Monthly Labor Review

UNITED STATES DEPARTMENT OF LABOR•BUREAU OF LABOR STATISTICS

Lawrence R. Klein, Editor

CONTENTS

KALAMAZOO

JAN 61954
\section*{Special Articles}
\section*{PUBLLC LBRARY}
Dual Loyalty in Industrial Society
Dual Loyalty in Modern Society
Mutual Emotional Acceptance by Union and Management
Dual Allegiance at Swift \& Co., Chicago
A Methodology in Studying Role Conflict
A Theoretical Examination of the Concept of Dual Loyalty
Occupational Wage Levels in 20 Labor Markets, Fall 1952-Spring 1953
Taxation and Lower Income Groups
The Federal Income Tax and the Working Man
Taxation of Low and Middle Incomes
Workmen's Compensation in the United States: VIII—Rehabilitation

Summaries of Studies and Reports

Injury Rates in the Fluid-Milk Industry, 1952
The Ford Plan for Employing the Handicapped
Personnel Conference of the American Management Association Earnings in Power Laundries in Mid-1953
Wage Trends in Machinery Manufacture, 1951-53
Union Wage Scales in the Building Trades, 1953
Wages in Converted Paper Products in April 1953

Departments

The Labor Month in Review
Recent Decisions of Interest to Labor
Chronology of Recent Labor Events
Developments in Industrial Relations
Publications of Labor Interest
Current Labor Statistics (list of tables)

A BLS Summary Study of Wages and Related Benefits in 20 Labor Markets (Bulletin 1116)

- Wage Rates - 61 Jobs

Office clerical
Professional and technical
Maintenance and power plant
Custodial, warehousing, and shipping

- Work Schedules

Weekly hours and shift practices

- Supplementary Benefits - Office and Production Workers

Overtime pay
Paid holidays
Paid vacations
Insurance and pension plans
Plus - Special analysis of occupational wage relationships in manufacturing and public utilities

$$
\text { Price }-55 \text { cents }
$$

For more detailed data including occupational wage distributions for individual areas - order from these separate bulletins:

Area	$\begin{gathered} \text { BLS } \\ \text { Bull. No. } \end{gathered}$	$\begin{aligned} & \text { Price } \\ & \text { (cents) } \end{aligned}$	Area	$\begin{gathered} \text { BLS } \\ \text { Bull. No. } \end{gathered}$
Atlanta, Ga	1116-18	20	Memphis, Tenn	1116-13
Baltimore, Md	1116-6	25	Milwaukee, Wis	1116-19
Boston, Mass	1116-17	20	Minneapolis-St. Paul, Minn	1116-7
Buffalo, N. Y	1116-20	20	Newark-Jersey City, N. J...	1116-11
Chicago, Ill	1116-15	25	New York, N. Y	1116-16
Cleveland, Ohio	1116-3	20	Philadelphia, Pa	1116-5
Dallas, Tex	1116-1	15	Portland, Oreg	1116-2
Denver, Colo	1116-8	20	Providence, R. I	1116-10
Kansas City, Mo-	1116-4	25	St. Louis, Mo_	1116-12
Los Angeles, Calif	1116-14	25	San Francisco-Oakland, Calif	1116-9

Order Only From Superintendent of Documents, Washington 25, D. C. Indicate BLS Bulletin Number and Quantity Desired Send Money Order or Check

The Labor Month in Review

The labor press in recent weeks has devoted an extraordinary amount of space to economic indices. This same preoccupation, with a somewhat more apprehensive tone, occupied a goodly portion of the CIO annual convention deliberations in Cleveland, November 16-20. A lengthy report to the meeting expressed a "growing concern over what lies ahead in the next 6 or 12 months and beyond . . ." It pointed to "signs" which "should be a signal to the Nation to seek out and encourage new sources of strength to halt the already apparent slackening in production. . . . Once and for all, all groups of the population must realize that a healthy expanding peacetime economy can, in the long run, only be based on an ever broader consumption level."

About 2 weeks later, at an employment conference in Washington sponsored by the Auto Workers, largest of the CIO affiliates, the Secretary of Labor analyzed the economic situation for the 1,000 local union delegates. After pointing to the strong position and outlook for capital investment, Government procurement, and consumer consumption (with real per capita disposable income 2 percent higher than a year ago), the Secretary noted that "the competitive system is again in full swing. The buyer can now exercise discrimination in his purchases and seek to get more for his dollar. The result will be better values via closer scrutiny of costs and prices.
"It is worth bearing in mind in times such as these that growth is never a straight line upward at a steady pace, whether it be in the case of a child or in the case of the most complex economy the world has ever known. The line of growth, examined in the perspective of years, is a jagged one . . . The present dip from last spring's peaks still leaves us on a very high plateau. It also leaves us in a position for sound economic growth."

The employment conference urged higher un-
employment compensation benefits. From two other sources had come earlier reports advocating a review of the operations and benefit structure of the State-operated unemployment insurance systems. One was the findings of the American Assembly (a broad, representative citizens' group of experts) on the subject of economic security for Americans. The other was the tripartite Federal Advisory Council of the Labor Department, which pointed out, among other items, that current benefits represent only 33 percent of average earnings, compared with 41 percent in 1949.

The CIO convention in Cleveland, with unanimity and with a visible enthusiasm abated only by the United Steelworkers delegation, elected Walter P. Reuther president for a second term. It also unanimously approved the no-raid agreement with the American Federation of Labor, effective on January 1, 1954, for the two organizations and those of their affiliated international unions which ratify it. The basic policy of the CIO was unchanged by any convention action. The initiative for organization of new members, however, appeared to have passed from the central administration to the international unions, with current success noted among telephone and electrical workers. All officers were reelected without opposition.

There appeared to be a community of interest between the AFL and CIO, in seeking liaison with farmer groups. This was evidenced by AFL president, George Meany, in his address to the annual meeting of the National Grange where he called for an investigation of the "shocking spread" between retail prices and declining farm prices. On the CIO side, a featured speaker at its convention was Fred V. Heinkel of the Missouri Farm Association. At the western hearings of the House Agricultural Committee, five CIO spokesmen, headed by O. A. Knight, president of the Oil Workers, testified in behalf of policies beneficial to farmers. Mr. Reuther, in a publicized letter to Mr. Knight, asked him to make clear that the CIO had no present or future intent to organize farmers. He emphasized that the farmers should be organized, but in their own, separate groups.

With the conventions of both major labor organizations committed to unity, attention was turned to the scheduled December meetings of the joint
unity committee and to signs of international unions ratifying the no-raid agreement. It was expected that not much action in this direction would be forthcoming, pending anticipated discussion of the matter by the Teamsters in February.

A chance that the 40 -year-old jurisdictional dispute between the AFL Machinists and Carpenters might be settled appeared stronger with a second meeting of representatives of the 2 unions with 2 outside consultants. The dispute revolves around the issue of machinery installation.

On the murkier side of the labor news, officials of the Teamsters in Michigan and Minnesota were involved in investigations by the House labor committee over matters relating to handling of the union's health and welfare insurance funds. The Michigan hearings were directed especially at James R. Hoffa, an international vice president of the union and head of its Central States Conference. A Federal grand jury investigation has been ordered.

The New York waterfront situation at midDecember still had two longshore unions (AFL and ex-AFL) fighting for exclusive supremacy. But Joseph P. Ryan was president of neither. The independent ILA "retired" him as head of the union the AFL had expelled for practices inimical to honorable unionism. William V. Bradley succeeded him. On December 1, the bi-State (New York and New Jersey) commission to control hiring in the port of New York went into operation. Further important developments awaited (a) the expiration of the 80-day TaftHartley injunction preventing a strike by either union until December 25 ; (b) NLRB determination of the scope of the bargaining unit; (c) NLRB determination of the appropriate bargaining representative through an election; and (d) NLRB decision on the AFL charge that the expelled union was employer-dominated. Aside from the main issue of the struggle, the Teamsters have claimed jurisdiction over loading and unloading trucks entering piers and waterfront warehouses. This work had formerly been done by ILAaffiliated "public loaders" now outlawed by the bi-State legislation.

The UAW-CIO strike against the plants of North American Aviation, Inc., was settled as it approached the 60 -day mark, for a 4 -percent
increase, approximately the original company offer. The union had retreated from its original demands for wage rates equal to those paid aircraft workers employed by automobile companies. Nonstriking workers had been given the increase, which was substantially below the union's original and subsequent demands, and the company refused an arbitration offer. The union position during the strike was shaken somewhat by acceptance by one Machinists local at a Douglas Aircraft Co. plant of a 5-cent-an-hour raise in basic rates plus a 1-cent cost-of-living increase. At Lockheed, United Aircraft, and other Douglas plants the close cooperation pledged in bargaining between the Machinists and UAW appeared to be in working order. In fact, a joint meeting of shop stewards of the two organizations from United plants in various parts of the country recently discussed mutual negotiation problems.

A strike of photoengravers left New York City without major daily newspapers for 10 days starting November 28. Other unions connected with production and distribution of the papers, including the American Newspaper Guild, refused to cross the engravers' picket lines. Settlement was on the basis of the publishers' original offer of a $\$ 3.75$ package, and examination of the need for additional adjustment by a fact-finding board.

The United States Supreme Court had hardly rendered its $6-3$ decision holding that nothing in the Taft-Hartley Act prevents dismissal of an employee for derogatory remarks about the employer's product (in this case television programs), when the general counsel of the NLRB issued an order against local 5 of the UAW-CIO and the Studebaker Corp. in a somewhat tangential matter. The charge was that the company discharged 15 employees upon complaint of the union that they refused to buy Studebaker cars.
An NLRB ruling that it would deny its services to unions whose officers are under indictment for falsely swearing to non-Communist affidavits was overruled by the United States district court. The unaffiliated Fur Workers Union had appealed the order.

In a policy effective in its 131 plants, some engaged in secret military operations, the General Electric Co. declared it would discharge all workers who admit they are Communists or refuse to answer questions raised in official hearings concerning such activities.

Dual Loyalty in Industrial Society

Abstract

Editor's Note.-The series of five notes which follow are excerpts from papers delivered at a panel session of the Industrial Relations Research Association in Cleveland, September 5, 1953. They are reproduced here because the matter of institutional loyalties is important not only for industrial relations but for the democratic process as a whole. Dr. Clark Kerr, Chancellor of the University of California, has said: ". . . we may find that the greater hope for democracy lies with a multiplicity of allegiances - to self, family, union, church, employer, and government. . . . The great danger is not that loyalties are divided today but that they may become undivided tomorrow."

Dual Loyalty in Modern Society

The extent to which a person can be loyal to more than one group, when these groups may make competing demands upon him, has become a matter of marked social concern. We are dealing with the problem of the relationships between the worker and his two major groups, the employing company and his labor union. While a few workers in any given sample feel very intensely about either the employer or the union, it generally appears that the "loyalty" of the worker in either direction is of moderate intensity.

The worker in western civilization will find himself in a situation where his very survival is geared to his acceptance by an employer. To a hardly less significant extent, the worker finds it essential to relate himself to another group-the labor union. This group likewise has a profound effect upon his status, the rewards and punishments received, his chances of advancement and even of retaining his job. Can the worker feel allegiance to both employer and union? Does he feel friendly to the one, hostile to the other? What grounds for optimism or pessimism about the future of industrial relations can be derived from studies of worker allegiance?

In modern society, allegiance to two groups which demand conflicting responses from the individual is provocative of both psychological and social problems. And yet we must face up to the fact that dual allegiances within areas of conflict can, and do, exist, and that it may be of the greatest importance to society that we learn to understand, evaluate, and mold allegiances to groups even when they appear on first glance to be incompatible. Let us consider the problem of allegiance by workers to company and union.
Allegiance of the worker to his employing company would appear to be a kind of psychological minimum of personal equilibrium in the work situation. If the job leads to satisfaction of basic needs, it will come to be perceived as "good." More cautiously, we may say that if the job leads to satisfactions perceived as greater than the frustrations involved, a favorable relationship is established. Since the company is an essencial part of the job situation, the company will likewise be perceived as "good."

Further, the worker will find that he seems to owe some of his gratifications to the union in the establishment. When we ask workers if organizing a union has made any difference to them, they recite benefits, very rarely frustrations. They say wages are higher, supervision less harsh, work conditions more pleasant, etc. Thus, it is not
surprising that the worker develops allegiance to his union.

In popular discussions of this relationship between union and company, it is widely assumed that a man can feel allegiance to one or the other but not to both. Competition for worker loyalty is common. Union and company strive to devise tactics which will lead the worker to favor its side of a given controversy. Many social scientists accept this conflict as inevitable, and assume that as loyalty to one side increases, hostility to the other group will also rise.

At our Illini City research, ${ }^{1}$ we conducted hundreds of structured but free-answer interviews with workers in eight different establishments, all unionized. Some of the questions dealt with the worker's perception of management, some with his views of the union. Each interview was coded by two staff members for favorable percepts of the company and for favorable percepts of the union, on a standard list of topics. We then analyzed various functional relationships between these two measures. Our main interest, of course, was the differences among these establishments. We were at once impressed with the fact that those establishments ranking high in percentage of responses favorable to the company also ranked high in responses favorable to the union. Likewise, those companies about which many complaints were registered tended to have unions about which complaints were voiced.
A second type of analysis was then undertaken by dividing each worker population in half at the median on attitude favorable to the company, and computing attitude scores for the union. In all eight establishments the more favorable workers also expressed more favorable attitudes regarding the union. Examination of individual interviews showed clearly that some men strongly favorable to the company were hostile to the union, and vice versa. However, the group data showed that they were the exceptions-not typical of our sample of ind ustrial workers.

[^0]We have therefore been led to the development of the concept of "attitudinal climate" and to the conclusion that this climate, whether favorable or hostile, tends to embrace both company and union. In general, the majority of workers in every establishment could and did perceive both company and union as groups which they could favor and support. We made no attempt to estimate the intensity of feeling involved, nor did we pose conflict situations in an attempt to decide how the worker would respond if there were a clear conflict between the two groups.

It does seem justifiable, on the basis of our observations, to suggest that workers disagree with many spokesmen for both management and unions. The workers do not accept the inevitability of conflict, nor do they accept the necessity of binding themselves to one group or the other. They accept the status of dual allegiance and, at least under normal conditions, seem to experience no internal stress as a result.
-Ross Stagner
Institute of Labor and Industrial Relations University of Illinois

Mutual Emotional Acceptance by Union and Management

Evaluating the problems of multiple allegiance in industrial society, it is apparent that even allegiance of the employee to his enterprise is not unitary. It is broken into separate allegiances: First, to the basic purpose of the enterprise, and second, to the supervisor. Allegiance to stockholders is a third kind of enterprise allegiance. And, then, there is allegiance to the consumers of the products or services of the enterprise.

These enterprise allegiances are not emotionally unilateral, all resting on the lower-level employee, but are emotionally bilateral. Management, if it is realistic, perceives these same emotional acceptance areas.

Admitting the multiple nature of enterprise allegiance, and emotional involvements, it is possible for all of them to be positive and favorable. We believe we documented this condition at least for a period of years in our 1949 study of the
S. Buchsbaum Co., Chicago. We shall briefly review that study and bring it up to date.

An earlier research team which explored the Buchsbaum labor-management situation in 1946 postulated four representative types of management attitudes toward unions, and the implication of each:
(1) Management is determined either (a) not to recognize the union or (b) to get rid of it by any available means. This, of course, means open warfare.
(2) Management accepts the union for the time being, but still wants to hold open the possibility of getting rid of it at some future date. This leads to undeclared war.
(3) Management accepts the union as being here to stay, but nevertheless, the executives continue to function as much as possible as if the union were not present. The union, not consulted, often simply blocks action.
(4) Management accepts the union, both intellectually and emotionally. Management modifies its behavior accordingly and the union reciprocates.

At various times in its history, from 1888, the Buchsbaum Co. constituted a rather clear-cut example of all except the third of these attitudes, each apparently held with conviction. A union contract was signed in 1918; that union, according to Mr. Buchsbaum, was broken in 1919. In 1935, after a long strike, another organizing attempt was defeated. Mr. Buchsbaum remarks of this period, "I thought if I let the union in, it would ruin my business."

By 1940, the workers were organizing again. In a series of critical strike incidents, Mr. Buchsbaum became impressed with the strikers' respect for property and with the apparent sincerity of some of their fundamental contentions. Convinced that the workers were concerned with the company's as well as their own welfare, he told the men he would sign a contract. Mr. Buchsbaum attempted to manifest full emotronal acceptance of the union. He granted much more in the contract than the union asked. "Union recognition was their objective, and I gave them more than they wanted. I gave them the checkoff system, virtually a union shop and job security . . . an immediate raise of 5 cents an hour . . . and an open accounting procedure-all our figures on the table - and we chose an impartial arbitrator to decide any issues we could not settle ourselves."

Grievance machinery was established; top management cooperated earnestly with the union in solving mutual problems. Some foremen, unwilling to cooperate, were discharged. Discipline problems are alleged to have almost disappeared since the union assumed responsibility for discipline. In 1951, the management proposed a 5 -year contract providing for an automatic annual pay increase of 4 cents an hour; it was accepted by the union.

At management and union invitation, Gottlieb and Kerr entered the scene in 1949 to conduct an evaluation of some of the probable attitudinal results of this dramatic reversal from emotional rejection to acceptance of the collective bargaining organization. This survey included a unionrelated attitude objects section. The instrument used for measuring general job satisfaction, not mentioning the union, is "The Tear Ballot for Industry." Distributed to all personnel in the 3 plants during July and August 1949, a total of 467 completed anonymous ballots were returned.

Although the central tendency of job satisfaction attitudes was of conventional order, the structuring of employee attitudes did appear to support the hypothesis of exceptional harmony in the labor-management situation. Apparently, mutual emotional acceptance and cooperation between management and union had tended to structure employees' satisfaction attitudes along integrated rather than divisive lines. Evidence for this is a positive Pearsonian coefficient of correlation between the total scores on the managementoriented ballot and the union-oriented ballot of 0.74 . Corrected for attenuation, this value increases to unity, suggesting that personnel no longer carry "either-or" exclusive allegiance attitudes. This apparent fusing of formerly conflicting allegiances appears to occur, though perhaps less intensely, at the level of interpersonal relations between worker and supervisor and worker and shop steward.

In 1949, to account for these two positive correlations between union and management attitude satisfactions, one hypothesis was that "Divisive rivalry affiliation attitudes disappear under unionmanagement cooperation. This hypothesis assumes that in union-management relations in which marked conflict and emotional rejection exists, personnel attitudes toward union and management will correlate negatively, implying
existence of strong exclusive preference reactions of many workers toward union or management." Father Purcell's significant negative correlation (-0.48) is definite evidence in favor of this hypothesis.

The Illini City research provides further evidence of the integrating effects of a considerable degree of mutual management-union emotional acceptance. A positive rank-difference correlation of 0.38 was obtained between employee complaints against the management and employee complaints against the union. Thus, we have three coefficients from widely assorted psychological climates and enterprises ranging in magnitude from 0.74 through 0.38 to -0.48 . Such evidence definitely supports the 1949 hypothesis that ". . . integrated structuring of workers' attitudes may reasonably be expected as a result of union-management mutual emotional acceptance and cooperation." These researches show that the industrial allegiances of free men and women are delicate, definite, and, above all, voluntary.
-Willard A. Kerr
Illinois Institute of Technology

Dual Allegiance at Swift \& Co., Chicago

It is important to know what the working people themselves have to say about the possibilities of dual allegiance. A 3 -year study of the Chicago plant of Swift \& Co. and Local 28, a key local of the United Packinghouse Workers of America (CIO), recently completed, ${ }^{2}$ is one of the first research efforts to get the answers from the working people themselves. This study was made during a crisis-the aftermath of a severe strike, a power struggle between the Local and the International UPWA. In this study I interviewed over 385 packinghouse workers, including foremen and union leaders. I graded each on a scale from 1 to 5 on their degree of company and union allegiance.

Here allegiance means: an attitude of favorability toward the company or union as institutions. Allegiance does not mean complete satisfaction with every aspect of the company or of the union.

Nor do we mean loyalty in the sense of strong emotional attachment. Dual allegiance simply means approval of the existence, objectives, and overall policies both of company and union.

This research asks three basic questions:
(1) Will the average worker actually have dual allegiance to, and find the satisfaction he requires from both company and union?
(2) Will the worker have allegiance which is necessarily dual, in that he says his wants can be satisfied only by both organizations?
(3) Will the worker's allegiance to one of the two organizations in the plant community pull him away from the other organization, thus straining his dual allegiance? Or will the allegiance he gives to one organization not noticeably affect the allegiance he gives to the other?

Company allegiance we found to be a clear fact in the Chicago Swift-UPWA plant community. Foremen and rightwing union leaders had a degree of company allegiance of 1.6 , between favorable and very favorable. The steward body was favorable and even leftwing union leaders were slightly favorable. The old-timers have greater company allegiance (1.43) than the short-service workers (1.73) and the women (1.32) have more than the men (1.62). Union men have just as much company allegiance (1.6) as nonunion men.

Union allegiance was also a clear fact. One hundred percent of the union stewards and leaders have union allegiance, understandably enough, but a majority of the foremen have such allegiance too. Our analysis shows a very significant difference between colored (1.75) and white (2.45) in their attitudes toward the union, the Negroes having much more union allegiance. Of all the groups, only the long-service women, both colored (3.19) and white (3.44), have no positive allegiance to the union as an institution; they are indifferent or opposed to the idea.

What is the relationship between the attitude of union allegiance and actual "participation in the union"? If we put the workers into 12 cells or boxes by sex, race, and service, arrange the boxes in order of union allegiance, and do a rank correlation with their degree of union participation, we find a high positive correlation of 0.86 . We have also actual membership as indicated by checkoff lists. Again we find a remarkably high rank correlation between those groups which have

[^1]Distribution of attitudes (random, unstratified sample of 202 individuals)

Favorability	Scale	Attitude toward the company	Attitude toward the union	
	$\begin{aligned} & 1.0 \\ & 1.5 \\ & 2.0 \\ & 2.5 \\ & 3.0 \\ & 3.5 \\ & 4.0 \\ & 4.5 \\ & 5.0 \end{aligned}$	Number of workers		
		85	$\begin{array}{r} 69 \\ 15 \\ 65 \\ 10 \\ 17 \\ 1 \\ 6 \\ 3 \\ 16 \end{array}$	
Favorable		25 68		
		9		
Neutral		13		
Unfavorable.		1		
Very unfavorable.		0		
		1		
		Percent of workers		
			Rank andfile	Fotemen
More or less favorable		92	79	57
Neutral		7	8	16
More or less unfavorable.		1	13	27

the most union allegiance and their percentage of union members. The figure is also around 0.86 .

We come finally to dual allegiance itself. We find that the employees do have dual allegiance and they do believe in both company and union as institutions. Nearly three-fourths of the men and women do have positive allegiance to both Swift \& Co. and to the UPWA. This is all the more remarkable in view of the crisis through which Local 28 was passing at the time. A high percentage of the stewards (88 percent) have dual allegiance; the stewards are quite union-minded. Even a slight majority of the foremen (57 percent) also have dual allegiance to both company and union. The Kansas City-National Brotherhood of Packinghouse Workers research ${ }^{3}$ shows even greater dual allegiance; for example, nearly 95 percent of foremen there have dual allegiance.

We come now to our third "question." Our findings are that dual allegiance is not under strain for most workers, but it is for a few. In the two groups most identified with their respective organ-izations-the stewards and foremen-their official role certainly does tend to pull them away from the opposite organization, though even they generally have dual allegiance. As for the rank-and-file, their dual allegiance is not under great

[^2]strain. If we do a rank order correlation among the 12 subgroups of the plant community, we have only a moderate negative correlation (-0.48). This means that the order of company and union allegiance of the 12 groups moves moderately in opposite directions, the group most favorable to the company tending to be least favorable to the union and vice versa.

The extreme groups are short-service men and long-service women. Other groups are not much affected. Sex and service tend somewhat to affect attitudes toward company and union in opposite directions. We estimate that, for around twothirds of the production workers, dual allegiance is not under strain.

Does this dual allegiance affect the behavior of the worker torn between the "contradictory expectations" of his company and union leaders? The Swift-UPWA workers clearly oppose these contradictory demands in the sense that they are generally satisfied with their company leadership. They are dissatisfied with their 1949-52 union leadership (the aggressors in making the demands contradictory). Forty-seven percent of the rank-and-file workers at least are unfavorable to their union leaders, 27 percent are neutral or indifferent, and only 26 percent approve.

In view of this severe test put to our concept of dual allegiance, it is remarkable that we should find it at all-and even not under great strain, at least for the majority of the rank-and-file workers. They readily distinguish between their union and its leaders (as they do between the company and its foremen). Even while opposing their leaders, they would not think of being without their union; 75 percent tenaciously hold on to their union allegiance.

The workers see no conflict in the coexistence of their company and their union. But much more: They want neither one to try to destroy the other. The dual allegiance we found in Chicago (and Kansas City) gives an important reminder that, unlike a few labor and management leaders, the rank-and-file workers want both their company and union to coexist. If their leaders recognize this desire, at least one source of industrial conflict should be diminished.

-Rev. Theodore V. Purcell, S. J. Loyola University

A Methodology in Studying Role Conflict

The problem and implications of dual loyalty of workers, i. e., to their union and their company, has been viewed with increasing interest as the union movement has grown in both size and scope. Worker opinion and behavior may be situationally based, and dual allegiance may be descriptive of only a given phase of that opinion and behavior.
Individuals working in a unionized plant belong to two organizational groups, the plant and the union. Each group makes certain demands upon the worker, has certain expectations of him. The extent to which he lives up to those demands in their eyes is, in a sense, one measure of his allegiance. To the degree that the expectations of those groups are not contradictory, dual allegiance is possible. All other things being equal, one might predict that the worker will live up to the expectations of both groups, and that dual allegiance will exist.
"Other things" may not be equal, however, and then one could speculate that dual allegiance might not necessarily exist. For instance, a union shop clause conceivably could bring about the enrollment of many workers who were opposed to the idea of unionism. In spite of compatible demands, allegiance might be forthcoming only to the company. Or, contrariwise, in a "one plant town," job potential might be limited to a company disliked by the worker and consequently his allegiance might be limited to the union. But it seems logical that other things not being equal, the former rather than the latter would tend to be the case today. Particularly within the fairly skilled trades in the present full employment, job mobility is greater than union mobility, i. e., a worker can move from plant to plant with greater ease than from union to union. Therefore, the data which indicate that more workers hold allegiance to their company than to their union are not surprising.

Existing studies give no information about allegiance when expectations are contradictory; and their research findings may not be predictive of behavior. Let us assume that the demands of
management and union toward the worker are contradictory. He cannot meet both sets of expectations. Which set will he act in terms of?

Utilizing the reward and punishment theory, one might speculate that the greatest reward and least punishment will be found by meeting the expectations of the most groups possible. One then might hypothesize that the union worker will act in terms of his perception of what the greatest number of groups directly involved expect of him. In a given situation, which calls forth opposing demands, it would seem vital to know not only what he perceives as being the anticipated results of action on his part by both union and management, but also how he perceives his fellow workers' expectations of him-and anticipated rewards and punishments from that group resulting from certain acts on his part. The fellow workers are considered crucial because of their potential power to reward and punish within the scope of the job life of an individual.

It may be fruitful to attempt to adapt techniques developed to study role conflict in other areas, e. g., by Stouffer, to this particular problem. Let us ask a broad question of the union worker to provide a frame of reference for further questioning. "Would you support a strike in your plant if the demands of your union (which had been ratified by the membership) were denied by the company?" The response would not seem to be adequate in prediction, since it is difficult for an individual to predict his future behavior. The second step would seem to be more crucial-to try to tap the worker's perception of how the pertinent groups would react to both affirmative and negative action on his part.

One could set up four categories of response conveying the ideas of approval and reward, approval with no action, disapproval with no action, and disapproval and punishment. One might ask: "If you supported a strike, how do you think your company would react? your union officials? your fellow union workers?", The same question could be asked with respect to not supporting a strike.

One then might have a rough measure of the degree of reward and punishment anticipated from the three groups by the union worker for either
of two actions possible when union and management expectations of him were antagonistic. For the purposes of the initial hypothesis, responses could be divided into approval and disapproval; further research could fruitfully explore whether anticipated approval or disapproval with tangible rewards or punishments would be more effective in determining a decision than approval or disapproval with no tangible action anticipated.
-Hjalmar Rosen
University of Illinois

A Theoretical Examination of the Concept of Dual Loyalty

By virtue of our complex and industrialized communities, most people find themselves members of several different groups. Some individuals are members of groups which at times are in conflict with each other. Nowhere is this more sharply illustrated than in the case of the worker in the industrial field. He is a member of a company. He also often belongs to a union. On our panel social scientists who have made pioneer studies have shown that dual loyalty is possible and to some rather surprising degrees. I would like to examine a little further what some of the problems are that arise from those results, and what we can and cannot expect in the way of generalizations.

First and foremost, dual loyalty is not a thing in itself. It is a process and one in a fluid state depending on factors inside the individual, outside of him in the relationships of the two specific groups he has joined, and further outside of him, namely the characteristics and values inherent in the socio-economic structure of our society.

It is impossible as a matter of behavior to be loyal or owe allegiance to two conflicting organizations, because at any crisis one cannot choose both. Can we predict from a finding that a majority of workers in a plant have "dual loyalty" what they are going to do in such a situation which vitally concerns one of the two conflicting
groups? I would prefer to be cautious in applying the label of dual loyalty to the results so far gathered. I think what has been well demonstrated is that there is generalized "well-meaning" to both union and company among a majority of workers in industries which were at the time of investigation not engaged in overt conflict, and in a particular period in our economy.

The condition of "no overt conflict" is rather the most prevalent form of accommodation of union and management, and especially in contemporary America, so these findings have some generality. I would like to examine the factors in this process at three different levels.

On the first level, dual identification is very much a problem in personality. Individual differences and their relationship with group identification are here the key. Allegiances in the past, aspirations, value system, other group membership, etc., determine to a large extent whether one worker is more identified with company or with union or with both in a given situation. It depends also on how each worker perceives a discrepancy or convergence between his needs and the perceived goals of either organization.

Whether such personality characteristics as emotional maturity and democratic character structure are required for the person showing dual loyalty is not demonstrated. But, because the implication exists, any investigation on dual loyalty cannot rule out an investigation of personality. Should any tie-up with personality factors be found, one would next have to worry . about selection factors among workers in different industries which have different degrees of dual loyalty among the worker force but similar unioncompany conditions.

On the second level, what are the dimensions of the union and company groups that make for conflict or cooperation between them? Here the kind of interaction will vitally affect the identifications of workers affiliated with both. Diversity or similarity of group goals is one of the most cogent factors. Also important are the hierarchy structure and power fields within each group. This affects the relationships which the worker has to his company foremen, supervisor, and union officers, and determines the kind and amount of
allegiance to each group. His perceptions of these various group characteristics are not only determined by his personality characteristics, but also by clarity of group goals and practices, accessibility of information, and the amount of participation he is permitted.

The more unambiguous his perceptions of the group, the more easily he can decide whether to integrate them into his self-concept and his needs, the more decisive will be the kind of affiliation he chooses. We could advance the hypothesis that if membership and hence allegiance becomes a clearly defined and perceivable thing, then interpretation of affiliation by each member becomes less related to his own personality characteristics; under clear group goal definition, each group becomes less of a "projective technique."

Finally, we must consider the general economic and political factors typical of our society which influence dual loyalty. Is dual loyalty in industry possible in our society? Can unions and management ever effect the kind of cooperation that would make dual loyalty possible, provided group and personality factors are adequately solved? From the studies we have heard, the answer has been a ringing "yes." We might want to know, however, what each organization would have to give up to achieve dual loyalty. And, if it had to give something up, would it change its character as an autonomous organization and still adequately represent the needs of its members?

The Communist-Marxian view would of course deny the value of dual loyalty. This is based on its conception of economic processes in terms of an inevitable warfare between two classes. Have we enough evidence to disprove the Marxian hypothesis? I think we have and there is added
evidence from the case studies on good labor relations conducted by the National Planning Association. ${ }^{4}$ There, I was impressed again and again that good relations were accompanied by changes in perception of role on the side of both management and union. Management saw more the human being with needs and wants in the worker, while the union disclaimed so-called co-determination in matters relating to production, profits, and plant organization.

Forces in our society have accelerated the potentials for dual loyalty. Similarly, there must be factors that prevent or destroy it. With knowledge of these factors we can answer the problems about what is finally inevitable, conflict or dual loyalty, and what factors are responsible for one or the other. For instance, what effects would a recession versus full employment have on the development of dual loyalty? or defense production versus consumer production? Can dual loyalty developed under full production be maintained when adverse economic conditions prevail?

Such investigations help us formulate answers to other knotty questions. One of the most important for us, not only as scientists, but also as citizens, is: What form of human organization in a modern industrial society is best suited to bring about group harmony and to make dual loyalty not only desirable but also possible?

> -Walter Gruen
> Committee on Human Development University of Chicago

[^3]
Occupational Wage Levels in 20 Labor Markets, Fall 1952-Spring 1953

L. Earl Lewis*

Pay levels among the 20 labor markets surveyed by the Bureau of Labor Statistics during late 1952 and early 1953 were generally highest in the San Francisco Bay area. This accords with findings in the earlier studies of 40 major labor-market areas. ${ }^{1}$ Within each area, wages were usually higher in manufacturing than in nonmanufacturing industries. ${ }^{2}$ However, occupational averages in the public utilities group frequently exceeded those in manufacturing, particularly among office jobs. Differences in wage policies among firms in the same industry group and in-plant differentials arising out of wage-setting practices which permit multiple rates for individual occupations also contributed to the wide dispersion of wage rates observed for workers employed at comparable tasks within each area. Although each of these wage variations has an important influence on the wide dispersion of earnings found among workers in comparable jobs, accurate measurement of their individual effect on the overall dispersion was not possible.

Interarea Differentials

San Francisco-Oakland and Los Angeles, together, accounted for most of the top area averages for the 13 selected office occupations shown in table 1. The highest averages for 10 of the 13 plant jobs, table 2, were found in the San Francisco Bay Area; other areas with relatively high wage levels included Chicago and Milwaukee. Lowest occupational averages in office or plant were generally found in Dallas or Memphis; several of the lowest averages were also found in Providence.

For office occupations, differences between the highest and lowest area averages usually ranged from $\$ 10$ to $\$ 15$ a week (table 3). Among plant jobs, the differences tended to be greater, ranging from 45 to 75 cents an hour. The maximum interarea wage spread for most office occupations was from 30 to 40 percent. Similar differences prevailed for skilled plant jobs, whereas larger spreads of 60 to 70 percent were observed for unskilled plant jobs.

The greater interarea spread in wages for unskilled jobs reflects the comparatively low level of pay in the South for work of this type. If data for the four Southern areas are excluded, the range in area averages for helpers, janitors, and laborers becomes nearly the same as those recorded for skilled manual-type jobs and office classifications. In other words, earnings of office workers and skilled plant workers in the South more nearly approach the level of wages in other areas than do the rates of pay for unskilled workers. For example, secretaries in Dallas averaged about nine-tenths as much as those in San Francisco; laborers, on the other hand, received only about two-thirds as much in Dallas as in the West Coast city.

Table 4 provides a comparison of average weekly earnings in a few selected professional and technical occupations studied on an allindustry basis in the 20 areas.

Interindustry Comparisons

The industrial composition of the 20 areas varied substantially. Manufacturing industries employed half or more of the workers within the scope of study in each of the New England, Middle West, and Middle Atlantic areas, except New York City. Nonmanufacturing industries dominated employment in New York City, all southern areas except Baltimore, and all western

[^4]areas other than Los Angeles. Since pay levels differ among industries, dissimilar industrial distributions of the labor force explain some of the interarea variations in wage levels.

In each area, the average for most manufacturing jobs was higher than the composite average for the nonmanufacturing industries; however, occupational averages in manufacturing were frequently exceeded by those in individual nonmanufacturing groups such as public utilities. The earnings advantage of manufacturing workers was more consistent among office jobs than among plant occupations. For example, averages for office classifications in virtually all areas were from $\$ 1$ to $\$ 10$ a week higher in manufacturing than in nonmanufacturing. On the other hand, averages for such skilled maintenance occupations as carpenters and electricians in over half the areas were highest in nonmanufacturing establishments. Unskilled plant occupations, such as janitors and trades helpers, nearly always averaged more in manufacturing than in nonmanufacturing. The relatively high nonmanufacturing averages for
some skilled maintenance jobs may be accounted for in part by the fact that some nonmanufacturing establishments bargain separately with the various craft unions and pay the area's prevailing construction rate for maintenance work.

