ${ }^{9}$ The following excerpt from the act relates to union security:
Section 8 (a) It shall be an unfair labor practice for an employer . . . by discrimination in regard to hire or tenure of employment or any term or condition of employment to encourage or discourage membership in any labor organization: Provided, That nothing in this act, or in any other statute of the United States, shall preclude an employer from making an agreement with a labor organization . . . to require as a condition of employment membership therein on or after the thirtieth day following the beginning of such employment or the effective date of such agreement, whichever is the later.

State legislation prohibiting the requirement of union membership as a condition of employment, thereby outlawing the negotiation of closed- and union-shops and maintenance-of-membership provisions, is given precedence over provisions of the LMRA under section 14 (b) of the act, which reads:

Nothing in this act shall be construed as authorizing the execution or application of agreements requiring membership in a labor organization as a condition of employment in any State or Territory in which such execution or application is prohibited by State or Territorial law.
By March 1955, such legislation was in effect in 18 States. ${ }^{10}$ Pertinent excerpts from Utah's Right to Work Law, enacted in February 1955, follow:

Section 8. No employer shall require any person to become or remain a member of any labor union, labor organization or any other type of association as a condition of employment or continuation of employment by such employer.

Section 10. No employer shall require any person to pay any dues, fees, or other charges of any kind to any labor union, labor organization, or any other type of association as a condition of employment or continuation of employment.

Section 15. The provisions of this act shall not apply to any lawful contract in force on the effective date hereof but they shall apply in all respects to contracts entered into thereafter and to any renewal or extension of any existing contract.

[^16]Section 16. Nothing in this act shall be construed to deny the right of employees to bargain collectively with their employer by and through labor unions, labor organizations, or any other type of associations.

Laws which otherwise regulate union security are in effect in four States. Colorado, Kansas, and Wisconsin ban union membership as a condition of employment unless an election has been held and a specified percentage of the employees have approved the provision. Massachusetts permits discharge of an employee for nonmembership in a union, under an agreement requiring union membership as a condition of employment, only if membership is denied because the employee does not qualify occupationally or he has violated union discipline.

Prevalence. All of the major agreements in the apparel industry group provided for the union shop; none of the agreements for the communications industry had such a proviso (table 1). On the whole, union-shop provisions were more prevalent in nonmanufacturing than in manufacturing, despite their absence in the communications industry.

Union-shop provisions were found in over threefourths of the agreements signed by unions affiliated with the AFL; in three-fifths of the agreements of CIO affiliates; and in nearly two-fifths of the agreements of unaffiliated or independent unions (table 1).

The ranking of regions with respect to the prevalence of union-shop provisions was substantially similar to that found in 1950-51. ${ }^{11}$ The Pacific region (California, Oregon, and Washington) continued to account for the highest proportion of union-shop contracts. In this area, 78 percent of the contracts studied provided for a union shop, in contrast to 16 percent in the West South Central States (Arkansas, Louisiana, Oklahoma, and Texas). (See table 3.)

The overall impact exerted by agreements in the 18 States with "right to work" laws on the Bureau's findings was relatively slight since they accounted for a little less than 10 percent of the 1,716 agreements studied and approximately 5 percent of the workers covered, exclusive of workers in those States covered by interregional union agreements. Moreover, the five statutes most recently enacted did not apply to agreements already in effect.

Table 3.-Union security and checkoff provisions in collective bargaining agreements, by region, 1954

${ }^{1}$ Regions referred to include the following States: New England-Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont; Middle Atlantic-New Jersey, New York, and Pennsylvania; East North Middle Atlantic-New Jersey, New York, and Pennsylvania; East North Central-Illinois, Indiana, Michigan, Ohio, and Wisconsin; West North Central-Iowa, Kansas, Minnesota, Missouri, Nebraska, North Dakota, and South Dakota; South Attantic-Delaware, District of Columbia, Florida Georgia, Maryland, North Carolina, South Carolina, Virginia, and West Virginia; East South Central-Alabama, Kentucky, Mississippi, and Ten-
nessee; West South Central-Arkansas, Louisiana, Oklahoma, and Texas; Mountain-Arizona, Colorado, Idaho, Montana, Nevada, New Mexico, Utah, and Wyoming; Pacific-California, Oregon, and Washington
${ }_{2}$ Each of these agreements covers two or more plants located in different regions.
Note.-Because of rounding, totals in columns may not equal the sum of components.

The most significant impact of the LMRA of 1947 on union-security provisions occurred during the years immediately after its passage, when union-shop provisions replaced the closed shop as the predominant form of union security (chart 1). In 1946, the date of the last Bureau study before passage of the act, it was estimated that 33 percent of all workers under agreement were covered by closed-shop provisions and 17 percent were covered by union-shop agreements, a total of 50 percent. According to the Bureau's study of agreements effective in 1949-50, the importance of union shops and closed shops combined ${ }^{12}$ had shifted only slightly. However, less than one-tenth of the agreements in this combined group required union membership at the time of employment.

Since 1950, there has been an increase in the prevalence of union-shop contract clauses, mainly occurring prior to 1952. Between 1952 and 1954, there has been little change in the prevalence of union shops.

Maintenance of Membership

Under a maintenance-of-membership provision, the employee is not required to join the union, but if he is a member when the clause becomes effective or later chooses to become a member, he must thereafter maintain his membership as a condition of employment. Usually, however, such provisions
provide for an escape period immediately after signing of the agreement to permit withdrawals from the union. After this period, maintenance of membership is generally required for the duration of the contract.

All employees who, 15 days after the date of certification by the NLRB that all of the provisions of the LMRA have been complied with by the union, and that the union has beea authorized pursuant to the provisions of such act to enter into a maintenance-of-membership agreement, or who, 15 days after the date upon which it becomes legal to enter into a maintenance-of-membership agreement without such certification, are members of the union in good standing in accordance with the constitution and bylaws of the union, and all employees who thereafter become members of the union, shall as a condition of employment, remain members of the union in good standing for the duration of this agreement.

Any employee who wishes to withdraw from membership in the union during the above 15 -day period may do so by written notification by registered letter to the union.

Some contracts permit withdrawal from the union during an escape period beginning 1 year from the effective date of the contract. If the employee does not resign then, he is required to maintain his membership for the duration of the agreement.

An additional escape period immediately prior to renewal or renegotiation of the contract was also found in some of the agreements examined, as in the following:

[^17]. . . provided, however, that this provision shall not apply to any employee who, within the 15 days next preceding the end of this agreement, shall withdraw from the union.

Another variation of membership-maintenance clause, introduced in major steel agreements in 1952 and found in other industries, requires each new employee to sign an application for membership in the union, with the option of canceling the application between the 15th and 30th day of employment. If not canceled during that period, the application becomes effective and the employee is required to maintain his membership for the duration of the contract. ${ }^{13}$

1. Each employee who, on July 1, 1954, is a member of the union in good standing in accordance with its constitution and bylaws and each employee who becomes a member after that date shall, as a condition of employment, maintain his membership in the union in good standing for the duration of this agreement . . .
2. Each new employee shall sign and furnish to the company at the time of his employment an application card, in duplicate, for membership in the Union, in a form agreed to in writing by the company and the union. A copy of such card shall be furnished to the employee. Such application card shall provide that it shall not become effective until the expiration of 30 days after the date of his employment and that it shall not thereafter become effective if such employee shall mail to the company a written notice of his election not to become a member of the union, which notice shall be postmarked not less than 15 days and not more than 30 days after the date of his employment. The company shall promptly furnish to the union a copy of each such notice received by it. If such application shall become effective at the expiration of such 30 days, one signed copy of it shall then be turned over to the union. The union shall be given reasonable opportunity to inspect all such notices which shall be received by the company.

Another approach, found in a few agreements, combines membership maintenance and the agency shop. The agency shop requires all employees to pay dues but does not compel them to join the union. Thus, under provisions with such combined requirements, union members must maintain their membership and all nonmember employees must pay union dues.

Frequently, the negotiation of a maintenance-of-membership provision represents a compromise

[^18]Chart 1. Union-Security Provisions in Collective Bargaining Agreements, 1946, 1949-50, and 1954^{1}

unite states department of labor

${ }^{1}$ The 1946 estimates relate to the proportion of all workers under agreement covered by each type of union status. Closed-and union-shop clauses are not shown separately for 1949-50 and 1954. Bureau reports issued since passage of the Labor Management Relations Act have classified closed shop as a type of union shop.
${ }_{2}$ Adjusted figures, reflecting inclusion of anthracite and bituminous coalmining and Ford Motor Co. union shop agreements excluded from data in the published 1949-50 study. See footnote 1 to table 1, in Union-Security Provisions in Agreements, 1949-50, op. cit.
between the union's demand for a union-shop clause and management's objection to such a provision. During World War II, membership maintenance was granted by the National War Labor Board in a number of cases. Under such arrangements, the employee's individual choice is protected because membership is voluntary; the union's security is guaranteed to some extent because membership, once acquired, must be maintained. In comparison with the union shop, however, membership maintenance increases the union's organizing job in recruiting members and in retaining them if an escape clause is provided. As pointed out earlier, contracts requiring membership maintenance are permitted under the LMRA but are banned in 18 States.

Chart 2. Union-Security and Checkoff Provisions in

 Collective Bargaining Agreements, 1954

The prevalence of membership-maintenance clauses has declined since World War II. The Bureau estimated in 1946 that 25 percent of all workers under agreement were covered by such clauses; by contrast, 17 percent of the workers under the agreements examined in 1954 were similarly covered (chart 1). Widely used in the major steel agreements, this type of union security covered nearly three-fourths of the workers in the primary metal industries (table 1).

Sole Bargaining

All agreements, by their nature, assure solebargaining rights to the union. ${ }^{14}$ In most agreements, as already indicated, the union's status is further protected by requirements that employees acquire or retain union membership as a condition of employment. However, in 21 percent of the agreements in this study, covering 19 percent of the workers (table 1), the union had only the exclusive right to bargain for all employees in the unit, union and nonunion alike.

The company hereby recognizes the association [union] as the exclusive representative for the purposes of collective bargaining in respect to rates of pay, wages, hours of employment, and other conditions of employment of all employees in the following units

Some contracts included a statement pledging the employer to encourage union membership. Such statements, often referred to as "harmony"
clauses, were found in six of the sole-bargaining agreements examined.
The company adopts the policy of encouraging union membership for all its employees, both new and old, and will cooperate with the union in advising its employees that a contract exists between the company and the union, so that all employees (except those excepted) may be properly informed and thereby afforded a suitable opportunity to join the union within a reasonable time and to remain therein in good standing during the life of this agreement.

The company recognizes the right of the union to know of the employees newly employed or recalled to work and will furnish their names to the union.

Five sole-bargaining agreements provided some consideration in hiring to union members. A fairly recent development, the agency shop, was found in three agreements.

Under six contracts, hiring was to be done through a union hiring hall. The union hiring hall, traditionally operated prior to passage of the LMRA for the benefit of union members, is permitted now only if it functions as a nondiscriminatory "employment agency" for union and nonunion workers.

Under the terms of 36 sole-bargaining agreements in States prohibiting union-security clauses, some provision was made for union security if the law should be changed. Two general approaches were employed: (a) to incorporate a union-security clause with the proviso that it would be inoperative unless the law was changed; or (b) to provide for negotiation of a union-security provision when legally possible, as in the following examples:

It is understood that the foregoing provisions of this section [establishing a union shop] shall not be operative unless and until such times as any State or Federal laws prohibiting the operation of such a provision are either nullified or declared unconstitutional or are otherwise complied with.

It is mutually agreed that during the term of this agreement all of the employees of the company in the bargaining unit shall be eligible for membership in the association and have the right to join or not to join the association as they individually prefer.

[^19]The company and the association mutually agree to meet and renegociate as to union security if during the term of this agreement there is any change in the law, State or Federal, applicable to union-security provisions.

Agreements with sole-bargaining rights only were most prevalent in the tobacco, petroleum products, and communications industries, covering over three-fourths of the workers under the agreements for these industries studied (table 1).

In general, the agreements negotiated by independent or unaffiliated unions had a higher proportion limited to sole-bargaining provisions than those of the AFL and CIO affiliates (table 1). Sole bargaining was most common in the South Atlantic and East and West South Central regions, which included States with legislation banning union security (table 3).

The proportion of workers under sole-bargaining agreements has dropped from 25 percent, as estimated in the 1946 study, to 19 percent of the workers covered by agreements analyzed in the present study (chart 1).

Checkoff

Checkoff is a dues-collection method whereby the employer agrees to deduct from the employee's pay his union dues, and in some instances, initiation fees, fines, and assessments, for transmittal to the union at regular intervals.

The company will check off monthly dues, assessments, and initiation fees each as designated by the international secretary-treasurer of the union, as membership dues in the union, on the basis of individually signed voluntary checkoff authorization cards in forms agreed to by the company and the union. * * *

Deductions on the basis of authorization cards submitted to the company shall commence with respect to dues for the month in which the company receives such authorization card or in which such card becomes effective, whichever is later. Dues for a given month shall be deducted from the first pay closed and calculated in the succeeding month.

In cases of earnings insufficient to cover deduction of dues, the dues shall be deducted from the next pay in which there are sufficient earnings, or a double deduction may be made from the first pay of the following month, provided, however, that the accumulation of dues shall be limited to 2 months. The international secretary-treasurer of the union shall be provided with a list of those employed for whom double deduction has been made.

The union will be notified of the reason for nontransmission of dues in case of interplant transfer, layoff, discharge, resignation, leave of absence, sick leave, retire-
ment, death, insufficient earnings, or withdrawal from the union.

Unless the company is otherwise notified, the only union membership dues to be deducted for payment to the union from the pay of the employee who has furnished an authorization shall be the monthly union dues. The company will deduct initiation fees when notified . . . and assessments as designated by the international secretarytreasurer. With respect to checkoff authorization cards submitted directly to the company, the company will deduct initiation fees unless specifically requested not to do so by the international secretary-treasurer of the union after such checkoff authorization cards have become effective. The international secretary-treasurer of the union shall be provided with a list of those employees for whom initiation fees have been deducted under this paragraph.

Checkoff is permissible under the LMRA only on written authorization of the individual employee. A few of the State "right to work" laws incorporate similar checkoff regulations. Under LMRA, the employee's authorization may be irrevocable for a maximum of 1 year, or the duration of the agreement, whichever is shorter.

Almost three-fourths of the contracts studied, covering a slightly higher proportion of workers, contained checkoff provisions (table 1). Dues as

Table 4.-Checkoff provisions in collective bargaining agreements, 1954

Item	Agreements		Workers	
	Number	Percent	Number (thousands)	Percent
Total studied	1,716	100.0	7,404.6	100.0
No provision for checkoff With checkoff	441 1,275	25.7 74.3	1,, 648.6 $5,756.1$	22.3 77.7
	By type of payment ${ }^{1}$			
Dues	1, 275	74.3	5, 756.1	77.7
Initiation fees	781	45.5	4, 114. 3	55.6
Fissess..--	369 25	21.5 1.5	2, 719.7	$\begin{array}{r}36.7 \\ \hline\end{array}$
Other ${ }^{2}$	10	. 6	21.7	. 3
	Combined types of payment			
Dues only	44844836	26.1 26.1	$\begin{array}{r} 1,542.3 \\ 1,472.4 \\ 77.8 \end{array}$	$\begin{array}{r}20.8 \\ 19.9 \\ \hline\end{array}$
Dues and initiation fees				
Dues and assessments...........		2.1		1.1
Dues, initiation fees, and assessments	308	17.9	2, 571.8	34.7
Dues, initiation fees, fines, and assessments		1.5.6		.9.3
Other ${ }^{2}$	25 10		$\begin{aligned} & 70.1 \\ & 21.7 \end{aligned}$	

[^20]the sole deduction were stipulated in over onefourth of the 1,275 agreements with checkoff; dues and initiation fees in a similar proportion; dues, initiation fees, and assessments in less than onefifth (table 4).

Checkoff was more common in manufacturing than in nonmanufacturing agreements. More than four-fifths of the contracts examined in manufacturing contained such provisions, compared with approximately one-half in nonmanufacturing. Checkoff was least prevalent in the apparel, printing, construction, and hotel and restaurant industries, which have a relatively high frequency of union-shop agreements. In some industries where employment is casual or on a day-to-day basis with various employers, the difficulty in administering checkoff provisions may account for their infrequent use.

Checkoff provisions may be negotiated in connection with the union shop, membership maintenance, or sole bargaining (chart 2). Virtually all
agreements providing for membership maintenance and 88 percent of those with only solebargaining rights provided for checkoff, in contrast to 66 percent of union-shop agreements. Since all employees working under a union-shop arrangement are subject to discharge for nonpayment of dues, the checkoff in these circumstances is not essential in assuring that dues payments do not fall in arrears. However, the checkoff is a convenient method of collecting dues where large numbers of workers are employed in a single plant.

Slightly over 40 percent of the workers under agreement in 1946 were estimated by the Bureau to be covered by checkoff arrangements, compared with almost 80 percent of the workers under the 1950-51 contracts examined. The Bureau's study of agreements effective in 1952, as well as the present study, showed a slight increase since 1950-51 in the number of agreements with checkoff provisions, with virtually no change in the proportion of workers under such arrangements.

Union Conventions Scheduled for July and August, 1955

July	Name of organizution	Place
12	Insurance Workers of America, CIO	Detroit, Mich.
13	Brotherhood of Utility Workers of New England, Inc. (Ind.)	Boston, Mass.
August		
1	Independent Watchmen's Association	New York, N. Y.
8	Chemical Workers International Union, AF	St. Louis, Mo.
13	International Typographical Union, AFL	Boston, Mass.
15	Photo-Engravers' Union of North America, AFL	Montreal, Canada
15	American Federation of Teachers, AFL	Ft. Wayne, Ind.
16	National Rural Letter Carriers' Association (Ind.)	Buffalo, N. Y.
16	National Alliance of Postal Employees (Ind.)	Indianapolis, Ind.
22	International Mailers Union (Ind.)	Akron, Ohio
22	International Woodworkers of America, CIO	Milwaukee, Wis.
July	State conventions	Place
11	Washington, AFL	Bellingham
25	Oregon, AFL	Medford
August		
5	Iowa, CIO	Davenport
8	North Carolina, AFL	Asheville
8	Ohio, AFL	Toledo
9	Montana, AFL	Missoula
15	California, AFL	San Diego
15	Utah, AFL	Price
15	Wisconsin, AFL	Oshkosh
29	Indiana, AFL	Indianapolis

Summaries of Studies and Reports

Earnings in Synthetic-Textile

 Manufacturing, November 1954Production workers in synthetic-textile mills averaged $\$ 1.26$ an hour, exclusive of premium pay, in November 1954, according to a survey conducted by the Bureau of Labor Statistics. Men, accounting for 55 percent of the 88,300 workers employed in regular textile operations through the cloth room, ${ }^{1}$ averaged $\$ 1.32$, compared with $\$ 1.19$ for women workers. Average earnings in the Middle Atlantic region ${ }^{2}$ at $\$ 1.32$ were unchanged from those recorded in a similar study made in March 1952. ${ }^{3}$ Workers in the Southeast averaged 2 cents an hour more - $\$ 1.22$ in November 1954, compared with $\$ 1.20$ in March 1952-while the average for workers in New England declined 4 cents during that period.

Fewer than 3 percent of the synthetic-textile millworkers earned less than 90 cents an hour in November 1954; 7.7 percent earned less than \$1; and 57.8 percent, less than $\$ 1.25$ an hour.

Occupational pay levels were generally higher in the Middle Atlantic and New England regions than in the Southeast. Nationwide averages for numerically important occupational groups were: Men loom fixers, $\$ 1.74$; men weavers, $\$ 1.54$; women weavers, $\$ 1.49$; and women yarn winders, $\$ 1.16$ an hour.
Paid vacations were provided to nearly all workers with 1 year's service. Life insurance and various types of health insurance benefits were also available to a majority of the workers.

Industry Characteristics

The synthetic-textile industry, for purposes of this survey, includes mills which produce yarn or cloth from man-made fibers and from blends of these fibers. ${ }^{4}$ Mills manufacturing textiles from silk, a natural fiber, were also included, but they account for only a small proportion of the total
workers in the industry. Rayon and acetate are used much more extensively than any of the other synthetic fibers such as nylon, dacron, and orlon. Man-made fibers, produced by chemical processes, are developed in the form of a continuous thread or filament. This filament may be used essentially in its original form for weaving or may be cut to short lengths similar to natural fibers and then processed into yarn in a manner comparable to the manufacture of cotton yarn.

Synthetic-textile manufacturing is confined almost entirely to the Southeast, Middle Atlantic, and New England regions. Once considered as essentially a Northeastern industry, it has rapidly expanded and become increasingly important in the Southeast. This region accounted for more than three-fifths of the employment in mills within the scope of the Bureau's survey. ${ }^{5}$ (See table 1.) The Middle Atlantic and New England regions accounted for 22 and 14 percent of the workers, respectively, substantially smaller proportions than in early 1952. Between March 1952 and November 1954, employment in New England and the Middle Atlantic region declined 31 percent and 18 percent, respectively. By contrast, the Southeast increased employment by 7 percent.

Integrated mills-those having both spinning (or throwing) and weaving operations-employed

[^21]65 percent of the millworkers in the Southeast and 38 percent in New England. Almost equal numbers of workers in the Southeast and in the Middle Atlantic region were in mills weaving fabrics; however, such employment represented half of the workers in synthetic-textile mills in the Middle Atlantic States and less than a fifth in the Southeast. In New England, 46 percent of the workers were in weaving mills. Yarn mills, employing a fifth of the industry's total work force, are largely confined to the Southeast and Middle Atlantic regions, accounting for more than a third of the workers in the latter region.
Labor-management agreements specified the pay and working conditions for mills employing nearly 70 percent of the workers in New England and about 45 percent in the Middle Atlantic region. About 5 percent of the workers in the Southeast were employed in mills with labormanagement contracts.

Thirty percent of the millworkers were paid on an incentive basis, usually piecework. Weavers and winders were among the largest groups of incentive workers.

Average Earnings

The general earnings level in the synthetictextile industry was $\$ 1.26$ an hour, exclusive of premium pay, in November 1954 (table 1). This was 1 cent an hour, on the average, below that recorded in a similar study made in March 1952. This slight change in overall average earnings during this period was caused by a combination
of several factors. No general wage increases occurred in the industry. On the other hand, a series of wage decreases in late 1952 and early 1953 were largely responsible for a decline of 4 cents (from $\$ 1.39$ to $\$ 1.35$) an hour for workers in New England. Earnings stayed at an average of $\$ 1.32$ an hour for production workers in the Middle Atlantic States. Although average earnings in the Southeast increased slightly, from $\$ 1.20$ in March 1952 to $\$ 1.22$ in November 1954, the substantially greater proportion of the industry's work force concentrated in that region had the effect of depressing the average for all synthetictextile mills combined.

Wages of workers in yarn mills averaged less than those in weaving or integrated mills because of the absence of skilled occupations required by the weaving operations in the latter establishments. Yarn-mill workers averaged $\$ 1.15$ an hour in November 1954-10 cents below the average for workers in integrated mills and 20 cents below the average for workers in weaving mills. Averages of $\$ 1.15$ and $\$ 1.13$ an hour were recorded in yarn mills in the Middle Atlantic and Southeast regions, respectively.

Average hourly earnings of workers in mills weaving fabrics from purchased yarn were $\$ 1.44$ in the Middle Atlantic region, $\$ 1.38$ in New England, and $\$ 1.25$ in the Southeast. In each region, these workers averaged more than workers in integrated mills, with differences ranging from 2 cents an hour in New England and the Southeast to 10 cents in the Middle Atlantic region.

Table 1.-Number of workers and average straight-time hourly earnings ${ }^{1}$ of production workers in synthetic-textile mills, by specified characteristics, November 1954

Item	United States ${ }^{2}$		New England		Middle Atlantic		Southeast	
	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { workers } \end{aligned}$	Average hourly earnings	Number of workers	A verage hourly earnings	Number of workers	Average hourly earnings	Number of workers	Average hourly earnings
All mills:								
All production worker	88, 284	\$1. 26	12,370	\$1. 35	19,708	\$1.32	56, 051	\$1. 22
Men_............	48, 775	1.32	7,296	1.42	8,657	1. 46	32, 808	1.26
Women	39, 509	1.19	5,074	1. 24	11,051	1. 22	23, 243	1.16
Type of mill:								
Filament yarn or threa	11, 233	1.15	1,040	1.22	6,164	1.14	8,804 3,874	1.13 1.15
Spun yarn or thread.	6,879	1.14	1,010		952	1.19	4,930	1.11
Weaving mills	26, 556	1.35	5, 684	1.38	10, 273	1. 44	10,599	1.25
Integrated mills	43, 616	1. 25	4,649	1.36	2,319	1.34	36, 648	1.23
Predominant class of fabries: ${ }^{3}$ P								
Filament twisted yarn fabrics	11, 393	1.28	1,357	1.36	5,356	1.34	13,581	1.23 1.26
Spun synthetic fabrics.......-	23, 324	1.24	2,386	1.31			20,610	1.23
Silk and silk-mixture fabrics.	3,693	1. 41			3, 419	1.42		
Pile, upholstery, drapery, tapestry, and	6,378	1. 42			2,530	1.62	2,960	1.23

[^22][^23]Mills producing spun synthetic fabrics employed nearly two-fifths of the workers in the Southeast who averaged $\$ 1.23$ an hour in November 1954. Workers in mills producing filament flat fabrics, an important product in each region, averaged $\$ 1.23$ in the Southeast, $\$ 1.34$ in the Middle Atlantic region, and $\$ 1.38$ in New England.

Distribution of Earnings

Individual average straight-time earnings ranged from as low as 75 cents to more than $\$ 2$ an hour. However, earnings of a large majority of the workers were within a comparatively narrow range (table 2). Approximately half of the workers in the Southeast earned between $\$ 1$ and $\$ 1.20$ an hour; a similar proportion of workers in New England had earnings within the range of $\$ 1.10$ to $\$ 1.35$ an hour. Earnings below 90 cents an hour were reported for 7.8 percent of the workers in the Middle Atlantic region and 1.6 percent in the Southeast; virtually none of the workers in New England earned below 90 cents an hour.

Approximately 8 percent of the workers in the Southeast earned less than $\$ 1$ an hour, as compared with less than 1 percent in New England and 12.4 percent in the Middle Atlantic region. Hourly earnings of less than $\$ 1.25$ were recorded for 42.3 percent of the workers in New England, 46.2 percent in the Middle Atlantic, and 65.5 percent of those in the Southeast region.

Occupational Earnings

About 55 percent of the production workers in the synthetic-textile industry were employed in occupations for which averages are presented in table 3. Nationwide averages for these job categories, selected for study because of their numerical importance and their representativeness of the entire job-rate structure, ranged from $\$ 1.02$ for men janitors to $\$ 1.93$ an hour for Jac-quard-loom fixers.

The 12,300 women employed as yarn winders averaged $\$ 1.16$ an hour. Other numerically important women's jobs and their averages were: Battery hands, $\$ 1.08$; cloth inspectors, $\$ 1.13$; ring-frame spinners, $\$ 1.17$; and weavers, $\$ 1.49$.

Numerically important men's occupational categories and their averages were: Hand truckers and

Table 2.-Percentage distribution of production workers ${ }^{s}$ in synthetic-textile mills, by average straight-time hourly earnings, ${ }^{1}$ November 1954

Average hourly earnings (in cents)	United States ${ }^{2}$	New England	Middle Atlantic	Southeast
75 and under 80	0.6		0.5	0.7
80 and under 85	. 3	(3)	. 6	. 3
85 and under 90	1.9	(3)	6.7	. 6
90 and under 95	2.0	0.2	3.4	2.0
95 and under 100	2.9	. 1	1.2	4.2
100 and under 105	9.3	. 7	4.7	12.8
105 and under 110	12.0	4.3	5.1	16.1
110 and under 115	12.4	16.8	7.0	13.3
115 and under 120	10.4	13.8	9.5	10.0
120 and under 125	6.0	6.4	7.5	5.5
125 and under 130	6.3	8.5	9.5	4.6
130 and under 135	4.8	4.7	6.4	4.2
135 and under 140	4.6	6.1	4.2	4.4
140 and under 145	5. 1	6.8	4.9	4.8
145 and under 150	3.6	5.3	3.4	3.2
150 and under 155	3. 5	5.3	4.3	2.8
155 and under 160	2.5	3.5	2.5	2.3
160 and under 165	2.6	2.7	2.8	2. 5
165 and under 170	2.5	7.8	1.9	1. 6
170 and under 175	2. 4	2.4	2.0	2.5
175 and under 180	1.3	1.7	1.6	1.1
180 and under 185	. 8	. 9	1.8	. 5
185 and under 190	. 5	. 5	1.4	. 1
190 and under 195	. 4	. 6	1.3	.1
195 and under 200	. 4	. 3	1.3	1
200 and under 205	. 3	. 3	1.2	(3)
205 and under 210	. 2	. 1	. 8	(3)
210 and over.	. 6	. 2	2.3	$\left.{ }^{3}\right)$
Total	100.0	100.0	100.0	100.0
Number of workers	88,284	12,370	19,708	56, 051
Average hourly earnings ${ }^{1}$	\$1.26	\$1.35	\$1.32	\$1.22

[^24]bobbin boys, $\$ 1.07$; weavers, $\$ 1.54$; and loom fixers, $\$ 1.74$.

Establishment Practices

Minimum rates ${ }^{6}$ varied considerably among mills, but definite regional patterns were apparent. Minimum entrance rates of 75 cents an hour were paid in mills employing a fourth of the workers in the Middle Atlantic region and half the workers in the Southeast; minimum entrance rates between 75 cents and $\$ 1$ were reported by nearly all of the other mills in these regions. In New England, mills accounting for a majority of the workers had entrance rates of $\$ 1$ or more, with the greatest concentration (one-third of the workers) employed in mills reporting a rate of $\$ 1.105$ an hour. Advancement from the entrance rate to the job rate in the synthetic-textile industry frequently involves either a formal training period of from 6 to 12 weeks, or a progression of rates based on length

[^25]of service or merit rating. In many mills, however, minimum entrance and minimum job rates were identical. Minimum job rates in the Southeast ranged from 75 cents to $\$ 1.05$; concentrations of workers were in mills with rates between 85 and 87.5 cents (16 percent), 97 cents (21 percent), and $\$ 1.02$ (13 percent). In New England, 85 percent of the workers were in mills with minimum job rates ranging from $\$ 1.07$ to $\$ 1.20$. In the Middle Atlantic region, mills employing over half of the workers had minimum job rates of more than $\$ 1.07$ an hour.

A 40-hour workweek was most common in the New England and Middle Atlantic regions. Southeast workers were divided about equally between mills reporting 40 - and 48 -hour weekly schedules.

Slightly over half of all workers in the industry were employed on late shifts in November 1954.

Premium pay for second-shift work was not common. Third-shift workers, however, generally received higher rates of pay than day-shift workers. The most prevalent differentials were 5 cents an hour in the Southeast and 7 cents in New England.

About 86 percent of the synthetic-textile millworkers in New England received 6 holidays a year with pay. (See table 4.) In the Southeast, approximately 17 percent of the production workers were employed in mills with provisions for paid holidays, typically 2 days a year.

Vacations with pay after 1 year of service were provided to nearly all production workers in each of the 3 regions. New England mills typically base vacation benefits on a specified percent of the individual's annual earnings - generally 2 percent (approximately equal to a week's pay) after 1 year of service, 3 percent after 3 years, and 4 percent

Table 3.-Average straight-time hourly earnings ${ }^{1}$ of men and women production workers in synthetic-textile mills, by selected occupations, November 1954

Sex and occupation	United States ${ }^{2}$		New England		Middle Atlantic		Southeast	
	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { workers } \end{gathered}$	A verage hourly earnings		Average hourly earnings	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { workers } \end{gathered}$	Average hourly earnings	Number of workers	Average hourly earnings
Men								
Card grinders.	191 505	$\$ 1.42$ 1.11	20 37	\$1.45			171	$\$ 1.42$ 1.10
Card tenders.-....-....-	725	1.26	45	1.41			680	1.25
Inspectors, cloth, machine	487	1.24	57	1.37	75	\$1.43	355	1.18
Janitors (excluding machinery cleaners)	1,061	1.02	80	1.13	110	1.12	870	. 99
	5,104	1. 74	958	1.70	956	1.92	3,190	1. 69
Boxlooms.	1,060	1. 77	67	1.72	351	1.90	642	1. 70
Jacquard looms.	460	1.93	$\begin{array}{r}36 \\ 855 \\ \hline\end{array}$	1.78 1	217 388	2.17 1.81	207 2,341	1.71 1.69
Plain and dobby looms	3,584	1. 71	855	1.70	388	1.81	2, 341	1. 69
Machinists, maintenance.	547	1.53	74	1. 70	40	1.85	433	1.47
Slasher tenders-	1,086	1.44 1.27	230 39	1.62 1.40	103	1.51	753 696	1.37 1.27
Slubber tenders ${ }^{3}$	741	1.27	39				696	1.27
Long draft-........	${ }_{6}^{686}$	1.28					$\begin{array}{r}674 \\ \hline 2.258\end{array}$	1.28
Truckers, hand (including bobbin boys)	3,042	1.07	333 34	1.16 1.40	448	1.52	2, 258	1.04
W arper tenders, high speed ($300 \mathrm{y} . \mathrm{p} . \mathrm{m}$. and over)	248	1.33 1.58 1.5	34	1.40	116	1.52	146	1.22
Warper tenders, slow speed (under 300 y . p. m.)	${ }_{23}^{232}$	1.58	1,189	1.52	2,096	1.65	3,548	1.46
Weavers......-	6, 1,524	1.55	1.109	1.46	2, 777	1.60	638	1.48
Dobby looms.	3,180	1. 49	545	1.51	426	1. 50	2, 209	1. 49
Jacquard looms	1,095	1. 74	81	1. 64	690	1.86	324	1. 50
Plain looms	1,034	1.49	454	1.52	203	1.47	377	1.46
Women								
	3, 070	1.08	446	1.13	305	1.06	2,319	1.07
Inspectors, cloth, machine	2, 589	1.13	508	1.17	276	1.16	1,805 2,369	1.11 1.15
Spinners, ring frame.	2,718	1.17	197	1.29			2, 369	1.15 1.13
Twister tenders, ring frame	1,913 1,109	1.14 1.17	$\begin{array}{r}222 \\ 87 \\ \hline\end{array}$	1.16 1.18	922 499	1.14 1.18	731 499	1.13 1.16
Uptwisters Warper tenders, high speed (300 y. p. m. and over)	1,109	1.28	73	1.36	139	1.40	211	1.16
W arper tenders, high speed ($300 \mathrm{y} . \mathrm{p} . \mathrm{m}$. and 0 ver)	441	1.35	92	1.37	249	1. 41	100	1.19
Weavers.....-. --.....--	3,871	1.49	483	1.49	1,548	1.55	1,840	1. 44
Boxlooms.	1,157	1.48	89	1. 47	741	1. 54	327	1. 36
Dobby looms.	1,891	1.46	220	1. 49	416	1.49	1,255	1. 45
Jacquard looms	350	1. 66	20	1. 53	290	1. 69	40	1.54
Plain looms.-	473	1.49	154	1.49	101	1.53	${ }_{6} 218$	1.46
Winders, yarn ${ }^{3}$	12,326	1.16	1,175	1.22	4, 566	1.13	6,513	1.17 1.19
Automatic spooler -...-.--	620 497	1.19						1.19 1.19
Cone and tube, automatic Cone and tube, nonautomatic, high speed	497 3,983	1.22 1.16	112	1.31 1.23	1,367	1.13	2,242	1.19 1.16
Cone and tube, nonautomatic, slow speed	1,147	1.17			-517	1.11	, 620	1. 23
	2,148	1.17	293	1.20	659	1.17	1,196	1.16
Filling, nonautomatic.	1,533	+1.18	188	1.28	490	1.19	855	1.15

[^26][^27]Table 4.-Percent of production workers employed in synthetic-textile mills with formal provisions for specified supplementary wage benefits, ${ }^{1}$ November 1954.

Supplementary wage benefits ${ }^{1}$	United States ${ }^{2}$	New England	Middle Atlantic	Southeast
Paid vacations: ${ }^{3}$				
After 1 year's service ${ }^{4}$	95	97	96	95
1 week...........-	91	88	87	94
Over 1 and under 2 weeks..	3	7	6	${ }^{(5)}$
After 5 years' service ${ }^{1}$	95	(5) 97	96	${ }^{95}$
1 week	19	${ }^{(5)}$	39	17
2 weeks	76	96	57	77
Paid holidays ${ }^{64}$	42	100	77	17
2 days.	10	(8) 3	3	14
5 days	4	${ }^{(5)}$	17	
6 days.	22	86	41	
7 days.	4	9	14	
Insurance and pension plans: 7 - ${ }^{\text {a }}$				
	83	85	67	88
Accidental death and dismemberment insurance.	45	72	35	
Sickness and accident insurance.-	69	74	72	68
Hospitalization insurance.	87	87	83	88
Surgical insurance-	84	86	72	88
Medical insurance-	26 10	63 14	33 4 4	15
Retirement pension...-...- Retirement severance pay	12	14 51	4 14	(5) 11

${ }^{1}$ Supplementary wage benefits were considered applicable to all workers if formal provisions in an establishment applied to half or more of the workers. Because of length of service and other eligibility requirements, the proportion of workers currently receiving the benefits may be smaller than estimated. Because of rounding, sums of individual items do not always equal totals.
${ }_{3}^{2}$ Includes data for regions in addition to those shown separately
${ }^{3}$ Vacation payments, such as percent of annual earnings (typical in New England) and flat-sum amounts, are converted to an equivalent time basis; vacation benefits applicable after 5 years' service also are generally applicable to longer periods of service.
\& Includes provisions in addition to those shown separately.
${ }^{5}$ Less than 2.5 percent.
${ }^{6}$ Limited to full-day holidays provided annually.
${ }_{7}$ Includes only those plans for which at least a part of the cost is borne by the employer and excludes legally required plans such as workmen's compensation and social security.
after 5 or more years. In the other 2 regions, workers are usually provided a week's vacation with pay after 1 year's service and 2 weeks after 5 or more years. There have been no significant changes in the vacation policies in New England or the Middle Atlantic regions during the past few years. On the other hand, the tendency in the Southeast has been to increase the length of the vacation period for workers with 5 or more years of service from 1 to 2 weeks.

Life insurance, sickness and accident, hospitalization, and surgical benefits, financed at least in part by the employer, were available to a majority of the workers in all regions.

Pensions-providing regular payments for the remainder of the worker's life upon retirementapplied to 11 percent of the workers in the Southeast, 14 percent in New England, and 4 percent in the Middle Atlantic region. Plans providing lump-sum payments upon retirement applied to 51 percent of the production workers in New England and 14 percent in the Middle Atlantic region, but were virtually nonexistent in the Southeast.
-Alexander Moros
Division of Wages and Industrial Relations

Union Wage Scales in Local City Trucking, July 1, 1954

Pay scales of workers engaged in local trucking in cities of 100,000 or more population rose by an average of 8 cents an hour, or 4.3 percent, in the year ending July 1, 1954. ${ }^{1}$ Revisions in rates during the 12 months brought the average union scale for drivers and helpers combined to $\$ 1.95$ an hour as of July 1, 1954. ${ }^{\text {² }}$

Slightly over 70 percent of the drivers and helpers included in the Bureau of Labor Statistics 19th annual survey of union scales in local trucking had their wage scales increased as a result of labor-management negotiations effective during the year. The upward adjustments typically ranged from 5 to 15 cents an hour. For 1 of every 6 workers, however, the increase amounted to 15 cents or more an hour.

Standard weekly work schedules continued their downward trend, averaging 41.1 hours on July 1, 1954. The most common straight-time work schedule (40 hours) was stipulated in contracts applicable to 4 of every 5 drivers and to approximately the same proportion of helpers.

[^28]Table 1.-Indexes of union hourly wage rates and weekly hours for motortruck drivers and helpers, 1936-54
[July 1, 1947-48-49=100]

Year	Drivers and helpers		Drivers		Helpers	
	Wage rates	Hours	Wage rates	Hours	Wage rates	Hours
1936: May 15	50.6	109.0	(1)	(1)	(1)	(1)
1937: May 15	53.9	108.1	54.3	108.4	51.3	106.8
1938: June 1	55.9	108.1	56.3	108. 4	53.1	106.8
1939: June 1	57.1	107.1	57.5	107.5	54.5	105.5
1940: June 1	58.3	106.1	58.7	106. 6	55.6	104.2
1941: June 1	60.6	105.5	60.9	105.9	58.3	103. 5
1942: July 1	64.9	105.8	65.0	106.0	63.4	105.5
1943: July 1	68.4	105. 6	68.5	105.8	67.0	105.3
1944: July 1	70.0	105. 5	70.1	105. 7	69.1	105.3
1945: July 1	71.5	105. 3	71.6	105.4	70.7	105.2
1946: July 1	79.6	103.1	79.6	103.3	79.3	102.9
1947: July 1	91.9	100.7	91.9	100.6	90.9	101.1
1948: July 1	100.0	99.8	100.0	99.9	100.7	99.7
1949: July 1	108.1	99.5	108.1	99.5	108. 4	99.2
1950: July 1	111.9	98.8	111.7	98.9	113.2	98.5
1951: July 1	118.2	98.7	117.9	98.8	119.6	98.2
1952: July 1	124.7	98.3	124.1	98.4	127. 7	97.7
1953: July 1	134.5	96.4	133.8	96.5	137.9	95.6
1954: July 1	140.2	95.6	139.3	95.8	145.0	94.2

${ }^{1}$ Information not computed separately.

Trend of Union Scales, 1936-54

The Bureau's index of union hourly wage scales of local motortruck drivers and helpers has shown a steady advance since 1936, at an average annual rate of 5.8 percent. The actual rate of increase, however, has varied from year to year (table 1).

By 1941, the level of union scales was 20 percent above that of 1936. During the wartime years 1941-46, it rose 31 percent, with the highest gain recorded in the year ending July 1, 1946. The subsequent 8 years ending July 1, 1954, saw a rise of 76 percent.

The patterns of wage movements for truckdrivers and for their helpers since 1936 were similar, but the helpers' scales advanced at a slightly greater rate. The average annual rates of increase for helpers and drivers were 6.3 and 5.7 percent respectively.

Scale Increases, 1953-54

Rate revisions during the year ending July 1, 1954, were primarily the result of negotiations on contract expirations or reopenings. ${ }^{3}$ Negotiated scales of motortruck drivers advanced, on the average, 8 cents an hour, and helpers' scales rose 8.5 cents. This compared with average raises of 14 and 12 cents, respectively, for the preceding year. Percentagewise, the advances during the last year studied represented gains of 4.1 percent for drivers and 5.1 percent for helpers.

Changes in rates for motortruck drivers and helpers were widespread. Negotiated upward scale revisions affected 70 percent of the drivers and nearly 80 percent of the helpers included in this study. Of the motortruck drivers affected by scale changes, 9 percent had increases of less than 5 cents an hour, 36 percent from 5 to 10 cents, 33 percent from 10 to 15 cents, and 12 percent from 15 to 20 cents. For helpers, the comparable proportions were $6,40,29$, and 18 percent.

In terms of the percent of increase, of every 100 drivers 23 had increases of less than 4 percent; 43, of 4 to 7 percent; 19, of 7 to 10 percent; and 10, of 10 to 15 percent. Of every 100 helpers affected by scale changes, 17 advanced their rate less than 4 percent; 41 , from 4 to 7 percent; 23 , from 7 to 10 percent; and 14 , from 10 to 15 percent.

Actual rates of pay for motortruck drivers and helpers differed widely among the cities. They ranged from 88 cents to $\$ 3.395$ an hour for drivers and from 85 cents to $\$ 2.48$ for helpers. Rates specified for drivers varied from $\$ 1.75$ to $\$ 2$ an hour for 34 percent, from $\$ 2$ to $\$ 2.25$ for a similar proportion, and from $\$ 2.25$ to $\$ 2.50$ for 11 percent. Truckdriver rates of less than $\$ 1.50$ an hour were applicable to 3 percent as were rates of $\$ 2.50$ or more an hour. Among helpers, scales ranged from $\$ 1.50$ to $\$ 1.75$ an hour for 37 percent, from $\$ 1.75$ to $\$ 2$ for another 37 percent, and from $\$ 2$ to $\$ 2.25$ for 12 percent. About 4 percent of the helpers had rates of less than $\$ 1.25$ an hour; for 3 percent, the scale was $\$ 2.25$ or more. For all cities combined, drivers averaged $\$ 1.98$ and helpers $\$ 1.75$ an hour.

Increased rates were recorded for some truckdriver classifications in each of the 52 cities studied. Among individual cities, the average increase in scales varied from 2.9 cents in Philadelphia to 22.5 cents in Indianapolis. Part of the increase in the latter city was attributable to a reduction in the weekly straight-time hours for several numerically important classifications of drivers. Average hourly gains ranged from 5 to 10 cents in half of the cities and from 10 to 15 cents in a third. Higher wage scales were reported for truckers' helpers in 50 of the cities studied. They averaged from 5 to 10 cents an hour in about

[^29]half of those cities and from 10 to 15 cents in a fourth.

City and Regional Variations

Typically, wage scales for both drivers and helpers vary from one city to another, depending upon local factors. In addition, their wage scales are affected by size and type of truck operated as well as by the commodity hauled. However, city differences in classifications and terminology preclude presentation of the city and regional averages for drivers and helpers separately by type of commodity handled, the industry served, or the type or size of truck.

Among the cities surveyed, the averages for drivers ranged from $\$ 1.32$ in Charlotte, N. C., to $\$ 2.24$ in San Francisco-Oakland. Average rates ranged between $\$ 1.50$ and $\$ 1.75$ in 13 cities, between $\$ 1.75$ and $\$ 2$ in 19 , and $\$ 2$ or more in 14 . Levels below $\$ 1.50$ were recorded in 6 cities.
Scales for helpers averaged highest in San Francisco-Oakland and in Seattle (\$2.02) and lowest in Birmingham (99 cents). Pittsburgh and Spokane had levels of $\$ 2$ and $\$ 2.01$, respectively. Hourly rates averaged between $\$ 1.50$ and $\$ 1.75$ in 20 cities studied and between $\$ 1.75$ and $\$ 2$ in 17.

The average hourly rate for motortruck drivers in the group of cities with $1,000,000$ or more population was $\$ 2.07$. It was 28 cents lower ($\$ 1.79$) for the 100,000 to 250,000 population size group.

Table 2.-Average union hourly wage rates for motortruck drivers and helpers, by region, ${ }^{1}$ July 1, 1954

Region	Average rate per hour		
	Drivers and helpers	Drivers	Helpers
United States	\$1.95	\$1.98	\$1.75
New England	1.74	1.78	1.62
Middle Atlantic	1.97	${ }_{1}^{2.01}$	1.78
Border States-..-	1.72	1.60	1.26
Great Lakes	2.04	2.05	1.88
Middle West.	1.91	1.93	1.85
Southwest.---	1.60	1.62	1.52
Mountain_.-.--	2.13 ${ }_{\text {1. }}^{1.76}$	1.814	1.48 1.97
Pacific-.-----	2.13	2.14	1.97

[^30]Averages were identical (\$1.98) for the 2 intermediate groups (500,000 to $1,000,000$ and 250,000 to 500,000). For helpers, the average scale in the 2 largest sized city groups was approximately the same $-\$ 1.79$ for the 5 cities of $1,000,000$ or more population and $\$ 1.80$ for the cities in the next lower size group. These averages were 4 to 5 cents higher than for the 250,000 to 500,000 population group and 16 to 17 cents higher than for the 100,000 to 250,000 group. For both drivers and helpers, some overlapping of average scales appeared among cities in the different size groups. Among drivers, for example, the averages for Spokane and Peoria (in the 100,000 to 250,000 population group) were higher than the average for all but 2 of the covered cities in the next larger size group.

Regionally, wage rates for motortruck drivers and helpers in cities of 100,000 or more population averaged highest on the Pacific Coast and lowest in the Southeastern States. The respective averages were $\$ 2.14$ and $\$ 1.60$ for drivers and $\$ 1.97$ and $\$ 1.26$ for helpers. Drivers and helpers in the Great Lakes and Middle Atlantic regions and helpers in the Middle West region also had wage levels which exceeded the national averages (table 2).

Standard Workweek

Straight-time weekly hours in local trucking continued their downward trend, averaging 41.1 hours on July 1, 1954, for all drivers and helpers studied, compared with 41.3 on July 1, 1953, 45.8 on July 1, 1945, and 48.1 on May 15, 1936. Except for the years 1942-44, the Bureau's index of weekly hours for motortruck drivers and helpers combined has shown a steady decline since 1936.

The workweek of 48 or more hours, which was prevalent in 1936, has been virtually supplanted by a 40 -hour work schedule. Basic workweeks of 48 or more hours prevailed for over 80 percent of the workers in 1936, but for less than 10 percent in July 1954. Conversely, straight-time workweeks of 40 hours were specified in labor-management contracts applicable to 10 percent of the drivers and helpers in 1936 and to almost 80 percent in July 1954.

-James P. Corkery and John F. Laciskey
Division of Wages and Industrial Relations

New Hires as a Source of Factory Workers, 1950-54

From mid-1950 to mid-1953, as industrial production approached the wartime peaks, about three-fourths of all additions to the factory employment rolls were newly hired employees. ${ }^{1}$ From that date, new hires fell sharply and reached about 50 percent of all hirings in early 1954. (See chart.)

The extent to which new hires rather than recalls constitute labor supply for particular manufacturing firms is related to many factors. When the economy begins to expand from low levels of activity, employers are likely to meet much of their demand for workers by rehiring out of a pool of former employees. As expansion continues, this source is exhausted and they turn increasingly to new employees. Thus, on the upturn, the growing volume of new hires in large measure indicates work-force expansion more than replacement of workers. As demand levels out, new hires remain the most important portion of total accessions, but are largely for replacement purposes. If jobs become less plentiful, new hires become less significant.

This over-simplified pattern of the changing nature of total accessions is, of course, modified by many influences. Individual firms and industries do not expand or contract their activities simultaneously, and individual workers may be influenced in their job choice by both economic and personal considerations. Moreover, many firms are covered by union agreements in which seniority influences hiring and layoffs. As a plant resumes operations after a shutdown, it probably will wish to or will have contractual obligations to recall all its former employees first. These workers are preferred because of their experience and the fact that the recall practice strengthens their attachment to the company and reduces such costs as those associated with recruitment, training, and recordkeeping. Furthermore, the tax provisions of many State unemployment insurance systems offer employers the opportunity to reduce their tax rate if they rehire their former workers who are receiving unemployment insurance benefits. If a plant characteristically has a high quit rate, it is likely to hire outside of its regular work force.

BLS New-Hires Data

Data on new hires, available from July 1950 to date, are regularly reported by employers cooperating in the Bureau of Labor Statistics' labor turnover program. Under this program, employers report each month on the total number of accessions, or additions to their payrolls, on the number of these that were new hires, and on the number of separations, by type of separation (quits, layoffs, etc.), during the month.

The volume of new hires, one aspect of labor mobility, is a sensitive economic indicator. Newhires data can be used, in combination with other measures, to plan for such activities as recruitment of factory workers by public employment services and training, apprenticeship, and plant safety education programs.

In using these data, certain qualifications should, of course, be noted. The rates are based on a sample of firms-predominately large ones. Certain highly seasonal industries are specifically excluded. The data do not include the separations and accessions reported by firms incident to a strike by their workers. With respect to new hires, a small proportion of firms in the turnover sample do not report these data. ${ }^{2}$

Trend of New Hires

The period from mid-1950 through 1954 was one of rapid changes in labor turnover, and especially in new hires. (See table 1.)

In July 1950, when production was accelerating to meet the new demands arising from the Korean conflict, factory hirings amounted to 47 per 1,000 employees and almost three-fourths of these were newly hired employees. The total accession rate was well above the rate at the beginning of that year, as manufacturing employment increased by 1 million to 14.9 million workers in July. The accession rate rose again in August, with new hires rising from 35 to 52 per 1,000 . Although total factory accessions declined in September, most of the drop occurred in the recall rate (few firms could find former employees to rehire), thus

[^31]raising new hires to 84 percent of total accessionsan alltime high.

All manufacturing firms experienced substantial expansions during the last 6 months of 1950, with the producers of durable goods, as would be expected, showing substantially greater increases in employment, particularly in the machinery and transportation equipment industries. The workers newly hired by manufacturing firms during the summer and early fall of 1950 probably represented, for the most part, the filling of new jobs created largely by the Korean crisis. However, the new-hire activity also included some replacement needs, as workers were attracted to new, better paying jobs in booming defense industries and the upsurge of consumer demand made it essential for employers in nondefense industries (less restricted than in World War II) to replace workers who quit.
From the end of 1950 through early 1952, as the rate of increase in manufacturing employment tapered off, new hires averaged, on a monthly basis, 30 to 35 per 1,000 employees, accounting or roughly 3 of every 4 additions to factory payolls. Throughout most of these months, the newaire rate in durable-goods manufacturing was well above that for nondurables, as the former group ontinued to add to their work force, in contrast o small reductions in nondurables employment. After July 1952, total manufacturing employnent climbed steeply. But in that month, argely as a result of the steel strike, employment vas more than half a million below earlier 1952 evels. Layoffs increased sharply and new hires ropped severely, bringing total accessions down, s firms dependent on steel supplies reduced operaions and, in turn, firms selling to these firms or irectly to the steel industry had to cut back. fter the strike ended and production resumed, pyoffs fell precipitously during August and ccessions climbed, especially recalls, as employees eturned to their jobs. In the later months of 952 , new-hire rates rose sharply as employment xpanded markedly in response to the removal of onsumer credit controls and the relaxation of baterials controls. Manufacturing employment pse to 17.1 million in November, about 1 million bove the total for the first half of 1952.
Through midsummer 1953, factories continued b increase their work forces, with new hires mning close to 35 per 1,000 employees each

New Hires as a Percent of Total Accessions, July 1950-December 1954

month and accounting for about 80 percent of all additions to payrolls. As usual, new hires, both the rate and the proportion of total accessions, were higher in the durable- than in the nondurablegoods industries.
The August 1953 new-hire rate, however, remained at the July level, although in each of the preceding 3 years it had increased substantially between these 2 months. In September, factory employment started to decline and, by May 1954, reached a low of 15.8 million- 1.5 million below the preceding May. New hires had dropped to 14 per 1,000 employees by that month-less than half the rate of a year ago-and represented about half of total accessions. The durableand the nondurable-goods industries had reversed their usual relationship owing to the greater severity of the employment decline in the durables.

The upturn in manufacturing employment in the late summer and early fall of 1954 was accompanied by increases in both the new-hire and the recall rate. When automobile plants began to produce 1955 models, they and their supplier
plants recalled employees, thus reducing the newhire proportion for manufacturing to 50 percent in October. As the buildup continued, the proportion of new hires recovered contraseasonally to 52 percent of all payroll additions in December.

Industry Comparisons

In general, broad industry groups exhibited substantially the same trend in new hires as did
all manufacturing from mid-1950 through 1954. (See table 2.) However, there were noteworthy developments in 4 of the 17 groups included in this study.

The new-hire rate in primary metals dropped from 36 to 22 per 1,000 employees between mid1950 and 1953, but the relative importance of new hires remained above the average, owing to sustained near-capacity production. The quick drop in new hires to 8 per 1,000, or 36 percent of total

Table 1.-Total accession and new-hire rates for manufacturing industries, total, durable, and nondurable goods, ${ }^{1}$ July 1950December 1954
[Per 100 employees]

[^32]Table 2.-Total accession and new-hire rates, annual averages, ${ }^{1} 1950-54$, by industry group ${ }^{2}$

Industry group	1950 (July-Dec.)			1951			1952			1953			1954		
	Total accessions	New hires													
		Rate	Percent of total												
Manufacturing ${ }^{3}$ \qquad Durable goods.-. Nondurable goods	4.9 5. 4 4.1	3.9 4.4 3.1	80 81 76	4.4 4.7 3.8	3.4 3.7 2.7	77 79 71	4. 4 4. 4.0	3.3 3.5 3.0	75 74 75	3. 9 4. 0 3. 7	3.0 3.1 2.8	77 78 76	3.0 3.1 2.9	1.6 1.5 1.6	53 48 55
Ordnance and accessories	4.0	2.0	50	3.5	2.5	71	4.5	4.0	89	4.0	3.4	85	2.0	1.1	55
Food and kindred products	5. 4	3.8	70	5.7	4.1	72	5.3	3.9	74	5. 2	3.8	73	4.0	2.1	53
Tobacco manufactures	3.7	2.1	57	4.0	2.7	68	3.8	2. 6	68	3. 0	2.1	70	2.3	1.4	61
Textile-mill products.	3. 9	2.7	69	3.5	2. 0	57	3. 9	2.5	64	3. 3	2.2	67	3.0	1. 5	50
Furniture and fixtures.-	6. 5	6. 0	92	5.2	4.4	85	5. 6	4.9	88	4.7	4. 0	85	3.7	2.3	62
Paper and allied products	3. 9	3.5	90	3. 2	2.7	84	3. 6	2. 9	81	3.5	2. 9	83	2.3	1. 6	70
Chemicals and allied products	2.7	2.4	89	2.3	2. 1	91	2.1	1.7	81	1. 9	1. 6	84	1.4	1.0	71
Products of petroleum and coal	1. 6	1.3	81	1.4	1.3		1. 4	1.1		1.2	1. 0	83	. 8	. 5	63
Rubber products..............-	4.6	3.4	74	3.7	2. 8	76	3.3	2. 4	73	2. 9	2.1	72	2. 7	1.1	41
Leather and leather products	4.0	3.0	75	4. 0	2.7	68	5. 0	3. 8	76	4. 1	3.0	73	3. 2	1.9	59
Stone, clay, and glass products.	4.3	3.6	84	3.5	2.9	83	3. 6	2.5	69	3.1	2.3	74	2.4	1.3	54
Fabricated metal products (except ordnance, machinery, and transportation equipment)	4.3	3.6	84	3.6	3.0	83	3.2	2.6	81	2.8	2.2	79	2.2	. 8	36
Machinery (except electrical) ------------	4.9	4.0	82	4.3	3. 8	88	3. 6	2.8	78	2.9	2. 3	79	2.0	1.1	55
Electrical machinery .-....	5.0	3.9	78	4.4	3.1	70	4.0	2. 9	73	3.5	2.8	80	2.5	1.2	48
Transportation equipment	7.2	5.0	69	6.7	4. 6	69	6.6	4. 4	67	5. 5	3.8	69	4.1	1.6	39
Instruments and related products.----	3.8	3.3	87	3.3	2.9	88	2.9	2.4	83	2.4	1.9	79	1.5	. 8	53

${ }_{1}^{1}$ Arithmetic mean of monthly rates. 2 See footnote 1, table 1.
${ }^{3}$ Includes lumber and wood products and miscellaneous manufacturing industries for which data are not shown separately.
accessions, in 1954 closely followed the decline in employment beginning in mid-1953. By the fall of 1954, employment turned upward and recalls and new hires increased, largely in response to the increased demand generated by the automobile industry.

The trend of new hires in ordnance was typical of a rapid recovery from a depressed level of activity. Although total accessions boomed immediately after the Korean outbreak, new hires accounted for only half the additions. In 1952 and 1953, however, new hires amounted to 85 percent or more of total accessions, but as defense outlays declined in late 1953 and 1954 there was a particularly sharp drop in the new-hire rate.

Although transportation equipment plants increased their work forces substantially from mid1950 to mid-1953, new hires, ranging between 38 and 50 per 1,000 , accounted for only about twothirds of all accessions. Reliance on recalls was far heavier than in most other industries. The 1953-54 decline in employment caused new hires to fall, finally stabilizing at about 15 per 1,000 employees. The employment recovery in the last quarter of 1954 was composed largely of recalls, which accounted for much more than half of all accessions. New hires, however, went over
the 50 percent mark in December, with the continued expansion in the automobile industry.

In textile mills, unlike most industries, employment spurted briefly in 1950 and then declined. Through 1953, new hires averaged between 20 and 27 per 1,000 employees and from 57 to 69 percent of all accessions. In 1954, new hires declined even further, although showing some recovery by the end of the period as employment stabilized. A good portion of the new-hire activity over the 1950-54 period might be accounted for by replacement needs and the growing importance of the southern textile industry.

When the 17 manufacturing industry groups studied are ranked by the new-hire rate (table 3), the 5 highest average rates for the July-December 1950 period were in durable-goods industries. Ordnance was the only durables industry among the 5 lowest rates. By 1954, 3 durable-goods in-dustries-furniture and fixtures, fabricated metals, and transportation equipment-were still among the top 5 . The greatest drop was shown by the nonelectrical machinery group, which fell from 4th to 11th.
The ordnance industry showed the widest fluctuations. In 1950, it ranked 16th; by 1952, it had jumped to 3d from the top and, by 1954, had

Table 3.-Ranking of industry groups ${ }^{1}$ by new-hire rate and quit rate, annual averages, ${ }^{2}$ 1950-54

Industry group	New-hire ranking					Quit ranking				
	$\begin{gathered} 1950 \\ \text { (July- } \\ \text { Dec.) } \end{gathered}$	1951	1952	1953	1954	$\begin{aligned} & 1950 \\ & \text { (July- } \\ & \text { Dee.) } \end{aligned}$	1951	1952	1953	1954
Furniture and fixtures.							1	1	1	2
Transportation equipment	2	1	2	2	5	2	3	4	3	6
Fabricated metals.........	3	5	6	4	4	3	5	5	4	9
Machinery (except electrical)	4	4	9	9	11	13	6	11	12	11
Electrical machinery --	5	6	7	8	10	8	9	6	7	6 4
Food and kindred products.	6	3	4	2	2	4	${ }_{9}$	3	5	$\stackrel{4}{11}$
Stone, clay, and glass products	7	8	12	${ }_{11}$	$\stackrel{9}{15}$	8	9 8	14	12 14	11
Primary metal industries..	7 9	11	10	11	15 5	8	8 9	11	$\begin{array}{r}14 \\ 8 \\ \hline\end{array}$	15 6
Paper and allied products Rubber products........	9 10	110	7 14	7 13	+ 12	7 6	9 6	${ }_{11}^{6}$	8 10	${ }_{11}^{6}$
Instruments and related products.	11	8	14	15	15	14	15	15	15	14
Leather and leather products.....	12	11	5	6	3	5	3	$\stackrel{2}{9}$	$\stackrel{2}{8}$	$\frac{1}{3}$
Textile-mill products........-	13	16	12	11	7	8	13	9	8	3
Chemicals and allied products.	14	15	16	16	14	15	16	16	16	15
Tobacco manufactures...-.-.-	15	11	10	13	8	12	12	6	10	$\stackrel{4}{4}$
Ordnance and accessories	16	14	3	5 17	11	16	14	9 17	6 17	10 17
Products of petroleum and coal	17	17	17	17	17	17	17	17	17	17

${ }^{1}$ See footnote 1, table 1. ${ }^{2}$ Arithmetic mean of monthly rates.
fallen to 11th position. The group with least movement was petroleum and coal products, which had the lowest new-hire rate in each of the years. Almost as stable, but at the other end of the scale, was the furniture and fixtures group.

As already indicated, a high degree of correlation between new hires and quits in individual industries would not be surprising. Almost without exception this relationship is clearly evident during each of the years studied; industries with bigh quit rates also have high new-hire rates.

Seasonal Pattern of New-Hire Rates

The movement of new-hire rates reflects not only long-term growth and the cyclical rise and fall of employment needs but also seasonal influences. Monthly new-hire rates increased and decreased with moderate regularity in each of the years studied. (See table 1.) This seasonal pattern for the combined manufacturing industries is substantially the same for the durable- and the nondurable-goods subdivisions.

Typically, the new-hire rate increases from a December low and falls moderately into a late winter and spring plateau. The rate then jumps to the year's peak in June, declines in July, and rises in August. The changes in the late summer and fall months are mixed but in each year there has been a sharp decline into the December low.

The mixed pattern of new-hire rates in the late summer and autumn months apparently occurs because cyclical and other pressures override seasonal influences. During the 1950 and 1952
employment booms, new-hire rates rose to a peak in August and September, respectively. The general stability and slight growth of 1951 show up as a period of level new-hire rates in these months, while the decline in 1953 corresponds to rapidly falling new-hire rates in the fall of that year. The employment recovery of the 1954 period is seen in the relative stability of new-hire rates.

Relation to Other Turnover Rates

With few deviations, the movement of new-hire rates in manufacturing parallels the movement of quit rates, and, with lesser regularity, appears often to move in the opposite direction from layoff rates.

The relationship between quits and new hires probably is due to identical factors affecting both rates. To some extent, in times of expanding activity, quits and new hires may be considered as a stream of workers moving from their current jobs to positions in other firms that they may consider more advantageous. Conversely, when employment opportunities shrink, workers are less able to find better jobs and so stay put.
For the same reasons, new hires tend to increase when layoffs fall, and to decline when layoffs rise. In this case, however, the relationship may not always hold true because, for example, during a period of rapid growth in employment and new hires, layoffs may occur as plants are hit by a shortage of supplies and thus close down.
-Martin L. Marimont Division of Manpower and Employment Statistics

Family Income Distribution in the United States

American family income totaled $\$ 272$ billion in 1954, $\$ 245.5$ billion after taxes, according to preliminary estimates published by the United States Department of Commerce. ${ }^{1}$ Total income after taxes was about $\$ 4$ billion more than in 1953 because of the reduction in the Federal income tax. Average after-tax income rose relatively less over the year, however, because the number of family units increased by nearly half a million.

In 1953 , the average was $\$ 5,372$ before taxes, and the median income was $\$ 4,410 .^{2}$ After-tax income in 1953 averaged $\$ 4,778$. The Federal income tax liability ${ }^{3}$ of the 50.5 million family units (families and unattached individuals) was about 11 percent. Compared with 1929, average real income measured in constant dollars has increased roughly 30 percent; 40 percent on a per capita basis, reflecting the smaller size of family.

The 1953 distribution of family income may be regarded as representative of the consumer market in 1954. This is suggested by the similarity of the income figures for the 2 years, both the aggregate and the average, and by the stability in the relative distribution of income during 1947-53, one of the report's major findings. The impact of the Federal income tax was smaller in 1954 than in the previous year, because of amendments to the tax code and reductions averaging 10 percent in tax rates.

Income Trends, 1947-53

Between 1947 and 1953, the average current dollar income of American families increased 30 percent. Aggregate family income rose 50 percent. The dollar increases, reflecting in part the rise in prices, were widely distributed among families. The upward shift of real family incomes was more moderate; the average increased 10 percent and the aggregate, both before and after taxes, 25 percent.

The distribution of before-tax incomes received by successive fifths of family units was essentially stable during 1947-53. This was also true on an after-tax basis, in 1950 to 1953, the only years for which such estimates have been prepared. At the
same time, the distribution as a whole has shifted upward along with the rise in average incomes. There was a 20 -percent decline in the number of families receiving below $\$ 4,000$, while the number with incomes in excess of that figure rose by more than 70 percent. The total income received by families averaging above $\$ 4,000$ increased over 80 percent.

Income Concentration

In 1953, the largest concentration of families was found in the middle-income ranges, while the lower brackets likewise showed considerable numbers of consumer units. The greatest number of families- 7.4 million-were in the $\$ 3,000$ to $\$ 4,000$ range, but about 7 million each were in the two next highest brackets. More than 40 percent of the 50.5 million consumer units received between $\$ 3,000$ and $\$ 6,000$; almost 30 percent exceeded $\$ 6,000$; about another 30 percent had less than $\$ 3,000$.