Pay levels among the five broad nonmanufacturing industry divisions studied were generally highest in public utilities and lowest in services. ${ }^{3}$ Office salaries in the public utilities group exceeded those in other nonmanufacturing groups in nearly all instances where comparisons were possible, and were frequently above manufacturing averages. For example, secretaries employed by public utility establishments averaged from $\$ 2$ to $\$ 10$ a week more than those in manufacturing in 12 of the 16 areas for which both averages were computed; stenographers and typists in public utilities had the highest wages in nearly half the areas. Plant occupation averages were generally higher

[^5]Table 1.-Average straight-time weekly earnings for 13 office occupations studied on an all-industry basis in 20 labormarket areas ${ }^{1}$

Labor market	Billers, machine (billing machine)	Comptometer operators	Clerks, file, class A	Clerks, file, class B	Clerks, order	Clerks, payroll	Keypunch operators	Secretaries	Stenographers, general	Switchboard operators	Switchboard operator-receptionists	Typists, class A	Typists, class B
New England:													
Boston....	\$45. 00	\$47. 50	\$47. 50	\$38.00	\$46. 50	\$51. 50	\$45. 50	\$58.00	\$49.50	\$48. 50	\$46.00	\$47.00	\$41. 50
Providence-.	46.00	44.50	45. 00	36.00	43.50	48.00	43.50	56.00	45.00	45.00	44.00	47.00	39.00
Buffalo-	47.00	51.00	51.00	46.50	50.00	55.00	52. 00	66.00	54.50	52.00	47.50	53.00	47.00
Newark-Jersey	50.00	54.50	50.50	42.00	53.50	55. 00	49.50	66.00	53.00	51. 50	51.00	52.50	45.50
New York.	54. 00	55. 00	54.00	43.00	53. 00	59.00	52.00	68. 50	55.00	53. 50	54.00	54.00	47.00
Philadelphia	48.00	47. 50	47.50	38.00	44. 50	50.50	46. 00	61.00	49.00	47. 50	46.00	47.50	40.00
Atlanta	51.00	51.00	55.00	39.00	48.50	53. 00	47. 50	62.50	53.00	43. 50	46. 50	50. 50	
Baltimore	44.00	49.50	46.00	36. 50	41. 00	52.50	44. 50	60.00	48. 50	44.00	45. 50	47.00	39.50
Dallas.	43.50	49. 50	43.00	35. 50	45. 00	51.00	46. 00	61.50	51.00	44.00	44.50	44.50	42.50
Memphis Middle West:	46.00	48.00	45.50	37.50	47. 50	52.00	46.50	55.00	47.50	44. 37	44.00	45.00 45	38.00 38.0
Chicago.	55.50	57.50	54.50	44.50	53.00	59.50							
Cleveland	53. 50	55.00	53.50	42.50	53.50	59.50 57.50	54.50	69.00 67.00	58.50 56.00	53.50	54.50 51.40	57.00 54.50	49.00 47.00
Kansas City	49. 50	50.50	49.00	37.50	48.00	52.00	47.00	60.50	51. 50	46. 50	4. 4.50	54.50 51.50	47.00 41.00
Milwaukee	49.50	50.00	52.00	42.00	50.50	54.50	50.50	67.00	53.00	49.00	50.50	53.00	44.00
Minneapolis-St. Paul	45. 00	48.50	48.00	39.00	47.00	52.00	44.50	59.50	48.50	45. 50	46. 50	48.00	41.00
St. Louis Far West:	50.50	51.00	49.50	41.50	49.50	51.00	49.00	63.50	51.00	48.00	46. 50	51.50	43. 50
Denver	46.00	49.50	46. 50	40.00									
Los Angeles	54.50	61.50	54.00	46.00	59.50	62.00	48.50 60.50	61.00 69.50	51.50 59.50	45.00 57.00	47.00 57.00	50. 550	43.50 48.00
Portland.	50.00	51.50	51.50	43. 50	52. 50	55.50	52.00	64.50	54.00	48.00	49.50	53. 00	48. 00
San Francisco-Oakland	56.50	58.50	55.50	44.50	59.00	62.50	56.00	69.00	60.50	55. 50	57. 00	55.00	49.00

[^6]apolis-St. Paul; December-Providence and St. Louis. 1953: JanuaryMemphis and San Francisco-Oakland; February-Los Angeles and New York; March-Atlanta, Boston, and Chicago; April-Buffalo and Mil-
waukee.
in public utilities than in the other nonmanufacturing groups, with the notable exception of automotive mechanics, for whom the highest average earnings in each area were in wholesale trade.

Rate Variations Within Areas

The wage structure of each area was characterized by a substantial variation in individual worker pay rates within the same job classification. As would be expected from differences in general pay levels among industry divisions, the degree of rate dispersion for the all-industry distributions exceeded that for the individual industry divisions. However, within each industry division, the maximum spread between the lowest and highest individual rates for a particular job exceeded the difference between the lowest and highest area averages for that job and division.

The method adopted for examining the degree of dispersion among individual job rates involved a determination of the ratios of the amount of the "middle range" (within which one-half of the

[^7]employee rates fell) to the averages for the several occupations. ${ }^{4}$ The middle range within the allindustry distributions for general stenographers amounted to $\$ 10$ or more in nearly all areas, with the ratios ranging from 15 to 30 percent. A similar dispersion was found for routine copy typists (class B), although middle ranges in most cities covered a $\$ 7.50$ to $\$ 10$ spread. The degree of dispersion among individual rates tended to be smallest in the Far West cities.

Middle ranges for maintenance electricians ranged from 15 cents or less among the 4 Far West cities to 40 cents or more in Atlanta, Dallas, and New York City; the ratios ranged from about 5 percent in Los Angeles and the San Francisco Bay Area to more than 25 percent in Dallas. Data for unskilled plant jobs such as janitors and laborers showed the greatest degree of dispersion of all jobs studied.

Variations in pay levels among industries, among establishments within the same industry, and, to some extent, among similar jobs within individual establishments account for the degree of dispersion noted in individual rates within the same job classification and labor market. Previous Bureau studies of wages in numerous

Table 2.-Average straight-time hourly earnings for 13 plant occupations studied on an all-industry basis in 20 labor-market areas ${ }^{1}$
[Area surveys conducted between August 1952 and April $1953{ }^{2}$]

Labor market	Carpenters, mainte nance	Elec- tricians, maintenance	Helpers, trades, nance	Janitors	Laborers, materials handling	$\underset{\text { chanists, }}{\mathrm{Ma}}$ maintenance	Mechanics, automotive maintenance	$\mathrm{Me}-$ chanics, maintenance	Order fillers	Painters, nance	Tool and die makers	Truckers, power (forklift)	Watchmen
New England:													
Boston....	\$1.90	\$2. 01	\$1. 56	\$1. 22	\$1. 42	\$1. 95	\$1.82	\$1.86	\$1. 41	\$1. 66	\$2. 12	\$1.61	\$1. 27
Providence-.- Middle Atlantic:	1.69	1.76						1.69	1.15	1.59	1.92	1.44	1.25
Buffalo-....	2.05	2. 13	1.76	1.45	1.57	2.12	1.91	2. 14	1. 62	1.91	2.25	1.72	1.35
Newark-Jersey Cit	2.12	2.18	1.72	1.39	1.60	2.09	1.97	2.00	1.63	1.99	2.21	1.72	1.30
New York	1. 99	2.11	1. 57	1.30	1.51	2. 13	1.97	2.02	1. 61	1.83	2.31	1.89	1.31
Philadelphia	2.04	2.02	1.63	1.24	1.43	2.05	1.78	1.96	1.41	1.88	2.14	1.49	1.20
South:												1.29	. 98
Aaltimor	1.78	2. 1.86	1.50	1.09	1.24	2. 05	1.75	1.78	1. 29	1.73	1.97	1.54	1.05
Dallas.	1.84	1. 91	1.36	1.01	1.13	1.79	1. 69	1.69	1.15	1. 63	1.98	1. 27	1.01
Memphis.	1. 72	2.01	1.08	. 92	1.04	2.00	1. 49	1.79	1.18	1.69	2. 18	1.37	. 92
Middle West:													
Chicago	2.29 2.09	2.28 2.10	1.73 1.75	1.42 1.39	1.546	2.25 2.08	2.10 1.90	2.05 2.06	1.64	2.32 2.00	2. 212	1.74 1.7	1.26
Kansas City	2.00	2.01	1. 70	1. 20	1.45	2.06	1.82	1.91	1. 45	2.04	2.23	1. 68	1. 23
Milwaukee	2.08	2.19	1. 66	1. 45	1.64	2.22	2.05	2.08	1.71	2.15	2.28	1.74	1.31
Minneapolis-St. Paul	2.09	2. 09	1. 64	1. 27	1. 53	2.08	1.81	1. 96	1. 46	2. 16	2. 18	1. 62	1. 40
St. Louis............-	2.06	2.16	1. 79	1. 22	1. 48	2.15	1.85	1.93	1. 43	2. 10	2.31	1. 64	1. 26
Far West:	1.89	1.90	1.53	1.12	1.36	1.89	1.82	1.78	1.42	1.80	2.05	1. 47	1. 10
Denver---	1. 2.10	1.923	1.77	1.39	1.65	1.89 23	2. 10	2.04	1.70	2.07	2.32	1. 80	1. 46
Portland.	2. 25	2.13	1. 81	1.38	1. 65	2.15	2.03	1.99	1. 63	2.18	2.20	1. 79	1. 47
San Francisco-Oakland	2.33	2.26	1.84	1. 50	1.77	2. 26	2.32	2. 13	1.80	2.20	2.45	1.91	1. 53

${ }^{1}$ The data on straight-time hourly earnings (premium pay for overtime and night work excluded) are limited to men workers employed full time.

2 See footnote 2, table 1, for dates of individual area surveys.
${ }^{3}$ Insufficient data to justify presentation of an average.

Table 3.-Maximum interarea wage spread for selected occupations

Occupation	Lowest area average	Highest area average	
		Amount	Percent above lowest
Office	Weekly earnings		303831303429
Billers, machine (billing machine)	\$43. 50	\$56. 50	
Clerks, file, class B....	44. 50	61.50	
Clerks, payroll....-	35.50 48.00	46. 50	
Stenographers, general	45.00	60.50	
Typists, class B	38.00	49.00	
Plant: Skilled	Hourly earnings		383028
Carpenters, maintenance	$\begin{array}{r} \$ 1.69 \\ 1.76 \\ 1.77 \end{array}$	$\begin{array}{r} \$ 2.33 \\ 2.28 \\ 2.26 \end{array}$	
Machinists, maintenance			
Plant: Unskilled			
Helpers, trades, maintenance	1.08	1.84	70
Laborers, material handing	.92 1.04	1.50	63

industries have indicated that wide differences in pay rates for comparable work exist in the same labor market even where the industry has been more narrowly defined than in this analysis.
Earnings of a majority of office workers in each area studied were based on formal rate-range plans. Among plant workers, such plans either predominated or were of about equal importance with single-rate plans in all areas except Buffalo, Denver, Memphis, Philadelphia, Portland (Oreg.), and San Francisco-Oakland. In the latter areas, earnings for the majority of the workers were based on single-rate plans. Earnings of workers
paid under formal rate-range plans are adjusted periodically according to some determinant such as length of service, merit, or a combination of both. The value of each step and the spread between the highest and lowest rate differ for a given occupation among establishments and also among jobs within an establishment; however, the maximum rate frequently amounts to as much as 15 to 20 percent more than the minimum of the range.

Table 4.-Average straight-time weekly earnings for 5 professional and technical occupations studied on an all-industry basis in 20 labor-market areas ${ }^{1}$
[Area surveys conducted between August 1952 and April 1953 2]

Labor market	Chief draftsmen	Draftsmen	Junior draftsmen	Tracers	Nurses, industrial
New England:					
Boston---	\$114. 50	\$83.00			
Providence... Middle Atlantic.	(3)	$\$ 8.50$	\$61.50 56.50	${ }_{(3)}$	$\begin{array}{r} \$ 62.00 \\ 58.50 \end{array}$
Middle Atlantic:					
Nuffalo--.-.--	113.50	88.50	69.50	${ }^{(3)}$	70.00
Newark-Jerse	118.50 130.00	92.50	66.00	49.50	67.00
Philadelphia	130.00 117.00	97.00	$\underset{(3)}{67.00}$	56. 50	71.00
South:					
Atlanta	106.00	78.00	61.50	$\left.{ }^{3}\right)$	65.50
Baltimore	(3)	80.00	55.50	53.50	64.00
Dallas	${ }^{(3)}$	70.00	49.00	(3)	66.00
Middle West: 10.00 (ア) 59.50				${ }^{(3)}$	59.50
Chicago_	112.00	89.00	64.50	54.00	
Cleveland	107. 50	87.50	70.00	(3)	68. 50
Kansas City	(3)	78.00	64.00	(3)	64.00
Milwaukee	(3)	88.50	72.50	59.00	63. 50
Minneapolis-St. Pau	(3)	75.00	61.50	${ }_{(3)}$	63.50 63.50
St. Louis West:	(3)	82.50	63.00	53.50	62.50
Denver	113.00	88.00			
Los Angeles	116.00	88.00 90.00	69.50 72.00	(3) (3)	62.50 74.50
Portland..-	${ }^{\text {(3) }}$	82.50	69.00	${ }^{(3)}$	74.50 64.50
San Fransisco-Oaklan	101.00	85.00	75.50	(3)	69.00

1 Earnings based on standard salaries paid for standard work schedules. Data for draftsmen limited to men; for nurses (industrial), to women.
${ }_{3}^{2}$ See footnote 2, table 1, for dates of individual area surveys.

Taxation and Lower Income Groups

Abstract

Editor's Note.-These two articles are excerpts from papers delivered at a conference on taxation sponsored by the Economic Policy Committee of the Congress of Industrial Organizations in Washington, October 16,1953. They are presented here as the thoughtful comments of recognized scholars in the tax field on the general subject of the effect of taxation on lower income groups.

The Federal Income Tax and the Working Man

I approach this problem [the effect of income taxes on workers], not with the question: How can we reduce the impact of the income tax on the working man? Rather, the question is this: How can we get a fairer, more impartial, and more effective income tax, one on which we can continue to rely as the workhorse of our Federal tax system? In seeking an answer to this question, one encounters a series of inequities and administrative defects that not only weaken the income tax as a whole but also fall into a pattern which seriously discriminates against the employee-the wage earner and whitecollar worker-and clearly favors the self-employed (especially the farmer) and the recipient of investment income.

Conceptually, it remains the most sensitive and powerful instrument of social justice in the fiscal field. It classifies people both according to size of income and according to family obligations, the two factors most widely recognized as determining one's ability to pay.

But growing erosion and corrosion of the income tax phase is increasingly raising questions of how far we can extend our reliance on this form of taxation. Especially in the past 10 years, long-standing imperfections of the tax base and tax administration have been severely aggravated by increased rates and reduced exemptions and have been further compounded by a whole host of new inroads on the base and progressivity of the tax.

Perhaps the most striking development of tax avoidance in the past 10 years is in the area of conversion of ordinary income into capital gains.

Another defect in the structure is the inadequate allowances for expenses of earning income. While expenses connected with business and farm income are deductible before arriving at adjusted gross income, those for wages and salaries are either allowable only as items covered by the 10 -percent presumptive deduction (e. g., union dues, professional dues, cost of uniforms) or are not deductible at all (e. g., commuting costs, specialized educational and training expenses, and additional costs associated with "working wives").

Probably the worst breach of all in the equity of the income tax is the evasion of taxation by an uncomfortably large proportion of the incomes not subject to withholding at the source. Failure to withhold income taxes from interest and dividends permits the evasion of at least $\$ 300$ million of taxes each year.

Without citing further examples of defects, loopholes, and tax concessions, we can face this critical question: Are certain groups of taxpayers systematically favored over others, and to what extent? Even a cursory investigation shows unmistakably that as compared with wage and salary earners, farmers and small businessmen are strongly favored in that their incomes (a) are partially nontaxable; (b) are more easily maneuverable into lower brackets by means of careful income timing, use of family partnerships, and conversion into capital gains; (c) are net of all expenses, including many on the borderline of per-
sonal consumption; and (d) above all, are most readily underreported without detection. Going one step further, and adding in percentage depletion, the conversion of timber income, coal royalties, and the like into capital gains, and the liberal allowances for mine development costs, one finds the extractive industries or primary producers as a whole gaining an increasingly favored position in our income tax structure.

On the basis of the foregoing, we may draw this important conclusion regarding the net effect on progressivity: on balance, it is substantially diminished. First of all, the combined effect of excluding important categories of income from the tax base, granting liberal deductions and exemptions, allowing high incomes to take refuge in lower brackets by income-splitting and conversion into capital gains, and allowing much income to escape illegally-the combined effect clearly makes actual effective rates of taxation in terms of true income considerably lower than apparent rates in terms of reported taxable income. Second, and more important, the differential impact of the softnesses in income tax structure on different income groups is undoubtedly such as to make the average ratio of apparent to actual tax rates for low incomes considerably higher than for middle and upper bracket incomes. The source of in-come-wages and salaries-which benefits least from openings in the tax law and imperfections in administration is the dominant element in small incomes. On a relative basis, then, upper incomes are hit less hard, lower incomes harder, than would appear to the naked eye from an examination of tax rates and exemptions.

Unfortunately, no data are at hand for purposes of isolating and measuring these inroads on progressivity in the face of the more-thanoffsetting impact of rising real and money incomes. Nevertheless, it may be interesting to examine the existing base, distributed by taxable brackets. Here we find that 70 percent of surtax net income is estimated to be in the first surtax bracket of $\$ 2,000$ (of all taxpayers), and an additional 11 percent is to be found in the second $\$ 2,000$ bracket (taxable at only 2 percentage points more than the first). Although exemptions introduce progressivity from the first dollar of taxable in-
come on, the significant fact remains that the much vaunted-and also much maligned-graduated rates of the individual income tax apply to only about 19 percent of the surtax net income base.

It is amply clear that the income tax, however preferable it may be to other forms of taxation, even with its defects-tends to discriminate against the wage earner as compared with other income recipients in two ways: (1) it collects from wages and salaries a higher proportion of the liabilities legally due than it does from any other source of income, and (2) it allows, by law, more generous deductions and concessions to other forms of income than to wage and salary incomes. Where does the remedy lie? How can the damage be repaired?

The preferred political way of reducing tax disparities is to extend an existing privilege to new groups rather than withdrawing it from the groups who now enjoy it.

Operating, then, at a level of political realism, organized labor will be sorely tempted to unlimber its fiscal picks and shovels to dig out a few chunks of the income tax base for itself. It will be tempted to press for an extension of fringe bene-fits-group life insurance and welfare funds, pension plans, health and welfare funds, food and lodging and other benefits in kind-at the same time taking pains to keep them on the "free list" as far as income tax liability is concerned.

Taking this approach would be to enter a tacit conspiracy with [others] trying to build their own income-tax-proof shelters. This is not to say that self-restraint should be carried to the point of abandoning attempts to get Congress to allow full deduction of the legitimate expenses incurred in earning wage and salary income, including some allowance for expenses of working mothers. But it does argue for not making a hollow shell out of the income tax by trying to match, concession for concession and exclusion for exclusion, the preferential tax treatment which some groups have managed to get under the income tax. A matching process of this sort not only runs into the objection that two wrongs do not create a right, but also plays into the hands of those who would gradually sap the strength of the income tax and force increasing resort to consumption taxes.

What kind of an action program does such counsel point to? First, a determined effort to tighten up enforcement and check evasion, especially in the administratively underdeveloped areas of farm income, interest, rent, and dividend. The second part of the program is to repair some of the damage that has been done to the structure of the income tax: to restore pieces of the base.

Structure and administration should be given equal, if not superior, rank with rates and exemptions as the key battlegrounds of income tax policy. Yet it is clear that questions of revenues, rates, and exemptions will not quietly wait upon completion of attempts to perfect the tax base and tax enforcement. In other words, the question of revenue potential is always with us.

Of course, tightening the tax base and tax enforcement would itself yield not inconsiderable revenues. For example, to the $\$ 300$ million which could be picked up by interest and dividend withholding, one may add from $\$ 500$ million to $\$ 1$ billion by rigorous enforcement and perhaps $\$ 500$ million each in the areas of percentage depletion and capital gains.

In order that revenue implications of various moves may be realistically appraised, we should briefly consider a few basic fiscal facts about the income tax. Experience in recent years has indicated that after all exclusions, deductions, and exemptions, about 40 percent of total personal income appears in the actual tax base, i. e., as "surtax net income" to which tax rates are applied. With personal income running at about $\$ 290$ billion, this implies a surtax net income base of about $\$ 115$ billion. Each percentage point of rate change across the board, therefore, involves $\$ 1.1$ billion of revenue. With 70 percent of the base in the first $\$ 2,000$ surtax bracket, each percentage point change in the basic income tax rate alone (20 percent after January 1), involves over $\$ 800$ million of revenue. With only about 10 percent of surtax net income in brackets above $\$ 10,000$ it is clear that the possibilities of balancing tax reductions in the bottom bracket with tax increases in the upper brackets is no longer a promising fiscal exercise.

On one hand, there is little revenue to be gained by raising the rates on upper bracket incomes as now defined for tax purposes. But on the other, there is a large revenue potential in so redefining or "unsplitting" income that it is restored to the upper reaches of the income tax base where many may feel it belongs.

For example [elimination of income splitting would] push incomes of married couples into higher brackets. This would yield some $\$ 3$ billion of additional revenue. Withdrawing the capital gains privilege from some types of transactions or restricting family partnerships would also help restore some of the vigor of the upper brackets. Interest and dividend withholding would also make a contribution here.

Other, more traditional ways of broadening the base would also have a large revenue effect. For example, a reduction of the "standard deduction" from 10 percent to 7 percent would yield almost $\$ 1$ billion of added revenue. Or decreasing the per capita exemption by $\$ 100$ would increase revenues by over $\$ 2.5$ billion. Or, to take a possibly more acceptable variation on this theme, one might substitute a per capita tax credit of $\$ 120$ for the $\$ 600$ per capita income exemption ($\$ 600$ times the basic rate of 20 percent). This would raise over $\$ 1$ billion, all from brackets above the first.

Incidentally, the net revenue gain from such a move would about equal the net revenue loss that would be incurred if the top rate of the tax were to be cut off at 75 percent after $\$ 50,000$ rather than letting it rise to 91 percent on incomes over $\$ 200,000$. It may be anathema to suggest here, however faintly, that such a trade might some day be advisable. Nonetheless, there is something to be said for getting rid of 80 percent and 90 percent rates which generate more heat than revenue and are likely to have unfortunate incentive effects. A reasonable and balanced program of income tax reform might well dispense with the fetish of 80 to 90 percent rates.

-Walter W. Heller
University of Minnesota

Taxation of

Low and Middle Incomes

As long as the overall requirements of the tax structure remain anywhere near the present level, we cannot but continue to draw a substantial part of the Federal tax bill from middle and lower income groups. The problem of distribution of burden, therefore, cannot be solved by arguing that the tax burden should be placed on the "rich" or the "high" incomes. While we must not overlook defects in the tax law as applied to these income ranges, the plugging of loopholes (arising from capital gains, income splitting, and other factors) will not solve the yield problem. Also, very high rates, where they really apply, may pose an incentive problem. However this may be, we are left with the necessity of drawing a large part of the tax bill from the middle and lower income groups.

In all, it appears that the personal income tax is the factor making for substantial progressivity throughout the income range, and that the excises are the factor making for regressivity. The estate and gift taxes are not a major revenue factor, and the corporation income tax, while progressive at the upper end of the scale, is more or less proportional over the middle range. Considering the Federal tax structure as a whole (and it is the tax system as a whole that matters, rather than the individual components), we find some indication of progressivity at the lower end of the scale, followed by a stretch of more or less proportional rates, with progressivity setting in once again above the $\$ 7,000$ line. While these data refer to 1948, I doubt whether the current picture would be very different.

In brief, a comparison between 1953 and 1945 shows no major changes in the tax shares, the most significant move being an increase in the personal and a corresponding decrease in the corporation income tax share. Comparison between 1953 and 1939, however, shows a sharp decline in the excise share, a fair increase in the corporation tax share and a sharp rise in the personal income tax share. Even if the latter development is offset, in part, by a decline in the estate and gift tax share, there remains a substantial shift from regressive to progressive taxes. This suggests that the progressivity of the Federal tax structure has in-
creased considerably over this period, but some qualifications are in order.

In all, it would seem that the total tax structure has moved in the direction of increased progressivity, at least as between the low and middle income ranges. But precise measurement is difficult. One of the troubles is the very meaning of "low," "middle," and "high" income changes over the years. The median income of spending units in 1941 amounted to about $\$ 1,600$ as against $\$ 3,420$ for 1952 . As per capita income increased, be it due to inflation or real growth, people moved up into higher brackets of money income. Thus, an income of $\$ 4,000$, which was quite high in 1939, was only about a median income in 1953, and so forth. Therefore, if we wish to see what happened to the distribution of the tax bill over the years, we should not focus on changes in the distribution among constant dollar brackets of income, but try to see what happens to the distribution of the tax bill as between families in various deciles of the income range. My own estimates show a process of soaking the man in the middle, whichlike it or not-is what happens when the tax bill increases.

This leads to the more basic problem of income vs. excise or sales taxes. Arguments in equity are a matter of social outlook; but let us suppose that we are agreed that some progressivity is desirable over the lower-middle as well as the middle-upper income ranges. On this premise, there is a conclusive argument for the use of income, as against sales or excise taxes.

A comparison [as of 1948] between the incidence of the personal income tax and of a hypothetical sales tax with exemption of food and rent shows the progressivity of the one and the regressivity of the other tax. First, there is the fact that the personal income tax permits exemptions and has progressive bracket rates, whereas the sales tax does not. But even if a flat income tax without exemptions were applied, a second difference would remain. This is because the sales tax is allocated by consumption, and consumption declines as a percentage of income when moving up the income scale. Thus, the sales tax is regressive wherever the flat rate income tax without exemptions would be proportional.
-Richard A. Musgrave
University of Michigan

Workmen's Compensation in the United States

VIII-Rehabilitation

Jerome Pollack*

Editor's Note.-This is the last in a series of articles on workmen's compensation. Previous articles dealt with legislative and administrative progress, appeals, Federal legislation, occupational diseases, medical services, accident prevention, and problems of administration.

When workmen's compensation legislation set out to provide medical care and replace lost income for injured workers, it embarked on a course that could not be complete without a third goalthe rehabilitation of the worker to optimal family, social, and economic life. This goal is potentially the most significant improvement in the concept of workmen's compensation.

The original legislation was based on an essentially static concept of disability. The medical care of the day was relatively limited. When first aid and medical treatment had been rendered there was little to do but accept the residual incapacity as it stood. The medical care required by statute usually ended after the initial healing period and the program thereafter dealt primarily with cash payments. Compensation for permanent partial disabilities was based on indemnities fixed by statute for specified losses. It was assumed, moreover, that the "loss of both hands, or both arms, or both feet, or both legs, or both eyes, or of any two hereof shall, in the absence of conclusive proof to the contrary, constitute permanent total disability." ${ }^{1}$ Where further treatment held no promise, the tendency to establish fixed liabilities for fixed losses was both humane and practical.
The rise of rehabilitation, however, has introduced infinitely improved means of regaining lost health and overcoming loss of function. It has narrowed the area of permanent disability so that today it scarcely has any valid meaning except to the extent that rehabilitation is unsuccessful or not feasible. Certainly it has shattered the notion
of presumptive permanent and total disability. It has opened the prospect of improved methods of evaluating disability which would overcome some of the deep-seated deficiencies of the system. Rehabilitation cannot, of course, be the sole objective of workmen's compensation, although such assertions are sometimes loosely made. But it offers a set of services essential to the proper functioning of workmen's compensation legislation; the availability of these services to injured workmen is supported by compelling reasons of social and economic policy.

Nature and Effectiveness of Rehabilitation

In part, rehabilitation is an outgrowth of workmen's compensation experience. Compensation administrators soon recognized the incompleteness of the legislation and gave the movement for vocational rehabilitation "its most direct and substantial support." ${ }^{2}$ Their efforts paved the way, when the First World War came, for the first national legislation for rehabilitation of veterans. ${ }^{3}$ The war enlarged the need for rehabilitation and stimulated awareness of its potentialities. Rehabilitation centers began to be established. Legis-

[^8]lation followed, providing a financial base and establishing organized programs of rehabilitation successively for veterans, the industrially disabled, and the general population. There emerged the modern concept of rehabilitation made possible by great advances in the general practice of medicine, in orthopedic surgery, physical medicine, and other medical specialties; and by the pioneering of specialized institutions for the care of the disabled, which had served such groups as handicapped children, the ruptured and crippled, the deaf, and the blind, and which had stimulated, concentrated, and coordinated efforts to overcome disability.

Modern rehabilitation has been defined as "the restoration of the handicapped to the fullest physical, mental, social, vocational, and economic usefulness of which they are capable." Its practice has developed in two segments: medical, aimed at maximum recovery of health and the fullest possible restoration of lost function; and vocational, to promote an optimal economic adjustment, through vocational counseling and training, transitional employment, and placement services. Currently the psycho-social elements of evaluation, social service, personal counseling, psychometrics, recreation, and psychiatric service are recognized as a third coordinate segment. Each segment is a composite of many disciplines. In severe cases, the necessary medical specialists may include: "A general surgeon, an orthopedic surgeon, a neurosurgeon, a plastic surgeon, an internist, a urologist, a roentgenologist, a doctor of physical medicine, a psychiatrist, and sometimes others . . . indispensable for the proper handling of a single case . . ." ${ }^{4}$ And before rehabilitation is completed, many nonmedical specialists may have to be called upon. Integration of the diverse disciplines, services, and facilities toward a single goal is the crucial administrative problem. The goal is total rehabilitation. The process cannot stop with the best artificial appliance and its most skillful use if the worker is unable to cope with his social environment or his employment. Proper rehabilitation thus necessitates the availability, where needed, of all the component services and of the institutions which house and coordinate their work.

Of its effectiveness there is hardly room for question. The will to live revealed by many persons despite the most severe afflictions, their
courage and resourcefulness, combined with the new ways to achieve restoration, inspires the common designation of "miracles." Many accounts could be cited which recall Biblical passages. A history of the Institute for the Crippled and Disabled is appropriately entitled "Take Up Thy Bed and Walk." ${ }^{5}$ Dr. Howard Rusk has given an inspiring account of the rehabilitation of 500 paraplegics ${ }^{6}$ under the program sponsored by the United Mine Workers. These were-
the toughest cases that anybody ever saw, bar none. You always like to tell about your worst case, but there were many as bad as this one:

This man was 40 years old and his back was broken 20 years before. How he survived that length of time I don't know. When he was found . . . he . . . had not seen a doctor in $31 / 2$ years. There was not even a wagon road to his house and he was carried down in a sling between two bed poles by friends. The man had 11 bed sores from the size of a plate to the size of a dollar; stones in both kidneys and his bladder, and his lower extremities were almost up under his chin.

You might ask, is it worth fooling with a person like that? He thought it was. He wanted to live. And we felt we had an obligation. It took 26 surgical procedures and 13 months before we could even start to train this individual. . . . We trained that man to walk, swing through a gait on crutches in 90 days, and in control of automatic bladder and automatic bowel. And during the last 3 months of his stay in the institute he ran for sheriff in his county . . . and he has been the sheriff there for more than 3 years.
New ways of rehabilitation hold promise of still newer ways and broader applications. Rehabilitation is being extended to mental illness, heart disease, epilepsy, blindness ${ }^{7}$ and aging. ${ }^{8}$ Its horizons are expanding and the hope it holds for tomorrow makes it all the more important to perfect the institutional arrangements to bring rehabilitation to the disabled.

[^9]
Provision for Medical Rehabilitation

From the beginning, workmen's compensation legislation accepted, at least in part, a responsibility for restoring health which often extended into medical rehabilitation as it then existed. True, restrictions on the total cost or duration of care were the rule. Nevertheless, more than a third of the laws enacted by the end of 1919 defined medical care to include such items as "crutches and apparatus," "artificial limbs," "mechanical appliances," and the like and it is probable that other States also furnished them under the general provision that "all necessary" or "reasonable" services, medicines, and supplies were to be provided.

Although medical rehabilitation was partly anticipated, it was largely an unforeseen development requiring a greater emphasis on medical care, a broader scope of services, and possibly a reexamination of the arrangements for medical care.

Progress toward adequate medical care, however, has been slow. One authority poses the problem as follows: "Those laws which should have restored the disabled worker to gainful employment failed to provide even adequate medical care by the statutory limitation of the cost and duration of such care. It should be obvious that no true rehabilitation can possibly be afforded if medical benefits are to be so restricted." ${ }^{9}$ Such restrictions still exist in as many as 17 States. The practice is sometimes more enlightened than the legislation, but this does not establish a satisfactory financial base for medical rehabilitation.

Modern rehabilitation involves the total medical practice as it affects the injured. It begins with the attending physician-and even with the medical school. In order for the physician to carry out his responsibility as defined by the American College of Surgeons, " . . . it is essential for him to recognize the total medical problem of the patient in addition to his injury, as well as his personal problems. The physician must

[^10]bring to bear on these problems all the skills and disciplines that science and society can offer, and utilize all community resources which can assist him in the accomplishment of these objectives." ${ }^{10}$
The community resources bearing closest on medical rehabilitation are the community hospital and the rehabilitation center. The President's Commission on the Health Needs of the Nation has underscored the need for establishing departments of physical medicine and rehabilitation in general hospitals. The Commission concluded that the average community hospital of 200 beds could profitably assign perhaps 20 percent of its beds for rehabilitation and convalescent care. However, only 19 of 1,600 general hospitals replying to a questionnaire by the Commission on Chronic Illness had any bed allocation for rehabilitation services; and very few of these actually offered comprehensive service. The President's Commission found, moreover, that: "All told, there are less than a dozen comprehensive rehabilitation centers in existence . . ." and that they meet only a small fraction of the need. To make the miracles of medical rehabilitation a reality for most of the Nation's disabled workmen, a great expansion in hospital and center facilities is obviously needed.

Provision for Vocational Rehabilitation

A few States were prompt to amend their laws to bring vocational rehabilitation within the scope of the compensation system. Massachusetts was the first to establish, in 1918, "a division for the training and instruction of persons whose capacity to earn a living has in any way been destroyed or impaired through industrial accident." ${ }^{11}$ The following year California, North Dakota, and Oregon adopted similar measures. Oregon's compensation law set a high standard:

[^11]But rehabilitation was also developing in a broader direction. Support was growing for the idea that it should be made available to all of the disabled regardless of the origin of disability. This idea was embodied in the Federal Vocational Rehabilitation Act of 1920 which provided for technical and financial assistance from the Federal Government for State-operated vocational rehabilitation programs serving the general population. There had been some resistance to the inclusion of vocational rehabilitation under workmen's compensation; within that framework, rehabilitation faced uncertain financing and restrictive standards of eligibility. The Federal-State program, on the other hand, was readily accepted as the means of providing vocational rehabilitation for the occupationally disabled, and the drive to bring rehabilitation under workmen's compensation generally abated.

As a result, only 17 States have made any statutory provision whatsoever under their workmen's compensation laws to provide, promote, or facilitate rehabilitation. Fifteen States facilitate rehabilitation by providing limited maintenance allowances during its course; a few among them, probably five, finance or help pay for rehabilitation services as a direct part of workmen's compensation. Four States and Puerto Rico directly operate rehabilitation facilities for injured workers under the workmen's compensation program.

There thus exist in America today two basic patterns in providing rehabilitation services for injured workers: in a few States the services are directly provided by the workmen's compensation agency; overwhelmingly they are furnished through cooperation with the Federal-State program.

Direct Provision of Services. The few States

 which directly operate rehabilitation facilities under workmen's compensation-Ohio, Oregon, Rhode Island, and Washington-offer potentially the most complete integration of the two programs. There are evident benefits in centers concentrating on traumatic disabilities; there is greater specialization; the cases tend to be relatively recent in origin and can be processed before despair patterns become confirmed. The patients generally retain employment ties that may be reactivated and have a job orientation that is often helpful. The rehabilitation is financed as a workmen's compen-sation cost. To the injured worker it comes as an insured right without any means test or any implication of public assistance. Such centers have been performing excellent services for the injured employees under their jurisdiction.

The success of workmen's-compensation-operated centers, however, requires an administrative agency with considerable authority, empowered not only to establish the necessary facilities and provide the services, but also with clear authority to refer cases for rehabilitation. Such agencies are the exception rather than the rule in present American compensation practice. The fact that so few States have taken this course during four decades does not inspire much hope for a major trend for the direct provision of rehabilitation services under workmen's compensation.

Cooperation With Federal-State and Voluntary Com-

 munity Centers. A plan of rehabilitation geared to State, local government, and community centers offers a number of advantages. Community centers tend to be broader in scope than centers dealing exclusively with work injuries. They represent an investment in services and facilities available also to the worker's family and to the worker injured off the job. Community centers can make for fuller utilization of scarce resources by avoiding the duplication of personnel and facilities performing the same functions for different population categories. Local arrangements, moreover, can bring rehabilitation closer to the workers' com-munities-an important factor in inducing workers to accept rehabilitation. Such arrangements can provide for better integration of rehabilitation with the sources of medical education, medical service, placement agencies, and other community services.Considering its vast responsibilities and chronically limited budgets, the Federal-State program has achieved remarkable results, especially since the Barden-LaFollette Act of 1943 broadened its scope to embrace the full range of rehabilitation including medical and psychiatric services. Nevertheless, examination of the volume of rehabilitation of injured workers, the delays in securing service, the weaknesses in the referral system, the shortages of personnel, the inadequate financing, and other serious shortcomings, revives the question as to whether it was proper for
workmen's compensation to have transferred, largely or entirely, the responsibility for rehabilitation to another program without at least sharing in the cost and without taking definitive responsibility for following its cases through to complete rehabilitation. The question persists whether the responsibility to purchase or provide rehabilitation services must not be made an integral part of workmen's compensation, just as medical care is.

The volume of rehabilitation is critically inadequate. The Labor Department and the Office of Vocational Rehabilitation have estimated that at least 200,000 of the nearly $2,000,000$ workers injured each year could benefit from rehabilitation. By this standard of eligibility, "only 3 percent of the injured workers in the United States are receiving the type of service needed." ${ }^{13}$ About 6,000 injured workers annually receive rehabilitation services under the Federal-State program, but each year fully twice as many sustain serious permanent disabilities and are in acute need of rehabilitation. Most of the rehabilitation is received, not by those currently becoming disabled, but by a portion of the vast, and growing, backlog of persons needing rehabilitation.

Authorities are unanimous in stressing the crucial importance of promptness. Nevertheless, the Task Force on the Handicapped has made public the fact that, while the Rehabilitation Center of the Liberty Mutual Insurance Co. in Boston reported an average lag of 6.4 months from injury to admission, under the Federal-State program it had taken 7 years on the average for occupationally disabled workers to find their way to the rehabilitation agencies in 1951. ${ }^{14}$

The tendency has been to approach the matter of referrals superficially. The problem is far too deeply rooted to be overcome by merely urging more prompt action or even through improvements in the mechanics for referral. One important cause

[^12]of delay is built into some of the statutes; rehabilitation is not authorized until the worker qualifies by becoming entitled to an award for major permanent disability. Claim settlement procedures which require the worker to maximize his disability in order to secure fair compensation also interfere with rehabilitation-and this is one of the deepseated evils of present compensation practice that may prove exceedingly difficult to overcome.
Far greater access to facilities is needed. Injured workers usually must travel to the large urban centers at considerable hardship and expense. In most States, travel and maintenance expenses are not provided under the compensation law and, indeed, the regular cash benefits themselves are insufficient for this purpose.

Rehabilitation is not only grossly underfinanced but, partly as a consequence, seriously understaffed. As Mary E. Switzer, Director of the Office of Vocational Rehabilitation, recently testified: ". . . the urgent need for more trained personnel is not limited to the field of medicine. The need for physical therapists, occupational therapists, speech and hearing therapists, rehabilitation counselors, special class teachers, social workers, psychologists, and other specialists is even greater." ${ }^{15}$

Trends and Developments

The conquest of disability is one of the most constructive achievements of our time. Notwithstanding the many remaining lags, the merits of rehabilitation are gaining recognition. In 1951, the Industrial Commission of Ohio was authorized to advance $\$ 300,000$ to establish a rehabilitation center. Puerto Rico appropriates $\$ 50,000$ annually for the rehabilitation of injured workers. Numerous community rehabilitation facilities are being planned and built.
Two of the more significant attempts to extend rehabilitation for injured workers have come from a labor union and an insurance company. The union is the United Mine Workers, which concluded that "the problems which the severely disabled face in making a recovery are created in great measure by the present inadequacies of our workmen's compensation, relief, and rehabilitation programs." ${ }^{16}$ The union's Welfare and Retirement

Fund set out to supplement and coordinate the rehabilitation of disabled miners in conjunction with the Federal-State and other public and community agencies. The signal contribution made by this program has been to demonstrate the effectiveness of rehabilitation and to improve screening and referral procedures for its members. Other unions are now studying the possibility of promoting rehabilitation through collective bargaining.

The insurance company is Liberty Mutual, one of the major insurers of workmen's compensation liabilities. It observed the slow progress in bringing modern rehabilitation to injured workers. It was concerned with the rising cost of workmen's compensation and saw rehabilitation as one constructive method for controlling cost. Since 1943 it has operated a center in Boston which has produced excellent results, having derived many of the advantages of a program closely integrated in the workmen's compensation process. Its contribution is the demonstration that rehabilitation pays. The savings in reduced medical and compensation costs are difficult to measure by rigorous standards, although many specific cases can be cited in which very substantial amounts were saved. Stanwood L. Hanson, in evaluating the center's work, has stated the case with candor: "Although we still have many failures, the successes outweigh our failures, and our gains in human values and in

[^13]dollars far exceed the cost of providing these services of rehabilitation." ${ }^{17}$

Sweeping changes are needed to modernize the Nation's workmen's compensation laws. There is probably no better place to start than with the establishment of a definitive program of rehabilitation for occupationally disabled workers. Rehabilitation should be as firmly established under workmen's compensation as the responsibility for medical care. Whether the services should be directly provided by the workmen's compensation board or purchased from community centers is not the basic issue. The need is for the assumption of responsibility for comprehensive rehabilitation and for a vast expansion in its availability. The medical care provisions should be broadened to cover the cost of medical restoration in full. The administrative agency should be given clear authority to make rehabilitation services and income-maintenance benefits available to all who need them. The administrative reforms which are urgently needed in workmen's compensation generally-in the direction of a clinical rather than a forensic system-can most logically and appropriately begin with rehabilitation. Once rehabilitation becomes a definitive part of workmen's compensation, further improvements will become possible, such as the revision of the much-criticized disability rating system. This is the most promising prospect for workmen's compensation as it stands today.

Summaries of Studies and Reports

Injury Rates in the Fluid-Milk Industry, 1952

One of every 19 employees in the fluid-milk industry, on the average, suffered a disabling injury in 1952. These injuries averaged 70 days lost time-the equivalent of 3.7 days lost time for each worker in the industry. This record represents a tremendous loss to both workers and employers.

The industry's work-injury frequency rate ${ }^{1}$ of 23.1 in 1952 was approximately 62 percent greater than the all-manufacturing rate of $14.3 .^{2}$ In fact, the rate for the fluid-milk industry has exceeded the average for all manufacturing industries by at least 20 percent in all but 1 of the 11 years for which the Bureau of Labor Statistics has computed figures for that industry. A comparison of the two rates follows:

	All-facturing rate ing rate19.9	Fluid-milk industry	
		Rate	Index (all-manufacturing $=100$)
1942	19.9	24.0	121
1943	20.0	18. 2	91
1944	18.4	22. 0	120
1945	18.6	24. 4	131
1946	19.9	26. 6	134
1947	18.8	24.5	130
1948	17. 2	23. 2	135
1949	14.5	23. 7	163
1950	14.7	26. 9	183
1951	15. 5	27. 3	176
1952	14. 3	23.1	162

The fluid-milk industry includes all establishments primarily engaged in the wholesaling and/or retailing of fluid-milk and milk products. Specifically, it includes firms engaged in house-to-house delivery of milk, wholesale delivery of milk and milk products to retail food stores and other establishments, and retail dairy stores. While distribution of milk and its products is the primary work of the industry, some plants, to use excess
milk, also engage in incidental manufacturing operations such as the production of ice cream, cheese, and butter.

Broad industry figures conceal important variations in the injury experience of individual plants. Size, type of trade, and the kind of departmental operations are characteristics which account for differences in injury rates among plants. To measure the effects of such influences on injury rates in the fluid-milk industry, in 1952 the Bureau enlarged the coverage of this industry and requested participating plants to report their injury experience by operating departments, instead of plant as is customary. Detailed reports were received from 3,565 plants, about 8 times as many as were included in recent years. Reporting plants included both wholesale and retail distributors of dairy products, those with integrated wholesale and retail operations, and retail dairy stores. These plants employed over 101,000 workers, about 3 times the number usually covered in the annual surveys, and reported over 5,200 disabling injuries, including 15 fatalities and 3 permanent-total disability cases.

The additional plants participating in the special study had a somewhat better injury experience than those reporting regularly. As a result, the injury-frequency rate for all reporting plants, 23.1, was 15 percent below the 1951 industry average. Among plants which reported for both years, however, the injury-frequency rate had improved by only 2 percent. While these reductions, measured by percent, are substantially different, the point difference in injury-frequency rates for 1952 was not statistically significant.

Trade Comparisons

For wholesale distributors and retail milk dealers, the frequency of disabling injuries differed

[^14]very little. (See accompanying table.) Employees of the latter group, however, experienced 9 fatalities and 2 permanent-total disabilities. As a result, disabling injuries in retail milk plants averaged 80 days lost time per injury, while those occurring in wholesale plants averaged only 49 days.

Integrated wholesale and retail milk plants averaged 25.7 disabling injuries per million hours worked- 14 percent higher than the average for retail milk plants and 9 percent greater than that for wholesale distributors. Injury severity in the integrated plants, however, was about average for the industry.

Retail dairy stores averaged 15.6 disabling injuries per million hours worked. One fatality and

3 permanent-partial disabilities included in the 176 reported injuries, however, kept the average time lost at 70 days per injury-the industry average.

Plant-Size Comparisons

Most special industry studies have shown that injury-frequency rates tend to increase with plant size until they reach a maximum at or near the 250 to 499 employee level, and then to decrease in larger plants. However, the pattern of frequency rates in the fluid-milk industry differed somewhat from that in other industries, in that they continued to increase with plant size (see chart). For the very small plants-less than 5 employees-

Work-injury rates in the fluid-milk industry, classified by type of trade and department, 1952

${ }^{1}$ The injury-frequency rate is the average number of disabling work injuries for each million employee-hours worked. A disabling work injury is an injury arising out of and in the course of employment which results in death or any degree of permanent impairment, or makes the injured worker unable to perform a regularly established job, open and available to him, throughout the hours corresponding to his regular shift on any one or more days (including Sundays, days off, plant shutdowns) after the day of injury.

[^15]the injury-frequency rate was only 10.0. Each successively larger size-group had a slightly higher injury-frequency rate, up to a maximum of 29.8 for the more-than-500 employee group. Moreover, 5 establishments in this last group, each employing more than 1,000 workers, had an even higher average rate of $34.4,{ }^{3}$ representing a range among the individual plants of from 6.9 to 84.5 disabling injuries per million hours worked.

The comparatively low frequency rate achieved by the small plants appears to be attributable to the personal supervision of the owner or manager of plant and delivery operations. He can, therefore, detect hazardous working conditions and unsafe practices as they develop and can take the necessary steps to correct or remove them. However, as additional workers are employed, much of the direct supervision of operations must be delegated. Unfortunately, foremen and supervisors rarely have had safety training and often place greater importance on production responsibilities than on attention to safety.

In most industries, the larger plants have reduced their injury-frequency rates through special safety measures which are made possible by the high level of production. Safety programs may include special training for foremen and supervisors, and, in the very large plants, the employment of full-time safety personnel. In addition, large plants find it feasible to equip and maintain first-aid rooms, which do not, of course, prevent accidents, but adequate first-aid treatment may indirectly reduce the number of disabling injuries. In the fluid-milk industry, however, a high level of production usually means proportionately more of the plant's workers are delivery men who work with little direct supervision, and the accident problem is accented. This probably accounts for the steady rise in injury-frequency rate as plant size increases.

Group averages tend to conceal wide variations in injury-frequency rates among individual plants. Actually, 73 percent of the plants reported no injuries in 1952. Most of these were small but they included three plants with over 175 workers. While no plant with average employment of 250 or more achieved an injury-free year, 9 such

[^16]Disabling Work Injuries in the Fluid-Milk Industry, Classified by Size of Plant, 1952

establishments had injury-frequency rates of less than 5 , including 2 with an average employment of over 700 .

In contrast, 114 plants, or 3 percent of those surveyed, had injury-frequency rates of 100 or more. Again, most of these were small and none had average employment exceeding 100. At this adverse end of the scale, 335 establishments, employ ing but 11 percent of the workers, reported 37 percent of the disabling injuries and 25 percent of the time lost.

Injuries tended to be more severe among the smaller plants. For plants with less than 100 employees, the average time charge per injury was appreciably greater than the industry average, while for plants ranging from 100 to 499 employees, it was substantially less than average. The largest plants, however, averaged 75 days lost per injury, slightly above the figure for the industry as a whole.

Departmental Comparisons

Many plants were unable to furnish injury data according to the pattern of departmental operations for which data were requested, due to variations in internal organization. Most plants, however, reported their injury experience in detail for some operations; only 641 failed to report any such detail. The departmental figures reported were combined into five major groups: milk handling, manufacturing, maintenance and power, retail stores, and miscellaneous.

Milk-Handling Operations. Nearly 75 percent of the reported injuries occurred in these operations, although they accounted for only 60 percent of total man-hours worked in the industry. Therefore, the average injury-frequency rate was substantially higher than for any other group of operations (see table).

Within the group, injuries occurred with greatest frequency in bottling and casing departments, which, in fact, had the highest rate of any department studied. Although they reported no fatal injuries, a large number of permanent disabilities raised the severity rate ${ }^{4} 25$ percent above the industry average. However, the relatively high proportion of temporary disabilities held the average time lost per disabling injury to a favorable 45 days.

Loading department employees also had an unfavorable injury-frequency rate. A fatality and 7 permanent disabilities among the 293 reported injuries produced a high severity rate but, again, the incidence of temporary disabilities held the average time lost per injury to 53 days.

Only one other department in this group, cleanup, had an injury-frequency rate of over 30. Serious disabilities, however, were very infrequent, and time lost-per injury and per thousand hours worked-was very low.

Driver salesmen experienced more than half of the disabling injuries in the industry but, because of the large number of drivers employed, their injury-frequency rate was only 20 percent above the industry average. About half of the industry's fatalities and a large proportion of the serious disabilities involved drivers. As a result, driver
salesmen accounted for more than half of the time lost due to work injuries in the industry, but the high incidence of temporary disabilities held their average time lost per injury to 77 days.

In contrast, laboratory workers had an injuryfrequency rate of 9.5 -less than half that for any other group of employees in the milk-handling division. Furthermore, only 1 of the 26 reported injuries resulted in a serious disability.

Two groups had extremely unfavorable severity averages. For the relatively small number of pick-up and hauling department employees, one fatality among the 39 reported injuries produced a very high average time lost per disabling injury and a severity rate triple the industry average. In bottle-washing departments, serious disabilities were relatively frequent. One fatality and 8 permanent disabilities among 112 reported injuries accounted for 105 days lost time per injury.

Operations in which serious disabilities were relatively infrequent included pasteurizing and the cold room. As a result, the injury-severity rates for each of those operations was 0.5 or less.

Manufacturing Operations. Many milk plants were also engaged in incidental manufacturing operations. The frequency of injuries in these operations was slightly higher than the industry average, but approximately 20 percent less than in milk-handling operations. Injuries, however, tended to be more severe; the average time lost per injury and the severity rate were both 50 percent greater than the industry average.

Data available permitted computation of injury rates for only two specific manufacturing opera-tions-ice cream and butter and cheese. Compared with industry averages, ice cream departments had favorable injury records; only 2 of the 78 reported injuries were serious disabilities. As a result, the average time lost per disabling injury was only 21 days and the severity rate was 0.4 . For butter and cheese departments, on the other hand, the injury-frequency rate was about 50 percent greater than the industry average. Serious disabilities were also more frequent; consequently, the severity rate was $21 / 2$ times greater than for the industry as a whole.

[^17]Maintenance and Power Operations. As a group, the maintenance and power departments had injury records only slightly more unfavorable than the industry average. Power and refrigeration departments had the best records within this group, their injury-frequency rate being only 18.9. Since none of the reported injuries resulted in death or serious disability, the severity of injuries, both in terms of time lost per injury and per thousand hours worked, was highly favorable.

Plant maintenance had a higher frequency rate than automotive maintenance: 30.1, compared with 22.4. A fatality in automotive maintenance, however, raised the average time lost per disabling injury about 50 percent above that for plant maintenance.

Retail Stores. Retail store clerks had better injury records than any other operation studied except office work. Furthermore, it was by far the largest group reporting no fatalities or permanent disabilities. Average time lost per injury was only 16 days, and the severity rate was one of the lowest in the survey.

Miscellaneous. Generally, the miscellaneous group of workers had favorable injury-frequency records. In some specific operations, however, serious disabilities produced adverse severity records. For example, general foremen had a frequency rate of 12.8 but, of the 15 reported injuries, 1 was a fatality and another a permanent finger injury. As a result, the relatively small group of foremen had the highest recorded average time lost per disability and severity rate.

Similarly, janitors had a frequency rate of 12.8 but, again, 1 of the 16 reported injuries was a serious permanent disability. Consequently, their average time lost per disabling injury was 137 days.

Administrative and clerical workers experienced only 2.8 disabling injuries per million hours worked and sales personnel (except delivery salesmen), only 8.9. Serious disabilities were also infrequent so that their severity averages were less than half that for the entire industry.

-George R. McCormack
Branch of Industrial Hazards

The Ford Plan for Employing the Handicapped ${ }^{1}$

The Ford Motor Co.'s "practical working plan" for employment of the physically handicapped works well for the company, despite a number of problems which keep cropping up. Overall, it has resulted in 1,200 placements of handicapped people over the past 6 years. The program and some of the experience gained under it are outlined here, in the hope they may be helpful to others who are as sincerely concerned as is the staff at Ford with continuing the effective placement of the physically handicapped.

Ford's basic policy regarding the employment of physically handicapped persons goes back to the World War I days when a great many disabled veterans came home looking for their old jobs or sought employment at the company for the first time. The late Henry Ford believed that no man was "disabled" if he had the courage to go ahead and the willingness to do his level best in whatever he undertook. He believed that what a handicapped person needed most was a chance to become self-sustaining, to maintain his selfrespect and, above all, to play a productive role in society. With this philosophy, he found work at the company for large numbers of handicapped people. Over the years, that basic policy has been strengthened and expanded wherever possible.

Today, at the Rouge Plant in Dearborn, Mich., there are more than 4,100 known physically handicapped persons at work. These include 40 onearmed workers, 4 who have lost both arms, 62 with only one leg, 3 who are double-leg amputees, and more than 300 others who have arm, hand, or leg deformities of one kind or another. Eight workers are totally blind, more than 250 have only one eye and hundreds of others suffer from back and spine injuries, deafness, diabetes, epilepsy, nervousness, heart ailments, and other illnesses.

These figures have particular significance in a "heavy" industry and in plants where nearly all

[^18]of the 4,000 hourly job classifications are in direct production activities. So-called "light" jobs are in a very small minority, as compared with many other types of manufacture. Even an "easy" job such as sweeping floors or collecting scrap can be an arduous, demanding kind of work in an automobile plant. Further, no special jobs are created for the handicapped. The company's policy is that an individual is properly placed only on a regularly established job that must be done anyhow, whether by an able-bodied or a handicapped person - and the handicapped person must meet production standards for the job.

Rehabilitation and placement of the physically handicapped is a team effort at Ford Motor Co. The team is made up of the safety, workmen's compensation, medical, and medical placement departments - and the supervisors or foremen.

The safety department reflects the firm belief that prevention is still the best solution to the problem of physical handicaps. During the past 6 years, Ford has reduced its accident frequency rate by 80 percent and the severity rate by more than 60 percent. (In 1952, Ford Motor Co. received the Award of Honor from the National Safety Councll for its outstanding performance in preventing injury to its employees.) Therefore, the great majority of physically handicapped people at Ford either suffered nonoccupational disabilities after being hired or were already disabled at the time they were hired.

The workmen's compensation department, of course, is responsible for the prompt settlement of valid claims for compensation. In addition, it cooperates with company and private medical authorities and State compensation commissions in developing and arranging rehabilitation programs for disabled employees.

Job placement of the physically handicapped actually begins with the medical department. In addition to providing medical treatment and an extensive industrial hygiene program, this department examines all new employees and all employees returning from sick leave to determine definitely their physical capabilities. If any physical disability is found, the doctor's diagnosis and his recommendations as to work limitations are forwarded to the next member of the team-the
medical placement unit, a division of the company's hourly personnel department.

The services of the medical placement unit are available to all physically handicapped employees, not just to those who have suffered occupational injury or disease. An employee may go to the unit on his own, complaining of a heart ailment, for example, and ask to be placed in some easier kind of work. Or an employee may be sent to the unit by his supervisor, who feels that the man is not performing efficiently because of some known or perhaps undiscovered disability.

In either case, the employee is referred immediately to the medical department which, in turn, gives the placement unit a full medical evaluation as to his physical capabilities and an authoritative recommendation as to the type of work the employee may do. If the employee can present medical evidence from his personal physician, this also is taken into consideration by the company physicians.

Once the medical phase has been completedand this, of course, may involve treatment, prosthesis, and even job training-the placement unit begins its work. Placement involves a number of important considerations: the employee's physical and occupational capabilities; occupational aptitudes, attitude, occupational and wage history, seniority, and performance on previous assignments; and the suitability of current job openings, as reported by supervisors; the physical and other requirements of these jobs; and the safety of the physically handicapped employee and his fellow workers.

With this information as a guide, the placement unit attempts to place the worker in a job that he can do safely and efficiently. Finding these jobs is not a matter of chance or last-minute searching. Five staff members spend full time surveying all kinds of jobs in the Rouge plant area to determine which can be done by handicapped persons and by what type of handicapped person. The unit utilizes this running survey of current and potential job openings in making placements.

However, placement involves more than simply looking over the list of jobs to find one for which the handicapped worker seems to be qualified. Each of the more than a dozen different plants in
the Rouge area has its own seniority system, so that a man who has worked for many years in the engine plant, for example, cannot because of his disability "bump" a man in the glass plant with fewer years of service. Therefore, wherever possible, the opening must be in the plant where the handicapped person has seniority. Or it may be that the worker needs medical care which would prevent his taking an otherwise suitable job; a diabetic, for example, could not work on a shift that would prevent his taking insulin at the proper time.

If there are no obstacles of this nature, however, the next step in placing the worker falls to the fifth member of the team-the supervisor-whose full cooperation is essential to proper placement of the handicapped. Many supervisors have tended to resist any placement policy which might restrict the versatility of their work force or materially reduce its productivity. This attitude is the result of poor job placement in the past, of unfounded prejudice, and of the very nature of automotive manufacturing, which calls for frequent changes in machines, methods, and products, and thus for versatile employees. The Ford Motor Co. has made a good deal of progress toward minimizing this resistance. It has approached the problem by constantly improving the whole rehabilitation process, by giving the supervisor a full voice in placement matters, by making certain he is well informed as to the capabilities of handicapped persons sent to him, and by servicing any complaints, either by him or by the handicapped employee, after the job placement has been completed.

At Ford, there is a strong feeling that successful placement depends upon maintenance of this personal relationship between the employee, the placement officer, and the foreman, even in a plant as large as the Rouge area. After a handicapped person has been placed on a job, the placement unit checks periodically to make sure that both the employee and the foreman are satisfied. If the employee is transferred later to another job, the placement unit is notified so that it may approve the new type of work the employee will be doing. If the handicapped employee should be laid off through no fault of his, the placement unit again tries to place him permanently.

Unfortunately, not all handicapped people at Ford have been placed successfully. If, as often happens, no job opening can be found for an employee who becomes disabled, his name is placed on a "medical recall" list, and he is taken off the active rolls until suitable work is available. The number of people on this medical recall list has been reduced to about 90 in the Rouge plant area, all of whom the company is trying to return to work at the earliest possible time. Meantime, no handicapped persons from outside the company can be hired, because it would be unfair to take on other handicapped workers until jobs have been found for people who have become disabled while employed by the company.

Two examples serve to illustrate the accomplishments of Ford's "practical working plan" for the employment of the physically handicapped:

Some years ago, an employee became totally blind. When he was able to return to work, he was given a job on the starter and generator assembly line, where he could fit small pieces together entirely by touch. He is on the job today and his foreman states that he is doing as well as any person with normal vision could do.

Another employee had both hands amputated as the result of an accident. He was furnished artificial hands and was sent to Kessler Institute in New Jersey to learn how to use them. Although he had been classed as a nonskilled worker at the time of his injury, he was put on inspection work when he returned to the company. Later, thanks to the opportunity that was given him and the cooperation of his foreman, he became a skilled employee. What makes this case even more interesting is that the employee has apparently undergone a tremendous emotional and mental readjustment. Before his accident, he was somewhat uncooperative, lacked initiative, and was in frequent trouble with his supervisor. After returning to work in a new and more responsible job, however, he became very cooperative, demonstrated a lot of initiative, and is now one of the most loyal and enthusiastic employees in the plant.
-Robert T. Ross
Industrial Relations Staff, Ford Motor Co.

Personnel Conference of the American Management Association

The organization and functions of the personnel department and its relation to the workers occupied the attention of more than 1,000 personnel executives at a conference of the American Management Association ${ }^{1}$ in New York City in September 1953.

Those attending the conference came to exchange information, ideas, and opinions, and to learn new personnel techniques from the practical experience and research of other businessmen and university research centers. Notable throughout the conference was just such a free exchange of information, regardless of competitive relationships of many companies represented.

John Post, manager of the Industrial Relations Department of the Continental Oil Co., set the stage for the meeting in an opening address by pointing out: "We are witnessing changes in processes, methods, and machinery which simply confound our imagination. We even hear serious talk about pushbutton factories. As a result, occupations in the extractive and manufacturing industries are diminishing as a percentage of gainfully employed . . . we have seen a spectacular growth in service occupations and an almost fantastic growth in clerical and administrative occupations." These changes, Mr. Post believes, will alter management's job so that more counseling and less directing will be required. This offers the industrial relations manager "an opportunity to show skill and leadership as a planner, as a molder of unity out of divergent or special points of view, as a teacher, and as an inspiration to thoughtful, farsighted action."

Subsequent discussion at the conference centered on four general topics: the dynamics of current labor relations, latest techniques in personnel administration, how to set up an effective personnel department, and motivating employees to do a fair day's work. Topics were covered by the

[^19]various speakers or panels in terms of personal work experiences.

Setting Up Effective Personnel Administration

The highlight of the conference for many personnel administrators was the all-day discussion of the organization of the personnel department. Two personnel-conscious corporations, substantially different in personnel organization, were represented on the panel-The Radio Corporation of America, RCA-Victor Division, a large, multiplant, highly unionized corporation, and PitneyBowes, Inc., manufacturers of office equipment, a one-plant nonunion establishment. Paul Pigors and Charles A. Myers of the Massachusetts Institute of Technology acted as co-chairmen at the meeting.

Dr. Pigors opened the meeting by recommending that the personnel administrator be made a part of top management. He should not be thought of only as "the welfare officer, doing nice things for nice people; the chief clerk in the employment department" but should report to the chief executive, and consult with line representatives to put his ideas into operation. "If personnel administrators could always express their points of view before plans and policies were decided upon, then the implications for personnel relations could be recognized in time to prevent many misunderstandings and difficulties."

Recognition appeared to have been given to the need for such personnel participation in policy formation in the organization charts of the PitneyBowes and RCA-Victor personnel departments which were presented at the meeting. Comparison indicated that, while the same personnel functions are carried on by both departments, each company had, of course, tailored its personnel organization to its individual needs. In the Pitney-Bowes personnel department, the program is concentrated under the direction of relatively few individuals. In RCA-Victor, on the other hand, the personnel function is divided into eight separate departments. These departments are Wage and Salary Administration, Training, Safety and Health, Security, Personnel Services, Employment, Organization Development, and Labor Relations. Various levels of personnel management exist, from the office of vice president in charge of personnel for the entire corporation down through separate
personnel departments for the various manufacturing divisions and the individual plants.

RCA-Victor deals, through its personnel department, with $46 \mathrm{AFL}, \mathrm{CIO}$, and unaffiliated unions. It has had no strikes since 1936, according to A. F. Watters, vice president in charge of personnel. The attitude of RCA-Victor toward the unions in its plants, according to the speaker, is to live with them and, from the viewpoint of the personnel department, take advantage of what help they can give in worker satisfaction, transmittal of information, and the like.

On the question of unionization, J. J. Morrow, director of personnel relations for Pitney-Bowes, explained that the last time a union attempted to organize the plant was in 1946. At that time the company "carefully described the advantages and disadvantages of [proposed] unionization" to the employees, and the union was defeated. On all matters, it was explained, the company has endeavored to maintain such wages and working conditions that the workers will not feel the need for union representation. On wages, for example, the company uses area surveys of the Bureau of Labor Statistics and those from other sources to make sure the company does not fall behind in its pay scale.
The Pitney-Bowes personnel department carries on an extensive program to keep employees informed of company operations. Each employee receives a handbook when he enters the company; an employee magazine and a quarterly letter from the president of the company are sent to him regularly. He receives a copy of the company's annual report, and attends "jobholders" meetings designed to keep him informed on company policies and programs. For the benefit of each employee, according to Mr. Morrow, the company's grievance procedure permits him to carry a complaint through various management levels as an individual. A noncontributory retirement plan is maintained, and the personnel department helps employees in planning for their own retirement. A profit-sharing plan is also in operation.

New Techniques in Personnel Administration

Representatives from three companies spoke on the techniques which are being developed to deal with changing problems of personnel. Mr. Claude V. Swank, vice president of Johnson \& Johnson,
discussed the steps being taken to restore" middle" management - the foremen, supervisors, and exec-utives-to a more active supervisory status. In many companies, he said, the middle management group is "so busy being trained they aren't supervising the workers . . . Let's consolidate our gains and put this training to work."

Industrial psychiatry, one of the newest developments in industrial medical care, was discussed by Dr. Frederick W. Dershimer, director of psychiatry in the medical division of E. I. Du Pont de Nemours and Co. He defined mental health as "a state of continued natural growth in mental productivity, as demonstrated and measured in terms of useful performance." Among industry's health-promoting mechanisms, Dr. Dershimer cited its achievements in physical safety, its training of supervisors in human relations, its "excellent" medical services, and its acceptance of the employee's right to confidence on personal medical matters which he discusses with the company medical department.

A third new development in personnel tech-niques-training programs-was discussed by Chester C. Payne and Ralph G. Smith of the Dow Chemical Co.'s education department. This "service" organization is maintained to develop specific worker skills for various Dow Co. jobs. Training programs in operation include those for maintenance workers, power plant personnel, new and potential plant supervisors, technical people, laboratory assistants, and salesmen. In some departments, job progression is geared to the training program by agreement with the union. An economic education program is now being carried to 20,000 employees in all Dow plants.

Although the company has been training certain of its employees since 1932, it has only recently undertaken the training of production workers. This new training program includes indoctrination and on-the-job training, lectures on safety and operations, and classroom training using mainly text materials prepared within the company. Additional training for head operators, crew leaders, subforemen, and certain hourly men is provided.

Specialized training is also given for certain types of employees. For example, college graduates with technical training are given 6 to 8 special 6 -week training assignments along with a series of weekly lecture meetings. Workers in the
power department are specially trained because of the complicated equipment and frequent changes in design. Assistants in the laboratory are trained in laboratory techniques by the company. Promotions for individuals in this latter group are based in part on examinations administered by the education department.

Training for new supervisors begins with a 1week induction course planned with the human relations aspect of their jobs in mind. Monthly meetings are held by supervisors to discuss common problems. Courses are offered to supervisors by the company in discussion leadership and in public speaking.

Motivation for a Fair Day's Work

Giving workers a sense of personal worth seems to result in bigher productivity and greater job satisfaction than does supervision based upon close control and direct rewards and punishment, according to Dr. Rensis Likert, director of the Institute for Social Research of the University of Michigan. Dr. Likert, acting as chairman for the meeting on employee motivation, took exception to the idea of motivation "to do a fair day's work"; he said, rather, that a fair day's work is a byproduct of good human relations.
"Employee-centered" supervision-in which supervisors see themselves as the employees' representatives, emphasize the leadership aspects of their jobs, encourage team spirit, and treat employees as individuals rather than as cogs in a machine-tends to be associated more often with high production than does its contrast, "produc-tion-centered" supervision. Studies made by the University's Survey Research Center in plants employing a total of more than 50,000 workers have borne out this finding.

Motivations currently overrated, according to Dr. Linkert, include financial incentives in the form of individual and group piece rates, and rewards in the form of employee benefits and recreational programs. Incentives, Dr. Likert said, do not "in themselves lead to maximization of production. Employees, when under direct pressure from management, may restrict production by setting and enforcing group standards and goals at a low level of productivity." Benefits and recreational programs may produce "a generally favorable attitude toward the company, but not neces-
sarily a higher rate of productivity." Satisfaction with working conditions may make the worker happier. "Basically, the gratifications derived from a routine job are not related to the content of the work itself." Moreover, motivation for good supervision and employee relations must begin at the top; management must furnish the example to be followed throughout the organization.
"Supervisory practices and group processes which are, in part at least, inconsistent with currently accepted managerial philosophy" may, in fact, encourage high productivity. Practices that bring about high productivity may also work to reduce absenteeism and produce high job satisfaction, although in particular situations morale and production are not necessarily related.

Greater group loyalty is characteristic of high producing groups. These groups are proud of their ability to turn out more work, and to produce as usual when the supervisor is not present. Individuals in the group are more willing to help each other, and are likely to have higher production goals. At the same time, there is usually less feeling of pressure.

Robert E. Schwab, personnel planning supervisor of the Detroit Edison Co., reported that employee participation in decision-making and a training program for supervisors had improved working effectiveness in his organization. The utility's program involved the following steps: (1) The training of all supervisors, from top management down, in human relations and on "democratic" supervision; (2) participation of all supervisors, and on occasion employees, in the development of company personnel policies and benefit plans; (3) submission of results of a company-wide attitude survey to supervisors and employees for consideration, comments, and recommendations; and (4) analysis of the relationship between participation in decision-making and desirable attitudes or actions on the part of supervisors and employees.

Among supervisors trained in democratic leadership, "a great many examples of the successful application of participation to the solution of problems in work groups resulted," Mr. Schwab said. These included more equitable distribution of disagreeable jobs, improved physical arrangements for offices, reduction of paper work, better care of equipment, reduction in errors, and responsibility for tools.

Supervisors, and occasionally employees, have had a hand in the development of personnel policies, including those dealing with complaint procedures, safety, a hospitalization plan, transfers and promotions, and revisions in the company retirement plan. This participation "has resulted in a better understanding of the problems involved, better acceptance, and, we think, improved administration," Mr. Schwab said.

Dr. Robert L. Kahn, program director for the Survey Research Center of the University of Michigan, said that industry should lead the way in trying new approaches in human relations research and measuring the results. He suggested three things: (1) Training programs to include "learning experience" in the company. "People must learn to live a good human relations approach." (2) Human relations programs should start with the head of the organization. "Top management must provide hearty and active support, not just lip service. It must set the example that will be followed at successive organizational levels." (3) Human relations training will not change the foreman unless the system of which he is a part is reoriented, since he is tied by expectations and personal relations to his superiors, his subordinates, and his colleagues.

Dynamics of Current Labor Relations

Specific items singled out for attention in the discussion of recent labor relations were the longterm union agreement, collective bargaining during a downward turn of business, and the guaranteed annual wage. David L. Cole, well-known arbitrator and former head of the Federal Mediation and Conciliation Service, acted as chairman of the meeting. Principal speakers were Campbell A. Elliot, Director of Industrial Relations, Minne-apolis-Moline Co., and John J. Dillon, New York Regional Education Director for the United Automobile Workers, CIO, who were in opposition on most of the points discussed.

Mr. Elliot declared that long-term agreements (which he defined as contracts running for 2 years or more without formal reopening provisions) have not lived up to expectations, nor have they removed the possibility of strikes. In many instances, he said, employee-employer relations have deteriorated under long-term agreements, partly because of "the unwillingness on the part of some
employers to voluntarily make changes urged and, more bluntly, demanded by some unions because they are not satisfied with [various aspects] of the agreement . . . I have even heard of employers who have taken the naive position that a 'living document' is a document to be lived with and lived by and not one that, as has been suggested by many unions, should have major surgery performed on it periodically to keep it alive."
Mr. Dillon, on the other hand, expressed the belief that long-term collective bargaining agreements are possible and practical "only to the extent that both management and labor consider such agreements as living documents" and work out problems that the parties could not anticipate at the time the agreements were negotiated. To regard long-term contracts as legalistic, static documents, which fail to deal with practical problems as they arise, Mr. Dillon concluded, is to make them unworkable and unacceptable.