The distribution of total income by $\$ 1,000$ intervals showed the greatest concentration (13 percent of total income) in the $\$ 5,000-\$ 6,000$ group (in 1947, in the $\$ 3,000-\$ 4,000$ group). A substantial proportion, also, went to families in the ranges close to that interval, and families with incomes between $\$ 3,000$ and $\$ 7,000$ accounted for 45 percent of aggregate family income. Onefourth of the total went to the 7 percent of families with incomes of $\$ 10,000$ and over. Families with

[^33]incomes below $\$ 2,300$ constituted the lowest fifth of the consumer units, deriving about 5 percent of total before-tax income. The next two fifths ($\$ 2,300-\$ 3,750$ and $\$ 3,750-\$ 5,130$) accounted for proportions of before-tax income that were smaller than the relative number of families. The remaining two groups ($\$ 5,130-\$ 7,050$ and $\$ 7,050$ and over) received a larger than proportionate share, with the top fifth having almost 45 percent of the income total. Thus, the upper income ranges accounted for a much larger proportion of the consumer market in terms of incomes than in terms of number of families.

The more than 35.5 million nonfarm families, with a $\$ 6,390$ average income, received 84 percent of total income in 1953. Moreover, the proportion of nonfarm families having middle and higher incomes was much above the proportion for the approximately 5.5 million farm operator families (tenant or owner) or the 9.5 million unattached individuals (persons not living with relatives). Only 6 percent of the nonfarm families had personal incomes under $\$ 2,000$, and fewer than 30 percent had incomes under $\$ 4,000$. In contrast, the corresponding figures for farm families were 37 and 72 percent, respectively; for individuals, 46 and 83 percent. Although higher than in most other postwar years, the $\$ 3,460$ average income of farm operator families was below the 1951 peak. The year 1953 found relatively more families concentrated at the lower income levels- 37 percent whose incomes fell below $\$ 2,000$, compared with 31 percent in 1951.

Differences in circumstances affect the comparative distributions of the nonfarm and farm operator families on the income scale. For example, "it is generally agreed that price levels are somewhat lower for rural than for urban families," and farm families, on the average, are probably subject to lower effective tax rates.

Also, food and fuel produced and consumed on farms are valued at prices received by farmers, whereas valuation at retail prices would have taken some of the consumer units out of the low-income range.

Family-size data should also be considered when comparing income groups. Average family size was substantially smaller in the lowest income fifth than farther up the scale; this lowest group had the largest proportion of families without children and the family head was older, on the average. In general, family needs and responsibilities tend to be smaller at the low-income than at the higher income levels. In addition, unattached individuals as a rule require less than typical multiperson families; also, young couples and many individuals, mostly young persons, may have independent economic status in only part of a year. There is a good deal of turnover at the low-income levels, among both multiperson families and individuals, reflecting movement up and down the income scale as well as temporary sickness, unemployment, and business losses.

Income Tax Liability

Total Federal income tax liability amounted to approximately $\$ 30$ billion in $1953 .{ }^{4}$ The lowest fifth of the consumer units was responsible for 1 percent of this liability, whereas the top fifth aecounted for 64 percent. Families in the $\$ 15,000-$ and-over group received about 15 percent of before-tax income, but were responsible for about 35 percent of the Federal income tax liability. The relative share of after-tax income of the top fifth as a whole was reduced somewhat as a result of the tax.

[^34]
Technical Note

The Collection and Analysis of Collective Bargaining Agreements*

Background and Uses

Collective bargaining agreements and related documents setting forth the provisions of health, insurance, and pension plans provide a valuable source of information on industry wage practices, supplementary benefits, job and union security, the timing of wage negotiations, the nature of plant operations and working conditions, occupational wage levels, and many of the day-to-day aspects of employer-employee and union-management relationships.

The Bureau of Labor Statistics has utilized these basic industrial relations materials for public and Government informational purposes in three major ways, by (1) maintaining a file of current agreements and employee-benefit plans open to public inspection and inquiry, (2) preparing reports which reproduce representative agreement provisions or the variety of provisions relating to similar problems, or digests of selected identified agreements or benefit plans, and (3) preparing. studies measuring the prevalance and characteristics of specific types of agreement and benefit plan provisions or of other aspects of collective bargaining such as multiemployer bargaining.

The studies of agreement provisions, and health, insurance, and pension plans are of practical use to companies and unions engaged in collective bargaining, to arbitrators and factfinding boards, to administrators of company wage and industrial relations programs, and to legislators and Government officials. Persons not directly involved in collective bargaining or in related administrative functions (e. g., teachers and students of labor problems, writers for newspapers and trade and technical journals, and foreign observers) find
value in the broader aspects of employer-employee relationships revealed in these studies.

The development of industrial relations practices that are now so widely prevalent is reflected in the Bureau's studies over the years. The Bureau's interest in the collection and analysis of union agreements dates back over 50 years. ${ }^{1}$ Systematic efforts to collect agreements began in 1912. The first of a number of BLS bulletins devoted entirely to the subject of collective bargaining agreements appeared in 1925. A large number of reports and bulletins, on a wide variety of industrial relations subjects, have since been published. ${ }^{2}$

The Bureau's responsibility in the field of agreement collection and analysis received additional sanction and guidance in the Labor Management Relations Act of 1947, section 211, which reads as follows:

Sec. 211. (a) For the guidance and information of interested representatives of employers, employees, and the general public, the Bureau of Labor Statistics of the Department of Labor shall maintain a file of copies of all available collective bargaining agreements and other available agreements and actions thereunder settling or adjusting labor disputes. Such file shall be open to inspection under appropriate conditions prescribed by the Secretary of Labor, except that no specific information submitted in confidence shall be disclosed.
(b) The Bureau of Labor Statistics in the Department of Labor is authorized to furnish upon request of the [Federal Mediation and Conciliation] Service, or employers, employees, or their representatives, all available data and factual information which may aid in the settlement of any labor dispute, except that no specific information submitted in confidence shall be disclosed.

[^35]
Concepts and Scope

Collective Bargaining Agreements. Although the substance of collective bargaining rests partly upon a foundation of unwritten industry, company, and union practices, and upon various legal requirements, the basic unit in agreement collection and analysis is, of necessity, the written agreement itself. The agreement may cover a single plant, a number of plants of a multiplant company, or a number of companies, in some cases over a thousand, bound together formally or informally in an association for collective bargaining purposes. It may express conditions of employment in simple terms, leaving much of the administrative details and other matters to the day-to-day relationships between the parties, or it may attempt to cover all deteils and, thus, leave as little as possible to later bargaining or haggling. Agreements vary in size from a single sheet to over a hundred pages of a pocket-sized booklet, reflecting the diversity of employment conditions among industries and companies and of the scope of the issues over which bargaining takes place, as well as differences in the degree of precision sought and the language used.

Estimates of the number of agreements currently in effect range upwards of 100,000 . The number of workers covered by agreements is estimated to exceed 16 million. The Bureau presently maintains a file of approximately 5,000 current agreements covering about 8.5 million workers. ${ }^{3}$ All industries are represented in the file with the exception of railroads and airlines. Since railroads and airlines are required to submit copies of agreements to the National Mediation Board, the Bureau does not attempt to collect these agreements.

The Bureau's quantitative analysis of selected agreement provisions can be grouped into five major categories: (1) wage practices and supplementary benefits such as paid holidays, paid vacations, shift differentials, and premium pay of various types, (2) plant administration practices such as layoff and recall procedures, technological change provisions, and safety, (3) agreement administration procedures including grievance machinery and arbitration provisions and no-strike clauses, (4) types of union security (union shop, etc.) and checkoff systems, and (5) other characteristics of collective bargaining revealed in the
agreements, such as the scope of the bargaining units, and the term of agreements. The basic assumption underlying quantitative agreement analysis is that the variety of subjects in each of these categories can be defined, classified, and counted.

In its general analysis of agreements, as distinct from special industry studies, the Bureau is concerned with these major objectives: (1) the presentation of data by industry group and for manufacturing and nonmanufacturing as a whole, (2) the presentation of data by region or union affiliation if the subject requires it, (3) a realistic measure of representativeness in the agreements studied, and (4) the study of practices which are (as yet) relatively uncommon in collective bargaining agreements.

Since it would be prohibitively expensive for the Bureau to base its provision studies on all agreements in its file (assuming that the file was a representative sample), a selection of agreements for analysis is required. In the absence of universe data indicating the extent of collective bargaining by industry and region, precise sampling procedures and the use of weighting comparable to those used in the Bureau's occupational wage surveys are not feasible. During the past few years, the Bureau has attempted to achieve its objectives in agreement studies by means of a large selective sample of from 2,000 to 3,000 agreements. Modifications in this approach, now being made, provide for a study base comprising all agreements (approximately 1,600) covering 1,000 or more workers. ${ }^{4}$

Health, Insurance, and Pension Plans. Health, insurance, and pension plans have developed into issues of major significance in collective bargaining during the past decade. Generally, these plans are either negotiated in detail in a supplementary agreement or reference is made to their establishment in the basic contract. In the latter case, the details and documents necessary to their implementation, including trust agreements, insurance contracts, rules and regulations, and de-

[^36]scriptive booklets for distribution to employees, are subsequently developed.

It is estimated that over 11 million workers are covered by health, insurance, and pension plans under collective bargaining. In line with its general responsibility in the field of industrial relations and in keeping with the provision of the Labor Management Relations Act of 1947 cited above, the Bureau maintains a file of such plans and conducts studies dealing with their extent, scope, and characteristics. At the present time, the Bureau's plan file includes approximately 1,000 health and insurance plans and 500 pension plans, selected largely to provide broad industry, union, and regional representation.

During the past 10 years, the Bureau has conducted several studies based upon its file of benefit plans. This has become a part of the Bureau's continuing program. However, different types of studies are undertaken each year. These studies have included digests of selected plans, the analysis of plans in specific industries, and, more recently, the analysis of a selection of plans considered representative of the entire field (e. g., pension plans). At this stage of the development of collective bargaining practices and general knowledge, the Bureau's emphasis is placed on describing the terms of these relatively new elements in industrial relations rather than on measuring the prevalence of particular provisions.

Methods of Collection and Analysis

Each of the four parts of this program-the maintenance of a current file of collective bargaining agreements, the maintenance of a file of employee benefit plans under collective bargaining, the analysis of agreements, and the analysis of employee benefit plans-presents different and substantially independent methodological problems.

Collection of Agreements. The selection of agreements for the file is currently based on two guides: to maximize the opportunities for public and governmental use of the file ${ }^{5}$ and to provide a diversi-

[^37]fied collection of agreements for special reports, which the Bureau is occasionally called upon to prepare. The extent to which these objectives are fulfilled is obviously affected by the size of the file. A third guide-to construct a file which is truly representative of all agreements and thus provide a firmer basis for sound generalizations on all agree--ments-has long been a goal of the Bureau; completion of this program, however, must await more precise information on the extent of collective bargaining, by industry, by region, and by size of establishment.

The maintenance of a current file of agreements is a continuous undertaking because of two factors: (1) the typical agreement has a duration of 1 year, after which it is no longer considered current (unless notice of renewal without change has been received), and (2) submission of agreements to the Bureau is voluntary on the part of employers or unions. To allow for the ratification and the printing of new agreements, requests for copies are mailed about 2 or 3 months after the expiration date indicated in the previous agreement or upon other notice of contract change. As in other phases of the Bureau's work, the voluntary cooperation of employers and unions is of utmost importance. Any restrictions imposed by respondents on the public use of agreements are scrupulously observed by the Bureau.

To facilitate the use of the file in accordance with the types of requests customarily made, each agreement received is coded for a series of identifying features, which include: the name of the company or association and union, location, number of workers covered, industry, and effective and expiration dates.

Agreement Analysis. The Bureau's utilization of the agreements it collects has moved through different stages over the years, in pace with, or controlled by, the increasing prevalence and maturity of collective bargaining. During the early years, significant agreements were repro-duced in their entirety. With the spread of collective bargaining and the increase in the size and representative character of the Bureau's file, attention was directed toward reproducing and analyzing the variety of agreement clauses relating to the same general subject, culled from a large number of agreements. The Bureau's widely used Bulletin 908 (parts 1-19), issued during 1947,

1948, and 1949, represents its most comprehensive efforts along these lines to date. While illustrative clauses continue to be utilized in most of the Bureau's agreement studies, major emphasis during recent years has been devoted to measuring the prevalence and characteristics of particular provisions and of types and levels of benefits. It is in this kind of analysis that problems relating to sampling and techniques of coding and analysis come to the fore.

The number of agreements studied and the method of analysis bear directly upon each other; together, they control the nature of the Bureau's studies in this field. In a small sample study (e. g., 300-400 agreements) there are virtually no inherent limitations on the intensity and the scope of the analysis. Many shadings of agreement terms can be conveniently handled. A large sample (e. g., 1,500-2,000 agreements) requires machine tabulation techniques if the cost of analysis is not to be prohibitive. However, machine tabulation for agreement analysis has its limitations. Thus, if the size of the sample is such as to make machine tabulation an advantage or a necessity, some of the flexibility and thoroughness possible under so-called "hand" analysis must be sacrificed.

In 1948 and 1949, when the Bureau's file consisted of more than 12,000 agreements and the potentialities of machine tabulation techniques for agreement analysis were first explored, it was decided that a sample of 3,000 agreements would be feasible. The selection of specific agreements was based on a number of factors, including industry, worker coverage, location, union, and bargaining practices. Limited data upon which to base a representative selection of agreements was compensated for, at least in part, by extensive experience with collective bargaining practices on the part of the sample selectors.

During subsequent years, however, available staff resources were not sufficient to deal with a sample of this size. The reconstitution of a sample of 1,500 to 2,000 agreements, which had become the maximum workload and the installation of appropriate safeguards against deterioration were rejected as being beyond the resources of the staff and the available data. The most advantageous alternative, considering all things, was to base the agreement studies on all agreements above a
predetermined size of worker coverage and, thus, to avoid sampling. It is estimated that agreements covering 1,000 or more workers number approximately 1,600 . The Bureau's file already contains almost all of these; the Bureau's Monthly Report on Current Wage Developments is a ready source of information on those that are not included. The total number of workers covered by these 1,600 agreements is in excess of 7.5 million, representing a very substantial worker coverage in agreement studies. The number of establishments covered is not known. ${ }^{6}$

A key analysis list containing all agreements covering 1,000 or more workers, while not the ideal coverage, has definite advantages: (1) it achieves maximum worker coverage in the studies for a given investment of staff resources, (2) it provides a simple, objective measure of the coverage of the studies, (3) it permits the presentation of various combinations and breakdowns of the data without the necessity of complicated weighting schemes and without the bias resulting from the lack of proper weighting, (4) it is safeguarded against obsolescence since the Bureau is best able to keep abreast of changes in agreements of this size, and (5) it has a significant meaning to users of these studies. Further experience will presumably reveal any shortcomings in this approach. ${ }^{7}$

The use of machine tabulation techniques in large-scale statistical work is so commonplace in Government and private industry that it ordinarily merits little comment in describing a Bureau program. However, the use of machine tabulation techniques for the type of research exemplified by agreement analysis is believed to be quite uncommon. The distinguishing feature of agreement analysis is that it deals mainly with legalistic language, which requires interpretation, rather than with numbers or other universal, sharply defined attributes. The process of analysis with the use of machine tabulation consists of interpreting provisions, reducing them to numbers

[^38](codes), aggregating the numbers, and converting the aggregates back to types of provisions and prevalence. Data are presented in terms of number of agreements and number of workers covered. Since agreement provisions on the whole are notable more for their variety of expression and details than for their uniformity, the process of analysis, particularly when done by machine, becomes a simplification process by which some of the original content and variety is lost. Under such circumstances, the preplanning of studies acquires a special importance if significant differences are not to be buried.

The keystone of agreement analysis study is obviously the interpretation of the agreement and the assignment of the predetermined code number. For some subjects, an agreement must be read in its entirety; for others, only a portion. Long and legalistic provisions must be reduced to their essentials. Since the interpretation of agreement provisions is often a troublesome matter for the parties themselves (as reflected in the widespread adoption of provisions for arbitration), misinterpretations undoubtedly occur. These are kept to a minimum by a staff experienced in agreement analysis and by continuous efforts to assure consistency of interpretations.

Under present conditions, approximately 5 or 6 agreement provision studies are planned per year. Over a period of 4 or 5 years most of the significant provisions are covered. As agreements are received, they are coded for each item being studied; hence each agreement is generally handled only once. Coding over a period of a year accounts for the bulk of the current agreements (those with a 1 -year term); thus it generally takes a minimum of a year from the start of a survey to the end of coding. Preparing tabulations and analyzing the results follow. As one study nears conclusion, another is readied to take its place.

Health, Insurance, and Pension Plans. Different techniques of collection and analysis are used for health, insurance, and pension plans. This is due, in large part, to the relatively recent spread of employee-benefit plans and to the Bureau's allocation of resources as between agreement and plan files and studies. There are, however, other factors which tend to complicate the collection

[^39]of employee-benefit plans. In the first place, these plans, as negotiated, frequently have no expiration dates or precise reopening dates as do agreements. Employee-benefit plans are generally established as long-range undertakings, although they are, perhaps, dependent upon the continuance of collective bargaining relationships. Secondly, employee-benefit plans, particularly health and insurance plans, are subject to more frequent modification than are basic agreements. These changes may come about through such factors as: adjustments to changing costs or premium rates, recognition of the inadequacy or superfluity of particular benefits, substitution of benefits, and changing legal requirements and benefits. Revisions may be made through action of the trustees or through mutual understanding or negotiations between the parties. Since many changes can be made within the cost limitations agreed to in collective bargaining, the process tends to be far less formal than negotiating changes in the basic agreement, which are usually permitted only at specified times.

Because of the frequency of change, it is difficult to maintain the employee-benefit plan file on a current basis. The Bureau's present practice is to request copies of changed or new plans once a year or upon learning of a change through various informational sources such as the Bureau's Monthly Report on Current Wage Developments and the commercial services in this field. When a sample of plans is selected for an analyticalstudy, each plan is checked for currency before analysis is begun.

The Bureau's study of pension plans under collective bargaining, ${ }^{8}$ represents its most comprehensive analysis of such plans to date. The study was based on a selection of 300 current plans from the Bureau's file, chosen to represent various industries, unions, and types of plans, and covered such provisions as vesting, compulsory retirement, and types and levels of benefits. Machine tabulation techniques were not applied to this study, mainly because the small size of the sample and the complexity and variety of the plans studied were more adaptable to so-called "hand" tabulation and a flexible approach.

The Bureau's work in employee-benefit plan analysis has yet to exploit fully the potentialities of analysis applicable to this area of study. How-
ever, as in the case of agreement analysis, the controlling factors are the nature of the public demand for information, as gaged by the Bureau, and the limitations of staff resources.

Limitations

The limitations of these studies of agreement provisions and employee-benefit plans are determined, in large part, by their application. For studies of paid holiday provisions or other supplementary benefits, the fact that these studies cover only the area of collective bargaining may constitute a limitation on generalizations applying to all workers but not necessarily on their uses in collective bargaining or in wage and employee administration. On the other hand, these studies do not show locality practice, which may reduce their usefulness for some collective bargaining purposes but not for broad generalizations relating to workers under collective bargaining.

Additional limitations of agreement provision studies are inherent in the selection of agreements for study-the exclusion of railroad and airline agreements and, under the revised approach, of agreements covering fewer than 1,000 workersand in the technique of analysis, as indicated previously. There are also limitations connected with the particular subjects studied, which are pointed out in each study, e. g., the effect of legislation on union security provisions. ${ }^{9}$ A fundamental limitation which must be borne in mind in connection with certain studies (e. g., grievance procedure) is that they relate to written policy. Practices which are not provided for in the agreements but are, instead, matters of company policy going beyond the agreement, traditional industry policy, informal acceptance by management and unions, or arbitrators' decisions, can be neither detected nor measured in agreement analysis.

[^40]
Significant Decisions in Labor Cases'

Labor Relations

Union's Right to Recover Wages for Members. The Supreme Court of the United States held ${ }^{2}$ that a labor union could not sue in the Federal courts to recover wages allegedly due workers under the terms of a collective bargaining agreement.

On one workday, four-fifths of the approximately 5,000 employees covered by the agreement remained away from work. The employer deducted their wages for that day. Thereupon, the union brought suit in a Federal district court to compel payment of these wages, claiming that the collective bargaining agreement obligated the employer to pay full salary to these employees during the month, even though they missed a day's work, unless the absence was due to a "furlough" or "leave of absence." (The individual employees were not named or made parties to the suit.)

The Supreme Court reviewed extensively certain questions as to the constitutionality of section 301 of the Labor Management Relations Act. In order to avoid the serious problems which were presented, the court used the process of limiting the application of the section. There was no indication, the court held, in the legislative history of the act that Congress meant to open the Federal courts to a potential flood of grievances based on an employer's failure to comply with the terms of a collective agreement. In cases like this, individual causes of action are involved. These rights of employees have always been enforceable in State courts, the court said. Thus, the court concluded that Congress did not intend to burden the Federal courts with suits of this type.

Federal Jurisdiction and State Court Action. The Supreme Court of the United States upheld ${ }^{3}$ the ruling of a Federal district court which had denied an injunction sought by the union against a State court. The employer had obtained an injunction in the State court against picketing by his employ-
ees. The union alleged in the district court that the State court had no authority to take this action because it involved questions under the LMRA and was exclusively a Federal problem.

The Supreme Court noted that the act was applicable in this case, but it held that the district court had no power to enjoin the proceedings in the State Court, at the request of the union. The Federal court could act if the National Labor Relations Board were to request such an injunction, after issuing a complaint on the facts. The power of a Federal court to enjoin State court proceedings is limited by statute, ${ }^{4}$ the High Court observed, noting that this case does not come within certain statutory exceptions.

Traditionally, the Supreme Court stated, Congress has evidenced confidence in the State courts, reinforced by a desire to avoid direct conflicts between the two systems of courts. There is no indication that State courts have not or will not recognize the dividing line between Federal and State authority, and decline jurisdiction over exclusively Federal problems. ${ }^{5}$ The Supreme Court noted that under certain circumstances, where in bad faith an employer goes into a State court complaining of conduct which is obviously covered by the act, the Board holds such action to be an unfair labor practice.

The Supreme Court concluded by stating that until Congress legislates on the subject, there is bound to be a shadowy area between State and Federal authority touching industrial relations wherein State litigation could run its course, with potential High Court review.
State Court Jurisdiction. The Supreme Court of the United States overruled ${ }^{6}$ a decision of the Missouri Supreme Court on the ground that the State court had no jurisdiction over the subject matter of the case, which involved a jurisdictional dispute.

[^41]Negotiations during the dispute over assignment of work at the employer's brewery had broken down and a strike had occurred. Thereupon, the employer filed unfair labor practice charges against 1 of the 2 unions involved with the Board, alleging a violation of section 8 (b) (4) (D) of the act. The Board found that no dispute existed under that section ${ }^{7}$ and dismissed the complaint. Meantime, the employer obtained an injunction against the union in a State court, alleging violations of sections 8 (b) (4) (A), (B), and (D) of the act and of the State restraint-oftrade laws, which was upheld by the State supreme court. ${ }^{8}$

The Union then appealed the decision to the Supreme Court of the United States, challenging the State court's jurisdiction to issue the injunction. The High Court noted at the outset that there was considerable controversy over the respective limits of Federal and State jurisdiction in cases of this type. The problem presented to the State courts is not an easy one, the court emphasized, especially where no clear "unfair labor practice" is shown in a particular case. The LMRA leaves much to the States, although Congress has not said how much, and many of the problems which arise can be settled only in the course of litigation.

In this case the Board ruled only on the question of a violation of section 8 (b) (4) (D), which prohibits secondary boycotts resulting from jurisdictional disputes. This being the only section mentioned in the complaint, it was the only point on which the Board could rule; its decision did not constitute a determination that no unfair labor practice existed. Alleged violations of sections 8 (b) (4) (D) and (B), whieh outlaw secondary boycotts as a means of obtaining recognition, were ruled upon by the State court, but, the High Court said, the point is that the Board, and not the State court, is empowered to pass upon such issues in the first instance. Where the facts reasonably bring the controversy within the sections of the LMRA prohibiting these practices, and where the conduct, if not prohibited by the Federal act, may reasonably be deemed to come within the protection afforded by that act, the State court must decline jurisdiction. Thisholds true, the court said, even though the ground of State intervention-restraint-of-trade laws in this
case-is different from that on which Federal supremacy has been exercised.

Union Campaign Tactics-Misrepresentation. The Board, after holding an election, certified ${ }^{9}$ the union over the employer's objections. The employer maintained that, at a union meeting on the night before the election, the union made misrepresentations to the employees and that, in a campaign pamphlet, the union falsely claimed to have received pledge cards from a majority of the employees. The Board, while not condoning such conduct, held that there was no forged campaign material or other campaign trickery such as to mislead the employees and prevent their exercise of a free choice so that its previous rule in Merck and Co. applied. ${ }^{10}$

The employer contended that the Peerless Plywood rule, ${ }^{11}$ prohibiting speeches to employees on company time and property during the 24 -hour period before an election, did not give him opportunity to answer the union's statements. The Board rejected this view on the ground that the employer could speak as he chose, off the company property, if the employees' attendance was voluntary and on their own time. The Board further pointed out that the Peerless Plywood rule does not prohibit the circulation of literature or other forms of campaign propaganda.

Permissible Union Campaign Tactics. The Board held ${ }^{12}$ that the union had not violated the LMRA during the 2 -month period immediately preceding an election by obtaining cards signed by employees which contained a pledge to vote for the union in case a Board-conducted election was held.

The employer argued that, inasmuch as the employees were never released from this pledge, they could not have been free to make a choice in the election. The Board found no indication that these employees had been coerced or threatened to obtain their signatures on the cards and, because their free choice was safeguarded by a secret ballot election, held that the cards in and of them-

[^42]selves were not indicative of the employees' intent to vote for the union. Solicitation of these pledges, the Board concluded, was a permissible campaign tactic.

Discrimination. The Board held ${ }^{13}$ that the employer violated the act by entering into a preferential hiring agreement with the union, and discriminating against an employee on account of that agreement. The contract provided that all work coming under the jurisdiction of the local union must be done by union members.

An applicant for employment was told on three occasions that he had to obtain a permit and clearance from the union before he could be hired, and on one occasion he was laid off because he did not have a union permit. The union refused to refer this man to permanent jobs because such work was not given to nonunion men.

Accordingly, the trial examiner found that the employer had violated sections 8 (a) (1) and 8 (a) (3), not only by discriminating against the applicant, but by entering into the illegal contract in the first place. The Board, however, rejected the latter finding, as no such violation had been alleged by the Board's General Counsel. However, the Board agreed with the finding that the employer was in violation for refusing to hire and discriminating against the applicant. Also, the union was held to be in violation of sections 8 (b) (1) (A) and 8 (b) (2).

Illegal Union Security Contract Clause. The Board found ${ }^{14}$ that the union and employer were in violation of the act, by reason of an illegal unionsecurity agreement and of causing the discharge under the agreement's terms of an employee for alleged nonpayment of union dues.

The agreement provided, among other things, that an employee who was separated from the bargaining unit, at a time when he was a duespaying member of the Union, was to resume paying dues immediately upon reemployment in the bargaining unit. Since a new employee could not,

[^43]under the act, be required to do the same thing, and since a rehired employee is in the position of a new employee, the Board ruled that the clause was discriminatory and illegal. By having maintained this clause in effect during the period covered, the union and the company violated sections 8 (b) (1) (A) and 8 (b) (2).

Moreover, when the Board viewed the agreement as a whole, it found the lawful parts so interwoven with the unlawful ones as to be tainted with that illegality. Therefore, the discharge of an employee at the request of the union because of alleged nonpayment of dues was also in violation of sections 8 (a) (1) and 8 (b) (1) (A).

NLRB Jurisdiction-General Contractor. The Board assumed jurisdiction ${ }^{15}$ in an unfair labor practice case, finding that the employer-a general construction contractor-met its jurisdictional requirements even though his own purchases of materials and equipment did not amount to the prescribed total.

The employer had a contract to build a hospital, at a price of around $\$ 1,250,000$. Because he subcontracted the electrical, plumbing, heating, plastering, flooring, roofing, tiling, and acoustical work, his direct purchases of materials did not meet the Board's "direct inflow" requirement of $\$ 500,000 .{ }^{16}$ However, during the previous year, over $\$ 1,000,000$ worth of supplies and equipmentmore than half of them shipped in interstate com-merce-were used on the job, including substantial purchases by the various subcontractors. Therefore, on the theory that the employer was solely responsible for the performance and completion of the job, the Board held that it would consider the total amount of purchases by both the employer and his subcontractors and found that, under those circumstances, its jurisdictional standards were met.

Unemployment Compensation

Discharge During a Labor Dispute. After a walkout of his first-shift employees, an employer locked the plant gates and sent letters to all of his employees discharging them. As to claimants who were not involved in the walkout, the Wisconsin Supreme Court held ${ }^{17}$ that they were entitled to
benefits after receipt of the letters, because their unemployment was then no longer due to a labor dispute.

Availability—Part-time Work. Under the New Jersey unemployment compensation law, a claimant may restrict his availability to part-time work if he worked part-time during a substantial portion of his base year and if there is a sufficient amount of suitable work in the locality to justify the limitation. The New Jersey Supreme Court held ${ }^{18}$ that a "sufficient amount" of such work exists in a claimant's work area if there is a labor market for part-time workers, and that the law does not require that there be a certain number of actual job vacancies.

Voluntary Quit-Burden of Proof. Claimant left his employment because of lack of work, having been told that he would be called when more work was available. A Michigan circuit court held, ${ }^{19}$ reversing the Appeal Board of the Michigan Unemployment Compensation Commission that the burden of proof is upon the employer to establish the claimant's disqualification for voluntarily leaving without good cause attributable to the employer, and this burden the employer failed to sustain.

Abuse of Discretion. Where claimant, relying upon the accuracy of information given to her in a conversation with a Michigan Unemployment Compensation Commission employee, failed to protest a disqualification determination until after the appeal period had expired and the appeal was denied by the commission, a Michigan circuit court held ${ }^{20}$ that the commission abused its discretion in not hearing the appeal. In sworn testimony the claimant stated that she had been misled by the erroneous information; the commission introduced its records to show that the conversation never occurred, presumably on the theory that if such a conversation had taken place it would have been so annotated in the records. In such a situation, the court stated, the sworn positive testimony must prevail over testimony which is purely negative.

[^44]
Wages and Hours

Basis for Wage Determinations. The Federal district court for the District of Columbia ruled ${ }^{21}$ invalid a minimum wage determination by the Secretary of Labor fixing a single minimum wage rate throughout the cotton, silk, and synthetictextile industry for employees performing work subject to the Walsh-Healey Public Contracts Act.

The order of the Secretary had been issued pursuant to section 1 (b) of the act, which requires Government contractors subject to its terms to pay not less than the minimum wage determined by the Secretary of Labor "to be the prevailing minimum wages for persons employed on similar work or in the particular or similar industries or groups of industries currently operating in the locality in which the materials, supplies, articles, or equipment are to be manufactured or furnished under said contract." Members of the industry attacked the Secretary's order upon the ground that the language cited does not authorize the Secretary to fix prevailing minimum wage rates for a particular industry on a nationwide basis.

The court rejected the Secretary's contention that the "locality" test applies only to the last of the three alternatives in section 1 (b)-"similar industries or groups of industries"-and ruled that the phrase containing the "locality" test related back to all three alternatives provided by the section. In making this ruling, the court acknowledged that there is "some ambiguity" in the statute and that it is difficult to construe "according to strict grammatical requirements."
Having ruled that the "locality" test must be met in wage orders issued under section 1 (b), the court then decided that nationwide wage determinations are invalid because the entire United States cannot reasonably be construed as a "locality." To do so, the court concluded, "would be to place a tortured interpretation and attach a distorted meaning to a simple English word."

Although impressed by arguments that administrative difficulties might result if nationwide determinations are not permitted and of the desirability of nationwide determinations from a social and economic viewpoint, the court commented that such arguments should be addressed to the Congress and not to the courts.

Chronology of Recent Labor Events

April 1, 1955

The Oil, Chemical, and Atomic Workers (CIO), the Colgate Independent Union, and the AFL Chemical Workers won an $8 \frac{1}{2}$-cent increase for about 4,450 employees of ColgatePalmolive Co., after a 19-day jointly conducted strike in the company's plants in Kansas City, Kans., Jeffersonville, Ind., and Jersey City, N. J.

The Federal district court for Maine, in United Textile Workers of America, AFL, Local 1802, et al. v. GoodallSanford, Inc., holding that Federal courts have jurisdiction, under section 301 of the Taft-Hartley Act, to restrain violation of a collective bargaining agreement, enjoined the employer for terminating the employment of workers for any reason not specified in the contract. The employer had indicated his intention of removing from his payroll records the names of 1,800 workers already in layoff status, on the ground that the department in which they had worked had been completely shut down and would not reopen, having previously taken similar action with respect to 1,400 workers. The union, alleging breach of contract, had requested that the dispute be submitted to arbitration under the agreement terms.

April 4

The Supreme Court of the United States ruled (5-3) in Amalgamated Clothing Workers et al. v. Richman Brothers, that Federal courts may not interfere in State court proceedings in matters subject to the Taft-Hartley Act, except upon the request of the National Labor Relations Board pursuant to an unfair labor practice complaint. The union had sought relief in a Federal court from a State court injunction against peaceful organizational picketing of the company's retail stores in 16 States.

The Supreme Court in the case of General Drivers . . . Local 89 et al. v. American Tobacco Co., reversed a State court decision ordering members of the union to cross a picket line at the company's Louisville, Ky., plant. The union argued that the Taft-Hartley Act does not make it illegal for an employee to refuse to "enter on the premises" of a struck employer.

The Federal district court in Washington, D. C., ruled that the provision of the Walsh-Healey (Public Contracts) Act requiring the Secretary of Labor to base minimum wage determinations on wages for similar work in industries "currently operating in the locality" did not permit him to
set minimum wages on a nationwide basis. The decision, in the case of Covington Mills et al. v. Mitchell, declared invalid a wage determination for the cotton-textile industry (see Chron. item for Jan. 15, 1953, MLR, Mar. 1953).

April 6

The Governor of Kansas signed an act amending the State Labor Relations Act, effective July 1, 1955, requiring prior approval of strike action and union-shop agreements by a majority of the employees concerned and outlawing jurisdictional strikes and secondary boycotts.

April 7

Unlicensed West Coast seamen, including about 2,500 formerly represented by the National Union of Marine Cooks and Stewards which was barred from the ballot (see Chron. item for Feb. 25, 1955, MLR, Apr. 1955) voted in an NLRB representation election, 3,931 for the Seafarers International Union (AFL) against 1,064 for the International Longshoremen's and Warehousemen's Union (Ind.).

The United Rubber Workers (CIO) ended a 1-week strike affecting approximately 35,000 employees of 19 plants of the United States Rubber Co., after reaching agreement on a new 2-year contract. The agreement, signed the following day, provided liberalized vacation (for some workers) and holiday benefits. Wages, pensions, and welfare benefits were not involved.

April 11

The Supreme Court of the United States denied review in the case of Whitin Machine Works v. NLRB thereby, in effect, upholding the NLRB ruling that a union is entitled to receive from an employer essential wage data for collective bargaining, including a list of the names and wage rates of employees in the bargaining unit (see Chron. item for June 28, 1954, MLR, Aug. 1954).

April 15

The CIO Textile Workers Union and 5 Fall River, Mass., mills agreed to renew prevailing contracts, and 36 other New England mills followed suit.

On April 16, the union called a strike of approximately 23,000 workers at 23 additional mills, rejecting company proposals to reduce wages and welfare benefits.

On April 30, the union and the Bates Manufacturing Co., with 5 plants employing 6,000 workers closed by the strike, renewed their contract for 3 years, with the proviso that it be amended to accord with settlement terms reached at other major mills involved in the strike.

April 18

The Supreme Court of the United States refused to review an appellate court decision, in Pellicer v. Brotherhood of

Railway and Steamship Clerks . . . et al., that a collective bargaining contract which modified seniority rights by integrating Negro with other employees did not discriminate against white workers.

April 20

The Governor of Minnesota signed a fair employment practices act forbidding employers (of more than eight persons), unions, and employment agencies to discriminate against workers on the basis of race, creed, color, religion, or national origin and creating a commission with powers to issue enforceable cease-and-desist orders.

April 22

The Federal court of appeals at St. Louis, in Lion Oil Co. v. NLRB, declining to enforce the Board's order (see Chron. item for Aug. 5, 1954, MLR, Oct. 1954), held that a union could not legally strike after expiration of a 60 -day notice of demands for contract modifications because this notice did not satisfy the termination notice requirements of the Taft-Hartley Act or of the contract in question. The agreement specified that, if the parties failed to agree on amendments within the 60-day notice period, either could terminate by giving the other a 60 -day termination notice. (Source: Labor Relations Reporter, May 2, 1955, 36 LRRM, p. 2037.)

April 25

The Supreme Court of the United States upheld a lower court's decision in Local 175, International Brotherhood of Electrical Workers (AFL) v. United States of America that a union violated the Sherman Antitrust Act by conspiring with contractors to allocate contractors jobs, fix prices, and bid collusively on contracts. The lower court had
held that the Clayton Act granted labor organizations immunity from antitrust prosecution only in actions involving terms and conditions of employment.

The Masters, Mates and Pilots (AFL) signed a new contract retroactive to October 28, 1954, with 11 railroads, providing a $3 \frac{1}{2}$-percent wage increase (2 cents of this amount in lieu of health and welfare benefits) for the ferryboat and tugboat captains and deckhands employed at railroad terminals in the port of New York.

April 28

The Secretary of Labor found 8 small Tennessee coal mines in violation of the Walsh-Healey Act's safety standards and, unless compliance is proven within 20 days, will bar them from Government contracts. This act, used for the first time to enforce safety in coal mining, provides the only protection to workers in mines having fewer than 15 employees.

April 29

The CIO Electrical Workers reached agreement with the Philco Corp. providing a 5 -cent-an-hour wage increase and an increase of 2 cents for an established severance pay plan for over 8,000 employees at 2 Philadelphia plants. The contract also guarantees injured employees drawing workmen's compensation benefits 80 percent of their average earnings and creates a review committee on problems arising from the installation of automatic machinery.

April 30

President Eisenhower laid the cornerstone of the new $\$ 31 / 2$-million national headquarters of the American Federation of Labor in Washington, D. C.

Developments in Industrial Relations'

Strike idleness during April reached higher levels than at any time during the first quarter of 1955, with the southern railroad and telephone strikes continuing throughout the month and other large stoppages occurring in textiles, electronics, and rubber. A number of major settlements were negotiated by the AFL Teamsters' union. The CIO United Auto Workers began formal negotiations for new contracts, with the union's demand for a guaranteed employment plan the key issue.

In Washington, April 6, the AFL-CIO unity subcommittee agreed on most sections of a proposed constitution for the joint organization and, on May 2, leaders of the two federations agreed on the constitution, which is to be formally approved in December. Longshore and maritime unions reportedly were discussing both merger plans and differences over an experimental bulkcargo agreement which provided for somewhat reduced crews. Congressional hearings began on proposed changes in the minimum-wage and coverage provisions of the Fair Labor Standards Act.

Work Stoppages, Settlements, and Negotiations

Work Stoppages. A strike of about 23,000 cottontextile workers closed more than a score of New England mills on April 16, after the CIO Textile Workers Union, seeking renewal of present contracts, ${ }^{2}$ rejected a proposal of the employers that would reduce wages and supplementary benefits. These mills account for about half of total employment in this New England industry.

In the case of the Fall River-New Bedford group, the employers' proposals would eliminate cost-of-living escalator clauses and a 3-cent hourly wage increase currently being paid under such clauses, ${ }^{3}$ reduce vacation benefits, eliminate 5 of the existing 6 paid holidays, ${ }^{4}$ modify hospital,
surgical, sickness and accident benefits, reduce shift premiums, and eliminate retirement-separation pay. The employers contended that "the difference between labor costs in our mills and those in southern mills with whom we compete is causing the loss of jobs and pay in this area." ${ }^{5}$

Approximately 6,000 of the strikers returned to work on May 2, after Bates Manufacturing Co. and the CIO Textile Workers Union signed a 3 -year agreement covering 5 Maine mills. The settlement provided that if any wage reduction resulted from the negotiations between the union and the Fall River-New Bedford group of mills, such reduction would also apply to Bates. The union agreed to "protect" Bates against any increase in the existing North-South wage differential.
M. Lowenstein and Sons, which owns Wamsutta Mills in New Bedford, where workers are on strike against a proposed 10 -cent wage and fringe cut, reached agreement with the CIO Textile Workers Union on a 5 -cent-an-hour wage increase for approximately 2,600 workers at the Rock Hill Printing and Finishing Co. at Rock Hill, S. C.

A nationwide strike lasting about a week and involving about 35,000 employees at 19 plants of the United States Rubber Co. ended April 7, when the company and the CIO United Rubber Workers agreed on a new contract. The agreement provided for liberalized vacations, an additional paid holiday, and maintenance of pay for workers called on jury duty. Wages were not an issue.

Considerable violence and mass picketing marked the work stoppage by about 9,300 pro-duction workers at several plants of the Sperry

[^45]Gyroscope Co. in the New York area, and eventually resulted in the company's closing all plants for several days for fear of possible damage. On April 25, about 6,000 clerical, supervisory, and engineering employees returned to work, after a State Supreme Court judge signed a consent injunction under which the union pledged to limit the number of pickets. The striking employees, members of the CIO International Union of Electrical Workers, stopped work on April 19 when they failed to agree on a new contract. Before the stoppage began, the union proposed an immediate 18 -cent-an-hour package increase; the company offered a 12 -cent wage increase to be spread over a 3 -year period.

A 3 -day wildcat strike of 400 brakemen and conductors employed by the South Buffalo Railroad, a subsidiary of Bethlehem Steel Corp., reportedly idled about 18,000 employees of the Bethlehem plant at Lackawanna, N. Y., and 1,000 other railroad workers. This stoppage, apparently resulting from a wage dispute, was terminated on April 18, in compliance with a temporary court order.

The strike at the Louisville and Nashville Railroad Co. and several affiliated railroads and that at the Southern Bell Telephone and Telegraph Co., both of which began March 14, continued through April, despite repeated efforts of officials of the States affected to achieve settlements. At various localities damage to telephone equipment and railroad property was reported.

Three independent railroad brotherhoods (Railroad Trainmen, Locomotive Firemen and Enginemen, and Train Dispatchers) and the AFL Yardmasters, representing several thousand employees of the L \& N and its affiliates, actively joined in the strike against these railroads in mid-April, stating that their members were threatened with dismissal for refusal to cross the picket lines of the 10 AFL unions of nonoperating employees that had called the strike. Demands of the nonoperating unions included health and welfare benefits (the most publicized issue), premium pay for Sunday work, improved vacation provisions, and other benefits. ${ }^{6}$

The CIO Communications Workers' strike against Southern Bell was supported by about 22,000 members of the CIO Steelworkers in the Birmingham, Ala., area in a 1-day sympathy strike on April 15. However, a threatened general
strike in the Birmingham area did not develop. The Southern Bell strike stemmed from a dispute over a no-strike clause, arbitration of disputes and grievances, wages, and other issues. ${ }^{7}$

Settlements. A number of major agreements during the month were concluded by the Teamsters (AFL). One of the Nation's large mail-order and retail store chains averted a threatened strike when a memorandum of agreement was signed between this union and Montgomery Ward on March 31. The agreement calls for the execution of labor contracts for 9 Montgomery Ward warehouses, employing approximately 15,000 workers, within 60 days. It was expected that wage increases would be provided for those employees who had not received increases granted unilaterally by the company last November. The agreement was reached during a spirited contest over control of company management. Charges that Montgomery Ward management had reached the agreement with the union in return for its votes in the stockholders' proxy fight were denied by company and union spokesmen.

Wage increases ranging from 7 to 10 cents an hour and improved vacation clauses were agreed to by the California Processors and Growers Association and the Cannery Workers Union, affiliated with the AFL Teamsters. The new 1-year contract covers approximately 55,000 workers, at the season's peak. The union reached agreement with 21 Northern California frozen food packing companies for similar wage increases and additional fringe benefits, affecting 2,500 workers.

A reduction in the workweek from $37 \frac{1}{2}$ to 35 hours, with maintenance of weekly pay; a further 6 -cent hourly wage increase; a guaranteed workweek; and improved vacation, health, and welfare benefits were provided in a statewide contract for about 7,000 brewery workers in California, signed by the Teamsters and the California State Brewers Institute.

Negotiators representing about 4,450 employees of the Colgate-Palmolive Co., who are members of 3 unions, jointly obtained an $8 \frac{1}{2}$-cent-an-hour wage increase. The settlement followed renewal of negotiations after a strike which ended March 28. The 3 unions, which had rejected a lower

[^46]wage offer prior to the strike, were the Colgate Independent Union, representing 2,500 workers in New Jersey; the CIO Oil, Chemical, and Atomic Workers-representing 750 employees in Kansas; and the AFL Chemical Workers (1,200 workers in Indiana).

While the CIO Textile Workers were engaged in a strike in the New England cotton industry, they reached agreement with American Viscose Corp. on a 5 -cent-an-hour across-the-board wage increase. The new contract, announced April 27, included an additional $1 / 2$-cent an hour for "adjustment of inequities." The contract affects 11,000 workers in 7 plants in Pennsylvania, Virginia, and West Virginia.

A 5-cent-an-hour wage increase, effective April 1, 1955, and a similar increase in April 1956, were provided in a new agreement between the United Metal Trades Association, an employer group, and the Portland Metal Trades Council, which includes 7 AFL unions. The settlement covers 8,000 metal trades workers in western Oregon.

A $3 \frac{1}{2}$-percent across-the-board wage increase for deckhands and captains on ferryboats and tugboats of 11 railroads in the Port of New York was agreed to on April 25. The agreement, affecting approximately 2,000 harbor and waterfront terminal workers represented by the AFL Masters, Mates and Pilots union, is retroactive to October 28,1954 , and stipulates that 2 cents of the increase is in lieu of health and welfare insurance. The union characterized the settlement as a major victory, in that "we have broken away from the flat penny increases to percentage increases." Typically, wage adjustments for this group of employees have followed the cents-per-hour increases negotiated for many years by unions and railroad carriers.
Eastern Airlines in mid-April reached agreement with the AFL Machinists on rates for mechanics and other contract improvements affecting approximately 3,500 ground service workers. The agreement is similar to the master settlement negotiated in mid-March with Capital, National, Northwest, Trans World, and United Airlines. ${ }^{8}$

Union wage scales were raised by 10 cents an hour, effective May 1, for about 25,000 laborers employed in the northern California construction industry. The new basic rate of $\$ 2.175$ an hour

[^47]was agreed to by the Northern and Central California Chapters of the Associated General Contractors of America and the AFL Hod Carriers and Laborers.

An unusual settlement involving the International Resistance Co. of Philadelphia, Pa., and the International Union of Electrical Workers (CIO) provided that a 9 -cent hourly wage increase is to be placed in a union-administered trust fund as unemployment insurance. The union termed the agreement, covering about 750 workers, "the first guaranteed wage in the industry." A company official, however, said that the fund would "more properly be called an unemployment insurance fund." In the event of protracted layoff, payments would be limited to the amount in the fund. It cannot be used until April 1956.

Details of the handling of the fund are yet to be worked out by the union and company officials. If such administrative details cannot be worked out within a year, the amount accumulated will be paid as a direct 9 -cent hourly wage increase to all employees, retroactive to April 1, 1955. The International Resistance Co. is one of the largest manufacturers of electrical resistors used in radio and television sets and other appliances.

Negotiations. The United Auto Workers (CIO) began formal negotiations with General Motors Corp. on April 7, and with the Ford Motor Co. on April 12. The key issue in the bargaining, the union's demand for a guaranteed employment plan, has been described as the "most crucial" in the history of the auto industry. On April 29, the union notified General Motors that it was extending the contract, scheduled to expire on May 29, until June 7. The Ford contract expires on June 1. The Auto Workers' contracts reportedly cover about 135,000 Ford workers and 325,000 General Motors employees.

Contract discussions between the UAW and American Motors began April 13, with the company expressing the hope that a new labor contract could be worked out tailored to its own needs rather than the usual "pattern settlement." Walter Reuther, UAW president, said that the union expected to follow its usual policy of seeking the same contract terms from all car makers and parts suppliers. Late in April, the company agreed to a union request that agreements covering wages, pensions, insurance, and holiday pay,
scheduled to expire June 1 and July 1, be extended to August 12.

Meantime, at the first bargaining session, the company and the union had signed an agreement to integrate the seniority rights of about 200 Hudson workers, laid off last fall when Hudson car production was shifted from Detroit to Wisconsin, with those of regular employees in the Kenosha and Milwaukee plants. Under the previous arrangement, Hudson workers who desired to move to Wisconsin had to accept seniority immediately below that of regular Wisconsin plant employees.

Early in April, UAW officials in the union's Chrysler Department, revealed that most of the 2,000 to 2,500 workers laid off from the Chrysler Corp. Tank Plant, which is being placed on a standby basis by the Government, are to be absorbed into other Chrysler plants. The agreement may result in the "bumping" of some of Chrylser's most recently hired employees.

Negotiations between the New York Transit Authority and the Transport Workers Union (CIO) continued intermittently during the month on the union's demand for a 17 -cent-an-hour wage increase. These discussions were broken off by the TWU late in April and the union's president formally called on Governor Harriman and Mayor Wagner to intervene. Meantime, Governor Harriman had vetoed a bill that would have compelled the Transit Authority to allow any employee "the right to select a representative of his own choosing" on grievances. In a memorandum, he said the proposal was "in direct violation" of a 1954 agreement between the authority and "several employee organizations." He said exclusive rights to present grievances of hourly paid workers were held by TWU-CIO and the AFL Street, Electric Railway and Motor Coach Employees. The Governor signed new State sick-leave legislation, effective May 1, under which a transit worker will not be paid for the first day of illness, unless he is away from work at least 9 days. He also signed an act authorizing reorganization of the present 5-member unsalaried Transit Authority into a 3member full-time body, to begin operating July 1.

Direct negotiations between the Railway Conductors (Ind.) and the Nation's railroads in their dispute over graduated rates of pay ${ }^{9}$ continued during April. Late in the month, following expir-
ation of the 30-day period of status quo provided under the Railway Labor Act, the union sent strike instructions to its local officials stating, "A strike will be called on a railroad or railroads when it becomes apparent that direct negotiations with the carriers will not bring about a fair settlement." Meanwhile, carrier representatives continued joint bargaining with the Locomotive Firemen and Enginemen and the Trainmen's union, both unaffiliated, on a demand for a 28-cent-an-hour adjustment to men whose hours had been reduced to 40 a week in recent years. The Switchmen's Union (AFL) resumed negotiations with the carriers late in April on a similar demand.

Union Developments

Longshoring. The Teamsters were reported to be exploring merger, or possible mutual assistance arrangements with the International Longshoremen's Association (Ind.) ${ }^{10}$ prior to requesting the AFL executive council to expand its jurisdiction to include longshoremen. In response to a letter from the secretary-treasurer of the AFL International Brotherhood of Longshoremen ${ }^{11}$ regarding the proposed action, AFL president George Meany expressed the view that no person or group within the federation could change the decision regarding the expulsion of the now unaffiliated ILA except by formal convention action. The AFL constitution provides for suspension of any affiliate that gives "representation or recognition" to an expelled union. On May 2, the AFL executive council announced that the Teamsters' request for jurisdiction over longshoremen's work could not be granted, since the federation had chartered another organization in that field.

On the West Coast, the International Longshoremen's and Warehousemen's Union (Ind.) denied that it was planning to merge with the AFL Teamsters. Its president, Harry Bridges, emphasized at the union's 11 th biennial convention early in April that he was not planning to retire. Convention activities also included a resolution of continuing support of the ILA in its

[^48]controversy with the New York-New Jersey Waterfront Commission, and an indication that discussions regarding bargaining matters on the two coasts had been held with the ILA leadership. Later in the month, Captain David Bradley, ILA president, denied "any connection whatsoever" with the ILWU. He coupled his disclaimer with a warning that "stern disciplinary" action would be taken against "any local or any individual" which dealt with Bridges' union.

New hiring rules on the New York docks, announced early in the year, ${ }^{12}$ went into effect April 1 and union leaders early in the month headed off a treatened strike protesting the new rules. Later, union leaders prevailed upon recalcitrants to abandon an "obey-the-rules-to-theletter" policy which had resulted in a slowdown on some piers.

Meanwhile, one ILA local began an experiment in labor relations education on the docks. It undertook the schooling of its officials and shop stewards with the aim of having "better informed" union men and "improved relations" with the employers. The course, held one evening for each of 6 weeks, is administered by the New York State School of Industrial Relations and is taught by Walter Maggiolo of the Federal Mediation and Conciliation Services regional staff.

Maritime. The Seafarers' International Union, in a National Labor Relations Board election ordered last December, ${ }^{13}$ was chosen as the bargaining representative for an estimated 6,000 unlicensed seamen sailing from West Coast ports under contracts with the Pacific Maritime Association. The San Francisco office of the NLRB recommended that this AFL union be officially certified as the bargaining agent. Following announcement of election results on April 7, the ILWU-Ind, which also appeared on the ballot, urged its members in the stewards' department immediately to apply for membership in the Seafarers' union (AFL) and to change their registration in the Central Registration Office to SIU-AFL to protect their job rights.

Elsewhere, sharp differences of opinion on the plan ${ }^{14}$ proposed by Harry Lundeberg, president of

[^49]the Seafarers' International Union, under which the SIU-AFL would handle negotiations for all workers on certain bulk cargo ships, continued to divide AFL and CIO maritime unions. The American Radio Association (CIO) announced that it had reached agreement with Pacific Far East Lines-(charterer of the Tonsina, the ship now covered by the controversial contract)-to cease using the vessel at the end of its present voyage and to refrain from chartering ships under similar crew contracts.

Joseph Curran, president of the National Maritime Union (CIO), characterized the Tonsina agreement as a "bargain basement contract," and stated that such an approacb was "basically wrong" as a solution to the problems of reduced employment. Nevertheless, he urged the Seafarers' union to "join with me in reconstituting the Conference of American Maritime Unions" as an "instrument through which all legitimate maritime unions can discuss their problems and differences."

National officers of the Masters, Mates and Pilots (AFL) had voted early in April to repudiate the action of their president in walking out of the conference in mid-March. The officers of the same union had also voted to accept an invitation of the CIO Marine Engineers to resume negotiations for a merger of "all non-Communist licensed merchant marine officers" into one labor union.

Other Developments

Legislation. The Secretary of Labor, appearing before the Labor Subcommittee of the Senate Committee on Labor and Public Welfare recommended that Congress raise the minimum wage from 75 to 90 cents an hour and consider extension of coverage to multistate retail establishments and to intrastate employees of firms principally engaged in the interstate field. In a news conference late in April the President emphasized the desirability of bringing more workers under the Fair Labor Standards Act. Leaders of the AFL, CIO, and affiliated unions urged the adoption of a $\$ 1.25$ minimum wage as well as coverage for additional groups of workers. The Chamber of Commerce of the United States opposed the proposal to raise the minimum wage, holding that an increase to 90 cents would have "disemploying effects" and
also raise costs and prices to consumers. It also expressed opposition to bringing more workers under the law.

Court Actions. A permanent injunction barring the Secretary of Labor from setting industrywide minimum wages on Federal contracts in the textile industry was granted by the Federal district court of the District of Columbia. The injunction, sought by 140 textile mills, ${ }^{15}$ principally in the South, affects enforcement of rulings under the Walsh-Healey (Public Contracts) Act. Notice of appeal was filed by the Government.

The United States Supreme Court on April 11 let stand a ruling of the National Labor Relations Board, previously upheld by the Federal court of appeals in Richmond, Va., that an employer must furnish the names and wage rates of his employees if the union requests such information in negotiations. The dispute involved the Whitin Machine Works of Charlotte, N. C., and the CIO Steelworkers.

The procedure of settling contract disputes in the Pennsylvania hard coal mining industry through the machinery of the Anthracite Board of Conciliation-the Nation's oldest continuing industrial arbitration agency-was sustained April 6 in a decision of the Lackawanna (Pa.) County Court. The legal action by the Moffat Coal Co. was described as the first attempt by either party to challenge the authority of the 52 -year-old board. The company had requested a court order to vacate a decision by the board's umpire directing renegotiation of schedules setting local rates for 4 collieries of the company and a subsidiary. Vice president Thomas Kennedy of the United Mine

Workers (Ind.) stated that the action, if successful, would "destroy the very foundation of peaceful and orderly adjustment of grievances in the anthracite industry."

Antitrust. The Federal Trade Commission in midApril filed a restraint of trade complaint against the Ladies' Garment Workers' Union and the Teamsters, both AFL affiliates, and 3 Los Angeles area trade associations-The California Sportswear \& Dress Association, Associated Sportswear Manufacturers, and the California Apparel Contractors Association. The commission charged that the associations and unions had entered into a series of collective agreements to "control 20 percent of the [national women's sportswear] industry." The agreements, the complaint stated, "have a dangerous tendency to unduly hinder competition, restrain trade, and create a monopoly in . . . women's sportswear." The ILGWU denounced the FTC charges as "a complete distortion of the facts," saying, ". . . our only interest is to eliminate substandard labor conditions and guard against revival of the sweatshop practices that once characterized our industry." A public hearing on the charges is scheduled for June 14 in Los Angeles.

The Attorney General's National Committee to Study the Antitrust Laws issued its final report on March 31, culminating 19 months of study. It included a qualified recommendation for "appropriate legislation" to prohibit union activities that lessen competition-"to the extent that" such restraints exist-not "effectively curbed" by either the antitrust laws or the Taft-Hartley Act.

[^50]
Book Reviews and Notes

Special Reviews

Abstract

A Policy for Skilled Manpower. A Statement by the National Manpower Council, with Facts and Issues Prepared by the Research Staff. New York, Columbia University Press, 1954. xxvi, 299 pp., bibliography. $\$ 4.50$.

This volume calls attention to a group of workers whose critical importance for the economic well-being and mobilization potential of the Nation has been largely overlooked in the current flood of discussion and reports on the adequacy of the Nation's resources of scientific and professional manpower. It is divided into two parts. Part I is a statement by the National Manpower Coun-cil-composed of leaders from industry, labor, education, and public service-presenting recommendations for programs and policies aimed at strengthening the Nation's resources of skilled workers. Part II, entitled "Facts and Issues About Skilled Manpower," prepared by the Council's research staff, presents the factual background upon which the Council's conclusions and recommendations were based.
The Council's statement is focused upon five major long-run objectives. Under each of these are listed specific action programs that should be carried on by governmental agencies, employers, educational institutions, the Armed Forces, and other organizations and individuals whose activities influence in one way or another the development and maintenance of an effective skilled work force. For example, to strengthen the contributions of the secondary schools to the development of skilled-manpower resources, the Council recommends that State and local education officials reexamine existing vocational-education programs to make sure that they reflect the hiring standards and training programs of employers and current changes in technology. To aid in developing a more effective program for vocational guidance in
schools, the Council recommends that local education systems increase substantially and rapidly the funds and staff available for guidance and counseling purposes. To provide more equal opportunities to acquire skill, it is urged that employers and unions eliminate the practice, wherever it exists, of barring individuals from admission to apprenticeship programs because of their race or national origin. As sound policy determination must be based on accurate information, the Council recommends that "the President direct the appropriate agencies of the Government to provide periodic and comprehensive appraisals of the country's available resources of skilled and technical workers and to seek improvements in the methods of estimating future manpower requirements."
Part II, which constitutes the bulk of the book, covers such topics as the relation between skills and economic development; trends in skilled and technical manpower; education and training of skilled workers; the role of vocational guidance and counseling in creating a skilled labor force; and the influence of public policies upon skilled manpower resources. In the chapters dealing with various economic and institutional aspects of the skilled-worker problem, the research staff of the Council has assembled a comprehensive picture of the skilled work force, with emphasis on how it is trained and how it can be improved, and has pointed up the implications of this information for skilled-manpower policy. For example, its chapter on how workers become skilled, by clarifying the complex pattern of entry of workers into skilled jobs, provides a basis for properly evaluating all sources of qualified workers in developing broad programs for expanding the Nation's skilled work force. The discussion of relationship between vocational counseling and the development of an adequate skilled work force gives a fresh viewpoint on this problem.
The Manpower Council and its research staff have covered, in their consideration of the skilled work force, some workers who are commonly classified as technicians, including draftsmen, engineering aides, and medical technicians. It was believed that these workers could most effectively be included with the traditional skilledworker categories in the development of manpower policy.

This book should be of interest not only to those directly concerned with manpower policy but to
all who have any connection with training programs for skilled workers, to secondary school administrators, to guidance counselors and supervisors, and to students of labor problems. The National Manpower Council and its research staff have made a significant contribution to the determination of manpower policy by bringing together and summarizing a large amount of pertinent information on the Nation's skilled work force, and by laying out a long-range program for enlarging it and improving its utilization. The approach to the problem is broad, but the implications brought out are specific and pointed.
-Richard H. Lewis
Bureau of Labor Statistics
Pension Planning-Experience and Trends. By Walter J. Couper and Roger Vaughan. New York, Industrial Relations Counselors, Inc., 1954. 245 pp., bibliography, forms. (Industrial Relations Monograph 16.) $\$ 5$. Scientific Employee Benefit Planning: Pensions, Profit Sharing, and Stock Bonuses. By Howe P. Cochran. Boston, Little, Brown and Co., 1954. 354 pp. , forms. $\$ 10$.
"To put it rather extremely, very little credit is now given for installing a pension plan, but vigorous criticism may result from not having such a plan." This conclusion by Walter J. Couper and Roger Vaughan in their study of pension planning is based upon the new environment evolving out of collective bargaining over pension plans during the past 6 years. The study was conducted in 1952; it is the latest in a series on industrial pension systems undertaken by Industrial Relations Counselors for the guidance of employers in 1932, 1938, and 1948. With this background of experience, it is the authors' view that the growing universality of pension plans, and the legal requirement making them subject to collective bargaining, have "considerably diluted" the man-agement-sought effects which a pension plan had 10 or 20 years ago as "a powerful instrument for the improvement of employee attitudes."

The present study was undertaken to determine the effects of the application of collective bargaining and of the 1950 Social Security Act amendments on pension plans. It was restricted to current pension plans adopted prior to 1948, for the better analysis of trends since that date. The plans of 491 companies, in which $31 / 2$ million
employees out of a total of $41 / 2$ million participate, are covered. These plans apply to over a quarter of all pension-plan participants in this country and most of the major "pattern-setting" companies. However, random sampling techniques were not applied, and the authors are aware of the result that financial and related businesses receive disproportionate representation. Furthermore, only individual company plans are covered, and area and multiemployer plans, such as those of the construction or clothing industries, are not represented. The authors state that the study includes "a reasonably representative group of collectively bargained individual company plans."

A major impact of collective bargaining has been the development of noncontributory pension plans, reversing the immediately preceding trend. Equally significant has been the change from the unfunded plans of 20 years ago, which amounted to little more than "expressions of good intentions to give employees a retirement income"; today, funding arrangements are accepted as essential. Similarly, earlier plans made no provision for vesting rights either before or after retirement; now it is standard practice to provide nonforfeitable, legally binding rights, or vesting, upon retirement, and there are increasing instances in which employees who terminate employment prior to retirement are given some rights to their pension credits.

Employers are advised to proceed cautiously and with foresight in establishing plans; cut-rate plans are ill-advised, for an employer gets exactly what he pays for. The caution is repeatedly expressed that this is a field in which general answers or conclusions may not be applicable to particular cases. The general guide to the setting of benefit levels, for example, is that they should be set so that no criticism will be forthcoming from employees or the community at large. The effect of inflation on pension benefits is given some attention by the authors, and the investment of pension funds in common stock, as a device for meeting inflation, is treated at some length. Financing methods are discussed, and estimates of probable costs in varying situations are provided.

Generally, the study should prove useful to company officials considering the establishment of a pension plan. Greater currency could have been attained if case studies had been provided, particularly of the adjustments made in unilat-
erally established plans to the requirements of collective bargaining. By contrasting experience under jointly administered plans and under com-pany-administered plans made subject to the grievance machinery, the authors might have added weight to their predilection for the latter. The union role in the development and administration of pension plans, while not overlooked, received little treatment.

The volume by Howe P. Cochran is an "entirely practical book" written primarily for the lawyer, "who is sleeping while this rich field is being taken away from him." The advice provided on employee benefits plans and estate planning is also intended for insurance salesmen, accountants, bankers, and other business advisers. To the owners of closely held corporations, the author holds out the possibility of estate planning for their own families combined with a program of employee benefits, so that the latter "often costs nothing at all and frequently results in a profit."
-Joseph P. Goldberg Bureau of Labor Statistics

The Structure and Government of Labor Unions.

 By Philip Taft. Cambridge, Mass., Harvard University Press, 1954. xix, 312 pp. (Wertheim Fellowship Publications in Industrial Relations.) $\$ 6$.Professor Taft's book is a welcome addition to the growing, but still far from adequate, body of literature on the internal affairs of American unions. While four of its chapters are revised versions of articles that appeared in academic journals, the material presented in the remaining four is published for the first time. The detailed information in the volume contributes to a firmer understanding of problems involving internal union politics and conflict, membership rights and responsibilities, the way mechanisms for maintaining union discipline are used, and leadership functions and characteristics. It also illuminates some of the structural differences among American unions, and, as in the case of the unlicensed seafaring unions, presents a history of organizational developments in a field where the factors affecting unionism are unique. As it was not Professor Taft's purpose to give a systematic description or a formal analytic treatment of the structure and government of labor unions, the title of his volume may be regarded as somewhat misleading.

The student of labor will be grateful that the author undertook to dig for and to compile the data found in the chapters on "Dues, Initiation Fees, and Salaries of Union Officers" and "Discipline and Appeals in Labor Unions." The first of these provides a basis for more accurate and balanced general assertions on the subjects with which it deals. The second, a long chapter grounded primarily in an intensive examination of the records of eight unions, contains a wealth of specific information on the "civil rights" of union members, the use of sanctions against members and officers for violation of the rules touching the union and the job, and the operation of union judicial processes. The comparative treatment of the automobile and steel workers' unions and the chapter which speculates on "The Future of the Teamsters' Union" will, on the other hand, be far less rewarding to the specialist.

Two questions lie at the center of Professor Taft's concern: the role of Communist influence in American unionism and the reality of union democracy. In treating the first, he tells a story that is now more or less familiar, and reaches the conclusion that the unions have on the whole "resisted Communist infiltration and have played an important role in reducing Communist influence." The full extent of this influence, the degree to which the character of the union movement itself at the close of the 1920's and in the early 1930's facilitated Communist participation, the reasons for the persistence of centers of relative Communist strength, and the connection between racketeered and Communist unionism are problems which require fuller examination than they receive.

Professor Taft correctly emphasizes that "the degree of freedom enjoyed by the members" is a key issue in union management, and cautions against easy judgments on questions of union democracy. He finds that the monetary contributions that union members are compelled to make are, by and large, reasonable. Within appropriate limits, most union members enjoy a significant freedom for individual judgment and behavior, and do not hesitate to register complaints against their leadership. He sees a positive and continuous relationship between the actions of the union as an institution and the will of its members, and concludes that "the rights of members and their protection in the union seem
on the whole adequate." By implication, he argues throughout the volume against applying: to the union the traditional tests for political democracy, but he fails to make explicit the meaning of the concept of democracy within the context of the union as a private association.

- Henry David Columbia University

The Management Team. Edited by Edward C. Bursk. Cambridge, Mass., Harvard University Press, 1954. 221 pp. $\$ 4$.
Timestudy for Cost Control. By Phil Carroll. New York, McGraw-Hill Book Co., Inc., 1954. 301 pp., bibliography, diagrams, forms, illus. 3 d ed. $\$ 5$.
A Fair Day's Work. New York, Society for Advancement of Management, Inc., 1954. 84 pp., bibliography, charts. $\$ 10$ ($\$ 7.50$ to Society members).
Symposium on Human Factors in Equipment Design. Edited by W. F. Floyd and A. T. Welford. London, H. K. Lewis \& Co., Ltd., 1954. 132 pp., bibliographies, diagrams, illus. (Ergonomics Research Society Proceedings, Vol. II.) \$4, John de Graff, Inc., New York.
Current management considers itself a profession with a body of principles and precepts to guide its performance. Its practices are closely studied and are described in detail. To help develop this new status, business leaders have spoken and written on the purposes and methods or the general philosophy of management. The business schools of management and management associations have promoted the systematic development of this new discipline. They have organized discussion groups, courses of study, seminars, and conferences to disseminate their views and practices. The new managerial competence can no longer be acquired in a haphazard manner. New recruits have to be prepared and older members of management have to be indoctrinated in the philosophy, art, and practices of "scientific management." As a result, extensive training programs have been established. Publications report on conferences or individual experiences or provide textbooks for the practice of the new approach. Research into current practices is being conducted by universities and
associations with the hope of systematizing the knowledge and promoting the acceptance of standard practices.

These efforts have one principle in common. Their purpose is to improve the ability of business leadership to manage its individual enterprises without impairing its right to ultimate decisionmaking. Little thought is devoted to the questions of democratizing the control of business or the desirability of a business system with the professional management class controlling its destiny. The aim is to secure complete identification of the work force, including management, supervision, and other employees, with the logics and purposes of the controlling group in the enterprise.

The speeches and discussion at the 24th National Business Conference at the Harvard Business School, reported in The Management Team, were concerned with the development of such a team. In the large organization, authority must be delegated to release "the full potential of the management team." The risks in such delegation are inescapable, but satisfactory results can be obtained by maintaining central controls which check on performance but do not stifle individual initiative and growth. The controls would insure high quality of performance and conformance with management's purposes and would enable top management to select promising individuals for greater responsibilities. The volume is replete with discussions of the experience with executive delegation and control by practicing executives in many types of businesses and job relationships. One caution runs through the addresses, namely, that irrespective of the degree of delegation or control the ultimate responsibility must remain with the chief executive.

Typical of the textbooks on the application of specific managerial techniques is Phil Carroll's Timestudy for Cost Control. In this third edition, the author continues his special emphasis on the standard-data technique in preference to individual job-time studies or predetermined timemotion procedures. The standard-data approach produces time standards at lower costs and possibly of greater consistency. No claim is made for its greater validity. The procedure is explained and illustrated. The book remains a guide to the practice of the art of time study; it is
not a text for the science of the measurement of human performance.

The continued criticism of the subjectivity of the concepts of a "fair day's work" led the Society for Advancement of Management to a research project which produced a series of rating films of 24 operations. The time value for each operation is a weighted average of the times allowed by the raters (men in company groups judging the film) for the operation on the basis of qualified operators working at the rate of expected incentive attainment on an 8 -hour day. These films are now used for training time-study men and for standardizing and checking concepts of a "fair day's work." While the Society's volume, A Fair Day's Work, considers methods for overcoming such rating difficulties as anchoring, conservatism, preferred numbers, and systematic and absolute individual errors, it does not appraise the transferability of the training in the rating of films of operations for speed-rating actual jobs on the shop floors. The SAM has provided us with a consensus of ratings but has answered few of the basic challenges to the rating procedure.

While the practitioners are gaining more insight into their own experience, and tidying up their own performance and practice, men from various scientific disciplines are building up carefully tested experimental and survey materials to provide a factual base for a science of work performance. On the European continent, the Ergonomics Research Society has followed up its Symposium on Fatigue with a Symposium on Human Factors in Equipment Design. Stimulated by the needs of the military, a vast body of research materials has been accumulated in the fields of physical anthropology, applied psychology, anatomy, biology, and biomechanics which is helping in the design of machines, tools, clothing, and equipment better fitted to humans. The symposium includes discussions on the effects of climate and heat, problems of seating and posture, and physical working capacity. The Society is making a real contribution by organizing scientific discussions on specific problems of work and work measurement. An American counterpart to this organization is sorely needed to stimulate scientific study of these problems.
-Solomon Barkin
Textile Workers Union of America

Arbitration

Arbitration Clauses in Connecticut Labor Contracts. By Paul N. Taylor. Storrs, University of Connecticut, Labor-Management Institute, 1954. 26 pp., bibliography. (Bull. 6.) Single copies free.

Preparing and Presenting Arbitration Cases. By Roland C. Davis and others. Berkeley, University of California, Institute of Industrial Relations, [1954?]. 36 pp . 50 cents.
Selected addresses from the 1954 Conference on Arbitration and Labor Relations conducted by the University of California Institute of Industrial Relations in collaboration with the American Arbitration Association and other organizations.

Child and Youth Employment

Job Guide for Young Workers-1955 Supplement. Washington, U. S. Department of Labor, Bureau of Employment Security, U. S. Employment Service, 1955. 10 pp .10 cents, Superintendent of Documents, Washington.
Supplement to 1954 edition of the guide (30 cents, Superintendent of Documents).

Analysis of Child Labor in Ohio Industry, 1949-1954. Columbus, Department of Industrial Relations, Division of Women and Minors and Minimum Wage and Division of Labor Statistics, 1955. 38 pp .
Shows frequency and number of injuries to minors under 18, by age, sex, and industry; and employment of minors under 18, by education, type of work permit, industry, and occupation.

The Protection of Young Agricultural Workers in Austria. (In International Labor Review, Geneva, February 1955, pp. 195-206. 60 cents. Distributed in United States by Washington Branch of ILO.)

Education and Training

Basic Concepts in Vocational Guidance. By Herbert Sanderson. New York, McGraw-Hill Book Co., Inc., 1954. 338 pp., bibliography. $\$ 4.50$.

Vocational Training Directory of the United States. Compiled by Nathan M. Cohen. Washington, the Author (1434 Harvard Street NW.), 1955. 191 pp. 2d ed. $\$ 2.95$.
Compilation of about 3,800 private and 600 public nondegree schools offering over 300 semiprofessional, technical, and trade courses.

Follow-up Study of Former Apprentices. Washington, U. S. Deparment of Labor, Bureau of Apprenticeship, [1955]. 17 pp., chart. (Technical Bull. T-143.) Free. Analysis of the status of a sample group of former apprentices as to employment, mobility, relation of employment to training, and extent to which training helps in their work.

Occupational Health on the Farm-A Symposium. By William J. Shaw, M.D., and others. (In Industrial Medicine and Surgery, Chicago, March 1955, pp. 110121. 75 cents.)

Symposium on Occupational Diseases of the Lungs. By A. J. Lanza, M.D., and others. (In A.M.A. Archives of Industrial Health, Chicago, March 1955, pp. 183211, illus. \$1.)
Parathion Poisoning-A Brief Review. By D. O. Hamblin, M.D., and H. H. Golz, M.D. (In Industrial Medicine and Surgery, Chicago, February 1955, pp. 65-72, bibliography. 75 cents.)
Toxicity of the Oxides of Nitrogen. By Edward Le B. Gray and others. (In A.M.A. Archives of Industrial Hygiene and Occupational Medicine, Chicago, November 1954, pp. 409-425, bibliography, diagrams, illus.)

Industrial Relations

Group Cohesiveness in the Industrial Work Group. By Stanley E. Seashore. Ann Arbor, University of Michigan, Institute for Social Research, Survey Research Center, 1954. 107 pp ., bibliography, charts. (Publication 14.)
Improving Human Relations in Retailing. By Donald K. Beckley. Boston, Simmons College, Prince School of Retailing, 1955. 66 pp., bibliography.
The Professional Employee in Industry. By David G. Moore and Richard Renck. Chicago, University of Chicago, Industrial Relations Center, 1955. 9 pp., charts. (Research Reprint Series, 58; from Journal of Business, January 1955.)
Seventh Annual Report of Federal Mediation and Conciliation Service, Fiscal Year 1954. Washington, 1955. 58 pp., maps. 25 cents, Superintendent of Documents, Washington.
Includes the report to the President by the Atomic Energy Labor-Management Relations Panel.
Union Decisions in Collective Bargaining. By Robert R. France. Princeton, N. J., Princeton University, Department of Economics and Sociology, Industrial Relations Section, 1955. 49 pp . (Research Report Series, 90.) \$2.

Labor Organizations

Some Aspects of the Nature of Unionism Among Salaried Professionals in Industry. By Bernard Goldstein. (In American Sociological Review, New York, April 1955, pp. 199-205. \$1.25.)
Union Activity in Public Employment. (In Columbia Law Review, New York, March 1955, pp. 343-366. $\$ 1.25$.)

State Regulation of Internal Union Affairs. By Chester A. Morgan. (In CCH Labor Law Journal, Chicago, April 1955, pp. 226-233. \$1.)

Report of the Central Council, and the Report of the Proceedings of the 10th Annual Meeting, Congress of Irish Unions, Galway, July 13, 1954, and Following Days. Dublin, Central Council of the Congress of Irish Unions, 1955. 185 pp .

The Labor Union Movement in Postwar Japan. Tokyo, Daily Labor Press, Inc., 1954. 97 pp., charts.

Manpower

Manpower Resources in the Earth Sciences. By Solomon Shapiro. Washington, U. S. National Science Foundation, [1955]. 75 pp., charts. 45 cents, Superintendent of Documents, Washington.
A study conducted jointly by the National Science Foundation and the U. S. Department of Labor's Bureau of Labor Statistics.

Occupational Mobility in the United States, 1930-1960. By A. J. Jaffe and R. O. Carleton. New York, King's Crown Press, 1954. 113 pp., charts. \$2.75.

Migration and Migrants

Annual Report of the Immigration and Naturalization Service, U. S. Department of Justice, for the Fiscal Year Ended June 30, 1954. Washington, [1955?]. Various pagings, charts.
Includes statistics on the major occupational groupings of aliens admitted to and departing from the United States in each year, 1950-54.

The Education of Migrant Children: A Study of the Educational Opportunities and Experiences of the Children of Agricultural Migrants. By Shirley E. Greene. Washington, National Council on Agricultural Life and Labor, 1954. 179 pp., bibliography, map, survey forms. Cloth, $\$ 3$, paper, $\$ 2.50$, National Education Association, Department of Rural Education, Washington.

Selected References on Migratory Workers and Their Fami-lies-Problems and Programs, 1950-1955. Washington, U. S. Department of Labor, Bureau of Labor Standards, March 1955. 11 pp.; processed. Free.

When the Migrant Families Come Again-A Guide for Better Community Living. Washington, Federal Interdepartmental Committee on Children and Youth, 1955. 27 pp. 15 cents, Superintendent of Documents, Washington.

Migrants in Michigan: A Handbook on Migratory, Seasonal, Agricultural Workers in Michigan. Lansing, Mich., Governor's Study Commission on Migratory Labor, 1954. 37 pp., bibliography, illus.

343876-55-5

Consists of questions and answers on migratory agricultural workers in Michigan, and their recruitment, housing, welfare, earnings, etc.

International Migrations: The Immigrant in the Modern World. By Donald R. Taft and Richard Robbins. New York, Ronald Press Co., 1955. 670 pp., bibliographies, charts, maps. $\$ 7$.
The chief factors influencing migration, world migration since World War I, problems of migration to the United States, and relation of world migration to war and its avoidance are the major topics considered in this book.

Minority Groups

Company Experience with the Employment of Negroes. Princeton, N. J., Princeton University, Department of Economics and Sociology, Industrial Relations Section, 1954. 4 pp . (Selected References, 60.) 20 cents.

Employment and Economic Status of Negroes in the United States (Revised 1954). Staff Report to Subcommittee on Civil Rights, Committee on Labor and Public Welfare, United States Senate, 83d Congress, 2d session. Washington, 1954. 20 pp. (Committee Print.)

Older Worker

Job Problems in Middle Age. By Helen B. Shaffer. Washington (1205 19th Street NW.), Editorial Research Reports, 1955. 17 pp. (Vol. I, 1955, No. 11.) $\$ 1$.

Part-Time Employment of the Aged. By Warren J. Baker. (In Social Security Bulletin, U. S. Department of Health, Education, and Welfare, Social Security Administration, Washington, March 1955, pp. 4-11, 22. 20 cents, Superintendent of Documents, Washington.)

Proceedings of Third Joint Conference on the Problem of Making a Living While Growing Old, Philadelphia, Pa., October 21-22, 1954: Age Barriers to Employment. Philadelphia, Temple University, School of Business and Public Administration, Bureau of Economic and Business Research; Harrisburg, Pennsylvania, Department of Labor and Industry, Bureau of Employment Security, 1954. 144 pp., charts.

Personnel Management and Practices

Personnel Case Studies. By Florence Peterson. New York, Harper \& Brothers, 1955. 345 pp. \$3.

Personnel Relations: The Human Aspects of Administration. By Arthur M. Whitehill, Jr. New York, McGrawHill Book Co., Inc., 1955. 526 pp., bibliographies. $\$ 6$.

Leadership and Executive Development-A Bibliography. By Harland Fox and others. Minneapolis, University of Minnesota, Industrial Relations Center, September 1954. 56 pp . (Bull. 14.) \$1.50.

Hiring Procedures and Selection Standards in the San Francisco Bay Area. By F. Theodore Malm. Berkeley, University of California, Institute of Industrial Relations, 1955. 22 pp . (Reprint 64; from Industrial and Labor Relations Review, January 1955.)

Instructional Staff Practices and Policies in Degree-Granting Institutions, 1953-54. Washington, National Education Association, 1954. 56 pp . (Research Bull., Vol. XXXII, No. 4.) 50 cents.
Covers staff composition, requirements for appointment and promotion, retirement policies, health services, and leaves of absence.

Job Evaluation in Municipalities. By William R. Spriegel and E. Lanham. [Austin], University of Texas, College of Business Administration, Bureau of Business Research, 1954. 122 pp., bibliography, forms. (Personnel Study 9.) \$1.

Social Security

The Development of Social Security in the United States of America. By Arthur J. Altmeyer. (In Bulletin of the International Social Security Association, Geneva, December 1954, pp. 447-462.)

Administrative Practice of Social Insurance. Geneva, International Labor Office, 1955. 86 pp . (Studies and Reports, New Series, 40.) \$1. Distributed in United States by Washington Branch of ILO.

Social [Security] Activities of Cooperative Societies. By W. P. Watkins. (In Bulletin of the International Social Security Association, Geneva, November 1954, pp. 399-405.)

Wages, Salaries, and Hours of Labor

Occupational Wage Survey: Memphis, Tenn., February 1955. By Bernard J. Fahres. Washington, U. S. Department of Labor, Bureau of Labor Statistics, 1955. 21 pp. (Bull. 1172-9.) 20 cents, Superintendent of Documents, Washington.
Other bulletins already published in the present occupational wage series give data for Buffalo, N. Y.; Cleveland, Ohio; Dallas, Tex.; Philadelphia, Pa.; Minneapolis-St. Paul, Minn.; Denver, Colo.; San Francisco-Oakland, Calif.; and Newark-Jersey City, N. J. (Bull. 1172, parts 1-8). Forthcoming reports will cover St. Louis, Mo.; Atlanta, Ga.; Los Angeles, Calif.; New York, N. Y.; Chicago, Ill.; Boston, Mass.; Baltimore, Md.; and Portland, Oreg.

Average Weekly Earnings in Covered Employment, by Parish and by Industry, Louisiana, 1953. Baton Rouge,

State Department of Labor, Division of Employment Security, 1955. 12 pp .; processed.

Wages in the Construction Industry of New Mexico, November 1953-January 1954. By Vicente Trevino Ximenes. Albuquerque, University of New Mexico, Bureau of Business Research; Santa Fe, State Labor and Industrial Commission, 1954. 73 pp .; processed.

Wages, Hours, and Working Conditions in Selected Miscellaneous Personal Service Industries, [New York], 1953. New York, State Department of Labor, Division of Research and Statistics, 1955. 79 pp .; processed. (Publication B-77.)

The Influence of Pattern-Bargaining on Manufacturing Wages in the Cleveland, Ohio, Labor Market, 1945-1950. By Mitchell O. Locks. (In Review of Economics and Statistics, Cambridge, Mass., February 1955, pp. 70-76. \$2.)

Steady Work, Steady Pay: Questions and Answers About the UAW-CIO Guaranteed Employment Plan. Detroit, United Automobile, Aircraft \& Agricultural Implement Workers of America, Education Department, [1955?]. 54 pp. (Publication 330.) Single copy, 15 cents.

Changes in the Soviet Money Wage Level Since 1940. By Murray Yanowitch. (In American Slavic and East European Review, New York, April 1955, pp. 195-223. $\$ 1.25$.)

Women in Industry

Women Workers in California Manufacturing Industries, 1954. San Francisco, Department of Industrial Relations, Division of Labor Statistics and Research, 1955. 15 pp., charts; processed.

Employment of Women in Puerto Rico, 1953; Women in the Labor Force. San Juan, Department of Labor, Bureau of Labor Statistics, 1955. 33 pp.; processed. (Special Report on the Labor Force, 9.)
Married Women in [British] Industry. By E. M. Harris. London, Institute of Personnel Management, 1954. $30 \mathrm{pp} .$, bibliography. (Occasional Paper 4.) 4s.

Workmen's Compensation

State Workmen's Compensation Laws as of September 1954. Washington, U. S. Department of Labor, Bureau of Labor Standards, 1955. 56 pp . (Bull. 161.) 25 cents, Superintendent of Documents, Washington.

Workmen's Compensation in Canada-A Comparison of Provincial Laws. Ottawa, Department of Labor, Legislation Branch, December 1954. 41 pp. 10 cents.

Miscellaneous

Doctoral Dissertations in Labor and Industrial Relations, 1933-1953. Compiled by Ned Rosen and Ralph E. McCoy. Champaign, University of Illinois, Institute of Labor and Industrial Relations, 1955. 86 pp.; processed. (Bibliographic Contribution 5.) $\$ 1$.

Economics and Problems of Labor. By Philip Taft. Harrisburg, Pa., Stackpole Co., 1955. 821 pp. 3d ed. $\$ 6.50$.

Introduction to Labor Economics. By Orme W. Phelps. New York, McGraw-Hill Book Co., Inc., 1955. 554 pp. 2d ed. $\$ 6.50$.

Report of the Attorney General's National Committee to Study the Antitrust Laws. Washington, 1955. 393 pp. $\$ 1$, Superintendent of Documents, Washington.

Includes a section on the attitude and activities of organized labor with respect to the antitrust laws, and the relationship between these laws and the Labor Management Relations Act and other legislation affecting labor.

Processes and Problems of Industrialization in Underdeveloped Countries. New York, United Nations, Department of Economic and Social Affairs, 1955. 152 pp. (Sales No., 1955, II.B, 1.) \$1.50, Columbia University Press, International Documents Service, New York.

Statistical Yearbook, 1954. New York, United Nations, Statistical Office, 1954. 594 pp. (Sales No., 1954, XVII, 5.) In English and French. Cloth, \$7.50, paper, \$6, Columbia University Press, International Documents Service, New York.
Includes data on population, production, prices, employment, wages and hours, and social-security programs in many countries.

Current Labor Statistics

A.-Employment and Payrolls

702 Table A-1: Estimated total labor force classified by employment status, hours worked, and sex
703 Table A-2: Employees in nonagricultural establishments, by industry ${ }^{1}$
707 Table A-3: Production workers in mining and manufacturing industries ${ }^{1}$
710 Table A-4: Indexes of production-worker employment and weekly payrolls in manufacturing industries ${ }^{1}$
710 Table A-5: Federal personnel, civilian and military ${ }^{1}$
711 Table A-6: Employment in nonagricultural establishments for selected States ${ }^{2}$
712 Table A-7: Employment in manufacturing industries, by State ${ }^{2}$
713 Table A-8: Insured unemployment under State unemployment insurance programs, by geographic division and State

B.-Labor Turnover

714 Table B-1: Monthly labor turnover rates in manufacturing, by class of turnover 715 Table B-2: Monthly labor turnover rates in selected industries

C.-Earnings and Hours

717 Table C-1: Hours and gross earnings of production workers or nonsupervisory employees ${ }^{1}$
733 Table C-2: Gross average weekly earnings of production workers in selected industries, in current and 1947-49 dollars ${ }^{1}$
733 Table C-3: Average weekly earnings, gross and net spendable, of production workers in manufacturing industries, in current and 1947-49 dollars ${ }^{1}$
734 Table C-4: Average hourly earnings, gross and excluding overtime, of production workers in manufacturing industries ${ }^{1}$
734 Table C-5: Indexes of aggregate weekly man-hours in industrial and construction activity ${ }^{1}$
735 Table C-6: Hours and gross earnings of production workers in manufacturing industries for selected States and areas ${ }^{2}$

[^51]
D.-Consumer and Wholesale Prices

742 Table D-1: Consumer Price Index-United States average, all items and commodity groups
743 Table D-2: Consumer Price Index-United States average, food and its subgroups
743 Table D-3: Consumer Price Index-United States average, apparel and its subgroups
744 Table D-4: Consumer Price Index-United States average, all items and food
744 Table D-5: Consumer Price Index-All items indexes for selected dates, by city
745 Table D-6: Consumer Price Index-All items and commodity groups, except food, by city
747 Table D-7: Consumer Price Index-Food and its subgroups, by city
748 Table D-8: Average retail prices of selected foods
749 Table D-9: Indexes of wholesale prices, by group and subgroup of commodities
750 Table D-10: Special wholesale price indexes

E.-Work Stoppages

751 Table E-1: Work stoppages resulting from labor-management disputes

F.-Building and Construction

752 Table F-1: Expenditures for new construction
753 Table F-2: Contract awards: Public construction, by ownership and type of construction
754 Table F-3: Building permit activity: Valuation, by private-public ownership, class of construction, and type of building
754 Table F-4: Building permit activity: Valuation, by class of construction and geographic region
755 Table F-5: Building permit activity: Valuation, by metropolitan-nonmetropolitan location and State
756 Table F-6: Number of new permanent nonfarm dwelling units started, by ownership and location, and construction cost

A: Employment and Payrolls

Table A-1: Estimated total labor force classified by employment status, hours worked, and sex [In thousands]

Labor force status	Estimated number of persons 14 years of age and over ${ }^{1}$												
	1955				$1954{ }^{2}$								
	April	Mar.	Feb.	Jan.	Dec.	Nov. ${ }^{3}$	Oct.	Sept. ${ }^{3}$	Aug.	July ${ }^{3}$	June	May	Apr.
	Total, both sexes												
Total labor force	67,784	66,840	66,550	66,700	66,811	67,909	68,190	68,565	68,856	68,824	68,788	67, 786	67,438
Civilian labor force Unemployment Unemployed 4 weeks or less. Unemployed 5-10 weeks. Unemployed 11-14 weeks \qquad Unemployed 15-26 weeks \qquad Unemployed over 26 weeks Employment Nonagricultural Worked 35 hours or more \qquad Worked 15-34 hours \qquad Worked 1-14 hours With a job but not at work 4 Agricultural Worked 35 hours or more Worked 15-34 hours \qquad Worked 1-14 hours With a job but not at work 4 -	64, 647	63, 654	63,321	63,497	63,526	64,624	64, 882	65,243	65, 522	65, 494	65, 445	64,425	64, 063
	2,962	3,176	3,383	3, 347	2, 838	2,893	2, 741	3,099	3, ${ }^{3}, 245$	3,346	3,347	3,305	3,465
	2,958	-964	1,138	1,329	1,164	1,274	1,129	1,284	1,260	1,394	1,628	1,157	1,160
	538	795	- 893	881	726	705	635	642	847	853	623	764	854
	355	356	377	263	241	183	181	341	280	250	236	336	403
	664 447	615 447	524	415 459	331 376	379 352	406 391	451 383	458 400	510 339	566 293	672 375	740 307
	447 61,685	60,447	450 59,938	459 60,150	376 60,688	352 61,731	62,141	383 62,144	62, 400	339 62,148	62,098	61, 6119	60,598
	61,685 55,470	60,477 54,785	54, 5854	60,150 54,853	60, 688 55,363	61, 55,517	62,141 54,902	64, 618	62,236 55,349	62,148 54,661	62,098 54,470	61,119 54,297	60,598
	43, 721	45, 248	44, 741	44, 074	45, 958	40,506	43, 666	23, 999	42, 514	21,936	43, 502	43, 962	43, 603
	7,478	5,618	5, 935	6,606	5, 891	11, 195	7,144	25, 559	5,727	23,005	6,226	6, 211	6,480
	2, 361	2, 241	2,265	2,170	2, 079	2,322	2, 194	1,984	1,753		1,904	2,133	2, 379
	1,911	1,678	1,914	2,004	1,435	1,554	1, 899	3, 076	5,355	7,833	2,838	1,991	2,060
	6,215	5,692	5,084	5,297	5,325	6,154	7,239	7,527	6, 928	7,486	7,628	6, 822	6,076
	4,332	4, 273	3, 519	3, 551	3,788					5, 324			
	1, 4411	976 249	1,004	$\begin{array}{r}1,167 \\ 305 \\ \hline 27\end{array}$	977 302	1, 125	$\begin{array}{r}1,464 \\ \hline 295\end{array}$	$\begin{array}{r}1,527 \\ \hline 219\end{array}$	1, 214	1,683 319	1,336 234	1,436 285	$\begin{array}{r}1,336 \\ 283 \\ \hline\end{array}$
	186	194	269	274	259	171	126	97	221	159	126	144	226
	Males												
Total labor for	47, 590	47,226	46, 922	47,044	47,005	47, 426	47,586	48,007	48,964	48,948	48,619	47, 791	47,671
Oivilian labor force Unemployment. \qquad \qquad Employment. \qquad Nonagricultural \qquad W orked 35 hours or more \qquad Worked 15-34 hours Worked 1-14 hours. With a job but not at work 4 Agricultural. Worked 35 hours or more \qquad W orked 15-34 hours \qquad W orked 1-14 hours.. at work	44,493	44,078										44, 471	44,337
	2,093	2, 283	2,431	2, 395	1,996	1,875	1, 796	$\begin{array}{r}1,993 \\ 42 \\ \hline 10\end{array}$	$\begin{array}{r}2,152 \\ 43 \\ \hline 18\end{array}$	2,226 43 432	2,194 43,123	2,197 42,274	2,343 41,993
	42,400 37,113	41, 795 36772	41,301 3680	41,485 36,732	41,762 36,954	42,305 37,134	42,522 36,792	42,730 36,905	43,518 37,712	43,432 37,426	43,123 37,100	42,274 36,660	41,993 36,682
	37,113 31,211	36,772 31,946	36,680 31,481	36,732 31,041	36,954 32,071	37,134 28,956	36,792 30,780	36,905	37,712 30,699	37,426 16,675	37,100 31,355	36,660 31,184	36,682 31,100
	3, ${ }^{\text {3188 }}$	2, 766	3,036	3,454	2,972	6,236	3,782	16,118	3,156	15,089	3,303	3,241	3, 257
	1,049	981	${ }^{1} 972$	972	900	, 917	864	814	727	835	762	956	981
	1,165	1,079	1,190	1,265	1,011	1,026	1,366	1,994	3,129	4,827	1,673	1,279	1,344
	5,287	5,023	4, 621	4, 753	4, 808			5,825	5,806	6,006	6,023	5, 614	5,311
	4,052	4,005	3,338	3,378	3,600	4,155	4,579	4,750	4,578	4,657	5,135	4,502	3,987
	862	620	757	864	711	659	822	841	745	978	621	761	891
	201	212	269	266	256	206	201	144	270	226	145	214	224
	172		256	245	241	151	128	91	213	145	123	137	209
	Females												
	20,191	19,614	19,628	19,655	19,806	20,484	20,604	20,559	19,892	19,877	20,170	19,995	19,767
Civilian labor forceUnemployment	$\begin{array}{r} 20,154 \\ 869 \\ 19,284 \\ 18,357 \end{array}$	19,576	$\begin{array}{r} 19,590 \\ 952 \\ 18,638 \end{array}$	19, 617	19, 767	20,4451,018	20,565	20,5201,106	19,8531,093	19,8371,121	20,1291,153	19,954	19,726
												1,108	1,121
Employment.		18,683		18,666	18,925	19,427	19,619	19,413	18,760	18,716	18,975	18,846	18,605
Nonagricultural		18, 014	18, 174	18, 122	18,408	18,444	18,110	17, 712	17,638	17,235	17, 370	17,637	17, 840
Worked 35 hours or mo		13,3022,852	13, 263	13, 034	13,887	11,550	12,885	6, 020	11, 816	5,263	12,141	12,775	12,503
Worked 15-34 hours	$\begin{array}{r} 12,010 \\ 3,770 \\ 1,311 \end{array}$		$\begin{array}{r} 2,898 \\ 1,293 \\ 720 \\ 464 \\ 181 \\ 247 \\ 22 \\ 14 \end{array}$	$\begin{array}{r} 3,151 \\ 1,198 \\ 739 \\ 544 \\ 173 \\ 303 \\ 39 \\ 39 \end{array}$	$\begin{array}{r} 2,919 \\ 1,178 \\ 424 \\ 517 \\ 188 \\ 266 \\ 46 \\ 17 \end{array}$	4,9601,4065289834434675320	$\begin{array}{r} 3,362 \\ 1,330 \\ 533 \\ 1,509 \\ 775 \\ 642 \\ 94 \\ 0 \end{array}$	9,4411,1691,0811,701933686766	$\begin{array}{r} 2,571 \\ 1,025 \\ 2,226 \\ 1,122 \\ 588 \\ 470 \\ 56 \\ 7 \end{array}$	$\begin{array}{r} 7,916 \\ 1,051 \\ 3,006 \\ 1,481 \\ 669 \\ 705 \\ 92 \\ 14 \end{array}$	$\begin{array}{r} 2,922 \\ 1,142 \\ 1,164 \\ 1,605 \\ 797 \\ 716 \\ 89 \\ 4 \end{array}$	$\begin{array}{r} 2,972 \\ 1,177 \\ 712 \\ 1,209 \\ 454 \\ 675 \\ 71 \\ 10 \end{array}$	3,2231,3987157652444455817
Worked 1-14 hours		$\begin{array}{r} 1,259 \\ 600 \\ 669 \\ 269 \\ 356 \\ 37 \\ 8 \end{array}$											
With a job but not at work	$\begin{array}{r} 1,311 \\ 745 \\ 997 \\ 280 \\ 579 \\ 55 \\ 14 \end{array}$												
Agricultural .-.......--													
W orked 35 hours or more													
Worked 15-34 hours.													
Worked 1-14 hours													
With a job but not at work													

[^52][^53]Table A-2: Employees in nonagricultural establishments, by industry ${ }^{1}$
[In thousands]

Table A-2: Employees in nonagricultural establishments, by industry ${ }^{1}$-Continued
[In thousands]

Industry	1955				1954									Annual average	
	Apr.	Mar.	Feb.	Jan.	Dec.	Nov.	Oct.	Sept.	Aug.	July	June	May	Apr.	1954	1953
Manufacturing-Continued															
Lumber and wood products (except furniture)	713.1	702.6	705. 8	697.3	727.5	751.3	759.0	738.0	658.2	649, 4	741.1	720.5	693.5	705.8	767.6
Logging camps and contractors .-.....--		76. 0	84.0	80.0	96.6	109.5	110.0	94.8	81.0	77.7	106. 0	98.0	81.7	89.6	96.9
Sawmills and planing mills .-............		383.3	381.9	377.7	389.0	398.1	403.1	399.3	353.9	346.7	394.3	383.7	373.7	378.7	415.9
Millwork, plywood, and prefabricated structural wood products		132.3	130.6	130.9	132.8	134.7	135.6	134.3	117.3	117.3	128.0	125.9	123.4	126.0	130.8
Wooden containers		53.3	53.2	53.7	53.9	53. 8	55.0	54.4	52.7	53. 6	128.3	57.1	57. 6	126.0 55.8	136. 8
Miscellaneous wood produc		57.7	56.1	55.0	55.2	55.2	55.3	55.2	53.3	54.1	55.5	55.8	57.1	55.6	59.5
Furniture and fixtures	351.3	353.5	352.5	347.8	351.9	356.3	355.7	352.8	344.4	329.1	331.9	333.4	340.1	345. 2	374.6
		251.9	250.8	247.2	251.2	254.5	254.2	251.1	243.4	231.6	231.2	233.6	239.7	243.7	267.0
Office, public-building, and professional furniture		41.6	41.3	41.1	41.1	41.1	41.0	41.7	41.5	39.6	40.1	39.7	40.1	40.8	42.7
Partitions, shel ving, lockers, and fixtures		34.1	34.2	33.5	33.3	34.3	34.3	34.0	33.4	31.6	33.6	33.2	33.4	33.8	35.7
Screens, blinds, and miscellaneous furniture and fixtures.		25.9	26.2	26.0	26.3	26.4	26.2	26.0	26.1	26.3	27.0	26.9	26.9	33.8 26.9	29.2
Paper and allied produc	539.0	534.8	531.9	531.9	536.3	537.7	536.4	536.6	532.0	524.0	529.3	526.0	525. 7	530.6	530.4
Pulp, paper, and paperboar		264.5	263.9	263.9	264.7	263.6	263.0	264.7	263.3	260.4	262.7	260. 2	259.5	261. 9	258.3
Paperboard containers and boxes		144.8	143.5	144.3	147.7	149.9	149.7	148.6	145.1	140.3	142.5	142. 1	142.0	145, 1	148.2
Other paper and allied products.		125.5	124.5	123.7	123.9	124.2	123.7	123.3	123.6	123.3	124.1	123.7	124.2	123.6	123.9
Printing, publishing, and allied indus-															
Newspapers		293.6	292.3	291.8	295. 5	294.7	294.0	292.9	291. 4	291.1	292.9	291. 5	290.5	292.3	289.1
Periodicals		61.9	62.3	63.0	64.0	64.2	62.9	62.1	60.6	60.9	61. 4	61. 9	62.9	62.6	62.3
Books.		48.4	47.6	47.5	48. 2	48.7	49.3	49.2	48.6	48.4	48.3	48.7	48.8	48.8	49.9
Commercial pr		211.1	209.5	210.3	211.3	209.2	209.7	209.5	205.5	205. 7	207.0	206. 1	207.2	208.0	205.1
Lithographing		59.3	59.2	58.6	60.6	61.1	61.0	60.4	59.6	58.8	59.6	59.9	60.2	60.0	57.7
Greeting cards		17.3	17.5	17.7	19.2	20.3	19.8	19.5	19.3	19.0	19.1	18.1	17.9	18.8	19.5
Bookbinding and related industries...-		42.4	42.1	42.1	42.5	42.7	43.1	43.1	43.4	43.0	42.9	42.8	43.0	42. 9	44.1
Miscellaneous publishing and printing services.		68.1	68.3	67.9	67.5	66.9	66.8	66.2	65.4	65.3	66.4	66.3	67.0	66.7	64.1
Chemicals and allied product	809.4	809.3	794.7	792.8	793.7	793.6	793.1	788.9	779.9	777.9	780.8	786.8	796.3	791.0	807.0
Industrial inorganic chemic		104.2	102.6	105. 0	104. 5	103. 9	103.3	102. 7	102.3	101. 6	100.7	99.6	99.2	101.2	94.1
Industrial organic chemicals		303.6	301.0	299.0	298.7	297.7	295.5	295.4	295.8	297.1	297.7	297.0	298.5	299.1	317.2
Drugs and medicines .-.-.............		93.0	93.0	92.7	92.4	92.8	92.7	92.5	92.0	91.4	90.9	90.8	91.5	92.0	91.5
Soap, cleaning and polishing preparations.		50.1	50.3	50.4	49.9	50.1	50.4	50.8	50.5	50.0	50.5	50.4	50.6	50.5	51.1
Paints, pigments, and fillers		70.3	69.7	69.7	69.8	69.8	69.5	70.1	70.5	70.4	70.6	70.3	70.6	70.4	74.2
Gum and wood chemical		7.8	7.8	7.7	7.7	7.7	7.7	7.7	7.2	7.5	7.5	7.7	7. 7	7.7	7.9
Fertilizers.		47.7	38.2	35.9	34.8	34.0	35.1	33.9	31.7	30.5	33.1	40.4	46.9	36.8	37.2
Vegetable and animal oils		40.9	41.4	42.5	44.5	46.2	47.0	43.8	38.5	38.1	38.3	39.1	40.8	42.4	43.1
Miscellaneous chemicals		91.7	90.7	89.9	91.4	91.4	91.9	92.0	91.4	91.3	91.5	91.5	90.5	91.0	90.6
Products of petroleum and	249.7	248.5	247.4	248.3	249.5	251.3	251.9	254.2	255.8	256.8	255.4	252.6	251.8	253.0	260.4
Petroleum refining		199.8	199.7	201.6	201.2	202.4	202.9	204.5	206.0	206.8	205. 2	202.9	202.9	203.6	206.3
Coke, other petroleum and coal products.		48.7	47.7	46.7	48.3	48.9	49.0	49.7	49.8	50.0	50.2	49.7	48.9	49.5	54.1
Rubber products	269.2	269.2	267.3	265.9	264.5	259.0	257.5	252.4	226.9	223.0	251.6	250.1	249.1	250.2	278.0
Tires and inner to		114.7	114.1	112.9	112.4	108. 5	111.1	110.0	89.2	88.5	109.2	107.9	107.5	106.0	119.5
Rubber footwear		26.8	26.8	27.4	27.6	27.5	27.0	26.1	25.8	25.3	25.0	25.0	24.5	26.0	29.3
Other rubber product		127.7	126.4	125.6	124.5	123.0	119.4	116.3	111.9	109.2	117.4	117.2	117.1	118.2	129.2
Leather and leather products	375.8	385.7	384.4	376.7	374.5	371.7	369.2	370.4	377.5	367.7	364.0	354.0	364.5	370.1	386.2
Leather: tanned, curried, and finished.-		43.4	43.5	43.2	43.3	42.7	42. 7	42.5	42.9	43.3	43.6	43.1	43.3	43.4	47.1
Industrial leather belting and packing		4.8	4. 6	4.7	4.6	4.6	4.6	4.5	4.4	4.4	4.7	4.7	4.8	4.7	5.4
Boot and shoe cut stock and findings		17.6	17.6	17.3	16.4	15.9	15.1	14.4	15.8	16.0	16.1	14.9	15.8	16.0	17.0
Footwear (except rubber)		251.5	252.3	249.7	245.8	240.5	237.6	240.9	248.4	242.9	241.3	234.4	241.7	243.4	249.9
Luggage .-....................		16.5	16.1	15.4	16.2	17.0	17.9	17.9	17.3	16.5	16.3	15.5	14.9	16.2	17.5
Handbags and small leather goods.....-		35.4	34.7	32.4	31.9	33.2	33.0	32.0	31.1	27.8	25.5	25.8	28.8	30.2	31.4
Gloves and miscellaneous leather goods.		16.5	15.6	14.0	16.3	17.8	18.3	18.2	17.6	16.8	16.5	15.6	15.2	16.2	18.0
Stone, clay, and glass products	534.0	525.9	519.0	514.1	520.3	521.9	521.4	520.4	516.6	506.8	509.9	509.6	511.0	514.2	543.2
Flat glass		32.1	32.2	32.4	32.2	31.7	30.2	28.9	27.9	28.2	28.1	27.7	28.2	29.3	31.6
Glass and glassware, pressed or blown .--		89.8	88.7	87.5	87.8	88.6	89.1	89.0	89.4	86.6	90.6	91.0	91.6	89.7	97.8
Glass products made of purchased glass.		16.9	16.9	16.7	16.9	16. 7	16.5	16.2	15.9	15.0	15.3	15.5	15.8	16.1	18.2
Cement, hydraulic		42. 4	42.2	42.4	42.5	42.5	42.9	42.9	42.8	42.7	39.4	40.5	40.9	41.7	41.8
Structural clay products....-		75.7	74.2	74.4	76.1	76.6	77.1	77.5	77.5	77.5	77.4	76.3	75.7	76.1	79.1
Pottery and related products		54.1	53.5	52.3	53.0	53.6	52.9	52.6	50.8	47.3	50.4	51.4	52.2	51.9	55.8
		105.3	103.3	102.6	104.6	106.2	106.2	107.0	107.4	106.8	105.0	103.5	101. 7	103.6	105.1
Cut-stone and stone products...-......-		19.7	19.6	19.2	20.2	20.1	20.3	20.3	20.1	18.8	19.6	19.7	20.0	19.7	18.7
Miscellaneous nonmetallic mineral products.		89.9	88.4	86.6	87.0	85.9	86.2	86.0	84.8	83.9	84.1	84.0	84.9	86.0	95.0

See footnotes at end of table.

TABLE A-2: Employees in nonagricultural establishments, by industry ${ }^{1}$-Continued
[In thousands]
 See footnotes at end of table.

Table A-2: Employees in nonagricultural establishments, by industry ${ }^{1}$-Continued
[In thousands]

1 The Bureau of Labor Statistics series on employment in nonagricultural establishments are based upon reports submitted by cooperating firms. These reports cover all full- and part-time employees in private nonagricultural establishments who worked during, or received pay for, any part of the pay period ending nearest the 15th of the month. Because of this, persons who worked in more than one establishment during the reporting period will be counted more than once. In Federal establishments the data generally refer to persons who worked on, or received pay for, the last day of the month. Proprietors, self-employed persons, unpaid family workers, and domestic servants are excluded. These employment series have been adjusted to first-quarter 1954 benchmark levels indicated by data from government social-insurance programs.
Data for the 2 most recent months are subject to revision without notation; revised figures for earlier months will be identified by asterisks the first month they are published.
These data differ in several respects from the nonagricultural employment data shown in the Monthly Report on the Labor Force (table A-1, civilian labor force), which are obtained by household interviews. This MRLF series relates to the calendar week which contains the 8 th day of the month.
It includes all persons (14 years and over) with a job whether at work or not It includes all persons (14 years and over) with a job whether at work or not, proprietors, self-employed persons, unpaid family workers, and domestic servants.

TABLE A-3: Production workers in mining and manufacturing industries ${ }^{1}$
[In thousands]

Industry	1955				1954									Annual average		
	Apr.	Mar.	Feb.	Jan.	Dec.	Nov.	Oct.	Sept.	Aug.	July	June	May	Apr.	1954	1953	
Mining: Metal $^{\text {M }}$																
Metal.		80.9	80.7	80.3	78.6	79.9	76.7	76.0	84.9	86. 7	86.0	85.4	84.8	83.9	91.6	
Copp		26.2 24.4	26.0 24.4	25.8	25.3	27.0	28.4	29.7	30. 4	31.3	31.0	31.8	31.3	30. 5	35.4	
Lead and		24.4 13.9	24.4 13.9	24.2 13.8	23.5 13.5	22.8 13.6	20.7 12.2	18.6 12.3	24.2 13.8	24.3 14.1	24.3 13.9	23.4 13.8	23.2 13.9	23.3 13.7	24.5 15.1	
Anthracite		34.7	36. 2	38.5	39.3	39.5	39.7	29.1	29.4	28.9	29.8	32.5	40.7	7	50.3	
Bituminous-co		189.9	192.5	192.4	192.9	193.1	192.4	193.8	196.5	189.2	202.6	202.4	208.5	207.3	267.5	
Crude-petroleum and natural-gas production: Petroleum and natural-gas production																
(except contract services)		123.6	123.9	124.9	125.2	126.1	127.4	131.5	135. 7	136.5	134. 2	129.0	128.7	130.0	131.4	
		87.1	85.0	85.2	88.8	90.1	91. 2	92.0	92.1	92.4	91.2	90.8	88.7	89.6	91.3	
Manufacturing \qquad Durable goods ${ }^{2}$ \qquad Nondurable goods ${ }^{3}$ - \qquad	12,812	12,787	12,649	12,523	12,645	12,657	12,612	12,577	12,418	12,179	12,437	12,394	12,548	12,588	13,833	
	$7,462$	7,383	7,282	7, 182	7,218	7,198	7,081	6,965	6, 890	6, 876	7,130	7,163	7,266	7,184	1, 8,148	
		5,404	5,367		5,427			5,612	5,528	5,303	5, 307	5, 231	5,282	5,404	5, 685	
Ordnance and accessories _		94.4	93.9	96.0	97.4	98.0	99.9	101.8	100.8	104.0	107.4	111.8	122.1	115.5	179.9	
	$1,001.1$	991.5	985.3	1,007.0	1,061.9	1,110.8	1, 180.4	1, 267.5	1, 238. 1	1, 152. 2	1,085. 6	1,036. 8	1, 016.2	1, 100.4	1, 136. 2	
		247.9	249.6	256.0	264.2	263.5	262.2	257.0	250.7	245. 9	246.9	238.6	241.1	251.9	254.9	
		73.7	73.2	72.2	72.1	75.3	76.3	79.9	84.7	87.3	87.4	83.1	79.2	78.9	80.4	
		129.6	125.2	134.9	151.3	179.3	244.2	347.2	319.6	234.6	171.7	149.4	140.0	194.4	207.0	
		84.8	84.5	85.3	86.3	87.1	89.5	92.4	92.2	93.2	92.7	89.3	81.9	88.7	87.8	
		167.4	168.9	168.0	172.6	174.5	175.1	172.9	174.2	175.5	173.5	171.9	174.2	173.9	180.1	
		22.1	22.3	24.5	38.0	43.8	41.0	26.7	26.0	24.3	23.8	23.8	23.0	28.4	28.6	
		62.7	63.7	66.8	70.6	74.1	75.3	71.5	65.0	58.1	61.2	60.3	62.0	66.6	70.4	
		109.2	105.1	106.8	113.7	117.5	118.6	122.1	126.8	132.5	127.3	121.8	117.1	120.0	126.2	
		94.1	92.8	92.5	93.1	95.7	98.2	97.8	98.9	100.8	101. 1	98.6	97.7	97.7	100.9	
Tobacco manufa	80.3	83.9	88.7	91.1	100.1	102.7	111.6	110.3	102.0	82.9	82.4	81.5	81.7	93.9	. 1	
Cigarettes		29.5	29.2	29.5	29.6	30.0	29.7	29.4	29.2	28.8	28.7	28.3	28.6	29.1	28.4	
Cigars		37.0	37.5	33.7	38.4	38.9	38.7	38.7	37.9	36.1	37.9	37.5	37.2	37.9	38.5	
Tobacco and snuff		6.5	6.5	6.4	6.5	6.6	6. 6	6.7	6.7	6.6	6.7	6.7	6.8	6.7	6.8	
Tobacco stemming and redryi		10.9	15.5	21.5	25.6	27.2	36.6	35.5	28.2	11.4	9.1	9.0	9.1	20.2	21.4	
Textile-mill products	980.0	986.8	984.5	976.6	983.4	982.6	979.4	978.4	973.6	945.5	973.3	960.8	972.3	975.7	1,090.2	
Scouring and combing p		6. 3	6.1	5.8	5.8	5.4	5. 7	6.3	7.0	6.8	5. 9	6.1	5.9	5. 9	6.2	
Yarn and thread mills		121.5	121.4	120.6	119.8	119.6	118.4	117.9	117.4	113.8	117. 6	115. 7	118.0	118.0	135.8	
Broad-woven fabric mills.		446.1	446.1	444.3	443.1	440.3	439.8	439.8	439.7	430.4	445.1	440.4	444.6	443.6	500.6	
Narrow fabrics and smallwar		27.9	27.3	27.3	27.1	26.8	26.5	26.4	26.1	25.7	26.4	26.1	26.5	26.3	28.1	
Knitting mills_		197.7	195.8	192.3	200.1	204.0	204. 2	204.4	201.7	192.0	197.0	192.2	191.6	197.0	215.2	
Dyeing and finishing textiles.		78.5	79.2	78.7	79.2	78.5	77.5	76.9	75. 6	75.1	75.6	76.0	77.1	77.2	82.5	
Carpets, rugs, other floor covering		42.6	42.6	42.3	42.2	42.7	42.9	42.8	41.7	40.6	41.1	41.0	43.8	42.8	48.6	
Hats (except cloth and millinery		10.9	11.1	11.1	11.7	11.5	11.4	12.1	12.1	11.7	12.0	10.9	11.1	11.8	14.8	
Miscellaneous textile goods.---		55.3	54.9	54.2	54.4	53.8	53.0	51.8	52.3	49.4	52.6	52.4	53.7	53.2	58.4	
Apparel and other finished textile products	1,061.0	$\begin{array}{r} 1,110.3 \\ 110.2 \end{array}$	$\begin{gathered} 1,100.7 \\ 110.1 \end{gathered}$	$\left[\begin{array}{l} 1,068.9 \\ 108.0 \end{array}\right]$	1,073.0		1, 056.6		1,054.2			988.3	1,033.0	1,046. 2	1,102.9	
Men's and boys' suits and coats.					107.6	$1,060.4$	106.4	$1,058.7$	111.5	983.5	990.2	101.9	106.6	108.7	119.8	
Men's and boys' furnishings and work clothing	110.2290.3		284.8	275.7	107.6 276.9	281.7	281.4	110.6		103.1	104.7 266.7			108.7 27		
Women's outerwear		343.3	343.1	334. 5	332.2	314.7	305. 1	312.1	317.0	295. 9	286.6	286.8	314.2	315. 7	322.7	
Women's, children's u		105.8	103.0	100.3	101.7	104.3	103.5	101.3	97.5	90.9	96.5	98.7	100.2	99.4	102.9	
Millinery		25.1	24.3	21.1	18.9	17.2	19.2	19.9	19.4	15.1	11.5	13.8	18.9	18.6	19.4	
Children's outerwear		66.1	67.2	64.3	62.7	63.4	64. 6	64.9	65.8	65.3	65.6	60.0	60.2	63.8	64.7	
Fur goods		5.9	6.3	7.5	9.3	10.0	8.7	9.0	8.9	9.2	9.8	8.2	6.3	8.4	9.3	
Miscellaneous apparel and accessories.-		55. 2	54.9	53.0	56.4	58.5	58.3	57.2	55.8	51.4	52.1	50.6	51.4	54.1	57.1	
Other fabricated textile products		108.4	107.0	104.5	107.3	109.9	109.4	105.8	104.9	100.7	99.7	102.9	103.8	105. 1	118.6	
		$\begin{array}{r} 634.7 \\ 69.4 \end{array}$	$\begin{array}{r} 639.3 \\ 77.6 \end{array}$	$\begin{array}{r} 631.3 \\ 73.2 \end{array}$	$\begin{array}{r} 661.4 \\ 90.0 \end{array}$	$\begin{aligned} & 684.6 \\ & 103.0 \end{aligned}$	$\begin{aligned} & 691.6 \\ & 103.6 \end{aligned}$	$\begin{array}{r} 671.7 \\ 88.3 \end{array}$	$\begin{array}{r} 591.5 \\ 74.7 \end{array}$	$\begin{gathered} 583.0 \\ 71.4 \end{gathered}$	$\begin{array}{r} 674.0 \\ 99.4 \end{array}$	$\begin{array}{r} 653.7 \\ 91.5 \end{array}$	627.376.0	$\begin{array}{r} 639.3 \\ 83.3 \end{array}$	698.090.0	
		353.3	353.1	$\begin{array}{r} 73.2 \\ 349.5 \end{array}$	360.4	369.0	374.2	371.1	325.4	318.2	365.5	355.0	344.7	350.1	385.0	
Millwork, plywood, and prefabricated structural wood products.			$\begin{array}{r} 110.0 \\ 49.2 \end{array}$	$\begin{array}{r} 110.5 \\ 49.7 \end{array}$	$\begin{array}{r} 112.6 \\ 49.7 \end{array}$	$\begin{array}{r} 114.4 \\ 49.7 \end{array}$	$\begin{array}{r} 114.5 \\ 50.8 \end{array}$						103.3	105.5		
Wooden containers		49.3						$\begin{array}{r} 113.5 \\ 50.2 \end{array}$	$\begin{aligned} & 96.3 \\ & 48.4 \end{aligned}$	$\begin{aligned} & 96.4 \\ & 49.3 \end{aligned}$	107.4 52.8 48	105.5 52.6	103.3 53.1	105.551.548.9	110.559.752.8	
Miscellaneous wood products		51.2	49.4	48.4	48.7	48.5	48.5	48.6	46.7	47.7	48.9	49.1	50.2			
Furniture and fixtures Household furniture Office, public-building, and professional furniture. Partitions, shelving, lockers, and fixtures. Screens, blinds, and miscellaneous furniture and fixtures.	295.4	$\begin{aligned} & 297.8 \\ & 218.2 \end{aligned}$	296.4217.0	$\begin{aligned} & 292.6 \\ & 214.1 \end{aligned}$	$\begin{aligned} & 296.9 \\ & 218.4 \end{aligned}$	$\begin{aligned} & 301.4 \\ & 221.7 \end{aligned}$	$\begin{aligned} & 301.3 \\ & 221.8 \end{aligned}$	$\begin{aligned} & 298.4 \\ & 218.8 \end{aligned}$	$\begin{aligned} & 290.1 \\ & 211.3 \end{aligned}$	$\begin{aligned} & 274.6 \\ & 199.4 \end{aligned}$	$\begin{aligned} & 277.2 \\ & 198.6 \end{aligned}$	$\begin{aligned} & 279.0 \\ & 271.0 \end{aligned}$	$\begin{aligned} & 285.4 \\ & 206.8 \end{aligned}$	290.5211.0	319.923.9	
		$\begin{aligned} & 33.7 \\ & 26.3 \\ & 19.6 \end{aligned}$												32.9	35.0	
			$\begin{aligned} & 33.3 \\ & 26.2 \\ & 19.9 \end{aligned}$	$\begin{aligned} & 33.1 \\ & 25.6 \\ & 19.8 \end{aligned}$	$\begin{aligned} & 33.1 \\ & 25.3 \\ & 20.1 \end{aligned}$	33.1 26.1 20.5	$\begin{aligned} & 32.9 \\ & 26.2 \\ & 20.4 \end{aligned}$		$\begin{aligned} & 33.4 \\ & 25.3 \\ & 20.1 \end{aligned}$	$\begin{aligned} & 31.7 \\ & 23.3 \\ & 20.2 \end{aligned}$	$\begin{aligned} & 32.1 \\ & 25.4 \\ & 21.1 \end{aligned}$	25.1 21.0		$\begin{aligned} & 25.7 \\ & 21.0 \end{aligned}$	27.8 23.3	

See footnotes at end of table.

TABLE A-3: Production workers in mining and manufacturing industries ${ }^{1}$-Continued

Industry	1955				1954									Annual average	
	Apr.	Mar.	Feb.	Jan.	Dec.	Nov.	Oct.	Sept.	Aug.	July	June	May	Apr.	1954	1953
Paper and allied products	443.6	439.7	437.2	437.1	441.8	444.0	443. 9	444. 6	439.3	433.1 220.3	438.6	435. 2	435. 219	439.3	441.8
Pulp, paper, and paperboard mill		222.2 118.3	221.6	221.2	222.6 121.7	221.6	221.5	223.7 122.9	222.2 119.1	220.3 114.9	222.5	220.6 116.3	219.8 116.3	221.4 119.5	219.6 122.2
Paperboard containers and boxes. Other paper and allied products.-		118.3 99.2	117.3 98.3	118.1 97.8	121.7 97.5	124.1 98.3	124.0 98.4	122.9 98.0	119.1 98.0	114.9 97.9	117.2	116.3 98.3	116.3 99.1	119.5 98.5	122.2 99.9
		145.6	145.3	145. 6	147.7	146.8	147.3	146.1	144.0	144.1	146. 7	145. 5	144.7	145.3	145.1
Periodical		26.2	26.0	25.9	25.5	26.0	26.1	25.8	25.0	24.8	25. 5	25.6	26.0	25.8	26.6
Books		29.4	28.7	28.5	29.4	29.7	30.1 169.6	30.2 170.4	29.5 166.7	29.2 167.3	29.1 16	29.2 166.5	29.0 168.0	29.4 168.7	29.3 167.5
Commercial		171.2	169.5	170.4	171.6	169.2 46.7	169.6 46.7	170.4 46.3	166.7 45.6	167.3 45.0	167.9 46.0	166.5 46.1	168.0 46.3	168.7 46.0	167.5 44.6
Lithography ${ }_{\text {Greting }}$		45.0 12.5	44.7 12.6	43.9 12.7	46.1 14.1	46.7 15.1	46.7 14.7	46.3 14.7	45.6 14.3	45.0 14.2	46.0 14.2	46.1 13.2	46.3 13.1	46.0 13.9	44.6 14.8
Greeting cards..		12.5	12.6 33.1	12.7 33.2	14.1 31	15. 78	14.7 34.1	14. 2	14.3 34.4	14.2 34.1	14.2	13.6	13. 3.8	13.9 33.8	14.8 34.8
Miscellaneous publishing and printing services		51.8	52.1	51.9	51.5	50.9	50.9	50.6	49.6	49.7	51.1	51.0	51.7	51.2	50.1
Chemicals and allied p	547.5	548.3	535.3	534.4	534.2	533.3	533.9	529.4	520.0	517.3	521.2	529.1	537.4	531.7	552.5
Industrial inorganic chemica		72.4	72.1	74.3	73.8	73.3	73. 2	72. 2	72. 2	71. 7	71.8	71.3	70.8	71. 8	67.2
Industrial organic chemical		211.8	209.2	207.0	206.3	204.6	202.0	200.9	201.1	201. 2	201.3	201.0	201.7	203.8	222.0
Drugs and medicines Soap, cleaning and polishing preparations		57.6	57.4	56.9	56.8	57.6	57.8	57.5	56.5	56.0	56.0	56.2	56.6	57.0	56.9
		30.2	30.5	30.8	30.2	30.4	30.8	31. 2	30.7	30.4	30.9	31.0	31.3	31.0	31.9
		44.1	43.7	44. 1	44.2	44.1	43.9	44.3	44.4	44.3	44.3	44.2	44.5	44.3	46.9
Gum and wood chemical		6.6	6.6	6.6	6.5	6.5	6.5 26.3	6.5 25.5	6.1 23.2	6.4 22.0	6.4 24.6	6.6 31.8	6.6 38.4	6.5 28.3	6.8 29.0
Fertilizers.		38. 5	29.3	27. 1	25.9	25.0	26.3	25.5 31.5	23.2 26.8	22.0	24.6 26.8	27.6	29.3	30.3	31. 6
Vegetable and animal oils			28.6 57.9	29.9 57.7	58.8	58.8	59.4	59.8	59.0	59.0	59.1	59.4	58.2	58.8	60.3
Miscellaneous chemica			57.9	57.7											
Products of petroleum and	171.6	170.8	169.7	168.6	171.5	173.3	174. 5	177.1	179.3	181.2	181.1	178.6	176.2	177.1	186.5
Petroleum refining		131.9	131.6	131.8	132.8	134.0	135.1	137.2	139.1	140.6	140.3	138.4	137.0	137.3	142.4
Coke, other petroleum and coal ucts.		38.9	38.1	36.8	38.7		39.4				40.8		39.2	39.8	44.1
Rubber products	211.6	211. 2	$\begin{array}{r}209.4 \\ 86.5 \\ \hline\end{array}$	208.585.3	$\begin{array}{r}206.8 \\ 84.5 \\ \hline\end{array}$	$\begin{array}{r} 202.1 \\ 81.2 \end{array}$	201.683.9	$\begin{array}{r} 196.3 \\ 82.6 \end{array}$	174.965.9	171.065.2	195.682.2	194.281.1	192.480.4	194.779.7	220.592.8
Tires and inner t		87.4													
Rubber footwear		21.4	21.5	22.1	22.3	22.3	21.9	21.0	20.5	20.1	19.8	19.8	19.2	20.7	23.7
Other rubber produc		102.4	101.4	101.1	100.0	98.6	95.8	92.7	88.5	85.7	93.6	93.3	92.8	94.3	104.1
Leather and leather products	335.4	346. 2	344.5	336.338.8	334.939.0	332.1	329.638.4	$\begin{array}{r} 330.9 \\ 38.1 \end{array}$	337.9	327.8	324.3	315.5	325.4	330.6	$\begin{array}{r} 346.8 \\ 42.4 \end{array}$
Leather: tanned, curried, and finished.		38. 8	39.1			$\begin{array}{r} 38.4 \\ 3.5 \end{array}$			38.5	38.9	39.1	38.6	38.8	39.0	
Industrial leather belting and packing		3.7	3.6	3. 6	$\begin{array}{r} 39.0 \\ 3.5 \end{array}$		$\begin{array}{r} 38.4 \\ 3.5 \end{array}$	$\begin{array}{r} 38.1 \\ 3.5 \end{array}$	14.1	3.4	14.3	13.2	3.6	3.6 14. 2	
Boot and shoe cut stock and findings		$\begin{array}{r} 15.8 \\ 227.8 \end{array}$	15.8	15.4	14.7	14.2	13.3	12.8		14. 2			14.0		
Footwear (except rubber)			227.8	224.9	221.5	216.2	213.1	216.6	223.8	218.1	216.7	210.8	217.8	219.0	225.8
Luggage		14.0	13.631.2	12.8	13.6	14.5	15.5 29.9	15.4	14.9	14.1	13. 9	13. 1	12.6	13. 8	15.328.1
Handbags and small leather goods		31.8		29.0	28.6	29.9	29.9	28.8	27.9	24.6	22.3	22.7	25.6	27.1	
Gloves and miscellaneous leather goods.		14.3	13.4	11.8	14.0	15.4	15.9	15.7	15.3	14.5	14.4	13.5	13.0	13.9	15.6
Stone, clay, and glass produ	449.2	441.7	434.2	430.1	436.6	438.3	437.6	437.1	433.5	423.7	427.0	426. 6	427.9	431.0	460.1
Flat glass..................		28.8	29.0	29.2	28. 9	28.6	27.1	25.7	24.7	25. 0	24.9	24.7	25.0	26. 1	28.2
Glass and glassware, pressed or blown --		76.5	75.2	74.1	74.7	75.5	75.9	757	76. 2	73.6	77.6	77. 9	78. 4	76. 6	84.8
Glass products made of purchased glass_		14.6	14.6	14.5	14.6	14.5	14.2	13.9	13.7	12.9	13. 2	13. 3	13.7	13.9	15.8
Cement, hydraulic		35.5	35.3	35. 5	35.6	35.7	36.0	36. 1	36.0	35. 9	32.7	33.7	34.2	34.9	35.2
Structural clay products		67.4	66.1	66.1	67.7	68.4	68.6	69. 1	68.8	68.8	69.1	67.8	67.1	67.6	70.8
Pottery and related products		48.2	47. 3	46.3	47.1	47.5	46.9	46.7	45.0	41.5	44.5	45.3	46.0	45.8	49.5
Concrete, gypsum, and plaster products.		85.8	83.6	83. 1	85.4	86.7	86.8	87.7	88.2	87.7	85.7	84.7	82.7	84.6	86. 4
Cut-stone and stone products.		17.2	17.2	16.7	17.8	17.6	17.8	17.9	17.8	16.4	17.1	17.2	17.7	17.3	16.5
Miscellaneous nonmetallic mineral products		67.7	65. 9	64.6	64.8	63.8	64.3	64.3	63.1	61.9	62.2	62.0	63.1	64.2	72.9
Primary metal ind	1,082.8	1,060.6	1,031.7	1,012.7	1,002. 2	988.0	969.4	965.3	967.3	968.5	982.1	974.4	989.5	990.6	1,131. 0
Blast furnaces, steel works, and rolling mills		523.1	508.0	497.8	493.0	486.7	481.2	485.0	483.5	485. 4	488.1	483.3	490.8	492.7	559.6
Iron and steel foundries		201.4	193.8	188.4	184.5	181.4	179.2	178.6	181. 3	181.0	185. 5	184.9	188.5	185.0	217.9
Primary smelting and refining of nonferrous metals		53.4	53.0	52.9	52.8	52.5	49.4	49.6	52.3	52.1	51.5	50.9	50.9	51.4	50.5
Secondary smelting and refining of nonferrous metals.		9.5	9.2	9.2	9.2	9.2	9.0	8.8	9.1	9.1	9.2	9.3	9.3	9.1	10.0
Rolling, drawing, and alloying of nonferrous metals.		87.3	86.5	85.7	84.6	83.6	82. 5	77.7	79.7	78.6	79.9	79.4	$4 \quad 79.5$	81. 1	91.7
Nonferrous foundries.		70.8	68.0	66.6	66.8	65.7	62.7	60.6	56.3	57.9	60.0	59.3	31.7	62.7	77.0
Miscellaneous primary metal industries.		115.1	113.2	112.1	111.3	108.9	105.4	105.0	105.1	104.4	107.9	107.3	108.8	108.7	124.3
Fabricated metal products (except ordnance, machinery, and transportation equipment) \qquad	866.5	5857.1	843.9	834.4	842.7	844.1	829.4	821.0	820.0	809.2	830.7	832.3	3837.7	837.5	930.4
Tin cans and other tinware-....-		47.2	46.8	47.2	47.5	48. 0	50.0	54.8	55.8	54.2	53.7	52.2	20.8	51.3	48.6
Cutlery, handtools, and hardware		123.5	122.2	119.3	119.2	116.9	113.5	111.0	111.0	108.6	114.5	116.7	117.8	116.6	132.1
Heating apparatus (except electric)															
and plumbers' supplies _--..-......-		102. 3	100.3	97.4	99.9	103.1	102.8	102.3	99.5	94.0	95.8	93.2 208.7	2 7 207.5	97.2 208.5	108.9 211
Fabricated structural metal products--		196.8	194.8	195. 2	200. 9	206.1	210.1	212. 5	212.4	213. 1	211.9	208. 7	7 207.0 181.6	208.5 176.3	${ }_{2114.5}^{211}$
Metal'stamping, coating, and engraving		185.5	180.7	178. 4	178. 2	177.3	167.2	161. 1	162. 2	162.4	171.5	177.3	$\begin{array}{rrr}3 & 181.6\end{array}$	176.3 34.9	214.5 40.9
Lighting fixtures...--.-.--		39.0	38.7	37.2	37.4	36.4	34.5	32.8	32.3	32.0	33. 6	33.7 47.4	7 34.9 48.1	34.9 48.2	40.9 55.3
Fabricated wire products.-.-.-.....--		53.2 109.6	52.5 107.9	52.3 107.4	52.4 107.2	50.4 105.9	47.6 103.7	45.7 100.8	45.5 101.3	45.2 99.7	46.7 103.0	47.4 103.1	48.1 105.0	48.2 104.7	55.3 119.1

See footnotes at end of table

TABLE A-3: Production workers in mining and manufacturing industries ${ }^{1}$ - Continued

Industry	1955				1954									$\begin{gathered} \text { Annual aver- } \\ \text { age } \end{gathered}$	
	Apr.	Mar.	Feb.	Jan.	Dec.	Nov.	Oct.	Sept.	Aug.	July	June	May	Apr.	1954	1953
Manufacturing-Continued Machinery (except electrical)															
Engines and turbines		54.6	54.8	54.2	53.6	50.5	52.3	50.2	50.4	52.7	53.7	54.4	54.7	53.6	64.7
Agricultural machinery and tractors		121.4	117.6	112.1	106.0	101. 6	99.6	100.2	99.8	106. 6	111.8	111.6	112.9	105.8	126.2
Construction and mining machinery		88.9 191.5	86.5 190.1	85.6 189.6	85. 0	85. 2	86. 7	88.0	88.4	89.5	90.8	90.8	91.6	89.4	99.6
Special-industry machinery (except		191.5	190.1	189.6	191.5	192.5	193.3	196.4	197.0	201.8	208.4	212.2	217.9	208.5	242.6
metalworking machinery)		125.2	123.5	122.4	123.2	122.7	123.5	124.7	124.8	124. 7	128. 2	129.3	130.8	127.8	138.9
General industrial machinery --......---		152.1	150.7	150.4	151.1	152.4	152.7	154.7	152.2	152.7	157.6	159.3	162.0	158.3	173.1
Office and store machines and devices.-		83.2	82.6	82.3	83.2	82.1	83.0	82.1	80.4	80.8	81.7	81.3	82.8	82.8	88.5
Service-industry and household machines		138.4	131.9	126.8	127.1	124.6	123.5	123.8	120.3	121.8	134.2	143.3	147.8	134.5	157.8
Miscellaneous machinery parts		190.5	187.3	185.9	185.2	180.4	177.9	176.9	181.2	180.1	187.6	187.5	191.0	187.1	211.9
Electrical machinery	807.6	805.8	803.4	799.5	809.1	810.7	799.9	785.4	766.3	750.5	760.9	776.3	796.1	794.6	925.1
Electrical generating, transmission, distribution, and industrial apparatus.		258.6	256.4											257.1	
Electrical appliances		51.7	50.5	49.5	51.9	52.8	52.7	52.3	49.3	48.1	48.7	50.7	53.1	52.2	290.7 59.0
Insulated wire and cable		20.5	20.3	20.6	20.7	20.4	20.4	19.6	18.5	18.0	18.6	18.8	19.0	19.4	${ }_{26.1}$
Electrical equipment for		64. 6	63.7	62.2	59.7	57.4	50.6	53.3	50.3	52.3	55.7	56.8	58.0	56.6	67.1
Electric lamps.		22.1	22.0	21.9	21.6	21.4	21.3	21.2	21.2	21.2	21.8	22.1	22.4	22.1	24.2
Communication equipment		355.0	358.1	358.3	366.6	373.5	370.1	359.9	347.7	331.9	329.3	334.7	346.4	353.1	419.9
Miscellaneous electrical produ		33.3	32.4	32.0	32.6	34.3	34.2	34.5	34.8	33.8	33.8	34.0	33.9	34.1	38.1
Transportation equipment.--------------1, 465.2		1, 448.3	1,426.4	1,399.8	1,374.71,333.8		1,249.0 1, 182.9		1,238.4	1, 279.4	1,327.8	1,346. 0	1,384. 1	1,334.9	1,542.9
		772.0	750.1	729.5	701.8	665. 1	179.6	504.2	562.0	589.8	623.5	630.3	654.5	1, 628.4	767.1
Aircraft and parts		520.0	523.2	523.1	525.1	523.6	522.1	530.6	528.1	537.3	542.7	548.1	557.7	544.3	568.7
Aircraft		328.1	329.6	325.8	325.9	324.0	323.5	328.4	332.9	332.1	331.9	336.7	339. 9	333.8	343.0
Aircraft engines and parts		99.0	99.7	99.8	100.2	100.3	102.0	103.5	96.4	104.1	108. 0	110.8	115.7	108.8	124. 7
Aircraft propellers and parts		9. 6	9.8	10.0	10.8	11.1	11.3	11.5	11.7	11.9	12.0	8.7	8.9	11.3	13.1
Other aircraft parts and equipment		83.3	84.1	87.5	88.2	88.2	85.3	87.2	87.1	89.2	90.8	91.9	93.2	90. 5	88.0
Ship and boatbuilding and repairing		109.1	105. 6	103. 7	104. 2	101.4	103.8	102.7	103.3	110.8	113.1	117.4	117.8	112.3	135.1
Shipbuilding and repairing-		88.2	85.1	84.3	86.6	85.0	88.4	87.2	86.8	92.4	93.5	96.8	99.1	94.1	115.1
Boatbuilding and repairing		20.9	20.5	19.4	17.6	16.4	15.4	15.5	16.5	18.4	19.6	20.6	18.7	18.3	20.0
Railroad equipment		40.2	40.8	37.8	37.0	35.7	34.7	36.4	36.2	33.4	40.7	43.0	47.1	42.3	62.4
Other transportation equipment		7.	6.7	5. 7	6.6	8.0	8.8	9.0	8.8	8.1	7.8	7.2	7.0	7.6	9.6
Instruments and related products --------	219.8	219.4	216.4	216.5	217.7	217.6	217.5	217.7	213.8	214.0	218.7	223.5	228.1	223.3	243.7
Laboratory, scientific, and engineering instruments		30.0	29.7	29.8	29.7			28.7	. 9	29.3	30.0				
Mechanical measuring and controling instruments						29.7	29.0					31.5	32.7	31.0	34.8
Optical instruments and lenses		9.8	59.69.8	59.89.9	10.0	10.1	58.710.4	58.210.6	56.610.6	56.610.5	54.610.7	57.0	57.4	57.8	59.1
Surgical, medical, and dental instru-												10.7	11.0	10.7	11.7
ments.-.---		27.4	27.2	27.2	27.3	27.1	27.2	27.5	27.3	27.4	27.7	27.7	28.0	27.9	31.0
Ophthalmic goods		18.7	18.5	18.4	18.3	18.3	18.3	18.1	18.0	17.8	19.0	19.3	19.7	19.0	21.6
Photographic appara		44.528.3	$\begin{aligned} & 43.9 \\ & 27.7 \end{aligned}$	$\begin{aligned} & 44.1 \\ & 27.3 \end{aligned}$	45.0	45.1	45.4	46. 0	45.0	45.2	45.4	45.2	45.8	45.7	47.4
Watches and clocks					28.0	28.2	28.5	28.6	28.4	27.2	31.3	32.1	33.5	31.1	38.2
Miscellaneous manufacturing industries.-	374.1	377.1	370.9	360.0	373.0	$\begin{array}{r} 389.8 \\ 46.0 \end{array}$	393.0	386.444.4	373.3	358.2	370.6	369.7	376.0	379.0	413.4
Jewelry, silverware, and plated ware.		$\begin{aligned} & 42.0 \\ & 15.0 \end{aligned}$	15.0	43.214.9	44.6		45.715.1		41.814.2	40.2	41.413.4	41.813.7	42.6	43.614.4	43.815.1
Musical instruments and parts.					15.1	15.1		14.6		13.4			14.0		
Toys and sporting goods		65.521.4	62.221.1	57.120.9	61.022.1	71.922.6	76.3 22.4	74.8	71.2	68.1	13.4 69.4	68.7	67.722.1	69.2	81.1
Pens, pencils, other office supplies								22.4	21.9	21.3	22.0	22.1		22.2	$\begin{array}{r} 22.3 \\ 56.2 \\ 64.6 \\ 130.4 \end{array}$
Costume jewelry, buttons, notions		$\begin{aligned} & 55.9 \\ & 61.6 \end{aligned}$	$\begin{array}{r} 56.5 \\ 59.6 \end{array}$	55.058.3110.6	54.659.3116.3	$\begin{array}{r} 56.3 \\ 59.2 \end{array}$	$\begin{array}{r} 56.9 \\ 58.0 \end{array}$	$\begin{array}{r} 55.7 \\ 56.8 \end{array}$	$\begin{aligned} & 54.2 \\ & 54.0 \\ & 55.0 \end{aligned}$	$\begin{array}{r} 49.7 \\ 53.6 \end{array}$	$\begin{array}{r} 51.8 \\ 56.7 \\ 118 \end{array}$	49.157.2	50.558.7	53.258.2	
Fabricated plastics products-															
Other manufacturing industries.		115. 7	114.2	110.6		118.7	118.6	117.7	115.0	111.9	115.9	117.1	120.4	118.4	

1 See footnote 1, table A-2. Production and related workers include working foremen and all nonsupervisory workers (including leadmen and trainees) engaged in fabricating, processing, assembling, inspection, receiving, storage, handling, packing, warehousing, shipping, maintenance, janitorial, watchman services, products development, auxiliary production for plant's own
use (e. g., powerplant), and recordkeeping and other services closely associated with the above production operations.
${ }_{3}^{2}$ See footnote 2, table A-2.
3 See footnote 3, table A-2.
See footnote 1 on p. 700 .