In a question period following the discussion, the "living document" concept of the long-term contract, as advanced by the UAW-CIO, was rejected by several of those in attendance as incompatible with the basic theory under which such contracts were drawn. Cost-of-living escalation was also attacked because of the unwillingness of unions or workers to accept wage cuts when prices fall. Mr. Dillon admitted that, while wage cuts were not liked, they might be necessary.

Another phase of the long-term contract which came under scrutiny was the provision for productivity increases. Two points were stressed particularly: (1) Unions and workers in some industries have attempted to limit output at times when it appeared that technological developments would cause layoffs; and (2) productivity, as ordinarily measured, declines during depression periods as output falls off and machines are not used to their greatest capacity. Mr. Dillon pointed out that productivity increase is based on technological change and the growth of the economy and that it represents the worker's share in the gains brought about by improved methods and machinery, rather than being dependent upon his individual effort.

Contrary points of view were also expressed on the direction collective bargaining should take in the event of a downturn in business. Mr. Elliot believed that purchasing power should be increased "not by increasing production costs through wage
increases and the like, but by decreasing prices, with the decreases to be the result of (1) management's willingness to operate at the minimum fair rate of return on investment and (2) labor's willingness to work for a fair wage and, in return for a fair wage, to perform a fair day's work." He also declared that management should "resist adding to both direct and indirect labor costs through collective bargaining." However, he added, "direct wage reductions should be the last thing to think about . . . I recommend that first consideration be given to correcting those intangible conditions which many times contribute more to operating costs than those items which can be accurately measured."

Mr. Elliot's "intangibles," as he called them, included certain seniority, jurisdictional, piecework, and work-sharing provisions, and restrictions on technological changes. In addition, he indicated that fringe benefits, such as holiday and vacation pay, premium pay for undesirable or longer-thannormal work schedules, and group insurance plans of some types might be the subject of close scrutiny during bargaining.

Mr. Dillon declared that "American labor rejects the defeatist attitude of the inevitability of depression." This country has the technical skill and economic resources to provide full and continuous employment for all those able and willing to work, he said, and we must create full employment and full production, "making the good things of life so necessary to satisfy the unlimited peacetime demands of people." To maintain full employment in the event industry fails to do so, public works such as the building of schools, hospitals, health centers, highways and parking facilities, or river, seaway, and power projects, might be undertaken.

Full production can be maintained, according to Mr. Dillon, if the American people-worker, farmer, and white-collar groups-are provided with purchasing power adequate to balance productive power. "The way to solve the problem is through joint planning now."

He cited the guaranteed annual wage as the next goal for organized labor. As he envisioned it, it would assure 12 months of employment for most workers and provide an additional cushion for those thrown out of work. In addition, he believed that it would prevent plant moves, to the

South, for example, to escape unionization. Mr. Dillon anticipated negotiations for the guaranteed annual wage by the United Steelworkers (CIO) in 1954 and by the United Automobile Workers after their 1955 convention.

Mr. Elliot declared that he did not have a good definition for the guaranteed annual wage and therefore was unwilling to discuss it. He did, however, raise the question of whether it was possible to give a wage guarantee without guarantees of markets and profits.

The question as to whether organic unity between the two major labor federations would have any effect on collective bargaining procedures brought comment from the chairman as well as from both panel members. Mr. Cole expressed the belief that any move narrowing union rivalries would help bargaining. Mr. Elliot thought that competition was healthy and that unity might be detrimental to achieving satisfactory results in bargaining. Mr. Dillon disagreed with this; he said it was his opinion that union competition of the type Mr. Elliot envisioned could only lead to wage cutting.

On the subject of Taft-Hartley Act changes, Mr. Elliot said that the law should be kept but taken out of politics, while Mr. Dillon said the law was being used to hurt unions and should be changed, eventually at least, if not at once. The fact that the law might be good or bad for unions, depending upon its administration and interpretation, was agreed upon.

Mr . Cole called for "an enlightened and rational approach to the affairs of labor relations," and urged labor to avoid a "defiant, chip-on-theshoulder attitude." Industry, he said, should "listen to its more conciliatory and moderate leadership and recognize that human progress is not made in pendulumlike swings. . . . This is not the time, if there ever is a time, for industry to thump its chest in triumph. What could be the reaction other than a deepening of the feeling of hostility and discouragement the possibilities of the conference table?"

Both labor and management representatives agreed that joint solution of problems without outside intervention, particularly government intervention, was desirable. There is little possibility of eliminating government intervention in labor disputes, Mr. Cole believes, but such intervention
should not be guided by partisan or political considerations, and should be "used sparingly and never until it is clear . . . that the continuation of a shutdown will truly impair the national health and safety. It should never be lent to either party for the purpose of providing a form of strategic advantage." He also expressed the opinion that worker security would be a principal objective of bargaining, rather than direct wage gains.
-Theodore W. Reedy
Division of Wages and Industrial Relations

Earnings in

Power Laundries in Mid-1953

Average weekly earnings (including commissions) for retail routemen in power laundries ranged from $\$ 60.50$ (Dallas) to $\$ 115$ (Detroit) among the 33 areas surveyed by the Bureau of Labor Statistics during the midmonths of $1953 .{ }^{1}$ (See table 1.) The averages were higher than a year before in most of the 27 areas for which comparisons could be made, usually by amounts ranging from $\$ 3$ to $\$ 8$ a week. ${ }^{2}$

In all cities surveyed, production-worker earnings were also higher than in June 1952. The largest increases, affecting all or most of the jobs studied, were recorded for Buffalo, Cincinnati, Houston, Louisville, Minneapolis-St. Paul, Philadelphia, and St. Louis. A few decreases were found; these were scattered among several jobs and areas and usually averaged less than 4 percent. As in the preceding year, the highest-paid power laundry workers were found in the West Coast cities (Portland, Los Angeles, and the San Francisco Bay area) and in Milwaukee, Min-neapolis-St. Paul, Chicago, Detroit, and New York.

Men comprised about a third of all laundry workers, including routemen, in the areas studied. The proportion varied, however, by area, ranging

[^20]from a sixth of the plant (nonoffice) labor force in Birmingham and Montgomery to two-fifths in New York. Average hourly earnings for extractor operators, the lowest-paid men's job studied, ranged from 65 cents in Montgomery (Ala.) to $\$ 1.48$ in the San Francisco Bay area (table 2). Averages for this job amounted to less than 90 cents in all Southern areas studied and exceeded $\$ 1.25$ in only 3 of the 33 areas. A somewhat higher level of earnings prevailed for stationaryboiler firemen and machine washers. Except for a few areas, all in the South, these workers generally received 90 cents or more an hour, with averages of $\$ 1.25$ or more an hour noted for almost half of the cities surveyed.

More than two-fifths of the women production workers were employed as machine flatwork
Table 1.-Retail routemen in power laundries: Straighttime average weekly earnings, ${ }^{1} 33$ selected areas, 1953

[^21]finishers or machine shirt pressers. Flatwork finishers, numerically the larger group, averaged less than 40 cents an hour in Macon (Ga.), Jackson (Miss.), Columbia (S. C.), and Montgomery (Ala.), and between 40 and 55 cents in 8 other southern areas. Workers in this job averaged 67 cents in Baltimore, 69 cents in Louisville, 72 cents in Denver, and 75 cents or more in the other 18 areas. The highest earnings found were $\$ 1.06$ in Portland (Oreg.) and $\$ 1.10$ in the San Francisco Bay area.

Although the piecework method of wage payment prevails in many laundries, ${ }^{3}$ a majority of the flatwork finishers were paid on a time basis in all except a very few areas. A majority of the women shirt pressers were employed on a piecework basis in all except 4 Southern and 2 West Coast areas; averages for this job exceeded the flatwork finishers' earnings by amounts ranging from 3 to 30 cents among the areas studied. Earnings averaged slightly less than 50 cents an hour in Macon and Montgomery and $\$ 1.10$ or
slightly higher in New York, Los Angeles, and the San Francisco Bay area.

Related Wage Practices

The predominant workweek for retail routemen was 5 days in 15 of the cities studied, $5 \frac{1}{2}$ days in 7 cities, and 6 days in 11 cities. Work schedules of 40 hours a week or less were maintained by laundries employing three-fourths or more of the production workers in each of the West Coast areas, Buffalo, Cincinnati, Cleveland, Detroit, New York, Philadelphia, and Washington. Although a 40 -hour workweek was a common practice in many other areas as well, significant proportions of workers were also scheduled on a longer workweek.

Paid holidays for plant workers were granted by laundries employing a majority of the workers in each area except Denver, Louisville, and

[^22]Table 2.-Workers in selected occupations in power laundries: Straight-lime average earnings, ${ }^{1} 38$ selected areas, 1953

[^23][^24]Roanoke. Newark-Jersey City laundries generally provided 7 paid holidays annually and 6 days were granted to the great majority of the laundry workers in Buffalo, Detroit, Los Angeles, Minneapolis-St. Paul, New York City, Philadelphia, Portland, St. Louis, San Francisco, and Washington. Most workers in southern laundries received from 3 to 5 paid holidays.

Paid vacations after a year's service, typically with 1 week's pay, ${ }^{4}$ were received by a majority of workers in all areas except Columbia and Montgomery; in 26 of the 33 areas, three-fourths or more of the workers were covered by such a policy. Two-week paid vacations, ${ }^{5}$ after 5 years' service, was the policy of laundries employing 90 percent or more of the workers in 13 areas and 60 percent in 2 areas. In the remaining areas, the practice for 5 -year workers was much less liberal.

Coverage of laundry workers under insurance or pension plans, paid wholly or in part by the employers, varied widely. Over half of the production workers in laundries were covered by life insurance in 18 cities; by sickness and accident insurance in 12 cities; by hospitalization provisions in 15 cities; by surgical insurance in 14 cities; and by medical insurance in 12 cities. Pension benefits exceeding those provided under social security were available to an appreciable degree in only 8 areas; in only 2 areas, Detroit and New York, were they applicable to as many as 50 percent of the production workers.
-Otto Hollberg
Division of Wages and Industrial Relations

4 Or its equivalent, 2 percent of annual earnings.
${ }^{5}$ Or an equivalent 4 percent of annual earnings.

Wage Trends in Machinery Manufacture, 1951-53

Straight-time hourly earnings of production workers in machinery establishments in 29 major centers of the industry rose an average of 12.1 percent between January 1951 and January 1953, because of changes in wage rates or in incentive earnings. ${ }^{1}$ Almost half of all machinery workers were employed in these areas in January 1953.

Wage controls were in effect during the entire period from late January 1951 through January 1953. The annual rate of increase in straight-time

[^25]average hourly earnings for all machinery workers was smaller during this period than for the entire period 1945-53. ${ }^{2}$ Between January 1945 and January 1953 straight-time average hourly earnings for machinery workers rose 74.4 percent or at an annual rate of 7.2 percent. During 1951 and 1952 the annual rate of increase averaged 5.9 percent.

Period-to-period increase-	Percent
January 1945 to October 1946	19. 5
October 1946 to November 1947	9. 7
November 1947 to November 1948	8. 8
November 1948 to November 1949	1. 5
November 1949 to January 1951	7. 5
January 1951 to December 1951	5. 4
December 1951 to January 1953.	6. 4
Annual rate of increase-	
January 1945 to January 1953	7. 2
January 1951 to January 1953	5. 9

The increase in earnings during 1951 and 1952 was divided almost evenly between the two years. Between December 1951 and January 1953 straight-time earnings advanced an average of 6.4 percent and in the preceding 11 months, the average gain was 5.4 percent (see table).

Percent Increases in Straight-Time Average Hourly Earnings, Jan. 1945 to Specified Dates, 3 Occupations in Machinery Manufacture

Changes by City

The extent to which average hourly earnings of machinery workers rose varied considerably from one area to another-from 7.2 percent in Pittsburgh to 16.4 percent in Buffalo-over the January 1951 to January 1953 period. The differences were due, in part, to time lags in the effective date of wage increases. Although Pittsburgh showed the smallest change in the 2 -year period, it had the largest increase in the immediately preceding year -13.3 percent. This reflected the basic steel settlement of December 1, 1950. On the other hand, Buffalo, with the highest gain (16.4 percent) in the 1951-53 period, showed an increase close to the average for all cities in 1950. Over the 3year period November 1949 to January 1953, straight-time earnings rose 25 percent in Buffalo and 21 percent in Pittsburgh.

Over the entire period, increases in straighttime average hourly earnings varied from about

55 percent in Seattle to about 90 percent in Milwaukee. The other two West Coast areas, like Seattle, showed lower-than-average increases, partly because of the relatively high level of earnings in 1945 in these areas and the consequent smaller percentage changes resulting from a given cents increase.

By January 1953, Milwaukee ranked as one of the highest-wage areas studied. In that city, the greatest change (in terms of both cents and percent) occurred immediately following World War II when earnings increased more percentagewise than in any city except Syracuse. Since then, the pattern of increase for Milwaukee has followed the overall average change for all areas combined.

The increases in earnings in 1952 as compared with 1951 differed more in individual cities than in all cities combined. Only in Providence were gains the same in both years (4.3 percent); the difference in St. Louis, Cleveland, Minneapolis, and Houston was small. The greatest disparity was evident in both San Francisco and Seattle where wages advanced 9.5 and 11.4 percent, respectively, in the first year compared to 3.0 and 3.9 percent in the second. In these two cities, most of the increases in rates between December 1951 and January 1953 resulted from automatic cost-of-living raises, but in 1951, there were general wage increases in addition to such cost-of-living adjustments. In these West Coast cities, bargaining for metal trades workers in a given area is conducted on essentially an industrywide basis, and incentive systems of payment are rare. Consequently, the effect of a wage adjustment is evident at a specific point of time, rather than being spread over a longer period as in areas where companies bargain individually; wages in these West Coast areas are also unaffected by fluctuations characteristic of piecework production.

Occupational Differences

A common practice in the immediate postwar years was to grant uniform cents-per-hour general wage increases to all workers, regardless of skill level, which resulted in higher percentage increases for the unskilled than for the skilled workers. For example, hourly wages for hand truckers (laborers, material handling) rose by 89

Indexes of straight-time average hourly earnings in machinery marufacture, selected cities and occupations, January 1951-January 1953, and percent increases, January 1945January 1959

Item	Indexes ($1947-49=100)$			Percent increases from-			
	$\begin{gathered} \text { Jan. } \\ 19511 \end{gathered}$	$\begin{aligned} & \text { Dec. } \\ & 1951^{2} \end{aligned}$	$\begin{gathered} \text { Jan. } \\ 1953^{3} \end{gathered}$	Jan. 1945 to Jan. 1953	Nov. 1949 to Jan. 1951	Jan. 1951 to Dec. 1951	Dec. 1951 to Jan. 1953
City All cities combined 4	111.6	117.6	125.1	74.4	7.5	5.4	6.4
Baltimore	109.0	111.8	119.1	64.7	6.6	2.3	6.6
Boston	111.4	115.4	122.5	76.0	4.3	3.6	6.2
Buffalo	110.1	117.2	128.2	69.0	7.4	6.5	9.4
Chicago	112.9	117.4	125.7	80.0	9.7	4.0	7.1
Cincinnati	112.1	114.5	123.8	76.1	8.5	2.1	8.1
Cleveland	110.0	115.6	121.7	66.6	7.8	5.1	5.2
Dallas	112.1	115.6	122.3	58.0	7.0	3.1	5.8
Denver.	113.1	119.1	131.5	80.9	6.5	5. 4	10.4
Detroit	110.7	117.6	123.3	58.6	7.6	6. 2	4.8
Hartford	110.8	116.2	125.8	76.0	8.4	4. 9	8.2
Houston.	110.7	115.9	122.2	65.3	6.3	4.8	5.5
Indianapolis	108.8	113.9	124.7	76.1	6.3	4.7	9.5
Los Angeles	110.4	115.6	124.6	62.0	7.4	4.7	7.8
Milwaukee-.........-	111.0	120.5	129.1	90.3	8.2	8.5	7.1
Minneapolis-St. Paul	111.2	117.9	126.0	75.8	5.0	6.1	6. 8
Newark-Jersey City .-.	111.2	117.8	124.6	69.5	4.8	6.9	5.7
New York City	114.3	116. 0	123.2	74.2	6.8	1.4	6.2
Philadelphia	111.9	117.8	128.8	80.7	5.7	5.3	9.3
Pittsburgh	117.2	118.8	125.7	80.8	13.3	1.3	5.8
Providence	113.0	117.9	123.0	67.6	9.3	4.3	4.3
St. Louis.	109.1	116.3	123.8	83.0	5.4	6.6	6.5
San Francisco	106.3	116.3	119.8	56.7	3.4	9.5	3.0
Seattle	103.6	115.4	119.8	54.9	. 8	11.4	3.9
Syracuse	105. 2	111.0			2.8	5.6	
Tulsa	116.0	118.7	125.3	60.8	11.1	2.4	5.5
Occupation Machinists, production	109.1	115.8	122.7	64.2	5.4	6.1	6.0
Tool and die makers (other than in jobbing shops)	108.9	114.5	121.4	61.2 61.4	5.4 5.3	6.1 5.1	6.0 6.1
Truckers, hand.	113.5	121.1	129.8	89.4	7.9	6.7	7.2

[^26]${ }^{4}$ Includes data for 3 cities not shown separately.
percent from January 1945 to January 1953, while those for tool and die makers and production machinists advanced 61 and 64 percent, respectively.

More recently, a tendency has been noted to grant progressively larger cents-per-hour increases to workers with higher skills. The differential in straight-time earnings between hand truckers and the two more highly skilled occupations increased by about 4 cents from 1951 to 1953. Although greater cents-per-hour increases occurred for the higher paid jobs, the percentage rise in their pay was lower than for hand truckers. Tool and die makers had an increase of 11.5 percent and production machinists, 12.5 percent, compared with 14.4 percent for hand truckers.

-Ruth W. Benny
Division of Wages and Industrial Relations

Union Wage Scales in the Building Trades, 1953

Hourly wage rates of building-trades workers in cities with populations of 100,000 or more advanced an average of 5.2 percent, or 13 cents, during the year ending July 1, 1953, according to the Bureau of Labor Statistics forty-seventh annual survey of union scales in the building trades. ${ }^{1}$ Average scales on July 1, 1953, were $\$ 2.69$ for all construction-trades workers, $\$ 2.88$ for journeymen, and $\$ 1.95$ for helpers and laborers. ${ }^{2}$

Five-sixths of the workers included in the study had their scales increased during the 12 -month period. Increases typically varied from 5 to 20 cents an hour; a third of the workers benefiting from scale revisions received upward adjustments of 10 to 15 cents an hour.

Standard weekly hours showed practically no change during the year, averaging 39.4 hours for all building-trades workers. A 5-day, 40-hour workweek-the most common straight-time work schedule-applied to seven-eighths of the workers studied.

[^27]
Trend of Union Wage Scales

The increase of 5.2 percent in union scales for building-trades workers in the year following July 1, 1952, advanced the Bureau's index of union hourly rates to 131.6 (table 1). Reflected in this increase were gains of 4.9 percent for journeymen and 6.9 percent for helpers and laborers. ${ }^{3}$ The advance registered during the year was slightly less than the gain achieved in each of the two preceding 12 -month periods. In each of the latter periods, increases for both journeymen and helpers and laborers averaged between 6 and 7 percent.

Table 1.-Indexes of union scales of hourly wages and weekly hours in the building trades, selected years 190753
[Average 1947-49 $=100$]

Date	Minimum hourly wage rates			Maximum weekly hours		
	$\underset{\text { trades }}{\text { All }}$	Journeymen	Helpers and laborers	$\underset{\text { trades }}{\text { All }}$	Journeymen	Helpers and laborers
1907: May 15	18.2	19.0	14.5	124.1	122.6	129. 6
1913: May 15	22.5	23.5	16.9	118.0	116.8	121.5
1918: May 15	28.2	29.3	22.7	116.1	115.0	119.5
1919: May 15	32.3	33. 4	26.2	115.5	114.6	118. 4
1920: May 15	43.6	44.7	38.1	115.0	114.1	117.6
1921: May 15	44.4	45.6	38.4	114.9	114.0	117.6
1922: May 15	41.7	42.9	35.0	114.9	114.1	117.3
1926: May 15	55.0	56.6	45. 2	114.8	114.0	117.0
1931: May 15	60.6	62.4	49.4	108.4	107.4	111. 1
1933: May 15	50.3	51.9	40.3	106.1	105.1	108. 1
1939: June 1.	62.3	63.8	53.2	99.9	99.0	102.7
1940: June 1.	63.3	64.7	54.3	99.8	99.0	102.1
1941: June 1.	65.6	67.0	56.9	100.2	99.5	102.4
1942: July 1	69.7	70.8	62.5	101.0	100.8	101.5
1943: July 1	70.2	71.2	63.3	100.9	101.0	100.8
1944: July 1.	70.8	71.7	64.0	101.1	101.2	100.8
1945: July 1	72.2	73.0	67.0	101.1	101.2	100.8
1946: July 1.	80.5	80.9	77.9	100.1	100.1	100.1
1947: July 1.	92.1	92.3	91.1	100.0	99. 9	100.1
1948: July 1	101.8	101.7	102.6	100.0	100.0	100.0
1949: July 1	106.1	106.0	106.4	100.1	100.1	100.0
1950: July 1	110.7	110.5	112.2	100.2	100.2	100.0
1951: July 1	117.8	117.4	119.9	100.1	100.1	99.9
1952: July 1	125.1	124.6	127.7	100.1	100.1	100.1
1953: July 1.	131.6	130.7	136.5	100.1	100.1	100.1

Scale changes in the building industry resulted primarily from contract negotiations. Relatively few contracts covering building-trades workers contain escalator clauses which link changes in rates to the movement of consumer prices. Although individual contracts may be negotiated and become effective at various times throughout the year, there is a general tendency for contracts to be negotiated in the spring and early summer months. Largely as a result of such labor-management agreements, scales for journeymen advanced 13 cents an hour between July 1, 1952, and July

1, 1953, compared with 16 cents in the previous 12 months; scale increases for helpers and laborers were 13 cents compared with 11 cents.

Among individual journeymen trades, average hourly increases varied from 5 cents for stonemasons to 21 cents for machinists. Gains of 12 to 16 cents an hour were registered by 15 of the 24 journeymen trades studied. Bricklayers and plumbers were the only crafts other than stonemasons to show an average increase of less than 12 cents; asbestos workers and marble setters had hourly advances of 20 and 19 cents, respectively.

Scale increases for the 9 helper and laborer classifications included in the study averaged from 9 to 14 cents an hour. Elevator constructors' and terrazzo workers' helpers showed the greatest gain and composition roofers' helpers, the smallest.

Workers benefiting from scale changes between July 1, 1952, and July 1, 1953, typically had upward adjustments of 5 to 20 cents an hour; such adjustments prevailed for nearly three-fourths of these workers. Of the journeymen whose wage scales were adjusted, 1 of every 3 gained from 10 to 15 cents an hour and 1 of every 4 , from 15 to 20 cents. Of the helpers and laborers affected by scale advances, 1 of every 4 received from 5 to 10 cents an hour and 1 of every 3 , from 10 to 15 cents.

Hourly Wage Scales

Wage scales in building construction are designed, at least in part, to offset irregularity of employment and to compensate for other conditions that are usually not encountered by industrial workers of comparable skill. Hence, hourly wage scales of construction-trades workers are generally somewhat higher than those in other industries.

Union scales for all journeymen construction workers averaged $\$ 2.88$ an hour on July 1, 1953, and ranged from $\$ 1.65$ to $\$ 3.75$. Labor-management contracts stipulated hourly scales of $\$ 2.50$ to $\$ 3$ for approximately half of the journeymen

[^28]studied and $\$ 3$ to $\$ 3.20$ for about a fourth. Negotiated rates of at least $\$ 3.20$ were reported for some workers in all but 2 of the 24 building trades studied. Hourly scales under $\$ 2$ were applicable to small proportions of workers in six trades.

By trade, average journeymen scales ranged from $\$ 2.57$ an hour for glaziers to $\$ 3.28$ for bricklayers. Other trades averaging $\$ 3$ or more included electricians and elevator constructors (\$3 each), lathers (\$3.14), stonemasons (\$3.19), and plasterers (\$3.21).
Although hourly rates for individual helpers and laborers ranged from 90 cents to $\$ 3.12$, nearly 3 of every 5 had scales of $\$ 1.80$ to $\$ 2.30$ an hour. Wage scales for helpers and laborers averaged $\$ 1.95$ on July 1, 1953, and varied from $\$ 1.81$ for composition roofers' helpers to $\$ 2.27$ for terrazzo workers' helpers. Except for building laborers, all other classifications had scale levels of $\$ 1.97$ or more.

City and Regional Variations

Because collective bargaining in the building construction industry is generally conducted on a locality basis, wage scales have always varied considerably among cities, except where union jurisdiction covers broad geographic areas. Variations in local building activities and in the demand for skilled construction workers may also influence local wage rates. The extent of unionization and the general level of wages in a locality may also affect the level of scales in the building trades.

For individual journeymen crafts, rates varied widely among the cities covered in the survey. Carpenters, for example, had scales on July 1, 1953, ranging from $\$ 2.05$ in Charlotte and Richmond to $\$ 3.40$ in Newark.

Some construction workers in each of the surveyed cities benefited from scale adjustments during the 12 -month period. In about half of the cities, average increases varied from 9 to 15 cents an hour for journeymen and from 7 to 16 cents for helpers and laborers.

Union scales for the 24 journeymen trades showed considerable variation within individual cities. The differential and range of rates for journeymen in 6 typical cities are as follows:

The difference between the high and low scales of the 9 helper and laborer classifications (representing a fifth of the workers in the industry) was smaller than that for journeymen in the above cities with the exception of New York and San Francisco-Oakland, where the differentials were 95 cents and $\$ 1.12$, respectively. In the other 4 typical cities, the differences varied from 23 cents in Boston to 73 cents in Atlanta.

Wage levels of construction-trades workers varied widely among the cities surveyed. Average scales for journeymen ranged from $\$ 2.31$ in Charlotte, N. C., to $\$ 3.36$ in Newark, N. J. About four-fifths of the cities had levels between $\$ 2.50$ and $\$ 3$. Scale levels for helpers and laborers varied from $\$ 1$ in Jacksonville, Fla., to $\$ 2.56$ in Newark, N. J. In 2 of every 3 cities, the level was $\$ 1.80$ or higher.

When the cities are grouped according to population, levels of hourly scales for journeymen and for helpers and laborers were highest in the group of largest cities and descended in accordance with population size. The difference between scale levels of journeymen and of helpers and laborers, by city-size group, varied from 86 to 92 cents.

Hourly wage levels for both major classifications of construction workers in each city-size grouping on July 1, 1953, were as follows:

Cities with population of	Jour-- neymen	Helpers and
$1,000,000$ and overs		

Within each population group, however, city averages for journeymen and for helpers and laborers varied considerably, the spread being wider for helpers and laborers than for journeymen. The greatest differences between the highest and lowest levels were in cities having popu-
lations of 250,000 to $500,000-84$ cents for journeymen and $\$ 1.34$ for helpers and laborers.

Regionally, average hourly scales of unionized building-trades workers in cities of 100,000 or more population were highest in the Middle Atlantic States (\$2.91) and lowest in the Southeast ($\$ 2.17$). The regional levels for the Middle West and the Pacific Coast nearly equaled the national level of $\$ 2.69$ and were exceeded only by those of the Middle Atlantic and Great Lakes regions (table 2).

The wage levels for journeymen varied from $\$ 2.49$ in the Southeast to $\$ 3.16$ in the Middle Atlantic region. Roofers and glaziers in the Southeast were the only journeymen trades to average below $\$ 2.20$ an hour.

Hourly rates for helpers and laborers averaged highest (\$2.17) in the Great Lakes and lowest (\$1.28) in the Southeast. The national average of $\$ 1.95$ was also exceeded by the levels for the Middle Atlantic, Middle West, and Pacific regions. Averages of $\$ 2$ or more were reported for all 9 helper and laborer classifications on the Pacific Coast and for all but 1 in the Middle Atlantic and Great Lakes regions.

Standard Workweek

Straight-time weekly hours remained virtually unchanged during the year ending July 1, 1953. For all building-trades workers, weekly hours averaged 39.4 compared with 39.3 in the 3 previous years.

Table 2.-Average union scales in the building trades, by region, ${ }^{1}$ July 1, 1953

Region	All trades	Journeymen	Helpers and laborers
United States	\$2. 69	\$2.88	\$1.95
New England	2.48	2.70	1.88
Middle Atlanti	2.91	3. 16	2.14
Border States.	2. 50	2.76	1.66
Southeast.-.	2.17	2.49	1. 28
Great Lakes	2.83	2.97	2.17
Middle West	2.67	2.83	1.99
Southwest_	2.33	2.62	1.38
Mountain.	2.37	2.62	1.92
Pacific.-	2.68	2.77	2.15

${ }_{1}$ The regions referred to in this study include: New England-Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont; ticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont, Middle Atlantic-New Jersey, New York, and Pennsylvania, Border statesDelaware, District of Columbia, Kentucky, Maryland, Virginia, and West Virginia; Southeast-Alabama, Florida, Georgia, Mississippi, North Carolina, South Carolina, and Tennessee; Great Lakes-1llinois, Indiana, Michigan, Minnesota, Ohio, and Wisconsin ; Middle West-Lowa, Kansas, Missouri, Nebraska, North Dakota, and South Dakota; SouthwestArkansas, Louisiana, Oklahoma, and Texas; Mountain-Arizona, Colorado, Idaho, Montana, New Mexico, Utah, and Wyoming; PacificCalifornia, Nevada, Oregon, and Washington.

A 5-day, 40-hour workweek was applicable to five-sixths of the journeymen and to nine-tenths of the helpers and laborers. About 1 of every 8 journeymen and 1 of every 12 helpers and laborers were employed under contracts stipulating a 35 -hour workweek. Such schedules were more common for bricklayers, lathers, painters, and bricklayers' tenders than for other crafts. Straight-time weekly work schedules of 30 hours prevailed for nearly a fifth of the plasterers and about a tenth of the plasterers' laborers.
-John F. Laciskey
Division of Wages and Industrial Relations

Wages in Converted Paper Products in April 1953

Straight-time hourly earnings averaged $\$ 1.38$ in April 1953 for production workers engaged in the manufacture of paper products from purchased paper, according to a survey made by the Bureau of Labor Statistics. ${ }^{1}$ Men in the industry averaged $\$ 1.51$ and women, $\$ 1.16$. Women comprised about 40 percent of the labor force in the industry as a whole.

The industry as studied by the Bureau is comprised of establishments making a great variety of paper products ${ }^{2}$ requiring many levels of skill. Because of the diversified nature of the industry, there was no great concentration of workers at any wage level. A considerable number of workers were reported in each 5 -cent interval between 95 cents and $\$ 1.55$ an hour. However, 27.5 percent of the workers were above and 9.5 percent below this range (table 1). No single 5 -cent interval accounted for more than 6.5 percent of the total number of workers. About a fourth of all production workers were paid on an incentive basis, which also contributed to the wide spread in earnings.

Converted paper product departments of paper mills were excluded from the study. The 1947

[^29]Census of Manufactures indicates that 44 percent of the total volume was produced in such departments. Previous Bureau studies show that the workers employed in them, depending upon product and region, receive, on the average, higher pay in greater or less degree than those represented by this survey. A high proportion (42 percent) of paperboard container and box production was also manufactured in paper mills. Such integrated operations are rarer in set-up box production where only 3 percent was produced in paper mills. These proportions would probably be smaller if numbers of workers rather than quantities of materials consumed were used for computation.

The industry as studied was largely located in the Great Lakes and Middle Atlantic regions, with each region having about 30 percent of the production-worker employment. New England and the South each accounted for approximately 15 percent of the total employment; the Middle West and Far West regions each had less than 5 percent.

Product Differentials

Workers engaged in making paperboard containers and boxes were slightly lower paid, on the average, than those employed in plants making other products from purchased paper. Hourly earnings in the container and box group averaged $\$ 1.36$, but varied considerably for the different types of containers. Set-up box plants, which employed more women than men, averaged $\$ 1.19$ (table 2). Plants making corrugated and fiberboard boxes had the highest earnings level, $\$ 1.48$, and employed the largest proportion of men.

Variations in the average hourly earnings in the several segments of the paperboard container and box industry reflected the sex and the skill composition of the labor force. In general, the higher the proportion of men, the higher the average earnings. By sex, average rates were comparable in all branches, except the set-up box group, in which there are generally more hand operations and wage rates are typically lower. Excluding the set-up box division, earnings of men in each

Table 1.-Converted paper products industry: $\begin{aligned} & \text { Percent distribution of production workers by straight-time hourly earnings, }{ }^{1} \text { region, and sex, April } 1953\end{aligned}$

Average hourly earnings (in cents)	United States ${ }^{2}$			New England			Middle Atlantic			South			Great Lakes		
	$\underset{\text { workers }}{\text { All }}$	Men	Women	$\underset{\text { All }}{\text { Arkers }}$	Men	Women	$\underset{\text { workers }}{\text { All }}$	Men	Women	$\underset{\text { workers }}{\text { All }}$	Men	Women	$\begin{gathered} \text { All } \\ \text { workers } \end{gathered}$	Men	Women
Under 75	${ }^{(3)}$		${ }^{(3)}$				${ }^{(3)}$		0. 1				${ }^{(3)}$		${ }^{(3)}$
75 and under 80	1. 3	0.4	2. 8	1. 1	0.5	2. 3	1.3	0.2	2. 9	3.8 3.6	1.7 2.5	8. 3 5 5	0.7		1.6
85 and under 90	1.9	1. 4	5. 3	4. 4	1. 6	9. 9	2.3	. 9	4.4	5. 2	5.0	5.5	2. 4	(3)	6. 0
90 and under 95.	3. 6	2.0	6.1	5.3	4. 6	6. 6	3.0	. 9	6. 0	7.6	6.0	11.0	2. 2	. 1	5. 3
95 and under 100	4.0	1.7	7.5	5.0	1.5	11.3	3.7	. 5	8.4	8.3	7.5	9.8	2.1	3	4.6
100 and under 105	4.1	2.4	6.8	5.1	3.0	8.7	4.5	1.8	8.6	6.0	6. 2	5.6	2.7	1.1	5.2
105 and undor 110	4.6	2.4	8.2	5.2	3.1	8. 8	5.0	2.5	8.6	6.1	3. 5	11.3	3. 3	1.3	6. 2
110 and under 115	5.1	3.3	7.9	6. 4	4.8	9.1	6. 0	3. 7	9. 4	4.6	4.5	4.6	3. 5	1. 5	6.7
115 and under 120	5. 9	3. 6	9.7	5.2	4. 1	7.1	7.3	4. 7	10.9	6. 1	6. 4	5.5	5. 5	1. 5	11. 6
120 and under 125	6. 4	5. 0	8.6	7.3	7.1	7.6	7.0	6.5	7.8	6.7	5. 8	8. 7	4. 7	2. 6	8.4
125 and under 130	6. 4	5.0	8.5	6. 2	5. 6	7.2	6.5	6. 9	6. 1	7. 6	5.3	12.5	5. 7	3.7	8.7
130 and under 135	6. 5	6. 0	7.0	7.1	7.8	5. 8	5.9	6.5	5.1	6. 3	6. 6	5. 9	7.1	6.0	9.1
135 and under 140	6.2	6. 8	5.1	6. 4	8.4	3. 1	6.2	6.4	5. 8	4.9	6. 3	2.1	6. 6	7.8	4.6
140 and under 145	5.4	6.6	3.4	6. 3	8.9	2. 0	5.5	7. 1	3.2	2. 9	3.8	1.1	6. 3	7.3	4.9
145 and under 150	4.2	5.4	2.3	4. 0	5. 3	1.8	4.8	6. 2	2.7	3.5	4. 9	. 6	4. 1	5. 3	2. 4
150 and under 155	4.2	5. 8	1.8	3.1	4.2	1.1	4. 6	6. 5			3. 5		5. 2	7.4	
155 and under 160	3.5	5.0	1.1	3.0	4.2	. 8	3.5	5. 2	1.1	2. 5	3.5	. 4	3. 8	5. 4	1.5
160 and under 165	3.0	4.3	. 7	3.1	4. 6	. 3	2. 8	4. 3	. 6	2. 0	2. 8	. 3	3.3	4. 5	1. 4
165 and under 170	2.7	3.8	1.0	2.1	3.0	. 4	2.4	3.5	. 8	1.8	2.5	${ }_{2}$	3.4	4.4	1. 8
170 and under 175	2.7	3.8	. 9	2.1	3. 1	. 4	2.1	3. 1	$\stackrel{.}{3}$	1.1	1. 5	(3) ${ }^{2}$	3.6	5. 0	1. 5
175 and under 180	2.4	3. 5	6	1. 8	2.7	. 2	1.6	2. 6	. 2	1.1	1.2	${ }^{\text {() }} 1$	2.7	4.1	. 5
180 and under 185	2. 1	3. 3	. 4	1.3	1. 1.7	.1	2.0	3.1	.3	. 8	1.1	(3)	2.9	4.2	. 9
190 and under 195	1.6	2.5	.2	1.0	1.6	(3)	1. 3	2.0	. 3	1.1	1.6	1	2.2	3.5	. 3
195 and under 200	1.3	2.1	. 1	6	8	(3)	1.1	1.7	2	1. 0	1.5		1. 9	3. 1	. 2
200 and over.	6.3	10.4	. 2	3.4	5.3	${ }^{(3)}$	6.1	9.7	. 5	1.7	2.5	${ }^{(3)}$	9.4	15.0	5
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.9	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Number of workers-	186, 268	114, 279	71,989	25,350 $\$ 1.30$	16,194 $\$ 1.41$	9,156 $\$ 1.10$	58,321 $\$ 1.36$	34,686 $\$ 1.51$	$\begin{array}{r} 23,635 \\ \$ 1.15 \end{array}$	$\begin{array}{r} 27,463 \\ \$ 1.21 \end{array}$	$\begin{array}{r} 18,538 \\ \$ 1.28 \end{array}$	$\begin{aligned} & 8,925 \\ & \$ 1.07 \end{aligned}$	$\begin{array}{r} 58,113 \\ \$ 1,47 \end{array}$	$\begin{array}{r} 34,925 \\ \$ 1.64 \end{array}$	$\begin{array}{r} 23,188 \\ \$ 1.22 \end{array}$
Average hourly earnings.	\$1.38	\$1.51	\$1.16												

${ }^{1}$ Excludes premium pay for overtime and nightwork.
${ }^{2}$ Includes data for regions not shown separately.
${ }^{3}$ Less than 0.05 percent.
branch averaged about $\$ 1.50$; earnings of women varied more, ranging from $\$ 1.18$ to $\$ 1.27$ (table 2). Earnings in set-up plants averaged $\$ 1.37$ for men and $\$ 1.09$ for women. As a rule, the average for women in each branch of the paperboard container and box industry was about 75 to 80 percent of the men's average in the same branch.