TABLE A-4: Indexes of production-worker employment and weekly payrolls in manufacturing industries ${ }^{1}$

Period	Employment	Weekly payrolls	Period	Employment	Weekly payrolls	Period	Employment	Weekly payrolls
1939: Average	66.2	29.9	1949: Average	93.8	97.2	1954: August	100.4	134.8
1940: Average.	71.2	34.0	1950: Average.	99.6	111.7	September	101.7	138.0
1941: Average	87.9	49.3	1951: Average	106.4	129.8		102.0	139.1
1942: Average	103.9	72.2	1952: Average	106.3	136.6 151.4	November	102.3 102.2	142.2 143.1
1943: Average	121.4	99.0	1953: Average	111.8	151.4 137.7	December	102.2	143.1
1944: Average	118.1 104.0	102.8 87.8	1954: Average	101.8	137.7	1955: January.	101.2	141.5
1946: Average.	97.9	81.2	1954: April.	101.4	134.5	February	102.3	144.4
1947: Average.	103.4	97.7	May	100.2	134.6	March	103.4	147.0
1948: Average	102.8	105.1	$\begin{aligned} & \text { June- } \\ & \text { July- } \end{aligned}$	100.5 98.5	135.8 131.9	April	103.6	

${ }^{1}$ See footnote 1, tables A-2 and A-3. See footnote 1 on p. 700.
Table A-5: Federal personnel, civilian and military
[In thousands]

Branch and agency	1955			1954										Annual average	
	Mar.	Feb.	Jan.	Dec.	Nov.	Oct.	Sept.	Aug.	July	June	May	Apr.	Mar.	1954	1953
Total Federal civilian employment ${ }^{1}$	2,148	2,142	2, 139	2,457	2, 165	2, 147	2,142	2,157	2, 161	2, 164	2, 160	2,167	2, 173	2, 188	2,305
Executive 2-..-----...-	2,122. 1	2,116. 4	2,113.2	2,431.1	2, 138.7	2, 121.3	2, 115.9	2,130.9	2,135. 4	2,137. 6	2,134.0	2,141.4	2,147.0	2,161. 6	2, 278.8
Department of Defense	1, 019.9	1,016. 8	1,014. 6	1,011.9	1, 011.7	1, 011.1	1,012. 6	1, 020.6	1, 022.1	1,025. 2	1, 029.0	1, 036.0	1, 041.4	1, 027.3	1,130. 6
Post Office Department Other agencies	502.1 600.1	$\begin{aligned} & 503.7 \\ & 595.8 \end{aligned}$	$\begin{aligned} & 504.8 \\ & 593.7 \end{aligned}$	$\begin{aligned} & 808.4 \\ & 610.8 \end{aligned}$	$\begin{aligned} & 506.2 \\ & 620.9 \end{aligned}$	$\begin{aligned} & 501.8 \\ & 608.3 \end{aligned}$	$\begin{aligned} & 503.3 \\ & 599.9 \end{aligned}$	$\begin{aligned} & 505.7 \\ & 604.6 \end{aligned}$	$\begin{aligned} & 507.4 \\ & 606.0 \end{aligned}$	$\begin{aligned} & 504.8 \\ & 607.6 \end{aligned}$	$\begin{aligned} & 502.4 \\ & 602.6 \end{aligned}$	$\begin{aligned} & 502.6 \\ & 602.8 \end{aligned}$	$\begin{aligned} & 500.8 \\ & 604.8 \end{aligned}$	$\begin{aligned} & 529.2 \\ & 605.1 \end{aligned}$	$\begin{aligned} & 526.5 \\ & 621.7 \end{aligned}$
Legislati	21.84.0	21.84.0	21.74.0	22.04.0	$\begin{array}{r} 22.1 \\ 4.0 \end{array}$	22.14.0	$\begin{array}{r} 22.0 \\ 4.0 \end{array}$	22.04.0	22.03.9	21.94.0	21.83.9	21.83.9	21.83.9	21.94.0	22.23.9
Judicial															
District of Columbia ${ }^{3}$	8. 2	227.6	226.7	230.7	226.9	226.4	225.7	227.3	228.3	228.5	226.4	227.5	227.3	227.5	240.9
Executive ${ }^{2}$	207.5	207.0	206.1	209.8	2060	205.5	204.7	206.4	207.4	207.7	205.7	206.787.1	206.687.3	206.787.1	219.890.4
Department of De- fense.	88.0	87.7	87.4	87.0	87.0	86.8	86.5	87.0	87.2	87.2	86.4				
Post Office Depart- ment_-.................	8.7110.9	$\begin{array}{r} 8.8 \\ 110.5 \end{array}$	$\begin{array}{r} 8.8 \\ 109.9 \end{array}$	$\begin{array}{r} 13.0 \\ 109.8 \end{array}$	$\begin{array}{r} 8.7 \\ 110.2 \end{array}$	$\begin{array}{r} 8.7 \\ 110.0 \end{array}$	$\begin{array}{r} 8.7 \\ 109.5 \end{array}$	$\begin{array}{r} 8.8 \\ 110.6 \end{array}$	$\begin{array}{r} 8.9 \\ 111.3 \end{array}$	$\begin{array}{r} 8.9 \\ 111.6 \end{array}$	$\begin{array}{r} 9.0 \\ 110.3 \end{array}$	$\begin{array}{r} 9.2 \\ 110.5 \end{array}$	$\begin{array}{r} 9.1 \\ 110.2 \end{array}$	$\begin{array}{r} 9.3 \\ 110.4 \end{array}$	9.5119.8
Other agencies															
Legislat	$\begin{array}{r} 20.0 \\ .7 \end{array}$	19.9.7	19.9.7	$\begin{array}{r} 20.1 \\ .7 \end{array}$	$\begin{array}{r} 20.2 \\ .7 \end{array}$	$\begin{array}{r} 20.1 \\ .7 \end{array}$	$\begin{array}{r} 20.0 \\ .7 \end{array}$	$\begin{array}{r} 20.0 \\ .7 \end{array}$	20.0.7	20.1.7	20.3.7				
Judicial															
Total military personn	$\begin{array}{r} 3,134 . \\ x, 263.0 \\ 957.0 \\ 675.4 \\ 210.5 \\ 27.9 \end{array}$	$\begin{array}{r} 3,188 \\ 1,300.3 \\ 955.9 \\ 689.4 \\ 214.2 \\ 27.7 \end{array}$	$\begin{array}{r} 3,231 \\ 1,334.0 \\ 952.9 \\ 698.5 \\ 217.6 \\ 28.0 \end{array}$	$\begin{array}{r} 3,209 \\ 1,326.1 \\ 947.2 \\ 686.5 \\ 220.7 \\ 28.0 \end{array}$	$\begin{array}{r} 3,261 \\ 1,351.9 \\ 966.4 \\ 692.7 \\ 221.8 \\ 28.5 \end{array}$	$\begin{array}{r} 3,286 \\ 1,368.3 \\ 965.1 \\ 702.0 \\ 221.5 \\ 28.8 \end{array}$	$\begin{array}{r} 3,309 \\ 1,385.0 \\ 961.7 \\ 711.1 \\ 221.8 \\ 28.9 \end{array}$	$\begin{array}{r} 3,318 \\ 1,394.9 \\ 958.3 \\ 714.1 \\ 222.0 \\ 28.9 \end{array}$	$\begin{array}{r} 3,331 \\ 1,405.2 \\ 953.3 \\ 719.2 \\ 224.0 \\ 28.9 \end{array}$	$\begin{array}{r} 3,331 \\ 1,404.6 \\ 947.9 \\ 725.7 \\ 223.9 \\ 29.2 \end{array}$	$\begin{array}{r} 3,341 \\ 1,416.8 \\ 939.8 \\ 736.4 \\ 218.5 \\ 29.5 \end{array}$	3,356$1,425.1$936.8744.9219.229.9	$\begin{array}{r} 3,372 \\ 1,438.6 \\ 932.3 \\ 749.8 \\ 221.1 \\ 30.4 \end{array}$	$\begin{array}{r} 3,326 \\ 1,402.0 \\ 946.0 \\ 725.1 \\ 23.8 \\ 29.5 \end{array}$	$\begin{array}{r} 3,545 \\ 1,508.9 \\ 957.9 \\ 792.7 \\ 250.6 \\ 34.7 \end{array}$
Army															
Navy															
Marine Corp															
Coast Guard															

[^54]politan Area (District of Columbia and adjacent Maryland and Virginia counties)
${ }^{4}$ Data refer to Continental United States and elsewhere. See footnote 1 on p. 700.

Table A-6: Employment in nonagricultural establishments for selected States ${ }^{1}$
[In thousands]

State	1955			1954										Annual average	
	Mar.	Feb.	Jan.	Dec.	Nov.	Oct.	Sept.	Aug.	July	June	May	Apr.	Mar.	1954	1953
Alabama	669.3	662.1	660.1	675.3	672.2	671.6	668.9	653.8	653.6	660.4	661.3	665.4	662.3	664.4	679.9
Arizona	209.8	206.8	205.6	208.9	205.2	202.3	197.5	196.6	198.3	199.0	201.4	202.5	202.3	201.7	202.4
Arkansas ${ }^{2}$	309.9	305.9	304.2	314.1	308.6	308.7	308. 3	302.1	302.6	305.6	304.9	306.0	306.2	305.9	316.1
California	3,874. 7	3,837. 1	3,815. 7	3,951. 2	3,887. 5	3,902. 5	3, 914. 7	3,884. 8	3, 835.4	3, 823.8	3,810.6	3, 796. 3	3, 785. 0	3,849. 6	3,895.3
Colorado	397.2	393.9	395.0	410.3	408.5	410.0	411.8	409.7	400.4	405.5	394.7	391.5	387.5	400.6	412.2
Connecticut	847.1	843.1	843.9	866.2	853.3	851.5	846.6	843.6	838.2	848.2	843.6	852.1	851.0	851.2	879.3
District of	490.4	486.6	487.9	501.7	494. 0	492.6	492.2	491.2	491.1	491.9	489.1	490.5	488.6	491.5	508.9
Florida	908.6	909.3	903.4	911.0	873.9	843.3	828.0	819.8	817.0	828.4	851.3	888.2	889.6	861.6	835.7
Georgia	915.2	905.1	902.9	923.7	911.8	905.8	896.0	884.6	872.6	884.3	884.7	887.9	886.4	892.2	906.2
Idaho ${ }^{2}$	125. 2	124.7	125.4	131.3	132.9	137.4	140.1	138.2	136.1	133.2	130.3	125.6	123.0	131.1	134.9
Illinois 2	3,257. 3	3,231.7	3, 240. 3	3,343. 7	3,303.5	3, 295. 7	3,298. 1	3,265. 0	3,243. 5	3,282.9	3,269.9	3,272.4	3,250. 3	3,280. 3	3, 411.4
Indiana	1,334.0	1,318.3	1,313.1	1,343. 2	1,324.9	1,318.0	1,317. 6	1,284. 6	1,289.8	1,303.4	[1,307. 1	1,320.0	1, 321.7	1, 318.8	1, 423.6
Iowa	617.0	610.3	611.9	630.9	627.3	629.8	629.5	623.2	618.8	621.8	615.2	613.2	606.2	618.8	633.0
Kansas	541.2	533.4	536.4	552.6	551.7	552.4	549.6	543.7	544.6	545.9	541.3	538.8	531.1	542.1	546.4
Louisiana ${ }^{2}$	681.1	676.7	678.1	709.0	701.9	699.3	695.8	691.4	690.7	692.4	689.3	692.6	684.9	693.2	696.4
Maine ${ }^{2}$	258.2	259.5	260.2	268.3	265. 1	268.6	271.3	277.2	275.9	276.0	264.8	255.1	255.8	266.6	274.7
Marylan	788.2	774.2	775.3	800.1	796.7	798.3	797.2	796. 7	789.7	791.2	784.2	784. 7	779.9 1.743 .0	$\begin{array}{r}789.6 \\ \hline\end{array}$	806.5 1.815 .6
Massachusett	1,725.5	1,710.6	1,714.4	1,774. 3	1,744.6	1,744.8	1,745.8	1,745. 7	1,737.0	1,756.0	1,747.1	1,749. 8	1,743. 0	1,748. 5	1,815. 6
Michigan	2,354. 9	2,331. 1	2, 325.6	2, 376.0	2, 323.0	2,257.3	2,194. 1	2,217.9	2, 238.5	2, 286. 2	2, 287.7	2,307.6	2, 306.2	2, 288. 1	2, 455. 1
Minnesota ${ }^{2}$	814.2	814.3	822.0	255.8	859.9	862.8	872.9	864.8	858.3	846.9	841.8	829.8	815.9	845.8	865.9
Mississipp	341.0	336.3	338.3	349.2	344.0	343.6	341.3	334.5	332.2	333.1	332.0	334.7	331.5	336. 0	341.5
Missouri ${ }^{2}$	1,246.9	1,233.2	1, 235.3	1, 276.3	1,250.6	1,246.6	1,248.9	1,243. 0	1,246.6	1, 252.3	1,251.1	1,258. 0	1,255. 1	1,253.2	1,292.0
Montana ${ }^{2}$	143.9	143.2	143.6	150.6	152.3	1, 150.2	1, 152.2	161.4	161.3	160.3	155.1	150.7	147.1	152.8	154.2
Nebraska	337.5	334.3	335.3	351.3	348.8	351.8	349.8	346.9	347.4	348.9	344.8	340.4	335.6	344.6	348.2
Nevada	73.8	73.0	72.2	73.9	73.2	74.8	76.4	76.9	76.6	75.2	72.9	71.4	69.8	73.2	71.1
New Hampshi	171.6	171.1	171.5	175. 5	173.3	173. 8	176. 3	179.1	177.8	176. 4	170.0	169.6	169.9	173.4	175.8
New Jersey	1,749. 4	1,729.6	1, 730.8	1, 785.8	1, 772.1	1,778.0	1, 785. 2	1, 775. 7	1,770.9	1,778.1	1,767. 7	1,774.9	1, 774.0	1,775. 7	1,834.2
New Mexico	178.1	175.1	173.9	179.7	177.6	1, 177.6	177.3	175.4	175.0	174. 6	172.8	171.2	169.9	174.2	178. 1
New York ${ }^{2}$	5, 784.0	5,743.8	5, 749.7	5, 970.7	5,908.8	5, 909. 7	5, 893.7	5,860.7	5,817. 6	5, 826.9	5, 815.7	5,841.3	5,819.2	5,856. 3	5,973.0
North Carolina ${ }^{2}$	998.3	994.8	994.4	1,023.1	1,013.1	1, 014. 2	1,005.0	988.0	972.0	977.3	975.0	983.7	982.2	991.9	1, 012.0
North Dakota	108.2	107.6	107.9	115. 0	116.4	119. 2	119.5	119.4	119.2	118.7	114.8	110.6	107.1	114. 3	112. 7
Ohio ${ }^{2}$	2, 941.3	2, 909.2	2, 910.7	2, 999.8	2,959.8	2,953. 4	2,954. 0	2,907.2	2, 902.7	2,949.9	2, 946. 5	2,962. 5	2, 964.4	2, 956.0	3, 108. 3
Oklahom	534.3	231.3	530.6	546.4	540.7	538.0	537.5	533.5	537.6	539.2	535.0	535.3	529.6	535.4	539.0
Oregon	440.0	436.8	437.0	460.2	461.3	471.1	483.0	456. 0	439.5	$\begin{array}{r}458.7 \\ \hline, 595.0\end{array}$	+ 451.7	, 444.3	433.7	451.0	$\begin{array}{r}465.8 \\ \hline \text { 859 }\end{array}$
Pennsylvania	3, 557. 7	3, 528. 2	3,540.1	3,658.9	3, 622.0	3,615.0	3,590. 1	3,572.8	3,574. 2	3, 595.0	3,585. 3	3,634. 1	3,638. 1	3, 619.6	3,859.5
Rhode Island	294.7	292.7	292.8	302.0	299.4	297.2	291.4	286.7	281.6	285.0	282.0	284.8	285.8	288.8	302.4
South Carolina	515. 6	511.3	509.4	520.4	515.0	513.3	511.9	505.1	500.4	505.4	506.0	512.6	509.4	510.1	532.5
South Dakot	118.0	116.1	117.3	121. 4	121.6	123.5	123. 6	123.2	121.9	122.1	119.9	119.0	116.6	120.5	121.0
Tennessee 2	819.2	813.4	816.7	843.0	829.4	826. 2	826. 2	817.0	-812.8	-812.6	811.7	214.4	809.4	818.3	831.8 $2,227.9$
Texas ${ }^{2}$-..	2,211.9	2,195.4	2, 191. 1	2,253.9	2,218.8	2,206. 0	2, 205.8	2, 192.5	2, 187.5	2,191.9	2, 173.4	2, 168.4	2,157. 7	2, 189.6	2, 227.9
Utah	208.1	205.9	206. 0	217.5	214.9	217.8	218.2	210.3	207.7	205.6	205. 2	203.7	201.9	208.9	
Vermont ${ }^{2}$	97.6	97.6	97.3	101.0	100.5	101.4	102.0	102.8	102.0	102.7	100. 2	101. 3	100.4	101. 2	103.8
Virginia	882.7	876.7	877.2	909.1	897.8	896.2	888.5	877.5	873.8	876.5	874.1	872.7	869.1	881.6	900.2
Washington	710.2	702.8	704.2	736. 1	736.7	750.7	753.2	718.1	716. 9	735.7	728.7	717.9	707.0	723.1	736. 0
West Virginia ${ }^{2}$	454.9	450.8	447.2	465.8	461.5	461.1	460.4	458.6	455.7	461.4	462.3	466.6	468.9	464.7	506.0
Wisconsin ${ }^{2}$	1,049.2	1, 038.8	1,037.5	$\mathbf{1}, 065.3$	$\text { 1, } 059.0$	$1,064.0$	$1,076.3$	$1,068.7$	$1,078.1$	$1,057.9$	$1,046.9$	$1,043.1$	$1,037.6$	$1,057.3$	$1,093.8$
Wyoming.	79.0	1,78.6	1, 78.4	82.8	84.4	86.2	87.2	89.6	88.7	87.6	83.2	79.7	78.8	84.1	87.5
${ }^{1}$ Data for earlier years are available upon request to the Bureau of Labor Statistics or the cooperating State agency. State agencies also make available						abor able	more agenci ${ }_{2} \mathrm{Re}$	etailed in S. vised ser	dustry d	ata. Se	table A	-7 for ad	dresses of	cooperat	g State

Table A-7: Employment in manufacturing industries by State ${ }^{1}$
[In thousands]

State	1955			1954										Annual average	
	Mar.	Feb.	Jan.	Dec.	Nov.	Oct.	Sept.	Aug.	July	June	May	Apr.	Mar.	1954	1953
Alabam	230.7	226.2	223.5	225.8	226.8	227.3	226.8	222.0	220.6	223.8	223.3	226.2	228.0	225.7	234.9
Arizona	29.5	28.9	28.2	28.2	28.1	27.4	26.5	25.7	26.9	26.4	26.2	26.1	25.7	26.6	27.9
Arkansas ${ }^{2}$	81.4	80.0	79.4	79.7	79.8	80.4	80.8	79.1	79.2	80.4	80.5	81.1	81.1	80.2	83.3
California	1, 047.0	1, 030.6	1,018.7	1,031.9	1, 045.3	1,061.9	1,086.7	1, 083.0	1, 037.1	1, 022.3	1,020.7	1,019.9	1,018.4	1,039. 1	1, 063.7
Colorado	62.0	61.1	60.9	63.9	66.2	67.3	66.0	64.1	62.8	62.8	1, 61.1	60.9	61.1	63.5	68.0
Connectic	416.0	413.4	409.2	411.6	410.9	410.5	408.0	407.0	401.5	414.3	416.2	424.8	431.8	418.5	458.0
Delaware	54.7	54.2	53.8	54.1	54.1	55.6	58.9	60.0	56.4	57.8	57.3	56.7	57.5	57.0	62.1
District of	16. 0	15.8	15.8	16.0	16. 2	16.2	16. 4	16. 2	16. 0	16.3	16. 2	16.1	16.7	16.4	17.4
Florida	136.6	139.3	138.8	138.6	134.8	125.2	121.9	119.6	118.6	122.8	128.1	132.0	132.4	128.6	122. 4
Georgia	320.6	317.0	314.3	315.0	315.9	313.4	309.9	306.2	296.4	304.6	305.3	307.7	309.3	308.5	318.1
Idaho.	20.3	20.7	21.4	22.4	24.8	26.4	27.8	27.4	26.1	24.6	22, 9	20.6	19.7	23.5	23.7
Illinois ${ }^{2}$	1, 226.2	1, 215.6	1,207.8	1,213.9	1, 208.5	1, 204.8	1, 208.7	1,197.5	1,178. 2	1, 208.0	1, 203.6	1, 215.8	1, 229.2	1,212.5	1, 324, 4
Indiana	1, 599.9	1, 591.8	1, 582.2	1, 579.1	1, 576.3	572.3	- 575.6	1, 550.3	1, 554.1	1567.5	571.2	1, 583.1	595.1	579.7	674. 2
Iowa	164.8	162.8	162. 5	162.3	160.3	161. 2	162.1	163.4	159.8	161. 2	158.4	159.0	159.7	160.6	172.5
Kansa	130.4	130.6	132.5	134.6	136.0	135.1	131.6	131.9	131.9	132.7	131.2	131.5	131.7	132.5	137.9
Kentucky	155.2	157.1	158.8	157.4	150.7	150.5	150.3	148.7	145.5	147.0	146.6	147.7	150.7	150.5	159.5
Louisiana ${ }^{2}$	144.0	143.5	143.7	152.9	157.4	154.6	151.4	150.9	148.2	148.9	148.3	149.4	149.1	151.4	160.9
Maine ${ }^{2}$	102.3	104.1	103.1	103.3	103.5	105. 6	107.4	112.3	110.3	111.2	103.3	97.8	101.3	105.5	114.3
Marylan	248.7	245.0	243.6	244.2	247.5	252. 9	254. 0	259.1	252.6	250.8	247.0	247.6	249.1	250.9	268.9
Massachus	667.4	663.5	658.8	663.4	661.5	662.3	661.7	664.2	654.1	665.4	663.0	674.0	687.5	670.5	737.9
Michigan	1,142. 1	1,125.9	1, 111.5	1,098.3	1,073.1	1,009.6	951.8	991.6	1, 009.5	1, 044.3	1, 051.2	1, 073.4	1,088.9	1, 052.0	1,219.4
Minnesota ${ }^{2}$	198.8	196.5	197.8	201.9	204.6	1, 204.9	217.0	211.1	210.4	207.0	205. 1	206.4	209.6	208.6	225.1
Mississippi	97.9	96.2	95.6	96.2	97.2	97.4	96.9	96. 4	95.4	95.6	94.3	96.1	95.2	95.6	98.6
Missouri ${ }^{2}$	383.5	381.0	378.2	375.7	372.3	368.3	371.9	376.6	377.7	379.3	380.4	388.6	394.6	382.1	416.3
Montana ${ }^{2}$	17.4	17.5	17.6	18.7	19.7	17.1	17.0	19.7	19.9	19.4	18.0	17.2	16.8	18.1	18.3
Nebrask	55.7	55.5	55.9	57.8	58.1	59.8	58.5	58.1	58.6	59.3	58.2	56.9	57.1	58.1	61.0
Nevada	4.7	4.6	4.6	4.5	4.5	4.5	4.4	4.4	4.3	4.2	4.0	4.1	4.2	4.3	4. 4
New Hamp	80.4	80.9	80.4	79.5	79.0	77.7	78.9	79.7	78.1	78. 9	77.1	78.2 779.1	80.2	79.0	82.4
New Jersey	769.6	762.5	757.7	762.8	767.7	770.1	776.7	771.6	762.2	771.2	767.5	779.1	800.9	778.4	844.8
New Mexic	17.2	16.8	16.5	16.5	16.6	16.6	16.6	16.4	16.4	16.2	15.9	15.7	15.6	16.1	16.4
New York ${ }^{2}$	1,884.0	1,874.1	1,864.2	1,899.7	1,920.4	1,925. 7	1,919.9	1,906.9	1,855.2	1,866.8	1,870.2	1,905. 7	1,959.4	1,910.9	2,027. 1
North Carolina	1,884.8	1,878.5	1,847.8	1, 442.4	1, 445.7	1, 448.9	1, 444.6	1, 435.7	1, 420.1	1, 421.3	1, 419.1	1, 424.8	1,428.8	433.1	448.7
North Dakota ${ }^{2}$	6.4	6.3	6.5	6.9	7.0	7.0	6.8	6.9	7.0	7.1	6.2	6. 0	5.9	6.6	
Ohio ${ }^{2}$	1,311.1	1,294.5	1,282.1	1,281.6	1,274.4	1,269.6	1,271.3	1,243.1	1,236.9	1,279.6	1,282.3	2,197.8	1,321. 1	1,287.2	1,423.7
Oklahom	1,86.6	1, 85.3	1, 84.3	1, 84.1	1, 84.7	1, 84.4	1, 83.2	1, 83.8	1, 84.4	83.6	82.5	82.9	82.7	83.4	85.0
Oregon	128.4	129.3	127.6	134.7	142.0	147.1	155.1	133.3	119.8	140.7	136.8	131.6	127.3	134.3	143.5
Pennsylvania	1,432.9	1, 420.7	1,412.1	1,427.0	1,428.8	1,426.2	1,418.4	1, 420.3	1,422.9	1,428.6	1, 436.8	1, 468.6	1,496. 4	1,451.3	1,619.3
Rhode Island	133.8	134.0	132.9	134.1	1, 134.6	1, 134.3	130.5	128.9	124.8	127.5	125.0	127.2	130.3	130.0	145.1
South Carolina	224.8	222.6	221.6	222.7	223.0	220.5	220.7	219.4	213.5	216.4	216.2	218.5	218.8	219.0	225. 7
South Dakota	11.3	11.2	11.5	12.1	12.4	12.1	12.0	12.0	11.9	11.9	11.5	11.3	11.2	11.7	12.0
Tennessee ${ }^{2}$	276. 1	274.3	274.4	274.7	273.1	272.3	275.6	273.9	272.6	271. 0	272.1	272.8	274.9	273.7	291.1
Texas ${ }^{2}$	423.3	421.6	424.1	426.0	427.0	426.9	426.9	426.8	425.1	424.7	422.2	421.5	423.1	424.8	437.8
Utah	30.0	29.8	29.4	31.5	32.3	33.8	35.5	31.7	32.3	30.2	29.8	29.4	29.3	31.2	32.4
Vermont ${ }^{2}$	35.4	35.3	34.7	35.5	35.9	35.9	36.2	36.3	35.6	37.0	36.5	38.2	38.2	36.8	40.4
Virginia.	240.9	240.8	241.4	244.9	246.9	247.8	245.7	242.1	237.6	237.9	237.1	236.7	239.5	242.0	256.4
W ashington	187.0	186.3	185.1	190.3	195. 7	203.5	204. 9	175.5	174.4	197.2	193.3	189.2	185. 8	188. 9	195.8
West Virginia ${ }^{2}$	126.9	126.5	123.4	124.7	126.1	125.7	125.7	125.2	122. 2	125.2	124.0	124.2	126.1	125.7	136.0
Wisconsin ${ }^{2}$	434.4	427.3	421.2	421.3	424.3	425.7	438.3	438.2	447. 1	428.6	425.4	427. 5	435.5	432. 9	472.5
W yoming--	6.2	6. 2	6.4	7.0	7.2	7.5	6.9	6.8	6.8	6.6	6.2	6.1	6.0	6.6	6.6

${ }^{1}$ Data for earlier years are available upon request to the Bureau of Labor Statistics or the cooperating State agency. State agencies also make available more detailed industry data.

Cooperating State Agencies

Alabama-Department of Industrial Relations, Montgomery 4
Arizona-Unemployment Compensation Division, Employment Security Commission, Phoenix.
Arkansas-Employment Security Division, Department of Labor, Little
Rack. California-Division of Labor Statistics and Research, Department of Industrial Relations, San Francisco 1.
Colorado-U. S. Bureau of Labor Statistics, Denver 2
Connecticut-Employment Security Division, Department of Labor, Hart ford 15 .
Delaware-Federal Reserve Bank of Philadelphia, Philadelphia 1.
District of Columbia-U. S. Employment Service for D. C., Washington 25
Florida-Industrial Commission, Tallahassee
Georgia-Employment Security Agency, Department of Labor, Atlanta 3
Idaho-Employment Security Agency, Boise.
Illinois-State Employment Service and Divi
porsation pensation, Department of Labor, Ohicago 54
Indiana-Employment Security Division, Indianapolis 9 .
Iowa-Employment Security Commission, Des Moines 8
Kansas-Employment Security Division, Department of Labor, Topeka.
Kentucky-Bureau of Employment Security, Department of Economic Security, Frankfort.
Louisiana-Division of Employment Security, Department of Labor, Baton Rouge 4.
Maine Employment Security Commission, Augusta.
Maryland-Department of Employment Security, Baltimore 1.
Massachusetts-Division of Statistics, Department of Labor and Industries, Boston 8.
Michigan-Employment Security Commission, Detroit 2.
Minnesota-Department of Employment Security, St. Paul 1.
Mississippi-Employment Security Commission, Jackson.
Missouri-Division of Employment Security, Jefferson City.
Montana-Unemployment Compensation Commission, Helena.
Nebraska-Division of Employment Security, Department of Labor, Lincoln 1.
${ }^{2}$ Revised series; not comparable with data previously published.

Nevada-Employment Security Department, Carson City.
New Hampshire-Division of Employment Security, Department of Labor, Concord.
New Jersey-Bureau of Statistics and Records, Department of Labor and Industry, Trenton 10.
New Mexico-Employment Security Commission, Albuquerque
New York-Bureau of Research and Statistics, Division of Employment, State Department of Labor, 1440 Broadway, New York 18.
North Carolina-Division of Statistics, Department of Labor, Raleigh.
North Dakota-Unemployment Compensation Division, Workmen's Compensation Bureau, Bismarck.
Ohio-Division of Research and Statistics, Bureau of Unemployment Compensation, Columbus 16.
Oklahoma-Employment Security Commission, Oklahoma City 2.
Oregon-Unemployment Compensation Commission, Salem.
Pennsylvania-Federal Reserve Bank of Philadelphia, Philadelphia 1 (mfg.); Bureau of Research and Information, Department of Labor and Industry, Harrisburg (nonmfg.).
Rhode Island-Division of Statistics and Census, Department of Labor, Providence 3.
South Carolina-Employment Security Commission, Columbia 1.
South Dakota-Employment Security Department, Aberdeen.
Tennessee-Department of Employment Security, Nashville 3.
Texas-Employment Commission, Austin 19.
Utah-Department of Employment Security, Industrial Commission, Salt Lake City 10.
Vermont-Unemployment Compensation Commission, Montpelier.
Virginia-Division of Research and Statistics, Department of Labor and Industry, Richmond 14.
W ashington-Employment Security Department, Olympia.
West Virginia-Department of Employment Security, Charleston 5.
Wisconsin-Statistical Department, Industrial Commission, Madison 3.
W yoming-Employment Security Commission, Casper.

Table A-8: Insured unemployment under State unemployment insurance programs, ${ }^{1}$ by geographic division and State
[In thousands]

Geographic division and State	1955			1954										$\frac{1953}{\text { Mar. }}$
	Mar.	Feb.	Jan.	Dec.	Nov.	Oct.	Sept.	Aug.	July	June	May	Apr.	Mar.	
Continental United States...-.-.------	1,657.0	1,879.8	1,962.3	1,666.2	1,463.3	1,465.8	1,580.4	1,691.7	1,861.9	1,924.0	2, 070.4	2,181.6	2,174.8	1,014.5
	124.0	140.4	150.4	128.9	116.1	117.5	128.9	130.6	143.5	147.7	168.3	172.8	160.9	76.3
	11.2	12.8	14.0	12.4	11.0	8.2	8.3	9.2	9.9	11.1	16.6	18.1	13.7	8.1
New Hampshi	7.6	7.5	8.2	8.0	8.2	9.8	10.8	9.2	9.5	10.6	13.7	12.3	9.7	6.0
Vermont-.-	5.4	5.8	5. 0	4.0	3.4	3.1	2.9	2.9	2.9	3.6	4.3	3.5	3.4	1.6
Massachusett	60.3	70.1	75.2	64.5	56.9	56.7	60.8	58.5	64.7	68.6	75.2	78.4	76.1	39.3
Rhode Island	15.3	16.8	17.2	13.6	12.0	13.5	19.0	18.7	21.2	22.1	26.7	28.3	28.0	12.9
Connecticut.	24.2	27.4	30.8	26.4	24.6	26.2	27.1	32.1	35.3	31.7	31.8	32.2	30.0	8.4
	507.4	557.3	587.0	501.5	445. 4	445.8	459.1	494.5	575.9	609.7	623.2	622.0	589.4	301.4
	226.9	251.8	266.3	230.2	194.1	184.5	184.5	196. 2	254.7	279.3	275.8	277.3	261.7	157.8
	84.0	91.7	94.6	78.7	71.3	70.8	69.7	76.3	86.6	89.1	94.9	91.9	87.9	43.7
	196.5	213.8	226.1	192.6	180.0	190.5	204.9	222.0	234.6	241.3	252.5	252.8	239.8	99.9
East North Central	279.2	337.9	365.8	329.8	311.4	360.9	424.1	428.9	431.9	426.4	465. 7	486. 7	480.4	122.3
Ohio.	72.7	89.0	96.2	87.2	77.7	79.2	87.2	91.7	95.0	97.3	105.3	113.5	116.2	26.9
Indiana	28.7	36.7	41.8	36.0	32.6	34.6	40.9	50.0	48.4	51.0	56.8	64.1	67.0	12.9
Illinois	91.7	110.2	116.4	101. 6	95.0	101.9	113.0	133.9	148.1	161.4	168.0	153.3	124.5	45.1
Michigan	59.8	69.0	75.8	72.1	80.3	121.6	159.1	131.0	115.6	89.2	103.9	118.9	129.9	24.4
Wisconsin	26.3	33.0	35.6	32.9	25.8	23.6	23.9	22.3	24.8	27.5	31.7	36.9	42.8	13.0
West North Central.	120.3	137.7	128.8	98.4	78.2	70.8	69.1	71.9	77.5	84.2	103.0	123.1	130.3	68.9
Minnesota....-.-	40.7	43.4	40.2	29.6	20.2	16.0	15. 4	18.0	20.0	23.0	31.6	40.4	41.1	25.1
Iowa .-.	11.3	14.0	12.5	8.4	5. 7	5.3	5. 3	6.5	7.3	8.1	9.6	12.1	15.6	8.0
Missouri	38.2	44.4	45, 0	39.7	39.4	39.5	38.6	36.5	38.9	41.2	46.6	47.6	43.2	18.6
North Dakota	6.4	6.7	5.9	3.7	1.5	. 4	. 3	. 3	. 4	. 6	1.3	3.6	5.1	4.2
South Dakota	3.3	3.8	3.1	1.8	. 8	. 4	. 4	. 5	. 5	. 5	. 9	1.9	3. 0	1.9
Nebraska	7.5	9.0	8. 0	4.7	2.6	2. 0	2.0	2.6	2.8	2.9	3.8	5. 6	7. 7	4.7
Kansas.-	12.9	16.4	14.1	10.5	8.0	7.2	7.1	7.5	7.6	7.9	9.2	11.9	14.6	6.4
	160.9	184.1	198.1	168.2	147.4	154.4	176.0	205. 2	236.1	237.7	241.6	237.9	224.9	104.1
	3.8	4.4	4.3	3.3	2.9	2.9	3.0	3. 4	3.0	2.8	3.3	4.0	4.5	1.3
Maryland.	19.0	25.1	27.0	23.1	20.1	20.5	24.5	28.6	31.8	32.3	33.6	32.0	26.8	10.6
District of Col	6.5	7.5	6.6	5.0	4.4	4.2	4.3	4.9	5.1	5.2	5.6	6.6	7.6	3.5
Virginia.	15.5	17.9	18.0	14.3	12.0	12.9	15.4	20.1	26.5	30.5	23.8	21.6	23.0	9.3
West Virginia	26.1	29.8	32.8	28.9	27.4	29.4	33.2	36.7	40.1	43.3	46.6	47.2	41.4	17. 6
North Carolina	40.8	43.3	44.4	36.2	29.3	28.6	32.1	38.3	51.5	52.3	58.8	59.1	54.5	28.3
South Carolina	13.1	15.1	16.8	15.5	14.4	14.1	14.9	17.1	19.7	18.9	20.7	21.0	20.8	10.8
Georgia.	23.1	26.5	31.9	27.0	22.0	22.1	24.8	30.1	34.0	34.2	33.8	32.8	31.9	14.0
Florida	13.0	14.5	16.3	14.9	14.9	19.7	23.8	26.0	24.4	18.2	15.4	13.6	14.4	8.7
East South Central	118.7	128.2	134.4	118.3	108.1	105.1	110.3	127.7	141.9	150.5	156. 9	159.8	154.4	71.3
	41.1	41.2	39.3	36.3	34.4	34.9	37.2	42.9	44.6	49.2	53.9	52.8	49.7	20.0
Tennessee	42.3	46.4	49.8	43.3	39.1	37.4	37.7	42.1	48.7	52.1	54.9	57.0	54.9	22.9
Alabama.	20.4	23.4	26.6	23.9	23.1	22.6	24.6	29.0	31.3	31.7	30.3	31.6	30.4	16.9
Mississippi	14.9	17.2	18.7	14.8	11.5	10.2	10.8	13.7	17.3	17.5	17.8	18.4	19.4	11.5
	87.5	101.0	97.6	77.6	64.4	60.0	62.1	71.8	79.0	83.8	93.5	101.9	106. 5	58.2
Arkansas.	16.8	20.0	20.1	15.4	12.1	10.4	10.7	13.3	15.1	15.3	18.3	20.4	20.5	12.9
Louisiana	24.0	27.8	25.4	19.8	16. 7	15.5	16.2	19.2	22.0	22.4	23.1	24.4	26.0	15.6
Oklahoma	14.3	17.3 35	17.8	13.9	11.5	10.5	10.9	12.2	12.4	13.1	14.9	16.2	17. 7	11.9
Texas	32.4	35.9	34.3	28.5	24.1	23.6	24.3	27.1	29.5	33.0	37.2	40.9	42.3	17.8
Mountain	45.8	52.5	48.4	32.9	23.1	18.3	20.0	21.5	23.7	25.7	33.3	47.4	57.7	29.1
Montana	8.0	8.1	6.5	3.8	2.2	2.2	2.2	1.3	1.4	2.0	3. 3	5.9	7.2	6.3
Idaho--	8.8	9.9	9.4	6.7	3.7	1.9	1.9	2.1	2.2	2.5	3. 8	6. 7	9.7	6.1
W yoming	3. 6	3. 9	3. 2	1.8	1.0	- 7	. 6	. 8	1.3	1. 2	2.1	3.1	3.9	1. 4
Colorado.	5. 7	6.9	6.3	4. 5	3.4	2.5	2.6	3.1	3.8	3.8	5.5	8.0	10.1	3.2
New Mexic	4. 9	5. 7	5. 4	3. 9	2. 8	2.4	2. 8	3. 5	3. 9	4.1	4. 8	5. 9	6.5	2.7
Arizona	5.3	6.3	6.1	4.6	4.2	4.3	5.1	5.1	5.2	5. 5	5. 9	6. 7	7.0	3.6
Utah---	6.6	8.4	8.0	4.9	3. 5	2.7	3.3	4.1	4.4	4. 9	6. 0	7.8	9.6	4.4
Nevada	2.9	3.3	3.5	2.7	2.3	1.6	1.5	1.5	1.5	1.7	1.9	3.3	3.7	1.4
Pacific	213.6	240.7	251.8	210.5	169.3	132.6	130.6	139.6	152.1	158.0	185.2	229.9	270.6	182.7
Washington	45.7	51.6	56.3	46.2	36.1	26.5	24.9	25.9	23.0	18.2	23.7	33.9	47.6	34.4
Oregon...	27.2	30.2	32.8	27.3	20.6	14.4	13.1	14.4	15.8	11.8	15.0	22.9	32.5	24.2
California.	140.7	158.9	162.7	137.0	112.6	91.7	92.6	99.3	113.3	128.0	146.5	173.1	190.5	124.1

${ }^{1}$ A verage of weekly data adjusted for split weeks in the month. For a technical description of this series, see the April 1950 Monthly Labor Review (p. 382). Figures may not add to exact column totals because of rounding.

B: Labor Turnover

Table B-1: Monthly labor turnover rates in manufacturing, by class of turnover ${ }^{1}$

[^55](3) Plants are not included in the turnover computations in months when work stoppages are in progress; the influence of such stoppages is reflected, however, in the employment figures.
Beginning with data for October 1952, components may not add to total separation rate because of rounding.

Information on concepts, methodology, etc., is given in a technical note on Measurement of Labor Turnover, which appeared in the May 1953 Monthly Labor Review.

Table B-2: Monthly labor turnover rates in selected industries
[Per 100 employees]

Industry	Total accession rate		Separation rate									
			Total		Quit		Discharge		Layoff		Misc., incl. military	
	$\begin{gathered} \text { Mar. } \\ 1955 \end{gathered}$	$\begin{aligned} & \text { Feb. } \\ & 1955 \end{aligned}$	$\begin{aligned} & \text { Mar. } \\ & 1955 \end{aligned}$	$\begin{aligned} & \text { Feb. } \\ & 1955 \end{aligned}$	$\begin{gathered} \text { Mar. } \\ 1955 \end{gathered}$	Feb. 1955	$\underset{1955}{\mathrm{Mar}_{1}}$	Feb. 1955	$\underset{1955}{\mathrm{Mar}_{2}}$	Feb. 1955	$\underset{1955}{\mathrm{Mar}_{5}}$	Feb. 1955
Manufacturing												
All manufacturing.	3.6	3.2	3.1	2.5	1.3	1.0	0.3	0.2	1.3	1.1	0.2	0.2
Durable goods.	4.0	3.5	3.3	2.5	1.3	1.0	$\begin{array}{r}\text {. } \\ \hline\end{array}$. 2	1.5	1.1	. 2	. 2
Nondurable goods	2.9	2.8	2.8	2.4	1.3	1.1	.2	. 2	1.1	1.0	. 1	. 1
Ordnance and accessories	1.5	2.7	3.0	2.4	1.0	1.1	. 2	. 4	1.7	. 9	(1)	. 1
Food and kindred products.	3.3	3.6	3.8	3. 6	1.1	. 9	. 2	. 2	2.4	2.4	. 1	. 1
Meat products........-	3.6	4. 6	4. 5	5. 6	. 8	. 7	.2	. 2	3.4	4. 5	. 1	. 2
Grain-mill products	1. 9	3. 4	3. 2	2.7	1.2	1.1	. 3	.3	1.6	1.1	. 1	. 2
Bakery products.-	2.1	2.9	2. 3	2.4	1.5	1.1	.2	. 3	. 5	. 9	. 1	. 1
Beverages: Malt liquors.	5.7	3.2	4.1	2.1	. 3	. 3	. 1	. 1	3.6	1.6	.1	. 1
Tobacco manufactures	1.5	2.2	2.3	1.7	1.3	1.1	. 2	.2	. 7	. 4	. 1	. 1
Cigarettes	2. 0	1.3	1.4	1.2	1.2	. 8	.2	.2	(1)	. 1	.1	. 1
Cigars.-	1.3	3.2	3.2	2.3	1.5	1.4	. 2	. 1	1.3	. 7	. 1	. 1
Tobacco and snuff	. 7	1.0	1.8	. 9	. 7	. 5	. 2	. 1	. 6	. 1	. 3	. 1
Textile-mill products.	3.0	2.9	3.2	2.5	1.5	1.2	. 2	. 2	1.3	. 9	. 2	. 1
Yarn and thread mills.	3.5	2.6	3. 6	2.6	1.8	1.3	. 3	.2	1.3	1.0	.2	. 1
Broad-woven fabric mills.-	3.0	3. 1	3. 0	2. 6	1.5	1.4	.3	.2	1.0	. 8	.2	.2
Cotton, silk, synthetic fiber	2.8	2.8	2. 9	2.5	1.6	1.4	.3	. 2	. 9	. 7	. 2	. 2
Woolen and worsted.......	4.2	5.7	3.8	3.5	1.2	1.1	. 1	. 1	2.4	2.1	. 2	. 2
Knitting mills	3.6	3.4	3.8	2. 6	1.6	1.4	(1). 2	. 1	1.9	1.0	. 1	. 1
Full-fashioned hosiery	2.2	2.4	2.0	1.7	1.6	1.3	${ }^{(1)}$. 1	. 3	. 2	.1	${ }^{(1)}$
Seamless hosiery -	4.0	3.2	6. 4	3. 4	1.6	1.3	.2	(1) 1	4.4	1.8	(1) 3	(1) 2
Knit underwear	3.7	4. 1	2.0	2.4	1.4	1.5	.2	${ }^{(1)}$. 4	. 8	${ }^{(1)}$	
Dyeing and finishing textiles......	1.8	2. 5	2.2	2.0	. 9	1.0	.2	. 3	. 8	. 6	.3	. 1
Carpets, rugs, other floor coverings .-.	1.9	1.9	2.6	2.0	1.1	. 5	. 2	. 1	1.1	1.1	.2	. 3
Apparel and other finished textile prod-												
	3.9 2.5	4. 1 3.1	3.5 2.6	2.7 2.5	2.2 1.2	1.9 1.6	. 21	.1	1.0	. 7	${ }^{1}$. 1
Men's and boys' furnishings and work clothing	4.4	4.7	3.4	2.9	2.6	1.9	.1 .3	. 1	. 4	. 8	. 1	. 1
Lumber and wood products (except furniture)	${ }^{(2)}$	3.8	$\left.{ }^{2}\right)$	3.6	(2)	1.6	(2)	. 2	${ }^{(2)}$	1.5	${ }^{(2)}$	3
Logging camps and contractors.........-	(2)	4.1	${ }^{(2)}$	4.8	(2)	1.9	(2)	.5	(2)	2.1	(2)	.3
Sawmills and planing mills	3.1	4.0	4.0	3.8	1.5	1.6	. 3	. 1	2.0	1.9	. 1	. 2
Millwork, plywood, and prefabricated structural wood products	4.3	2.7	3.3	2.0	1.8	1.0	. 3	. 2	1.1	. 5	. 1	. 2
Furniture and fixtures..	3.5	3.2	4.0	3.6	1.6	1.4	. 4	. 3	1.9	1.8	. 1	. 2
Household furniture--.....- Other furniture and fixtures	3.5	3.3	4.1	3. 6	1.6	1.5	. 4	. 4	1.9	1. 6	. 1	. 2
Other furniture and fixtures	3.7	2.9	3.7	3. 1	1.4	1.0	. 4	. 1	1.7	1.7	. 2	. 1
Paper and allied products.	2.5	2.3	2.0	2.0	1.1	. 9	. 2	. 2	. 5	. 7	. 1	. 1
Pulp, paper, and paperboard mills...-	1.4	1.4	1.3	1.2	. 6	. 5	. 1	. 1	. 4	. 4	. 1	. 2
Paperboard containers and boxes.....-	3.3	2.4	2.8	3.0	1.7	1.2	. 3	. 4	. 6	1.3	. 2	. 2
Chemicals and allied products	2.1	1.2	1.6	1.1	. 7	. 5	. 2	. 1	. 6	. 4	. 1	. 1
Industrial inorganic chemicals	1.6	1.3	1.3	1.2	. 7	. 7	. 3	. 1	. 2	. 4	. 1	. 1
Industrial organic chemicals.	2.0	1.4	1.4	. 8	. 5	. 3	(1) 1	. 1	. 6	.2	. 1	. 1
Synthetic fibers.-	2.2	1.8	1.0	. 8	.4	. 3	(1)	(1) 1	. 4	. 3	. 1	. 1
Drugs and medicines.	. 7	. 7	1.0	1. 1	. 5	. 6	(1)	(1)	. 3	. 3	.2	. 1
Paints, pigments, and fillers	1.7	1.3	1.6	1.1	. 9	. 6	. 2	. 1	. 3	. 2	. 2	. 1
Products of petroleum and coal	1.3	. 8	. 9	1.0	.3	.2	(1) 1	${ }^{(1)}$. 3	. 4	. 2	. 3
Petroleum refining--	. 7	. 4	. 7	1.0	. 3	. 2	(1)	(1)	.2	. 5	.2	. 3
Rubber products..	2.3	2.5	1.9	2.3	1.0	. 9	. 1	. 1	. 6	1.0	. 2	. 2
Tires and inner tubes	1.9	1.9	1. 2	1. 7	. 7	. 6	. 1	. 1	. 3	. 8	. 1	. 2
Rubber footwear	1.8	2.0	2.5	2.7	1.4	1. 6	. 1	. 1	. 8	. 8	. 2	. 1
'Other rubber products.	2.8	3.2	2.6	2.8	1.2	1.1	. 2	. 2	1.0	1.3	. 2	. 2
Leather and leather products...-. .-.	3.2	3.3	3.0	2.7	1.9	1.6	. 2	. 2	. 8	. 7	. 1	. 2
Leather: tanned, curried, Footwear (except fubber)	1.8	3.1	2.3	2.6	. 6	. 7	. 2	. 2	1.4	1. 6	. 2	. 1
	3.4	3.4	3.1	2.7	2.1	1.8	. 2	. 2	. 6	. 6	. 1	. 2
Stone, clay, and glass products	2.9	2.5	2.1	2.0	. 8	. 6	. 2	. 1	. 9	1.0	. 2	. 2
Glass and glass products.-	2.6	2.6	2.3	2.7	. 6	. 4	. 1	. 1	1.3	2.0	.2	. 2
Cement, hydraulic......	1. 7	1.0	1.3	1.0	. 6	. 5	. 4	. 1	${ }^{(1)}$. 1	. 2	. . 3
Structural clay products.	3.4	2.9	1.6	2.3	. 8	1.0	. 3	. 2	. 3	. 8	. 2	(. 3
Pottery and related products.	2.8	2.7	2.8	1.6	1.3	1.0	. 2	. 2	1.3	. 2	. 1	(1)
Primary metal industries.-..-.-.	3.9	3.7	1.9	1.8	1.0	. 7	. 2	. 2	. 5	. 7	. 2	. 2
Blast furnaces, steel works, and rolling mills	3.6	3.4	1.3	1.0	. 7	. 5	. 1	. 1	. 2	. 3	. 3	2
	5. 6	5.1	3.0	2.5	1.8	1.2	. 5	. 5	. 5	. 7	.1	. 1
Gray-iron foundries--	5. 5	5. 5	3. 4	3. 0	2.2	1.5	. 6	. 5	.4	. 9	.1	.1
Malleable-iron foundries.	6.5	7.0	3.2	2.7	2.2	1.4	. 6	1.0	. 1	. 2	.2	. 1
Steel foundries	5.3	3.6	2.4	1.6	. 9	. 7	. 3	. 2	. 9	. 6	. 2	. 2
Primary smelting and refining of nonferrous metals:												
Primary smelting and refining of copper, lead, and zinc	3.4	1.6	2.1	1.3	1.4	. 5	. 2	. 2	. 3	. 2	. 2	. 4
Rolling, drawing, and alloying of nonferrous metals:												
Rolling, drawing, and alloying of												
	1.8	1.5	1.2	1.0	5	. 4	. 3	. 1	. 2	.3	. 1	. 1
Nonferrous foundries-.-.-.-.----	5.3	4.5	2.6	2.5	1.6	1.2	. 3	. 3	. 5	. 7	. 2	. 2
Other primary metal industries: Iron and steel forgings	3.4	4.0	2.5	2.5	. 9	. 9	. 2	. 2	1.3	1.2	. 1	. 2

See footnotes at end of table.

Table B-2: Monthly labor turnover rates in selected industries-Continued
[Per 100 employees]

Industry	Total accession rate		Separation rate									
			Total		Quit		Discharge		Layoff		Misc., incl. military	
	$\underset{1955}{\text { Mar. }}$	$\begin{aligned} & \text { Feb. } \\ & 1955 \end{aligned}$	$\underset{1955}{\text { Mar. }}$	Feb. 1955	$\underset{1955}{\text { Mar. }}$	$\begin{aligned} & \text { Feb. } \\ & 1955 \end{aligned}$	$\underset{1955}{\text { Mar. }^{2}}$	$\begin{aligned} & \text { Feb. } \\ & 1955 \end{aligned}$	$\begin{gathered} \text { Mar. } \\ 19555 \end{gathered}$	$\begin{aligned} & \text { Feb. } \\ & 1955 \end{aligned}$	$\begin{aligned} & \text { Mar. } \\ & 1955 \end{aligned}$	Feb, 1955
Manufacturing-Continued												
Fabricated metal products (except ordnance, machinery, and transportation												
	4.2 3.8	3.4	3. 0	2.7	1.3 1.5	0.9 1.0	0.3 .4	0.2	1.2	1.3	. 1	0.3 .3
Cutlery and edge tools.	4.83.53.6	2.5	2.6	2.8	1. 9	.8.7	. 1	1	1.5.7	1.5		. 3
Handtools.-...--.....---		2. 5	2.1	2.6				.1			.1	. 2
Hardware-.................	3.6	3.7	3.5	2.6	2.1	1.2	. 6	. 2	. 7	. 9	. 1	. 3
Heating apparatus (except electric) and plumbers' supplies	5.0	4.0	2.7		1.4	1.2	. 5	. 3				
Sanitary ware and plumbers'				2.5					. 6	. 8	. 1	. 1
supplies...-.-.-.-...-.-.-.-.-.---	5.1	3.3	3.4	2.8	2.0	1.2	. 7	. 6	. 5	. 9	. 1	. 1
Oil burners, nonelectric heating and cooking apparatus, not elsewhere classified.	4.9											
Fabricated structural metal products.	4.9	4.5 2.5	2.3 2.7	2.2 2.3	1.2	1.1	. 3	.1	1. 2	1.4	. 1	.2
Metal stamping, coating, and engraving	5. 3	4.3	3.8	3.2	1.5	. 9	. 4	. 3	1.6	1.6	. 2	. 5
Machinery (except electrical)	3. 6	$\begin{array}{r} 2.9 \\ 2.9 \end{array}$	2.2	1.8	1.0	7	2	. 1	. 8	.7.5	.2.2.1	. 2
Engines and turbines-...----1.--	4.5		2.12.0	1. 1.9	$\begin{array}{r}1.9 \\ 1.4 \\ \hline\end{array}$. 78	. 1					
Agricultural machinery and tractors--	4. 4	4.5						.3	.3.3.3	. 5		. 3
Construction and mining machinery---	4.2	3.1	2.0	1. 5	1.1	. 8	. 3	. 2		. 4	.1	
	3.1 2.6	2.4 2.1		1. 9	$\begin{array}{r}.9 \\ .8 \\ \hline\end{array}$. 7	. 2	. 1	. 7	. 9	$\xrightarrow{.2}$. 1
Machine tools Metalworking machinery (except	2.6	2.1	2.0		. 8	. 7	. 1	. 1		. 7		. 2
machine tools) .-.....-	2.0	$\begin{aligned} & 1.8 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 1.7 \\ & 2.5 \end{aligned}$	$.5$	1. 6	$.2$. 1	1. 2	1.1.	.2.1	. 1
Machine-tool accessories	4.9											
Special-industry machinery (except metalworking machinery)	$\begin{aligned} & 2.9 \\ & 3.1 \\ & 2.9 \end{aligned}$	$\begin{aligned} & 2.1 \\ & 2.4 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.1 \\ & 2.3 \\ & 2.3 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 2.0 \\ & 1.4 \end{aligned}$	$\begin{aligned} & .8 \\ & 1.1 \\ & 1.1 \end{aligned}$	$\begin{aligned} & .8 \\ & .8 \\ & .8 \end{aligned}$	$\begin{aligned} & .2 \\ & .2 \\ & .1 \end{aligned}$	$\begin{aligned} & .1 \\ & .2 \\ & .1 \end{aligned}$		7		.1.1.1
General industrial machinery-..-....--									. 8	. 9	.1.3.1	
Office and store machines and devices-									. 9	. 4		
Service-industry and household machines.	6. 2.6	$\begin{aligned} & 4.1 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 3.2 \\ & 2.3 \end{aligned}$	$\begin{aligned} & 1.7 \\ & 1.7 \end{aligned}$	$\begin{array}{r} 1.4 \\ .9 \end{array}$. 6	. 2	. 1	1.3	. 7	. 2	.3
Miscellaneous machinery parts......--						. 6	.2	. 1	1.0	. 8	. 2	. 2
Electrical machinery-..........	3.2	2.7	3.6	2.2	1.4	1.0	. 2	. 1	1.7	. 8	. 2	. 2
Electrical generating, transmission, distribution, and industrial apparatus	2.5	2.1	2.3	1.8		7	. 2		. 9	. 9	2	
Communication equipment	(2)	3.1	${ }^{2}$)	2.3	(2) ${ }^{1}$	1. 2	(2) ${ }^{2}$.2	(2) ${ }^{10}$.7	(2) ${ }^{-2}$.2
Radios, phonographs, television sets, and equipment	3.4	3.1	4.4	2.6	1.7	1.3	. 3	. 2	2.2	. 9	. 1	. 2
Telephone, telegraph, and related equipment	${ }^{(2)}$	2.8	$\left.{ }^{2}\right)$	1.2	${ }^{2}{ }^{\text {a }}$. 7	${ }^{(2)}$.2 .1	$\left.{ }^{2}\right)^{2}$. 1	${ }^{(2)}$. 2
Electrical appliances, lamps, and miscellaneous products. \qquad	3.5	2.6	3.8	2.3	1.3	. 9	. 2	. 1	2.0	1.1	. 2	. 2
Transportation equipment	4.9	4.3	4.3	3.1	1.5	1.1	. 3	. 2	2.0	1.5	. 4	. 3
Automobiles.........	6.0	4.6	4.4	2.6	1. 9	1.1	. 4	. 3	1.2	1.7	. 8	. 5
Aircraft and parts	2.3	2.4	2.8	2.4	1.1	1.0	. 2	. 1	1.4	1.2	. 2	(1)
	2.0	2.6	2.4	2.0	1.1	1.0	. 1	. 1	1.1	. 7	. 1	
Aircraft engines and parts-.-.-.-.--	2.5	2.1	3.7	2.0	1.3	. 8	(2) 2	. 1	2.2	1. 0	. 1	. 1
Aircraft propellers and parts.-...-	${ }^{(2)}$	7	${ }^{(2)}$	3.9	$\left.{ }^{2}\right)$. 5	$\left.{ }^{2}\right)$,	$\left.{ }^{2}\right)$	3.2	(2)	. 1
Other aircraft parts and equipment	4.1	2.4	4.7	7.0	1.3	9	. 3	. 2	3.0	5.8	1	
Ship and boat building and repairing-	13.3	11.9	12.8	11.0	2.1	1.5	.7	.4	3.8 9.8	5.8 9.0	. 2	. 1
Railroad equipment ${ }^{3}$	7.3	9.1	6.8	4.2	2. 7	(2) 8	(2) 1	. 2	5.2	2.2	. 8	.
Locomotives and parts ${ }^{1}$	${ }^{(2)}$	${ }^{2}{ }^{2}$	${ }^{2}{ }^{2}$	${ }^{(2)}$	${ }^{(2)}$	${ }^{(2)}$	${ }^{(2)}$	${ }^{(2)}$	${ }^{(2)}$	${ }^{(2)}$	${ }^{(2)}$	${ }^{(2)}$
Railroad and street cars.	6.0	10.4	7.9	4.5	. 7	. 9	. 1		6.4	2.4	. 7	. 9
Other transportation equipment.-.---	5.0	4.4	1.5	. 8	1.2	. 7	. 1	(1)	. 1	. 1	. 1	(1)
Instruments and related products...------	1.8	1.6	1.7	1.4	. 8	. 5	(1) 1		. 6	. 7	. 1	. 2
Photographic apparatus..-------------	1.1	. 8	. 9	1.1	. 5	. 4	(1)	(1)	.1	.2	.1	. 4
Watches and clocks.---	1. 9	2.1	1.5	1.3	. 6	. 6	. 3	. 1	. 5	. 4	. 1	. 1
Professional and scientific instruments-	1. 9	1.9	1.9	1.7	. 8	. 5	. 1	. 1	. 8	1.0	. 1	.
Miscellaneous manufacturing industries --	5.0	5.4	5.2	3.0	2.1	1.4	. 4	. 3	2.5	1.0	. 1	. 2
Jewelry, silverware, and plated ware--	2.4	2. 0	2.1	2.3	1.2	1.2	.2	.2	2. 6	. 7	.1	. 1
Nonmanufacturing												
Metal mining---	5.1	3.8	5. 5	3.5	4.2	2.5			. 7	. 5	. 2	. 2
Iron mining.	1.5	1.5	1.6	1.6	. 2	. 2	(1)	(1)	1.0	1.1	. 3	. 3
Copper mining --.-.-	4.3	4.6	5.3	3.4	4.4	2.8	. 5	. 2	. 2	. 1	. 2	. 3
Lead and zinc mining	1.4	1.9	2.1	1.6	1.3	1.0	. 1	. 1	. 6	. 4	. 1	. 1
Anthracite mining	. 9	1.1	16.7	2.0	. 3	. 7	(1)	${ }^{(1)}$	16.2	1.0	. 1	. 2
Bituminous-coal mining ---------------------	1.5	1.7	1.9	1.0	. 4	. 3	. 1	(1)	1.3	. 5	. 1	. 2
Communication:												
Telephone- Telegraph 5	(2)	1.7	${ }_{(2)}^{(2)}$	1.2 1.2	${ }_{(2)}^{(2)}$. 9	(2) (2)	(1) ${ }^{.1}$	${ }_{(2)}{ }^{2}$. 1	${ }^{(2)}$. 1
Telegraph ${ }^{5}$	(2)	1.2	${ }^{(2)}$	1.2	(2)	. 6	(2)	${ }^{(1)}$	${ }^{(2)}$. 3	${ }^{(2)}$. 2

1 Less than $0.05 . \quad 2$ Not available.

${ }^{3}$ January 1955 rates are: $11.2,4.2,0.5,0.2,3.0$, and 0.5 , respectively.
4 January 1955 rates are: $8.8,2.9,0.2,0.1,1.9$, and 0.9 , respectively.
8 Data relate to domestic employees except messengers and those compensated entirely on a commission basis.