Regional and Plant-Size Differences

In the two leading regions ${ }^{3}$-the Great Lakes and Middle Atlantic-earnings for all workers averaged $\$ 1.47$ and $\$ 1.36$, respectively, in all types of converted paper products establishments combined (table 1). These two regions were equally important in terms of employment in each branch of the industry. In the Great Lakes region, where almost 23 percent of the workers earned $\$ 1.75$ or more, a markedly higher proportion of workers were at the upper end of the earnings distribution than in the Middle Atlantic area. Earnings in the South averaged \$1.21 and in New England, \$1.30. ${ }^{4}$

Nationwide wage-level relationships in the industry were also found to prevail regionally. Average earnings in container and box plants in each region were slightly lower than those in other branches of the industry; among containers and boxes, the set-up box plants recorded the lowest averages. The ratio of women's to men's pay in the several regions was found, in general, to be similar to that previously noted.

The average plant included in the survey employed about 125 workers. Earnings in the larger establishments (over 250 workers) averaged about

[^30]Table 2.-Paperboard container and box establishments: Percent distribution of production workers by straight-time hourly earnings, ${ }^{1}$ industry branch, and sex, April 1953

Average hourly earnings (in cents)	Folding paper boxes			Set-up boxes			Corrugated and fiberboard boxes			Other boxes, fiber cans, tubes, drums, and similar products.		
	All workers	Men	Women	$\underset{\text { workers }}{\text { All }}$	Men	Women	All workers	Men	Women	All workers	Men	Women
Under 75				0.1		0.1						
75 and under 80	1.1	0.7	2.5	3.3	2.4	3.9	. 3		1.5			
80 and under 85	1. 3	. 7	3.1	4.7	3.2	5.5	. 7		3.4	1.0		2. 7
85 and under 90	3.1	2.3	5.7	7.4	3.9	9.5	1.0	. 8	1.6	4.0	1.2	8.6
90 and under 95.	2.8	2.5	3.7	7.6	4.3	9.9	1.5	. 8	4.0	2.9	.9	6.3
95 and under 100	3.2	1.4	8.6	7.2	6.5	7.5	2.7	1.7	6.5	2.5	. 3	6.2
100 and under 105	3.5	3.0	4.9	6.3	4.7	7.2	1.8	1.4	3.3	4.6	1. 6	9.6
105 and under 110.	4.3	2.3	10.6	7.4	3.7	9.6	1.1	. 5	3.1	4.7	2.1	9.1
110 and under 115.	3.8	2.8	7.1	9.6	5.7	12.1	2.1	1.7	3.5	5.4	4.8	6.3
115 and under 120	3.4	2.5	6.2	5.6	4.7	6.2	4.3	3.3	8.3	8.6	7.7	10.0
120 and under 125	6.4	6.1	6.9	5.4	4.6	5.9	5.2	4.3	8.6	7.8	7.7	8.1
125 and under 130	5.5	3.5	11.2	5.0	3.8	5.8	6.1	5.0	10.0	8.2	9.9	5.3
130 and under 135	7.5	6.2	11.1	4.9	4.2	5.4	6.9	5.3	12.8	5.0	3.8	6.9
135 and under 140	4.7	4.9	4.0	4.6	4.4	4.7	7.8	7.9	6.9	4.2	5. 2	2. 6
140 and under 145	7.5	8.5	4.3	3.2	5.4	1.9	9.7	9.3	10.9	3.4	3.7	3.1
145 and under 150	4.4	5.2	2.1	2.7	4.0	1.9	6.8	7.8	3.2	4.5	4.6	4.2
150 and under 155	4.7	5.6	2.1	2.1	2.9	1.6	6.7	7.8	2.5	4.4	4.3	4.6
155 and under 160	5.3	6.5	1.8	1.9	4.3	. 5	5.6	6.6	2.1	3.6	5.1	1.2
160 and under 165	3.4	4.5	. 3	1.5	3.6	. 2	3.8	4. 5	1.1	4.4	6.8	. 4
165 and under 170	3.2	3.8	1.4	1.1	2.5	. 3	3.4	4.1	1.1	3.0	4.3	. 7
170 and under 175	3.8	4.9	. 5	. 8	1.9	. 1	3.7	4.3	1.2	1.9	2.7	. 7
175 and under 180	2.3	3.0	. 3	. δ	2.0	. 1	3.7	4.4	1.2	1.9	2.8	. 4
180 and under 185	2.5	3.2	. 2	1.5	4.0	$\left.{ }^{2}\right)$	2.7	3.2	. 9	2.3	3.4	. 5
185 and under 190.	1.6	2. 0	. 2	. 8	2. 0	${ }^{2}$)	2. 5	3.2	. 2	1.8	2.6	. 6
190 and under 195	1. 6	2.1		. 6	1. 5		2. 0	2.3	.7	1.6	2. 1	. 6
195 and under 200.	1.0	1.2	. 3	. 6	1.4	(2) 1	1. 6	1.9	. 4	2.1	3.3	. 1
200 and over.	8.1	10.6	. 9	3.3	8.4	(2)	6.3	7.9	1.0	6.2	9.1	1.2
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Number of workers.	23,320	17, 494	5, 826	30,512	11, 422	$19,090$	$30,656$	24, 142	6,514	14,331	8,955	5,376
Average hourly earnings.	\$1.42	\$1. 50	\$1.18	\$1.19	\$1.37	\$1.09	\$1.48	\$1.53	\$1.27	\$1.38	\$1. 50	\$1. 18

[^31]${ }^{2}$ Less than 0.05 percent.

10 percent higher than in the smaller establishments. The size differential was most marked in the New England region (20 percent) and smallest in the Great Lakes and Middle Atlantic regions (5 percent). The main differences in the wage structure between the larger and smaller establishments appear to be in the proportion of workers earning under $\$ 1$ an hour. The proportion earning under $\$ 1$ an hour in larger plants was about a third of that in smaller plants- 6.6 percent compared with 18.4 percent; but the proportion earning over $\$ 2$ in larger plants was only slightly higher than that in smaller plants- 7.2 percent compared with 6 percent.

Minimum Rates

With the exception of the South, relatively few workers were reported at the 75 -cent minimum wage level established under the Fair Labor

Standards Act. Almost a tenth of the women in the South earned about 75 cents. However, about an eighth of the workers in the industry, including a fourth of the women, had earnings under $\$ 1$ an hour.

Starting rates for unskilled workers were 75 cents or less in plants employing slightly more than a tenth of the production workers in the industry. In many of these plants, however, a higher rate was paid after a learning or probationary period. About 45 percent of the workers were in plants. with entrance rates of $\$ 1$ or more.

Starting-rate policies varied widely within each region. A substantial number of workers were employed in plants which had starting rates falling within each 5 -cent step between 75 cents and $\$ 1.25$. Minimum job rates after a learning or probationary period showed even greater variation.
-James F. Walker
Division of Wages and Industrial Relations.

Recent Decisions of Interest to Labor ${ }^{1}$

Labor Relations

National Emergency. The emergency strike provisions of the Labor Management Relations (TaftHartley) Act were invoked to prevent a prolonged tie-up of the Nation's maritime industry. This action followed the report of the Board of Inquiry appointed by the President to investigate the longshoremen dispute. A Federal district court held ${ }^{2}$ that the United States was entitled, under the act, to an injunction restraining the longshoremen's unions and employers from taking part in a strike or lockout in the maritime industry in Atlantic ports from Maine to Virginia. The court found that continuation of such a strike would imperil the national health and safety.
As finally determined, the court order applies to both the independent longshoremen's unionwhich was recently ousted from the American Federation of Labor-and the newly formed AFL union, and bars a strike until Christmas Day. Although the new AFL union was not engaging in any strike, it was included in the order because its rival representation claim made it a participant in the dispute. "Under the circumstances," the court stated, "any injunction to prevent effectively the imperiling of the national welfare during the 80 -day period must encompass both unions if it is not to lose its vigor by being tossed between the two." Concerted action by any of the parties to the dispute, the court noted, might "reactivate the strike" or otherwise stop or interfere with the continued operations of the industry so as again to imperil the national health and safety.

Refusal To Reinstate. A court of appeals refused ${ }^{3}$

 to enforce a National Labor Relations Board order requiring the reinstatement of five employees who had not been reemployed following a temporary plant shutdown-allegedly because of their membership in and participation in the work of a unioncommittee. The court found, however, that two of the employees, by their conduct just prior to the shutdown, had interfered with production, in breach of the collective-bargaining contract, and so placed themselves in the category of nonemployees. As a result, the company was under no statutory duty to reinstate these two after the plant reopened.

Reversed also was the Board's finding that the employer's failure to reemploy the other three employees was due to their union membership or activities, or for the purpose of discouraging membership in the union. The court found, instead, that their jobs had been abolished or combined with others to cut costs, amounting to economic action on the part of the employer with which the Board might not interfere.

Union's Certification Revoked. The NLRB revoked ${ }^{4}$ the certification of a local union, one of whose officers had been convicted of having falsely denied Communist Party affiliations. The union failed to show sufficient cause why it should not be held in noncompliance with section $9(\mathrm{~h})$ of the LMRA as of the time the certification was issued. The Board, therefore, canceled the certification in the interest of protecting its processes from further abuse.

A Federal district court had convicted the local's officer of having falsely stated to agents of the Federal Bureau of Investigation that he had never been a member of the Communist Party and had never knowingly attended a Communist meeting.
Subsequently, the Board adopted ${ }^{5}$ a new policy in representation cases involving unions which had officers under indictment for filing false non-Communist affidavits. The Board, in an effort to avoid "irreparable consequences,"

[^32]determined to "hold in abeyance," pending disposition of the indictment, action which would accord "final and official" status to such labor organizations.

Unlawful Interference. (1) The NLRB, in setting aside a representation election and ordering a new vote, held ${ }^{6}$ that an employer had interfered with the first election by a pre-election speech to his employees on company time and company property, which contained implied threats of economic reprisals if the union should win. The employer had in his remarks stated that loss of the worker's personal identity as an employee would result from union organization. A layoff in a neighboring plant after union organization was described by the employer as "a concrete illustration of the change in loyalty of management" resulting from the advent of a union.
(2) A court of appeals enforced an NLRB order as to a company's unlawful interference with the organizational rights of its employees. ${ }^{7}$ An offer of a wage increase if the union lost a representation election, made by the employer the night before the election, was not protected, the court held, by the free-speech provisions of section 8(c) of the Labor Management Relations Act. The election, in which the union was defeated, was set aside by the NLRB. Prior to the second election, however, the employer again attempted to influence the results by circularizing the employees with statements antagonistic to the union. These statements likewise were found to be not protected by the LMRA.

Unlawful Refusal To Furnish Information. In conformity with the rulings of several circuit courts, a court of appeals upheld ${ }^{8}$ an NLRB order directing an employer, pursuant to statutory collective-bargaining provisions, to furnish to a union certain data which it requested. The information asked for concerned individual wage rates, wage ranges, and individual job classifications of employees in the bargaining unit involved.

Illegal Strike a Breach of Contract. The NLRB

 held ${ }^{9}$ that a union had breached its contract when it struck in violation of a no-strike clause, and thereby forfeited its bargaining rights and justifiedthe employer's subsequent cancellation of the contract and mass discharge of the union's members.

Previous decisions by both the Board and the courts have upheld lockout action by an employer who had economic justification for such action to protect his business. It is also well settled that an employer may lawfully discharge employees who actually participate in an economic strike in violation of a collective-bargaining contract. Here, however, the Board upheld the discharge of all members of the striking union whether or not they were actual participants in its unlawful action.

In so doing, the Board noted that the employees were members of a strong and militant union, capable of disciplining its members, and applied a theory of "constructive participation" in the strike to all the union's members. It placed upon those members who did not physically participate a duty to disavow positively the unlawful acts of their bargaining representative or suffer the consequences.

The plant later reopened with new employees. These were organized by another union which was recognized by the company. The Board, however, ordered the employer to cease and desist from recognizing this new union prior to its certification, and from discouraging membership in the old union or "in any other manner interfering with the employees' self-organizational rights."

The Board also ordered the employer to offer reinstatement with back pay to six employees it regarded as unlawfully discharged. These included two nonunion women office employees whose husbands were members of the union The wives' discharge, the Board ruled, was intended not only to "discourage concerted activities of the husbands," but also to deter the wives from supporting the striking union and to coerce them in exercising their "statutory right to refrain from 'engaging' in concerted activities." Also to be reinstated were four watchmen, whose discharge occurred after that of the other employees, their future employment having been conditioned on the abandonment of their membership in the striking union

Refusal To Bargain. An employer's refusal to negotiate with a group of union representatives unless one of them was excluded from a bargaining session

[^33]was found ${ }^{10}$ by the NLRB to constitute an unlawful refusal to bargain under section $8(a)(5)$ of the LMRA. The representative was a duly elected member of the union's negotiating committee, and there was no evidence that he did not participate in negotiations in good faith. Therefore, the Board held, the employer's action could not be justified on the ground that the representative, who was not an employee, might harmfully disclose to the employer's competitors information acquired through negotiations.

In so holding, the Board cited the case of Deena Artware, ${ }^{11}$ in which a court held that "the act did not require that the bargaining representative be employed by the company with which the union was bargaining."

Radio Station Engaged in Commerce. In ordering ${ }^{12}$ a representation election among the employees of a California radio station affiliated with a national network, the NLRB adhered to its policy of treating activities relating to such "instrumentalities of commerce" as so "affecting" commerce as to come within its jurisdiction. The station was thus found by the Board to be "engaging in commerce" within the meaning of the act.

It is to be noted, however, that while Chairman Farmer and Member Rodgers concurred in the assertion of jurisdiction in this case, it is not to be inferred thereby that they agree with the Board's present jurisdictional standards.

Unemployment Compensation

Labor-Dispute Disqualification. (1) The Beaumont Court of Civil Appeals held ${ }^{13}$ that nonstriking workmen at a plant where a strike was in progress were justifiably unemployed. They were prevented from going to their jobs, the court stated, by threats and fear of violence, were not participating in the strike, and therefore were entitled to benefits under the Texas Unemployment Compensation Act. Claimants' fears of violence were held to be well founded even though no acts or threats of violence were actually directed at them or their families. The facts showed, the court stated, that they were told by
the strike-strategy committee of the striking union that some form of retaliation would be taken against them if they crossed the picket lines. Numerous acts of violence were committed against persons other than the claimants who attempted to cross the lines, the court stated, and many acts of violence had occurred during a strike of the same union against another company about 3 years prior to the present strike.
(2) The West Virginia Circuit Court of Kanawha County held ${ }^{14}$ tipple workers in a mine disqualified for benefits. These workers, under union orders designed to enforce bargaining, first refused to work overtime to maintain production as they had done in the past, and then refused to work 3 shifts as an alternative, thus causing a shutdown. Claimants were not relieved from the labor-dispute disqualification on the ground that the employer shut down operations to enforce changes in hours or working conditions, the court stated, because a provision in the expired contract permitted him to make such changes. Both production and tipple workers were disqualified, since production and processing were integrated and workers of both categories were members of the national union under whose direction 3 -shift work was refused.

Voluntary Leaving of Work. The Massachusetts Municipal Court for the Dorchester District held ${ }^{15}$ that a claimant who became unemployed because of a strike and failed to reapply for his former work following settlement of the labor dispute, left his employment voluntarily. The claimant terminated his employment when the strike was settled, the court found, and the mere fact that there had been a strike, was not good cause attributable to the employing unit, for his leaving.

[^34]
Chronology of Recent Labor Events

October 1, 1953

President Eisenhower, acting under the national emergency provisions of the Taft-Hartley Act, created a board of inquiry on the strike of the International Longshoremen's Association (Ind.) against the shipping industry in North Atlantic ports which had begun earlier the same day after the current contracts had expired. On October 5 , following receipt of the board's report, the Government obtained a temporary restraining order in the Federal District Court at New York; thereupon, the union directed the strikers to return to work. The court order, having been extended temporarily and broadened, on October 15 , to include the rival AFL union (see Chron. item for Sept. 22, 1953, MLR, Nov. 1953), was made effective for the full statutory 80 days (through December 24) against both the old and the new union-on October 20 and 23 , respectively. (Source: New York Times, Oct. 2, 6, 16, 21, and 24, 1953; Federal Register, Oct. 2, 1953, p. 6279; and Report to the President . . . by the Board of Inquiry, Oct. 5, 1953; for discussion, see p. 1324 of this issue.)

October 2

The fifth annual convention of the International Union of Electrical, Radio \& Machine Workers (CIO) ended after a 5 -day session in Montreal, Canada. (Source: IUE-CIO News, Oct. 7, 1953; see also p. 1328 of this issue.

October 5

The National Labor Relations Board, in the case of Roscoe Skipper, Inc., Avon Park, Fla., and International Union of United Brewery, Flour, Cereal, Soft Drink \& Distillery Workers of America, Local 234 (CIO), held that the employer's refusal to negotiate with the union's duly elected bargaining representatives because one of them was no longer employed by the corporation constituted refusal to bargain. (Source: Labor Relations Reporter, Oct. 19, 1953, 32 LRRM, p. 1658; for discussion, see pp. 1319-1320 of this issue.)

October 8

The President appointed James P. Mitchell as Secretary of Labor, to succeed Martin P. Durkin (see Chron. item
for Sept. 10, 1953, MLR, Nov. 1953). Mr. Mitchell, a labor relations and personnel expert, had been serving as Assistant Secretary of the Army for Manpower and Reserve Forces. On the same date, the President accepted the resignation of Lloyd A. Mashburn as Under Secretary of Labor, effective October 9 , to permit him to become assistant general president of the International Union of Wood, Wire \& Metal Lathers (AFL). (Source: White House press release, Oct. 8, 1953; and New York Times, Oct. 9, 1953.)

The Secretary of the Interior released a revision of the Federal mine safety code for bituminous and lignite mines which had been developed in cooperation with the United Mine Workers of America (Ind.) and the Bituminous Coal Operators' Association. The revised code supplements the Federal Coal Mine Safety Act of 1952 (see Chron. item for July 16, 1952, MLR, Sept. 1952), and deals with such hazards as roof control and the use of blasting powder. The original code was adopted in 1946 and thereafter was incorporated into wage agreements between union and operators. On October 14, the Bureau of Mines issued a revised safety code for anthracite mines, developed through joint efforts of the Bureau, the UMWA, and representatives of Pennsylvania anthracite operators. (Source: New York Times, Oct. 15, 1953; and United Mine Workers Journal, Oct. 15, 1953.)

October 9

The NLRB announced, in connection with its decision in the case of United States Steel Corp., Pittsburgh Steamship Division, Cleveland, Ohio, and United Steelworkers of America (CIO), that the Board's future policy would be to grant a union's request to withdraw from a runoff election only on condition that it would not ask for another representation election for 1 year thereafter. This rule was considered essential in order "to prevent abuse and evasion" of runoff election procedures. (Source: Labor Relations Reporter, Oct. 19, 1953, 32 LRRM, p. 1659.)

The NLRB, in a supplemental decision, in the case of Fawcett-Dearing Printing Co., Louisville, Ky., and International Mailers Union (Ind.), held that the temporary noncompliance of a union with annual report-filing provisions of the Taft-Hartley Act does not require that the representation election won by the union be set aside, but only that the certification be withheld until the union complies. (Source: Labor Relations Reporter, Oct. 19, 1953, 32 LRRM, p. 1660.)

The Federal Court of Appeals at Chicago, in the case of National Labor Relations Board v. National Die Casting Co., reversed the Board's finding of discrimination in the company's refusal, after a legitimate economic shutdown, to reinstate 5 union committeemen; the court held that the conduct of 2 of the men had breached the union's contract and that the jobs of the other 3 either had been abolished or combined with others. (Source: Labor Relations Reporter, Oct. 19, 1953, 32 LRRM, p. 2750; for discussion, see p. 1318 of this issue.)

October 12

The Federal District Court at East St. Louis, Ill., issued a temporary injunction designed to end a 4-week strike at the Joppa, Ill., steam electric project of the Atomic Energy Commission (see Chron. item for Sept. 19, 1953, MLR, Nov. 1953). The restraining order, obtained by NLRB on complaint of the construction contractor and later extended by the court, barred the deposed Local 595 of the Iron Workers (AFL) and its business agent from continuing their illegal picketing. (Source: New York Times, Oct. 13 and 17, 1953.)

The Supreme Court of the United States denied review to the following cases, thereby, in effect, sustaining decisions of the lower courts:
(1) Joliet Contractors Association et al. v. NLRB. The lower court, upholding the NLRB, ruled that bylaws and working rules of a glaziers' union which prohibited members from accepting employment with building contractors using preglazed sash, and designation of such contractors as unfair, did not in themselves constitute a secondary boycott, banned under the Taft-Hartley Act. The court had found no proof that the union regulations had actually resulted in concerted refusal on the part of the members "in the course of their employment." (Source: Labor Relations Reporter, Oct. 19, 1953, 32 LRRM, p. 2750 ; and ibid., Feb. 10, 1953, 31 LRRM, p. 2361.)
(2) NLRB v. Swinerton et al., d. b. a. Swinerton and Walberg Co. et al. The lower court supported the NLRB's finding that the general contractor and subcontractor at a machinery installation project illegally discriminated against applicants who were members of the Machinists Union (AFL) by refusing to hire them because of their lack of membership in, or referral by, the Carpenters Union (AFL). The court also confirmed the Board's authority to prosecute unfair labor practices within the building and construction industry, which had been contested on the ground that the Board had been unsuccessful in conducting representation elections within the industry. (Source: Labor Relations Reporter, Oct. 19, 1953, 32 LRRM, p. 2750; and ibid., Mar. 2, 1953, 31 LRRM, p. 2384.)
(3) United States Cold Storage Corp. v. NLRB. The NLRB was upheld in its ruling that the employer unlawfully refused to bargain by rejecting union requests for conferences during a strike, and that the obligation to bargain had not been satisfied by the employer's invitation to the union to present any new proposals in writing; also that he illegally discharged economic strikers because of their striking before they had been replaced. (Source: U. S. Law Week, Oct. 13, 1953, 22 LW, p. 3084.)
(4) NLRB v. National Marine Engineers' Beneficial Association, No. 126 (CIO). The lower court held that the Board may not arrange a settlement with a party charged with an unfair labor practice complaint without giving the charging party a hearing on his objections to the settlement, to which he is entitled under the Administrative Procedure Act. (Source: U. S. Law Week, Oct. 13, 1953, 22 LW, p. 3084.)
(5) Kent v. Civil Aeronautics Board. The lower court ruled that the Board, which approved the merger of two airlines, had authority under the Civil Aeronautics Act (and in the public interest) to direct the integration of the seniority lists of the flight engineers of the two airlines by giving equal importance to the same length of service with either airline. The court also upheld the Board's authority to forbid the merging line from entering into future labor contracts which would discriminate against engineers formerly employed by the merged line by disregarding their seniority status established on this basis. (Source: Labor Relations Reporter, Oct. 19, 1953, 32 LRRM, p. 2750; and ibid., June 8, 1953, 32 LRRM, p. 2144.)

October 15

The NLRB, in an action involving the International Fur \& Leather Workers Union of the U. S. \& Canada, Local 214 (Ind.), the Am-O-Krome Co., Cincinnati, Ohio, and the CIO (petitioner), canceled the local's certification as the representative of a bargaining unit in the company's plant. The Board took this action because an officer of the local who had filed a non-Communist affidavit required for the unit's compliance under the Taft-Hartley Act had been convicted of having made admittedly false statements regarding his Communist-Party affiliation. The NLRB, on October 23, issued a policy statement on future handling of representation cases involving unions having officers under indictment for filing false non-Communist affidavits. The Board will withhold action on requests by such unions for an election unless another union is involved in the case and deferment would prejudice the employer's or the other union's interests. If such a union wins an election, the Board will withhold its certification pending the outcome of the indictment. The NLRB averred that it would draw "no inference of guilt from the issuance of the indictments." (Source: Labor Relations Reporter, Oct. 26, 1953, 32 LRRM, p. 1673; and Federal Register, Nov. 11, 1953, p. 7185.)

October 19

The Supreme Court of the United States denied review in the case of West Texas Utilities Co., Inc., Abilene, Tex., v. National Labor Relations Board, thereby in effect upholding the lower court's finding of civil contempt for bargaining in bad faith. The employer's negotiation of a wage increase with an attorney claiming to represent a large group of employees (see Chron. item for Apr. 28, 1953, MLR, June 1953) was held to be a violation of a court decree enforcing an NLRB order that the employer bargain exclusively with the certified local unions, since the adjustment of wage rates for a large percentage of the employees affected was not a "grievance," as claimed, within the meaning of the grievance proviso in the Taft-Hartley Act. (Source: Labor Relations Reporter, Oct. 26, 1953, 32 LRRM, p. 2769; and ibid., May 4, 1953, 32 LRRM, p. 2043.)

The Supreme Court of the United States refused to review the case of National Labor Relations Board v. Mid-Continent Petroleum Corp., sustaining, in effect, the lower court's reversal of the NLRB on its "1-year" certification rule. (Source: Labor Relations Reporter, Oct. 26, 1953, 32 LRRM, p. 2769; ibid., May 22, 1953, 32 LRRM, p. 2127 ; for discussion, see p. 1326 of this issue.)

October 20

William L. Hutcheson, president emeritus of the United Brotherhood of Carpenters and Joiners of America (AFL) and for 37 years its president, died of a heart ailment. Until the recent temporary withdrawal of the union from the American Federation of Labor (see Chron. item for Sept. 8, 1953, MLR, Nov. 1953) he had also been first vice president of the Federation. (Source: New York Times, Oct. 21, 1953.)

October 21

The International Hod Carriers', Building \& Common Laborers' Union of America (AFL) ended a special 3-day constitutional convention, in celebration of its 50th anniversary, in Washington, D. C. (Source: Union's undated press release; and Washington [D. C.] Post, Oct. 19-21, 1953.)

October 22

The Federal Wage and Hour Administrator, under the Fair Labor Standards Act, approved higher minimum hourly wage rates for employees in the heavy products and industrial equipment division of the metal, plastics, machinery, instrument, transportation-equipment, and allied industries in Puerto Rico, effective November 30, 1953. The new rates will be 75 cents for drydock operations,

68 cents for mining, primary metal, and heavy fabricated metal products, and 58 cents for light machine-shop products and small industrial equipment, instead of 53 cents, the old rate for the entire division. (Source: Federal Register, Oct. 28, 1953, p. 6803.)

October 28

The NLRB refused to assert jurisdiction over the operations of a rural electric cooperative corporation, thus (according to a dissenting Board member) departing from its 3 -year policy of assuming jurisdiction over all cases involving public utilities which are engaged in commerce or in operations affecting commerce. The Board majority (including the new chairman and another recent member) ruled that the operations of the Inter-County Rural Electric Cooperative Corp., Danville, Ky., did not have a sufficient impact on interstate commerce to justify assertion of jurisdiction, although it conceded that the cooperative was engaged in commerce. (Source: Labor Relations Reporter, Nov. 2, 1953, 33 LRRM, p. 1010.)

October 30

The NLRB reversed a 5 -year policy when it ruled unanimously, in a representation case involving the Walterboro Manufacturing Corp., Walterboro, S. C., and the International Ladies' Garment Workers' Union (AFL), that part-time guards and watchmen are not to be included in bargaining units with other employees because they are guards within the meaning of the Taft-Hartley Act regardless of the proportion of time spent on guard duties. Heretofore, guards who devoted less than half their time to guard duty were included in bargaining units with nonguards. (Source: Labor Relations Reporter, Nov. 9, 1953, 33 LRRM, p. 1028.)

Developments in Industrial Relations'

The struggle for dominance in the East Coast longshore industry between the Ryan-led International Longshoremen's Association and the newly chartered ILA-AFL shifted in part from the New York piers to the courts and National Labor Relations Board hearing rooms during October, with the issuance of injunctions and requests for representation elections. At the same time, the NLRB, through actions against Communist-led unions, review of past policies, and addresses of its newly appointed chairman, was charting a new course in its administration of the Taft-Hartley law. On the West Coast, one of the largest and most significant work stoppages of the year occurred late in the month as the United Automobile Workers (CIO) sought substantial wage increases for approximately 33,000 workers employed in the production of Sabre-jets and other military equipment at plants of North American Aviation, Inc.

New York Docks

A 5 -day stoppage involving 50,000 longshoremen in Atlantic Coast ports began October 1, 1953, after negotiations between the International Longshoremen (Ind.) and the New York Shipping Association broke down. On the same day, the President invoked the national emergency provisions of the Labor-Management Relations (Taft-Hartley) Act of 1947 and appointed a board of inquiry. ${ }^{2}$ On October 5, after the board reported, a 10-day restraining order against a strike along the East Coast by the International Longshoremen's Association was obtained by the Attorney General, and the union instructed its members to return to work on October 6.

The board had reported to the President that wages, work guarantees, arbitration, hiring practices, and union security were the major issues in dispute. Resolution of these issues, the board
observed, was complicated by recently enacted State laws governing dock labor practices, and the membership drive of the newly chartered ILAAFL. No early termination of the stoppage, the board reported, was likely.

The temporary order later was extended until October 20 when it was superseded by the full 80-day injunction, in effect until Christmas Day. The injunction was also broadened to include the AFL Longshoremen's Union. Sporadic violence was met by police action and later restrained by temporary injunctions against the expelled ILA, and some of its locals and individual members.

A petition to the NLRB for a representation election was submitted by the AFL Longshoremen's Union while it continued organizing activities on the New York docks, where it claimed a membership of "well over 9,000 " of the approximately 25,000 longshoremen in the area. Efforts of the NLRB to expedite the election proceedings were stymied when both unions refused to agree to a consent election for the Port of New York and thus eliminate the need for formal hearings on the rival claims.

Late in October, the New York Shipping Association petitioned the NLRB to determine speedily which union represented the longshoremen, in order to facilitate negotiating a new contract before the injunction lapsed. A spokesman for the Association stressed the incongruous position of the employer's being "ordered to bargain" even though it had not been determined which union properly represented the waterfront workers. ${ }^{3}$ On October 26, the shipping association announced it would resume negotiations with the Ryan-led Longshoremen's Union, since such action seemed to be required under the terms of the court order and the Taft-Hartley Act.

NLRB Developments

Chairman Guy Farmer presented his views on collective bargaining and the role of the NLRB in an address, on October 6, to the Union Employers' Section of the Printing Industry of America. He said:

[^35]I do not believe that we are going to make either management or labor happy. . . . We can only hope that we may . . . influence . . . both in the direction of greater respect for one another and a better understanding of their mutual problems.

The Board is not, in the real sense, in the business of settling labor disputes.

We prescribe the rules for negotiating by saying that both parties must make a good-faith attempt to reach agreement. But we do not sit there with you to see that this is done . . . except for conducting elections we get into labor relations only after labor-management relations have broken down.

If the Board can convince management and labor that it is impartial and that neither will get more than it is entitled to, management and labor will be more inclined to settle their own problems by collective bargaining and less inclined to come running to the Board seeking to use its processes to gain an advantage.

In an address to the National Conference of Business Paper Editors, on October 21, Mr. Farmer expressed the view that the Board now "reaches down too far into enterprises not sufficiently important to the national economy to justify national consideration. It has always seemed to me . . . Federal agencies should, as a matter of self-restraint, impose limits on their own power, and thus provide the opportunity for local problems to be settled on a local basis by the citizens of the community in which those problems arise."

Craft Severance. The severance of craft units from "long established" plantwide units has been a frequent source of controversy in the labor movement. A review of the issues, pro and con, was held by the NLRB on October 7 as part of the testimony in a case involving the Trona, Calif., plant of the American Potash and Chemical Corp. In this instance three AFL unions seek to represent crafts now part of a plantwide unit: the IBEW to represent the electricians; the Operating Engineers, the powerhouse employees; and the Machinists, several separate units composed of pump packers, riggers, and toolroom keepers. Their petitions were opposed by the employer, by the Chemical Workers (AFL) as a petitioner to represent the entire production and maintenance unit except certain machinist classifications, and the Mine Workers (District 50, Ind.) which now represent the entire plant (except for a machinists' unit severed in January 1953).

The employer and the Chemical Workers, as well as other parties to the oral argument, sought to persuade the Board to apply to the basic chemical industry, of which American Potash is a part, the doctrine of the National Tube case (76 NLRB 1199). In this case, decided in April 1948, the Board found that the work of various craft groups was closely "integrated" with the work of the production workers and decided that a plantwide unit was appropriate.

Opposing application of the National Tube doctrine, AFL representatives urged a policy of "utmost liberality . . . when the craft workers involved have indicated their desire for representation on a craft basis." In refutation of a major argument that craft severance promotes instability, the AFL submitted a study of 222 cases in which the Board had approved craft severance. Its analysis showed that the work stoppages attributable to the craft unions subsequent to certification at plants involved in these severance cases was a small fraction of the total stoppages occurring at these companies during this period.

As a part of the general proceeding the Board solicited testimony on other factors relevant to the problem of granting severance of craft groups from long-established plantwide units. In addition to the parties directly concerned in the Trona case, testimony was received on these matters from the AFL parent organization, the CIO, and a number of international unions, as well as from the United States Chamber of Commerce, the Manufacturing Chemists Association, and the National Association of Manufacturers.

Non-Communist Affdavits. In an effort to oust Communists from positions of influence and control in labor unions, the NLRB adopted a policy of denying certification as collective bargaining agents to unions that have officers under indictment for filing false non-Communist affidavits. ${ }^{4}$

Under the new policy the Board indicated that it would withhold action on petitions for repre-

[^36]sentation elections by such unions. However, if another union was involved, or if delay would prejudice the interest of the employer or the other union, the Board indicated it would proceed with the election. However, the NLRB stated that it would not certify the union where officers are under indictment as bargaining agent, even if it won the election, pending disposition of the indictment. Where the officer is convicted, the NLRB policy provided that bargaining rights of the union should be canceled.