C: Earnings and hours
Table C-1: Hours and gross earnings of production workers or nonsupervisory employees ${ }^{1}$

See footnotes at end of table.

TABLE C-1: Hours and gross earnings of production workers or nonsupervisory employees ${ }^{1}$ - Continued

Year and month	Manufacturing-Continued																	
	Food and kindred products-Continued																	
	Meat products ${ }^{4}$			Meatpacking, wholesale			Sausages and casings			Dairy products ${ }^{4}$			Condensed and evaporated milk			Ice cream and ices		
	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earnings	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earnings	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earnings	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earnings	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earnings	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earnings
1953: Average.-.----	\$74.57	41.2	\$1.81	\$77. 64	41.3	\$1.88	\$73.39	41.7	\$1. 76	$\$ 68.05$	43.9	\$1. 55	\$69.77	45. 9		\$68.37	43. 0	\$1. 59
1954: Average.....-.	76.86	41.1	1.87	79. 71	41.3	1.93	76.22	41.2	1. 85		43.5	1. 61	71.73	45. 4	1.58	71.57	42.6	
March	73.05	39.739.5	1.84	75. 81	39.9	1.90	72.44	39.8	1.82	69. 12	43.2	1. 60	70.04	44.9	1. 56	70.72	42. 6	1. 66
April	72.68 74.74		1.84	74. 86	39. 4	1.90	73. 93	40.4	1.83	68.85	43.3	1. 59	70. 51	45. 2	1. 56	70.38	42. 4	1. 66
May	74.74 75.85	40.4	1.85	76. 97	40.3	1.91	76. 36	41.5	1.84	69. 01	43.4	1. 59	71.75	45.7	1. 57	69.63	42.2	1. 65
June		41.0	1.85	78.50	41.1	1.91	76.41	41.3	1.85	71. 36	44.6	1. 60	75.05	47.2	1. 59	72.14	43.2	1. 67
August	$\begin{aligned} & 77.98 \\ & 76.07 \end{aligned}$	40.9	1.86	81.09	41.8 41.1	1.94 1.92	77.83 76.96	42.3 41.6	1.84 1.85	71.81 69.98	44.6 43.2	1.61 1.62	74.08 71.42	46.3 45.2	1. 60	74.26	44.2 42 4	1. 1.68
Septemb	$\begin{aligned} & 76.07 \\ & 77.87 \end{aligned}$	41.2	1.89	81. 14	41.4	1. 96	76. 78	41.5	1. 85	71.07	43.6	1.63	74.54	46.3	1. 61	72.84	43.1	1. 69
October	78.02	41.5	1.88	81.71	41.9	1. 95	76. 30	40.8	1. 87	70.47	43.5	1.62	70.31	44.5	1. 58	71. 74	42.7	1. 68
November	83.03	42.8	1.94	86. 83	43.2	2.01	79.80	42.0	1. 90	68. 26	42.4	1. 61	70.44	44.3	1. 59	70.47	41.7	1. 69
1955: January	$\begin{aligned} & 81.75 \\ & 79.65 \end{aligned}$		1. 91	85. 10	43.2	1.97	79. 00	41.8	1.89	69.34	42.8	1.62	70. 44	44.3	1. 59	71. 40	42.0	1. 70
			1. 91	83. 10	42. 4	1.96	78.09	41.1	1. 90	70. 58	43, 3	1.63	72.45	4.0	1. 61	71. 23	41.9	1. 70
	$\begin{aligned} & 79.65 \\ & 76.00 \\ & 77.36 \end{aligned}$	$\begin{aligned} & 41.7 \\ & 40.0 \\ & 40.5 \end{aligned}$	1.90 1.91	80.56	41.1	1.96		39.9	1. 89	71.61	43.4	1. 65	72.41	44.7	1. 62	73.02	42.7	1.73 1.71
	Canning and preserving ${ }^{4}$			Seafood, canned and cured			Canned fruits, vegetables, and soups			Grain-mill products ${ }^{4}$			Flour and other grainmill products			Prepared feeds		
1953: Average-...---	\$53.18	39.1	\$1.36	\$45.00	29.8	\$1. 51	\$55. 76	40.7	\$1.37	\$71. 44	44.1	\$1. 62	\$75. 65	$\begin{aligned} & 44.5 \\ & 44.8 \end{aligned}$	\$1.	\$69.30	45.0	$\$ 1.54$1.59
1954: Average.....--	53.95	38.7	1.41	46.82	30.4	1.54	56.82	40.3	1. 41	74. 42	44.3	1.68	79.74		1. 78	71. 87	45.2	
March		36.7	1. 47	41. 27	26.8	1. 54	57.13	38.6	1. 48	71.38	43. 0	1. 66	73. 36	42.9	1. 71	70. 28	44.2	1. 59
April	$\begin{aligned} & 53.00 \\ & 54.86 \end{aligned}$	36.3	1. 46	42. 63	27.5	1. 55	55. 63	38.1	1. 46	71.94	43. 6	1.65	74. 70	44.2	1. 69	70.47	44.6	1. 58
May		38.1	1. 44	46. 63	29.7	1. 57	57. 31	39.8	1. 44	73.37	44.2	1.66	76.39	43.9	1.74	70.53	45.5	1.55
June	$\begin{aligned} & 54.86 \\ & 53.27 \end{aligned}$	38.6	1.38	44. 87	31.6	1.42	56.70	40.5	1. 40	76. 32	45.7	1. 67	78.23	44.7	1. 75	74.10	47.5	1. 56
July	54.77	39.4	1.39	56. 36	36.6	1. 54	54.94	40.1	1.37	76. 73	45.4	1. 69	81.35	45.7	1. 78	72.85	46.4	1. 57
August	$\begin{aligned} & 56.03 \\ & 56.30 \end{aligned}$	40.6	1. 38	45. 60	30.4	1.50	57.82	41.7	1. 39	74. 59	44. 4	1. 68	79. 57	44.7	1.78	72.05	45.6	1.58
Septemb		$\begin{aligned} & 40.8 \\ & 38.5 \end{aligned}$	1.38	46. 66	30.7	1. 52	58. 38	42. 0	1. 39	77. 46	45. 3	1. 71	84. 64	46.0	1.84	73.92	46.2	1. 60
October	$\begin{aligned} & 56.30 \\ & 53.13 \end{aligned}$		1. 38	38. 09	27. 4	1.39	55. 60	40.0	1. 39	75. 31	44.3	1.70	82.45	45.3	1.82	72.19	45. 4	1. 59
November	$\begin{aligned} & 55.39 \\ & 54.67 \end{aligned}$	36.7	1. 1.45	48. 64 54.28	29.3 32.7	1. 1.66	53.27 56.91	38.6 39.8	1.38	75.60 74.48	43.7	1.73	84.73	45.8	1.85	71. 44	44.1	1.62
$1955 \begin{aligned} & \text { Jecem } \\ & \text { Feburu } \\ & \text { Farch } \\ & \text { Mar }\end{aligned}$		$\begin{aligned} & 38 . \\ & 38 \\ & 38 \end{aligned}$	1. 45	44.95	29.0	1. 55	58.15	40.1	1.45	75. 26	43.5	1.73	82.08	45.1	1.82	70.79	43.7	1.62
	$\begin{aligned} & 56.15 \\ & 56.06 \end{aligned}$	$\begin{aligned} & 38.2 \\ & 38.4 \end{aligned}$	1. 47	48.47	32.1	1. 51	58. 90	39.8	1. 48	74. 74	43.2	1.73	79.74	44.3	1.80	71.34	43.5	1.64
			1. 46	49.92	33.5	1. 49	58.80	40.0	1. 47	73. 96	43.0	1. 72	78.12	43.4	1.80	71.56	439	1.63
	Bakery products ${ }^{4}$			Bread and other bakery products			Biscuits, crackers, and pretzels			Sugar ${ }^{4}$			Cane-sugar refining			Beet sugar		
1953: A verage	\$64.84	41.3	\$1. 57	\$66. 24	41.4	\$1. 60	\$58.92	41.2	\$1.43	\$71. 18	43.4	\$1. 64	\$74. 94	42.141.0	\$1.78	\$69.80	42.3	
1954: A verage	67.8966.50	40.940.8	1. 66	69. 22	41.2	1.68	61.45	39.9	1. 54	73. 01	43. 2	1. 69	76. 26		1.86	\$39.08	43.5	
March			1. 63	67. 49	40.9	1. 65	61.66	40.3	1. 53	76. 79	42.9	1. 79	82. 53	43.9	1.88	70.20	39.0	1.68
April	67.08	40.9	1. 64	68. 39	41. 2	1. 66	60.83	39.5	1. 54	68. 99	39.2	1. 76	72.31	39.3	1.84	66. 97	37.0	1.81
May	$\begin{aligned} & 67.65 \\ & 68.31 \end{aligned}$	41.0	1. 65	69. 14	41.4	1. 67	60.68	39.4	1.54	72. 92	41.2	1. 77	77.33	41.8	1. 85	71.38	40.1	1. 78
June		41.4	1. 65	69. 72	41.5	1. 68	63. 24.	40.8	1.55	72. 63	41.5	1. 75	76. 86	42.0	1. 83	70.88	40.5	1. 75
July	$\begin{aligned} & 68.64 \\ & 68.14 \end{aligned}$	41.1	1.67	70.21	41.3	1. 70	61.75	40.1	1.54	72. 57	41.0	1. 77	77.15	41. 7	1.85	70.80	40.0	1. 77
August		40.8	1. 67	70. 04	41. 2	1.70	60.76	39. 2	1. 55	71. 75	41.0	1. 75	75. 62	41.1	1. 84	72.16	41.0	1.76
Septembe	$\begin{aligned} & 68.88 \\ & 68.38 \end{aligned}$	41.040.7	1. 68	70. 62	41.3	1. 71	62. 40	40.0	1. 56	72.75	41.1	1. 77	77.00	41, 4	1. 86	71. 28	40.5	1. 76
October---			1. 68	70.11	41.0	1.71	61.93	39.7	1.56	68. 06	41.5	1.64	74.03	39.8	1. 86	67.78	42.9	1. 58
November	68.21 69.12	40.6 40.9	1.68 1.69	70.11 70.62	41.0 41.3	1.71	61.00 61.39	39.1	1.56	78. 16	50.1	1. 56	79.84	41.8	1. 91	80.02	49.7	1. 61
1955: January	$\begin{aligned} & 69.12 \\ & 68.28 \end{aligned}$	40.4	1.69	70. 00	40.7	1.71	61.39	39.1	1.57	73.78	47.6	1. 55	74. 96	40.3	1. 86	75.14	46.1	1.63
February	68.85	40.5	1. 70	70.41	40.7	1.73	62.33	39. 7	1. 57	74. 51	41.3 41	1.76	73. 714	39.6 40.6	1.86 1.90	81.09 72.71	44.8 39.3	1.81 1.85
March	68.45	40.5	1. 69	70.35	40.9	1. 72	61.23	39.0	1.57	73.35	40.3	1. 82	77.57	40.4	1. 92	70.49	37.9	1. 86
	Confect relate	ionery d produ	$\operatorname{ands}^{1} d$		fectione			verages		Bottl	ed soft	nks		alt liquo		Distilled blen	d, rectifi ded liqu	ed, and ors
1953: A verage	\$53.45	39.3	\$1.36	\$51. 74	39.2	\$1. 32	\$76. 04	41.1	\$1. 85	\$60. 49	42.6	\$1.42	\$89. 79	41.0	\$2. 19	\$71.42	38.4	\$1.86
1954: Average	55. 81	39.3	1. 42	53.70	39.2	1.37	78.59	40.3	1. 95	61.57	41.6	1.48	92. 80	40.0	2.32	74. 88	38.6	1. 94
March	55. 52	39.1	1. 42	53. 29	38.9	1.37	77.79	40.1	1. 94	60.68	41.0	1.48	91.37	39.9	2. 29	73. 73	38.6	1. 91
April	55. 34	38. 7	1. 43	53. 93	38.8	1.39	78. 57	40.5	1. 94	61.30	41.7	1. 47	92.46	40.2	2.30	75. 26	39.2	1. 92
May	55.34	38.7	1. 43	53.13	38.5	1.38	78.18	40.3	1. 94	60.42	41.1	1. 47	92. 92	40.4	2.30	73. 53	38.7	1. 90
June	57.17	39.7	1. 44	55. 04	39.6	1. 39	80.56	41.1	1.96	63. 62	42.7	1. 49	95.30	40.9	2. 33	74. 31	38.5	1. 93
July ...	54. 91	38.4	1. 43	51.79	37.8	1.37	82. 17	41.5	1.98	63. 94	43.2	1.48	97.00	41.1	2.36	75. 66	39.2	1. 93
August...	55.95	39.4	1. 42	53. 70	39.2	1.37	78. 76	40.6	1.94	62.03	42.2	1. 47	93.03	40.1	2. 32	73. 73	38.4	1. 92
September	57.08	40. 2	1. 42	54. 94	40. 1	1.37	79. 17	40.6	1.95	61.63	42.5	1. 45	93.60	40.0	2.34	74.11	38.2	1. 94
October-.	55. 55	39.4	1. 41	53. 84	39.3	1.37	78.78	40.4	1.95	61.59	41.9	1.47	91.80	39.4	2.33	76. 25	39.1	1. 95
November	55. 44	39.6	1. 40	53. 46	39.6	1.35	79.00	39.9	1.98	59.94	40.5	1.48	92. 20	39.4	2.34	80. 60	40.1	2.01
1955: December	56. 26	39.9	1. 41	54. 26	39.9	1.36	78. 21	39.5	1.98	60.75	40.5	1. 50	93.53	39.8	2.35	72.64	36.5	1.99
1955: January	56.77	39.7	1.43	54. 65	39.6	1.38	77.62	39.4	1.97	59.24	40.3	1. 47	91. 96	39.3	2.34	75. 75	37.5	2.02
February	57.60	40.0	1. 44	55. 60	40.0	1. 39	78.61	39.7	1.98	59.83	40.7	1. 47	93.06	39.6	2.35	77.37	38.3	2.02
March..	57.02	39.6	1. 44	54. 91	39.5	1.39	80.20	40.3	1.99	61.45	41.8	1. 47	94.64	40.1	2. 36	77.37	38.3	2.02

See footnotes at end of table.

Table C-1: Hours and gross earnings of production workers or nonsupervisory employees ${ }^{1}$-Continued

TABLE C-1: Hours and gross earnings of production workers or nonsupervisory employees ${ }^{1}$ -
Continued

Year and month	Manufacturing-Continued																	
	Textile-mill products-Continued																	
	Seamless hosiery-Continued						Knit outerwear			Knit underwear			Dyeing and finishing textiles ${ }^{4}$.			Dyeing and finishing textiles (except wool)		
	North			South														
	Avg. wkly. earn- ings	Avg. wkly. hours	Avg. hrly. earn-	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earnings	Avg. wkly. earn-	Avg. wkly. hours	Avg. hrly. earnings	Avg. wkly. earn- ings ings	Avg. wkly. hours	Avg. hrly. earnings	Avg. wkly. earn- ings ings	Avg. wkly. hours	Avg. hrly. earn- ings	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earn- ings
1953: Average	\$43. 88	37.5	\$1. 17	\$39.31	36.4	\$1. 08	\$50. 81	38.2	\$1. 33	\$45. 12	37.6	\$1. 20	\$61. 65	41.1	\$1. 50	\$61. 65	41.1	\$1.50
1954: Average	43.07	36.5	1.18	40.40	36.4	1.11	51.85	37.3	1.39	44. 53	36.5	1. 22	61.61	40.8	1.51	61.35	40.9	1. 50
March	43.32	36.1	1.20	39.52	35.6	1.11	50.46	36. 3	1.39	43. 44	35.9	1.21	${ }_{59.17}^{62.17}$	40.9 39.9	1.52	62.06 59.60	41.1 40.0	1.51 1.49
April	39.63 42.72	33.3 36.2	1.19 1.18	37.74 38.85	34.0 35.0	1.11 11	49.90 51.32	35.9 36.4	1.39	41.97 43.68	34.4 36.1	1.22	59.85 59.55	39.9 39.7	1. 1.50	59.60 59.30	40.0 39.8	1.49 1.49
June	44.25	37.5	1.18	40.15	36.5	1.10	52.13	37.5	1.39	45.02	36.9	1.22	59.90	40.2	1. 49	59.64	40.3	1.48
July	43.88	37.5	1.17	39.05	35.5	1.10	52.03	37.7	1.38	44. 53	36.8	1.21	60.00	40.0	1.50	59.60	40.0	1.49
August	44.46	38.0	1.17	41. 29	37.2	1.11	52.72	38.2	1.38	45. 13	37.3	1.21	61.16	40.5	1.51	60.90	40.6	1. 50
September	43.52	37.2	1.17	41. 10	36.7	1.12	53.65	38.6	1.39	45. 26	37.1	1. 22	61.31	40.6	1.51	61.05	40.7	1. 50
October-	44.72	37.9	1.18	43. 39	38.4	1. 13	53.38	38.4	1.39	45. 74	37.8	1. 21	62.67	41. 5	1. 51	62.55	41.7	1. 50
Novemb	44.25	37.5	1.18	43. 78	38.4	1.14	54. 00	38.3	1.41	46. 49	37.8 37.3	1.21	65.18	43.6	1.53	65. 68	43.8 43.2	1. 52
1955: January	43.32	36.1	1.20	41.75	36.3	1.15	51.10	36.5	1.40	45.87	37.6	1.22	64.30	42.3	1.52	64.60	42.5	1.52
Februar	43. 80	36.2	1.21	42.32	36.8	1. 15	51.57	37.1	1.39	47. 72	38.8	1. 23	65.33	42.7	1.53	65. 06	42.8	1. 52
March	44.77	37.0	1.21	41.27	36.2	1.14	52.16	37.8	1.38	48.34	39.3	1. 23	63.72	42.2	1.51	63.60	42.4	1. 50
	Carpet floor	s, rugs, coverin	other lgs^{4}	Wool and	carpets, carpet y	${ }_{\text {rugs, }}^{\text {run }}$	Hats and	(except milline		Miscel	$\begin{aligned} & \text { laneous } \\ & \text { goods } \end{aligned}$	textile	Felt woven	goods (ex felts and	$\begin{aligned} & \text { ceept } \\ & \text { hats } \end{aligned}$		ace goo	
1953: Average	\$70.58	40.8	\$1. 73	\$69.08	39.7	\$1. 74	\$56. 10	37.4	\$1. 50	\$62. 42	40.8	\$1.53	\$71.04	41.3	\$1. 72	\$61.85	38.9	\$1.59
1954: Average	69. 95	40.2	1.74	66. 95	38.7	1.73	54. 66	36.2	1.51	${ }^{62.56}$	40.1	1. 56	69.60	40.0	1.74	60.80 60.59	37.3 37.4	1. 63
April	67. 94	40.3 39.5	1.73	67.69 66.26	38.9 38.3	1.74 1.73	53.11	35.4 31.8	1.45	${ }_{60.68}^{61}$	49.4 39	1.54	68.46	39.8	1.72	58.81	36.3	1.62
May	68.38	39.3	1. 74	65. 19	37.9	1.72	52. 39	35.4	1.48	61. 23	39.5	1.55	66.05	38.4	1.72	57.96	36.0	1.61
June	68.38	39.3	1.74	65.02	37.8	1.72	54.96	36.4	1. 51	61.69	39.8	1.55	71.40	40.8	1.75	60.31	37.0	1.63
July-	69.13	39.5	1.75	65.57	37.9	1.73	53.76	35.6	1.51	61.70	39.3	1. 57	69.83	39.9	1.75	60.39	36. 6	1. 65
August	71.63	40.7	1.76	67.99	39.3	1.73	59.90	38.4	1.56	61.85	39.9	1. 55	69.25	39.8	1.74	61.55	37.3	1. 65
Septembe	73. 69	41.4	1. 78	69.65	39.8	1. 75	54. 60	36.4	1. 50	62.56	40.1	1. 56	70.45	39.8	1.77	62. 54	37.9	1.65
October	72.28	41.3	1.75	67.82	39.2	1.73	53. 59	34.8	1.54	62.87	40.3	1. 56	71.81	40.8	1.76	61.38	37.2	1.65
Decemb	71.86	41.3	1.74	69. 20 1	40.0	1.73	60.76	37.8 39.2	1.55	65.89	41.7	1.58	72.16	41.0	1.76	64.62	39.4	1.64
1955: January	72.69	41.3	1.76	70.30	40.4	1.74	56. 54	37.2	1.52	65.10	41.2	1.58	70.70	40.4	1. 75	62.32	38.0	1.64
Februar	71.69	41.2	1. 74	70.12	40.3	1. 74	61.69	38.8	1.59	66.78	42.0	1. 59	72.34	41.1	1.76	63. 91	38. 5	1. 66
March	73.50	42.0	1.75	71.40	40.8	1.75	58.28	37.6	1.55	66.46	41.8	1. 59	72. 22	40.8	1.77	63.36	38.4	1.65
					extile-m	ill pro	cts-Cos	ontinu					Appar	el and o	fer fin	hed	ile	ucts
	Paddin	ngs and ery fillin	${ }_{2 g}$	Proce reco	seत was vered fib	$\begin{aligned} & \text { te and } \\ & \text { eers } \end{aligned}$	Artifict cloth coated	al leathe and d fabrics	, oilother	Cordo	e and	ine	Total: othe tile p	Appar finishe product	1 and		's and b s and c	$\begin{aligned} & \text { oys' } \\ & \text { pats } \end{aligned}$
1953: Average	\$65. 19	41.0	\$1. 59	\$51. 30	42.4	\$1. 21	\$80. 10	44.5	\$1. 80	\$53.33	39.5	\$1. 35	\$48. 41	36. 4	\$1. 33	\$57. 93	36.9	\$1.57
1954: Average	67.89	40.9	1. 66	51.41	41.8	1.23	79.24	43.3	1.83	53.02	38.7	1.37	48. 06	35.6	1.35	56.05	34.6	1. 62
March	67.65	41.0	1.65	50.51	41.4	1.22	77.29	42.7	1.81	53.84	39.3	1.37	49.59	36. 2	1.37	57.32	35.6	1. 61
April	66.66	40.4	1.65	50.02	41.0	1.22	76. 93	42.5	1.81	51.41	37.8	1.36	45.62	34.3	1.33	52.64	32.9	1. 60
May	69.14	41.4	1.67	51.73	42.4	1.22	77.59	42.4	1.83	52.20	38.1	1.37	46. 07	34.9	1.32	52.97	32.9	1.61
June	64.71	39.7	1.63	51.29	41.7	1.23	79.61	43.5	1.83	52.06	38.0	1.37	46.55	35.0	1.33	55.08	34.0	1. 62
July-	67.60	40.0	1. 69	52.03	42.3	1.23	74.03	40.9	1.81	52.88	38.6	1.37	47.17	35.2	1.34	56.80	35.5	1. 60
August	65. 67	39.8	1. 65	50.68	41.2	1. 23	76.32	42. 4	1.80	53. 99	39.7	1.36	48. 87	36. 2	1.35	57.05	35.0	1. 63
September	64.19	38.9	1. 65	51.83	41.8	1. 24	81.33	44.2	1.84	53.31	39.2	1.36	48. 82	35.9	1.36	57.35	35.4	1.62
October	67.57	41.2	1.64	52.08	42.0	1.24	81. 84	44.0	1.86	53.54	38.8	1.38	47.84	35.7	1.34	53.63	32.9	1. 63
Novembe	70.73	42.1	1.68	52. 58	42.4	1.24	84. 52	45. 2	1.87	52.61	38.4	1.37	48.37	36. 1	1.34	55. 09	33.8	1. 63
1955: Danuary	75. 41	44.1	1.71	53.20	42.9	1.24	86.10	45.8	1.88	53.70	39.2	1.37	49. 01	36.3	1.35	58.32	36.0	1. 62
5: January	72. 76	42.8	1. 70	53.20	42.9	1.24	86. 71	45. 4	1. 91	53.96	39.1	1. 38	48. 60	36. 0	1.35	57.87	35.5	1. 63
March	77.33 73.87	44.7 43.2	1.73 1.71	52.45 53.32	42.3 43.0	1.24 1.24	88.70 89.47	46.2 46.6	1.92	55.20 55.20	40.0 40.0	1.38 1.38	49.55 49.85	36.7 37.2	1.35 1.34	59. 66 60.47	36.6 37.1	1.63
	$\begin{aligned} & \text { Men's } \\ & \text { furn) } \\ & \text { work } \end{aligned}$	and ishings clothin	boys' g 4	Shirts	, collars ightwear	, and	Separ	ate trou	ers		ork shir		Women	's outer	wear ${ }^{4}$	Wor	nen's dre	esses
1953: Average	\$41. 18	37.1	\$1.11	\$41. 40	37.3	\$1.11	\$44. 63	37.5	\$1.19	\$34. 32	36.9	\$0. 93	\$52. 65	35.1	\$1.50	\$52.15	35.0	\$1.49
1954: Average	40.81	35. 8	1.14	41.04	36.0	1.14	43.32	36. 1	1. 20	33. 63	35.4	. 95	52.05	34.7	1. 50	52.20	34.8	1. 50
March	41. 15	36.1	1.14	41.50	36.4	1.14	45. 87	37.6	1. 22	33. 79	35.2	. 96	54.93	35.9	1. 53	55.18	36.3	1. 52
April	39. 10	34. 6	1.13	39. 22	34.4	1.14	42.72	35.6	1. 20	34. 69	36.9	. 94	49. 01	33.8	1. 45	52. 25	34.6	1. 51
May	39. 67	34.8	1.14	39.67	34.8	1.14	41. 41	34.8	1. 19	34. 20	36.0	95	49. 76	34.8	1. 43	53.45	35. 4	1. 51
June	40. 00	35.4	1.13	39.67	34.8	1.14	40.83	34.6	1.18	34.04	36.6	. 93	48.53	33.7	1. 44	47.91	33.5	1. 43
July	39. 76	35.5	1. 12	39. 55	35.0	1.13	41. 77	35. 7	1.17	33. 37	35.5	. 94	50.81	34.1	1. 49	48. 67	33.8	1. 44
August	41.70	36. 9	1.13	41. 47	36.7	1.13	43.32	36.1	1. 20	34. 78	37.0	. 94	53.15	35.2	1. 51	52.69	35.6	1. 48
September	41. 84	36.7	1.14	42.44	36.9	1.15	43. 44	36.5	1.19	33.44	35.2	. 95	52.17	34.1	1. 53	52. 86	34.1	1. 55
October-	41.58	36.8	1.13	42.75	37.5	1.14	42.13	35.7	1.18	33.65	35.8	. 94	50.40	33.6	1. 50	52.05	33.8	1.54
November	41. 61	36. 5	1.14	43. 82	38.1	1.15	42. 36	35.6	1. 19	32. 59	34.3	. 95	51. 65	34.9	1. 48	52. 50	35.0	1. 50
December	40.91	36.2	1.13	42.41	37.2	1.14	43. 55	36.6	1.19	33.12	34.5	. 96	53.55	35. 7	1. 50	53.70	35.8	1. 50
1955: January	40.68	36.0	1.13	41.61	36.5	1.14	43.19	36.6	1.18	33. 28	35.4	. 94	53. 40	35.6	1. 50	53. 49	35.9	1. 49
February	41.92 42.15	37.1	1.13	42.41	37.2	1.14	45. 10	37.9	1. 19	33. 56	35.7	. 94	54. 21	35. 9	1. 51	53.04	35. 6	1. 49
March	42.15	37.3	1.13	41.92	37.1	1.13	45. 22	38.0	1.19	35.62	37.1	. 96	53.87	36.4	1. 48	54.68	36.7	1. 49

See footnotes at end of table.

Table C-1: Hours and gross earnings of production workers or nonsupervisory employees ${ }^{1}$-Continued

See footnotes at end of table.

TABLE C-1: Hours and gross earnings of production workers or nonsupervisory employees ${ }^{1}$-Continued

[^56]Table C-1: Hours and gross earnings of production workers or nonsupervisory employees ${ }^{1}$ - Continued

Year and month	Manufacturing-Continued																	
	Printing, publishing, and allied indus-tries-Continued			Chemicals and allied products														
	Miscellaneous publishing and printing services			Total: Chemicals and allied products			Industrial inorganic chemicals 4			Alkalies and chlorine			Industrial organic chemicals			Plastics, except synthetic rubber		
	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earn- ings	Avg. wkly. earn- ings	Avg. wkly. hours	Avg. hrly. earnings	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earn- ings	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earn- ings	Avg. wkly. earn- ings	Avg. wkly. hours	Avg. hrly. earn- ings	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earnings
1953: Average1954: AverageMarchAprilMayJune.JulyAug-AugutSeptemOctoberNovembDecemb	\$104.15	39.6	\$2.63	\$75. 58	41.3	\$1.83	\$82. 81	41.2	\$2. 01	\$82. 39	41.4	\$1.99	\$80.18	40.7	\$1.97	\$82. 88	42.5	\$1. 95
	104. 91	39.0	2.69	78.50	41.1	1.91	86.09	40, 8	2.11	83.81	40.1	2.09	83.23	40.6	2.05	83.80	41.9	2.00
	106. 79	39.7	2.69	76.86	41.1	1.87	84.66	40.7	2.08	82.82	40.4	2.05	81.20	40.2	2.02	81. 34	41.5	1. 96
	102. 98	38.0	${ }_{2} 2.71$	77. 27	41.1	1.88	84.66	40.7	2.08	83. 22	40.4	2.06	82.62	40.3	2.05	82.15	41.7	1.97
	104. 13	39.0	2.67	77.71	40.9	1.90	85.06	40.7	2.09	82. 21	40.1	2.05	82.62	40.5	2.04	82.76	41.8	1. 98
	103.60	38.8	2. 67	79.10	41.2	1.92	85. 89	40.9	2.10	81. 58	39.6	2.06	84.05	41.0	2.05	83.60	41.8	2.00
	104. 49	38.7	2.70	79.35	40.9	1.94	86.88	40.6	2.14	83. 50	39.2	2.13	84. 24	40.5	2.08	83.02	41.1	2.02
	105. 30	39.0	2.70	78. 94	40.9	1.93	86.48	40.6	2.13	84.38	39.8	2.12	83.43	40.5	2.06	84.02	41.8	2. 01
	105.84	39. 2	2. 70	79. 52	41.2	1.93	88. 32	40.7	2.17	85. 36	39.7	2.15	85.07	40.9	2.08	85. 24	42.2	2.02
	104. 99	38.6	2. 72	78. 69	41.2	1. 91	87.31	40.8	2.14	86.67	40.5	2.14	83. 64	40.6	2.06	85. 87	42.3	2.03
	106. 11	39.3 39	2.70	79. 71	41.3	1. 93	87. 53	40.9	2.14	85.86	40.5	2.12	84.66	40.9	2.07	85. 85	42.5	2.02
	106.77	39.4	2. 71	79. 90	41.4	1.93	87.53	40.9	2.14	84.61	40.1	2.11	84.46	41.0	2.06	85.45	42.3	2.02
1955: Januar	107. 32	39.6	2.71	79.73	41. 1	1.94	87. 29	40.6	2. 15	84.35	39.6	2.13	84. 25	40.7	2.07	84.23	41.7	2.02
	$\begin{aligned} & 111.35 \\ & 112.84 \end{aligned}$	$\begin{aligned} & 40.2 \\ & 40.3 \end{aligned}$	2.77 2.80	$\begin{aligned} & 80.34 \\ & 80.32 \end{aligned}$	41.2 41.4	1.95 1.94	$\begin{aligned} & 88.15 \\ & 87.94 \end{aligned}$	41.0 40.9	2.15 2.15	86.07 85.03	40.6 40.3	2.12 2.11	$\begin{aligned} & 84.86 \\ & 85.69 \end{aligned}$	$\begin{array}{r} 40.8 \\ 41.0 \end{array}$	$\begin{aligned} & 2.08 \\ & 2.09 \\ & \hline \end{aligned}$	$\begin{array}{r} 84.85 \\ 85.88 \end{array}$	$\begin{aligned} & 41.8 \\ & 42.1 \end{aligned}$	2.03 2.04
	Synthetic rubber			Synthetic fibers			Explosives			Drugs and medicines			Soap, cleaning and polishing preparations ${ }^{4}$			Soap and glycerin		
1953: Average	\$87.29 $40.6 \quad \$ 2.15$			$\begin{array}{llll}\$ 69.87 & 39.7 & \$ 1.76\end{array}$			$\$ 74.84$ 39.6 $\$ 1.89$			$\$ 68.71$ 40.9 $\$ 1.68$			$\begin{array}{llll}\$ 78.47 & 41.3 & \$ 1.90\end{array}$			\$85.90 41.1		\$2. 09
1954: Average.....	$\begin{array}{llll}90.76 & 40.7 & 2.23\end{array}$			72.98 40.1 1.82			$\begin{array}{llll}78.01 & 39.8 & 1.96\end{array}$			$\begin{array}{llll}72.16 & 41.0 & 1.76\end{array}$			81.79	$\begin{aligned} & 41.3 \\ & 41.1 \end{aligned}$	1. 99	89.19	41.1	\$2.09
	$\begin{aligned} & 89.20 \\ & 89.69 \end{aligned}$	40.0	2. 23	70. 71	39.5	1.79	76.63	39.5	1.94	72.45	41.4	1.75	80.75	41.2	1. 96	88.58	41.2	2.15
		40.4	2. 22	72.47	39.6	1.83	76.44	39.2	1.95	70.64	40.6	1.74	79.77	40.7	1.96	87.29	40.6	2.15
	89. 20	40.0	2. 23	72.98	40. 1	1.82	77.81	39.7	1. 96	71.46	40.6	1.76	80.97	41.1	1. 97	88.56	41.0	2.16
	90.76	40.7	2.23	74.07	40.7	1.82	78.40	40.0	1.96	71.81	40.8	1.76	81.97	41.4	1.98	89.19	41.1	2.17
	91.3991.39	40.8	2. 24	75.11	40.6	1.85	76.05	38.8	1.96	71.46	40.6	1.76	81.39	40.9	1. 99	89.16	40.9	2.18
		40.8	2. 24	72.07	39.6	1. 82	78.21	39.7	1.97	71.63	40.7	1.76	82.81	41.2	2.01	90.86	41.3	2. 20
	91.39 94.92	42.0	2. 26	75. 52	40.6	1. 86	78.60	39.9	1.97	72.34	41.1	1.76	83.42	41.5	2.01	91. 74	41.7	2. 20
	91.39	40.8	2. 24	72.40	40.0	1.81	78.01	39.6	1. 97	73. 34	41.2	1.78	82.01	40.8	2.01	89. 54	40.7	2. 20
	92.89	41.1	2.26	73.12	40.4	1.81	79.20	40.0	1.98	72.80	40.9	1.78	82.82	41.0	2.02	89.98	40.9	2. 20
	$\begin{aligned} & 92.80 \\ & 93.02 \end{aligned}$	40.7	2. 28	73. 31	40.5	1.81	79.00	40.1	1. 97	73. 39	41.0	1.79	84. 25	41.5	${ }_{2}^{2.03}$	91.91	41.4	2. 22
1955: Januar		40.8	2. 28	72. 76	40.2	1.81	80.60	40.3	2.00	73.21	40.9	1.79	84.25	41.3	2.04	91.02	41.0	2. 22
	$\begin{aligned} & 93.07 \\ & 94.76 \\ & \hline \end{aligned}$	41.0	2. 27	74.52	40.5	1.84	79. 40	39.7	2.00	74.93	41.4	1.81	84.25	41.3	2.04	91.46	41.2	2. 22
		41.2	2.30	74.89	40.7	1.84	79.20	39.6	2.00	73.62	40.9	1.80	77.18	38.4	2.01	80.00	36.2	2.21
	Paints, pigments, and fillers 4			Paints, varnishes, lacquers, and enamels			Gum and wood chemicals			Fertilizers			Vegetable and animal oils and fats 4			Vegetable oils		
1953: A verage	\$76.08	41.8	\$1. 82	\$74.64	41.7	\$1. 79	\$64.22	41.7	\$1.54	\$59.36	42.4	\$1. 40	\$64. 89	45.7	\$1.42	\$59. 67	45.9	\$1.30
1954: A verage	$\begin{array}{r} 77.87 \\ 76.11 \end{array}$	41.2	1.89	76. 26	41.0	1.86	67.52	42.2	1.60	61.48	42.4	1.45	68. 24	45.8	1.49	63.16	46.1	1.37
March		40.7	1.87	74. 70	40.6	1.84	65.05	41.7	1.56	61.32	43.8	1.40	67.33	45.8	1.47	62.44	46.6	1.34
April	$\begin{aligned} & 77.04 \\ & 77.87 \end{aligned}$	41.2	1.87	74.70	40.6	1.84	67.89	42.7	1. 59	62.76	44.2	1.42	68.25	45. 2	1.51	63.66	45.8	1.39
May		41.2	1.89	76.45	41.1	1.86	66.17	41.1	1.61	62.33	42.4	1.47	68.53	44.5	1.54	63.35	44.3	1.43
June	$\begin{aligned} & 79.04 \\ & 79.65 \end{aligned}$	41.6	1.90	77.00	41.4	1.86	67.73	42.6	1. 59	61.90	42.4	1.46	69.89	44.8	1.56	64. 53	44.2	1. 46
July		41.7	1.91	77.38	41.6	1.86	69.17	43.5	1.59	62.16	42.0	1.48	70.78	44.8	1.58	64. 96	43.6	1.49
August	$\begin{aligned} & 79.65 \\ & 78.88 \end{aligned}$	41.3	1.91	76. 86	41.1	1.87	68.80	43.0	1. 60	61.30	41.7	1.47	69. 99	44.3	1. 58	64.37	43.2	1.49
September	$\begin{aligned} & 77.93 \\ & 77.90 \end{aligned}$	40.8	1.91	75.74	40.5	1.87	70.14	42.0	1.67	62.40	41.6	1.50	67. 74	46.4	1. 46	62.38	46.9	1. 33
October.		41.0	1. 90	76.11	40.7	1.87	67.36	42.1	1.60	60.19	41.8	1.44	67.68	47.0	1.44	63.10	47.8	1.32
Novemb	79.27	41.5	1. 91	77.64	41.3	1.88	69.21	42.2	1.64	60.88	41.7	1.46	69.41	46.9	1.48	64.74	47.6	1. 36
Decembe	$\begin{aligned} & 79.68 \\ & 78.72 \\ & 79.71 \end{aligned}$	41.5	1.92	77.87	41.2	1.89	67.84	42.4	1.60	61.86	41.8	1.48	68.36	46.5	1.47	63.32	46.9	1.35
1955: January		41.041.341.6	1. 92	77.11	40.8	1.88	69.37	42.3	1.64	61.01	41.5	1. 47	68. 24	45.8	1.49	62.88	45.9	1.37
			1. 93	77.87	41.2	1.89	68.04	42.0	1.62	59.16	40.8	1. 45	69.46	45.4	1.53	63.84	45.6	1.40
	$\begin{aligned} & 79.71 \\ & 81.12 \end{aligned}$		1.95	79.65	41.7	1.91	69.60	42.7	1.63	64.47	45.4	1.42	68.39	44.7	1. 53	62.16	44.4	1.40
March	Chemicals and allied products-Continued												Products of petroleum and coal					
	Animal oils and fats			Miscellaneous chemicals ${ }^{4}$			Essential oils, perfumes, cosmetics			Compressed and liquefied gases			Total: Products of petroleum and coal			Petroleum refining		
1953: Average	\$74. 29	45.3	\$1.64	\$69.94	40.9	\$1.71	\$57.66	38.7	\$1.49	\$80.37	42.3	\$1.90	\$90.17	40.8	\$2. 21	\$94. 19	40.6	\$2. 32
1954: Average-.--	77.4675.75	45.3	1.71	71.51	40.4	1.77	60.37	38.7	1.56	82.32	42.0	1.96	92.62	40.8	2.27	96. 22	40.6	2. 37
March		44.3	1.71	71.10	40.4	1.76	60.45	38.5	1.57	80.10	41.5	1.93	90.45	40.2	2.25	94.47	40.2	2. 35
April.	75.58	44.2	1. 71	70.53	40.3	1. 75	60.22	38.6	1.56	82.06	42.3	1.94	91.08	40.3	2.26	94.87	40.2	2.36
May	75.99	44.7	1. 70	70.93	40.3	1.76	59.90	38.4	1.56	81.29	41.9	1.94	93.52	41.2	2. 27	97.17	41.0	2.37
June	77.9878.88	45.6	1.71	71.28	40.5	1. 76	60.68	38.9	1.56	81.71	41.9	1.95	93.98	41.4	2. 27	97.17	41.0	2.37
July		46.4	1. 70	70.98	40.1	1. 77	58.28	37.6	1.55	82.52	42.1	1.96	94.53	41.1	2. 30	97. 51	40.8	2. 39
August	78.66	46.0	1. 71	71. 33	40.3	1.77	59.68	38.5	1. 55	82.71	42.2	1.96	93.07	41.0	2. 27	96.05	40.7	2. 36
September	78.43	45.6	1. 72	71.73	40.3	1. 78	60. 14	38.8	1.55	83.13	42.2	1.97	95.58	41.2	2.32	97.85	40.6	2. 41
October.	77.6380.08	45.4	1.71	72. 09	40.5	1. 78	60.76	39.2	1.55	82.74	42.0	1. 97	92.57	40.6	2. 28	95.75	40.4	2. 37
November		45.5	1.76	72.54	40.3	1.80	60.76	39.2	1.55	83.60	41.8	2.00	93.66	40.9	2. 29	97.10	40.8	2.38
December.	78. 32	45.8	1.71	73.49	40.6	1.81	62.09	39.3	1.58	84.60	42.3	2.00	92.57	40.6	2. 28	96. 22	40. 6	2.37
1955: Januar ${ }^{\text {Febru }}$ March	$\begin{aligned} & 78.26 \\ & 78.75 \\ & 79.28 \end{aligned}$	45.5	1. 72	73.53	40.4	1.82	61.60	38.5	1.60	84.40	42.2	2.00	93.02	40.8	2. 28	96. 93	40.9	2. 37
		45.0	1.75	74.07	40.7	1.82	63.50	39.2	1.62	84.60	42.3	2.00	91.25	40.2	2. 27	94.87	40.2	2. 36
		45.3	1.75	75.07	40.8	1.84	64.78	39.5	1.64	85.63	42.6	2.01	92.97	40.6	2.29	96.08	40.2	2.39

See footnotes at end of table.

Table C-1: Hours and gross earnings of production workers or nonsupervisory employees ${ }^{1}$ - Continued

See footnotes at end of table.

TABLE C-1: Hours and gross earnings of production workers or nonsupervisory employees ${ }^{1}$ - Continued

[^57]TABLE C-1: Hours and gross earnings of production workers or nonsupervisory employees ${ }^{1}$-Continued

Year and month	Manufacturing-Continued																	
	Primary metal industries-Continued															Fabricated metal products (except ordnance, machinery, and transportation equipment)		
	Nonferrous foundries			Miscellaneous primary metal industries ${ }^{4}$			Iron and steel forgings			Wire drawing			Welded and heavyriveted pipe			Total: Fabricated metal products		
	Avg. wkly. earn- ings Ins	Avg. wkly. hours	Avg. hrly. earn- ings	Avg. wkly. earn- ings	Avg. wkly. hours	Avg. hrly. earn- ings	Avg. wkly. ings	Avg. wkly. hours	Avg. hrly. earnings	Avg. wkly. ings	Avg. wkly. hours	Avg. hrly. earn- ings	Avg. wkly. ings	Avg. wkly. hours	Avg. hrly. earnings	Avg. wkly. ings	Avg. wkly. hours	Avg. hrly. earnings
1953: Average	7	41.1	$\begin{array}{r} \$ 1.97 \\ 2.02 \end{array}$	\$87. 57	$\begin{aligned} & 41.5 \\ & 39.6 \end{aligned}$	$\begin{array}{r} \$ 2.11 \\ 2.14 \end{array}$	\$91. 12	$\begin{aligned} & 41.8 \\ & 38.9 \end{aligned}$	$\begin{array}{r} \$ 2.18 \\ 2.23 \end{array}$	$\begin{array}{r} \$ 84.87 \\ 85.03 \end{array}$	41.0	$\begin{array}{r} \$ 2.07 \\ 2.11 \end{array}$	$\begin{array}{r} \$ 84.45 \\ 84.40 \end{array}$	40.6	$\begin{array}{r} \$ 2.08 \\ 2.11 \end{array}$	$\begin{array}{r} \$ 77.15 \\ 77.33 \end{array}$	41.7	
1954: Average	80.60	39.9		84.74			86.75											
April	79.00	39.5	2. 00	82. 29	39.0	2.11	85. 58	38.9	2.202.19	81.33	39.1	2.08	82.16	39.5	2.08	75.95	40.4	1.90 1.88
May	$\begin{aligned} & 78.01 \\ & 79.00 \end{aligned}$	39.2	1. 99	81.66	38.7		83.22	38.0		81.33	39.1	2.08	82.97	39.7	2.09	75.39	40.1	1. 88
June		39.5 39.4	2.00 2.01	83.53 85.39	39.4	2.12	84.04 84.42	38.2 38.2	2. 20	84. 21	40.1	2. 10	84. 85	40.6	2. 09	76.92	40.7	1. 89
July	77.79	38.7	2.01	84.10	39.3	2.14	84.80	38.2	2.22	84.80	40.0	2.12	85.24	40.4	2.11	75.60	40.0	1.89
August		39.7	2.01	84.53	39.5	2.14	86.08	38.6	2.23	85. 65	40.4	2.12	83.16	39.6	2. 10	76.95	40.5	1. 90
Septem	79.80 80 8.	39.6	2.03	85.75	39.7	2.16	85. 79	38.3	2.24	87.10	40.7	2.14	86. 03	40.2	2.14	77.74	40.7	1.91
Novemb	$\begin{aligned} & 80.39 \\ & 84.25 \end{aligned}$	40.9	2. 06	86.18	39.9	2. 16	87. 46	38.7	2. 26	87. 33	41.0	2.13	85. 22	40.2	2. 12	78.53	40.9	1.92
December	$\begin{aligned} & 84.25 \\ & 84.85 \\ & 84.66 \end{aligned}$	40.640.9	2.09 2.07	86.80	40.0	2.17	88.76 91.88	39.1	2.27	87.74	41.0	2.14	82.89 87.53	39.1	2. 12	79. 52	41.2	1. 93
1955: January			2.08	91. 94	41.3	2. 212	91. 88	40.3 40.8	2. 2.28	${ }_{91.36}^{91.15}$	42.2 42.1	2.16 2.17	87.53 89.60	40.9 41.1	2.14	80.70 80.15	41.6 41.1	1.94 1.95
February	$\begin{aligned} & 84.45 \\ & 85.45 \\ & 85.90 \end{aligned}$	$\begin{aligned} & 40.4 \\ & 40.6 \\ & 41.1 \\ & \hline \end{aligned}$	2.08	92. 57	41.7	2.22	96.00	41.2	2.33	92.21	42.3	2. 18	87.31	40.8	2. 14	80.34	41.2	1.95
			2.09	94.33	42.3	2.23	98.70	42.0	2.35	94.16	42.8	2.20	86.48	40.6	2.13	80.73	41.4	1.95
	Tin cans and other tinware			Cutlery, handtools, and hardware ${ }^{4}$			Cutlery and edgetools			Handtools			Hardware			Heating apparatus (except electric) and plumbers' supplies ${ }^{4}$		
1953: Avera	\$75. 71	$\begin{aligned} & 41.6 \\ & 41.6 \end{aligned}$	\$1.82	\$74. 05	$\begin{aligned} & 41.6 \\ & 40.3 \end{aligned}$	$\begin{array}{r} \$ 1.78 \\ 1.84 \end{array}$	$\begin{array}{r} \$ 67.32 \\ 66.40 \end{array}$	$\begin{aligned} & 41.3 \\ & 40.0 \end{aligned}$	$\begin{array}{r} \$ 1.63 \\ 1.66 \end{array}$	$\begin{array}{r} \$ 74.70 \\ 73.26 \end{array}$	$\begin{aligned} & 41.5 \\ & 39.6 \end{aligned}$	$\$ 1.80$	\$75. 8977.52	$\begin{aligned} & 41.7 \\ & 40.8 \end{aligned}$	$\$ 1.82$1.90	$\begin{array}{r} \$ 73.57 \\ 74.24 \end{array}$	$\begin{aligned} & 40.2 \\ & 39.7 \end{aligned}$	$\$ 1.83$1.87
1954: Average			1. 93	74.15														
April		41.1		72. 04	39.8	1.81	65. 44	39.9 38.9	1.64	73.05	39.7	1.84	74.03	39.8	1.86	$\begin{aligned} & 74.24 \\ & 73.10 \end{aligned}$	39.3	1.87 1.86
May	78. 94	40.9	1. 93	72.62	39.9	1.82	63.41		${ }_{1}^{1.63}$	72.10	${ }_{39} 39$	1.83	75. 95	40.4	1.88	70. 66	38.4	1. 84
June	82.74	42.0	1.97	74.34	${ }^{49.4}$	1.84	66. 74	40.0 39.6	1.65	72.31	39.3 39.2	1.84 1.84	78.50	41.1 39.9	1.91	73. 28 74.59	39.4	1.86
July	${ }_{82.12}$	42.2	1. 96	72. 29	39.5	1.83	64. 29	39.2	1.64	70.84	38.5	1.84	75. 79	40.1	1.89	72. 34	39.1	1.85
August	83.13	41.9	1. 97	74.74	40.4	1.85	66.17	40.1	1.65	73.26	39.6	1.85	77.93	40.8	1.91	75.14	40.4	1.86
Septem	81.34	41.5	1.96	75.11	40.6	1.85	66. 90	40.3	1. 66	73. 26	39.6	1.85	78. 50	41.1	1.91	75. 20	40.0	1.88
Novem	80.00	40.2	1.99	75. 70	40.7	1.86	68.21	40.6	1.68	73.10	39.3	1.86	79.30	41.3	1.92	76. 92	40.7	1.89
Decem	79. 20	39.8	1. 99	76.48	40.9	1.87	69.97	41.4	1. 69	74.21	39.9	1. 86	79. 52	41.2	1.93	75.79	40.1	1.89
1955: January	83. 21	41.4	2. 01	78. 62	41.6	1. 89	70.04	41.2	1.70	74. 59	40. 1	1. 86	83. 10	42.4	1.96	76. 78	40.2	1.91
Februar	81.00		2.01		41.7	1.90	68.28	40.4	1.69	75.33	40.5	1.86	83. 92	42.6	1.97	75.06	39.3	1.91
March	80.40		$\begin{aligned} & 2.01 \\ & 2.00 \\ & \hline \end{aligned}$	$\begin{aligned} & 80.03 \\ & 79.65 \end{aligned}$	$\begin{aligned} & 41.9 \\ & 41.7 \end{aligned}$	1.91	69.19	40.7	1.70 1.7	75.36	40.3 40	1.87	84.15	42.5	1.99 1.98	76.02 76.78	39.8 40.2	1.91 1.91
	Sanitary ware and plumbers' supplies			Oil burners, nonelectric heating and cooking apparatus, not elsewhere classified			Fabricated structural metal products ${ }^{4}$			Structural steel and ornamental metal work			Metal doors, sash, frames, molding, and trim			Boiler-shop products		
1953: A verage.-.-....	\$75. 64	39.6	\$1.91	\$72.32	40.4	\$1.79	\$80. 75	42.5	\$1.90	\$81. 27	43.0	\$1.89	\$78.44	$\begin{aligned} & 41.5 \\ & 40.4 \end{aligned}$	\$1.89	\$80. 94	42.640.9	\$1.90
1954: Average-......	76. 04	39.7	1.95	73.05	39.7	1.84	79. 52	41.2	1.93	80.45	41.9	1.92	$\begin{aligned} & 78.38 \\ & 76.21 \end{aligned}$		1.94	79.35		
$\begin{aligned} & \text { March } \\ & \text { April. } \end{aligned}$		39.4	1.93	71. 92	39.3	1.83	78.88	41.3	1.91	79.99	42.1	1. 90		39.9	1. 91	79.30	41.3	1.92
May	72.58	37.8	1.92	69.87	38.6	1.81	78.31	41.0	1.91	79. 42	41.8	1.90	76.42	39.8	1.92	78. 94	40.9	1.93
June	75. 66	39.2	1.93	72. 29	39.5	1.83	79.30	41.3	1.92	80.41	42.1	1.91	76.99	40.1	1.92	78.74	40.8	1.93
July	77.79 75.83	${ }_{39} 7$	1.94	73.38	${ }_{38} 8$	1.83	80.26	41.8	1.92	79.46	41.8	1.91	79.10	41.2	1.92	78.74	40.8	1.93
Augus	79.38	40.5	1.96	73.53	40.4	1.82	79.73	41.1	1.94	80.87	41.9	1.93	78.38	40.4	1.94	78.76	40.6	1.94 1.94
October	76.44	39.2	1.95	74.56	40.3	1.85	79.35	40.9	1.94	79.30	41.3	1.92	79.79	40.5	1.97	79.15	40.8	1.94
Novemb	79.59	40.4	1.97	75.89	40.8	1.86	79.56	40.8	1.95	79.90	41.4	1.93	80.19	40.5	1.98	78.39	40.2	1.95
December	81.39	40.9	1.99	73.63	39.8	1.85	79.56	40.8	1. 95	80.10	41.5	1.93	79.79	40.3	1.98	79.17	40.6	1.95
1955: January	81.00	40.5	2.00	74. 80	40.0	1.87	80. 15	41.1	1.95	79.52	41.2	1.93	83.40	41.7	2.00	79.77	40.7	1.96
Februar	80.40 80.0	40.2	2.00 2.00	${ }_{73.84}$	38.9 39.7	1.87 1.86	78.20	40.1	1.95	77.20	40.3	1.93	79.40 79.39	40.1	1.98	78.20	40.4 39.9	1.97
Marc	80.80	40.2	2.01	74.77	40.2	1.86	79.17	40.6	1.95	78.36	40.6	1.93	79.97	40.8	1.96	78.00	40.0	1.95
	Sheet	metal w	ork	$\begin{array}{r} \text { Metal } \\ \text { coati } \\ \text { gravi } \end{array}$		$\begin{aligned} & \text { ping, } \\ & 1 \text { en- } \end{aligned}$	Vitreo	us ena roducts	eled	Stamp met	$\begin{aligned} & \text { ed and } p \\ & \text { al produ } \end{aligned}$	ressed	Light	ing fixtu	res	Fabrica	ted wir ucts	prod-
1953: A verage	\$80. 22	42.0	\$1.91	\$78.81	41.7	\$1.89	\$59.06	38.6	\$1.53	\$81. 90	42.0	\$1. 95	\$72. 50	40.5	\$1.79	\$72. 62	40.8	\$1. 78
1954: Average	78.76	40.6	1.94	80.57	40.9	1.97	61.18	38.0	1.61	83.02	41.1	2.02	73.38	40.1	1.83	73.53	40.4	1.82
March	77.59	40.2	1.93	77.97	40.4	1.93	60.83	38.5	1. 58	80.19	40.5	1.98	70.13	39.4	1.78	72.76	40.2	1.81
April	77.18	40.2	1.92	78. 18	40.3	1. 94	60.83	38.5	1.58	80.60	40.5	1. 99	70.35	39.3	1.79	71.46	39.7	1.80
May	79.73	41.1	1.94	80. 36	41.0	1.96	61.06	38.4	1.59	83.01	41.3	2. 01	71.82	39.9	1.80	72.58	40.1	1.81
June	79. 93	41.2	1.94	79.58	40.6	1.96	59.01	36. 2	1.63	82.21	40.9	2.01	71.10	39.5	1.80	72.80	40.0	1.82
July-	79.54	41.0	1.94	76.44	39.2	1.95	56.13	35.3	1. 59	79.40	39.5	2.01	71. 28	39.6	1.80	72. 94	40.3	1.81
August	79.37	40.7	1.95	78.40	40.0	1.96	59.73	37.1	1.61	80.60	40.1	2. 01	70.71	39.5	1.79	73. 12	40.4	1.81
Septembe	79.17	40.6	1.95	80.78	40.8	1.98	61.24	37.8	1.62	83.84	41.1	2.04	72. 32	40.4	1.79	72.76	40.2	1.81
October-	78. 78	40.4	1.95	82.98	41.7	1. 99	63.18	39.0	1.62	85.90	41.9	2.05	76.48	40.9	1.87	73.89	40.6	1.82
November	78.20	40.1	1.95	85.02	42.3	2.01	63.34	39.1	1.62	87.98	42.5	2.07	79.68	41.5	1.92	76.18	41.4	1.84
December	80.57	40.9	1.97	85.43	42.5	2.01	63.43	39.4	1.61	88.18	42.6	2.07	80.51	41.5	1.94	77.93	41.9	1.86
1955: January	78.20	40.1	1.95	85. 87	42.3	2.03	64.31	39.7	1.62	89.45	42.8	2.09	78. 96	40.7	1.94	75.48	40.8	1.85
February	79.18	40.4	1.96	85.87	42.3	2.03	62. 95	39.1	1.61	89.24	42.7	2. 09	78.53	40.9	1.92	76.26	41.0	1.86
March	81.16	41.2	1.97	86.28	42.5	2.03	64.96	40.1	1.62	90.09	42.9	2.10	76.76	40.4	1.90	76.45	41.1	1.86

See footnotes at end of table.

Table C-1: Hours and gross earnings of production workers or nonsupervisory employees ${ }^{1}$ - Continued

Year and month	Manufacturing-Continued																			
	Fabricated metal products (except ordnance, machinery, and transportation equipment)-Continued															Machinery (except electrical)				
	Miscellaneous fabricated metal products ${ }^{4}$			Metal shipping barrels, drums, kegs, and pails			Steel springs			Bolts, nuts, washers, and rivets			Screw-machine products			Total: Machinery (except electrical)				
	Avg. wkly. earn-	Avg. wkly. hours	Avg. hrly. earnings	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earnings	Avg. wkly. earn- ings	Avg. wkly. hours	Avg. hrly. earnings	Avg. wkly. earn-	Avg. wkly. hours	Avg. hrly. earnings	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earnings	Avg. wkly. ings	Avg. wkly. hours	Avg. hrly. earnings		
1953: Average---	\$78. 51	$\begin{aligned} & 42.9 \\ & 40.7 \end{aligned}$	\$1.83	\$82. 35	41.8	\$1.97	\$83.13	42.2	$\begin{array}{r} \$ 1.97 \\ 1.99 \end{array}$	\$79. 18	$\begin{aligned} & 42.8 \\ & 40.3 \end{aligned}$	\$1.1.851.89	$\begin{array}{r}\text { \$81. } \\ 75 \\ 75 \\ \hline\end{array}$	44.3	$\begin{array}{r} \$ 1.83 \\ 1.84 \end{array}$	\$82. 91	42.340.6	$\$ 1.96$2.01		
1954: Average---	75. 70		1.86	83. 81	40.7	2.04	78.2177.03	39.339.3		76.17				40.9						
March.	74. 34	40.4	1.84		41.1	2.01			1.96		39.6	1.86	74.62	41.0	1.82		82.20 41.1 2.00 80 4.60 40.5			
April	72. 47	$\begin{aligned} & 39.6 \\ & 40.1 \end{aligned}$	1.83	80.60	40. 1	2. 01	77.03	38. 3	1.96	$\begin{aligned} & 73.66 \\ & 72.52 \end{aligned}$	39.2	1.85	72. 25	$\begin{aligned} & 41.0 \\ & 39.7 \end{aligned}$	1.82					
Mune	73.78 74.56	40.339.4	1.85	85.68 84.84	42.0 42.0	2.02	75.04 77.81	37.9 39.1	1.99	$\begin{aligned} & 72.91 \\ & 73.68 \end{aligned}$	39.2	1.86	74.12	40.5 40.4	1.83	$\begin{aligned} & 81.61 \\ & 81.00 \end{aligned}$	$\begin{aligned} & 40.5 \\ & 40.6 \end{aligned}$	$\begin{aligned} & \text { 1. } 99 \\ & 2.01 \end{aligned}$		
July	73. 28		39.411 .86	77. 99	38.8	2.01	77.81 76.04	38.6	1.97	$\begin{gathered} 73.68 \\ 73.14 \end{gathered}$	$\begin{aligned} & 39.4 \\ & 38.7 \end{aligned}$	$\begin{aligned} & 1.87 \\ & 1.89 \end{aligned}$	$\begin{aligned} & 73.93 \\ & 71.92 \end{aligned}$	$\begin{aligned} & 40.4 \\ & 39.3 \end{aligned}$	1.83	80.60	40.5 2.00 40.1 2.01			
August	74. 00	$40.0 \quad 1.85$		85.0883.44	41. 1	2.07	74.4873.30	38.0	1.961.96	74.2677.52	39.540.8	$\begin{aligned} & 1.88 \\ & 1.88 \end{aligned}$	$\begin{aligned} & 71.92 \\ & 72.62 \end{aligned}$	39.9	1.82	80.80	$40.2 \quad 2.01$			
Septembe	75.70	$40.7{ }^{4} 1.86$			40.740.6	2.06		37.4 38.7				1. 1.90	75. 26	40.9	1.841.86	81.81	$\begin{array}{ll}40.3 & 2.03 \\ 40.2 & 2.03\end{array}$			
October	77.08	41.0	1.88	83.44 83.64			77.01		1.96 1.99	77.52 78.91 80.	40.8 41.1		76.4579.10							
November	79.38	$42.0 \quad 1.89$		83.22	40.4 2.06		85. 49	41.5	2.06	80.87	41.9	1. 93		42.9	1.87	$\begin{aligned} & 81.61 \\ & 82.01 \end{aligned}$	$40.4 \quad 2.03$			
1955: January	81.22	42.342.742.7	1.921.921.93	84.86	$41.3 \quad 2.08$		88.41	$\begin{aligned} & 41.1 \\ & 42.1 \end{aligned}$	$\begin{aligned} & 2.07 \\ & 2.10 \end{aligned}$	$\begin{aligned} & 83.42 \\ & 85.50 \end{aligned}$	43.0 43.4	$\begin{aligned} & \text { 1. } 94 \\ & 1.97 \end{aligned}$	80. 22	41.9	1.87	$82.82 \quad 40.8 \quad 2.03$	40.440.9			
Februar	81.98			$\begin{aligned} & 85.90 \\ & 86.53 \\ & 8.94 \end{aligned}$	41.8	2.07	90.95	42.9	2.12	85.10	43.2	1.97	81.08	42.9	1.89	83.64	41.0	2. 04		
March.	82.41				41.8	2.08	89.25	42.3	2.11	85.93	43.4	1.98	81.27	43.0	1.89	84.87	41.4	2.05		
	Engines	and tur	ines ${ }^{4}$	Steam bines, an	ngines water	turwheets	Diesel nal gines classi	and other ombusti not els fied	inter- en- where	$\begin{aligned} & \text { Agricul } \\ & \text { ery al } \end{aligned}$	$\begin{aligned} & \text { Itural ma } \\ & \text { nd tract } \end{aligned}$	$\begin{aligned} & \text { achin- } \\ & \text { ors }{ }^{4} \end{aligned}$		Tractors		$\begin{array}{\|l} \text { Agricult } \\ \text { (exce } \end{array}$	ural ma	$\begin{aligned} & \text { chinery } \\ & \text { ors) } \end{aligned}$		
1953: A verage	\$85. 28	41.2	\$2. 07	\$93. 66	42.0	\$2. 23	\$82. 41	41.0	\$2. 01	\$77. 21	39.8	\$1.94	\$79. 20	39.6	\$2. 00	\$75. 20	40.0	\$1.88		
1954: A verage	86. 05	40. 4	${ }_{2}^{2.13}$	94. 94	41.1	2. 31	82. 41	40.2	2. 05	78. 21	39.5	1.98	80.77	39.4	2.05	76. 03	39.6	1. 92		
March	86. 28	40.7	2.12	99. 03	42.5	2. 33	81. 20	40.0	2. 03	79. 00	40. 1	1. 97	81. 40	39.9	2.04	77.38	40.3	1.92		
April.	83.39	39.9	2. 90	89. 60	40.0	2. 24	81. 00	39.9	2. 03	78. 41	39.6	1. 98	80.17	39.3	2.04	76.61	39.9	1.92		
May	86. 07	40.6	2. 12	94. 76	41.2	2.30	82. 82	40.4	2. 05	78. 80	39.8	1. 98	80.77	39.4	2. 05	76. 99	40.1	1.92		
June	83.81	40.1	2.09	86. 14	38.8	2.22	83. 23	40.6	2.05	78.21	39.7	1.97	78.78	39.0	2.02	77.97	40.4	1.93		
July	85. 44	40.3	2.12	92.34	40.5	2. 28	83. 02	40.3	2. 06	77.03	39.3	1.96	78.78	39.0	2.02	75. 45	39.5	1. 91		
August	84.77	39.8	2.13	95.17	41.2	2. 31	80.36	39.2	2. 05	77. 42	39.3	1. 97	80.36	39. 2	2.05	74. 67	39.3	1. 90		
Septembe	85.84	40.3	2. 13	93. 94	41.2	2. 28	82. 59	39.9	2. 07	78. 80	39.4	2. 00	82. 39	39.8	2.07	75. 46	39.1	1. 93		
October	85.97	39.8	2.16	97.34	40.9	2. 38	81.56	39.4	2. 07	76. 81	38.6	1. 99	79.52	38.6	2.06	73.73	38.6	1.91		
November	86.86	40.4	2.15	100. 67	41.6	2. 42	81.40	39.9	2. 04	78.40	39.2	2. 00	81.97	39.6	2.07	74.69	38.9	1.92		
December	90.03	41.3	2.18	97. 75	40.9	2.39	86. 94	41.4	2.10	80.40	40.0	2.01	84. 03	40.4	2.08	77.02	39.7	1. 94		
1955: January	88.99	41.2	2.16	94. 71	40.3	2.35	86.74	41.5	2. 09	82. 01	40.4	2. 03	86.31	41.1	2.10	77.42	39.7	1.95		
February	89. 42	41.4	2.16	90.78	39.3	2.31	89. 04	42. 2	2. 11	82.82	40.6	2. 04	86.51	41.0	2.11	79.19	40.2	1. 97		
March.	88.78	41.1	2.16	89. 55	38.6	2.32	88.62	42.0	2.11	84. 46	41.0	2.06	87.35	41.4	2.11	81.40	40.7	2.00		
	Cons minin	truction g machi	and ery ${ }^{4}$	Constr mini excep	uction ng mach for oil	and inery, ields	Oilfiet	and tools		Metal	orking inery	ma-		chine tors			orking except	machinachine		
1953: Average	\$79. 42	41.8	\$1.90	\$78.85	41.5	\$1.90	\$80. 98	42.4	\$1.91	\$96. 64	45.8	\$2.11	\$94.92	46.3	\$2.05	\$89. 52	44.1	\$2. 03		
1954: Average	79.17	40.6	1. 95	77. 99	40.2	1.94	82.17	41.5	1.98	92. 87	42.6	2.18	89. 03	42.6	2.09	85.08	41.1	2.07		
March	79. 93	41.2	1.94	78.74	40.8	1.93	81.90	42.0	1.95	93.74	43.6	2.15	93. 21	44. 6	2. 09	86.10	42.0	2.05		
April.	78.74	40.8	1.93	77.57	40. 4	1.92	81. 93	41.8	1. 96	92.45	42.8	2. 16	89. 42	43.2	2. 07	84. 46	41.0	2. 06		
May	79.76	40.9	1. 95	78. 57	40.5	1.94	82. 54	41.9	1.97	92.87	42.6	2. 18	88. 61	42.6	2. 08	84.46	40.8	2. 07		
June_	79.95	41.0	1.95 1.95	77. 21	40.5 39.8	1.95 1.94	78.99	40.3	1.96	92. 20	42.1	2.19	${ }_{85.28}$	41.0	2.08	84.10	41.0	2.07 2.10		
August	78.59 78.00	40.3	1.95	76.82	39.6	1.94	82.96	41.9	1. 98	92.64	42.3	2.19	86.11	41.4	2.08	85.70	41.2	2.08		
Septembe	77.62	39.6	1.96	77.42	39.7	1.95	78. 01	39.4	1.98	91.96	41.8	2.20	87.36	41.6	2.10	84.45	40.6	2.08		
October-	78. 01	39.8	1.96	77.22	39.6	1.95	79.79	40.3	1.98	92.16	41.7	2.21	87.99	41.7	2.11	83.41	40.1	2.08		
November	79.00	40.1	1.97	78.01	39.8	1.96	81.40	40.7	2.00	90.89	41.5	2.19	86.31	41.1	2.10	83.21	40.2	2. 07		
December	80.78	40.8	1.98	79.98	40.6	1.97	81.79	41.1	1.99	91.76	41.9	2.19	88. 20	41.8	2.11	85.06	40.7	2.09		
1955: January--	80.39	40.6	1.98	80.39	40.6	1.98	80.19	40.5	1.98	91.14	42.0	2.17	87.78	41.8	2.10	85.28	41.0	2.08		
February	81.79	41.1	1.99	81. 59	41.0	1.99	82.60	41.3	2.00	91.78	42.1	2.18	88.62	42.0	2.11	85. 69	41.0	2.09		
March.	84.02	41.8	2.01	84. 22	41.9	2.01	83.40	41.7	2.00	92.86	42.4	2.19	90.95	42.5	2.14	86.32	41.3	2.09		
		achine-t ccessorie		Special chine meta chine		y maexcept g ma-		$d-p r o d u$ achinery		Texti	machi	ery	$\begin{array}{r} \text { Pape } \\ m \end{array}$	$\begin{aligned} & \text { er-indust } \\ & \text { lachinery } \end{aligned}$		$\underset{\text { Phinery }}{\text { Printi }}$	ng-trade and equ	$s m a-$ pment		
1953: Average	\$100. 93	46.3	\$2. 18	\$81.32	42.8	\$1. 90	\$81. 56	42.7	\$1. 91	\$71.93	41.1	\$1. 75	\$82. 84	44.3	\$1.87	\$94. 59	44.2	\$2.14		
1954: Average	98.72	43.3	2. 28	79.54	41.0	1.94	81.36	41.3	1.97	70.22	39.9	1.76	82.94	43.2	1.92	89. 01	41.4	2.15		
March	97.66	43.6	2.24	80.67	41.8	1.93	83.95	42.4	1.98	71.33	40.3	1.77	84.11	44.5	1.89	92.23	42.5	2.17		
April.	98.08	43.4	2.26	79.13	41.0	1.93	81.36	41.3	1.97	70.05	39.8	1.76	82.08	43. 2	1.90	87.74	41.0	2.14		
May	99. 62	43.5	2. 29	79.15	40.8	1.94	80.97	41.1	1.97	69.52	39.5	1.76	82. 94	43.2	1.92	91.56	42.0	2.18		
June_	99.36	43.2	2.30	78. 55	40.7	1.93	79.97	40.8	1.96	69.65	39.8	1.75	83.28	43. 6	1.91	87. 53	40.9	2.14		
July	99.59	43.3	2. 30	77.78	40.3	1.93	79.18	40.4	1.96	67.16	38.6	1.74	81.98	42.7	1.92	90.73	42.2	2.15		
August	100.02	43.3	2.31	77.59	40.2	1.93	79.58	40.6	1.96	68. 60	39.2	1.75	81.06	42. 0	1.93	85. 86	40.5	2.12		
September.	98.18	42. 5	2.31	78. 98	40. 5	1.95	80.18	40.7	1.97	68.64	39.0	1.76	83. 27	42.7	1.95	87.72	40.8	2.15		
October	98.60	42. 5	2. 32	79.37	40.7	1.95	79.59	40.4	1.97	70.18	40.1	1.75	82.10	42. 1	1.95	88.32	40.7	2.17		
November	97.29	42.3	2.30	79.95	41.0	1.95	79.99	40.4	1.98	71. 63	40.7	1.76	83.27	42.7	1.95	88.56	41.0	2.16		
December.	97. 55	42.6	2.29	80.93	41.5	1.95	81.79	41.1	1.99	72.86	41.4	1.76	86. 53	43.7	1.98	88.34	40.9	2.16		
1955: January	96.28	42.6	2.26	80.16	40.9	1.96	80.79	40.6	1. 99	72.39	40.9	1.77	83. 30	42.5	1.96	87.67	40.4	2.17		
February	95. 85	42. 6	2.25	80.56	41.1	1.96	81.80	40.9	2. 00	73. 28	41.4	1.77	84. 91	43.1	1.97	90.03	41.3	2.18		
March	97.16	42.8	2.27	81.93	41.8	1.96	82.41	41.0	2.01	74.40	41.8	1.78	86.09	43.7	1.97	92.84	42.2	2.20		

[^58]TABLE C-1: Hours and gross earnings of production workers or nonsupervisory employees ${ }^{1}$ - Continued

See footnotes at end of table.