The first NLRB action (which, in fact, took place before the policy was formally announced) involved the Fur and Leather Workers, expelled from the CIO about 4 years ago. The Board unanimously canceled the union's bargaining rights at a Cincinnati firm, after the local's secretary-treasurer was convicted last spring of a charge of false statements when he disclaimed Communist ties.

Under this new policy the Fur and Leather Workers, whose national president is under indictment, ${ }^{5}$ and the Marine Cooks and Stewards, whose president has been reindicted in Washington, D. C., will not be able to obtain certification as bargaining agents for any group of employees until their presidents are cleared of these charges. If they are convicted, all local bargaining rights of the two national unions will be canceled

Court Rejects NLRB Certification. The Supreme Court upheld a Court of Appeals ruling against the NLRB in a case involving continued certification of a union disavowed by a majority of a unit's employees. In July 1951, the Mid-Continent Petroleum Corp. was charged by the Board with engaging in an unfair labor practice when it refused to continue to bargain with a union which half the employees had repudiated about 2 months after its certification. The Sixth Circuit Court of Appeals held that, "where the will of the employees to revoke the power of their bargaining agent is clear and unquestioned, effect must be given to such revocation," and found that the Board had no basis for a requirement that a certification, except under extraordinary circumstances, must be respected for a full year. In its appeal to the Supreme Court the Board argued

[^37]that its certification of a union "is for a reasonable period" even though the employees subsequently decide to change bargaining agents. The Supreme Court refused to review the lower court's decision.

Negotiations and Settlements

Aircraft. Late in October approximately 33,000 employees of North American Aviation, Inc., producer of jet aircraft for the Armed Forces, became idle in Los Angeles and Fresno, Calif., and Columbus, Ohio, because of a wage dispute. The United Automobile Workers (CIO) called the strike at the Los Angeles and Columbus plants on October 23 and at the Fresno plant on October 24 after the company rejected union proposals for contract changes. In addition to increased fringe benefits, UAW demands included a 23.4 -cent hourly increase, which the union said would bring the company's pay scale up to the level for aircraft employees in automobile plants.

The company had offered a 4 -percent base pay increase, a 2 -cent-an-hour cost-of-living adjustment under a revised escalator formula, an additional 4 cents an hour for top labor grades, increased differentials for leadmen, and improved vacations, life insurance, and hospital and surgical benefits. These changes were put into effect on October 19 for about 21,000 employees not covered by the UAW-CIO contract.

Negotiations between the International Association of Machinists (AFL) and two other major California aircraft companies were also in progress during October. Union proposals included a 10 -percent average wage adjustment and other benefits for 28,000 employees of the Douglas Aircraft Co. and an overall 12-percent increase in wages and employee benefits for a comparable number of workers of Lockheed Aircraft Corp. The current contracts with Douglas expired October 17, but were extended to November 1. On October 18, the employees had rejected a company offer of a 5 -cent wage increase, an additional 5 cents for leadmen, an escalator clause, and increased vacations. At Lockheed, negotiations have been under way since midSeptember on a new contract to replace the one scheduled to expire on November 9.

Meat Packing. Agreements covering 68,000 employees of both Swift and Co. and Armour and Co. were reached early in October with 3 unions. The settlements included a general hourly wage increase of 5 cents, effective September 28, and company-paid hospital, medical, and surgical programs for employees and their dependents. Coverage under the health plan, estimated to cost $4 \frac{1}{2}$ cents an hour for each employee, was to begin December 1.

Each company signed agreements with the Meatcutters (AFL) and the Packinghouse Workers (CIO). Swift also signed an agreement with the Brotherhood of Packinghouse Workers (Ind.). Throughout the negotiations close cooperation was reported between AFL and CIO bargaining committees. There were sporadic work stoppages and threats of a national strike which culminated in a half-day stoppage idling 17,000 workers at 20 Chicago plants of Swift and Co., on September 29.

Later in the month, Wilson \& Co. and the Cudahy Packing Co. reached agreement with the CIO United Packinghouse Workers following the Swift and Armour pattern. Negotiations for similar settlements with approximately 100 independent companies were reported in progress.

Dairies. A work stoppage began October 25 involving 13,000 truck drivers and plant workers employed by milk distributors in the New York metropolitan area. The Teamsters (AFL) sought a $\$ 15$ weekly wage increase, a reduction in the workweek to 35 hours from 40 hours, and fringe benefits. The employers offered a $\$ 2.10$ weekly wage increase for plant workers, no change in drivers' wages, and fringe benefits estimated at $\$ 1$ a week for all workers. The strike ended October 31 with agreement on a wage increase of $\$ 6$ a week and an additional $\$ 2.50$ a week in welfare, insurance, and vacation benefits. ${ }^{6}$

Telephone. The Communications Workers of America (CIO) and the Chesapeake and Potomac Telephone Co. of Virginia reached agreement on a new 1-year contract covering approximately 6,500 telephone workers in Virginia. This is reported to be the final 1953 contract settlement between the union and the Bell Telephone system, in a series of negotiations which started in January. ${ }^{7}$

Approximately 300,000 telephone workers are covered by the more than 30 Bell system agreements negotiated by the CWA during the intervening period. General wage increases ranged from $\$ 1$ to $\$ 4$ a week, and, in addition, the settlements provided increased differentials for certain employee groups, shortened wage progression schedules, and upward reclassifications of certain town wage schedules.

Automobiles. The Kaiser Motors Corp. and the UAW-CIO renegotiated their collective agreement covering the Willow Run plant ${ }^{8}$ as a result of sharp cutbacks in aircraft contracts and a reduction in Kaiser automobile sales. The contract, originally negotiated to cover a work force of approximately 13,000 , proved unwieldy and costly when applied to a sharply reduced force of about 3,000 . At the company's request, the union agreed to changes in the contract which the company indicated would enable it to maintain its competitive position. The changes included a provision for consolidating certain job classifications; this would permit tbe company to shift workers from job to job so as to minimize payments for time not worked, when a full day's work in a particular job is not available.

Railroad Workers. Negotiators for 15 nonoperating railroad unions notified the carriers' representatives that strike ballots, returnable by December 1 , were being distributed among their members in the dispute over changes in nonwage provisions of their contracts. Counter-proposals submitted by the carriers were unacceptable and union representatives requested the services of the National Mediation Board. Although the Board arranged for representatives of the carriers and unions to meet in Chicago on November 3, plans for the strike vote continued. The carriers, after brief discussions, announced they were seeking a declaratory judgment from the Federal District (Chicago) Court to the effect that several of the unions' proposals were not proper issues for negotiation. Those particular proposals related

[^38]to requests for more liberal free pass (transportation) privileges and insurance and welfare benefits, the costs of which would be defrayed by the railroads. Such proposals, the carriers declared, were not subject to collective bargaining under the "rates of pay, rules, and working conditions" provisions of the Railway Labor Act. At the same time the carriers offered to continue discussions with reference to improved vacations and premium pay for holiday and Sunday work.

Steelworkers' 1954 Proposals

The CIO Steelworkers' Wage Policy Committee, composed of several hundred district and local union representatives, met in New York during October to discuss contract proposals to be presented in 1954. One of these dealt with changes in the 5 -year pension and insurance agreements which expire next fall. Union spokesmen urged an increase in the present pension guarantee of $\$ 100$ a month (including Federal social security payments) to qualified employees with 25 years' service to from $\$ 175$ to $\$ 200$ a month (excluding social security). The committee also recommended that a program be developed whereby workers would retain their pension protection if they transferred from one company to another. Substantial increases in health and welfare benefits as well as a broadening of the insurance program, completely financed by the companies, were also urged.

The Steelworkers' president told members of the union's wage policy committee that, although the guaranteed annual wage would be a major demand in contract negotiations next year, no strike would be called to force its acceptance. He said that, although he was confident of its ultimate success, such a program would not come overnight.

The United Steelworkers has had the guaranteed annual wage as a long-range objective since the union was formed in 1936. In 1943 an unconditional 52 -week guarantee was demanded. In 1947 its proposal for a guarantee was reported as "substantially less" than the 1943 demand. In 1952 the union proposed a "limited liability" annual wage guarantee. Under this plan company contributions were estimated by the union at $6 \frac{1}{2}$ to 7 cents per man-hour which would go into a trust fund. Overall weekly benefits would have
been 30 times the standard hourly wage rate, including State unemployment benefits, and would have been payable for 52 consecutive weeks in any one period of unemployment. The company's liability would have been limited to the amount in the trust fund.

The annual wage guarantee under consideration by the Steelworkers' Wage Policy Committee is reported to be somewhat similar to the 1952 proposal. Under this plan the steel companies would, as a first step, be asked to set up a trust fund based on company contributions of 10 cents per manhour, to supplement State unemployment insurance payments to qualified workers.

Other Guaranteed Annual Wage Developments

Another CIO union, the International Union of Electrical Workers, in a major report to its fifth annual convention set forth its program and policies for negotiating guaranteed annual wage agreements at the local union level. In general the principles which, according to the IUE report, should underlie such a plan, paralleled those set forth at the UAW-CIO annual convention in March 1953, ${ }^{9}$ with one major exception. The UAW resolution stated that "financing should combine pay-as-you-go to provide employers with incentives to stabilize employment, with a reserve trust fund to meet abnormal costs. Provision should be made for reinsurance to reduce the size of the required reserves and to spread the risks of abnormal employment over the widest possible area of the economy." The IUE-CIO report urged that "the plan should provide for the amount of employer contributions and this should be the full extent of his liability." In addition, the IUE report stated that "vigorous efforts should be made to improve unemployment compensation payments and liberalize the eligibility requirements so that even workers not eligible for [the guaranteed annual wage] will be more adequately protected."

Although most proposals for the annual wage are pointed to negotiations in 1954 or 1955, the AFL warehousemen's union in St. Louis has made it a current major bargaining issue. The Warehouse and Distribution Workers' Local of

[^39]the AFL Teamsters reported as of mid-August 1953 that 20 of its 300 contracts incorporate the annual wage plan, covering roughly 30 percent of the 10,000 warehouse and distribution workers represented by the union in St. Louis. Union negotiators expect the guarantee to be extended as existing contracts expire.

While the St. Louis contracts providing an annual guarantee cover approximately 3,000 workers, only about 2,200 top seniority employees are actually protected. They are assured of 2,000 hours of work a year, exclusive of overtime. The guarantee covers a specified number of employees in each company based on 1952 employment records and the number remains constant for the contract period. Replacements for employees on the guarantee list are based on seniority.

In Philadelphia, employees of the American Sugar Refining Co. and the National Sugar Refining Co., represented by the International Longshoremen's Union (Ind.) early in September ratified a new contract continuing their guaranteed annual wage plans which were started September 1, 1952. The plans cover around 2,000 production and maintenance workers and guarantee 2,000 hours' or 50 weeks' pay, instead of 1,976 hours' pay previously assured, to each employee with at
least 1 year's seniority. The local union's president, in commenting on the employees' reaction to the plan, pointed out that it had cut absenteeism, improved morale, and restored harmony between the local and the company.
Employer interest in labor's increasing emphasis on wage guarantees became more apparent during the month. The Committee on Economic Policy of the United States Chamber of Commerce issued a report ${ }^{10}$ which questions the desirability of a guaranteed annual wage. The report is critical of attempts to obtain guaranteed wages through "overall tight economic planning" and stresses the constant changes in the American economy and the importance of stabilizing production or sales, or both, prior to making formal commitments on wage guarantees. It likewise focuses attention on the need for further careful study of proposals linking guaranteed wage plans with unemployment compensation. Another report, ${ }^{11}$ prepared by Industrial Relations Counselors, Inc., urges full exploration of the contributory approach to guaranteed wage programs, particularly in companies which already maintain a substantial benefit program.

[^40]
Publications of Labor Interest

Editor's Note.-Correspondence regarding publications to which reference is made in this list should be addressed to the respective publishing agencies mentioned. Data on prices, if readily available, are shown with the title entries.
Listing of a publication in this section is for record and reference only and does not constitute an endorsement of point of view or advocacy of use.

Special Reviews

Peter E. Dietz, Labor Priest. By Mary Harrita Fox. Notre Dame, Ind., University of Notre Dame Press, 1953. 285 pp., bibliography, illus. $\$ 4.75$.
Detailed biography of a Catholic priest, a pioneer in social-work education and in social action and labor education in the period between 1906 and 1922. Born on New York's East Side, of German parents, he studied in Germany after attending several schools in this country and doing many kinds of manual work. In Germany, he came to know the European Catholic social movement, out of which have come many of the present-day leaders in western continental Europe, including Adenauer.

As a student in this country, he had already thought of what he would do on social problems when he became a priest. On his return to the United States, he continued thinking of social work and preparing for it. The German experience had merely helped to confirm his previous convictions.

The activities he inaugurated were legion. He edited a social section of a magazine. He ran a labor news service. He was secretary of a socialservice commission. He started two schools of social work. He organized institutes for the study of labor problems. He started a Catholic organization for labor people to help them do their work better in the unions. He inaugurated the Sunday Mass, still continued, for the Catholic and other delegates to AFL conventions, held with a sermon on the religious implications of the labor movement. He urged general industrial conferences.

He was strongly in favor of people joining existing unions. He fought the Socialist penetration of unions. (For "Socialist" then, read "semiCommunist" now.) He helped solidify the AFL policy, at that time, of opposition to government action in economic life, but worked for employerlabor cooperation to handle the whole range of economic life. He was not against government action but was supremely in favor of union-management cooperation. He was a personal friend of many labor leaders, and he and they "talked the same language."

The final 25 years of his life he spent as pastor of a Milwaukee suburban parish. As he had not succeeded in so many of his earlier undertakings (being a kind of John the Baptist), he did not succeed in his last and most ambitious work in the labor field. It was a national labor college as an outgrowth of the American Academy of Christian Democracy. It was situated in Cincinnati. The Archbishop of Cincinnati first welcomed it. But after a while he came to oppose Father Dietz and finally ended Father Dietz' stay in the diocese. Without Father Dietz, the labor college and the academy collapsed. Father Dietz spent the rest of his life in parish work.

Why Archbishop Mueller ordered Father Dietz out of the diocese is the heart of the story and, to my mind, the author blurs the story. He makes it out a story of the Archbishop's action being decided by giving in to a committee of businessmen who approached him after Father Dietz had openly opposed the current antiunion drive, called the "open shop" drive. This was late in 1920. Father Dietz had already been working for the election of President Harding. For a priest to get into politics was an unheard-of thing. Father Dietz was also working publicly against American entrance into the League of Nations, which, to the minds of many then and now, was a very unintelligent thing to do. The author blurs this story also but gives basic facts that help the reader reach a judgment different from the author's.

On special invitation, Father Dietz occasionally spoke at Catholic meetings on industrial problems after leaving his earlier work, which was superseded by a national organization, the National Catholic Welfare Conference-likewise something which he had envisaged.

This book tells the story of a pioneer working at a time when his church was engrossed in the
simple job of building churches and schools and of getting men and women to staff them. Father Dietz was an organizer of social action at a time when his church was not ready for much of such organization. And, as in the case of many other pioneers, when the fruit of the work was ready for the harvest he was not called on. However, other pioneers were called on. The book is not a study of Father Dietz' ideas but of the methods of organization and education that he worked at or tried to get started in a very difficult period. It is also a study of a very interesting man.
-Rev. Raymond A. McGowan.

The Musicians and Petrillo. By Robert D. Leiter. New York, Bookman Associates, Inc., 1953. 202 pp., bibliography, illus. $\$ 3.75$.
When the late William Green lost his union card with the expulsion of the Mine Workers from the A. F. of L. in 1936, he was invited to join the American Federation of Musicians. The traditional "open" admittance policy of the union, stretched a bit in this case to admit a man who was obviously not a professional musician, brought Mr . Green into the company of thousands of members who were capable of performing publicly but who could not hope to earn a livelihood as performers.

Dr. Leiter's history of the American Federation of Musicians tells the story of a union plagued throughout its existence by unemployment and underemployment, and of leaders who were reluctant to accept "progress" at the cost of employment opportunities for musicians. In 1947, which was probably not an unusual employment year for musicians, it was estimated that only about 15 percent of the union membership worked exclusively as musicians and about twice this proportion depended upon work as musicians for a part of their income. The book reviews the early trials of the union, the development of prestige and power, the technological revolution in the entertainment world and its impact on professional musicians, and the union's struggles to protect the interests of those members who benefited by the reproduction of musical performances and of the larger group for whom the opportunities to play were rapidly vanishing. Because power in the union flows through the
president, the activities of Joseph N. Weber, who led the Musicians from 1900 to 1940 , and of James C. Petrillo, who has been the president since, are spotlighted.

The author stresses the problems of technological change, which to musicians meant the substitution of mechanically reproduced sound for live performances. Since employment data are not presented, it is difficult to evaluate the consequences of technological change. The development of motion pictures as mass entertainment brought thousands of musicians into theater pits, but the addition of sound threw them out again. Radio broadcasting started as a boon, but its increasing use of phonograph records, which in the home were no threat, has displaced musicians or eliminated job opportunities. In television, the kinescope or film became the threat to live performances. The records, transcriptions, tapes, or films-the fruits of technical advances-were to the union the weapons of self-destruction, as the musicians, themselves, had created them. That the union, therefore, had the right to control the output, limit its use, or stop it outright for its own protection, was Mr. Petrillo's claim as a basis for action.

If notoriety is any criterion, the dynamic president of the American Federation of Musicians merits a book of his own. Dr. Leiter reports on the battles which, because of the media of entertainment involved, made Petrillo a household name. One need not be a student of trade-union history to recall the stories of the organization of solo instrumentalists, the long campaign to organize the Boston Symphony Orchestra, the Interlochen dispute and other attempts to keep school children and other "free" performers off the air, the use of "standby" pay in radio broadcasting and the events leading up to the Lea Act of 1946, the ban on records, and the institution of the socalled "royalty" fund. The author credits Mr. Petrillo with being a highly competent and successful union leader, but deplores some of the methods he has used and his failure to appreciate public reaction. The quoted statements of the outspoken Mr. Petrillo, who has provided much copy to newspaper reporters and editorial writers, lend spice to the book. On the whole, however, the author's attempts to interject the lively interplay of personalities into this history are somewhat awkwardly done, as if through afterthought, which is
not to the discredit of a conscientious researcher and serious student of labor problems.

A chapter of the book is devoted to the activities of Local 802 of New York City. In this chapter, and throughout the book, it becomes plain that the American Federation of Musicians, which carries on some of the functions of a trade association, a professional society, an employment exchange, and a collection agency, is quite unlike any other large union in the country. One of the most striking differences is the union's disregard of seniority. In the nebulous music industry, employers are generally free to hire and fire on the basis of merit, youth, appearance, or any other criterion that has meaning in the entertainment world.

As a thorough research job, and for its own intrinsic interest, The Musicians and Petrillo merits a place on the growing shelf of trade-union histories.

> -Joseph W. Bloch.

Soviet Economic Growth-Conditions and Perspectives. Edited by Abram Bergson. Evanston, Ill., and White Plains, N. Y., Row, Peterson and Co., 1953. $376 \mathrm{pp} . \$ 6$.
This volume records the proceedings of a conference, sponsored by the American Council of Learned Societies and the Social Science Research Council, which brought together some of the best United States experts on Soviet economics. The main theme of the discussion was the prospect for economic growth of the USSR in the coming two decades. The prognostications for different aspects of economic growth were based on analyses of past experience and probable changes in controlling factors.

Twelve papers presented at the conference are reproduced, with comments made by the participants in the meetings. Although forming chapters of the book, the papers are fully independent of each other, differ widely in form, and should be considered as individual contributions, as in proceedings of other scientific conventions. The book differs from other such proceedings, however, in presenting a more systematic selection of topics and reporters.

The conference covered a broad area of problems. Three papers on general aspects of Soviet economic growth are given first: National Income (by Gregory Grossman); Capital Formation and Allocation (by Norman M. Kaplan); and Popula-
tion and Labor Force (by Warren W. Eason). Next come four papers on the industrial development of the USSR: Transportation (by James H. Blackman) ; Industrial Resources (by Chauncy D. Harris) ; Industrial Labor Productivity (by Walter Galenson) ; and Industrial Production (by Donald R. Hodgman). Except for the report on industrial resources, these seven papers are highly technical and stress methodological problems, reconciliation of contradictory statistical series, and similar topics. They are not designed for the general reader but represent a valuable contribution to scientific studies of Soviet economics.

This group of papers is followed by three reports on agriculture in the USSR: Agricultural Resources (by V. P. Timoshenko) ; Agricultural Organization [collectivization] (by Lazar Volin); and Agricultural Output and Employment (by Joseph A. Kershaw). The two concluding reports in the volume cover foreign trade-within the Soviet bloc (by Oleg Hoeffding) and between this bloc and the West (by Harry Schwartz). These five papers, like the report on industrial resources, will be appreciated not only by students of Soviet economics but by general readers as well. In the opinion of this reviewer, it will be regrettable if these sections of the book are not reprinted for a much broader circulation.

The conclusions of the conference are sound. The twelve papers deflate the boastful claims of the Soviets and the myth of the USSR's inexhaustible resources, its breathtaking economic progress, and the advantages of its system of planning. But they avoid the other extreme-an underestimation of the present strength of the Soviet Union and its probable economic growth. They give a well-balanced, realistic picture of the Soviet economy: abundant but poorly distributed and not inexhaustible natural resources; a ruthless control of investments, and all economic activities by a despotic government, guided by considerations of power and little concerned about the interests of the mass of the population; subjugation and exploitation of the rural majority; disproportionate growth of industries supporting the military power of the government.

Speculations by the authors about the economic strength of the Soviets in 1970 are based on assumptions which can be neither proved nor disproved. They are presented as tentative, and the
reader can adjust them to his own ideas on the probable course of events. But for such adjustment he would have to use the factual data provided in the book. This reviewer recommends the book to the attention of all who are seriously interested in developments behind the Iron Curtain.
-W. S. Woytinsky.

Cooperative Movement

Consumers' Cooperation in Germany. By Erwin Hasselmann. Hamburg, Central Union of German Consumers' Cooperative Societies (Zentralverband Deutscher Konsumgenossenschaften), 1953. 81 pp., charts, maps, illus.

Cooperation in the [British] Colonies. By Marjorie Nicholson. Manchester, England, Cooperative Union, Ltd., Education Department, 1953. 96 pp., bibliographies, map, illus. (Design for Study, 6.) 1s.

Report of the 84th Annual Cooperative Congress, Llandudno, [Wales], May 25-28, 1953. Edited by R. Southern. Manchester, England, Cooperative Union, Ltd., 1953. 420 pp .

Beretning for 1952 til Norges Kooperative Landsforenings Representantskap. Oslo, Norges Kooperative Landsforening, 1953. 80 pp .
Report of the Norwegian Cooperative Union and Wholesale Society (NKL) on operations of its member societies, which include consumers', production, marketing, and other organizations.

Employment and Unemployment

United States Census of Population, 1950: Employment and Personal Characteristics-Employment by Age, Race, Nativity, Educalion, Marital Status, Household Relationship, etc. Washington, U. S. Department of Commerce, Bureau of the Census, 1953. 145 pp. (Special Reports, Vol. IV, Part 1, Chapter A.) 70 cents, Superintendent of Documents, Washington.

Average Employment and Total Wages of Workers Covered by State Unemployment Insurance Laws, by Industry and State, 1952. Washington, U. S. Department of Labor, Bureau of Employment Security, 1953. 23 pp.; processed.

Full Employment on Trial: A Case Study of British Experience. By Paul E. Sultan. Buffalo, N. Y., University of Buffalo, School of Business Administration, Department of Industrial Relations, 1953. 12 pp . (Reprinted from Canadian Journal of Economics and Political Science, May 1953.)

Unemployment in Textiles. By H. A. Turner. (In Bulletin of the Oxford University Institute of Statis-
tics, Oxford, England, August 1953, pp. 295-306, charts. 3s. 6d.)
Compares employment experience of different sections of the major textile industries in Great Britain in 1951 and 1952 on the basis of statistics of employment, unemployment, short-time working, payrolls, and machine activity. Finds that it is normal for activity to decline first in earlier stages of production, experience varying somewhat according to degree of vertical integration prevailing in the trade.

Guaranteed Wage

The Economics of the Guaranteed Wage. Washington, Chamber of Commerce of the United States, Economic Research Department, 1953. 34 pp. 50 cents.
Report of the Chamber's Committee on Economic Policy.

The Guaranteed Annual Wage: An Active Issue. New York, Industrial Relations Counselors, Inc., 1953. 28 pp . (Industrial Relations Memo 131.) $\$ 1.50$.
Analyzes various employer-initiated plans and types of union approach to the guaranteed annual wage, including the supplementing of State unemployment insurance.

The Guaranteed Annual Wage in Collective Bargaining. Princeton, N. J., Princeton University, Industrial Relations Section, July 1953. 4 pp. (Selected References, 52.) 20 cents.

Guaranteed Wage and Employment Plans in Collective Agreements, [Canada]. (In Labor Gazette, Department of Labor, Ottawa, September 1953, pp. 1269-1272. 25 cents.)

Industrial Relations

Case Studies in Collective Bargaining. By Walter Hull Carpenter, Jr. New York, Prentice-Hall, Inc., 1953. 465 pp., charts. $\$ 4.95$.

Collective Bargaining: Negotiations and Agreements. By Selwyn H. Torff. New York, McGraw-Hill Book Co., Inc., 1953. 323 pp. \$5.50.
A new textbook covering the entire scope of union agreements from preamble to signatures. Chapters are devoted to such subjects as union security, worker seniority, hours of work and overtime, paid vacations, benefit plans, and grievance procedures. Opposing viewpoints of unions and employers with respect to the negotiation of particular clauses are summarized. The development and legal status of the collective-bargaining process and criteria for wage adjustments are briefly discussed.

Productivity and Wages in Collective Bargaining. (In Management Record, National Industrial Conference Board, Inc., New York, August 1953, pp. 281-285, 306-312, illus.)
Summary of proceedings at a round-table conference held at the 37 th annual meeting of the National Industrial Conference Board.

Human Relations in Small Industry. By John Perry. Washington, U. S. Small Defense Plants Administration, 1953. 68 pp. (Small Business Management Series, 3.) 25 cents, Superintendent of Documents, Washington.

Successful Labor Relations for Small Business. By James Menzies Black and J. George Piccoli. New York, McGraw-Hill Book Co., Inc., 1953. xxii, 425 pp. $\$ 6$.

Due Process on the Railroads: Disciplinary Grievance Proctdures Before the National Railroad Adjustment Board, First Division. By Joseph Lazar. Los Angeles, University of California, Institute of Industrial Relations, 1953. 38 pp . $\$ 1$.

Governmental Restraints on Featherbedding. By Benjamin Aaron. Los Angeles, University of California, Institute of Industrial Relations, 1953. 42 pp . (Reprint 31, from Stanford Law Review, July 1953.)

Labor Legislation

Labor Law. By Paul H. Sanders. (In Vanderbilt Law Review, Nashville, Tenn., August 1953, pp. 11931205. \$1.50.)

Summarizes 1953 developments both through court decisions and by legislation.

The Labor Management Relations ${ }^{\mathbb{E}}$ [Taft-Hartley] Act and the State's Power To Grant Relief. By George Rose. (In Virginia Law Review, Charlottesville, October 1953, pp. 765-813. \$1.25.)

Labor Laws of the State of Arizona. Phoenix, State Labor Department, Industrial Commission of Arizona, 1953. 102 pp .

Labor Laws Administered by Labor and Industrial Commission of New Mexico. Santa Fe, Labor and Industrial Commission, 1953. 36 pp .

Labor Laws of the State of Oklahoma, 1953 Edition. Oklahoma City, Department of Labor, 1953. 144 pp.

A Statement of the Laws of Colombia in Matters Affecting Business. By German Cavelier. Washington, Pan American Union, Department of International Law, Division of Law and Treaties, 1953. 186 pp. 2d ed.
Includes a 25 -page summary of labor and social legislation. A similar report for the Dominican Republic was published recently by the Pan American Union.

Labor Organizations

History of Labor and Unionism in the United States (a Selected Bibliography). Compiled by Ralph E. McCoy. Champaign, University of Illinois, Institute of Labor and Industrial Relations, 1953. 88 pp.; processed. (Bibliographic Contributions, 2.)

The Communist-Dominated Union Problem. By Alfred Long Scanlan. (In Notre Dame Lawyer, Notre Dame, Ind., Summer 1953, pp. 458-496. \$1.)

How Do the Communists Work? By Victor Feather. London, Batchworth Press, Ltd., 1953. 64 pp. 1s. 6 d .
Description of "penetration by Communists of existing democratic institutions, and particularly of trade unions."

Fifty-sixth Report of Scottish Trades Union Congress, Rothesay, April 15-18, 1953. Glasgow, Scottish Trades Union Congress, 1953. 306 pp .2 s .6 d .

Trade Unions and Full Employment. [Stockholm], Swedish Confederation of Trade Unions [Landsorganisationen i Sverige (LO)], 1953. 109 pp. Kr. 2.
English translation of extracts from a 225-page report of an organization committee appointed in 1946 to study ways of extending LO activities and rendering them more effective. Brief sections on the structure of Swedish trade unionism, and on wage trends and policies, 1950-53, are added in the English version.

Les Fédérations Syndicales Suisses en 1952. By Willy Keller. (In Revue Syndicale Suisse, l'Union Syndicale Suisse, Berne, Switzerland, September 1953, pp. 245-262, charts. 1 fr.)
Statistics for 1952 and earlier years showing development of Swiss labor organizations.

Labor Turnover

The Cost of Labor Turnover. Chicago, International Harvester Co., [1953]. 39 pp., charts; processed.
Analyzes the cost to the International Harvester Co. of labor turnover in 1951, broken down by type of cost (recruiting and training of workers, tools, materials, etc.).

Hiring and Separation Rates in Certain Industries, [Canada], September 1950 to August 1952. Ottawa, Department of Trade and Commerce, Dominion Bureau of Statistics, 1953.41 pp .25 cents.

Manpower

Annual Report on the Labor Force, 1952. Washington, U. S. Department of Commerce, Bureau of the Census, 1953. 29 pp., chart. (Current Population Reports, Labor Force, Series P-50, No. 45.)
Gives data on the total civilian labor force, on agricultural and nonagricultural employment, and on unemployment by age and sex of workers and other breakdowns.

Manpower: The Nation's First Resource. Washington, National Planning Association, Special Committee on Manpower Policy, 1953. 55 pp., bibliography. (Planning Pamphlet 83.) $\$ 1$.

Proceedings of the Second Conference on Scientific Manpower, December 1952. Washington, National Science Foundation, [1953?]. 47 pp.

Scientific Research and Development in American IndustryA Study of Manpower and Costs. Washington, U. S. Department of Labor, Bureau of Labor Statistics, 1953. 106 pp., charts. (Bull. 1148.) 50 cents, Superintendent of Documents, Washington.

Health Manpower Source Book: Section 2, Nursing Personnel. By Helen G. Tibbitts and Eugene Levine. Washington, U. S. Department of Health, Education, and Welfare, Public Health Service, 1953. 88 pp., bibliography. (Pub. 263, Sec. 2.) 40 cents, Superintendent of Documents, Washington.
In addition to data on the supply of nurses in different fields of practice during varying periods down to 1952, the report contains information on median monthly earnings (1946 and 1949) and on characteristics of nurses such as age, sex, marital status, and education.

Migration and Migrants

L'Émigration d'Europe vers les Pays d'Outre-Mer. By G. Koulicher. (In Revue du Travail, Ministère du Travail et de la Prévoyance Sociale de Belgique, Brussels, June 1953, pp. 561-577.)
Reviews European emigration trends during first half of present century and discusses present-day problems.

Migrant Workers (Underdeveloped Countries). Geneva, International Labor Office, 1953. 129 pp. 75 cents. Distributed in United States by Washington Branch of ILO.
Report V (1) prepared for 37 th session of International Labor Conference, 1954. Following a brief review of the background of ILO activities concerning migration, the report takes up the nature and extent of labor migration and measures to mitigate its consequences in countries of Africa, Asia, and Latin America. The situation of migrant workers at places of employment in some of the countries is also discussed.

Occupations

Jobs That Take You Places. By Joseph Leeming. New York, David McKay Co., Inc., 1953. 244 pp., bibliographies. Rev. ed. $\$ 3$.

Employment Outlook in the Automobile Industry. By E. Eleanor Rings and Arthur D. Rosenberg. Washington, U. S. Department of Labor, Bureau of Labor Statistics, 1953. 33 pp., charts, illus. (Bull. 1138.) 25 cents, Superintendent of Documents, Washington.

Occupational Therapy as a Career. Washington, U. S. Department of Labor, Women's Bureau, 1953. 7 pp., illus. (Leaflet 16.) 5 cents, Superintendent of Documents, Washington.

Preparing Tomorrow's Nurses. By Elizabeth Ogg. New York, Public Affairs Committee, Inc., 1952. 32 pp., bibliography, charts, illus. (Public Affairs Pamphlet 185.) 25 cents.

Older Workers and the Aged

Enriching the Years. Albany, New York State Joint Legislative Committee on Problems of the Aging, 1953. 199 pp., charts, illus.

The annual reports of the committee, since its establishment in 1947, have been notable contributions to informed understanding of the problems of aging. This 1953 report includes data on a revealing study of destitute aged on the old-age assistance rollsin a New York community.

Proceedings of the Second Joint Conference on the Problem of Making a Living While Growing Old: Age Barriers to Employment. Philadelphia, Temple University, School of Business and Public Administration, Bureau of Economic and Business Research; Harrisburg, Pennsylvania Department of Labor and Industry, Bureau of Employment Security, 1953. 414 pp.

Retirement and Its Problems. (In Management Record, National Industrial Conference Board, Inc., New York, September 1953, pp. 325-328, 340-347.)
Papers presented at a round-table conference on problems of retirement and on current trends in pension plans.

When Should a Worker Be Retired? By Ron Stever. Berkeley, California Personnel Management Association, Research Division, 1953. 11 pp.; processed. (Management Report 170.) \$1.

Social Security (General)

The Future of Social Security in America. By Arthur J. Altmeyer. (In Social Service Review, Chicago, September 1953, pp. 251-268. \$1.75.)

Long-Range Cost Estimates for Old-Age and Survivors Insurance, 1953. By Robert J. Myers and Eugene A. Rasor. Washington, U. S. Department of Health, Education, and Welfare, Social Security Administration, Division of the Actuary, 1953. 56 pp ., charts. (Actuarial Study 36.) Limited free distribution.

Present Values of OASI Benefits in Current Payment Status, 1940-52. By Louis O. Shudde. Washington, U. S. Department of Health, Education, and Welfare, Social Security Administration, Division of the Actuary, 1953. 15 pp . (Actuarial Study 35.) Limited free distribution.

Proceedings of SOth Annual Meeting [of] National Council on Teacher Retirement of the National Education Association, February 16-17, 1953, Atlantic City, N. J. [Trenton, N. J. (P. O. Box 1780), John A. Wood, Secretary of the Council], 1953. 87 pp .
A number of the addresses concern potential coordination of present State systems with the Federal old-age and survivors insurance program.

Salarios y Seguridad Social. By D. Manvel Alonso Olea. (In Revista Iberoamericana de Seguridad Social,

Madrid, March-April 1953, pp. 225-271.)
The subject is discussed in terms of the employer's labor costs in Spain and the payments and benefits received directly and indirectly by the worker.

Social Security Trends in Spain. By Luis Jordana de Pozas. (In Bulletin of the International Social Security Association, Geneva, April-May 1953, pp. 141-154.)

Wages, Salaries, and Hours of Labor

Occupational Wage Survey: Buffalo, N. Y. (Erie and Niagara Counties), April 1953. Washington, U. S. Department of Labor, Bureau of Labor Statistics, 1953. 21 pp. (Bull. 1116-20.) 20 cents, Superintendent of Documents, Washington.
This is the final bulletin in a series on occupational wage surveys in 20 cities during late 1952 and early 1953. For list of cities, see table 1, p. 1282 of this issue.

Professional Engineers' Income and Salary Survey, [1952] Washington, National Society of Professional Engineers, [1953]. 27 pp., charts, maps. \$1.

Wage Chronology 35: Pennsylvania Greyhound Lines, Inc., 1945-52. By Albert A. Belman. Washington, U. S. Department of Labor, Bureau of Labor Statistics, 1953. 11 pp . (Serial R. 2104; reprinted from Monthly Labor Review, July 1953.) Free.

Wage Chronology 36: A. T. \& T.-Long Lines Department, 1940-52. By Albert A. Belman. Washington, U. S. Department of Labor, Bureau of Labor Statistics, 1953. 12 pp . (Serial R. 2106; reprinted from Monthly Labor Review, August 1953.) Free.

Regarding the Determinants of Union Wage Policy. By Carl M. Stevens. (In Review of Economics and Statistics, Cambridge, Mass., August 1953, pp. 221228. \$2.)

Women in Industry

The Status of Women in the United States, 1953. Washington, U. S. Department of Labor, Women's Bureau, 1953. 26 pp. (Bull. 249.) 15 cents, Superintendent of Documents, Washington.

State Minimum-Wage Laws and Orders, July 1, 1942March 1, 1959. Washington, U. S. Department of Labor, Women's Bureau, 1953. 93 pp. (Bull. 247.) 50 cents, Superintendent of Documents, Washington.

State Minimum-Wage Order Provisions Affecting Working Conditions, July 1, 1942, to September 15, 1953. Washington, U. S. Department of Labor, Women's Bureau, 1953. 75 pp.; processed. (D-67.) Free.

Progress Toward Equal Pay in the Meat-Packing Industry. Washington, U. S. Department of Labor, Women's

Bureau, 1953. 16 pp. (Bull. 251.) 10 cents, Superintendent of Documents, Washington.

Miscellaneous

Labor Problems: Cases and Readings. By George P. Shultz and John R. Coleman. New York, McGraw-Hill Book Co., Inc., 1953. $456 \mathrm{pp} . \$ 4.50$.
Presents descriptions of specific cases and viewpoints illustrating a wide range of labor problems, for use as a supplement to standard texts in the field.

Pensions and Profit Sharing. By George B. Buck, Jr., and others. Washington, Bureau of National Affairs, Inc., 1953. 272 pp ., forms. $\$ 5.50$.

The Writings of the Gilbreths. Edited by William R. Spriegel and Clark E. Myers. Homewood, Ill., Richard D. Irwin, Inc., 1953. 513 pp. $\$ 7.35$.

Labor Resources and Labor Income in Virginia: Vol. I, Labor Resources; Vol. II, Labor Income and Per Capita Income. Report to Advisory Council on the Virginia Economy. Richmond, Department of Conservation and Development, Division of Planning and Economic Development, 1953. 100 and 42 pp.; Supplement to Vol. I, 23 pp.; processed.

Irish Statistical Survey, 1951-52. Dublin, Central Statistics Office, 1953. 63 pp., charts. 3s., Government Publications Sale Office, Dublin.
Data on price and earnings indexes, employment, and unemployment are included.

Report of the Director General [of the International Labor Organization to the] Asian Regional Conference, Tokyo, September 1953. Geneva, International Labor Office, 1953. 91 pp. 50 cents. Distributed in United States by Washington Branch of ILO.
Major subjects covered by the report are the economic factors affecting living standards in Asian countries, 1950-53; planning for economic development; trends in social policy; and activities of the ILO directed toward Asia.

Japan Statistical Yearbook, 1952. Tokyo, Prime Minister's Office, Bureau of Statistics, 1953. 472 pp. In Japanese and English.
Contains sections on prices, wages, employment, industrial disputes, industrial accidents, labor unions, housing, and social insurances.

Statistical Notes of Japan, No. 1. Tokyo, Prime Minister's Office, Administrative Management Agency, Statistical Standards Division, March 1953. 45 pp.
This first number of a new serial, which the issuing office plans to publish semiannually, describes the principal statistical activities of the Japanese Government and summarizes laws pertaining to the collection and reporting of statistics. It includes sections on the labor force survey, the consumer price index, and national income.

Current Labor Statistics

A.-Employment and Payrolls

1339 Table A-1: Estimated total labor force classified by employment status, hours worked, and sex
1340 Table A-2: Employees in nonagricultural establishments, by industry division and group
1344 Table A-3: Production workers in mining and manufacturing industries
1347 Table A-4: Indexes of production-worker employment and weekly payrolls in manufacturing industries
1347 Table A-5: Federal civilian employment by branch and agency group
1348 Table A-6: Employees in nonagricultural establishments for selected States ${ }^{1}$
1349 Table A-7: Employees in manufacturing industries, by State ${ }^{1}$
1350 Table A-8: Insured unemployment under State unemployment insurance programs, by geographic division and State

B.-Labor Turnover

1351 Table B-1: Monthly labor turnover rates (per 100 employees) in manufacturing industries, by class of turnover
1352 Table B-2: Monthly labor turnover rates (per 100 employees) in selected groups and industries

C.-Earnings and Hours

1354 Table C-1: Hours and gross earnings of production workers or nonsupervisory employees
1370 Table C-2: Gross average weekly earnings of production workers in selected industries, in current and 1947-49 dollars
1370 Table C-3: Gross and net spendable average weekly earnings of production workers in manufacturing industries, in current and 1947-49 dollars
1371 Table C-4: Average hourly earnings, gross and excluding overtime, of production workers in manufacturing industries
1372 Table C-5: Hours and gross earnings of production workers in manufacturing industries for selected States and areas ${ }^{1}$

[^41]
D.-Prices and Cost of Living

1379 Table D-1: Consumer Price Index-United States average, all items and commodity groups
1380 Table D-2: Consumer Price Index-United States average, food and its subgroups
1380 Table D-3: Consumer Price Index-United States average, all items and food
1381 Table D-4: Consumer Price Index-All items indexes for selected dates, by city
1382 Table D-5: Consumer Price Index-All items and commodity groups, except food, by city
1383 Table D-6: Consumer Price Index-Food and its subgroups, by city
1384 Table D-7: Average retail prices of selected foods
1385 Table D-8: Indexes of wholesale prices, by group and subgroup of commodities
1386 Table D-9: Special wholesale price indexes

E.-Work Stoppages

1387 Table E-1: Work stoppages resulting from labor-management disputes

F.-Building and Construction

1388 Table F-1: Expenditures for new construction
1389 Table F-2: Value of contracts awarded and force-account work started on federally financed new construction, by type of construction
1390 Table F-3: Urban building authorized, by principal class of construction and by type of building
1391 Table F-4: New nonresidential building authorized in all urban places, by general type and by geographic division
1392 Table F-5: Number and construction cost of new permanent nonfarm dwelling units started, by urban or rural location, and by source of funds

A: Employment and Payrolls

Table A-1: Estimated total labor force classified by employment status, hours worked, and sex [In ttousands]

[^42][^43]TABLE A-2: Employees in nonagricultural establishments, by industry division and group ${ }^{1}$
[In thousands]

Industry group and industry	1953										1952			Annual average	
	Oct.	Sept.	Aug.	July	June	May	April	Mar.	Feb.	Jan.	Dec.	Nov.	Oct.	1952	1951
Total emp	49,580	49,632	49, 410	49, 215	49,416	49,058	48, 860	48,685	48, 369	48,382	50, 140	49,310	49,095	47, 993	47,202
Mining	811	826	830	823	835	831	835	846	856	866	870	871	871	872	913
Metal	99.9	100.0	99.9	100.2	101.0	99.9	99.7	100.2	101.3	101.7	101.9	101.3	98.8	96.4	100.2
Iron		40.3	40.2	40.3	40.1	39.6	38.6	38.0	37.9	38.4	38.8	38.9	39.0	33.3	37.7
Copper.		27.7	27.7	27.5	27.8	27.2	27.5	27.7	27.5	27.2	27.0	26.5	24.6	25.9	25.7
Lead and		15.4	15.9	16.1	17.0	17.3	17.9	18.4	19.2	19.6	19.6	19.5	19.3	20.8	20.4
Anthracite		50.2	50. 2	48.6	53.6	55.6	51.2	57.4	59.7	60.5	62.0	62.3	62.5	63.4	69.1
Bituminous-	284.3	291.4	290.7	290.1	299.2	300.4	309.6	318.4	325.4	330.7	331.2	330.7	330.4	333.8	372.0
Crude-petroleum and natural-gas production.		279.8	283.9	279.7	276.2	271.4	272.1	270.9	272.0	275.0	273. 4	271.8	273.6	276.0	269.3
Nonmetallic mining	104.1	105.0	105.3	104.8	104.7	103.6	102.3	99.2	97.8	97.6	101. 6	104.8	105.6	102.3	102.0
Contract constructi	2,705	2,700	2,703	2,662	2,608	2,509	2,416	2,301	2,280	2,303	2,497	2,648	2,728	2, 572	2,588
Nonbuilding construction		567	575	546	530	499	456	410	403	402	460	524	569	501	490
Highway and street		261.8	268.7	253. 4	241.8	219.4	186.8	155.2	150.3	147.4	176.5	222.3	250.3	207.9	201.3
Other nonbuilding construct		305.6	306.3	292.1	287.8	280.0	269.6	255.0	252.4	254.6	283.9	301.2	318.7	293.3	289.0
Building		2,133	2, 128	2, 116	2,078	2,010	1,960	1,891	1,877	1,901	2,037	2, 124	2,159	2,071	2,098
General contra		951.1	961.9	952.2	925.5	888.4	861.6	823.2	813.2	824.1	888.6	940.4	960.9	919.6	950.2
Special-trade contract		1,182.3	1, 166. 2	1,163.3	1,152.9	1,121.8	1, 098.8	1, 068.1	1,063.5	1,076.6	1,148.8	1, 183.8	1,198.0	1, 151.3	1,147.3
Plumbing and heating		298.5	295.0	288.1	283.3	278.1	278.1	277.5	279.6	1, 282.5	291.5	1, 296.8	296.8	286.3	128.9 9
Painting and decorat		159.1	166. 1	160.6	153.9	148.2	140.9	133.3	128.9	128.7	148.3	162.6	166.3	156.5	155.7
		157.9	155.8	154.5	150.6	149.2	148. 2	147.2	148.8	150.3	154.3	153. 2	154.6	151.3	139.5
Other special-trade contractors.......-		566.8	549.3	560.1	565.1	546.3	531.6	510.1	506. 2	515.1	554.7	571.2	580.3	557.3	565.3
Manufacturing	17,011	17,215	17,265	17,069	17, 162	17,040	17,077	17,135	17,013	16,884	16,952	16,874	16, 778	16,209	16, 082
Durable goods ${ }^{2}$	9,873	9,952	10,019	10,007	10,121	10,096	10,117	10,103	9,989	9,880	9,856	9,750	9, 594	9,262	9,071
Nondurable goods	7,138	7,263	7,246	7,062	7,041	6,944	6,960	7,032	7,024	7, 004	7,096	7, 124	7, 184	6,946	7,011
Ordnance and access	205.6	206.5	207.0	210.8	206.6	203.0	195.6	190.5	184.1	181.0	178.6	176.6	176. 2	166.4	77.0
Food and kindred	1,628.7	1,715.0	1,687.5	1,618.0	1,527.3	1, 470.6	1, 441.7	1, 436.5	1, 442.0	1, 455.7	1, 504. 7	1,554. 8	1,636. 4	1,538. 5	1, 544. 1
Meat product		305.3	302.7	302. 7	1, 299.7	1295.5	1, 294.6	1, 299.2	1, 303.0	1, 312.5	1, 321.0	1, 317.9	1, 308.6	1, 309.8	1, 306.1
Dairy products		127.4	132.8	135.3	134. 2	127.0	122.1	118.2	116. 0	114.4	115.9	117. 5	121.1	123.4	125.2
Canning and pres		361.0	339.4	274.1	194.5	174.5	162.0	150.3	156.3	159.8	171.0	199.7	280.8	217.1	230.3
Grain-mill produ		127.8	127.2	126. 9	127.3	122.6	121.1	122.9	123.9	125.5	126.5	123.8	126.3	124.8	121.2
Bakery product		290.1 32.8	290.0 30.0	290.7 30.2	289.7	285.8	283.2	284. 2	283.6	282.5	287.2	290.3	290.5	284.6	281.2
Sugar_-.-.-.-.--		32.8	30.0	30.2 75	28.5	27. 5	27. 2	27.8	28.1	30.3	39.2	50.9	49.3	33.4	34.9
Beverages....-.-.-		235. 4	240.0	237.8	781	75. 7	79.1	84.0	86. 3	86.8	92. 0	94. 4	94.4	86.2	87.9
Miscellaneous food product		146. 2	142.9	144.8	143.9	137.8	135.3	136.3	136. 4	133.5	136. 2	140.7	143.7	220.8	217.6 139.5
Tobacco man	123.4	125.5	116.6	93.5	93.4	93.6	94.0	96.4	102.6	110.0	117.6	117.8	125.9	107.0	104.4
Cigarette		31.7	31.3	30.6	31.4	31.6	31.6	31.4	30.9	31.2	31. 2	31.2	30.9	30.4	29.0
Cigars		41.7	41.1	40.0	41.4	41.3	41.2	42.0	41.9	41.9	42.2	42.8	42.8	41.8	40.9
Tobacco and snuff...-....-.		8.8	8.6	8.5	8.9	8.9	8.9	9.0	8.9	9.0	9.1	9.2	9.2	9.2	9.4
Tobacco stemming and redryin		43.3	35.6	14.4	11.7	11.8	12.3	14.0	20.8	27.9	35.1	34.6	43.0	25.5	25.1
Textile-mill products.	1,175. 7	1,195.8	1,201.1	1,192. 1	1,220.1	1,214. 4	1,216, 7	1,231.8	1, 231.3	1,227.9	1,243. 0	1,242.8	1,230. 2	1, 201.7	1,272.7
Scouring and combing		7.0	7.2	7.2	1, 7.0	1, 6.7	1,216	6. 5	1, 6.9	1, 6.9	6.9	1, 6.7	1, 6.8	1, 6.4	1, 6.8
Yarn and thread mills.		150.6	153.4	150.9	154.9	153.3	153.6	156. 6	156. 1	156.8	157.7	158.1	157.6	154. 2	165. 2
Broad-woven fabric mills.		513.5	514.9	519.3	526.6	523.8	523.3	528.2	531.2	531.5	537.9	535.7	532.5	527.9	576.1
Narrow fabrics and smallwa		35.0	34.8	34.5	35.1	35. 0	34.2	35.4	35.3	35.1	35. 2	35. 4	34.9	33.2	34.7
Knitting mills		251.3	253.5	248.5	254.7	254.0	254.4	257.0	253.8	251.4	257.7	260.3	257.1	244.5	244.6
Dyeing and finishing textiles.-.-.-		94.2	94.0	92.2	94.0	93.9	95.8	97.0	97.7	97.2	97.8	98.1	96.9	94.2	94.5
Carpets, rugs, other floor coverings		55.5	53.8	52.7 17	56.7	56.5	58.3	58.5	58. 4	57.8	58.5	58.3	55.4	54.5	59.6
Hats (except cloth and millinery)		17.1	18.1	17.8	18. 1	18.6	17.2	19.2	19.1	18.6	18.5	18.0	17.6	17.1	17.7
Miscellaneous textile goods...-		71.6	71.4	69.0	73.0	72.6	73.3	73.4	72.8	72.6	72.8	72.2	71.4	69.6	73.5
Apparel and other finished textile products	1,213.5	1,220.6	1,239.9												
Men's and boys' suits and coats.	1,213.5	142.6	142.4	1, 131.0	1, 140.7	$1,187.2$ 138.6	1, 137.8	1, 266.1	$1,264.4$ 137.8	$1,234.5$ 132.6	1, 239.4 134.1	1, 232.1	1, 229.5	132.8	1,187.1
Men's and boys' furnishings and work clothing		313.2	314.6	299.1	311.0	138.6 310.8	137.8 311.1	139.8 310.9	306.6	132.6 300.9	13.1 302.4	135.4 301.8	130.8 300.4	286.1	142.2 283.4
Women's outerwear		364.6	380.5	354.9	349.7	338.4	359.1	396.8	402. 2	391.8	388.1	372.7	370.9	371.7	366.5
Women's, children's undergarments		108.3	107.2	105.9	108.5	110.9	113.1	113.5	112.1	109.7	112.2	114.7	113. 5	106. 4	101.5
Millinery		21.5	22.7	20.4	17.4	17.9	21.6	27.2	27.5	25.8	22.8	20.6	22.8	23.2	22.6
Children's outerwe		64.1	66.8	65.0	67.8	65.2	63.8	67.5	68.6	66.7	65.1	65.7	66.4	64.9	61.4
Fur goods..		8.9	10.3	11. 7	12.0	9.8	7.2	8.7	9.0	10.7	12.4	14.0	12.3	12.0	13.6
Miscellaneous apparel and accessories.-		65.5	65.8	63.1	64.5	64.6	65.3	65, 4	64.5	62.7	66. 9	70.5	70.6	65.1	68. 7
Other fabricated textile products.		131.9	129.6	127. 5	128.5	131.0	133.3	136.3	136.1	133.6	135.4	136.7	135.8	129.0	127.3

[^44]TABLE A-2: Employees in nonagricultural establishments, by industry division and group ${ }^{1}$-Continued
[In thousands]

Industry group and industry	1953										1952			Annual average	
	Oct.	Sept.	Aug.	July	June	May	Apr.	Mar.	Feb.	Jan.	Dec.	Nov.	Oct.	1952	1951
Manufacturing-ContinuedLumber and wood products (except															
Lumber and wood products (except furniture)	774.6	781.4	792.4	786.6	800.1	782. 2	769.7	757.1	745.8	744.3	771.6	798.4	795. 0	782.0	834.4
Logging camps and contractors.......--	77.6	81.7	84.7	85.5	89.6	83. 7	75.7	72.6	65. 2	63. 6	74.7	88.1	78.4	84.0	101. 4
Sawmills and planing mills		461.4	467.5	460.2	465.7	456.3	450.4	441.2	437.5	438.1	452.5	466.2	472.7	457.8	477. 4
Millwork, plywood, and prefabricated structural wood products.		119.8	120.0	120.1	123.1	121.3	122.7	120.9	121.0	121.3	122.0	123.0	124.8	118.9	129.4
Wooden containers.............-.-.-. --		59.2	60.2	61.2	61.8	61.5	61.0	61.2	61.0	61.1	62.1	61.0	58.7	61.0	65.8
M iscellaneous wood p		59.3	60.0	59.6	59.9	59.4	59.9	61.2	61.1	60.2	60.3	60.1	60.4	60.4	63.4
Furniture and fixtures	369.7	371.9	371.6	369.9	371.6	376.5	383.0	387.1	385.5	382.6	382.8	381.7	375.4	361.0	361.3
Household furniture		262.6	262.9	261.4	264.2	269.4	275.5	279.8	278.1	275.2	275.0	274.3	269.4	257.1	257.1
Office, public-building, and professional furniture		39.5	39.7	39.2	39.0	39.6	40.0	40.1	40.1	40.1	40.3	40.2	40.1	39.9	40.7
Partitions, shelving, lockers, and fixtures		37.0	37.5	37.1	36.7	36.3	36.3	35.9	36.4	36.6	36.3	35.9	35.3	34. 1	34.4
Screens, blinds, and miscellancous furniture and fixtures.		32.8	31.5	32.2	31.7	31.2	31.2	31.3	30.9	30.7	31.2	31.3	30.6	29.9	29.1
Paper and allied produrts.	540.4	544.2	541.2	533.4	535. 9	528.5	527.7	527.3	523.2	522.1	526.6	520.7	516.7	505. 6	511.5
Pulp, paper, and paperboard mill		268. 6	267.3	265. 4	264. 9	261.4	260.7	261.6	261.5	261.4	262.4	257.4	256.8	257.1	258.7
Paperboard containers and boxes		147.4	146. 2	141.2	143.8	140.9	141.3	140.8	138. 9	138.6	141.0	140.5	138.1	129.6	131.9
Other paper and allied products.		128.2	127.7	126.8	127.2	126.2	125.7	124.9	122.8	122.1	123.2	122.8	121.8	119.0	121.0
Printing, publishing, and allied industries	796.6	786.8 295.0	776.7 293.0	775.5 292.3	779.7	775. 1	774.3	774.3	771.8	772. 5	780.6	779.5	774.5	762.9	755.5
Newspapers		295.0	293.0 64.7	292.3	293.8	292. 5	291.5	290.5	289. 2	288.4	291.6	290.8	289.4	286.8	282.2
Periodicals		48.1	64.7 47.3	46.9	65.0	65.3	65.4	66.3	65.7	66.6	67.4	67.3	65. 5	64.1	61.1
Books-		195. 4	192.1	192. 7	46. 9	46.6	46.8	47. 4	194.1	46.5	46. 1	45.8	46. 1	45. 2	45. 1
Commercial printin		195.4 55.3	152.9	192.7 53.3	194.3	1932	193.8	194.0	194.1	195.8	196.7	195.3	194.7	192.8	193.4
Lithographing		5. 19.3	19.1	18.9	54.1	53. 6	53.3	53.2	52.7	52.8	54.9	55.1	54. 5	52.9	53. 5
Greeting cards-.-.		45.5	45.2	45.0	18.9	17.6	17.2	17.5	43.4	17.7	19.3	21.2	20.3	18.2	18.5
Bookbinding and related industries .-.-		45.5	45.2	45.0	44.9	44.5	44.3	43.9	43. 4	44.0	44.1	44.0	43.7	42.9	42.7
Miscellaneous publishing and printing services		61.9	61.4	61.4	61.8	61.8	62.0	61.5	61.1	60.7	60.5	60.0	60.3	59.9	59.0
Chemicals and allied products	761. 7	757.2 84.9	754.0 85.5	751.7	753.2	754.7	762.7	761.3	752. 2	749.0	750.6	749.1	748.7	741.7	742.8
Industrial inorganic chemical		84.9	85.5 281.2	86.0 280.3	84.7	84.0	83.4	83.0	82.3	81.7	81.5	81.2	81.0	81.9	81.5
Industrial organic chemicals.		278.0	281.2 92.6	280.3 92.8	278.1	274.4	272.2	270.6	267.9	267.6	267.1	264.4	262.6	259.0	259.3
Drugs and medicines.		93.1	92.6	92.8	94.6	94.2	95.0	95.3	95.3	98.2	98.4	98.1	97.9	98.4	95.6
Soap, cleaning and polishing prepara-		49.6	49.3	49.3		49.									
tions-		75. 7	76.4	76.6	49.7	49.9	50.5	50, 5	74.3	49. 7	49.6	49.5	49.9	49.8	51.6
Paints, pigments, and Gum and wood chemica		7.6	7.5	7.5	75.6 7.4	75.4 7	75.5 7.9	75.0 7.8	74.3 7.6	73.7 7.6	73.4 7.7	73.6 7.7	73.5 7.7	73.1	73.6 8.3
Fertilizers......--....-		33.2 43.8	31.5 38 1	30.3	33.0	7. 6	45.8	44.4	39. 2	74. 34	33.0	32.7	33.9	35.8	35.8
Vegetable and animal oils and fa		43.8 91.3	38.3 91.7	36. 4	37.3	38.2	39.9	42.6	44. 2	45.8	48.0	49.2	49.5	44.2	46.8
Miscellaneous chemicals........		91.3	91.7	92.5	92.8	92.4	92.5	92.1	91.3	90.2	91.9	92.7	92.7	91.7	90.3
Products of petroleum and	260.0	264.2 210.7	266.5 211.8	266.3 211.4	264.3	261.0	260.3	259.0	258. 2	258.3	260.7	261.5	262.8	253.9	252.7
Petroleum refining		210.7	211.8	211.4	209.4	206.8	207.0	206.3	208.0	206.6	207.6	207.1	207.6	202.1	198.6
Coke and other petroleum and coal products.		53, 5	54.7	54.9	54.9	54.2	53.3	52.7	52. 2	51.7	53.1	54.4	55. 2	51.8	54.1
Rubber products	263.9	270.5	271.0	269.5	276.3	276.3	276. 6	276. 4	274.8	275.1	274.6	272.2	267.5	262.3	263.3
Tires and inner tub		114.5	115.2	116. 1	118.1	118. 7	118.2	117.5	116.9	117.3	117.6	116.9	116.1	116. 1	111.2
Rubber footwear.-		29.7 126.3	29.4 126.4	28. 125	29.1	28.9	29.4	29.8	29.8	30.1	30.7	30.2	29.8	28.3	29.2
Other rubber products		126.3	126.4	125.3	129.1	128.7	129.0	129.1	128.1	127.7	126.3	125.1	121.6	117.9	123.0
Leather and leather products	374.1	383.2	391.4	383.8	390.2	382.4	393.3	402.5	403.1	398.7	397.8	393.7	391.8	381.9	376.9
Leather: tanned, curried, and finished		46.8	47.1	46.8	47.6	46.9	46.8	47.4	47.8	48.3	48.7	48.4	47.7	46.5	48.0
Industrial leather belting and packing--		5.1	5.3	5.3	5. 4	5. 7	5.8	5. 7	5. 6	5. 6	5.5	5.4	5.2	5.1	5.5
Boot and shoe cut stock and findings...		16. 4	17.5	17.7	18.0	16.9	18.1	18.8	19.3	19.2	18.9	18.0	17.4	17.5	16.8
Footwear (except rubber) .-..-.-.-.		246. 5	254.0	248.8	254.5	249.2	255. 4	261.7	261.9	259.9	256.1	249.6	248.9	246.7	241.0
Luggage-............		18.9	18.6	18.3	19.2	19.2	19.1	18.4	18.5	18.1	18.9	19.1	19.0	17.8	15.9
Handbags and small leather goods-		30.0	29.4	28. 2	26.7	26.1	29.7	32.2	32. 1	30.1	29.7	31.7	32.0	29.0	29.4
Gloves and miscellaneous leather goods		19.5	19.5	18.7	18.8	18.4	18.4	18.3	17.9	17.5	20.0	21.5	21.6	19.4	20.3
Stone, clay, and glass products	544.4	549.0	546.8	538.9	547.7	543.0	544.1	541.2	533.9	531.3	538.9	541.6	539.9	527.9	551.2
Flat glass....................-		35. 9	35.5	35.1	34.9	35.0	35.3	35.4	35.6	35.7	35.7	35.1	34.3	32.6	33.2
Glass and glassware, pressed or blown.-		105. 7	103.7	100.4	105.4	104.2	104.3	103.6	101.1	99.9	100.6	101.4	100.3	96.2	98.0
Glass products made of purchased glass.		16.2	16.4	16.3	16.9	17.0	17.7	17. 5	17.0	17.2	17.3	17.3	16.7	16.2	16.7
Cement, hydraulic.		41.7	41.9	41.8	40.9	41.0	40.6	40.6	40.6	40.6	40.7	40.5	41.0	39.9	40.6
Structural clay products		78.6	79.3	80.0	80.3	78.0	77.5	76.9	75. 4	75.6	79.1	80.6	81.4	80.9	85.2
Pottery and related products.		54.2	53.1	48.5	54.3	55.1	56.3	57.0	56.6	56.5	57.0	57.2	57.3	57.2	63.0
Concrete, gypsum, and plaster products		107.9	108.3	108.1	105.8	104. 7	104.1	101. 6	100.1	99.2	101.9	103.2	103.1	100.7	101. 5
Cut-stone and stone products-		18.9	18.9	18.4	18.5	17.9	18.3	183	18.1	17.9	18.2	18.4	18.4	17.5	18.9
Miscellaneous nonmetallic mineral products		89.9	89.7	90.3	90.7	90.1	90.0	90.3	89.4	88.7	88.4	87.9	87.4	86.9	94.2

[^45]TABLE A-2: Employees in nonagricultural establishments, by industry division and group ${ }^{1}$-Continued
[In thousands]

[^46]Table A-2: Employees in nonagricultural establishments, by industry division and group ${ }^{1}$-Continued
[In thousands]

Industry group and industry	1953										1952			Annual average	
	Oct.	Sept.	Aug.	July	June	May	Apr.	Mar.	Feb.	Jan.	Dec.	Nov.	Oct.	1952	1951
Transportation and publi	$\left\lvert\, \begin{gathered} 4,310 \\ 2,991 \end{gathered}\right.$	$\begin{gathered} 4,323 \\ 2,999 \\ 1,395.1 \end{gathered}$	$\begin{gathered} 4,334 \\ 2,998 \end{gathered}$	$\begin{array}{r} 4,340 \\ 2,999 \end{array}$					$\begin{array}{r} 4,210 \\ 2,909 \\ 1 \end{array}$	$\begin{array}{r} 4,210 \\ 2,914 \end{array}$				$\begin{array}{r} 4,220 \\ 2,941 \end{array}$	$\begin{aligned} & \begin{array}{c} 4,166 \\ 2,921 \end{array} . \end{aligned}$
Transportation															
Interstate railroad			1, 405. 6		$\begin{aligned} & 2,990 \\ & 1,399.9 \end{aligned}$	$\begin{aligned} & 2,966 \\ & 1,387.0 \end{aligned}$	$\begin{aligned} & 2,949 \\ & 1,376.0 \end{aligned}$	$\begin{aligned} & 2,928 \\ & 1,360.5 \end{aligned}$		$\begin{aligned} & 2,914 \\ & 1,367.5 \end{aligned}$	$\begin{aligned} & 2,995 \\ & 1,406.0 \end{aligned}$	$\begin{aligned} & 2,992 \\ & 1,412.5 \end{aligned}$	$\begin{aligned} & 2,999 \\ & 1,423.2 \end{aligned}$	$2,941$	
Class I railroads							$\begin{array}{r} 1,204.9 \\ 130.7 \end{array}$	$\left\lvert\, \begin{aligned} & 1,360.5 \\ & 1,188.5 \end{aligned}\right.$			1, 2222.7		$1,249.9$ 132.3	1, 226. $211,275.9$	
Local railways and bus li		127.9			131.0	130.7		131.3	131.5	125.6	132.4	1,238.8 132		134.2	$1,275.9$ 139
Trucking and warehousing.		766.7	$\begin{aligned} & 128.4 \\ & 753.6 \end{aligned}$	130.6 748.4	749.3	745. 5	$\begin{aligned} & 130.7 \\ & 743 \end{aligned}$	743.9	737.2	734.9	761.9	132.8 750	745.9	714. 6	$\begin{array}{l\|l} 6 & 675 \\ 1 & 656.9 \end{array}$
Other transportation and ser		$\begin{array}{r} 709.1 \\ 52.6 \end{array}$	710.653	$\begin{array}{r} 710.7 \\ 53.5 \end{array}$	709.552.9	703.152.1	$\begin{aligned} & 743.0 \\ & 698.9 \end{aligned}$	691.951.4	683.851.5	686.051.9	694.952.5	696.0	697.1	692.1	
Bus lines, except local							$\begin{array}{r} 698.9 \\ 51.9 \end{array}$					52.5	52.9	52.4	$\begin{array}{r\|r} 1 & 656.9 \\ 4 & 53.0 \\ 6 & 85.2 \end{array}$
Air transportation (common ca		105.6	105.1	104.9	104.6	102.0	101.1	100.8	100.0	100.0	99.4	98.8	97.8	95.6	
Communication	747	$\begin{aligned} & 746 \\ & 697.3 \end{aligned}$	$\begin{aligned} & 752 \\ & 703.5 \end{aligned}$	$\begin{aligned} & 759 \\ & 709.5 \end{aligned}$	$\begin{aligned} & 750 \\ & 700.1 \end{aligned}$	747697.3		742	$\begin{aligned} & 738 \\ & 689.2 \end{aligned}$	$\begin{array}{\|l\|} \hline 734 \\ \hline 684.9 \end{array}$	$\begin{aligned} & 736 \\ & 686.5 \end{aligned}$		$\begin{aligned} & 732 \\ & 682.4 \end{aligned}$	717672.7	$\begin{aligned} & 690 \\ & 638.9 \end{aligned}$
Telephone															
Telegraph	572	47.7		48.3		48.9	48.1	47.9		48.6	48.6	48.6	49.1	48.6	
Other public utilities		$578$$555.7$	$\begin{aligned} & 584 \\ & 560 . \end{aligned}$						$\left\|\begin{array}{l} 563 \\ 541.4 \end{array}\right\|$				$8 \left\lvert\, \begin{aligned} & 565 \\ & 843.0 \\ & 543.0 \end{aligned}\right.$	$\begin{array}{l\|l} & \begin{array}{l} 10.0 \\ 563 \\ 541.2 \end{array} \end{array}$	$\begin{aligned} & 555 \\ & 533.3 \end{aligned}$
Gas and electric utilit															
Electric light and powe		249.5	$\begin{array}{l\|l\|} \hline 560.5 \\ \hline & 251.4 \\ \hline \end{array}$	558.8 250.8	$\begin{aligned} & 550.2 \\ & 248.2 \end{aligned}$	$\begin{aligned} & 544.3 \\ & 245.0 \end{aligned}$	$\begin{aligned} & 542.1 \\ & 244.7 \end{aligned}$	$\begin{aligned} & 543.0 \\ & 244.3 \end{aligned}$	541.4 243.5	540.5 243.2	$\begin{aligned} & 540.8 \\ & 242.7 \end{aligned}$	$\begin{aligned} & 538.8 \\ & 240.2 \end{aligned}$	543.0	243.5	24.123.8169.1
Gas utilities		176.1	131.7177.423.0	177. 22.9	$\begin{array}{r} 175.1 \\ 22.4 \end{array}$	173.0$21.9$	$\begin{array}{r} 124.8 \\ 172.6 \\ 22.1 \end{array}$	126.5	126.1	$\begin{array}{ll} 125.6 \\ 1 & 171.7 \end{array}$	$\begin{aligned} & 126.6 \\ & 171.5 \end{aligned}$	$\begin{aligned} & 127.0 \\ & 171.6 \end{aligned}$	$\begin{aligned} & 127.2 \\ & 171.5 \end{aligned}$	126.4171.3	
Electriclight and gas utilities combined								$\begin{array}{r} 120.0 \\ 172.2 \\ 22.0 \end{array}$	171.8						
Local utilities, not elsewhere classified..		22.6							21.7	21.7	21.5	21.4	21.7	21.5	21.7
Wholesale and retail	10,6032,7557,848$1,487.4$$1,415.9$85.3605.9$3,488.8$	10,4582,7367,722$1,413.9$$1,397.9$84.8586.8$3,474.0$	10,3402,7367,604$1,351.3$$1,391.5$851.8540.7$3,468.7$		$\begin{gathered} 10,415 \\ 2,729 \\ 7,686 \\ 1,402.3 \end{gathered}$	10,348	10,314	10,284	10,214	10,283	11,218	10,650	10,442	10,251	
Wholesale tra						$\begin{aligned} & 2,712 \\ & 7,636 \\ & 1,406.2 \end{aligned}$	$\begin{aligned} & 2,713 \\ & 7,601 \\ & 1,396.6 \end{aligned}$	2,7307,554$1,396.4$		$\begin{aligned} & 2,747 \\ & 7,536 \\ & 1,406.5 \end{aligned}$	$\begin{aligned} & 2,787 \\ & 8,431 \\ & 2,013.2 \end{aligned}$	$\begin{array}{l\|l} 2,780 & 2 \\ 7,870 \\ 1,626.3 \end{array}$	$\begin{aligned} & 1,4,42 \\ & 2,759 \\ & 7 \end{aligned}$	- $\begin{aligned} & \text { 1,721 } \\ & 7,530\end{aligned}$	10,0132,6557,359
Retail trade.															
General merchandise st													$1,504.8$	1, 453.2	1, 429.3
Food and liquor stores.					1, 405.7	1,399.3	1,398. 2	1,389. 2	1,380.8	1,370.9	1, 407.2	1,381. 7	1, 375.8	1, 353.8	1,307 6
Automotive and access					839.2	829.2	820.0	812.9	810.0	807.5	815.2	800.5	785.	779.5	763.7
Apparel and accessories sto					594.7	594.8	593.2	585.7	558.2	573.6	705.6	617.7	601.9	584.0	575. 4
Other retail trade					3, 444. 3	3, 406. 4	3,392. 7	3,369.9	3, 366.	3,377.6	3,489.5	3,443.5	3, 422. 2	3,359. 1	3,282. 4
Finance, insurance, and real es	2,052	2,055	2,077	2,075	2,046	2,025	2,014	1,993	1,977	1,969	1,978	1,973	1,973	1,957	1,861
Banks and trust companies		512.5	519.1	519.3	506.8	499.1	499.0	496.7	493.4	488.6	489.6	486.8	484.6	480.0	431.0
Security dealers and exchange		63.8	64.8	65.2	64.9	65.2	65.0	64.9	64.7	64.1	64.2	64.2	64.4	64.5	63.7
Insurance carriers and agents.-.		755.3	760.8	757.5	744.6	737.2	735.5	732.3	726.9	720.8	719.6	716. 7	715. 2	707.2	671.4
Other finance agencies and real		723.6	732.0	732.9	729.5	723.1	714, 4	699.1	692.2	695.1	704.2	705.1	709.0	704.8	694.7
Service and miscellane	5,334	5,392	5,412	5,413		5,357	5,307	5,225	5,194		5,237	5,266	5,303	5,280	
Hotels and lodging pla		483.8	541.7	537.8	495.9	469.9	463.8	456.0	450.5	442.7	446.8	446.1	456.3	476.9	476.5
Personal services:															
Laundries		346.8	350.5	354.7	354.1	348.6	343.5	340.4	340.0	341.7	342.0	342.3	343.7	342.7	342.7
Cleaning and dyein		180.6	175.8	180.4	186.8	184. 2	180.7	175.0	171.9	172.4	172. 5	175. 3	176. 9	172.7	166. 8
Motion pictures		234.1	234.3	233.8	233.8	232.1	234.4	232.0	229.4	229.6	228.5	232.6	237.2	236.2	244.4
Governmen	6,754	6,663	6,449	6,478	6,638	6,669	6,653		6,625		7,095	6,742	6,704	6,633	6,373
Federal	2, 200	2,220	2,248	2,271	2, 285	2, 282	2,304	2, 324	2, 343	2.350	2,765	2,363	2,363	2, 403	2, 261
State and local	4, 554	4,443	4,201	4,207	4, 353	4,387	4,349	4,342	4,282	4.325	4,330	4,379	4,341	4, 230	4,112

${ }^{1}$ The Bureau of Labor Statistics series of employment in nonagricultural establishments are based upou reports submitted by cooperating firms. These reports cover all full- and part-time employees in private nonagricultural establishments who worked during, or received pay for, any part of the pay period ending nearest the 15th of the month. Because of this, persons who worked in more than 1 establishment during the reporting period will be counted more than once. In Federal establishments the data generally refer to persons who worked on, or received pay for, the last day of the month; in State and local government, to persons who received pay for any part of the pay period ending on, or immediately prior to, the last day of the month Proprietors, self-employed persons, unpaid family workers, and domestic servants are excluded. These employment series have been adjusted to first quarter 1951 benchmark levels indicated by data from government social insurance programs. Revised data in all except the first 4 columns will be identified by asterisks the first month they are published.