Table C-1: Hours and gross earnings of production workers or nonsupervisory employees ${ }^{1}$ - Continued

See footnotes at end of table.
343876-55-7

TABLE C-1: Hours and gross earnings of production workers or nonsupervisory employees ${ }^{1}$ - Continued

Year and month	Manufacturing-Continued																		
	Transportation equipment-Continued																		
	Aircraft propellers and parts			Other aircraft parts and equipment			Ship and boat building and repairing 4			Shipbuilding and repairing			Boatbuilding and repairing			Railroad equipment ${ }^{4}$			
	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earnings	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earnings	A $\nabla \mathrm{g}$. wkly. earnings	$A \nabla g$. wkly. hours	Avg. hrly. earnings	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earnings	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earnings	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earnings	
1953: Average 1954: Average March \qquad April May \qquad June. \qquad July \qquad August. September October November December \qquad 1955: January \qquad February. \qquad March \qquad	\$85. 90	41.9	\$2. 05	\$85. 17	42.8	\$1. 99	\$79.37	39.1	\$2.03	\$80. 91	38.9	$\begin{array}{r} \$ 2.08 \\ 2.14 \end{array}$	$\$ 70.58$ 71.15	$\begin{aligned} & 40.1 \\ & 40.2 \end{aligned}$	$\$ 1.76$1.77	$\begin{array}{r} \$ 80.39 \\ 82.26 \end{array}$	$\begin{aligned} & 39.6 \\ & 38.8 \end{aligned}$	$\$ 2.03$2.12	
		39.4	2.09	85.70	41.2	2.08	80.70	38.8	2. 08	82. 39	38.5								
			2.11	84.05	41.2	2.04	81.95	39.4	2.08	84.28	39.2	2.15	70.93	40.3	1. 76	81.93	39.2	2. 09	
	82. 76	39.6	2.09	83.85	40.9	2.05	80.70	38.8	2.08	82.18	38. 4	2.14	71.58	40.9	1.75	80.08	38.5	2. 08	
	79.87	38.4	2.08	85. 08	41.3	2.06	80.94	39.1	2.07	82.82	38.7	2.14	72.34	41.1	1.76	80.85	38.5	2. 10	
		38.4	2.09	84.87	41.2	2.06	80. 55	39.1	2.06	82. 64	38.8	2.13	71. 23	40.7	1.75	81. 45	38.6	2.11	
	79.87	38.4	2.08	83.84	40.5	2.07	80.11	38.7	2. 07	82. 22	38.6	2.13	68.95	39.4	1.75	80.60	38.2	2.11	
	82. 53	39.3	2.10	84.85	40.6	2.09	81.12	39.0	2.08	83.03	38.8	2. 14	70.75	40.2	1. 76	81. 79	38.4	2.13	
	83.35	39.5	2.11	86.10	41.0	2.10	78. 83	37.9	2.08	80.09	37. 6	2. 13	71. 06	39.7	1.79	78. 02	36.8	2.12	
	83.37	39.7	2.10	87.34	41.2	2.12	81.02	38.4	2.11	82.51	38.2	2.16	71.82	39.9	1.80	82.13	38.2	2. 15	
	84.2184.21	40.1	2.10	87.98	41.5	2.12	80.22	38.2	2.10	81.86	37.9	2.16	70.49	39.6	1.78	86.98	39.9	2. 18	
		40.1	2.10	90.09	42.1	2.14	83.10	39.2	2.12	85.36	38. 8	2.20	71. 51	41.1	1.74	88.88	40.4	2. 20	
	$\begin{aligned} & 84.21 \\ & 83.60 \end{aligned}$	$\begin{aligned} & 40.0 \\ & 39.8 \\ & 39.7 \end{aligned}$	2. 09	88.40	41.5	2.13	82. 74	39.4	2.10	85.46	39.2	2.18	70.75	40.2	1.76	87.82	40.1	2.19	
	$\begin{aligned} & 84.38 \\ & 84.16 \end{aligned}$		2.12	86.71	40.9	2.12	82.95	39.5	2.10	85. 85	39.2	2.19	70. 07	40.5	1.73	85. 89	39.4	2. 18	
			2.12	87.34	41.2	2.12	83.16	39.6	2.10	85.63	39.1	2.19	71.38	41.5	1.72	85.54	39.6	2.16	
	Transportation equipment-Continued									Instruments and related products									
	Locomotives and parts			Railroad and streetcars			Other transportation equipment			Total: Instruments and related products			Laboratory, scientific, and engineering instruments			Mechanical measuring and controlling instruments			
1953: Average------	\$82	40.0	\$2. 05	\$79. 19	39.4	\$2. 01	\$73. 49	40.6	\$1.81	$\begin{array}{r} \$ 73.69 \\ 73.20 \end{array}$	$\begin{aligned} & \text { 41. } 4 \\ & 40.0 \end{aligned}$		$\begin{array}{r} \$ 89.25 \\ 83.20 \end{array}$	$\begin{aligned} & 42.5 \\ & 40.0 \end{aligned}$	$\$ 2.10$ 2.08	$\begin{array}{r} \$ 74.16 \\ 74.59 \end{array}$	41.2 40.1	\$1.80	
1954: Average.---	84.16	39.7	2.12	81.20	38.3	2.12	72.31	39.3	1.84 1.81			$\begin{aligned} & 1.83 \\ & 1.81 \end{aligned}$			2.08 2.06		40.15	1.86 1.83	
April	81.97	39.6	2.07	78.79	37.7	2.09	71.16	39.1	1.82	72.07	39.6	1.82	82.18	39.7	2.07	73.60	40.0	1.84	
May	82. 78	39.8	2.08	79.13	37.5	2.11	73.35	40.3	1.82	72. 07	39.6	1.82	81.56	39.4	2. 07	73.60	40.0	1.84	
June	85. 22	40.2	2.12	78.33	37.3	2.10	77.27	41.1	1.88	72.83	39.8	1.83	82. 59	39.9	2. 07	74.77	40.2	1.86	
July	84.38	39.8	2.12	78.70	37.3	2. 11	71. 97	38.9	1.85	72. 68	39.5	1.84	79. 72	38.7	2. 06	74. 24	39.7	1.87	
August	86.43	40.2	2.15	78. 49	37.2	2.11	74. 43	39.8	1.87	72. 29	39.5	1.83	82. 59	39.9	2. 07	72.54	39.0	1.86	
Septemb	78. 81	37.0	2.13	77.23	36.6	2. 11	74.40	40. 0	1.86	73. 82	39.9	1.85	84. 63	40.3	2. 10	74. 26	39.5	1.88	
October	83.71	39.3	2.13	81.38	37.5	2.17	71.23	38. 5	1.85	74. 19	40. 1	1.85	84. 63	40.3	2. 10	75. 39	40. 1	1.88	
Novembe	86. 40	40.0	2. 16	87.38	39.9	2. 19	70.86	38.3	1.85	74. 56	40.3	1.85	86. 30	40. 9	2. 11	75. 58	40.2	1.88	
Decembe	89. 38	41.0	2.18	88.40	40.0	2. 21	71.19	38.9	1.83	75. 33	40.5	1. 86	87. 97	41.3	2. 13	77. 49	41.0	1. 89	
1955: Januar	$\begin{aligned} & 88.51 \\ & 88.26 \\ & 88.75 \end{aligned}$	$\begin{aligned} & 40.6 \\ & 40.3 \\ & 40.9 \end{aligned}$	2.18	87.34 84.80	39.7 38.9	2.20 2.18	75.14 74.56	40.4 40.3	1.86 1.85	75.17 76.14	40.2 40.5	1.87 1.88	86.92 88.81	41.0 41.5	2.12 2.14	75.79 77.74	40.1 40.7	1.89 1.91	
			2.17	83.64	38.9	2.15	77.23	41.3	1.87	75.74	40.5	1.87	88.81	41.5	2.14	77.74	40.7	1.91	
March	Instruments and related products-Continued															Miscellaneous manufacturing industries			
	Optical instruments and lenses			Surgical, medical, and dental instruments			Ophthalmic goods			Photographic apparatus			Watches and clocks			Total: Miscellaneous manufacturing industries			
1953: Average...--	\$79.00	$\begin{aligned} & 42.7 \\ & 40.2 \end{aligned}$	\$1.85	\$66. 74	41.2	\$1. 62	\$58.69	40.2	\$1.46	\$77.49	41.0	\$1.89	\$66. 98	41.6	\$1. 61	$\begin{array}{r}\$ 64.06 \\ 64.24 \\ \hline\end{array}$	$\begin{aligned} & 40.8 \\ & 39.9 \end{aligned}$	\$1. 57	
1954: Average...-	$\begin{aligned} & 75.17 \\ & 73.20 \end{aligned}$		1.871.83	$\begin{aligned} & 66.80 \\ & 67.23 \end{aligned}$	40.040.5	1.67	58.71	39.2		80.39	40.6	1.98	64.35	39.0	1.65			1. 61	
Marc		$\begin{aligned} & 40.2 \\ & 40.0 \end{aligned}$						39.4	1. 49	79.98	40.6	1.97	64.62	39.4	1.64	$64.00 \quad 40.0 \quad 1.60$			
April	$\begin{aligned} & 73.20 \\ & 72.65 \end{aligned}$	39.7	1.83	66.30	39.7 7	1.671.67	58.2058.20	38.8	1.50	79.79	40. 4	1.98	62.98	38.4	1.64	62.72	39.439.61		
May	74.52	40.539.9	1.84 1.89	65.9767.13	39.5 40.2						40.3	1.98				63.43			
June					40.239.5	$\begin{aligned} & 1.67 \\ & 1.67 \end{aligned}$	58. 20 58.50	39.0	1. 50	80.98	40.9	1.98	61.66	37.6	1.64	63.36	39.6	1.60	
July	75.41 74.64	39.9 39.7	1.88	65.97		1.67	58.35	38.9	1.50	79.59	40.4	1.97	63. 69	38.6	1. 65	62.40	39.0	- 1.60	
August	73.68	39.4	1.87	67.47	40.4	1.67	56.70	37.8	1. 50	79.79	40.5	1.97	63.91	38.5	1. 66	63. 44	39.9	1. 59	
Septembe	76. 73	40.6	1.89	67.13	40.2	1.67	59. 65	39.5	1.51	80.60	40.3	2. 00	65. 97	39.5	1. 67	64. 40	40.0	1.61	
October-	76. 78	40.2	1.91	65.46	39.2	1. 67	59. 04	39.1	1.51	81.20	40.6	2.00	67.06	40.4	1.66	65.21	40.5	1.61	
November	78.31	41.0	1.91	66.47	39.8	1. 67	59. 70	39.8	1. 50	81.60	40.8	2.00	65. 74	39.6	1. 66	65.21	40.5	1. 61	
December	78.09	41.1	1. 90	67.13	40.2	1. 67	59.10	39.4	1. 50	82.01	40.8	2.01	65.63	39.3	1. 67	66. 18	40.6	1.63	
1955: January	76.38	40.2	1. 90	- 67.30	40.3	1.67	58. 65	39.1	1.50	82.82	41.0	2. 02	66.42	39.3	1.69	65.93	40.2	1.64	
February	76.97	40.3	1.91	67.54	40.2	1.68	59.80	-39.6	1. 51	82.21	40.7	2. 02	67.66	39.8	1. 70	66. 42	40.5	1.64	
March.	76.97	40.3	1.91	67.54	40.2	1.68	60.00	40.0	1.50	82.21	40.7	2.02	67.26	39.8	1. 69	66. 91	40.8	1.64	
	Jewelr and p	ry, silver plated w	rware, ware ${ }^{4}$	Jewelr	ry and fin	$n d i n g s$	Silverw	ware and ware	plated	Musica a	al instru and part	uments s	Toys	s and spo goods ${ }^{4}$	orting	Games, childr	,toys, dol ren's veh	olls, and hicles	
1953: Average	\$68.85	42.5	\$1. 62	\$65. 41	42.2	\$1. 55	\$75. 86	[43.1	\$1. 76	\$71. 81	40.8	\$1. 76	\$60. 70	40.2	\$1. 51	\$61. 35	40.1	\$1. 53	
1954: A verage	68.15	41.3	1. 65	65. 00	41.4	1. 57	73.98	41.1	1. 80	72.14	40.3	1. 79	58. 74	38.9	1. 51	58. 82	38.7	1. 52	
March.	67.24	41.0	1. 64	64. 12	41.1	1. 56	73. 03	40.8	1.79	69.13	39.5	1. 75	59.98	39.2	1. 53	61.15	39.2	1.56	
April	65.69	40.3	1. 63	63.34	40.6	1.56	70.27	7 39.7	1. 77	67.90	- 38.8	1.75	57.76	38.0	1.52	58. 52	38.0	1.54	
May	66. 00	40.0	1. 65	62.80	40.0	1.57	71.60	40.0	1. 79	67.06	38.1	1. 76	59.04	39.1	1.51	59.13	38.9	1. 52	
June	65.85	40.4	1. 63	62.93	40.6	1.55	70.62	39.9	1. 77	71.06	39.7	1. 79	57.66	38.7	1.49	57.28	38.7	1. 48	
July	64.06	39.3	1. 63	60.30	38.9	1. 55	71. 02	39.9	1. 78	70.88	39.6	1. 79	56.77	38.1	1.49	56. 09	37.9	1.48	
August	66. 26	- 40.9	1. 62	22.58	40.9	1. 53	74.03	40.9	1.81	71.20	40.0	1.78	58.41	39.2	1.49	58.31	39.4	1.48	
September	70.05	- 42.2	1.66	66. 99	42. 4	1.58	76.68	41.9	1. 83	74. 98	- 41.2	1.82	58.50	39.0	1. 50	58. 26	39.1	1. 49	
October-	71.71	43.2	1.66	68.89	43.6	1.58	77.65	42.2	1. 84	77.65	42.2	1.84	59. 40	39.6	1.50	59.45	39.9	1. 1.49	
November.	71.81	43.0	1. 67	$7 \quad 68.37$	43.0	1. 59	78.87	43.1	1.83	77.04	- 42.1	1.83	58. 50	39.0	1.50	58.50	39.0	1.50	
December	71. 48	42.8	1.67	67.58	42.5	1. 59	79.67	43.3	1. 84	76.49	41.8	1.83	58.74	38.9	1.51	57.68	38.2	21.51	
1955: January	67.82	41.1	1.65	64.53	41.1	1. 57	74.57	71.2	1. 81	73.08	40.6	1.80	59.52	38.9	1. 53	59.75	38.8	1. 54	
February	68.81	41.7	1.65	5 65.36	41.9	1.56	75. 76	- 41.4	1. 83	74.07	40.7	1.82	60.06	39.0	1.54	59.91	38.9	1.54	
March	71.06	42.3	1.68	8 67.36	42.1	1. 60	79.42	- 42.7	1. 86	74.85	40.9	1.83	60.92	39.3	1.55	61.31	39.3	31.56	

[^59]TABLE C-1: Hours and gross earnings of production workers or nonsupervisory employees ${ }^{1}$-Continued

Table C-1: Hours and gross earnings of production workers or nonsupervisory employees ${ }^{1}$ - Continued

Year and month	Finance, insurance, and real estate ${ }^{8}$			Service and miscellaneous									
	Banks and trust companies	Security dealers and exchanges	Insurance carriers	Hotels, year-round ${ }^{9}$			Personal services						Motion picture production and distribution 810
							Laundries			Cleaning and dyeing plants			
	Avg. wkly. earnings	Avg. wkly. earnings	Avg. wkly. earnings	Avg. wkly. earnings	Avg. wkly. hours	$\begin{gathered} \text { A vg. } \\ \text { hrly. } \\ \text { earnings } \end{gathered}$	$\begin{gathered} \text { Avg. } \\ \text { wkly. } \\ \text { earnings } \end{gathered}$	Avg. wkly. hours	$\begin{gathered} \text { Avg. } \\ \text { hrly. } \\ \text { earnings } \end{gathered}$	$\begin{gathered} \text { Avg. } \\ \text { wkly. } \\ \text { earnings } \end{gathered}$	Avg. wkly. hours	$\begin{gathered} \text { Avg. } \\ \text { hrly. } \\ \text { earnings } \end{gathered}$	$\begin{aligned} & \text { Avg. } \\ & \text { wkly. } \\ & \text { earnings } \end{aligned}$
1953: Average	\$54. 84	\$82.94	\$67. 29	\$38. 40	42.2	\$0.91	\$39.69	40.5	\$0.98	\$45. 71	40.1	\$1.14	\$81. 52
1954: Average	57.39							40.1					
March	56.47	89. 53	69.06	39.81	41.9	. 95	39.60	39.6	1. 00	46.26	39.2	1.18	83.54
April.	56.76	92.09	68.99	39.62	41.7	. 95	40.80	40.4	1. 01	50.40	42.0	1.20	84.36
May.	57.19	91.53	69.72	40.13	41.8	. 96	40.30	40.3	1.00	47.32	40.1	1.18	88.57
	57.09	92.97	69.78	39.81	41.9	. 95	40.50	40.5	1.00	49.20	41.0	1. 20	92.08
July .-.	57.66	94.89	71.12	40.03	41.7	. 96	40.00	40.0	1.00	45.78	38.8	1.18	93. 38
August	57.75	97.66	71.09	40.13	41.8	. 96	39.40	39.4	1.00	45.46	38.2	1.19	92.34
September	57.71	96.75	70.68	40.64	41.9	. 97	40.50	40.1	1.01	47.24	39.7	1.19	89.81
October--	58.02	97.24	70.90	40.87	41.7	. 98	40.50	40.5	1.00	47.72	40.1	1.19	92.95
November	58.11	100.09	70.79	41.16	42.0	. 98	40.40	40.0	1.01	46.77	39.3	1.19	89.44
December-	58.51	111.75	71.29	41.38	41.8	. 99	40.70	40.3	1.01	47.01	39.5	1.19	92.74
1955: January	58.97	110.82	72. 22	41.26	42.1	. 98	40.40	40.0	1.01	46.41	39.0	1.19	93.98
February	59.02	108.37	71.79	40.96	41.8	. 98	40.20	39.8	1.01	45.22	38.0	1.19	90. 54
March.	58.63	101.77	71.84	40.45	41.7	. 97	40.50	40.1	1.01	46. 65	39.2	1.19	93.53

${ }^{1}$ Data are based upon reports from cooperating establishments covering both full- and part-time employees who worked during, or received pay for, any part of the pay period ending nearest the 15 th of the month. For mining, manufacturing, laundries, and cleaning and dyeing plants, data refer to production and related workers only. For the remaining industries, unless otherwise noted, data relate to nonsupervisory employees and working supervisors.
Data for the most recent month are subject to revision without notation; revised figures for earlier months will be identified by asterisks the first month they are published.
${ }_{2}$ See footnote 2, table A-2.
${ }^{3}$ See footnote 3, table A-2.
4 Italicized titles which follow are components of this industry.
${ }^{5}$ Figures for class I railroads (excluding switching and terminal companies) are based upon monthly data summarized in the M-300 report by the Interstate Commerce Commission and relate to all employees who received pay state commerce Commission and relate to ail employees who received pay Group I).
${ }^{6}$ Data relate to employees in such occupations in the telephone industry as switchboard operators, service assistants, operating-room instructors, and pay-station attendants. During 1954 such employees made up 43 percent of
the total number of nonsupervisory employees in telephone establishments reporting hours and earnings data.
${ }^{7}$ Data relate to employees in such occupations in the telephone industry as central office craftsmen; installation and exchange repair craftsmen; line, cable, and conduit craftsmen; and laborers. During 1954 such employees made up 25 percent of the total number of nonsupervisory employees in telephone establishments reporting hours and earnings data.
8 Data on average weekly hours and average hourly earnings are not available.
${ }^{0}$ Money payments only; additional value of board, room, uniforms, and tips not included.
10 New series beginning with January 1951; not comparable with previously published data.
See footnote 1 on p. 700.
Note.-Information on concepts, methodology, etc., is given in a technical note on Hours and Earnings in Nonagricultural Industries, which appeared in the April 1954 Monthly Labor Review.

Table C-2: Gross average weekly earnings of production workers in selected industries, in current and 1947-49 dollars ${ }^{1}$

Year	Manufacturing		Bituminouscoal mining		Laundries		Year and month	Manufacturing		Bituminouscoal mining		Laundries	
	Current	1947-49	Current	1947-49	Cur- rent	1947-49		Cur- rent	1947-49	Current	1947-49	Current	1947-49
1939: Average	\$23.86	\$40.17	\$23. 88	\$40. 20	\$17.64	\$29.70	1954: March	\$70. 71	\$61. 59	\$73. 06	\$63.64	\$39.60	\$34.49
1940: Average	25. 20	42.07	24.71	41.25	17.93	29.93	April	70.20	61.26	71.67	62.54	40.80	35.60
1942: Average	29.58	47.03	30.86	49.06	18. 69	29.71	May	71. 13	61.85	76. 32	66.37	40. 30	35.04
1943: Average	43.14	58.30	41.62	56.24	23.08	31.19	July	70.92	61.56	75. 39	65. 44	40.50	35.19 34.72
1944: Average	46.08	61.28	51.27	68.18	25.95	34.51	August	71.06	61.79	82.09	71.38	39. 40	34.72 34.26
1945: Average	44. 39	57.72	52.25	67.95	27.73	36.06	September	71.86	62.65	81.17	70.77	40.50	35.31
1946: Average	43.82	52.54	58.03	69.58	30. 20	36. 21	October.	72. 22	63.07	87.54	76. 45	40.50	35.37
1947: A verage	49. 97	52.32	66.59	69.73	32. 71	34. 25	November	73.57	64.20	88.29	77.04	40.40	35.25
1948: Average	54.14	52.67	72.12	70.16	34.23	33.30	December	74.12	64.85	92.01	80.50	40.70	35. 61
1949: Average	54.92	53.95	63.28	62.16	34. 98	34. 36	1955: January	73.97	64.72	92. 01	80.50	40. 40	35.35
1950: Average	59.33	57.71	70.35	68.43	35.47	34.50	February	74.74	65.39	94.50	82.68	40.20	35. 17
1951: A verage	64.71	58.30	77.79	70.08	37.81	34.06	March ${ }^{2}$	75.30	65.88	91.26	79.84	40.50	35.43
1952: A verage	67.97	59.89	78.09	68. 80	38.63	34.04							
1953: A verage	71.69	62.67	85.31	74.57	39.69	34. 69							
1954: A verage	71.86	62.60	80.85	70. 43	40.10	34.93							

${ }^{1}$ These series indicate changes in the level of average weekly earnings prior to and after adjustment for changes in purchasing power as measured by
the Bureau's Consumer Price Index, the years 1947-49 being the base period.
${ }^{2}$ Preliminary.
See footnote 1 on p. 700.

TABLE C-3: Average weekly earnings, gross and net spendable, of production workers in manufacturing industries, in current and 1947-49 dollars ${ }^{1}$

Year	Gross average weekly earnings		Net spendable average weekly earnings				Year and month		Gross average weekly earnings		Net spendable average weekly earnings					
			Worker with no dependents		Worker with 3 dependents				Worker with no dependents	Worker with 3 dependents						
	$\begin{gathered} \text { A. } \\ \text { mount } \end{gathered}$	$\begin{gathered} \text { Index } \\ (1947- \\ 49=100) \end{gathered}$	Current	1947-49	Current	1947-49			$\begin{gathered} \text { A- } \\ \text { mount } \end{gathered}$	$\begin{gathered} \text { Index } \\ (1947- \\ 49=100) \end{gathered}$	Current	1947-49	Current	1947-49		
1939: Average	\$23.86	45.1	\$23. 58	\$39.70	\$23. 62	\$39.76	1954:	March			\$70. 71	133.5	\$58.63	\$51. 07	\$65. 83	\$57.34
1940: Average	25. 20	47.6	24.69	41.22	24.95	41.65		April	70.20	132.6	58.22	50.80	65.41	57.08		
1942: A verage-	29.58	55.9 69.2	31. 77	45.58	36. 28	52.05		une	71.13	134.3	58.97 59.26	51.28	66.18	57.55 57		
1943: Average	43.14	81.5	36. 01	48.66	41.39	55.93		uly	70.92	133.9	58.80	51.04	66.00	57.76 57.29		
1944: Average	46.08	87.0	38. 29	50.92	44.06	58. 59		ugust	71.06	134.2	58.91	51.23	66.12	57.50		
1945: A verage	44.39	83.8	36. 97	48.08	42. 74	55. 58		eptembe	71.86	135.7	59.55	51.92	66. 78	58.22		
1946: A verage-	43.82	82.8	37.72	45. 23	43. 20	51.80		October-	72. 22	136.4	59.84	52. 26	67.07	58.58		
1947: A verage.	49.97	94.4	42.76	44.77	48. 24	50.51		November	73.57	138.9	60.92	53.16	68.18	59. 49		
1948: A verage	54.14	102.2	47.43	46.14	53.17	51.72		December	74.12	140.0	61.36	53. 68	68.63	60. 04		
1949: A verage	${ }_{54.92}$	103.7	48.09	47.24	53.83	52.88	1955:	anuary.	73.97	139.7	61.15	53. 50	68.41	59.85		
1951: Average	${ }_{64.71}^{59.33}$	122.2	54.04	48.68	51.21	55. 65 55.21		February	74.74	141.2	61.76	54.03	69.02	60.38		
1952: Average	67.97	128.4	55. 66	49.04	63. 62	56.05										
1953: Average	71.69	135.4	58.54	51.17	66.58	58.20										
1954: A verage	71.86	135.7	59.55	51.87	66.78	58.17										

${ }^{1}$ Net spendable average weekly earnings are obtained by deducting from gross average weekly earnings, Federal social security and income taxes for which the worker is liable. The amount of income tax liability depends, of course, on the number of dependents supported by the worker as well as on the level of his gross income. Net spendable earnings have, therefore, been computed for 2 types of income-receivers: (1) A worker with no dependents; (2) A worker with 3 dependents. See footnote 1, table C-2.
The computation of net spendable earnings for both the worker with no dependents and the worker with 3 dependents are based upon the gross average weekly earnings for all production workers in manufacturing industries without direct regard to marital status and family composition. The
primary value of the spendable series is that of measuring relative changes in disposable earnings for 2 types of income-receivers. See footnote 1 on p. 700.
Note.-Information on concepts, methodology, etc., is contained in a technical note on the Calculation and Uses of the Net Spendable Earnings Series (Revised May 1954), which is available upon request to the Bureau of Labor Statistics.

Table C-4: Average hourly earnings, gross and excluding overtime, of production workers in manufacturing industries ${ }^{1}$

Year	Manufacturing			Durable goods		Nondurablegoods		Year and month	Manufacturing			Durable goods		Nondurable goods	
	Gross amount	Excluding overtime		Gross	Ex- cluding overtime	Gross	Ex- cluding overtime		Gross amount	Excluding overtime		Gross	Ex-cluding overtime	Gross	Ex-cluding overtime
		Amount	$\begin{gathered} \text { Index } \\ (1947- \\ 49=100) \end{gathered}$							Amount	$\begin{gathered} \text { Index } \\ (1947- \\ 49=100) \end{gathered}$				
1941: Average	\$0.729	\$0.702	54.5	\$0.808	\$0.770	\$0.640	\$0.625	1954: March	\$1. 79	\$1.75	135.9	\$1.90	\$1.85	\$1.65	\$1. 61
1942: Average	. 853	. 805	62.5	. 947	. 881	. 723	+ 6.698	April.-	1.80	1.75	135.9	1.90	1.85	1.65	1.61
1943: Average	. 961	. 894	69.4	1. 059	. 976	. 803	. 763	May	1.81	1.76	136.6	1.91	1.86	1.66	1.62
1944: Average.	1. 019	. .947	73.5	1.117	1.029	. 861	. 81814	June	1.81	1.76	136.6	1.91	1.86	1.66	1.62
1945: Average	1.023	${ }^{2} .963$	${ }^{2} 74.8$	1.111	${ }^{2} 1.042$. 904	2.858	July-	1.80	1.76	136. 6	1.91	1.86	1. 66	1. 62
1946: Average	1.086	1. 051	81.6	1.156	1. 122	1.015	. 981	August	1.79	1.74	135.1	1. 91	1.86	1.65	1.60
1947: Average	1. 237	1.198	93.0	1. 292	1. 250	1.171	1. 133	September	1.81	1.76	136.6	1.93	1.87	1. 1.66	1. 61
1948: Average	1.350	1. 310	101.7	1.410	1. 366	1.278	1. 241	October---	1.81	1. 76	136.6	1. 93	1.87	1. 66	1.61
1949: Average	1. 401	1.367	106.1	1.469	1. 434	1.325	1. 292	November	1.83	1.77	137.4	1. 94	1.88	1. 67	1.62
1950: Average.	1.465	1. 415	109.9	1. 537	1. 480	1.378	1. 337	December.	1.83	1.77	137.4	1.95	1.88	1.67	1. 62
1951: Average	1. 59	1. 53	118.8	1.67	1. 60	1.48	1.43	1955: January	1.84	1.78	138.2	1.96	1.89	1.68	1. 63
1952: Average	1. 67	1.61	125.0	1.77	1.70	1.54	1.49	February	1.85	1.78	138.2	1. 1.96	1.89	1. 68	1. 63
1953: Average	1.77 1.81	1.71 1.76	132.8 136.6	1.87 1.92	1.80 1.86	1.61 1.66	1.56 1.61	March ${ }^{\text {3 }}$	1.85	1.78	138.2	1. 97	1.89	1.68	1. 63
1954: Average	1.81	1.76	136.6	1.92	1.86	1.66	1.61								

${ }^{1}$ Overtime is defined as work in excess of 40 hours per week and paid for at time and one-half. The computation of a verage hourly earnings excluding overtime makes no allowance for special rates of pay for work done on holidays. These data are based on the application of adjustment factors to gross average hourly earnings, as described in Eliminating Premium Overtime From

Hourly Earnings in Manufacturing, Monthly Labor Review, May 1950; reprint R. 2020.
${ }_{8}^{2}$ 11-month average; August 1945 excluded because of V-J holiday period.
${ }^{8}$ Preliminary.
See footnote 1 on p. 700.

TABLE C-5: Indexes of aggregate weekly man-hours in industrial and construction activity ${ }^{1}$
[1947-49=100]

Industry	1955			1954										Annual average	
	Mar. ${ }^{2}$	Feb.	Jan.	Dec.	Nov.	Oct.	Sept.	Aug.	July	June	May	Apr.	Mar.	1954	1953
Total ${ }^{3}$	103.2	100.8	99.9	102.9	103.5	103.0	102.3	102.2	99.5	101.4	99.7	99.3	101. 2	101.5	113.3
Mining division	76.2	76.4	76.8	77.4	76.5	75.8	73.5	77.3	74.8	78.1	74.5	73.5	76.0	76.6	87, 5
Contract construction division	101.0	92.4	96.0	108.9	118. 2	123.5	123.8	129.8	127.5	124.6	118. 2	112.1	106.4	115.9	123.1
Manufacturing division	105.4	103. 6	102.0	103.8	103.2	101.9	101.2	99.9	97.1	99.6	98.8	99.1	102.1	101.1	113.6
Durable goods.	113. 8	111.5	109.4	110.5	109.4	106.6	103.9	102.9	101.6	106.3	106. 6	107.4	109.8	107.5	125. 2
Ordnance and accessories. Lumber and wood products (except	412.8	411.6	415.6	429.0	431.7	437.9	441.8	437.4	451.3	466.1	484.0	524.6	583.9	502. 2	798.5
furniture)	85.4	85.5	84.2	88.4	92.2	94.0	89.2	80.4	78.0	90.3	85.5	82.6	81.5	85.0	93.0
Furniture and fixtures.-.--------------	101. 8	101.3	98.0	101. 7	102. 0	102.6	100.7	97.4	89.6	90.9	89.6	92.4	97.0	96.5	108.5
Stone, clay, and glass products.--------	103. 1	99.8	98.9	101. 6	102. 1	102.2	100.7	99.9	96.7	97.8	97.6	97.3	98.2	99.0	106. 6
Primary metal industries. Fabricated metal products (except	107. 3	103.2	100.7	98.7	96.2	92.8	91.5	91.6	91.4	93.9	92.3	92.6	94.3	94.5	113.9
Fabricated metal products (except ordnance, machinery, and transportation equipment)	112.8	110.6	109.1	111.5	110.6	107.9	106. 2	105. 7	102.9	107.5	107. 7	106.7	109.1	108.3	123.4
Machinery (except electrical)	102.4	99.6	97.6	97.5	95.1	94.8	95.4	95.0	96.1	100.9	102.4	104.0	107.0	100.6	119.0
Electrical machinery .-.-	127.5	126.6	125.7	127.7	128.7	125. 9	122.9	119.0	114.9	117.5	119.7	121.6	125.6	123. 4	147.1
Transportation equipment---.---.-----	154.2	150.9	147. 1	146. 0	1392	125.9	118.1	124.4	127.2	132. 2	136. 4	139.0	140.6	135.0	158.6
Instruments and related products.-..--	114.6	112.9	112.2	113.7	112.9	112.3	111.9	108. 7	108.8	112.2	114.0	116.4	121.0	114.9	129.9
	99.7	97.4	93.9	98.3	102.4	103. 2	100.3	96.7	90.5	95.3	94.5	95.5	100.0	98.0	109.5
Nondurable goods.-.-.	95.3	94.2	93.2	95.8	95.8	96.3	97.9	96.3	91.8	91.7	89.4	89.3	92.9	93.5	
Food and kindred prod	80.6	79.8	82.3	88.0	91.7	96. 7	105.2	102.1	95. 6	89.9	84.6	81. 7	81.8	93.5 90.3	93.7
Tobacco manufactures	78.5 83.0	81.4 83.0	85. 4	95.4	94.0	111.0	107.9	97. 4	78.1	78.4	75.5	73.5	75.0	87.8	90.1
Apparel and other finished textile	83.0	83.0	81.4	83.2	82.4	80.9	79.5	78.9	75.2	77.4	75.4	75.9	78.6	78.7	89.8
products.	109.8	107.6	102.4	103.6	101.8	100.3	101.1	101.4	92.1	92.2	91.8	94.2	106.4	99.0	106.9
Paper and allied products.-.------	110.4	109.3	108.7	110.7	111.7	111.4	111.1	109.9	108.0	109.3	107.6	106.3	108.4	109.2	111.6
tries.	105.7	104.0	103.3	107.0	105. 4	105.4	105.6	103.5	103.0	104.1	103.2	103. 2	104.7	104.4	105. 4
Chemicals and allied products.-	107.4	104.4	103.9	104.7	104.3	104. 1	103.3	100.7	100.2	101.8	102.6	104.5	105. 6	103. 5	108.1
Products of petroleum and coal	91. 9	90.3	91.2	92.2	93.8	94.0	96. 7	97.5	98. 6	101.8 99.3	107.4	104.5 94.0	105.6 94.0	103.5 95.7	100.9
Rubber products......-.-.	108.5	108.6	108.3	108.5	104.3	102.3	96.9	86.0	84.7	98.7	96.9	93.7	95.1	97.0	111.6
Leather and leather products	98.4	98.6	94.0	93.3	90.6	86.8	88.3	93.1	90.6	87.7	82.3	85.4	93.8	89.9	96.5

[^60][^61]TABLE C-6: Hours and gross earnings of production workers in manufacturing industries for selected States and areas ${ }^{1}$

[^62]Table C-6: Hours and gross earnings of production workers in manufacturing industries for selected States and areas ${ }^{1}$ Continued

Year and month	Connecticut-Con.			Delaware						Florida						Georgia		
	Waterbury			State			Wilmington			State			Tampa-St. Petersburg			State		
	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earn- ings	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earnings	Aㅁg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earn- ings	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earn- ings	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earn- ings	Avg. wkly. earnings	Avg . wkly. hours	Avg. hrly. earnings
1953: A verag	$\$ 75.93$ 72.36	42.9 40.2	$\$ 1.77$ 1.80	$\$ 69.89$ 70.90	40.8 39.9	\$1.71	$\$ 82.28$ 84.23	41.2 40.3	$\$ 2.00$ 2.09	$\$ 55.36$ 56.44	42.2 41.5	$\$ 1.31$ 1.36	$\$ 54.53$ 56.03	42.0. 41.2	$\$ 1.30$ 1.36	$\$ 50.27$ 49.66	39.9 39.1	\$1. 1. 27
1954: Marc $\begin{aligned} & \text { April } \\ & \text { May } \\ & \text { May } \\ & \text { June } \\ & \text { July } \\ & \text { Augu } \\ & \text { Septe } \\ & \text { Octob } \\ & \text { Nove } \\ & \text { Dece } \\ & \text { 1955: } \\ & \text { Janua } \\ & \text { Febr } \\ & \text { Marc }\end{aligned}$	72.00	40.0	1.80	69. 30	39.4	1.76	81.03	39.8	2.04	55. 74	41.6	1.34	53.60	40.3	1.33	48.76	38.7	1. 26
	69. 27	38.7	1.79	69.53	38.8	1. 79	83. 82	40.2	2.09	56.01	41.8	1. 34	55.06	41.4	1. 33	48. 13	38.2	1. 26
	70.88	39.6	1.79	71.02	39.9	1.78	84. 23	40.3	2.09	55.07	41.1	1. 34	54. 93	41.3	1. 33	47.88	38.0	1. 26
	72, 58	40.1	1.81	71. 21	40.6	1. 75	85.32	40.9	2. 09	55. 62	40.9	1.36	54. 80	41.2	1. 33	48.51	38.5	1. 26
	73. 30	40.5	1.81	72.36	40.2	1.80	85. 25	40.5	2.11	55. 62	40.6	1.37	55. 20	40.0	1.38	48.38	38.7	1. 25
	72.36	40.2	1. 80	68.29	40.7	1. 68	83.25	40.1	2.08	56.17	41.0	1.37	56.16	40.4	1.39	49. 00	39.2	1. 25
	74.03	40.9	1.81	69. 29	39.8	1. 74	83. 33	39.7	2. 10	56.17	40.7	1.38	55. 48	40.2	1.38	49.27	39.1	1. 26
	74.44	40.9	1.82	70. 84	39.8	1. 78	84. 22	39.8	2. 12	56. 30	40.8	1. 38	56.98	40.7	1. 40	50.93	40.1	1. 27
	76. 36	41.5	1.84	73.77	40.2	1. 84	86. 99	40.9	2.13	57.13	41.7	1.37	59. 50	41.9	1. 42	52. 65	40.5	1. 30
	74.30	40.6	1.83	74.44	40.7	1.83	88. 86	41.6	2.14	58.23	42.5	1.37	59.50	42.5	1. 40	52.53	40.1	1. 31
	75.11	40.6	1.85	73. 36	40.0	1.83	85. 73	40.4	2.12	57. 95	42.3	1.37	58.10	41.5	1. 40	51. 61	39.7	1. 30
	77.42	41. 4	1.87	75. 36	40.3	1.87	88. 01	40.8	2.16	57.12	42.0	1.36	57.96	41.4	1. 40	51. 74	39.8	1. 30
	78.77	41.9	1.88	78.11	41.0	1.91	90.28	41.7	2.17	57.53	42.3	1.36	55.49	40.5	1.37	52.53	40.1	1.31
	Georgia-Continued						Idaho			Illinois						Indiana		
	Atlanta			Savannah			State			State			Chicago			State		
1953: A verag	\$62.83	40.8	\$1.54	\$63.57	42.1	\$1. 51	\$76.48	40.9	\$1.87	\$76.39	41.1	\$1.86	\$79.84	41.3	\$1.93	\$76. 96	40.6	\$1. 89
1954: Average	63.04	39.9	1. 58	66. 04	41.8	1.58	78.28	41.2	1.90	76. 34	40.0	1.91	78.92	39.8	1.98	76.27	39.6	1. 93
1954: Mar ${ }^{\text {Apri }}$ M ${ }^{\text {May }}$	60.45	39.0	1. 55	64.64	41.7	1.55	73. 02	39.9	1.83	75.42	39.8	1.89	77.81	39.6	1.96	75.02	39.2	1. 91
	61. 86	39.4	1.57	64.37	41.8	1. 54	75. 36	40.3	1.87	74. 63	39.4	1.89	76. 63	39.1	1. 96	74. 14	38.7	1. 92
	62.41	39.5	1. 58	64. 17	41.4	1.55	78.34	40.8	1.92	75.32	39.6	1. 90	78.04	39.4	1.98	75. 77	39.5	1. 92
	62.25	39.4	1.58	64. 74	41.5	1. 56	80.12	41.3	1. 91	76. 25	40.1	1. 90	79. 28	40.0	1.98	75.70	39.5	1. 92
	63.36	40.1	1.58	65.94	42.0	1.57	82.84	42.7	1.94	75. 71	39.7	1.91	78.51	39.4	1. 99	75. 29	39.0	1. 93
	62.80	40.0	1.57	68.43	42.5	1. 61	76.76	40.4	1. 90	75.89	40.0	1. 90	78.80	39.7	1.98	75. 20	39.3	1. 91
	62.02	39.5	1.57	65.85	40.9	1. 61	82. 26	42.4	1. 94	77.49	40.4	1. 92	79.79	40.1	1. 99	75. 29	39.7	1. 89
	63.04	39.9	1.58	66. 82	41.5	1. 61	79.46	41.6	1. 91	76. 76	40.0	1. 92	78.36	39.2	2. 00	77.54	40.1	1. 93
	65.77	40.6	1. 62	69. 21	42.2	1. 64	78.35	41.9	1.87	78. 03	40.5	1. 93	80. 94	40.4	2. 00	79.37	40.5	1. 96
	65. 93	40.7	1. 62	69. 93	42.9	1. 63	79.15	42.1	1.88	78.87	40.7	1. 94	82.01	40.7	2.01	80.43	40.8	1. 97
	64.56	40.1	1. 61	67. 20	42.0	1. 60	80.10	41.5	1.93	79. 05	40.5	1. 95	82.01	40.4	2.03	80.35	40.6	1.98
	64.88	40.3	1. 61	68. 26	42.4 4	1. 1.61	76.40	40.0 40.8	1. 91	79. 60 80.37	40.7 40.9	1. 1.96	82.56 83.17	40.6 40.8	2. 203	81.88 81.73	41.2 41.0	1. 99
	66.42	40.5	1. 64	68.64	42.9	1.60	77.11	40.8	1.89	80.37	40.9	1.97	83.17			81.73		1.99
	Iowa						Kansas									Kentucky		
	State			Des Moines ${ }^{2}$			State			Topeka			Wichita			State		
1953: Aver	\$69.08	40.8	\$1.69	\$73.98	40.0	\$1.85	\$74.18	41.3	\$1.79	\$66.62	41.1	\$1.62	\$76. 33	40.9	\$1.86	\$68.00	41.9	\$1. 62
1954: A verage	71.01	40.4	1.76	75.50	39.2	1.93	78.48	41.8	1.88	71.90	41.8	1. 72	82. 36	41.9	1.97	${ }^{3} 66.17$	${ }^{3} 39.8$	${ }^{3} 1.66$
	69.24			73.58		1.87	76.12	41.1	1.85	66.61	40.8	1.63	81.04	41.5	1.95	64.88	39.4	
	69.10	39.7	1.74	74.23	39.8	1.87	76.45	41.3	1.85	67.02	40.4	1. 66	81.22	41.7	1. 95	64, 58	38.9	1.66
	70.57	40.1	1.76	77.73	40.1	1.94	78.15	42.0	1.86	69. 24	41.0	1. 69	81.70	41.7	1.96	64.95	39.5	1.64
	71.26	40.5	1.76	77.30	40.1	1.94	76. 77	41.6	1.84	72. 88	42.5	1. 72	80.12		1. 96	65.85	39.4	1.67
	70.87	40.1	1. 77	73.93	38.1	1.94	78. 20	42.1	1.86	63.57	39.3	1.62	82.40	42.4	1.94	65. 99	39.7	1. 66
	70.41	40.3	1. 75	76. 21	39.0	1.96	79.37	42. 2	1.88	65.03	39.4	1.65	85.20	42.8	1.99	66.64	40. 2	1. 66
	72.45	40.6	1. 79	77.20	39.2	1.97	80.06	42.2	1.90	78.84	43.1	1.83	85.40	42.8	2.00	67.63	39.8	1. 70
	73.04	41.2	1. 77	77. 73	39.7	1.96	80. 35	42.1	1.91	78. 79	42.8	1.84	83.06	41.8	1.99	68. 07	40.4	1.68
	72.24	40.6	1.78	73. 50	38.4	1.91	81.66	42.4	1.93	80. 20	43.8	1.83	84. 66	42.7	1.98	68.43	40.1	1.71
	74.93	41.6	1.80	78.44	3.3	1.9	81.48	42.4	1.92	85.31	45.8		86.28	43.1	2.00	67.30	40.6	1. 67
	74, 05	40.5	1.81	78.44	3.4	1.93	80	42.2	1.93	85.11	44.8	1.90	85.27	42.7	1.99	68.43	40.7	1.66
	74.83	41.1	1.82	80.49	39.8	2.02	81.86	42.5	1.93	79.44	42.3	1.88 1.8	85.67	43.1	1.99	69.67	40.9	1.70
	Louisiana									Maine						Maryland		
	State			Baton Rouge			New Orleans ${ }^{2}$			State			Portland			State		
1953: A verage	$\begin{array}{r} \$ 63.80 \\ 65.25 \end{array}$	41.7	\$1. 53	\$89.02	41.6	\$2.14	\$62. 56	40.1	\$1. 56	\$56. 88	40.6	\$1.40	\$59.57	41.6	\$1.43	\$67. 35	40.7	\$1. 66
1954: Average		41.3	1.58	91.84	41.0	2.24	65.60	40.0	1.64	56.52	39.9	1.42	60.91	40.6	1.50	68.58	39.8	1. 72
1954: March_-	65.35	41.1	1. 59	91.65	41.1	2. 23	65.85	40.4	1. 63	57.07	40.3	1.42	60.80	40.8	1.49	68.18	40.0	1. 71
	64.64 65. 92	40.4	1.60	92. 32	41.4	2. 23	63.80	38.9	1. 64	55.55	39.2	1. 42	61.45	40.8	1. 51	67.30	39.3	1. 71
		41.2	1. 60	92. 74	41.4	2.24	66. 83	40.5	1.65	54.74	38.9	1. 41	59.67	40.5	1.47	68.20	39.7	1. 72
	65. 92 66.46	41.8	1. 59	93.41	41.7	2.24	66.83	40.5	1.65	56.20	40.2	1.40	60.64	41.1	1.48	68.62	40.2	1. 71
	66.42	41.0	1. 62	94.89	40.9	2. 32	66.57	40.1	1.66	56.75	40.3	1. 41	61.46	41.2	1.49	68. 92	39.6	1.74
	64. 87	40.8	1. 59	91. 58	40.7	2. 25	67.47	40.4	1.67	55. 82	39.9	1. 40	61.56	40.9	1. 50	67.92	40.2	1. 69
	$\begin{aligned} & 65.73 \\ & 64.27 \end{aligned}$	41.6	1. 58	93.56	40.5	2.31	66. 66	40.4	1.65	55.38	38.8	1.43	61.33	40.5	1.52	68. 28	39. 9	1. 71
		41.2	1. 56	90.76	40.7	2. 23	66. 73	40. 2	1. 66	56.34	39.2	1.44	61. 56	40.3	1. 53	68. 48	39.7	1.73
	64. 27	42.6	1. 52	92. 75	40.5	2.29	65.57	39. 5	1. 66	57.55	39.7	1. 45	61.16	39.6	1.54	71.00	40.3	1.76
	64.75 65.72	42.4	1.55	90.54	40.6	2.23	65.90	39.7	1. 66	59.06	40.8	1. 45	61.10	40.2	1. 52	72. 30	40.6	1. 78
1955: Januar ${ }^{\text {Februa }}$ (${ }^{\text {March }}$	$\begin{aligned} & 66.75 \\ & 66.99 \\ & 68.72 \end{aligned}$	40.7	1. 64	91.17	40.7	2. 24	65.07	39.2	1.66	59. 26	41.0	1. 44	63.02	41.3	1. 53	71.77	40.3	1.78
		41.1	1.63	90.76	40.7	2.23	65.40	39.4	1.66	58.50	40.9	1.43	61. 72	40.7	1. 52	72.06	40.4	1.78
		41.9	1.64	93.20	40.7	2.29	66.97	40.1	1.67	58.52	40.7	1. 44	61. 34	40.1	1. 53	72. 94	40.6	1.80

See footnotes at end of table.

Table C-6: Hours and gross earnings of production workers in manufacturing industries for selected States and areas ${ }^{1}$-Continued

See footnotes at end of table.

Table C-6: Hours and gross earnings of production workers in manufacturing industries for selected States and areas ${ }^{1}$ Continued

See footnotes at end of table.

Table C-6: Hours and gross earnings of production workers in manufacturing industries for selected States and areas ${ }^{1}$-Continued

Year and month	North Carolina-Con.			North Dakota						Ohio								
	Greensboro-High Point			State			Fargo			State			Cincinnati			Cleveland		
	Avg. wkly. earnros	Avg. wkly. hours	Avg. hrly. earn- ings	Avg. wkly. eangs	Avg. wkly. hours	Avg. hrly. earn- ings	Avg. wkly. earn- ings	Avg. wkly. hours	Avg. hrly. earn- ings	Avg. wkly. earnings	Avg. wkly. hours	$\begin{aligned} & \text { Avg. } \\ & \text { hrly. } \\ & \text { earn- } \\ & \text { ings } \end{aligned}$	Avg. wkly. earn-	Avg. wkly. hours	Avg. hrly. earn- ings	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earn- ings
1953: Average 1954: Average	\$47. 73	37.0	\$1.29	$\$ 65.26$ 67.55	44.2 44.3	$\$ 1.48$ 1.52	$\left\lvert\, \begin{array}{\|} \$ 63.79 \\ 369.70 \end{array}\right.$	$\begin{array}{r}42.2 \\ 341.9 \\ \hline\end{array}$	\$1.51	\$79.86 78.88	$\begin{aligned} & 41.0 \\ & 39.6 \end{aligned}$	$\$ 1.95$ 1.99	\$73. 86 74.78	$\begin{aligned} & 41.5 \\ & 40.4 \end{aligned}$	$\begin{array}{r} \$ 1.78 \\ 1.85 \end{array}$	$\begin{array}{\|r} \$ 84.87 \\ 81.70 \end{array}$	$\begin{aligned} & 41.6 \\ & 39.8 \end{aligned}$	$\begin{array}{r} \$ 2.04 \\ 2.05 \end{array}$
1954: March	45.44	35.5	1. 28	63.16	. 4	. 49	62.20	38.8	1.60	76. 66	39.0	1.96	73. 47	40.4	1.82	79.86	39.2	2.04
April	44. 29	34.6	1. 28	63. 25	42.9	1. 47	62.23	39.6	1.57	76.93	39.1	1. 97	73. 09	40.0	1.83	80.58	39.5	2.04
May	44.93	35.1	1.28	66. 42	44.1	1. 51	66.51	40.8	1.63	77. 70	39.3	1. 98	73. 69	40.1	1.84	80.56	39.4	2.04
	46.59	36.4	1.28	69.92	45.8	1. 53	73.85	44.8	1.65	78. 09	39.4	1. 98	73.45	39.9	1.84	81.12	39.5	2.05
July-	47.36	37.0	1.28	70.74	46.1	1. 53	71.93	43.2	1.67	78.50	39.3	2. 00	73.13	39.6	1.85	80.35	39.1	2.05
August	49.02	38.0	1. 29	70.21	45.9	1.53	71.95	43.0	1.67	78.62	39.6	1. 99	74.76	40.5	1.85	79. 94	39.1	2. 04
September	49. 01	37.7	1.30	66.36	43.7	1. 52	68.36	40.5	1.69	79. 29	39.7	2. 00	75. 78	40.8	1.86	79. 96	38.9	2. 06
October-	50.44	38.8	1.30	70.96	45.9	1.55	76.35	44.7	1.71	80.54	40.1	2.01	77.07	41.0	1.88	82.65	40.0	2. 07
November	50.57	38.9	1.30	69.71	45.4	1.54	76. 43	42.8	1.78	81.47	40.2	2.03	77.84	41.1	1.89	84. 12	40.6	2. 07
December	50.96	39.2	1. 30	66. 94	43.9	1. 53	74.60	43.7	1.71	82.72	40.7	2.03	78. 67	41.4	1.90	86. 12	41.3	2. 09
1955: January.	49. 66	38.2	1. 30	65. 68	43.0	1. 55	74.64	45. 3	1.65	83.40	40.7	2.05	76.78	40.2	1.91	86.59	41.2	2. 10
February	50.05	38.5	1.30	68.54	44.2	1.55	73.08	44.9	1.63	83.56	40.7	2.05	77.44	40.6	1.91	86.27	41.1	2. 10
March	50.44	38.8	1.30	66.62	43.7	1.54	70.20	43.8	1.60	84.32	40.9	2.06	78.85	41.1	1.92	87.11	41.4	2.10
	Oklahoma									Oregon						Pennsylvania		
	State			Oklahoma City			Tulsa			State			Portland			State		
1953: Average	\$70. 14	41.5	\$1. 69	\$67.82	43.2	\$1. 57	\$75.26	40.9	\$1.84	\$82.04	38.7	\$2.12	\$76. 19	38.4	\$1.98	\$71.38	39.9	\$1. 79
1954: Average	72.04	41.4	1.74	69.76	42.8	1.63	78.12	40.9	1.91	83.81	38.8	2.16	77.44	38.3	2.02	70.10	38.4	1.82
1954: March	71. 55	41.6	1. 72	69.01	42.6	1. 62	78.94	40.9	1.93	82.31	38.5	2. 14	76.23	38.0	2.01	70.01	38.7	1. 81
April	70.69	41.1	1.72	69.50	42.9	1. 62	77.36	40.5	1.91	83.77	38.8	2. 16	78.31	38.5	2.03	68.00	37. 5	1. 81
May	71.69	41.2	1. 74	69.69	42.4	1.62	78. 53	40.9	1.92	84.89	38.8	2. 19	77.80	38.1	2.04	69.32	38. 1	1. 82
June.	72.21	41.5	1.74	71.01	43.3	1. 64	78.14	40.7	1.92	82.96	38.3	2. 17	77.45	37.8	2.05	69.62	38.3	1. 82
July	72.45	41.4	1. 75	70.09	43.0	1. 63	77.52	40.8	1.90	82.30	38.6	2. 13	76. 92	38.5	2.00	69. 60	38.1	1. 83
August	72.98	41.7	1.75	69.60	42.7	1. 63	77.90	41.0	1.90	85.39	39.7	2.15	76. 99	39.0	1.97	69.46	38.2	1. 82
September	72.69	41.3	1. 76	70. 95	43.0	1. 65	77.71	40.9	1. 90	80.13	37.2	2.15	75. 34	37.5	2.01	70.33	38.5	1. 83
October-	71.69	41.2	1. 74	68.53	42.3	1.62	77.71	40.9	1. 90	85. 42	39.2	2. 18	78. 66	38.9	2. 02	70. 52	38.5	1. 83
November	72.73	41.8	1.74	69.28	42.5	1.63	79.42	41.8	1.90	86.64	39.4	2. 20	78.03	38.1	2.05	71. 53	38.9	1. 84
December	71. 86	41.3	1.74	69.17	42.7	1. 62	78.12	40.9	1.91	86.76	39.6	2.19	80.23	38.7	2.07	72.16	39.1	1. 85
1955: January	72.04	41.4	1.74	68.30	41.9	1. 63	78.12	40.9	1.91	87.95	39.6	2. 22	81.81	39.2	2.09	72. 20	38.9	1.86
February	70.52	41.0	1.72	66.65	41.4	1. 61	77.52	40.8	1.90	86.45	39.1	2.21	80.56	38.9	2.07	72. 63	39.1	1. 86
March	71.28	41.2	1. 73	68.53	42.3	1. 62	79.30	41.3	1.92	85.97	38.9	2.21	79.85	38.5	2.07	72. 22	39.4	1.87
	Pennsylvania-Continued																	
	Allentown-Bethle-hem-Easton			Erie			Harrisburg			Lancaster			Philadelphia			Pittsburgh		
1953: A verage			\$1.73	\$75. 21	41.1	\$1.83	\$63.80	39.6	\$1. 61	\$62. 50	41.2	\$1. 52	\$73. 91	40.5	\$1.83	\$81.89	40.4	\$2. 03
1954: Average	64.11	$\begin{array}{r} \text { 00. } \\ 36.8 \end{array}$	1.74	74.49	39.9	1.87	59.45	37.2	1.60	63.07	40.2	1. 57	74.12	39.3	1.89	80.37	38.6	2.08
1954: March	64.94	37.6	1.73	75.99	40.4	1.88	59.97	37.6	1.60	62.51	40.3	1. 55	74.15	39.8	1.86	79.00	38.5	2.05
April	62.94	36.3	1.73	73.48	39.4	1.87	56.60	35.4	1.60	60.37	39.1	1. 54	71. 58	38.4	1.86	77.34	37.8	2.05
May.	62.08	35.7	1.74	73.50	39.6	1.86	58.55	36.8	1.59	63.06	40.3	1. 56	73. 59	39.0	1.89	78. 42	38.2	2.05
	62.22	35.8	1.74	73.28	39.4	1.86	60.40	37.7	1.60	63.90	40.7	1. 57	73.97	39.2	1.89	79.33	38.4	2.07
July	63.00	35.9	1.76	73.50	39.6	1.86	61.36	38.3	1.60	63.07	40.3	1. 57	73.94	39.0	1.90	79.93	38.1	2. 10
August	64.21	36.9	1.74	72.25	38.8	1.86	58.93	37.3	1.58	63.55	40.4	1.57	74.88	39.6	1.89	79. 04	37.8	2. 09
September	65.10	37.2	1.75	75. 25	40.5	1.86	57.52	36. 5	1.58	65.24	40.9	1. 60	74.89	39.5	1.90	82.10	38.8	2.12
October-	65.20	37.3	1.75	75.77	41.0	1.85	58.08	36.3	1.60	64.07	40.6	1. 58	75.33	39.5	1.91	80.47	38.3	2. 10
November	65.69	37.6	1.75	74.77	39.9	1.87	58. 95	36.8	1.60	64.55	40.6	1. 59	76.13	39.9	1.91	82.26	38.8	2. 12
December	63.68	36.6	1.74	76.44	40.4	1.89	58.73	37.1	1.58	63.55	40.4	1. 57	76.97	40.3	1.91	84.21	39.5	2. 13
1955: January	65.73	37.2	1.77	78.43	41.0	1.91	59.73	37.1	1.61	64.00	40.3	1. 59	75.37	39.5	1.91	85.52	40.0	2.14
February	66. 59	37.9	1.76	78.80	41.0	1.92	61.68 63.30	38.1 38.6	1.62 1.64	63.91 64.99	40.4 41.0	1. 58 1.59	75.63 76.37	39.7 39.9	1.91 1.91	84.70 86.67	39.6 40.2	2.14 2.16
March.-	68.11	38.5	1.77	80.34	41.5	1.94	63.30	38.6	1.64	64.99	41.0	1.59	76.37	39.9	1.91	86.67	40.2	2.16
	Pennsylvania-Continued												Rhode Island					
	Reading			Scranton			Wilkes-BarreHazleton			York			State			Providence		
1953: A verage	\$66.15	39.9	\$1.66	\$54. 62	39.1	\$1.40	\$51.06	37.6	\$1.36	\$63. 08	41.8	\$1. 51	\$60.50	39.8	\$1. 52	\$60. 45	40.3	\$1. 50
1954: Average---------	63.31	38.0	1.67	54.13	37.8	1.43	50.33	36.9	1.36	62.11	40.1	1.55	60.44	39.5	1.53	61.10	40.2	1.52
1954: March.	64.19	38.6	1.66	54.73	37.9	1. 44	51.70	37.6	1.38	63.31	40.4	1. 57	60.10	39.8	1.51	61.00	40.4	1.51
April.	61.35	36.8	1.67	51.73	36.1	1.43	47.16	34.2	1.38	60.60	38.6	1. 57	59.28	39.0	1.52	59.65	39.5	1. 51
May----------	63.47	37.8	1.68	54.40	38.2	1. 42	50. 53	37.1	1.36	60.84	38.8	1. 57	59. 89	39.4 39.6	1.52	60.40 61.10	40.0 40.2	1. 51
June.-	63.78 63.88	38.1 38.6	1.67 1.66	53.65 54.07	37.7 38.0	1.42 1.42	49.31 48.05	37.1 35.7	1.34 1.35	62.27 60.81	40.7 39.9	1. 53	60.59 59.74	39.6 39.3	1.53 1.52	61.10 60.34	40.2 39.7	1. 52
Jugust.	63.88 63.13	38.6 37.8	1.66	54.07 54.20	38.0 37.9	1.42 1.43	48.05	35.7 38.0	1.35 1.34	60.81 62.42	39.9 41.2	1.52	59.85	39.9	1.50	60.25	39.9	1. 51
September.	62.80	37.9	1.66	54.63	38.2	1. 43	50.66	37.5	1.35	61.12	40.0	1.53	61.45	39.9	1.54	62.12	40.6	1. 53
October--	62.23	37.4	1.66	54.61	38.0	1. 44	50.01	36.4	1.37	62.30	40.3	1. 55	59.83	38.6	1.55	61.35	40.1	1. 53
November-	64.94	39.0	1.67	54.52	38.1	1.43	51.32	37.6	1.37	62.20	40.1	1. 55	60.53	38.8	1.56	61.05	39.9	1. 53
December-----	65.03	3.88	1.68	53.78	37.4	1. 44	51.85	37.9	1.37	62.85	40.6	1. 55	61.86	40.7	1.52	62.78	41.3	1. 52
1955: January-.-.-.-	64.74	38.4	1.69	54.93	38.2	1. 44	50.86	37.4	1.36	62. 26	40.3	1.55	61.29 61.48	40.4 40.4	1.52	62.02 62.27	40.8 40.7	1. 52
March	65.05 66.90	38.7 39.4	1.68	55.66 54.93	38.6 38.2	1.44 1.44	50.63 52.13	27.5 38.3	1.35 1.36	63.21 63.69	40.6 40.8	1.56 1.56	61.48 61.30	40.4 40.6	1.52	62.27 61.71	40.7 40.6	1.53 1.52

[^63]TABLE C-6: Hours and gross earnings of production workers in manufacturing industries for selected States and areas ${ }^{1}$-Continued

Table C-6. Hours and gross earnings of production workers in manufacturing industries for selected States and areas ${ }^{1}$-Continued

1 Data for earlier years are available upon request to the Bureau of Labor
${ }^{2}$ Revised series; not comparable with data previously published.
Statistics or the cooperating State agency. State agencies also make a vailable
${ }^{3}$ Not comparable with preceding data shown.
more detailed industry data. See table A-7 for addresses of cooperating State agencies.

D: Consumer and Wholesale Prices
Table D-1: Consumer Price Index ${ }^{1}$ —United States average, all items and commodity groups

Year and month	All items	Total food ${ }^{2}$	Total apparel	Housing ${ }^{3}$						Trans-portation	$\begin{gathered} \text { Medical } \\ \text { care } \end{gathered}$	Personal care	Reading and recreation	Other goods and services 4
				Total ${ }^{3}$	Rent	Gas and electricity	Solid fuels and fuel oil	House furnishings	Household operation					
1947: Average	95.5	95.9	97.1	95.0	94.4	97.6	88.8	97.2	97.2	90.6	94.9	97.6	95.5	96.1
1948: Average	102.8	104.1	103.5	101. 7	100.7	100.0	104.4	103.2	102.6	100.9	100.9	101.3	100.4	100.5
1949: Average	101.8	100.0	99.4	103.3	105. 0	102.5	106.8	99.6	101.1	108.5	104.1	101.1	104. 1	103.4
1950: Average	102.8	101.2	98.1	106.1	108.8	102.7	110.5	100.3	101.2	111.3	106.0	101. 1	103.4	105. 2
1951: Average	111.0	112.6	106.9	112.4	113.1	103.1	116.4	111.2	109.0	118.4	111. 1	110.5	106.5	109.7
1952: Average	113.5	114.6	105.8	114.6	117.9	104.5	118.7	108.5	111.8	126.2	117.2	111.8	107.0	115.4
1953: Average	114.4	112.8	104.8	117.7	124.1	106.6	123.9	107.9	115.3	129.7	121.3	112.8	108.0	118.2
1954: Average.	114.8	112.6	104.3	119.1	128.5	107.9	123.5	106.1	117.4	128.0	125.2	113.4	107.0	120.1
1952: January	113.1	115.0	107.0	113.9	116.0	103.5	117.7	110.2	110.9	122.8	114.7	111.0	107.2	113.2
1952. February	112.4	112.6	106.8	114.0	116.4	103.8	117.6	110.0	110.8	123.7	114.8	111.1	106.6	114.4
March	112.4	112.7	106.4	114.0	116.7	103.8	117.7	109.4	111.0	124.4	115.7	111.0	106.3	114.8
April	112.9	113.9	106.0	114.0	116.9	103.9	117.3	108.7	111.0	124.8	115.9	111.3	106. 2	115.2
May.	113.0	114.3	105.8	114.0	117.4	104.1	115.6	108.3	111.2	125.1	116.1	111.6	106. 2	115.8
June	113.4	114.6	105.6	114.0	117.6	104.3	115.8	107.7	111.2	126.3	117.8	111.7	106.8	115. 7
July	114.1	116.3	105. 3	114.4	117.9	104. 2	118.6	107.6	111.8	126.8	118.0	111.9	107.0	116.0
August	114.3	116.6	105. 1	114.6	118.2	105.0	119.0	107.6	111.9	127.0	118.1	112.1	107.0	115.9
September	114.1	115.4	105.8	114.8	118.3	105.0	119.6	108.1	112.1	127.7	118.8	112.1	107. 3	115.9
October.	114.2	115.0	105.6	115.2	118.8	105.0	121.1	107.9	112.8	128.4	118.9	112.3	107.6	115.8
November	114.3	115.0	105.2	115.7	119.5	105.4	121.6	108.0	113.3	128.9	118.9	112.4	107.4	115.8
December-	114.1	113.8	105.1	116.4	120.7	105.6	123.2	108.2	113.4	128.9	119.3	112.5	108.0	115.9
1953: January	113.9	113.1	104.6	116. 4	121.1	105.9	123.3	107.7	113.4	129.3	119.4	112.4	107.8	115.9
Februar	113.4	111.5	104. 6	116.6	121.5	106.1	123.3	108.0	113.5	129.1	119.3	112.5	107.5	115.8
March.	113.6	111.7	104.7	116.8	121.7	106.5	124.4	108.0	114.0	129.3	119.5	112.4	107.7	117.5
April	113.7	111.5	104.6	117.0	122.1	106.5	123.6	107.8	114.3	129.4	120.2	112.5	107.9	117.9
May	114.0	112.1	104.7	117.1	123.0	106.6	121.8	107.6	114.7	129.4	120.7	112.8	108.0	118.0
June	114.5	113.7	104.6	117.4	123.3	106.4	121.8	108.0	115.4	129.4	121.1	112.6	107.8	118.2
July	114.7	113.8	104.4	117.8	123.8	106.4	123.7	108.1	115.7	129.7	121.5	112.6	107.4	118.3
August	115.0	114.1	104.3	118.0	125.1	106.9	123.9	107.4	115.8	130.6	121.8	112.7	107.6	118.4
September	115.2	113.8	105. 3	118.4	126.0	106.9	124.6	108.1	116.0	130.7	122.6	112.9	107.8	118.5
October	115.4	113.6	105. 5	118.7	126.8	107.0	125.7	108.1	116.6	130.7	122.8	113.2	108.6	119.7
November	115.0	112.0	105.5	118.9	127. 3	107.3	125.9	108.3	116.9	130.1	123.3	113.4	108. 9	120.2
December.	114.9	112.3	105.3	118.9	127.6	107.2	125.3	108.1	117.0	128.9	123.6	113.6	108.9	120.3
1954: January	115.2	113.1	104. 9	118.8	127.8	107.1	125.7	107.2	117.2	130.5	123.7	113.7	108.7	120.3
Februar	115.0	112.6	104.7	118.9	127.9	107.5	126.2	107.2	117.3	129.4	124.1	113.9	108.0	120.2
March	114.8	112.1	104.3	119.0	128.0	107.6	125.8	107.2	117.5	129.0	124.4	114.1	108.2	120.1
April	114.6	112.4	104.1	118.5	128.2	107.6	123.9	106.1	116.9	129.1	124.9	112.9	106.5	120.2
May.	115.0	113.3	104.2	118.9	128.3	107.7	120.9	105. 9	117.2	129.1	125. 1	113.0	106.4	120.1
June	115.1	113.8	104.2	118.9	128.3	107.6	120.9	105.8	117.2	128.9	125.1	112.7	106.4	120.1
July	115. 2	114.6	104.0	119.0	128.5	107.8	121.1	105.7	117.2	126.7	125. 2	113.3	107.0	120.3
August	115.0	113.9	103.7	119.2	128.6	107.8	121.9	105.4	117.3	126.6	125.5	113.4	106. 6	120.2
September	114. 7	112.4	104.3	119.5	128.8	107.9	122.4	106.0	117.4	126. 4	125. 7	113.5	106.5	120.1
October.	114.5	111.8	104.6	119.5	129.0	108.5	123.8	105.6	117.6	125.0	125.9	113.4	106. 9	120.1
November	114.6	111.1	104.6	119.5	129.2	108. 7	124.2	105.4	117.8	127.6	126. 1	113.8	106.8	120.0
December.	114.3	110.4	104.3	119.7	129.4	109.1	125.5	105. 4	117.7	127.3	126.3	113.6	106.6	119.9
1955: January	114.3	110.6	103.3	119.6	129.5	109.4	126.1	104.6	117.7	127.6	126.5	113. 7	106. 9	119.9
February	114.3	110.8	103.4	119.6	129.7	109.9	126.2	104.8	117.7	127.4	126.8	113.5	106. 4	119.8
March	114.3	110.8	103.2	119.6	130.0	110.3	126.2	104.6	117.9	127.3	127.0	113.5	106.6	119.8
April.	114.2	111.2	103.1	119.5	129.9	110.3	125.7	104.5	118.1	125.3	127.3	113.7	106.6	119.8

[^64]mittee on Education and Labor (1951); and Report of the President's Committee on the Cost of Living (1945).
Mimeographed tables are available upon request showing indexes for the United States and 20 individual cities regularly surveyed by the Bureau for "All items" and 8 major components from 1947 to date. Indexes are also available from 1913 for "All items," food, apparel, and rent, for all large cities combined, and from varying dates for individual cities.
${ }^{2}$ Includes "Food away from home" (restaurant meals and other food bought and eaten away from home); prior to January 1953, prices for this category were estimated to move like prices for "Food at home" but, since that date, have been measured by prices of restaurant meals.
${ }^{3}$ Includes "Other shelter."
${ }^{4}$ Includes tobacco, alcoholic beverages, and "miscellaneous services" (such as legal services, banking fees, and burial services).

Table D-2: Consumer Price Index ${ }^{1}$ - United States average, food and its subgroups
$[1947-49=100]$

Year and month	Total food ${ }^{2}$	Food at home						Year and month	Total food ${ }^{2}$	Food at home					
		Total food at home	Cereals and bakery products	Meats, poultry, and fish	Dairy products	Fruits and vegetables	Other foods ${ }^{3}$			Total food at home	Cereals and bakery products	Meats, poultry, and fish	Dairy products	Fruits and vegetables	Other foods ${ }^{3}$
1947: Avg	95.9	95.9	94.0	93.5	96.7	97.6	100.1	1953: Nov	112.0	111.4	120.6	107.0	110.5	107.4	114.8
1948: Avg	104.1	104.1	103. 4	106.1	106.3	100.5	102.5	1953. Dec.	112.3	111.7	120.9	107.8	110.3	109.2	113.5
1949: Avg	100.0	100.0	102.7	100.5	96.9	101.9	97.5	1954: Jan	113.1	112.6	121.2	110.2	109.7	110.8	113. 5
1950: Avg	101.2	101.2	104.5	104.9	95.9	97.6	101.2	Feb	112.6	112.0	121.3	109.7	109.0	108.0	114.0
1951: Avg	112.6	112.6	114.0	117.2	107.0	106.7	114.6	Mar	112.1	111.4	121.2	109.5	108.0	107.8	112.3
1952: Avg	114.6	114.6	116.8	116.2	111.5	117.2	109.3	Apr	112.4	111.8	121.1	110.5	104.6	110.0	113.6
1953: Avg	112.8	112.5	119.1	109.9	109.6	113.5	112.2	May	113.3	112.8	121.3	111.0	103. 5	114.6	114.5
1954: Avg	112.6	111.9	121.9	108.0	106.1	111.9	114.8	June	113.8	113.3	121.3	111.1	102.9	117.1	115.2
1953: Jan	113.1	112.9	117.7	110.9	111.6	116.7	109.7	July	114.6	114.2	121.6	109.7	104.3	120.1	117.3
Feb	111.5	111.1	117.6	107.7	110.7	115.9	107.3	Aug	113.9	113.3	122.3	107.6	105.1	114.7	119.6
Mar	111.7	111.3	117.7	107.4	110.3	115.5	109.1	Sept-------	112.4	111.6	122.6	106. 7	105.8	110.5	116. 0
Apr	111.5	111.1	118.0	106. 8	109.0	115.0	110.4	Oct-..-----	111.8	110.9	122. 7	103.9	106. 7	111.1	115.7
May	112.1	111.7	118.4	109.2	107.8	115.2	110.3	Nov	111.1	110.1	123.1	103.5	106. 6	109.6	113.7
June	113.7	113.7	118.9	111.3	107.5	121.7	110.9	Dec	110.4	109.2	123.3	102.2	106.8	108.4	112.0
July	113.8	113.8	119.1	112.0	108.3	118.2	112.3	1955: Jan-.-.----	110.6	109.4	123. 4	102.4	106. 4	110.6	111.3
Aug	114.1	114.1	119.5	114.1	109.1	112.7	114.4	Feb------	110.8	109.6	123.8	102.5	106.1	110.7	112.1
Sept	113.8	113.5	120.3	113.5	109.6	106.6	116. 7	Mar	110.8	109. 7	123.9	102.3	105. 4	112.0	111. 9
Oct-...-----	113.6	113.3	120.4	111.1	110.1	107.7	117.4	Apr	111.2	110.1	123.9	103.0	104.6	117.5	109.4

${ }^{1}$ See footnote 1 to table D-1. Indexes for 18 food subgroups ($1935-39=$ 100) from 1923 to December 1952 were published in the March 1953 Monthly Labor Review and in previous issues.

2 See footnote 2 to table D-1.
${ }^{3}$ Includes eggs, fats and oils, sugar and sweets, beverages (nonalcoholic), and other miscellaneous foods.

Table D-3: Consumer Price Index ${ }^{1}$ - United States average, apparel and its subgroups

Year and month	Total apparel	Men's and boys'	Women's and girls'	Footwear	Other ${ }^{2}$ apparel	Year and month	Total apparel	Men's boys,	$\begin{aligned} & \text { Women's } \\ & \text { and } \\ & \text { girls' } \end{aligned}$	Footwear	Other ${ }^{2}$ apparel
1947: Avg	97.1	97.3	98.0	94.5	${ }^{(3)}$	1953: Nov	105.5	107.8	100.7	116.2	91.3
1948: Avg	103.5	102.7	103.8	103. 2	108.6	Dec	105.3	107.6	100.5	116.1	90.
1949: Avg	99.4	100.0	98.1	102.4	93.2	1954: Jan	104.9	107.4	99.8	116.2	90.4
1950: Avg	98.1	99.5	94.8	104.0	92.0	Feb	104.7	107.4	99.5	116.1	90.4
1951: Avg	106. 9	107.7	102.2	117.7	101.6	Mar.	104.3	107.2	99.0	116.1	90.0
1952: Avg	105.8	108.2	100.9	115.3	92.1	Apr-	104.1	107.1	98.4	116.1	90.4
1953: Avg	104.8	107.4	99.7	115. 2	92.1	May	104.2	107.3	98.5	115.9	90.9
1954: Avg	104.3	106.8	98.9	116.4	90.7	June	104.2	107.0	98.5	116.3	91.0
1953: Jan	104.6	107.1	99.7	114.3	92.0	July	104.0	106.6	98.2	116.5	90.8
Feb	104.6	107.3	99.3	114.6	92.3		103.7	106. 4	97.7	116. 9	90.7
Mar	104.7	107.3	99.6	114.5	92.4	Sept	104.3	106.4	99.0	116.5	90.9
Apr-	104.6	107.3	99.4	114.8	92.1	Oct-	104.6	106. 4	99.6	116.7	91.1
May	104.7	107.4	99.4	115. 1	92.5	Nov	104.6	106.5	99.5	117.0	91.2
June	104.6	107.2	99.2	115.3	92.3	1055. Dec	104.3	106.5	99.0	116.9	91.1
July.	104.4	107.4	98.9	115.0	92.2	1955: Jan	103.3	105.5	97.6	116.7	90.5
Aug.	104.3	107.3	98.7	115. 0	92.0	Feb	103.4	105. 6	97.7	116.6	90.6
Sept	105.3	107.5	100.5	115.3	92.5	Mar	103.2	105. 6	97.4	116.7	90.4
Oct	105.5	107.6	100.8	115.8	92.3	Apr	103.1	105.5	97.1	116.9	90.2

[^65]in the index by the weighted average of prices for all priced items in the total apparel group.
${ }_{3}$ Not available

Table D-4: Consumer Price Index ${ }^{1}$-United States average, all items and food

Year	$1947-49=100$		$1935-39=100$	Year and month	$1947-49=100$		$1935-39=100$	Year and month	$1947-49=100$		$1935-39=100$
	All items	Total food ${ }^{2}$	All items		All items	Total food ${ }^{2}$	All items		All items	Total food ${ }^{2}$	All items
1913: Average	42.3	39.6	70.7	1945: Average	76.9	68.9	128.6	1952: November	114.3	115.0	191. 1
1914: Average.	42.9	40.5	71.8	1946: Average.	83.4	79.0	139.5	December	114.1	113.8	190.7
1915: Average	43.4	40.0	72.5	1947: Average	95.5	95.9	159.6	1953: January	113.9	113.1	190.4
1916: Average	46.6	45.0	77.9	1948: Average	102.8	104.1	171.9	February	113.4	111.5	189.6
1917: Average_	54.8	57.9	91.6	1949: Average	101.8	100.0	170.2	March.	113.6	111.7	189.9
1918: A verage	64.3	66.5	107.5	1950: Average	102.8	101. 2	171. 9	April	113.7	111.5	190.1
1919: Average.	74.0	74.2	123.8	1951: Average	111.0	112.6	185.6	May_	114.0	112. 1	190.6
1920: Average.	85.7	83.6	143.3	1952: Average.	113.5	114.6	189.8	June_	114.5	113.7	191.4
1921: Average.	76.4	63.5	127.7	1953: Average	114.4	112.8	191.3	July	114.7	113.8	191.8
1922: A verage	71.6	59.4	119.7	1954: Average	114.8	112.6	191.9	August	115.0	114.1	192.3
1923: Average	72.9	61.4	121.9	1951: Janusry	108.6	109.9	181.5	September	115.2	113.8	192.6
1924: A verage	73.1	60.8	122.2	February	109.9	111.9	183.8	October---	115.4	113.6	192.9
1925: Average.	75.0	65.8	125.4	March	110.3	112.0	184.5	November	115.0	112.0	192.3
1926: Average.	75.6	68.0	126.4	April	110.4	111.7	184.6	December	114.9	112.3	192.1
1927: Average.	74.2	65.5	124.0	May	110.9	112.6	185.4	1954: January	115.2	113.1	192.6
1928: Average	73.3	64.8	122.6	June	110.8	112.3	185.2	February	115.0	112.6	192.3
1929: Average	73.3	65.6	122.5	July	110.9	112. 7	185.5	March.	114.8	112.1	191.9
1930: Average.	71.4	62.4	119.4	August	110.9	112.4	185.5	April	114.6	112.4	191.6
1931: Average.	65.0	51.4	108.7	September	111.6	112.5	186.6	May	115.0	113.3	192.3
1932: Average	58.4	42.8	97.6	October-	112.1	113.5	187.4	June	115.1	113.8	192.4
1933: Average	55.3	41.6	92.4	November	112.8	114.6	188.6	July.	115.2	114.6	192.6
1934: Average.	57.2	46.4	95.7	December	113.1	115.0	189.1	August	115.0	113.9	192.3
1935: Average	58.7	49.7	98.1	1952: January	113.1	115.0	189.1	September	114.7	112.4	191.8
1936: Average	59.3	50.1	99.1	February	112.4	112.6	187.9	October--	114.5	111.8	191.4
1937: A verage.	61.4	52.1	102. 7	March	112.4	112.7	188.0	November	114.6	111.1	191.6
1938: Average	60.3	48.4	100.8	April	112, 9	113.9	188.7	December	114.3	110.4	191.1
1939: Average	59.4	47.1	99.4	May	113.0	114.3	189.0	1955: January	114.3	110.6	191.1
1940: Average	59.9	47.8	100.2	June	113.4	114.6	189.6	February	114.3	110.8	191.1
1941: Average	62.9	52.2	105.2	July	114.1	116.3	190.8	March	114.3	110.8	191.1
1942: Average	69.7	61.3	116.6	August	114.3	116.6	191.1	April	114.2	111.2	190.9
1943: A verage	74.0	68.3	123.7	September	114.1	115.4	190.8				
1944: Average	75.2	67.4	125.7	October.	114.2	115.0	190.9				

[^66]Table D-5: Consumer Price Index ${ }^{1}$-All items indexes for selected dates, by city

City	$1947-49=100$														$\begin{gathered} 1935-39 \\ =100 \end{gathered}$ Revised series Apr. 1955
	$\begin{gathered} \text { Apr. } \\ 1955 \end{gathered}$	$\begin{aligned} & \text { Mar. } \\ & 1955 \end{aligned}$	$\begin{aligned} & \text { Feb. } \\ & 1955 \end{aligned}$	$\begin{aligned} & \text { Jan. } \\ & 1955 \end{aligned}$	$\begin{aligned} & \text { Dec. } \\ & 1954 \end{aligned}$	$\begin{aligned} & \text { Nov. } \\ & 1954 \end{aligned}$	$\begin{aligned} & \text { Oct. } \\ & 1954 \end{aligned}$	$\begin{aligned} & \text { Sept. } \\ & 1954 \end{aligned}$	$\begin{aligned} & \text { Aug. } \\ & 1954 \end{aligned}$	$\begin{aligned} & \text { July } \\ & 1954 \end{aligned}$	$\begin{aligned} & \text { June } \\ & 1954 \end{aligned}$	$\begin{aligned} & \text { May } \\ & 1954 \end{aligned}$	$\begin{aligned} & \text { Apr. } \\ & 1954 \end{aligned}$	$\begin{aligned} & \text { June } \\ & \mathbf{1 9 5 0} \end{aligned}$	
United States average ${ }^{2}$	114.2	114.3	114.3	114.3	114.3	114.6	114.5	114.7	115.0	115.2	115.1	115.0	114.6	101.8	190.9
Atlanta, Ga	${ }^{(3)}$	115.3	${ }^{(3)}$	${ }^{(3)}$	115.7	${ }^{(3)}$	${ }^{(3)}$	116.3	${ }^{(3)}$	$\left.{ }^{3}\right)$	117.6	$\left.{ }^{3}\right)$	${ }^{(8)}$	${ }^{(3)}$	${ }^{(3)}$
Baltimore, M	${ }^{(3)}$	114.9	${ }^{(3)}$	(3)	114.8	(3)	(3)	115.2	(3)	${ }^{(3)}$	115.5	${ }^{(3)}$	${ }^{(3)}$	101. 6	
Boston, Mass	113.4	${ }^{(3)}$	(3)	113.0	${ }^{(3)}$	${ }^{(3)}$	113.5	${ }^{(8)}$	${ }^{(3)}$	113.8	${ }^{(3)}$	${ }^{(3)}$	112. 9	102.8	182. 6
Chicago, Ill	116.9	117.0	117.1	117.0	117.0	117.6	117.1	117.4	117.7	118.0	117.3	117.3	116. 5	102.8	199.1
Cincinnati, Ohio	${ }^{(3)}$	113.4	${ }^{(3)}$	${ }^{(3)}$	113.3	${ }^{(3)}$	${ }^{(3)}$	114.3	${ }^{(3)}$	${ }^{(3)}$	114.2	${ }^{(3)}$	${ }^{(3)}$	101.2	
Cleveland, Ohio	(3)	${ }^{(3)}$	114.9	${ }^{(3)}$	${ }^{(3)}$	115. 3	${ }^{(3)}$	${ }^{(3)}$	115.3	${ }^{(3)}$	${ }^{(3)}$	115.3	${ }^{(3)}$	${ }^{(3)}$	${ }^{(3)}$
Detroit, Mich	116.2	116.3	116.3	116. 0	116. 2	116. 9	116.0	116. 2	116.8	117.5	117.1	116.9	116.7	102.8	196.1
Houston, Tex	${ }^{(3)}$	${ }^{(3)}$	115.7	${ }^{(3)}$	${ }^{(3)}$	116.7	${ }^{(3)}$	${ }^{(3)}$	116.5	${ }^{(3)}$	$\left.{ }^{3}\right)$	116.7	${ }^{(8)}$	103.8	
Kansas City, Mo	115.2	(3)	(3)	115.3	(3)	(3)	115.7	(3)	(3)	115.6	(3)	${ }^{(3)}$	115.5	${ }^{(3)}$	185.5
Los Angeles, Calif	114.5	115.1	114.7	115.4	115.3	115.0	114.8	115.4	115.1	114.9	115.7	115.9	115.7	101.3	191.3
Minneapolis, Minn	117.0	(3)	(3)	116. 5	(3)	${ }^{(3)}$	116.9	${ }^{(3)}$	${ }^{(3)}$	117.3	${ }^{(3)}$	${ }^{(3)}$	116. 3	102.1	193.8
New York, N. Y	112.3	112.4	112. 5	112.3	112.2	112.7	112.6	112.7	113.0	113.3	112. 9	112.9	112.5	100.9	185. 9
Philadelphia, Pa	115.8	115.8	115.7	115.4	115. 6	115.9	116.1	116.2	116.2	116.3	115.9	115.3	115.1	101.6	192.7
Pittsburgh, Pa	113.8	${ }^{(3)}$	(3)	113.8	${ }^{(3)}$	${ }^{(3)}$	114.3	${ }^{(3)}$	${ }^{(3)}$	115.4	${ }^{(3)}$	(3)	114.5	101.1	193.5
Portland, Oreg	114.2	${ }^{(3)}$	(3)	114.6	(3)	(3)	115.2	${ }^{(3)}$	(3)	115.5	${ }^{3}$)	(3)	114.8	${ }^{(3)}$	197.8
St. Louis, Mo_	${ }^{(3)}$	115.6	${ }^{(3)}$	${ }^{(3)}$	115.4	${ }^{(3)}$	${ }^{(3)}$	115.7	${ }^{(3)}$	${ }^{(3)}$	117.4	${ }^{(3)}$	${ }^{(3)}$	101.1	${ }^{(3)}$
San Francisco, Calif	(3)	115.6	${ }^{(3)}$	(3)	115.7	(3)	(3)	116. 2	${ }^{(3)}$	(3)	116.8	${ }^{(3)}$	(3)	100. 9	${ }^{3}$
Scranton, Pa	${ }^{(3)}$	${ }^{(3)}$	111.7	(3)	${ }^{(3)}$	112. 3	(3)	${ }^{(3)}$	112.4	(3)	${ }^{(3)}$	112.3	(3)	$\left.{ }^{3}\right)$	$\left.{ }^{3}\right)$
Seattle, Wash	(3)	(3)	116.3	(3)	(3)	115.7	(3)	(3)	116.2	(3)	(3)	116.3	(3)	(3)	(3)
Washington, D. C	(3)	(3)	113.2	(3)	(3)	113.5	(3)	(3)	114.1	(3)	(3)	113.7	(3)	(3)	(3)

[^67]${ }^{3}$ Prior to January 1953, indexes were computed monthly for 9 of these cities and once every 3 months for the remaining 11 cities on a rotating cycle. once every 3 months for the 15 remaining cities on a rotating cycle.

Table D-6: Consumer Price Index ${ }^{1}$ —All items and commodity groups, except food, ${ }^{2}$ by city

See footnotes at end of table.

Table D-6: Consumer Price Index ${ }^{1}$ —All items and commodity groups, except food, ${ }^{2}$ by city-Continued
$[1947-49=100]$

City and cycle of pricing	Housing											
	Total housing		Rent		Gas and electricity		Solid fuels and fuel oil		House furnishings		Household operation	
	$\underset{1955}{\text { April }}$	$\underset{1954}{\text { April }}$	$\begin{gathered} \text { April } \\ 1955 \end{gathered}$	$\underset{1954}{\text { April }}$	$\begin{aligned} & \text { April } \\ & 1955 \end{aligned}$	$\underset{1954}{\text { April }}$	$\underset{1955}{\text { April }}$	$\underset{1954}{\text { April }}$	$\underset{1955}{\text { April }}$	$\underset{1954}{\text { April }}$	$\underset{1955}{\text { April }}$	$\underset{1954}{\text { April }}$
United States average.-...	119.5	118.5	129.9	128.2	110.3	107.6	125.7	123.9	104.5	106.1	118.1	116.9
Monthly: Chicago, 111 . Detroit, Mich Los Angeles, Calif New York, N. Y \qquad Philadelphia, Pa	128.2	124.9	$\left.{ }^{4}\right)$	$\left.{ }^{4}\right)$	110.5	106.2	126.2	124.0	106.1	107.5	121.1	120.5
	121.9	122.1	140.1	138.1	108.7	110.3	119.9	119.4	107.6	110.1	112.1	109.9
	122.8	123.3	(4)	(4)	113.6	109.5	$\left.{ }^{4}\right)$		107.0	107.5	108.3	107.4
	115.3	115.0	(1)	(4)	109.0	108.7	130.2	129.4	105. 1	106.6	119.1	118. 6
	114.9	113.5		(4)	102.3	102.3	126.9	123.2	105.6	109.1	114.3	113.4
Jan., Apr., July, and Oct.: Boston, Mass Kansas City, Mo Minneapolis, Minn Pittsburgh, Pa Portland, Oreg	120.4	117.5	(4)	(4)	111.7	108.9	128.1	122.6	105.5	104.1	117.2	113.1
	121.3	118.3	138.3	133.5	118.0	105. 2	113.2	113.2	102.3	106.4	124.8	120.9
	122.8	119.8	(1)	(4)	118.8	110.0	117.2	114.8	102.4	106.3	120.2	121.0
	116.2	116.5	124.0	122.8	120.5	116.7	118.8	123.2	105.2	104.6	120.0	119.8
	118.3	119.4	(4)	(4)	107.8	105. 2	128.9	127.6	106.3	108.9	112.3	111.6
	$\underset{1955}{\text { March }^{2}}$	$\underset{1954}{\text { March }}$	$\underset{1955}{\text { March }}$	$\underset{1954}{\text { March }}$	$\underset{1955}{\text { March }}$	$\begin{gathered} \text { March } \\ 1954 \end{gathered}$	$\underset{1955}{\text { March }}$	$\begin{gathered} \text { March } \\ 1954 \end{gathered}$	$\begin{gathered} \text { March } \\ 1955 \end{gathered}$	$\underset{1954}{\text { March }}$	$\underset{1955}{\text { March }}$	$\underset{1954}{\text { March }}$
Mar., June, Sept., and Dec.: Atlanta, Ga Baltimore, Md Cincinnati, Ohio St. Louis, Mo San Francisco, Calif.	123.9	124.1	132.3	130.5	113.3	112.0	119.5	119.5	107.4	112.0	128.5	128. 2
	115. 9	113.8	125.0	123.7	100.1	97.5	127.2	126.9	98. 5	100.9	110.9	109.7
	117.3	116.7	(4)	(4)	118.7	115.4	127.2	127.2	100.1	102.9	122.3	121.5
	119.4 115.9	119.1 118.0	(4) (4)	$\begin{aligned} & (4) \\ & (4) \\ & (4) \end{aligned}$	103.8 132.5	103.8 130.1	139.6 (4)	135.1 (4)	101.7 103.9	106.7 106.9	119.4 109.3	119.0 109.6
	$\underset{1955}{\text { February }}$	$\begin{array}{\|c} \text { February } \\ 1954 \end{array}$	$\underset{1955}{\text { February }^{2}}$	$\begin{gathered} \text { February } \\ 1954 \end{gathered}$	$\underset{1955}{\text { February }}$	$\underset{1954}{\text { February }^{2}}$	$\underset{1955}{\text { February }}$	$\underset{1954}{\text { February }}$	$\underset{1955}{\text { February }}$	February 1954	${\underset{1955}{\text { February }} \mid}^{\text {F }}$	$\begin{array}{\|c} \text { February } \\ 1954 \end{array}$
Feb., May, Aug., and Nov.:												
Houston, Tex	123.0	123.6	138.9	138.3	106.8	- 106.5	${ }^{4}$) ${ }^{\text {a }}$	(4)	101.3	102.2	127.0	129.0
Scranton, Pa--	115.9	116.4			119.4	112.2	133.2	139.9	100.3	102.3	109.9	107.6
Seattle, Wash	120.6	118.3	136.7	134.8	88.5	88.5	127.6	127.3	103. 5	106.1	114.2	111.5
Washington, D. C.	116.4	117.7	(4)	(4)	118.2	118.1	134.7	133.3	105.2	108.2	116.9	114.7

1 See footnote 1 to table D-1.

2 See tables D-2, D-4, D-7, and D-8, for food.

[^68]Table D-7: Consumer Price Index ${ }^{1}$ —Food and its subgroups, by city

$$
[1947-49=100]
$$

City	Total food ${ }^{2}$			Food at home								
				Total food at home			Cereals and bakery products			Meats, poultry, and fish		
	$\begin{aligned} & \text { Apr. } \\ & 1955 \end{aligned}$	$\underset{1955}{\text { Mar. }}$	$\underset{1954}{\text { Apr. }}$	$\begin{aligned} & \text { Apr. } \\ & 1955 \end{aligned}$	$\underset{1955}{\mathrm{Mar} .}$	$\underset{1954}{\text { Apr. }}$	${ }_{1955}^{\text {Apr. }}$	$\begin{gathered} \text { Mar. } \\ 1955 . \end{gathered}$	$\begin{aligned} & \text { Apr. } \\ & 1954 \end{aligned}$	$\begin{aligned} & \mathrm{Apr} \\ & 1955 \end{aligned}$	$\begin{gathered} \text { Mar. } \\ 1955 \end{gathered}$	$\begin{aligned} & \text { Apr. } \\ & 1954 \end{aligned}$
United States average ${ }^{3}$.	111.2	110.8	112.4	110.1	109.7	111.8	123.9	123.9	121.1	103.0	102.3	110.5
Atlanta, Ga	110.8	110.0	112.8	109.1	108.2	111.9	117.9	117.9	116.1	107.0	105.3	117.9
Baltimore, Md	111.6	111.7	113.9	110.1	110.3	113.1	121.9	122.0	122.0	103.3	103.7	113.0
Boston, Mass	109.0	109.0	109.3	107.5	107.6	108.1	119.1	119.1	119.2	100.6	100.0	106.0
Chicago, Ill	109.0 112.5	108.3 111.7	110.4 113.7	107.6 111.6	106.6 110.7	109.8	118.9	119.2 125.1	117.2 118.4	97.2 103.9	95.4 102.8	105.8 115.5
Cleveland, Ohio	108.1	108.6	110.2	106.8	107.4	109.4	120.5	120.4	116.6	98.8	99.7	107.6
Detroit, Mich	113.3	113.0	116.1	111.9	111.6	115.2	120.2	120.0	117.8	100.7	100.1	109.8
Houston, Tex	111.1	110.7	112.1	110.0	109.5	111.0	118.7	118.8	118.5	101. 2	100.8	107.0
Kansas City, Mo-	107.0	106.9	109.0	105.5	105.2	108.4	120.8	120.7	120.3	98.7	96.9	107.7
Los Angeles, Calif	113.0	112.0	113.1	110.7	110.2	111.8	127.9	127.8	122.5	102.1	101.6	109.6
Minneapolis, Minn	111.5	111.3	112.1	110.8	110.7	111.9	126.1	125.9	124.7	98.7	97.5	103.8
New York, N. Y	111.6	111.0	111.0	110.7	110.0	111.6	128.2	128.2	125. 2	106.6	106. 4	110.4
Philadelphia, Pa	113.4	113.3	114.3	112.3	112.1	113.4	121.0	121.0	120.8	107.0	106.3	112.4
Pittsburgh, Pa	111.5	111.0	113.3	110.7	110.1	112.6	124.5	124.4	121.1	99.3	98.3	107.0
Portland, Oreg-.-	110.0	109.7	112.2	109.6	109.0	112.0	124.3	124.2	115.6	102.1	101.6	114.0
St. Louis, Mo	112.5	111.8	114.9	110.1	109.2	113.3	118.9	118.9	116.5	102.5	101.3	110.4
San Francisco, Calif.	113.5	113.1	113.9	112.8	112.3	113.1	130.9	130.7	127.5	107.4	106.2	110.4
Scranton, Pa -	109.0	108.7	111.8	108.9	108.6	111.3	118. 6	118. 6	119.4	102.0	100.9	110.0
Seattle, Wash ${ }_{\text {Washington, }}$	111.9	112.4	111.6	111.3	111.9	112.5	127.3	127.5	122.0	100.5	101.7	110.5
Washington, D. C	111.5	110.9	111.0	110.2	109.5	110.4	122.2	122.3	118.6	100.5	100.1	105.6

City	Food at home-Continued								
	Dairy products			Fruits and vegetables			Other foods at home ${ }^{4}$		
	$\underset{1955}{\mathrm{Apr}}$	$\begin{aligned} & \text { Mar. } \\ & 1955 \end{aligned}$	$\begin{aligned} & \text { Apr. } \\ & 1954 \end{aligned}$	$\begin{aligned} & \text { Apr. } \\ & 1955 \end{aligned}$	$\underset{1955}{\text { Mar. }}$	$\underset{1954}{\text { Apr. }}$	$\begin{aligned} & \text { Apr. } \\ & 1955 \end{aligned}$	$\begin{aligned} & \text { Mar. } \\ & 1955 \end{aligned}$	$\begin{aligned} & \text { Apr. } \\ & 1954 \end{aligned}$
United States average.	104.6	105.4	104.6	117.5	112.0	110.0	109.4	111.9	113.6
Atlanta, Ga-	108.0108.2105.3105.5106.4	108.4108.3108.0105.5106.5	108.3 107. 104.3 104. 103.6	$\begin{aligned} & 117.2 \\ & 114.6 \\ & 112.0 \\ & 114.1 \\ & 115.6 \end{aligned}$	110.0110.0107.8108.5109.5	105.8110.2103.210.6105.9	101.5108.9105.1114.7115.3	103.9112.1107.2117.3117.9	107.3112.2107.5120.1119.4
Baltimore, Md.									
Boston, Mass									
Chicago, Ill .									
Cincinnati, Ohio									
Cleveland, Ohio	96.7102.1108.710.5102.9	99.610.8108.8108.8102.9	$\begin{array}{r} 97.7 \\ 105.9 \\ 109.2 \\ 9.7 \\ 103.2 \end{array}$	$\begin{aligned} & 111.0 \\ & 131.6 \\ & 119.8 \\ & 108.0 \\ & 121.6 \end{aligned}$	105.9124.9116.6103.0115.6	$\begin{aligned} & 105.1 \\ & 123.8 \\ & 11.0 \\ & 105.0 \\ & 113.6 \end{aligned}$	113.4110.6109.3103.1108.1	116.4114.3109.61105.5111.2	117.6116.0111.8109.2111.7
Detroit, Mich..									
Houston, Tex									
Kansas City, Mo									
Los Angeles, Calif									
Minneapolis, Minn	102.9104.1106.3106.9103.5	103.1104.2109.2109.7103.5	$\begin{aligned} & 102.4 \\ & 10.8 \\ & 105.5 \\ & 100.5 \\ & 107.1 \end{aligned}$	$\begin{aligned} & 123.1 \\ & 11.4 \\ & 119.9 \\ & 115.6 \\ & 117.5 \end{aligned}$	$\begin{aligned} & 118.3 \\ & 10.4 \\ & 114.3 \\ & 107.5 \\ & 114.4 \end{aligned}$	120.210.4110.010.7111.0	$\begin{aligned} & 117.2 \\ & 11.5 \\ & 110.8 \\ & 111.4 \\ & 109.3 \end{aligned}$	$\begin{aligned} & 121.9 \\ & 113.3 \\ & 112.8 \\ & 120.9 \\ & 109.4 \end{aligned}$	118.0115.6115.812.4112.0
New York, N. Y									
Philadelphia, Pa									
Pittsburgh, Pa									
Portland, Oreg									
St. Louis, Mo	$\begin{array}{r} 90.3 \\ 104.6 \\ 105.1 \\ 108.2 \\ 10.1 \end{array}$	$\begin{array}{r} 91.5 \\ 104.9 \\ 107.7 \\ 108.2 \\ 111.0 \end{array}$	$\begin{array}{r} 96.7 \\ 10.5 \\ 107.5 \\ 107.0 \\ 113.9 \end{array}$	$\begin{aligned} & 125.9 \\ & 121.8 \\ & 11.2 \\ & 124.2 \\ & 115.2 \end{aligned}$	$\begin{aligned} & 118.5 \\ & 118.2 \\ & 10.5 \\ & 122.0 \\ & 107.8 \end{aligned}$	$\begin{aligned} & 119.6 \\ & 118.8 \\ & 104.3 \\ & 115.6 \\ & 106.1 \end{aligned}$	$\begin{aligned} & 118.3 \\ & 108.4 \\ & 108.2 \\ & 108.2 \\ & 110.0 \end{aligned}$	$\begin{aligned} & 120.8 \\ & 110.4 \\ & 111.1 \\ & 110.5 \\ & 112.1 \end{aligned}$	122.3109.3114.1111.9111.5
San Francisco, Calif.									
Scranton, Pa									
Seattle, Wash.									
Washington, D. C.									

${ }^{1}$ See footnote 1 to table D-1. Indexes for 56 cities for total food (1935$39=100$ or June $1940=100$) were published in the March 1953 Monthly Labor Review and in previous issues. See table D-8 for U. S. average prices for 46 cities combined.
${ }^{2}$ See footnote 2 to table D-1.
${ }^{3}$ A verage of 46 cities beginning January 1953. See footnote 1 to table D-1 4 See footnote 3 to table D-2.

Table D-8: Average retail prices of selected foods

Commodity	$\begin{aligned} & \mathrm{Apr} . \\ & 1955 \end{aligned}$	$\begin{aligned} & \text { Mar. } \\ & 1955 \end{aligned}$	Apr_{1954}	Commodity	$\begin{aligned} & \text { Apr. } \\ & 1955 \end{aligned}$	$\begin{gathered} \text { Mar. } \\ 1955 \end{gathered}$	$\begin{aligned} & \text { Apr. } \\ & 1954 \end{aligned}$
Cereals and bakery products:	Cents	Cents	Cents	All fruits and vegetables-Continued			
	54.1	54.1	53.8	Fresh fruits and vegetables-Continued	Cents	Cents	Cents
Biscuit mix ${ }^{1}$----------------------20 20 ounces	27.4	27.4	27.5				
	12.6 17.8	12.6 17.8	12.5 19.7		35.8		38.7
Rolled oats	19.0	19.0	18.5				
	22.0	22.0	21.8	Potatoes ${ }^{10}$--------------------------10 10 pounds	70.6	54.5	66.9
	17.7	17.7	17.0		15.4	15.1	13.4
	27.0	27.0	27.1		8.5	7.4	6.6
Vanilla cookies ${ }^{5}$	23.8	23.8	23.6		12.7	13.0	12.4
Meats, poultry, and fish:					17.6	17.4	15.1
Beef and veal:					14.9	15.5	12.6
	90.8	91.0	88.3		9.4	7.8	7.4
	51.6	52.1	51.2		32.3	34.2	28.6
	71.6	71.5	69.1		24.4	22.8	25.2
	39.9	39.7	40.7	Canned fruits and vegetables:			
	110.1	110.5	110.9		32.8	32.7	32.8
Pork:				Peaches-.-.-.-.-.-.-.-.-.-.-.-.-.- No. $21 / 2$ can--	33.5	33.4	32.9
	77.8	74.3	88.5	Pineapple ${ }^{11}$-------------------No.- 2.2 can	32.8	39.0	38.6
Bacon, sliced	65.9	66.7	88.4	Fruit cocktail ${ }^{11}$-------------No.-No. 303 can --	26.5	40.7	41.1
	58.9	59.4	72.8		17.0	17.0	18.4
Lamb, leg ${ }^{1}$	68.7	68.1	74.1		21.5	21.4	21.3
Other meats:				Tomatoes ${ }^{1213}$	15.1	15.0	17.2
Frankfurters do	53.3	53.4	56.0		9.7	9.7	9.8
Luncheon meat, canned...-.--- 12 ounces.-	44.3	45.4	51.7	Dried fruits and vegetables:			
Poultry: Frying chickens:					32.9	32.7	30.0
Frying chickens: Dressed 7 \qquad pound.					18.9	18.8	17.3
	61.7	59.4	45.6	Other foods at home: Partially prepared foods:			
Fish:				Vegetable soup.-.----------11-ounce can.--	14.1	14.2	14.3
Ocean perch fillet, frozen ${ }^{5}$-----------do	42.9	42.7	44.0	Beans with pork....-.-.-.--16-ounce can.-	14.9	14.8	14.4
	47.3	47.5	49.8	Condiments and sauces:			
	54.9	54.6	51.2	Pickles, sweet .----------------71/2 ounces	28.2	28.2	30.1
Tuna fish	37.7	37.9	39.3		22.3	22.3	22.2
Dairy products: Milk, fresh (grocery)				Beverages, nonalcoholic:			
	21.6	21.8	21.5	Coffee.-------------------------.-- pound	92.5	94.2	113.6
	22.6	22.9	22.5		41.1	40.2	33.4
Ice cream	29.1	29.2	29.6	Cola drink.-.-.-.------carton of 6, 6-ounce	32.6	32.5	31.1
	70.8	71.0	70.0	Fats and oils:			
Milk, evaporated	137.6	57.8 13.7	57.7 14.0	Shortening, hydrogenated.-.------pound	35.0	35.2	34.5
All fruits and vegetables:--------1472-ounce can--			14.0	Lard	20.8	29.2 21.1	26.5 26.7
Frozen fruits and vegetables:					35.4	35.5	35.8
Strawberries 9.......---------. 10 ounces --	30.6	30.8	36.7		54.3	53.4	49.1
Orange juice concentrate-. 6 ounces	17.9	17.7	16.7	Sugar and sweets:			
	19.6	19.5	19.2		52.1	52.2	52.5
	24.2	24.2	24.5		23.7	23.7	23.6
Fresh fruits and vegetables:					25.9	25.9	25.1
	15.3	14.3	15.9		4.6	4.6	4.5
	17.0	17.0	16.3		54.9	60.2	55.5
	49.9	48.2	50.1	Miscellaneous foods:			
	18.3 9.9	18.1 9.5	18.0 9.6	Gelatin, flavored .------------3-4 ounces.-	8.5	8.6	8.5

${ }^{1} 45$ cities.
${ }^{2} 39$ cities
${ }^{2} 33$ cities,
${ }^{4} 37$ cities.
${ }^{8}$ Specification changed from 12 ounces to 10 ounces, effective October 1954.
${ }_{11}$ Unit changed to 10 pounds, effective January 1955.
${ }_{11}$ Formerly No. $21 / 2$ can, change effective April 1955.
${ }_{12} 40$ cities.
${ }_{13}^{13}$ Specification changed from No. 2 can to No. 303 can, effective October 1954.
${ }^{14}$ Specification changed from 1 -ounce to 7%-ounce bar, effective January 1955.

* Priced only in season.

Note.-The United States average retail food prices appearing in table D-8 are based on prices collected monthly in 46 cities for use in the calculation of the food component of the revised Consumer Price Index. Average retail food prices for each of 20 large cities are published monthly and are available upon request. Prices for the 26 medium-size and small cities are not published on an individual city basis.

TABLE D-9: Indexes of wholesale prices, by group and subgroup of commodities ${ }^{1}$

Commodity group	${ }_{1955}^{\text {Apr. }^{2}}$	$\underset{1955}{\text { Mar. }}$	Feb. 1955	$\begin{aligned} & \text { Jan. } \\ & 1955 \end{aligned}$	$\begin{aligned} & \text { Dec. } \\ & 1954 \end{aligned}$	$\begin{aligned} & \text { Nov. } \\ & 1954 \end{aligned}$	$\begin{aligned} & \text { Oct. } \\ & 1954 \end{aligned}$	$\begin{aligned} & \text { Sept. } \\ & 1954 \end{aligned}$	$\begin{aligned} & \text { Aug. } \\ & 1954 \end{aligned}$	July 1954	$\begin{aligned} & \text { June } \\ & 1954 \end{aligned}$	$\begin{aligned} & \text { May } \\ & 1954 \end{aligned}$	Apr. 1954	$\begin{aligned} & \text { June } \\ & 1950 \end{aligned}$
All commodities	110.5	110.0	110.4	110.1	109.5	110.0	109.7	110.0	110.5	110.4	110.0	110.9	111.0	100.2
Farm products	94.2	92.1	93.1	92.5	89.9	93.2	93.1	93.6	95.8	96.2	94.8	97.9	99.4	94.5
Fresh and dried	120.9	104.4	103.8	105.2	96.9	103.2	101.9	99.8	108.3	110.9	96.6	104.4	97.4	89.8
Grains	91.0	92.2	93.1	93.5	92.5	93.5	92.9	93.6	91.2	88.1	86.5	91.2	92.9	89.6
Livestock and poultry	84.0	79.9	80.7	79.4	74.0	76. 4	77.5	80.7	83.4	83.2	87.7	93.0	94.9	99.8
Plant and animal fib	102.7	102.9	104.3	104.4	105.0	104.5	107.1	107. 4	106.7	107.2	106.9	107.0	105. 5	107.3
Fluid milk	90.5	90.5	92.0	92.4	93.6	95.1	93.8	91.7	89.7	87.7	83.7	84.1	88.3	81.6
Eggs	77.9	82.2	90.1	65.1	64.0	83.5	82.5	77.3	86.4	84.4	70.8	69.0	77.9	70.6
Hay and seeds	89.9	93.1	93.2	94.3	93.8	92.0	91.7	87.5	94.2	94.8	96.0	95.3	96.5	87.6
Other farm products	142.3	143.0	139.4	156.4	157.7	164.6	159.6	164.6	168.8	184.0	181.7	181.2	182. 2	122.4
Processed foods	102.5	101.6	103.2	103.8	103.5	103.8	103.7	105.5	106.4	106. 5	105.0	106.8	105.9	96.8
Cereal and bakery	116.8	116.5	116.3	116.9	116.8	116.5	114.5	113.8	113.2	114.0	113.5	113.3	113.2	96.5
Meats, poultry, fish	86.0	83.3	86.9	87.6	85.2	86.3	85. 8	92.0	92.0	94.1	92.3	98.3	94.3	102.4
Dairy products and ice cre	106.9	107.2	107.2	107.0	108.2	108. 8	108. 7	106. 6	105. 9	105.1	102.4	101.7	103.0	90.0
Canned, frozen, fruits and	104.5	*104.8	104.4	104.6	106.0	105.5	105.5	105. 0	104.8	104.7	104. 7	104.5	103.3	98.0
Sugar and confectionery	110.8	110.8	112.6	111. 3	111.6	112. 3	112. 0	113. 0	114.5	113.7	113.3	113.1	112.6	94.7
Packaged beverage mater	180. 2	180.4	186.4	203.7	203.4	197.8	206.3	206.0	226.5	231. 3	231.3	229.6	229.6	136.9
Animal fats and oils	72.9	68.0	69.2	74.4	77.3	84.8	84.5	96.2	96.9	94.0	90.0	99.7	108.5	63.9
Crude vegetable oils	63.6	63.5	65.1	64.8	65.6	65.1	65.0	69.0	73.5	72.2	73.0	71.8	72.1	67.9
Refined vegetable oils	71.1	70.9	73.7	73.9	73.7	73.2	76.4	76.5	78.8	79.1	79.1	76.4	76.5	67.4
Vegetable oil end pro	82.1	*82.1	83.6	83.4	83.5	83.1	84.5	87.3	87.3	87.3	87.3	87.2	84.4	79.2
Other processed food	100.9	100.8	100.7	98.2	98.4	97.8	99.8	103.5	109.6	101.4	96.8	101.3	102.9	106.6
All commodities other than farm	115.7	115.6	115.7	115.2	114.9	114.8	114.5	114.4	114.4	114.3	114.2	114.5	114.5	102.2
Textile products and ap	95.1	95.3	95.2	95.2	95.2	95.2	95.4	95.3	95.3	95.1	94.9	94.8	94.7	93.3
Cotton product	90.4	90.8	90.6	90.2	89.9	89.9	89.9	89.2	89.1	88.9	88.4	88.3	88.5	90.0
Wool products	106.0	106.1	106.3	106.6	106.7	106.6	108.4	109.6	110.3	109.8	110.1	109.5	109.2	105.3
Synthetic textil	87.2	*87. 5	86.7	87.3	87.2	86.9	86.1	85. 8	85.7	85.7	85.6	85.2	84.6	91.3
Silk product	122.8	121.1	122.4	124.1	123.9	127.4	127.0	128.4	126.3	124.2	123.9	131.6	132.3	88.8
Apparel	98.2	*98.3	98.2	98.2	98.4	98.4	98.6	98.6	98.6	98.4	98.1	98.2	98.2	92.7
Other textile p	76.4	76.6	78.0	77.3	76.9	77.6	80.9	80.3	79.8	79.1	79.0	78.8	78.9	96.3
Hides, skins, and leat	93.2	92.2	92.3	91.9	91.8	92.8	92.4	93.0	94.0	94.9	95.6	96.0	94.6	99.1
Hides and	56.9	50.7	51.6	49.5	47.4	52.7	49.5	51.5	55.8	58.2	60.6	62.5	56.5	94.3
Leather	83.6	82.1	82.2	81.2	81.5	82.0	82.1	82.9	84.4	86.5	87.4	87.6	86.0	98. 2
Footwear	111.5	111.5	111.5	111.6	111.6	111.7	111.8	111.8	111.8	111.8	111.9	111.9	111.9	102.7
Other leather pro	95.9	*95. 7	95.8	95.8	95.9	96.0	96.1	96.5	96.7	97.0	97.5	97.5	97.4	95. 2
Fuel, power, and ligh	108.2	*108. 5	108.7	108.5	107.5	107.4	106.9	106.9	106.9	106. 2	107.8	108.2	108.6	102.4
Coal...-	102. 2	105. 1	105. 2	105. 2	105. 2	105.1	105.1	105. 5	105.2	104. 9	104. 7	104.6	104.1	104.8
Cok	133.4	132.4	132.4	132.4	132.4	132.4	132.4	132.4	132.4	132.4	132.4	132.4	132.4	115.6
Gas	116.6	*116. 6	116.3	113.0	110.2	107.3	105. 8	106.0	105.4	105.4	107.8	109.0	112.3	94.8
Electricity	99.5	*99. 5	100.1	100.7	100.7	103.0	101.8	101. 2	102.4	101.8	101.8	101.8	101.8	101. 3
Petroleum and prod	111.5	111.7	111.7	111.7	110.4	109.5	109.3	109.4	109.3	108.2	110.9	111.7	112.1	103.1
Chemicals and allied pros	107.1	${ }^{*} 106.8$	107.1	107.1	107.0	107.0	106.9	106.8	106.8	106.7	106.8	107.1	107.2	92.1
Industrial chemi	118.0	117.5	117.4	117.3	117.4	117.7	117.6	117.4	117.4	117.1	117.0	117.3	117.4	96.3
Prepared paint	114.8	114.0	113.1	112.8	112.8	112.8	112.8	112.8	112.8	112.8	112.8	112.8	112.8	98.0
Paint materials	96.1	95.9	96.1	95.8	96.2	96.6	97.2	97.0	97.8	97.6	96.8	95.3	94.7	86.8
Drugs and pharmace	93.2	* 93.1	93.3	93.6	93.6	93.6	93.6	94.0	94.0	94.0	94.0	94.0	94.0	91.3
Fats and oils, ine	55.2	*55. 4	61.0	61.8	59.3	57.8	56.5	54.0	53.5	52.0	55.7	59.3	59.8	48.8
Mixed fertilizer-	108.8	108.9	109.0	108.8	108.9	109.1	109.2	109.3	109.8	109.7	109.9	109.9	109.9	101. 2
Fertilizer materials	113.5	113.6	113.5	113.6	113.3	112. 2	112.1	112, 3	112, 1	112.1	111.6	114.0	114.1	98.5
Other chemicals and pro	107.6	*107.6	108.0	107.7	107.9	107. 6	107.6	107.6	107.6	107.9	107.7	108.1	108.1	-91.1
Rubber and produ	138.3	138.0	140.6	136.8	132.0	131.4	128.5	126.9	126.4	126.8	126.1	125.1	125.0	109.5
Crude rubber	143.8	142.8	151.3	146.0	137.6	134.1	132.0	125.6	123. 5	126.5	122.8	117.5	117.0	129.0
Tire casings and tubes	142.3	142.3	142.4	139.9	134.9	134.9	129.6	129.6	129.6	129.3	129.3	129.3	129.3	106.1
Other rubber products	130.4	*130. 3	132.0	127.9	125. 2	125.4	125.2	124.0	123.7	123.7	123.7	123.7	123.7	103.6
Lumber and wood produ	122.2	*121.4	121.2	120.3	120.0	119.9	119.8	119.3	119.1	119.1	116.3	116.1	116.2	112.4
Lumber	122.7	*121.8	121.4	120.0	119.8	119.6	119.5	119.0	118.7	118.6	115.5	115.0	115. 3	113.5
Millwor	129.3	128.7	129.0	130.4	130.3	130.2	130.2	130.2	129.7	130.7	130.8	130.8	130.8	110.9
Plywood	104.8	104.8	104.8	104.7	104.3	104.3	104.3	103.2	105. 4	103.0	99.7	101.4	100.7	-91.1
Pulp, paper, and	117.4	116.8	116.6	116.3	115.9	116.0	116.3	116.3	116.3	116.2	115.8	115.8	116.3	95.9
Woodpulp	113.8	110.0	110.0	110.0	109.6	109.6	109.6	109.6	109.6	109.6	109.7	109.7	109.7	90.6
W astepaper	89.4	89.4	90.2	90.2	85. 5	87.3	83.8	80.0	80.0	79.2	70.1	67.2	83.2	79.0
Paper	128.0	128.0	128.0	127.5	126.9	126.5	126.5	126.5	126.5	126.5	126.5	126.5	126.8	103.3
Paperboard	126.0	125.7	124.0	124.0	124.1	124.1	124.2	124.2	124.2	124.2	124.2	124.4	124.8	97.2
Converted paper and paper	111.5	111.5	111.5	111.1	111. 0	111.3	111.9	112.0	112.0	111.9	111.5	111.5	111.8	93.2
Building paper and board.	129.7	129.7	129.4	127.6	127.6	127.6	127.6	127.6	127.6	127.9	127.9	127.9	127.9	106.3
Metals and metal produc	132.8	131.9	131.5	130.1	129.8	129.9	129.7	129.1	128.6	128.0	127.1	127.1	126.8	108.8
Iron and steel	136.3	136. 2	135. 8	135.8	135.0	135.5	135.0	134.1	133.8	133.6	131.8	131.8	131.1	113.1
Nonferrous metals	138.2	134.3	133.7	127.9	127.6	127.2	127.4	126.2	125.1	124.2	123.7	123.6	123.4	101.8
Metal containers	131. 6	131.6	131.6	131.6	131.6	131.6	131.2	131.2	131.2	130.3	130.0	130.0	130.0	109.0
Hardware	144.4	*144. 4	143.3	142.6	142.3	142.0	141.6	140.9	138.9	138.2	137.9	137.9	138.5	111.1
Plumbing equipment	123. 3	123.0	118.7	118.7	118.7	118.7	118.7	118.5	118.5	118.5	118.5	118. 2	118.2	103.2
Heating equipment	113.6	113.6	113.7	113.9	114.3	114.3	114.3	114.1	114.1	114.0	113.8	113.9	114.5	102.0
Structural metal products	118.2	117.9	118.0	117.8	117.8	117.4	117.9	118.0	117.7	115.9	115.9	116.5	116. 6	100.1
Nonstructural metal products	125.9	125.9	125.8	125.8	125.9	126.2	126.0	126.0	126.0	125.3	125.3	125.3	125.3	113.2

TABLE D-9: Indexes of wholesale prices, by group and subgroup of commodities ${ }^{1}$-Continued

$[1947-49=100]$														
Commodity group	$\begin{gathered} \text { Apr. } \\ 19552 \end{gathered}$	Mar. 1955	Feb. 1955	$\begin{aligned} & \text { Jan. } \\ & 1955 \end{aligned}$	Dec. 1954	Nov. 1954	Oct. 1954	Sept. 1954	$\begin{aligned} & \text { Aug. } \\ & 1954 \end{aligned}$	$\begin{aligned} & \text { July } \\ & 1954 \end{aligned}$	$\begin{gathered} \text { June } \\ 1954 \end{gathered}$	$\begin{aligned} & \text { May } \\ & 1954 \end{aligned}$	$\begin{aligned} & \text { Apr. } \\ & 1954 \end{aligned}$	$\begin{aligned} & \text { June } \\ & 1950 \end{aligned}$
Machinery and motive products	126.2	*126. 1	126.1	125.8	125. 7	125.3	124.3	124.4	124.3	124.3	124.3	124.4	124.4	106.3
Agriculture machinery and equipmen	121.5	*121. 5	121.6	121.5	121.2	121.3	122.0	121.9	122. 1	122.3	122.3	122.6	122.3	108.3
Construction machinery and equipment	134.1	*133.8	133.8	133.2	132.6	131.8	131.6	131.6	131.5	131.5	131.5	131.5	131.6	108.1
Metalworking machinery and equipment.-----	137.0	*136.9	136.6	135.1	134.7	134.0	134.0	133.3	132.7	132.6	132.6	132.6	132.6	108.8
General purpose machinery and equipme	131.0	${ }^{*} 130.4$	130.3	128.6	128.2	128.1	128.1	128.1	127.9	127.8	128.2	128.2	128.2	107.0
Miscellaneous machinery	126.8	*126.8	126. 4	126.4	126.0	126.0	126.1	125. 9	125.6	125.5	125.5	125. 2	125.2	105.0
Electrical machinery and equip	126.4	*126. 4	126. 7	126.8	126.8	126.7	125.2	125.6	125. 7	125.8	125.9	126.0	126.5	102.1
Motor vehicles.	121.7	121.5	121.5	121.7	121.7	121.0	118.6	118.9	118.9	118.9	118.9	118.9	118.9	106.7
Furniture and other household durabl	115.1	115.1	115.4	115.5	115.7	115.6	115.6	115.3	115.3	115.3	115.4	115.5	115.6	103.1
Household furniture	112.8	112.7	112.6	112.5	112.9	112.9	112.8	112.8	112. 9	112.8	113.1	113.5	113.6	101.8
Commercial furnitur	128.6	128.6	128.6	128. 6	128.6	128.6	127.3	126.2	126.2	126. 2	126. 2	126.2	126. 2	106.2
Floor covering	125.0	124.4	124.4	124.2	124.0	124.0	124.0	124.4	123.5	122.7	122.6	122.6	122.6	109.1
Household appliances	107.3	*107.2	108.5	108.7	109.4	109.1	109.5	109.4	109.7	109.7	109.8	109.9	109.9	100.1
	93.1	93.1	93.2	93.5	(4)	(4)	(4)	(4)	(4)	(4)	(4)	(4)	(4)	
	131.9	132.0	132.0	131.9	131.5	131.5	131.3	130.5	130.4	130.4	130.4	130.4	130.4	106.8
Nonmetallic minerals-struct	122.2	121.9	121.8	122.0	121.8	121.8	121.9	121.7	120.5	120.4	119.1	119.3	120.8	105.4
Flat glass	124.9	123. 9	123.9	123.9	123.9	123.9	123.9	123.9	124.7	124.7	124. 7	124.7	124.7	105. 6
Concrete ingredien	124.6	124.1	123.9	123.1	122.3	122.1	122.1	122.1	122.2	122.1	120.1	120.0	119.8	105. 7
Concrete products.	118.2	118.2	117.0	116. 7	117.4	117.4	117.8	117.8	117.9	117.7	117.5	117.3	117.3	104. 5
Structural clay pro	136.8	*136. 5	136.1	135.8	135.4	135.4	135.4	135.4	132.3	132.0	132.0	132.0	132.0	110.5
Gypsum products	122.1	122.1	122.1	122.1	122.1	122.1	122.1	122.1	122.1	122.1	122.1	122.1	122. 1	102.3
Prepared asphalt roofing	98.5	*98.8	100.4	106. 1	106. 1	106.1	106.1	104.1	98.6	98.5	94.2	96.3	108.4	98.9
Other nonmetallic mineral	119.2	119.2	119.2	119.2	119.5	119.5	120.8	120.8	120.8	120.2	120.2	120.2	120.2	105.7
Tobacco manufactures and bottled be	121.6	121.6	121.6	121.4	121.4	121.4	121.5	121.5	121.5	121.4	121.4	121.4	121.5	101.4
	124.0	124.0	124.0	124.0	124.0	124.0	124.0	124.0	124.0	124. 0	124.0	124.0	124.0	102.8
Cigars....	103.7	103.7	103.7	103.7	103. 7	103. 7	103.7	103.7	103.7	103.7	103.5	103.5	103.5	100.6
Other tobacco produ	121.4	121.4	121.4	121.4	121.4	121. 4	121.4	121. 4	121.4	121.4	120.7	120.7	120.7	103.3
Alcoholic beverages.	114.7	114.7	114.6	114.3	114.3	114.3	114.3	114.3	114.3	114.2	114.2	114.3	114.6	100.9
Nonalcoholic beverages.	148.1	148.1	148.1	148.1	148.1	148.1	148.1	148.1	148.1	148.1	148.1	147.9	147.9	100.8
Miscellaneous	94.0	95.6	97.1	97.0	98.0	97.0	96.7	99.1	102.3	103.9	105.1	109.2	110.3	96.9
Toys, sporting goods, small	113.2	113.2	113.1	113.2	112.9	112.8	112.7	112.7	113.4	113.5	113.6	113.6	113.6	104.8
Manufactured animal feed	80.1	*83. 0	85.8	84.9	86. 8	85.0	84.3	89.0	95.2	98.3	100.6	109.1	111.1	93.7
Notions and accessories	92.3	92.3	92.3	101.3	101. 2	101.2	101.2	101.2	101. 6	101. 6	101.6	93.5	93.5	88.7
Jewelry, watches, photo equipmen	102. 9	103.1	103. 2	103.6	103.5	103. 5	103.5	103. 2	102. 8	102. 7	102.7	102.3	102. 7	96. 6
Other miscellaneous.	121.3	120.6	120.6	120.3	121.0	120.9	120.8	121.2	121.2	121.2	121.3	121.3	121.3	105.4

${ }^{1}$ The revised wholesale price index $(1947-49=100)$ is the official index for January 1952 and subsequent months. The official index for December 1951 and previous dates is the former index $(1926=100)$. The revised index has been computed back to January 1947 for purposes of comparison and analysis Prices are collected from manufacturers and other producers. In some cases they are secured from trade publications or from other Government agencies which collect price quotations in the course of their regular work. For a more detailed description of the index, see A Description of the Revised Wholesale Price Index, Monthly Labor Review, February 1952 (p. 180), or reprint Serial No. R. 2067.

Beginning with the final wholesale price index for January 1955, the index weights are based on an average of the dollar value of primary market transactions in calendar years 1952 and 1953. Previously, the weights were based on the dollar value of transactions in 1947. The weight revision does not affect the comparability of the indexes.
2 Preliminary.
${ }_{3}^{3}$ Cosmetics and related products moved from drugs and pharmaceuticals subgroup to other chemicals and products subgroup.
${ }^{4}$ Not available.
*Revised.

Table D-10: Special wholesale price indexes ${ }^{1}$
$[1947-49=100]$

Commodity group	1955				1954									$\frac{1950}{\text { June }}$
	Apr. ${ }^{2}$	Mar.	Feb.	Jan.	Dec.	Nov.	Oct.	Sept.	Aug.	July	June	May	Apr.	
All foods	102.5	100.8	102.5	101.9	101.0	102.7	102.4	103.7	105. 5	105. 6	102. 7	104.6	103.9	95.0
All fish.	98.7	100.7	101.8	105. 7	100.5	102.8	101.8	113.9	111.1	103.5	97.4	103. 7	105. 7	92.4
Special metals and metal prod	129.9	*129.2	128.9	128.0	127. 7	127.6	127.1	126.6	126.3	125.8	125.2	125.2	125.0	108.3
Metalworking machinery-	143.0	*143. 2	142.7	140.7	140.1	140.1	140.2	140.2	140.2	139.9	139.9	139.9	139.9	109.8
Machinery and equipmen	128.7	*128. 6	128.6	128.1	127.9	127.7	127.4	127.4	127.2	127.2	127.3	127.4	127.5	106.1
Total tractors	122.5	122.4	122.4	122. 2	121.9	122.0	123.2	123.2	123.2	123.9	123.9	123.9	123.9	107.5
Steel mill products	145.8	145. 8	145.8	145. 7	145. 8	145. 8	145.8	145. 7	145.6	145.6	141.9	141.9	141.9	114.9
Building materials	123.3	122.8	122.5	122.1	122.0	121.9	121.7	121.3	120.8	120.5	118.5	118.6	119.0	107.5
Soaps	97.3	*98. 5	98.9	97.4	96.9	96. 4	96.1	96.1	96.0	96.6	96.3	97.1	97.1	80.9
Synthetic detergents	91.5	*91. 5	93.4	93.4	93.4	93.4	93, 4	93.4	93.4	93.4	93.4	93.4	93.4	82.9
Refined petroleum product	109.8	110.1	109.9	109.9	108.4	107.4	107.2	107.3	107.2	105.9	109.1	110.0	110.5	102.1
East coast petroleum.	106. 1	106.1	105. 5	105.3	105.3	102.9	102.9	101.1	101.1	104.7	106. 1	107.3	108. 1	98.1
Mid-continent petroleu	107.5	107.5	107.5	107.5	105. 5	105. 2	104.6	104.0	103.7	102.8	104.8	105. 4	105. 7	101.8
Gulf coast petroleum.	117.7	118.5	118.5	117.9	116.9	115.9	115.9	114.9	114.9	109.0	113.1	113.1	114. 1	109. 7
Pacific coast petroleum	105.4	105. 4	105.4	106. 9	103.1	102.6	102.6	108.8	108.8	108.8	115.9	118.8	118.8	94.1
Pulp, paper and products, excl. bldg. pape	117.1	116.5	116.4	116.0	115.7	115.8	116.0	116.0	116.0	115.9	115. 5	115.5	116. 1	95.6
Bituminous coal, domestic sizes	101.8	111.8	112. 1	112. 2	112. 2	112.3	112.1	110.8	108.5	106.7	104.2	103.6	103.7	106.8
Lumber and wood products, excl. millwork	121.3	*120.5	120.1	118.9	118.6	118.4	118.4	117.8	117.6	117.4	114.3	114. 0	114.1	112. 6
All commodities except farm products	113.4	113.1	113.4	113.2	112.9	112.8	112.5	112.8	113.0	112.9	112.6	113.1	112.9	101.2

${ }^{1}$ See footnote 1 , table D-9.
${ }^{2}$ Preliminary.
*Revised.

E: Work Stoppages

TABLE E-1: Work stoppages resulting from labor-management disputes ${ }^{1}$

Month and year	Number of stoppages		Workers involved in stoppages		Man-days idle during month or year			
	Beginning in month or year	In effect during month	Beginning in month or year	In effect during month	Number	Percent of estimated working time		
1935-39 (average)	$\begin{aligned} & 2,862 \\ & 3,573 \\ & 4,750 \\ & 4,985 \\ & 3,693 \\ & 3,419 \\ & 3,606 \\ & 4,843 \\ & 4,737 \\ & 5,117 \\ & 5,091 \\ & 3,468 \end{aligned}$							
1947-49 (average)			$1,130,000$$2,380,000$$3,470,000$		$\begin{aligned} & 16,900,000 \\ & 39,700,000 \end{aligned}$	0.27		
1945					38,000, 000	$\begin{aligned} & .46 \\ & .47 \end{aligned}$		
1946			$3,470,000$ $4,600,000$		116, 000, 000	1. 43		
1948			2, 170, 000		34, 600, 000			
1949			$\begin{aligned} & 1,960,000 \\ & 3,030,000 \end{aligned}$		$34,100,000$ $50,500,000$.37 .59		
1951			3,$2,410,000$$2,220,000$		$38,800,000$. 44		
1952			2, 220, 000$3,540,000$		$\begin{aligned} & 22,900,000 \\ & 59,100,000 \end{aligned}$			
1954---			$\begin{aligned} & 2,400,000 \\ & 1,530,000 \end{aligned}$		$\begin{aligned} & 28,300,000 \\ & 22,600,000 \end{aligned}$.23 .57		
						$\begin{array}{r} .26 \\ .21 \end{array}$		
1954: April	$\begin{aligned} & 330 \\ & 384 \\ & 358 \\ & 370 \\ & 328 \\ & 315 \\ & 285 \\ & 220 \\ & 153 \end{aligned}$							
May		559	$\begin{aligned} & 208,000 \\ & 196,000 \end{aligned}$	244,000	2, 010,000	.13.24.26		
		577		281,000376,000	2,390, 000			
July-...		580	238, 000		$3,800,000$$3,740,000$. 26		
August Septer		525	143,000126,000	300,000		. 414		
October-.-		526 488		304,000259,000	$2,410,000$ $1,820,000$. 41		
November		488	126,000 164,000		1, 820,000	. 21		
December.		293	$\begin{aligned} & 71,000 \\ & 29,000 \end{aligned}$	$\begin{array}{r} 129,000 \\ 78,000 \end{array}$	$\begin{array}{r} 1,310,000 \\ \quad 486,000 \end{array}$. 15		
1955: January ${ }^{2}$	$\begin{aligned} & 225 \\ & 250 \\ & 300 \\ & 325 \end{aligned}$	325380450500	$\begin{array}{r} 50,000 \\ 90,000 \\ 165,000 \\ 210,000 \end{array}$	$\begin{array}{r} 80,000 \\ 125,000 \end{array}$ 125,000 220,000 310, 000	$\begin{array}{r} 400,000 \\ 570,000 \\ 1,600,000 \\ 2,600,000 \end{array}$.05.07.17.30		
February ${ }^{2}$								
March ${ }^{2}{ }^{\text {April }}{ }^{\text {a }}$								
April ${ }^{2}$								

${ }^{1}$ All work stoppages known to the Bureau of Labor Statistics and its various cooperating agencies, involving six or more workers and lasting a full day or shift or longer, are included in this report. Figures on "workers involved" and "man-days idle" cover all workers made idle for as long as one
shift in establishments directly involved in a stoppage. They do not measure the indirect or secondary effects on other establishments or industries whose employees are made idle as a result of material or service shortages.
${ }^{2}$ Preliminary.

F: Building and Construction

Table F-1: Expenditures for new construction ${ }^{1}$
[Value of work put in place]

Type of construction	Expenditures (in millions)														
	$1955{ }^{2}$					$1954{ }^{2}$								$1954{ }^{2}$ Total	$\frac{1953^{2}}{\text { Total }}$
	May ${ }^{3}$	Apr.	Mar.	Feb.	Jan.	Dec.	Nov.	Oct.	Sept.	Aug.	July	June	May		
Total new construction 4	\$3,537	\$3, 261	\$2,974	\$2, 697	\$2,819	\$3,092	\$3,329	\$3,503	\$3,674	\$3,693	\$3,556	\$3,385	\$3, 140	\$37, 577	\$35, 271
Private construction	2,490	2,349	2,179	2,003	2,072	2, 263	2,358	2,420	2,460	2,457	2,387	2, 273	2,116	25, 768	23,877
Residential building (nonfarm)	1,364	1,298	1,170	1,049	1,122	1,258	1,293	1,321	1,327	1,313	1,267	1,193	1,107	13, 496	11, 930
New dwelling units.	1,220	1, 170	1,070	960	1,030	1,150	1,175	1,195	1,195	1,175	1,125	1,050	970	12, 070	10, 555
Additions and alterations	117	105	79	68	71 71	86	- 96	102	107	110	113	114	111	1,130	1,108
Nonhousekeeping ${ }^{5}$--...-.-.---	27	23	21	21	21	22	22	24	25	28	29	29 530	26	6, 296	5,680
Nonresidential building (nonfarm) ${ }^{6}$---	593	563	559 186	549 187	542 186	552 184	564 178	554 170	558 162	556 159	551 158	530	490 162	6,250 2,030	5,680 2,229
	184 235	184 214	186 208	187 199	186 188	184 192	178 203	170 202	162 210	159 210	158	161	162	2,030 2,212	2, 229 1,791
Commercial.-.-.-.-......-.-.-. Warehouses, office, and loft buildings	235 88	214 84	208 82	199 83	188 84	192 87	203 90	202 89	210 88	210 88	206 81	192 76	170 72	2,212 958	1,791 739
Stores, restaurants, and garages	147	130	126	116	104	105	113	113	122	122	125	116	98	1,254	1,052
Other nonresidential building.	174	165	165	163	168	176	183	182	186	187	187	177	158	2,008	1,660
Religious....	59	54	53	53	55	57	59	59	58	56	52	47	42	593	472
Educational.	37	40	41	39	42	45	48	49	50	50	48	45	41	529	426
Social and recreational	20	17	16	17	18	19	21	22	22	22	21	20	17	228	163
Hospital and institutiona	30	28	28	28	28	29	29	29	30	29	29	28	28	337	317
Miscellaneous.-.-----------	28	26	27	26	25	26	26	23	26	30	37	37	30	321	282
Farm construction	131	114	103	95	92	93	106	126	153	167	164	157	145	1,560	1,731
Public utilities.-.	386	360	333	297	302	348	383	407	410	409	393	382	365	4,341	4,416
Railroad...	29	28	25	19	20	28	28	38	28	26	30	31	30	353	442
Telephone and telegrap	60	55	55	50	50	51	55	56	57	58	58	58	58	655	-615
Other public utilities..	297	277	253	228	232	269	300	313	325	325	305	293	277	3,333	3,359
All other private ${ }^{8}$.-	16	14	14	13	14	12	12	12	12	12	12	11	9	121	120
Public construction	1,047	912	795	694	747	829	971	1,083	1,214	1,236	1,169	1,112	1,024	$\begin{array}{r}11.809 \\ \hline 336\end{array}$	11.394
	22	22	23	21	22	22	22	23	24	25	24	26	31	336	556
Nonresidential building (other than military facilities)	388	378	354	316	342	351	366	390	410	437	420	407	394	4,641	4,346
Industrial.....--	86	86	81	70	90	102	104	105	106	130	130	129	132	1,506	1,771
Educational	206	200	190	178	182	181	185	193	197	195	189	183	177	2,134	1,714
Hospital and institutional	32	31	28	23	25	25	28	31	33	37	34	35	34	2, 365	365
Other nonresidential...	64	61	55	45	45	43	49	61	74	75	67	60	51	636	496
Military facilities ${ }^{10}$	90	87	83	78	82	88	95	101	98	97	90	90	78	1,030	1,307
Highways.........	360	255	180	150	155	214	320	389	492	479	440	400	342	3,750	3, 160
Sewer and water	97	89	83	70	77	77	83	88	91	94	89	85	81	982	883
Miscellaneous public service enterprises ${ }^{11}$	19	16	14	11	13	15	16	19	23	25	25	22	19	218	200
Conservation and development..-----	57	51	45	38	45	52	58	61	63	64	67	68	65	704	830
All other public ${ }^{12}$-.-.-.-.-.-------------	14	14	13	10	11	10	11	12	13	15	14	14	14	148	112

${ }^{1}$ Joint estimates of the Bureau of Labor Statistics, U. S. Department of Labor, and the Business and Defense Services Administration, U. S. Department of Commerce. Estimated construction expenditures represent the monetary value of the volume of work accomplished during the given period of time. These figures should be differentiated from permit valuation data reported in the tabulations for building permit activity (tables F-3, F-4, and $\mathrm{F}-5$) and the data on value of contract awards reported in table $\mathrm{F}-2$. ${ }_{2}$ Includes revisions made annually in May.
8 Preliminary

- Includes major additions and alterations

Includes hotels, dormitories, and tourist courts and cabins.
6 Expenditures by privately owned public utilities for nonresidential building are included under "Public utilities."
${ }^{7}$ Includes Federal contributions toward construction of private nonprofit hospital facilities under the National Hospital Program.
8 Covers privately owned sewer and water facilities, roads and bridges, and miscellaneous nonbuilding items such as parks and playgrounds
${ }_{9}$ Includes nonhousekeeping public residential construction as well as housekeeping units.
10 Covers all construction, building as well as nonbuilding (except for production facilities, which are included in public industrial building)
${ }_{11}$ Covers primarily puhlicly owned airports, electric light and power systems, and local transit facilities.
systems, and local transit faciinties. ${ }_{12}$ Covers public construction not elsewhere classified, such as parks, playgrounds, and memorials.

TABLE F-2: Contract awards. Public construction, by ownership and type of construction ${ }^{1}$

Ownership and type of construction ${ }^{2}$	Value (in millions)														
	1955			$1954{ }^{3}$										$\frac{1954^{3}}{\text { Total }}$	$1953{ }^{3}$
	Mar.4	Feb. ${ }^{3}$	Jan. ${ }^{3}$	Dec.	Nov.	Oct.	Sept.	Aug.	July	June	May	Apr.	Mar.		Total
	139.7	77.6	82.4	87.2	92.8	136.4	109.1	73.7	96.5	188.0	117.2	258.1	84.3	1,407.1	2,154.2
Residential building	0	8.3	$\begin{array}{r}0 \\ \\ \hline 8\end{array}$	0	${ }^{(5)}$		$\quad .3$	(5)	0		${ }^{(5)}$	2. 4	84.3	1,407.1	$2,154.2$ 15.0
Nonresidential buildi	98.3	29.6	44.8	33.4	62.9	81.6	55.9	42.8	66.1	119.6	70.6	198.9	41.4	863.8	1,525.2
Educational Hospital and institutional	${ }^{(5)} 5$	${ }^{(5)} 4$	${ }^{(5)}$. 1	${ }_{16}{ }^{5}$	3.1	1.3	.2 1.8	1.2	$\begin{array}{r}110.6 \\ \hline .4\end{array}$	1.6	108.1	1.3 .3	14.6 78	1,525.2
Hospital and institutional.	5.8 4.4	$\xrightarrow[2.4]{4}$	6.8 3.8	. 4	16. 5	8.1	4. 2	1.8	+. 5	15.3	13.6	1.4	4.2	72.9	29.7
Other nonresidential building.	4. 88 88.1	2.0 27.2	3. 3 34.2	1.4 31.5	4.1 42.3	2.5 67.9	4.7 45	1.9 37	3.3	7.6	2.3	3. 0	3.1	38.7	45.7
Airfield building-.-.....--	17.5	4.9	14.8	9.5	7.7	6.4	1.7	37. 5	61. 3.6	13. 4	53.1 5.6	194.4 17.2	33.8	737.6 89.7	1,436.4
Industrial.	47.3	10.5	6.8	10.9	29.0	22.1	23.5	20.6	19.6	44.1	20.4	142.8	11.3	390.3	1,151.9
Troop housing	6.0	. 6	3.7	3.2	. 9	29.8	8.5	3.2	19.8	6.0	8.5	$\begin{array}{r}2.9 \\ \hline\end{array}$	11.3 .9	390.3 68.5	$1,151.9$ 60.7
Warehouses.	7.5	6.3	1.5	2.3	. 4	3.0	1.6	3.4	25.1	7.1	6.1	24.4	5.8	82.3	64.7
All other	9.8	4.9	7.4	5.6	4.3	6. 6	10.4	10.2	12.0	25.7	12. 5	7.1	5.4	106.8	87.2
Airfields .-.-......-----	16.2	10.6	22.3	5.9	7.0	11.9	14.1	11.2	12.5	14.3	16.5	20.3	8.3	152.9	103.9
Conservation and develop	11.9	20.8	6. 0	19.2	16.0	32.2	23.8	7.4	6. 6	29.9	16.9	23.3	12.4	199.7	225. 5
Electric power utilities	6.0	2.9	2.8	6.7	2.8	6. 0	6.4	6.3	7.2	8.6	3.2	4.6	6.6	62.4	52.9
Electric power utilities.	4.3	3. 1	1. 3	15.6	1.4	3. 6	5.0	1.8	. 7	6.2	3.9	4.6	6.9	66.7	156.8
All other federally owne	3. 0	2.3	5.2	6.4	2.7	1.1	3.6	4.2	3. 4	9.2	6.1	4. 0	8.2	57.7	74.9
State and locally owned	636.1 16.5	428.8 16.6	439.1 7.9	641.2 9.8	473.3	597.8 10.1	614.4 28.7	583.3	718.8	737.2	583.7	578.1	553.1	6,886.7	6,316.6
Nonresidential building	260.7	183.9	224.3	246.7	203.6	225.7	261.4	248.6	37.5 292.5	42.6 293.3	18.5 243.7	14.5 227.1	28.0 266.6	254.6 $2,869.4$	331.5 $2,258.7$
Educational	206.0	137.6	132.1	172.8	153.0	165.6	177.8	185.4	206.9	214.5	195.4	171.1	174.5	2,077.9	1,629.3
Hospital and institutional.	10.6	12. 2	20.3	21.8	16.1	14.7	22.5	19.5	37.4	19.1	18.8	19.4	12.9	245.1	$1,627.3$
Administrative and general	24.5	15.1	28.0	14.8	12.9	23.0	39.2	24.8	20.3	37.1	16.2	19.3	13.8	253.5	147.8
Other nonresidential building	19.6	19.0	43.9	37.3	21.6	22.4	21.9	18.9	27.9	22.6	13.3	17.3	65.4	292.9	244.3
Highway --......	248.3	161.0	121.4	270.2	179.7	244.0	240.9	226.0	292.7	299.7	225.5	223.4	171.0	2, 684.6	2,662.8
Sewerage systems.	44.0	28.1	35.8	33.3	29.3	64.3	37.1	36.3	46. 4	47.4	35.8	54.0	45.4	2, 472.7	2, 469.4
Water supply facilitie	28.2	24.0	27.6	28.9	23.7	26.7	25.5	23.2	24.8	24.3	35.6	27.6	16.9	292.7	282.7
Utilities_-.-......	29.0	8.2	12.7	42.4	15.8	10.5	12.4	17.0	13.7	21.9	11.5	17.7	17.6	197.4	185.3
Electric power	2.0	3. 9	4.3	27.4	11.6	3.4	3.3	12.3	7.1	6.0	4.2	15.3	9.8	105.3	72.4
All other State and locally owned.-----------	27.0 9.4	4. 3 7.0	8.4 9.4	15.0 9.9	4.2 9.1	7.1	9.1	4.7	6. 6	15.9	7.3	2.4	7.8	92.1	112.9
All other State and locally owned...	9.4	7.0	9.4	9.9	9.1	16.5	8.4	10.1	11.2	8.0	13.1	13.8	7.6	115.3	126.2

[^69]${ }^{2}$ Types not shown separately are included in the appropriate "other" category.
${ }_{3}^{3}$ Revised. ${ }^{4}$ Preliminary.
${ }^{3}$ Revised. ${ }^{5}$ Less than $\$ 50,000$.

Table F-3: Building permit activity: Valuation, by private-public ownership, class of construction, and type of building ${ }^{1}$

Class of construction, ownership, and type of building	Valuation (in millions)									
	1955			1954						
	Mar.	Feb.	Jan. ${ }^{2}$	Dec.	Nov.	Oct.	Sept.	Aug.	July	$\underset{\text { total }}{\text { Annual }}$
All building construction		\$1,220.2	\$1,126.8	\$1,226. 7	\$1,345. 2	\$1,471.5	\$1,446.6	\$1, 539. 3	\$1, 519.2	
Private	1, 638.7	1,100.0	1, 038.7	1,098.6	1,225.9	1,349.3	1,318.0	1,387.8	1,396. 0	$14,806.8$
Public.	146.8						128.5			$1,658.2$
	1,153.9	756.8	711.5	742.6	838.2	894.1	912.6	928.8	923.7	9, 990.7
New dwelling units (housekeeping only)	1,136. 0	742.5	702.6	729.4	830.1	881.6	905.0	920.6	908.3	$9,854.5$
	1, 127.8	723.3	699.9	718.1	827.2	879.6	892.0	906.4	892.4	9, 695. 2
1-family	1,034.7	673.9	647.9	665.5	767.4	816.5	837.0	847.5	824.5	8,918.3
2-family	1, 26.1	14.9	12.8	16.1	17.3	16.9	17.4	18.2	19.7	210.7
3- and 4-family	8.3	6.5	6. 2	7.6	6.8	9.2	6.8	6.3	6.3	87.6
5-or-more family	58.8	28.0	33.0	28.9	35.7	37.0	30.8	34.4	41.9 15.9	478. 7
Publicly owned......	8.2	19.3	2. 7	11.3	2.8	2.0	13.0	14.2	15.9	159. 2
Nonhousekeeping buildings	17.9	14.3	8. 9	13.2	8.1	12.5	7.6	8.2	15.4	136.2
New nonresidential building-.-	487.2	363.1	320.4	389.9	398.3	457.0	408.0	470.1	455.6	5, 005.8
Commercial buildings	146.9	122. 2	106.8	143.1	141.2	134.5	134.4	143.3	189.0	1, 591.5
Amusement buildings	6.0	12.6	6. 2	7.0 3.4	5. 0	8.3 7 8	7.9 6.5	9.6 3.3	7.2 6.4	97.6 60.1
Commercial garages	3.0	2.7 8	5. 0	3. 4 9.0	4.3 10.8	7.8 10.6	6.5 11.0	3.3 12.2	6.4 11.0	60.1 119.9
Gasoline and service stations	12.2	8.5	$\begin{array}{r}8.8 \\ \hline\end{array}$	9.0	10.8	10.6	11.0	12.2	11.0	119.9 454.6
Office buildings.-.-.-.-.-.-	39.2	31.0	29.8	53.4	41.8	25.8	37.1	41.5	90.6	454.6
Stores and other mercantile building	86.5	67.5	57.1	70.3	79.4	82.1	71.8	76. 7	73.8	+859.3
Community buildings...-.	185. 0	129.2	121.3	139.1	139.0	153.8	143.3	166.1	162.9	1,870.5
Educational buildings	127.3	84.3	77.4	96.7	80.6	96.7	89.1	106.2	109.3	1,173. 6
Institutional buildings	25.4	22.9	21.7	20.2	28.5	18.7	23.3	24.5	20.4	335.5
Religious buildings	32.2	22.0	22.2	22. 2	29.8	38.4	30.8	35.3	33.2	361. 5
Garages, private residential	13.2	5.5	5.8	6.8 50.8	13.0	17.6	19.2	18.2	17.6 47.3	166.4 662.3
Industrial buildings.	74.0	49.7	44.7 16.6	50.8 18.4	42.1 35.9	82.9 28.6	48.1 32.8	53.1 48.6	47.3 13.9	662.3 304.6
Public buildings	24.3 24.4	16.2 28.4	16.6	18.4 20.0	35.9 12.7	28.6 20.3	32.8 14.4	48.6 21.1	13.9 11.6	304.6 209.4
All other nonresidential buildings.	19.5	11.9	12.1	11.7	14.4	19.1	15.9	19.8	13.3	201.1
Additions, alterations, and repairs...-	144.3	100.2	94.9	94.3	108.7	120.3	126.0	140.5	139.9	1,468. 4

${ }^{1}$ These statistics on building construction authorized by local building permits measure building activity in all localities having building-permit systems-rural nonfarm as well as urban. Such localities (over 7,000) include about 80 percent of the nonfarm population of the country, according to the 1950 Census. The data cover both federally and nonfederally owned projects. Figures on the amount of construction contracts awarded for Federal projects and for public housing (Federal, State, and local) in permitissuing places are added to the valuation data (estimated cost entered by builders on building-permit applications) for privately owned projects;
construction undertaken by State and local governments is reported by local officials. No adjustment has been made in the building-permit data to reflect the fact that permit valuations generally understate the actual to reflect the fact that permit valuations generaly understate the actual cost of construction, nor for lapsed permits or the lag between permitissuance or contract-award dates and start of constructioniding construction started. Components may not always equal totals because of rounding. Components
2 Revised.

Table F-4: Building permit activity: Valuation, by class of construction and geographic region ${ }^{1}$

Olass of construction and geographic region	Valuation (in millions)									
	1955			1954						
	Mar.	Feb.	Jan. ${ }^{2}$	Dec.	Nov.	Oct.	Sept.	Aug.	July	$\begin{aligned} & \text { Annual } \\ & \text { total } \end{aligned}$
All building construction ${ }^{3}$	\$1, 785. 5 385.8 501.4 457.2 441.0	$\begin{array}{r} \$ 1,220.2 \\ 218.9 \\ 312.8 \\ 378.1 \\ 310.3 \end{array}$	$\begin{array}{r} \$ 1,126.8 \\ 250.1 \\ 238.6 \\ 341.1 \\ 296.9 \end{array}$	$\begin{array}{r} \$ 1,226.7 \\ 256.3 \\ 326.4 \\ 320.1 \\ 323.9 \end{array}$	\$1, 345.2 287.4 385.8 339.7 332.4	$\begin{array}{r} \$ 1,471.5 \\ 298.2 \\ 435.2 \\ 386.2 \\ 351.9 \end{array}$	$\$ 1,446.6$28.2431.0389.9337.5	$\begin{array}{r} \$ 1,539.3 \\ 361.1 \\ 480.0 \\ 354.3 \\ 344.0 \end{array}$	$\$ 1,519.2$ 369.0 465.5 346.6 338.0	$\begin{array}{r} \$ 16,464.9 \\ 3,657.1 \\ 4,834.3 \\ 4,133.0 \\ 3,840.4 \end{array}$
Northeast.............-										
North Central										
West										
New dwelling units (housekeeping only)	$1,136.0$244.8314.1281.8295.3487.2107.0142.9130.8106.5144.331.742.736.933.0	$\begin{array}{r} 742.5 \\ 124.9 \\ 182.3 \\ 226.0 \\ 209.3 \\ 363.1 \\ 71.4 \\ 107.6 \\ 113.7 \\ 70.5 \\ 100.2 \\ 20.2 \\ 22.1 \\ 32.3 \\ 25.5 \end{array}$	702.6141.8142.4206.3212.0320.486.974.4101.158.094.919.620.631.822.9	729.414.1181.0184.0223.3389.993.9117.0176.572.594.320.223.526.324.2	830.1167.0237.9206.8218.3398.396.0117.8102.682.0108.723.428.429.028.0	881.6174.7268.1210.7228.1457.096.0126.8144.189.6120.325.737.829.227.6	905.0186.128.1225.0210.8408.074.6110.1129.593.8126.026.136.232.131.6	920.6210.3284.1214.5211.8470.1117.9154.2100.697.314.531.839.536.832.3	$\begin{array}{r} 908.3 \\ 204.8 \\ 285.5 \\ 203.9 \\ 214.0 \\ 455.6 \\ 12.9 \\ 134.2 \\ 98.8 \\ 94.7 \\ 139.9 \\ 34.6 \\ 41.2 \\ 37.1 \\ 27.1 \\ \hline \end{array}$	$\begin{array}{r}9,854.5 \\ 2,15.1 \\ 2,905.8 \\ 2,340.3 \\ 2,451.2 \\ 5,005.8 \\ 1,14.5 \\ 1,489.2 \\ 1,36.1 \\ 1,007.9 \\ 1,468.4 \\ 33.9 \\ 404.0 \\ 391.2 \\ 337.3 \\ \hline\end{array}$
Northeast_-.--										
North Central										
West.-										
New nonresidential buildings.										
Northeast....										
North Central										
South										
West.-										
Additions, alterations, and repairs										
North Central										
South. West.										

${ }^{1}$ See table F-3, footnote 1.
Includes new nonhousekeeping residential building, not shown separately.

[^70]TABLE F-5: Building permit activity: Valuation, by metropolitan-nonmetropolitan location and State ${ }^{1}$

State and location	Valuation (in millions)									
	1955		1954							
	Feb.	Jan. ${ }^{2}$	Dec.	Nov.	Oct.	Sept.	Aug.	July	June	$\begin{aligned} & \text { Annual } \\ & \text { total } \end{aligned}$
All States. Metropolitan areas ${ }^{3}$---1. Nonmetropolitan areas	$\begin{array}{r} \$ 1,220.2 \\ 990.8 \\ 229.4 \end{array}$	$\begin{array}{r} \$ 1,126.8 \\ 926.1 \\ 200.7 \end{array}$	$\begin{array}{r} \$ 1,226.7 \\ 1,010.2 \\ 216.5 \end{array}$	$\begin{array}{r} \$ 1,345.2 \\ 1,078.8 \\ 266.4 \end{array}$	$\begin{array}{r} \$ 1,471.5 \\ 1,145.9 \\ 325.6 \end{array}$	$\begin{array}{r} \$ 1,446.6 \\ 1,146.9 \\ 299.7 \end{array}$	$\begin{array}{r} \$ 1,539.3 \\ 1,236.8 \\ 302.5 \end{array}$	$\begin{array}{r} \$ 1,519.2 \\ 1,227.9 \\ 291.3 \end{array}$	$\begin{array}{r} \$ 1,649.1 \\ 1,304.2 \\ 344.9 \end{array}$	$\begin{array}{r} \$ 16,464.9 \\ 13,161.1 \\ 3,303.8 \end{array}$
Alabama	14.3	9.9	7.8	12.5	14.2	12.7	13.4	12.3	12.5	135.8
Arizona	15.4	12.1	12.5	11.0	16.8	10.9	11.3	12.5	12.8	145.1
Arkansas	4.2	4.1	6.1	4.6	3.8	6. 0	5.5	5.1	7.0	77.4
California	209.9	206.3	222.9	226.6	214.7	220.1	231.7	231.1	256.5	2,571.0
Colorado.	18.0	23.1	24.2	17.0	26.8	22.9	26.3	23.3	24.1	2, 245.3
Connecticut	17.3	17.1	21.4	28.2	28.2	29.9	31.5	27.4	36.0	320.4
Delaware--.-....--	2.3	2. 9	1.5	2.4	4.5	4. 7	5.0	5.7	6.9	49.6
District of Columbia	6. 0	$\begin{array}{r}2.3 \\ 57 \\ \hline\end{array}$	9.5	18.6	3. 2	5. 3	2.1	2.9	9.6	72.7
Georgia.	23.7	24.7	50.1	55. 17.9	18.8	58.1 22.4	49.9 21.1	57.1 19.5	58.6 49.6	649.7 267.8
Idaho-	1.7	. 7	1.4	3.0	3.2	3.4	2.6	2.5	4.1	30.5
Illinois.	63.0	49.8	70.2	83.5	87.9	89.2	9.7	98.0	92.0	985. 9
Indiana	19.8	18.2	20.0	26.1	33.0	27.7	34.7	28.2	32.3	340.8
Iowa...	5. 9	5. 5	7.8	15.2	12.0	12.9	12.0	14.5	16.0	141.3
Kansas.	14.3	9.5	13.8	24.9	12.9	12.6	11.8	12.6	17.1	168.8
Kentucky	8.4	10.7	6.6	11.8	10.4	12.7	12.3	12.3	19.3	170.7
Louisiana	34.6	27.1	16. 3	17.4	17.6	21.3	18.8	22.9	19.9	216.8
Maryland.	12.7	37. ${ }^{5}$	4.7	2.7	2.7	2.5	2.7	3.0	3. 5	30.2
Massachusetts	24.3	20.4	37.7	32.9 36.6	39.8 38.6	39.1 25.5	37.1 36.0	34.4 38.5	41.7 35.0	402.5 391.8
Michigan	62.2	54.8	69.7	68.4	100.5	86.7	93.4	106.8	100.7	1,007.8
Minnesota	16.1	12.8	25.0	27.8	34.5	32.2	40.4	33.3	29.3	358.1
Mississippi	4.7	3.3	7.7	4.2	4.8	5.8	6.7	4. 1	6.3	62.4
Missouri..	28.1	19.0	23.5 2.9	20.6 3.9	22.6	24.9	26. 6	32.7	42.1	304.6
Nebraska	2.7	3.2		8.1	7.4	7.9				
Nevada..	7.5	6.2	8.7	6.3	9.1	4. 0	7.0 5.8	6.3 4.1	9.3	77.8 82.0
New Hampshire	. 8	. 9	4.4	3.1	2.2	1.7	2.5	2.1	2.9	27.6
New Jersey .-.	44.3	48.9	49.4	55.8	61.2	50.6	59.7	62. 0	65.7	686.3
New Mexico.	5.8	6.8	3.7	5.9	5.8	7.3	5.8	5.3	7.0	72.3
New York.	79.2	98.4	101.8	100.9	97.7	111.1	155.3	161.1	117.8	1, 412.8
North Carolina	19.7	15.8	12.9	11.5	12.8	16.1	19.4	14.4	16.1	181.6
North Dakot	64.3	5.3	1.1	2.2	3. 9	3. 6	2.9	3.8	3.6	29.8
Ohio -.......	64.2	50.1	65.8	76.0	82.2	96.9	104.7	106.2	95.2	985.1
Okiahoma	11.9	10.4	8.8	12.8	11.4	11.9	14.2	10.0	13.2	137.4
Oregon-	13.3	8.3	9.7	10.7	13.9	16.0	17.5	11.7	18.3	151.0
Pennsylvania	49.3	60.4	44.1	45.8	63.8	62.7	67.8	70.9	79.6	734.3
Rhode Island.	1.9	3.4	2.1	3.8	3.1	2.7	3.5	3.2	5.6	44.5
South Carolina	6.0	6.1	5.9	5. 4	5.1	6.3	6.4	5.3	5.7	67.3
South Dakota	1.0	1.1	1.8	3.0	2.8	2.8	6.3	2.9	3.0	32.7
Tennessee.	14.3	18.9	13.2	14.5	20.5	18.5	16.7	21. 9	32.1	209.9
Texas	89.0	83.8	87.5	83.3	92.6	98.3	79.7	78.5	81.9	946.4
Utah	4.1	3.1	4.9	9.0	16.7	11.1	10. 9	10.2	10.8	105.1
Virginia.-	33.7	26. ${ }^{2}$	45.8 29	30. ${ }^{6}$	54.8 ${ }^{8}$	1.4 46.2	2.1 40.1	.8 32.6	34. ${ }^{3}$	9.3 420.1
Washington	33.3	27.9	31.2	37.2	39.3	35.6	27.6	31.9	33.5	375.3
West Virginia	2.7	2.1	2.6	4.0	11.6	5.4	5.9	7.6	8.2	65.1
Wisconsin.	35.2	14.2	23.0	29.9	35.3	33.6	44.5	40.1	51.0	401.5
W yoming.	. 9	1.1	1.8	1.8	2.7	2.7	2.1	2.1	2.1	23.2

[^71]Table F-6: Number of new permanent nonfarm dwelling units started, by ownership and location, and construction cost ${ }^{1}$

${ }^{1}$ The data shown here do not include temporary units, conversions, dormitory accomodations, trailers, or military barracks. They do include prefabricated housing, if permanent.
These estimates are based on (1) monthly building-permit reports (adjusted for lapsed permits and for lag between permit issuance and the start of construction), (2) continuous field surveys in non-permit-issuing places, and (3) reports of public construction contract awards.

Beginning with January 1954 data, the estimating techniques for the privately owned segment of the housing starts series were revised to combine (1) a monthly reporting system expanded to include almost all building-permit-issuing localities (accounting for nearly 80 percent of total nonfarm population), with (2) a newly designed sample of counties that permits more efficient operations and a greater degree of accuracy than previously. The new series is continuous with statistics for earlier dates except that the urban and rural-nonfarm distribution shown previously is replaced by metroand rural-nonitarm (1-family versus rental-type structures) are continued from the old to the new series, and are available on request.
The error in the total private nonfarm estimate due to sampling in the
nonpermit segment is such that for an estimate of 100,000 starts the chances are 19 out of 20 that a complete enumeration of all nonpermit areas would result in a total private nonfarm figure between 98,000 and 102,000 . For metropolitan-nonmetropolitan or regional components, the relative error is somewhat larger.
${ }_{2}$ Data by urban and rural-nonfarm classification for periods before January 1954 are available upon request. Annual metropolitan-nonmetropolitan location data not available before 1950; monthly figures not available before 1953; regional data not available before January 1954.
${ }^{3}$ Private construction costs are based on permit valuation, adjusted for understatement of costs shown on permit applications. Public construction costs are based on contract values or estimated construction costs for individual projects.
${ }^{4}$ Housing peak year.
${ }^{5}$ Less than 50 units.

- Preliminary.
${ }^{7}$ Revised.
8 Not yet available

New Publications Available

Bulletins for Sale

Order BLS Bulletins from the Superintendent of Documents, Government Printing Office, Washington 25, D. C. Send check or money order, payable to the Superintendent of Documents. Currency sent at sender's risk. Sales offices for BLS Bulletins are also maintained at three of the Bureau's Regional Offices: Mid-Atlantic, North Central, and Western. (See inside front cover for the addresses of these offices.)

No. 1172-8: Occupational Wage Survey, Newark-Jersey City, N. J. December 1954. 21 pp .20 cents.

No. 1172-9: Occupational Wage Survey, Memphis, Tenn. February 1955. 21 pp .20 cents.

No. 1173: Wage Differences and Establishment Practices, 17 Labor Markets, 1953-54. 46 pp .35 cents.

For Limited Free Distribution

Single copies are furnished without cost as long as supplies permit. Write to Bureau of Labor Statistics, U. S. Department of Labor, Washington 25, D. C., or to the nearest Regional Office of the Bureau (for address of the appropriate Regional Office, see inside front cover).

BLS Report No. 84: Case Study Data on Productivity and Factory Performance . . . Women's Dresses. April 1955. 111 pp.

Military Manpower Requirements and Supply, 1955-59. February 1955. 14 pp . DIVISION OF PUELIC DOCUMENTS Washington 25, D. C.

OFFICIAL BUSINESS

[^0]: *Of the Bureau's Division of Productivity and Technological Developments.
 ${ }^{1}$ A more detailed discussion of the meaning of automation for industrial relations was presented in an article by Professors George B. Baldwin and George P. Shultz in the February 1955 Monthly Labor Review (p. 165). The information on current developments used in the present article was drawn from files of trade, technical, and other source materials maintained by the Bureau of Labor Statistics' Division of Productivity and Technological Developments.

[^1]: ${ }^{2}$ Electronics Employment and Labor Force, Monthly Labor Review, October 1953 (p. 1049).

[^2]: ${ }^{3}$ Case Study Data on Productivity and Factory Performance -Fertilizer. BLS Report 63, May 1954.

[^3]: 4G. S. Brown and D. P. Campbell, Control Systems. (In the Scientific American, New York, September 1952, p. 59.)
 ${ }^{5}$ J. G. Kemeny, Man Viewed as a Machine. (In Scientific American, New York, April 1955, p. 58.)

[^4]: ${ }^{6}$ Trends in Man-Hours Expended Per Unit: Synthetic Rubber and Components: 1945-49. Bureau of Labor Statistics, processed, 1952.
 ${ }^{7}$ J. Diebold, What's Needed to Make Tape Control Take Hold. (In Automatic Control, New York, April 1955, p. 48.)
 ${ }^{8}$ Electronic Data Processing. (In Research for Industry, Stanford, Calif., November 1953, p. 5.)

[^5]: ${ }^{9}$ P. B. Laubach and L. E. Thompson, Electronic Computers: A Progress Report. (In Harvard Business Review, Boston, March-April 1955, p. 121.)
 ${ }^{10}$ Thirteenth Annual Report of the Commissioner of Labor, Washington, Bureau of Labor, Vol. 1, 1898 (p. 6).
 ${ }_{11}$ Mechanization and Productivity of Labor in the Cigar Manufacturing Industry, BLS Bull. 600, 1938 (p. 1).
 ${ }_{12}$ Productivity of Labor in the Glass Industry, BLS Bull. 441, 1927 (p. 6).

[^6]: ${ }^{13}$ See Business Week, April 23, 1955 (p. 26), New York, McGraw-Hill Publishing Co.
 ${ }_{14}$ These are: (1) Automatic Controls, Reinhold Publishing Co., New York; (2) Automation, Penton Publishing Co., Cleveland; (3) Control Engineering, McGraw-Hill Publishing Co., New York; and (4) Instruments and Automation, Instruments Publishing Co., Pittsburgh.
 ${ }^{15}$ Investment and Sales Anticipations in 1955. (In Survey of Current Business, U. S. Department of Commerce, March 1955, p. 4.)
 ${ }^{16}$ See I. H. Siegel, Technological Change and Long-Run Forecasting (In The Journal of Business of the University of Chicago, July 1953, p. 147).

[^7]: ${ }^{17}$ S. Fabricant, Employment in Manufacturing, 1899-1939, New York, National Bureau of Economic Research, 1942.

[^8]: *Director, Bureau of Business and Economic Research, Northeastern University, Boston.
 ${ }^{1}$ The causes were discussed in the Report on the New England Textile Industry by Committee Appointed by the Conference of New England Governors, 1952, Cambridge, Mass., 1953 (pp. 19-33, 101-107), which was summarized in the Monthly Labor Review, August 1953 (p. 832). See also William H. Miernyk and Arthur A. Bright, Jr., The Textile Industries of New England, The Committee of New England of the National Planning Association (c/o Federal Reserve Bank of Boston), Staff Memorandum No. 10, August 1953 (pp. 1-20).
 ${ }^{2}$ See statement of Solomon Barkin, Research Director, Textile Workers Union of America (CIO), before the Special Subcommittee to Investigate Unemployment, Senate Committee on Labor and Public Welfare (84th Cong.), March 23, 1955.
 3 The first quarter of 1947 was chosen as the beginning of the period for making this comparison, since in that year employment data were reclassified from the Social Security code to the Standard Industrial Classification and no detailed comparisons can be made with an earlier period.

[^9]: ${ }^{\star}$ Charles A. Myers and George P. Shultz, The Dynamics of a Labor Market, New York, Prentice-Hall, 1951 (pp. 32, 42-44).
 ${ }^{5}$ Mary E. Wilcox, The Displaced Textile Worker: A Case Study, Boston, Research and Statistics Department, Massachusetts Division of Employment Security, August 26, 1954.
 ${ }^{6}$ William H. Miernyk, Inter-Industry Labor Mobility, Boston, Bureau of Business and Economic Research, Northeastern University, 1955 (pp. 10-26).
 ${ }^{7}$ Inter-Industry Mobility of Workers and the Transfer of Worker Skills in New England, Boston, The Committee of New England of the National Planning Association, Staff Memorandum No. 5, June 1952.

[^10]: ${ }^{8}$ William J. Roy, Textile Employment Changes in New Hampshire: 1947-1952, Concord, New Hampshire Division of Employment Security, January 1953.
 ${ }^{\circ}$ For a discussion covering a longer time period, see William H. Miernyk, Chronic Unemployment in New England from 1947 to 1951, Boston, The Committee of New England of the National Planning Association, Staff Memorandum No. 2, May 1952.
 ${ }^{10}$ See Inter-Industry Labor Mobility, op cit. (pp. 14-15, 17-18).
 ${ }^{11}$ Economic Report of the President, January 1955 (p. 57).
 ${ }_{12}$ Only two "preference contracts" valued at $\$ 100,000$ or more were awarded to New England firms in labor surplus areas in 1954. The entire program of granting tax amortization assistance was expected to create an estimated 9,000 jobs in the Nation's labor surplus areas by the end of 1954. See The Labor Market and Employment Security, U. S. Department of Labor, Burean of Employment Security, March 1955 (pp. 16-17).

[^11]: ${ }^{13}$ See footnote 11.
 ${ }^{14}$ Not all of the 20,000 textile workers who lost jobs in Lawrence are still in the labor force. Approximately 18 percent of a large sample of workers interviewed in Lawrence had withdrawn from the labor force between 2 and 23,2 years after their displacement due to mill liquidation.
 ${ }_{15}$ Barkin, op. cit. Congressmen representing districts in which there is substantial unemployment have been equally critical. See, for example, the remarks of Congressman James M. Quigley of Pennsylvania in the Congressional Record, January 25, 1955 (pp. A381-382).

[^12]: *Of the Bureau's Division of Wages and Industrial Relations.
 ${ }^{1}$ Some excluded certain groups of workers from the membership requirement. Provisions which required union membership before the date of employment (commonly referred to as "closed-shop" clauses) were included in the union-shop category.
 ${ }^{2}$ This selection of agreements represents an incomplete transition from samples used in earlier studies, which were comprised of agreements covering both small and large groups of workers, to a new basis for agreement analysis limited to all agreements covering 1,000 or more workers. The collection and analysis techniques used in the agreement analysis program are described on p. 673 of this issue.
 ${ }^{8}$ Railroad and airline agreements are not collected by the Bureau and, therefore, were not included in this study. Workers in these industries come under the provisions of the Railway Labor Act, which was amended in 1951 to permit negotiation of union-shop agreements.
 ${ }^{4}$ See Union-Status Provisions in Collective Agreements, 1952, Monthly Labor Review, April 1953 (p. 383). For earlier studies, see Union Status Under Collective Agreements, 1950-51, Monthly Labor Review, November 1951 (p. 552); Union-Security Provisions in Agreements, 1949-50, Monthly Labor Review, August 1950 (p. 224); and Extent of Collective Bargaining and Union Recognition, 1946, Bureau of Labor Statistics Bull. 909, June 1947 (11 pp.).
 ${ }^{5}$ The 5 States are: Alabama, Louisiana, Mississippi, South Carolina, and Utah.

[^13]: ${ }^{6}$ National Labor Relations Board decisions have emphasized that unionmembership requirements under the LMRA may be fulfilled simply by the tender of initiation fees, where required, and periodic dues.

 7 The time allowed was generally 30 days, which is the minimum specified by the LMRA. A few agreements merely provided for a union shop "to the extent permitted by law," as in the national anthracite and bituminous coal-mining agreements, which read in part: ". . . It is further agreed that as a condition of employment all employees should be or become members of the United Mine Workers of America, to the extent and in the manner permitted by law. . . ."

[^14]: ${ }^{8}$ See Union Security Under the Taft-Hartley Act, Monthly Labor Review, April 1954 (p. 391).

[^15]: ${ }^{1} 121$ of the 1,122 union-shop agreements also provided for a different form of union security to become effective automatically, or to be negotiated, in the event of a change in Federal or State laws, or if the present clause was found in violation of the law. The majority of these agreements were in the unionshop category which required all employees to join the union within a specified time.
 ${ }_{2}$ This is the closed shop which was outlawed in establishments covered by the Labor Management Relations Act. Although these figures are indicative

[^16]: ${ }^{9}$ In 1951, the act was amended to eliminate a requirement for a majority vote by employees in favor of a union shop before such a clause could become effective.
 ${ }^{10}$ Alabama, Arizona, Arkansas, Florida, Georgia, Iowa, Louisiana, Mississippi, Nebraska, Nevada, North Carolina, North Dakota, South Carolina, South Dakota, Tennessee, Texas, Utah, and Virginia.
 ${ }^{11}$ This BLS report (see footnote 4) included regional data; the 1952 report did not.

[^17]: ${ }^{12}$ Bureau reports issued since passage of LMRA have grouped closed and union shops as "union shops."

[^18]: ${ }^{13}$ This type of union security has on occasion been termed a modified union shop, but the BLS classifies it as a maintenance-of-membership provision because new employees have the option of choosing whether or not to join the union.

[^19]: ${ }^{14}$ Directreference to the status of unions as exclusive bargaining representatives is found in section 9 (a) of the LMRA, as follows: "Representatives designated or selected for the purposes of collective bargaining by the majority of the employees in a unit appropriate for such purposes, shall be the exclusive representatives of all the employees in such unit for the purposes of collective bargaining in respect to rates of pay, wages, hours of employment, or other conditions of employment."
 The union and the employer may voluntarily agree on exclusive recognition or may request an NLRB election (under section 9 (c) of LMRA) to determine the issue.

[^20]: ${ }^{1}$ Nonadditive. These items may appear singly, or in combination, in one agreement.
 ${ }_{2}$ Includes checkoff of dues in addition to various other items, such as convention dues, "assignments," or "indebtedness to the union."
 Note.-Because of rounding, totals in columns may not equal the sum of components.

[^21]: ${ }^{1}$ The earnings information presented in this repert excludes data for approximately 1,300 workers employed in bleaching, cloth dyeing and finishing, and fabricating departments. Employment was about equally divided between the 3 regions; and workers averaged $\$ 1.38$ in New England, $\$ 1.59$ in the Middle Atlantic, and $\$ 1.14$ in the Southeast. The inclusion of these data would not alter the averages presented herein.
 ${ }^{2}$ The regions used in this study include: New England-Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont; Middle Atlantic-New Jersey, New York, and Pennsylvania; SoutheastAlabama, Georgia, North Carolina, South Carolina, Tennessee, and Virginia. The number of synthetic-textile workers employed in other regions is so small that presentation of data is not warranted.
 ${ }^{3}$ For the March 1952 study, see Monthly Labor Review, September 1952 (p. 281).
 ${ }^{1}$ The survey was limited to mills employing 21 or more workers. Mills manufacturing blends were included when mixture contents were predominantly synthetic; those producing glass textiles or blends containing 25 percent or more wool were excluded.
 ${ }^{5}$ Based on previous BLS studies, the Southeast accounted for 42 percent of the workers in July 1946 and 54 percent in March 1952.

[^22]: ${ }^{1}$ Excludes premium pay for overtime and for work on weekends, holidays,
 and late shifts.
 ${ }^{2}$ Includes data for other regions in addition to those shown separately.

[^23]: ${ }^{3}$ Includes data for weaving and integrated mills only.
 Note.-Dashes indicate no data or insufficent data to warrant presentation.

[^24]: ${ }^{1}$ Excludes premium pay for overtime and for work on weekends, holidays, and late shifts.
 ${ }_{3}^{2}$ Includes data for other regions in addition to those shown separately.
 ${ }^{3}$ Less than 0.05 percent.
 Note.-Because of rounding, sums of individual items do not necessarily equal 100.

[^25]: ${ }^{6}$ Minimum entrance and minimum job rates, for purposes of this study, relate to the lowest established rates for inexperienced and experienced workers, respectively, except watchmen, employed in regular textile departments.

[^26]: ${ }^{1}$ Excludes premium pay for overtime and for work on weekends, holidays,
 and late shifts.
 ${ }_{2}$ Includes data for other regions not shown separately.

[^27]: ${ }^{3}$ Includes data for workers not shown separately.
 Note.-Dashes indicate no data or insufficient data to warrant presentation.

[^28]: ${ }^{1}$ Union scales are defined as the minimum wage scales or maximum schedules of hours agreed upon through collective bargaining between trade unions and employers. Rates in excess of the negotiated minimum, which may be paid for special qualifications or other reasons, are not included.
 The information presented in this report was based on union scales in effect on July 1, 1954, and covered approximately 260,000 drivers and 46,000 helpers in 52 cities with populations of 100,000 or more. Over-the-road drivers and local city drivers paid on a mileage or commission basis were excluded from the study. Data were obtained from local union officials primarily by mail questionnaire; in some cities, data were obtained from regional or local officials of the union by Bureau representatives.

 Mimeographed listings of union scales are available for any of the 52 cities included in the survey. A forthcoming bulletin will contain more detailed information on the industry.

 The current survey was designed to reflect union wage scales of local motortruck drivers and helpers in all cities of 100,000 or more population. All cities with 500,000 or more population were included, as were most cities in the population group of 250,000 to 500,000 . The cities in the 100,000 to 250,000 group selected for study were distributed throughout the United States. The data for some of the cities included in the study were weighted in order to compensate for other cities which were not surveyed. In order to provide appropriate representation in the combination of data, each geographic region and population group was considered separately when cicy weights were assigned.
 2 The averages computed on the basis of the hourly scales are designed to show current rate levels in effect on July 1, 1954. Individual scales are weighted by the number of union members receiving each rate. These averages are not designed for precise year-to-year comparisons because of fluctuations in membership and in classifications studied. Average cents-per-hour and percent changes from July 1, 1953, to July 1, 1954, are based on comparable quotations for the various occupational classifications in both periods, weighted by the membership reported for the current survey. The index series, designed for trend purposes, is similarly constructed.

[^29]: ${ }^{3}$ Labor-management contracts covering motortruck drivers and their helpers are typically negotiated for a 1-year period. Contracts of more than 1 year's duration usually provide for wage reopenings or for specified interim or deferred increases.

[^30]: ${ }^{1}$ The regions used in this study include: New England-Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont: Middle Atlantic-New Jersey, New York, and Pennsylvania; Border StatesMiddle Atlantic-New Jersey, New York, and Pennsylvania; Border statesVirginia: Southeast-Alabama, Florida, Georgia, Mississippi, North CaroVirginia: Southeast-Alabama, Florida, Georgia, Mississippl, North Carolina, south Caroina, and Tennessee: Areat Lades-Minesta, Ohio, and Wisconsin; Middle West-Iowa, Kansas, Misgan, Minnesota, Ohio, and Wisconsin; Middle West-10wa, Kansas, Mis-
 souri, Nebraska, North Dakota, and South Dakota; Southwest-Arkansas, souri, Nebraska, North Dakota, and South Dakota; Southwest-Arkansas,
 Louisiana, Oklahoma, and Texas; Mountain-Arizona, Colorado, Idaho, Louisiana, Oklahoma, and Texas; Mountain-Arizona, Colorado, Idaho,
 Montana, New Mexico, Utah, and Wyoming; Pacific-California, Nevada, Oregon, and Washington.

[^31]: ${ }^{1}$ New hires are defined as permanent and temporary additions to the employment roll that have not been specifically recalled by the employer. See Measurement of Labor Turnover, Monthly Labor Review, May 1953 (p. 519).
 ${ }^{2}$ In addition, the BLS definition of new hires may be subject to some variation in interpretation among employers.

[^32]: ${ }^{1}$ Excludes printing, publishing, and allied industries; canning and preserving fruits, vegetables, and seafoods; women's, misses', and children' outerwear; and fertilizers.

[^33]: ${ }^{1}$ See Income Distribution in the United States, 1950-53, in the March 1955 Survey of Current Business (pp. 15-27). The article presented revised 1950 estimates and new estimates for 1951 and 1953 (preliminary), bringing up to date family income distributions published as a Supplement to the Survey of Current Business, entitled Income Distribution in the United States, by Size, 1944-50 (1953, 65 cents). The Supplement provided a detailed description of the definitions, sources, and methods of preparing the estimates. The estimating procedures for 1953, and data revisions for 1950 and 1951, which had involved some different integration of source materials (partly because of the 1948 split-income provisions for filing Federal income tax returns), are briefly explained in the Survey's article. The main source materials were the summary statistics prepared by the Internal Revenue Service from Federal individual income tax returns and the sample data from annual field surveys of family incomes by the Bureau of the Census and the Federal Reserve Board.
 ${ }_{2}$ Tabulations were not available from Federal income tax returns for 1953. The 1953 data represent preliminary estimates extrapolated from 1951 tax return information on the assumption (based on data for multiperson families and unattached individuals, in the Surveys of Consumer Finances for both 1951 and 1953) of unchanged relative income differences.
 ${ }^{3}$ Defined as "the liability reported on individual income tax returns plus an allowance for taxes collected through subsequent audit, minus liabilities of military personnel not living with their families, minus liabilities on net capital gains." The estimates of tax liability in 1953 were "extrapolated from 1951 tax return information, on the basis of changes in statutory tax rates and estimates of total liability derived from tax collections."

[^34]: 4 Capital gains taxes were excluded from this total because the gains themselves were not included in personal income.

[^35]: *Prepared by Joseph W. Bloch of the Division of Wages and Industrial Relations. This article appeared initially as Chapter 13 of Techniques of Preparing Major BLS Statistical Series, BLS Bull. 1168.
 ${ }^{1}$ A bulletin of the Bureau of Labor (now the Bureau of Labor Statisties), Number 42, September 1902, included this note: "It is the purpose of this [Bureau] to publish from time to time important agreements between large bodies of employees and employers with regard to wages, hours of labor, etc. The [Bureau] would be pleased to receive copies of such agreements wherever made."
 ${ }^{2}$ Many of these studies appear first in the Monthly Labor Review and are later brought together in bulletins. See, for example, Labor-Management Contract Provisions, 1953, Bureau of Labor Statistics (Bull. 1166).

[^36]: ${ }^{3}$ During much of the postwar period, the number of agreements on file exceeded 12,000 . In the most recent reduction in the size of the file, agreements covering fewer than 100 workers were eliminated.
 ${ }^{4}$ The number of establishments covered is always considerably greater than the number of agreements because of the inclusion of many multicompany or association agreements.

[^37]: ${ }^{5}$ The agreements file is located in the Washington Office of the Bureau's Division of Wages and Industrial Relations. Agreements submitted to the Bureau with a stipulated limitation on public use are not available for inspection. Requests for information concerning specific agreements or agreement clauses are accommodated, depending upon the nature of the request, within the limits of staff resources.

[^38]: ${ }^{6}$ The distinction between size of agreement (employees covered) and size of establishment is an important one. A substantial proportion of these agreements are association-negotiated and cover a large number of small establishments. Two agreements, for example, involving the United Mine Workers (Ind.) cover most of the anthracite and bituminous-coal mines in the country. Some association agreements in New York State cover more than a thousand firms.
 ${ }^{7}$ The transition to the universe of all agreements covering 1,000 or more workers was in process at the time of this writing.

[^39]: ${ }^{8}$ Pension Plans Under Collective Bargaining, Bull. 1147, 1953.

[^40]: - See p. 649 of this issue.

[^41]: ${ }^{1}$ Prepared in the U. S. Department of Labor, Office of the Solicitor.
 The cases covered in this article represent a selection of the significant decisions believed to be of special interest. No attempt has been made to reflect all recent judicial and administrative developments in the field of labor law or to indicate the effect of particular decisions in jurisdictions in which contrary results may be reached, based upon local statutory provisions, the existence of local precedents, or a different approach by the courts to the issue presented.
 ${ }^{2}$ Association of Westinghouse Salaried Employees v. Westinghouse Electric Corp. (U. S. Sup. Ct., Mar. 28, 1955).
 ${ }^{3}$ Amalgamated Clothing Workers of America, et al. v. Richman Brothers (U. S. Sup. Ct., Apr. 4, 1955).
 ${ }^{4} 28$ U. S. C. 2283.

 - See Garner v. Teamsters Union, 346 U. S. 485.
 ${ }^{6}$ Weber v. Anheuser-Busch, Inc. (U. S. Sup. Ct., Mar. 28, 1955.)

[^42]: Tistrict No. 9, International Association of Machinists and AnheuserBusch, Inc. (101 NLRB 346).
 ${ }^{8}$ Anheuser-Busch, Inc. v. Weber (Mo. Sup. Ct., 265 SW 2d 325).

 - Comfort Slipper Corp. (112 NLRB 28, Apr. 15, 1955).
 ${ }^{10}$ Merck and Co., Inc. (104 NLRB 1160).
 ${ }^{11}$ Peerless Plywood Co. (107 NLRB 106).
 ${ }_{12}$ Frank Smith and Sons (112 NLRB 29, Apr. 13, 1955).

[^43]: ${ }^{13}$ J. W. Rylands Co. (111 NLRB 211, Mar. 31, 1955).
 ${ }^{14}$ General Dynamics Corp. (111 NLRB 185, Mar. 22, 1955).
 ${ }^{15}$ Carpenters, AFL (Dennehy Construction Co.) (111 NLRB 180, Mar. 21, 1955).
 ${ }^{16}$ Jonesboro Grain Drying Cooperative (110 NLRB 67).
 ${ }^{17}$ Marathon Electric Mfg. Corp. v. Industrial Commission (Wis, Sup. Ot., Apr. 5, 1955).

[^44]: ${ }^{18}$ Tung-Sol Electric, Inc. v. Board of Review (N. J. Sup. Ct., Mar. 14, 1955).
 ${ }^{10}$ Borg v. Appeal Board (Cir. Ct. for Wayne Co., Mich., Feb. 28, 1955).
 ${ }^{20}$ Buskin v. Appeal Board (Cir. Ct. for Wayne Co., Mich., Feb. 16, 1955).
 ${ }^{21}$ Covington Mills v. Mitchell (D. C., Dist of Col., Apr. 4, 1955)

[^45]: ${ }^{1}$ Prepared in the Bureau's Division of Wages and Industrial Relations
 2 See Monthly Labor Review, April 1955 (p. 460).
 ${ }_{3}$ The cost-of-living allowance was reduced from 4 to 3 cents an hour at the end of March as a result of a decline in the BLS Consumer Price Index from November 1954 to February 1955.
 ${ }^{4}$ Premium pay would continue for work on all 6 holidays.
 ${ }^{5}$ A series of wage decreases were negotiated in New England mills during late 1952 and early 1953. These decreases largely accounted for the reduction of 6 cents an hour between March 1952 and November 1954 in straight time average hourly earnings in New England; average hourly earnings in the Southeast region remained unchanged during this period, BLS wage studies indicate. Paid vacations were provided in nearly all textile mills, but were more liberal for workers with long service in the North. Virtually all textile workers in New England received paid holidays, as against about 20 percent of the workers in the South. Plans providing lump-sum payments upon retirement applied to 84 percent of the workers in New England. This type of arrangement was virtually nonexistent in the South. About 1 out of 5 of the textile workers in the Southeast, however, were covered by formal retirement pension plans, compared with about 1 out of every 16 New England workers. See Monthly Labor Review, May 1955 (p. 533).

[^46]: ${ }^{6}$ See Monthly Labor Review, May 1955 (p. 576).
 ${ }^{7}$ Ibid.

[^47]: ${ }^{8}$ See Monthly Labor Review, May 1955 (p. 577).

[^48]: ${ }^{9}$ Ibid.
 10 See Monthly Labor Review, May 1955 (p. 579).
 ${ }^{11}$ Chartered (as the International Longshoremen's Association, AFL) by the AFL at the time its 1953 convention voted to expel the International Longshoremen's Association. See Monthly Labor Review, November 1953 (p.1166).

[^49]: ${ }^{12}$ See Monthly Labor Review, March 1955 (p. 337).
 ${ }^{13}$ See Monthly Labor Review, February 1955 (p. 223).
 14 See Monthly Labor Review, May 1955 (p. 578).

[^50]: ${ }^{15}$ See Monthly Labor Review, June 1954 (p. 668); also p. 632 of this issue.

[^51]: ${ }^{1}$ Beginning with the June 1955 issue, data shown in tables $\mathrm{A}-2, \mathrm{~A}-3, \mathrm{~A}-4, \mathrm{~A}-5, \mathrm{C}-1, \mathrm{C}-2, \mathrm{C}-3, \mathrm{C}-4$, and $\mathrm{C}-5$ have been revised because of adjustment to more recent benchmark levels. These data cannot be used with those appearing in previous issues of the Monthly Labor Review. Comparable data for earlier years are available upon request to the Bureau of Labor Statistics.
 ${ }_{2}$ This table is included in the March, June, September, and December issues of the Review.

[^52]: ${ }^{1}$ Estimates are subject to sampling variation which may be large in cases where the quantities shown are relatively small. Therefore, the smaller estimates should be used with caution. All data exclude persons in institutions. Because of rounding, the individual figures do not necessarily add to group totals.
 ${ }_{2}$ Data beginning January 1954 are based upon a new Census sample in 230 areas and are not entirely comparable with previously published estimates for earlier months. Revised monthly data for 1953 were published in the Census Bureau's "Monthly Report on the Labor Force: December 1954."

[^53]: ${ }^{3}$ Census survey week contained legal holiday.
 ${ }^{4}$ Includes persons who had a job or business, but who did not work during the survey week because of illness, bad weather, vacation, labor dispute, or because of temporary layoff with definite instructions to return to work within 30 days of layoff. Also includes persons who had new jobs to which they were scheduled to report within 30 days.
 Source: U. S. Department of Commerce, Bureau of the Census.

[^54]: ${ }^{1}$ Data refer to Continental United States only.
 2 Includes all executive agencies (except the Central Intelligence Agency) and Government corporations. Civilian employment in navy yards, arsenals, hospitals, and on force-account construction is also included
 arsenals, hospitals, and on force-account construction is also included.
 3 Includes all Federal civilian employment in Washington Standard Metro-

[^55]: Data for the current month are preliminary.
 Note.-Month-to-month changes in total employment in manufacturing industries as indicated by labor turnover rates are not comparable with the changes shown by the Bureau's employment series for the following reasons:
 (1) Accessions and separations are reported for the entire calendar month; the employment and payroll reports, for the most part, refer to a 1-week pay period ending nearest the 15 th of the month.
 (2) The turnover sample is not so large as that of the employment sample and includes proportionately fewer small plants; certain industries are not covered. The major industries excluded are: printing, publishing, and allied industries; canning and preserving fruits, vegetables, and seafoods; women's, misses', and children's outerwear; and fertilizers.

[^56]: See footnotes at end of table.

[^57]: See footnotes at end of table.

[^58]: See footnotes at end of table.

[^59]: See footnotes at end of table.

[^60]: ${ }^{1}$ Aggregate man-hours are for the weekly pay period ending nearest the
 15th of the month and do not represent totals for the month. For mining and
 manufacturing industries, data refer to production and related workers. For contract construction, the data relate to construction workers.

[^61]: ${ }^{2}$ Preliminary
 Includes only the divisions shown.
 See footnote 1 on p. 700.

[^62]: See footnotes at end of table.

[^63]: See footnotes at end of table.

[^64]: ${ }^{1}$ A major revision was incorporated in the Consumer Price Index beginning January 1953. The revised index, based on 46 cities, has been linked to the previously published "interim adjusted" indexes for 34 cities and rebased on $1947-49=100$ to form a continuous series. For the convenience of users, the "All-items" indexes are also shown on the 1935-39=100 base in table D-4.
 The revised Consumer Price Index measures the average change in prices of goods and services purchased by urban wage-earner and clerical-worker families. Data for 46 large, medium, and small cities are combined for the United States average.
 For a history and description of the index, see: The Consumer Price IndexA Layman's Guide, Bulletin 1140; The Consumer Price Index, in the February 1953 Monthly Labor Review; The Interim Adjustment of Consumers' Price Index, in the April 1951 Monthly Labor Review; Interim Adjustment of Consumers' Price Index, Bulletin 1039; and the following reports: Consumers' Price Index, Report of a Special Subcommittee of the House Com-

[^65]: ${ }^{1}$ See footnote 1 to table D-1
 ${ }_{2}$ Includes diapers, yard goods, and an unpriced group of items represented

[^66]: 1 See footnote 1 to table D-1.
 2 See footnote 2 to table D-1.

[^67]: ${ }_{1}^{1}$ See footnote 1 to table D-1. Indexes are based on time-to-time changes in the cost of goods and services purchased by urban wage-earner and clerical worker families. They do not indicate whether it costs more to live in one city than in another
 ${ }_{2}$ A verage of 46 cities beginning January 1953. See footnote 1 to table D-1.

[^68]: ${ }_{4}^{3}$ See footnote 2 to table D-3.
 4 Not available.

[^69]: 1 Prepared jointly by the Bureau of Labor Statistics, U. S. Department of Labor and the Business and Defense Services Administration, U. S Department of Commerce. Includes major force account projects started Department of Commerce. Includes major force acc
 principally by TVA and State highway departments.

[^70]: ${ }^{2}$ Revised.

[^71]: ${ }^{1}$ See table F-3, footnote 1.
 ${ }^{2}$ Revised.
 ${ }^{3}$ Comprised of 168 Standard Metropolitan Areas used in 1950 Census.