These data differ in several respects from the nonagricultural employment data shown in the Monthly Report on the Labor Force (table A-1, civilian labor force), which are obtained by household interviews. This MRLF series relates to the calendar week which contains the 8th day of the month. It includes all persons with a job whether at work or not, proprietors, selfemployed persons, unpaid family workers, and domestic servants.
${ }^{2}$ Durable goods include: ordnance and accessories; lumber and wood products (except furniture); furniture and fixtures; stone, clay, and glass
products; primary metal industries; fabricated metal products (except ordnance, machinery, and transportation equipment); machinery (except electrical); electrical machinery; transportation equipment; instruments and elated products; and miscellaneous manufacturing industries.
${ }^{3}$ Nondurable goods include: food and kindred products; tobacco manufactures; textile-mill products; apparel and other finished textile products; paper and allied products; printing, publishing, and allied industries; chemicals and allied products; products of petroleum and coal; rubber products; and leather and leather products.
${ }_{4}^{4}$ Beginning with January 1952, the data for Federal employment are not strictly comparable with those for prior years, primarily as a result of changes in definition. The following changes were made starting with that month: (1) data refer to the last day of the month rather than the first of the month; (2) employment of the Federal Reserve Banks and of the mixed-ownership banks of the Farm Credit Administration were transferred from the Federal total to the "Banks and Trust Companies" group of the "Finance, Insurance, and Real Estate" Division; (3) fourth-class postmasters, formerly excluded as nominal employees, are now included in the Federal total.
${ }^{5}$ State and local government data exclude, as nominal employees, paid volunteer firemen and elected officials of small local units.
See NOTE on p. 1337.

Table A-3: Production workers in mining and manufacturing industries ${ }^{1}$
[In thousands]

Industry group and industry	1953										1952			Annual average	
	Oct.	Sept.	Aug.	July	June	May	Apr.	Mar.	Feb.	Jan.	Dec.	Nov.	Oct.	1952	1951
Mining:															
Metal		86. 5	86.4	86.7	87.4	86.6	86.2	86.7	88.1	88.8	88.9	88.4	85.8	83.8	88.4
Iron		35.5	35.4	35.5	35. 4	34.9	34.0	33.5	33.5	34.1	34.4	34.6	34.7	29.1	33.8
Copper		23.9	23.9	23. 7	23.8	23.4	23. 5	23.6	23. 5	23.4	23.2	22.8	20.8	22.3	22.4
Lead and z		12.8	13.3	13.5	14.4	14.8	15.3	15.8	16.6	17.0	17.0	16.9	16.7	18.1	17.8
Anthracite		46.5	46.6	45, 4	50.3	51.6	47.8	53.5	55.6	56.4	57.8	58.0	58.5	59.5	65. 0
Bituminous-coa		269.3	268.7	268.0	277.1	277.9	286. 7	295.8	302.0	306.9	307.4	306.6	306.3	309.9	348.0
Crude-petroleum and natural-gas production: Petroleum and natural-gas production															
Petroleum and natural-gas production (except contract services)		130.1	133.8	133.7	131.9	127.2	127.7	126.5	125.9	126.4	126.5	126.3	126.7	127.9	124.8
Nonmetallic mining and qua		91.4	91.7	91.2	90.8	89.0	88.2	85.0	83.8	83.6	87.5	90.6	91.6	88.6	89.2
Manufacturing	13,626	13,829	13, 862	13,666	13,787	13,699	13,758	13,831	13,733	13, 619	13, 699	13,634	13,560	13,044	13,135
Durable goods ?	7, 933	8,009	8,065	8,056	8,190	8, 179	8,215	8,211	8,115	8, 020	8, 010	7,916	7, 774	7, 481	7, 459
Nondurable good	5,693	5,820	5,797	5, 610	5,597	5,520	5,543	5, 620	5, 618	5, 599	5,689	5, 718	5, 786	5, 564	5, 676
Ordnance and accessorie	158.9	159.0	159.2	162.1	158.3	155.9	150.2	146.5	141.8	139.0	136.5	134.0	132.0	125. 7	61.5
Food and kindred Meat products	1,201. 6	1, 284.7	1, 256. 0	1, 184.0	1,096. 6	1, 050.6	1,026. 5	1,024. 8	1, 032.6	1,044. 7	1,092. 8	1, 142. 0	1, 223.4	1, 127. 1	142. 4
Meat products Dairy product		240.3	238.9	239.5	237.0	233.2	232.7	237.7	241.1	248.8	256. 4	253.5	243.9	245.6	242.9
Canning and prese		330.4	308.7	243. 7	93.5 165.4	87.1 145	83.1 133.9	79.7 122.7	78.1 128.	76.4 132.3	77.9 143.3	79.5 172.4	82.5 252.9	85.1 188.8	87.3
Grain-mill products		94.4	93.7	93.4	93.9	89.3	178.7	89.3	90.6	92.3	93.4	92.3	95.1	94.0	91.6
Bakery products		182.4	182.2	183.9	184.0	181.0	178.5	179.7	179.5	179.0	183.5	186.6	187.1	181.9	181. 4
Sugar -.-.-..-.-.--------		27,4	24.8	24.7	23.2	22.2	22.3	22.7	23.1	24.9	33.6	44.3	43.1	28.0	29.3
Confectionery and related		74.8	68. 4	61.3	64.0	62.0	65.5	70.2	72.2	72. 6	77.1	79.1	79.3	71.6	73. 0
Beverages		140.2	144.2	139.2	131.8	131.7	127.2	125. 4	122.0	123.5	128.7	132.2	133. 6	132.2	133.8
Miscellaneous food products-.-.---		107.2	103.0	104.1	103.8	98.2	95.6	97.4	97.3	94.9	98.9	102.1	105. 9	99.8	101.5
Tobacco man	114.5	117.1	108.3	85.3	85.0	85.0	85.2	87.3	93.9	100.5	108.1	108.5	116.7	97.9	95.7
Cigarettes		28.9	28.5	27.7	28.5	28.5	28.5	28.2	28.2	28.2	28.1	28.2	28.0	27.5	26.3
Cigars .-...........		39.7	39.1	38.1	39.3	39.2	39.1	39.8	39.6	39.7	40.0	40.6	40.6	39.6	38.7
Tobacco and snuff Tobacco stemming a		7.6 40.9	7.4 33.3	7.2	7.6	7.6	7.6	$\begin{array}{r}7.7 \\ \hline 11.6\end{array}$	7.7	7.7	7.8	7.9	7.9	7.9	8.1
Tobacco stemming and redrying.-..-.--		40.9	33.3	12.3	9.6	9.7	10.0	11.6	18.4	24.9	32.2	31.8	40.2	22.9	22.6
Textile-mill products....-.-.-.-.-.--------	1, 079.4	1,099.0	1, 102. 7	1,093.8	1,121, 6	1,116. 7	1,119.2	1,134.3	1,134.0	1,131.7	1,146.1	1,145.8	1,134, 9	1, 105. 8	1, 175, 8
Scouring and combing plants.	1,070. 1	6. 4	1, 6.6	1,083.8	1, 6.4	1, 6.2	1,119.2	1, 6.0	1, 6.3	1, 8.4	1,146.1	1,145.8	$1,134.9$ 6.3	1, 5.9	1, 6.3
Yarn and thread mills		140.4	142.8	140.2	144.4	142.9	143. 0	146.0	145.7	146. 5	147.3	147.5	147.0	143.6	154.2
Broad-woven fabric mills		485.0	486.2	490.2	497.1	494.4	493.8	498.8	501.5	502.3	508.0	506.1	503.3	498.7	545.8
Narrow fabrics and small		31.2	30.8	30.5	31.1	31.0	30.2	31.4	31.4	31.1	31.2	31.4	30.9	29.5	31.2
D yeing and finishing textiles		228.6	230.9	226.3	232.3	232.2	232.9	235, 4	232.3	230.2	236.2	238.7	235.7	223.2	223, 8
Carpets, rugs, other floor covering		83.5	82.9	81.0 43.9	82.9 47	82.9	84.7	85.8	86.5	86.3	87.1	87.2	86. 2	83.4	83.8
Hats (except cloth and millinery)		15. 4	16.3	16.0	47.9 16.3	16.7	49.7	17. 4	17. 4	49.4 16.8	16.7	50.1 16.1	48.0 15.8	46.2	51.0 15.8
Miscellaneous textile goods....		61.9	61.4	59.1	63.2	62. 5	63.3	63.4	62.9	162. 7	63.1	62. 5	61.7	60.0	15.8 63.8
Apparel and other finished textile prod- ucts.	1, 086.6	1,095. 7	1, 113. 6	1,053. 2	1, 072. 2										
Men's and boys' suits and coats	1,086.6	129.1	129.3	1, 117.8	126.9	1, 124.9	$1,086.0$ 123.9	1, 125.8	1, 124.0	1, 119.3	1,121.0	1, 122.0	1, 123.4	1, 119.3	128.8
Men's and boys' furnishings and work clothing		129.1 290.9	292.5	117.8 276.8	120.9 287.6	124.9 288.2	123.9 289.4	125.8 288.6	124.0 284.2	119.3 278.8	121.0 280.2	122.0 279.9	123.4 278.8	119.3 265.1	128.8 263.4
Women's outerwear-		323.9	339.2	314.0	308.8	297.9	317.8	355.5	360.3	351.1	346.6	330.9	330.0	331.2	326. 4
Women's, children's underg		97.0	95.5	94. 1	96.3	99.0	101.2	101.5	100.2	98.2	100.6	102.6	101.6	95.0	91.1
Millinery		19.0	20.2	18.1	15.1	15. 5	19.2	24.5	24.8	23.2	20.3	18.1	20.4	20.6	19.9
Children's outerwear Fur goods		58.4	60. 6	59.1	61.8	$59.1 \mid$	57.9	61.4	62.4	60.5	59.3	59.5	60.4	59.1	56.1
Miscellaneous apparel and accessories.--		6.7	8.0 58.4	9.4 55.8	9.6 57	7.5	5.1	6.5	6.8	8.2	9.8	11.3	9.6	9.4	10.7
Other fabricated textile products......-		112.3	58. 109.9	108.1	57.3 108.8	57.3 111.4	58.0 113.5	58.0 116.7	57.3	55.3 113.9	59.4 116.3	62.8 117.2	63.3 115.4	57.8 109.5	61.0 108.5
Lumber and wood products (except furniture)	708.3	715.0	724.0	717.8											
Logging camps and contractors	708.3	76.3	78.7	80.4	730.9 83.8	712.5 77.9	700.5 70.3	$\begin{array}{r}688.0 \\ \text { 66. } \\ \\ \hline\end{array}$	676.9 59.3	676.4 58.0	704.4 69.6	730.3 82.6	727.7 73.4	713.3 78.5	766.8 95.8
Sawmills and planing mills .-.-......-		428.9	434.0	425.8	431.9	422.3	416.4	407.5	404.1	405.5	419.7	433.3	439.8	423.8	444. 4
Millwork, plywood, and prefabricated structural wood products		102. 2	102.0	101.8	104.4	102.4	104.0	103.4	102.6	102.7	103.9	104.6	106.6	100.8	108.4
Wooden containers		54.9	55.9	56.8	57.4	157.1	104.0	102.4 56.8	102.6 56.6	102.7	103.9 57.5	104.6 56.4	106.6 54.2	100.8 56	108.4
Miscellaneous wood products		52.7	53.4	53.0	53.4	57.8 52.8	56.1 53.1	56.8 54.4	54.6 54.3	56.6 53.6	53.7 53	56.4 53.4	54.2 53.7	56.4 53.9	61.1 57.1
Furniture and fixtures	315.2	318.2	317.2	314.5	317.4	322.1	328.5	332.7	331.9	329.2	330.0	328.5	322.1	309.1	310.6
Household furniture........-.-.-.-.-.		230.4	230.2	228.0	231.5	236.5	242.3	247.0	245.9	242.9	243.1	242.1	237.2	225.5	226. 0
Office, public-building, and professional furniture		32.4	230.6 32.6	32.0	231.5 32.0	236.5	242.3 33.1	247.0	245.9	242.9	243.1 33.5	242.1 33.4	237.2	225.5	226.0 33.8
Partitions, shelving, lockers, and fix-				32.0		32.6	33.1	33.1	33.2	33.3	33.5	33.4	33.2	33.0	33.8
		28.9	29.2	28.8	28.5	28.2	28.1	27.7	28.3	28.7	28.6	28.2	27.6	26.6	27.0
Screens, blinds, and miscellaneous furniture and fixtures.		26.5	25.2	25.7	25.4	24.8	25.0	24.9	24.5	24.3	24.8	24.8	24.1	23.9	23.8

Table A-3: Production workers in mining and manufacturing industries ${ }^{1}$-Continued
[In thousands]

Industry group and industry	1953										1952			Annual average	
	Oct.	Sept.	Aug.	July	June	May	Apr.	Mar.	Feb.	Jan.	Dec.	Nov.	Oct.	1952	1951
Manufacturing-Continued															
Machinery (except electrical)	1,214.4	1,226.0	1,236. 1	1,264. 21	1,300.0	1,306. 6	1,320. 5	1,334. 6	1,323.1	1,312,9	1,301.3	1, 259.7	1,227.0	1, 262.5	1,245. 1
Engines and turbines...-		64.6	63.9	68.8	70.2	70.5	70.9	71.7	71.0	71.4	71.2	69.8	63.0	65.9	60.8
Agricultural machinery and tr		117.0	126. 4	135.4	140.5	143.0	146.5	151.6	149.0	146.1	145.3	126.6	113.2	140.9	154.6
Construction and mining machinery		93.8	95.4	97.4	99.9	97.8	98.0	100.9	100.6	100.5	100. 5	99.6	98. 5	100.3	90.6
Metalworking machinery-		223.8	222.1	221.6	227.1	227.3	227.6	228.1	226.7	226.3	225. 7	222.8	222.7	224.4	209.6
Special-industry machinery (except metalworking machinery)		134. 3	135.3	136.6	140.6	140.0	141.1	142.1	142. 2	141.2	141.0	140.8	136.9	142.6	150.1
General industrial machinery		163.7	163.7	165.7	167.2	166.0	166.5	167.0	165.6	165.7	165.1	161.4	159.9	164.3	163.2
Office and store machines and devices..		90.5	89.4	89.9	90.7	91.5	91.7	91.5	91.0	91.5	91.7	90.8	90.5	90.0	88.8
Service-industry and household mschines.		148. 0	150.0	155.7	166.4	172.4	177.9	180.1	177.3	171.8	163.3	156. 4	149.5	144.3	142.6
Miscellaneous machinery parts....-.....		190.3	189.9	193.1	197.4	198.1	200.3	201.6	199.7	198.4	197.5	191.5	192.8	189.9	184.7
Electrical machinery	897.0	910.9	902.5	891.5	910.6	919.1	926.0	924.7	915.7	898.6	892.8	872.1	850.6	806.9	768.6
Electricai generating, transmission, distribution, and industrial appara-		281.8	281.9	283.4	287.5	287.8	287. 3	285. 1	280.7	277. 4	274.8	271. 3	267. 6	264.3	261.8
Electrical appliance		59.2	58.2	58.6	59.2	59.0	58.4	57.9	56. 7	54.2	53.8	52.3	50.0	45.7	47.7
Insulated wire and cab		28.3	28.6	28.4	29.5	29.5	29.6	29.6	29.6	29.3	28.8	27.6	27. 4	26.2	24. 0
Electrical equipment for		71.2	71.2	72.3	75.3	75.8	76.1	75. 5	73.0	69.1	66. 6	64.3	64.9	63.5	64.3
Electric lamps		24.5	24. 1	24.1	24.0	23.8	23. 6	23.1	22.3	22.1	21.7	20.1	19.9	21.7	27.1
Communication equipment		408.2	401.6	387.8	398.8	407.3	414.8	418.3	418.1	411.0	410.2	398.0	381.4	349.5	307.1
Miscellaneous electrical products.		37.7	36.9	36.9	36.3	35.9	36.2	35.2	35.3	35.5	36.9	38.5	39.4	36.1	36.8
Transportation equipm	1, 464.4	1, 477.5	1,522.6	1, 533.4	1,548.3	1, 556.1	1,575.9	1,573.6	1,543. 4	1,508.6	1,483.9	1. 450.1	1,410.8	1,320. 5	1,219.8
Automobiles......		729.7	780.0	796.0	803.4	816.1	830.7	820.6	798.0	769.3	749.9	734.8	701. 2	647.1	707.9
Aircraft and par		549.4	542.4	537.0	534.8	532.3	532.8	542.3	538.1	530.7	523.6	509.7	501.3	469.5	341.9
A ircraft.....		329.2	325.4	322.3	321.8	324.8	327.2	330.2	329.3	326.9	324.9	316.4	313.2	302.8	232.3
A ircraft engines and parts		120.3	119.1	118.9	118.3	114.5	112. 6	119.1	118.4	115.0	111.7	108.6	106.5	95.9	63.7
Aircraft propellers and parts		12.0	11.7	12.0	12.1	12.1	12.2	12.3	12.3	12.1	11.6	11.1	10.7	10.0	7.6
Other aircraft parts and equipment.-		87.9	86.2	83.8	82.6	80.9	80.8	80.7	78.1	76.7	75.4	73. 6	70.9	60.8	38.3
Ship-and boatbuilding and repairing.-		129.2	129.2	133.6	135.5	134.8	139.0	136.8	137. 2	139.0	139.7	136. 9	136. 7	133. 2	100.9
Shipbuilding and repairing		107.9	107.3	110.4	111.6	110.7	115.1	114.0	115. 0	117.5	118.5	116.8	118.0	115.4	88.2
Boatbuilding and repairing		21.3	21.9	23.2	23.9	24.1	23.9	22.8	22.2	21.5	21.2	20.1	18.7	17.8	12.8
Railroad equipment		57.7	59.3	55.1	62.9	61.4	62.1	62.7	58.8	58.4	58.4	56. 2	59.3	53.8	58.5
Other transportation equipment		11.5	11.7	11. 7	11.7	11.5	11.3	11. 2	11.3	11.2	12.3	12.5	12.3	10.9	10.6
Instruments and related products Laboratory, scientific, and engineering instruments Mechanical measuring and controlling instruments Optical instruments and lenses	243.2	242.4	239.2	241.2	245.1	243.6	244.3	244.4	240.7	240.9	240.4	237.1	233.6	227.6	216.7
		32.7	31.8	33.5	33.8	33.6	34.1	34.3	34.1	34.3	34.2	33.6	32. 9	32.0	25.8
		56.0	57.0	57.7	59.6	59.3	59.2	59.6	58.7	58.3	58.1	56.5	55.6	53.1	52. 5
		9.7	9.6	9.6	9.7	9.7	9.7	9.7	9.6	9.7	9.6	9.8	9.8	9.9	10.0
Surgical, medical, and dental instru-		28.7	29.0	29.1	29.5	29.4	29.4	29.4	28.9	29.3	29.5	29.3	28.7	28. 6	292
Ophthalmic goods		22.6	22.5	22.3	22.8	23.1	23. 4	23.6	23.4	23.2	22.9	22.3	22.1	22.7	23. 7
Photographic apparatus		51.8	50.0	49.7	48.8	48.1	48.0	47.9	47.3	47.8	47.7	47.5	47.0	46.4	43.6
Watches and clocks.		40.9	39.3	39.3	40.9	40.4	40.5	39.9	38.7	38.3	38.4	38.1	37. 5	35.0	31.9
Miscellaneous manufacturing industries.-	429.0	428.0	419.3	403.3	414.9	412.5	411.2	409.9	404. 2	393.3	403. 5	414.5	407.7	376.7	388.3
Jewelry, silverware, and plated ware...		46.7	45.2	42.8	44.7	44.1	44. 4	44.6	43.6	43.2	44. 1	44.9	44. 7	41.1	44.7
Musical instruments and parts.		16.0	15.8	15.3	15.6	15.6	15. 7	15.9	15.7	15.5	15. 2	15.0	14.7	13.8	14.1
Toys and sporting goods		79.8	78.6	74.9	75.7	75.5	73.0	69.8	66.2	62.6	68.6	75.9	76.6	64.8	64.5
Pens, pencils, and other office supplies		24.9	24.4	23.9	24.4	24.3	24. 2	23.9	23.3	23.3	24.8	25.0	25.0	24.0	24.8
Costume jewelry, buttons, notions		60.7	60.7	57.1	57.2	55.5	56.3	58.3	58.7	56.7	56.3	57.2	56.2	51.6	53.7
Fabricated plastic products.		64.4	63.7	61.8	63.0	63.1	63.1	62.4	62. 1	61.2	61.2	61.4	59.9	558	57.0
Other manufacturing industries		135.5	130.9	127.5	134.3	134.4	134.5	135.0	134.6	130.8	133.3	135. 1	130.6	125.6	129.5

${ }^{1}$ See footnote 1, table A-2. Production and related workers include working foremen and all nonsupervisory workers (including leadmen and tralnees) engaged in fabricating, processing, assembling, inspection, receiving, storage, handling, packing, warehousing, shipping, maintenance, janitorial, watchman services, products development, auxillary production for plant's
own use (e. g., power plant), and record-keeping and other services closely associated with the above production operations.
${ }^{2}$ See footnote 2, table A-2.
${ }^{3}$ See footnote 3 , table A-2.
See Note on p. 1337.

TABLE A-4: Indexes of production-worker employment and weekly payrolls in manufacturing industries ${ }^{1}$

Period	Employ-	Weekly payroll	Period	Employment	Weekly payroll	Period	Employment	Weekly payroll
1939: A verage..	66.2	29.9	1949: A verage	93.8	97.2	1953: January	110.1	148.4
1940: A verage.-	71.2	34.0	1950: Average	99.6	111.7	February	111.0	149.3
1941: A verage	87.9	49.3	1951: Average.	106.2	129.6	March	111.8	151.9
1942: A verage	103.9	72.2	1952: A verage	105. 5	135.3	April.	111.2	150.0
1943: A verage..	121.4	99.0				May	110.8	149.9
1944: A verage.	118.1	102.8	1952: October-..	109.6	145.7	June.	111.5	150.8
1945: A verage.	104.0 97.9	87.8 81.2	November	110.2 110.8	146.3 150.9	July-...	110.5	148.9 151.4
1947: A verage	103.4	97.7				September	111.8	151.4 150.0
1948: Average...	102.8	105.1				October---	110.2	

${ }^{1}$ See footnote 1, tables A-2 and A-3.
See Note on p. 1337.
TABLE A-5: Federal civilian employment by branch and agency group
[In thousands]

[^47]Table A-6: Employees in nonagricultural establishments for selected States ${ }^{1}$
[In thousands]

State	1953									1952				Annual average	
	Sept.	Aug.	July	June	May	Apr.	Mar.	Feb.	Jan.	Dec.	Nov.	Oct.	Sept.	1952	1951
Alabama	690.3	682.3	678.6	683.4	678.6	680.2	679.6	677.8	678.1	702.8	689.1	688.1	688. 7	671.5	650.3
Arizona ${ }^{2}$	197.6	195. 9	197.4	199.2	200.7	203.1	205.0	203.8	203.5	207.7	200.9	197.2	192.3	192.8	178.1
Arkansas	314.1	308.1	307.9	310.9	310.1	310.7	311.1	309.0	308.3	322.2	316.8	314.9	318.1	313.7	315.7
California ${ }^{2}$	4,000.3	3,974. 6	3, 905. 1	3,891.8	3,875.9	3, 847. 7	3,823.2	3,798. 4	3,781. 7	3, 929. 6	$3,866.4$	3, 887.2	$3,859.4$	3, 739. 2	3, 518.3
Colorado.	423.9	423.7	422.3	420.6	413.8	412.0	411.6	409.9	411.2	427.4	425.5	428.3	430.5	412.5	390.1
Connectic		879.6	877.8	881.0	871.2	867.9	863.0	857.9	856.5	880.3	860.8	850.0	846.7	846.0	828.7
District of	501.1	502.0	507.3	513.8	513.9	515.4	517.7	519.5	522.4	540.2	528.4	527.4	525.9	529.1	525.1
Florida ${ }^{2}$	809.7	796.5	792.8	805.7	819.3	846.2	862.6	870.6	868.2	862.9	816.2	786.6	766.5	796.1	747.9
Georgia	885.6	890.9	886.6	884.0	881.4	875.8	873.7	869.6	869.4	897.1	884.0	884.0	882.6	873.5	849.7
Idaho ${ }^{2}$	143.7	140.3	139.9	137.3	133.9	131.3	128.2	126.6	127.5	138.8	141.5	143.4	146.0	137.0	137.7
Illinois	3, 419.0	3, 405.4	3, 386.7	3, 413.1	3,397. 4	3,390. 5	3,373.3	3,359.9	3,358.2	3, 455. 6	3,384, 3	3,361.0	3,346.1	3, 312.2	3, 264.8
Indian	1, 417.2	1,401.1	1,403.8	1, 406. 1	1, 402. 7	1, 406.6	1,402.3	1,389.9	1,376.8	1, 409.0	1,388.4	1,382.5	1,383.0	1,345.5	1,351.2
Iowa.	648.8	647.7	641.9	1, 640.0	633.6	631.1	625.8	622.1	623.1	645.2	638.8	640.0	635.9	630.2	628.0
Kansas ${ }^{2}$	549.6	551.0	551.8	553.3	551.7	549.4	543.2	539.8	539.9	556.4	550.4	548.2	549.9	540.1	511.1
Louisiana	695.8	688.5	681.6	681.1	676.4	676.9	673.6	670.3	672.2	697.1	690.7	690.4	685.7	673.1	654.5
Maine	286.1	286.4	286.5	285.9	273.6	264.7	267.5	271.2	273.4	284.0	283.2	285.6	289.9	278.4	272.3
Maryland	784.5	786.1	780.4	780.2	768.8	764.5	759.2	752.6	750.8	774.0	773.3	773.4	779.7	756.3	741.4
Massachuse	1,801. 3	1,800.7	1,795.3	1,812.3	1,801.7	1,793.5	1,780.4	1,774.0	1,775. 1	1,833.0	1,806. 1	1,801.8	1, 799. 4	1,783.4	1,793.2
Minnesota	865.3	1,864.7	855.8	1,845.5	1,836.7	827.0	825.5	1827.2	834.7	862.1	847.5	846.2	854.1	828.8	826.3
Missouri ${ }^{2}$	1,289. 7	1,281.5	1,269.8	1,281. 2	1,286.0	1,282.0	1,273.2	1,264.0	1,260.3	1,312. 4	1,287.9	1,289.5	1,287.9	1,266. 5	1,235.0
Montan	163.5	162.9	161.6	160.1	155.8	151.8	149.2	148.1	150.0	157.1	156. 6	159.6	163.3	154.1	149.0
Nebraska	349.4	347.9	348.3	348.2	343.0	340.7	339.2	337.1	339.9	352.3	347.7	348.6	348.8	341.4	332.0
Nevada ${ }^{2}$	75.1	76.5	75.6	73.7	71.5	69.6	67.6	66.2	66.1	68.5	68.1	68.5	68.7	65. 7	58.2
New Hampshire	177.7	181.4	179.7	178.4	174.4	172.1	171.1	171.9	172.3	175.6	174.2	176.0	176.3	173.4	172.4
New Jersey	1,838.9	1,832.6	1,827.0	1,828.9	1,811.1	1,786.1	1,802.4	1,793.4	1,800.5	1,849.9	1, 826.7	1,824. 7	1,821.6	1,789.9	1,755.2
New Mexico	176. 9	176.5	177.4	178.0	176.9	176.4	174.2	173.5	173.6	178.1	175.6	175.6	174.1	170.2	159.9
New York	5,994.5	5, 966. 3	5, 946.2	5,964. 2	5, 919.0	5, 907.9	$5,916.3$	5, 874.7	5,871.6	6, 099.6	6, 000.4	5, 987.5	5, 961. 7	5, 864.5	5,795. 1
North Carolina	1, 013. 7	1,003.0	990.2	5, 993.7	991. 6	991.1	996.8	994. 9	999.6	1, 035.8	1,021.8	1,018.0	1, 008.3	990.8	970.8
North Dakota ${ }^{2}$	112.6	111.9	112.0	112.1	110.9	107.7	104. 7	104.3	105.8	111. 0	110.8	1, 112.1	112.6	${ }^{3} 108.6$	111.5
Ohio...--	3,117.0	3,096.9	3,085.3	3, 083.4	3, 061.1	3, 048.3	3,037.3	3,006, 0	3,002. 5	3,092.2	3,034. 7	3, 029.4	3, 016.0	2,954.1	2, 929.0
Oklahom	529.1	525.2	526.9	529.0	525.2	523.0	521.5	519.0	522.4	535.0	526.8	526.8	526.9	520.1	501.8
Oregon ${ }^{2}$	496.2	488.1	488.7	477.9	468.9	460.8	449.1	440.7	441.2	465.9	469.7	481.9	495.0	465.2	459.2
Pennsylvania	3, 749.5	3, 739.9	3, 729.0	3,747.8	3, 729.3	3,712.8	3, 713. 1	3, 693. 9	3, 699. 1	3, 819.2	3,764. 8	3,759.6	3, 748. 5	3, 666.6	3, 716.4
Rhode Island	305.6	304.1	303.9	307.2	305.5	306.4	308.0	304.7	305.0	315.3	314.1	312.1	311.3	304.7	307.7
South Carolina	525.7	526.0	522.0	524.5	523.2	522.8	524.4	523.2	525.2	538.3	533.0	533.0	534.0	524.0	493.0
South Dakota ${ }^{2}$	120.1	118.6	119.4	120.9	119.8	118.7	114.9	113.8	114.7	122.1	121.9	122.6	122.8	${ }^{3} 119.0$	122.3
Tennessee	835.7	831.5	829.9	830.9	825.0	822.2	818.3	813.8	816.7	842.4	823.7	823.0	820.5	806.7	786.0
Texas	2,278.7	2,269. 2	2, 275.3	2,280. 8	2,267.9	2,268. 2	2, 250.9	2, 241. 1	2, 244. 2	2,299.8	2, 258. 1	2,249.9	2,248. 4	2,215.0	2,105.5
Utah	223.4	219.5	218.8	215.2	215.9	213.7	211.2	209.5	210.7	221.1	221.2	221.8	225.3	213.3	206.5
Vermont	105. 7	105.7	104.3	104.2	103.4	102.0	100.7	100.1	99.8	102.4	101.0	101.8	99.9	99.5	99.4
Virginia	910.1	901.2	902.0	900.5	895.1	893.6	891.8	886.9	890.5	923.8	904.8	901.7	903.0	890.4	860.0
Washington	766.9	756.3	758.9	750.1	733.4	722.0	717.8	707.5	707.4	740.8	740.1	756.0	766.0	731.3	722.2
West Virginia	507.9	505.4	501.2	506.3	505.1	505.4	506.1	503.0	508.6	528.2	516.7	516.6	522.4	521.1	532.3
W isconsin ${ }^{2}$	1,105.7	1,102.6	1, 102.1	1,095.2	1,095.0	1,090. 5	1,084.4	1,079.0	1,075. 1	1, 109.4	1,097. 7	1,093. 4	1,097.6	1,076.5	1,071.9
W yoming ${ }^{2}$	1, 88.0	1, 89.2	1, 88.5	1, 86.7	1, 83.9	1, 82.3	1, 80.8	179.6	80.8	-85.9	1, 86.6	1, 88.3	1, 90.5	1, 85.7	82.7

${ }^{1}$ Data for earlier years are available upon request to the Bureau of Labor Statistics or the cooperating State agency. State agencies also make available more detailed industry data. See table A-7 for addresses of cooperating State agencies.

Table A-7: Employees in manufacturing industries, by State ${ }^{1}$
[In thousands]

State	1953									1952				Annual average	
	Sept.	Aug.	July	June	May	Apr.	Mar.	Feb.	Jan.	Dec.	Nov.	Oct.	Sept.	1952	1951
Alabam	239.4	236.2	232.8	235.1	233.8	237.1	236.7	237.7	236.3	238.4	237.8	236. 5	233.8	226.9	225. 3
Arizona ${ }^{2}$	26.9	27.4	28.1	28.5	28.8	29.3	29.5	29.3	29.2	29.8	29.7	28.9	28.5	27.7	22.7
Arkansas	81.7	78.9	78.5	79.2	79.7	80.1	80.2	79.5	79.4	82.2	82.7	82.6	81.7	80.4	82.5
California	1, 128.4	1, 128. 5	1,084. 1	1, 057.8	1,054.9	1,051.0	1, 032.9	1,023. 7	1, 018.4	$1,029.0$	$1,041.7$	$1,066.1$	1,055.5	993.6	892.5
Colorado.	71.1	69.2	1, 68.3	1, 67.8	1, 66.3	66.1	66.5	66.8	66.9	71.3	$\text { 73. } 6$	73.1	71.8	66.8	65.4
Connecticu		452.7	448. 5	455.4	452.6	452.6	452.0	449.3	446. 2	445.6	442.0	431.5	429.3	431.1	423.3
Delaware.	65.8	67.7	63.1	62.4	62.5	61.9	61.5	60.9	60.5	60.4	60.8	62.3	64.2	59.2	56. 0
District of	17.2	17.0	16.9	16.9	16.8	16.8	17.0	16.8	16.9	17.3	17.2	17.1	17.2	17.2	17. 1
Florida ${ }^{2}$	114.8	114.7	114.2	117.4	120.0	123.2	126.6	128.7	127. 5	124.2	117.3	111.4	109.9	115.0	108.7
Georgia	313.4	315.2	310.9	309.9	310.5	310.3	311.5	309.0	308.5	310.1	310.7	310.7	308.4	305. 9	304.4
Idaho	27.4	26.4	26.6	24.7	22.8	21.5	19.7	18.9	19. 1	22.4	25.0	26.4	28.5	23.3	24.0
Illinois	1, 331.4	1,333. 3	1, 314.1	1,338.2	1, 332.4	1,336.9	1,342. 0	1,334.5	1,322.9	1, 322.4	1,300.9	1, 276.3	1,263. 1	1,256. 5	$1,246.7$
Indian	674.8	1, 664. 6	1, 665.4	-661.1	1, 665.2	1, 675. 0	675.4	1, 666. 2	1, 653.9	1, 653.8	1, 645.4	1, 636.9	1,639.5	1, 609.7	-615.8
Iowa	168.4	173.3	170.9	171.2	171.0	173.5	174.4	175.2	172.8	176.1	174.4	172. 1	165.6	169. 6	168.4
Kansas ${ }^{2}$	134.5	139.2	140.9	142.0	141.5	142.0	142.6	142.4	142. 7	142.6	140.0	139.3	135.7	135. 7	116.9
Kentucky		154.5	155.1	156.3	155.5	156.9	157.4	161.0	163.4	163.0	149. 4	150. 2	148.2	148.3	151.6
Louisiana	162.4	162.6	160.0	157.8	156.1	154.6	152.8	152.0	150.4	157.4	159.9	158.1	153. 4	150.3	146. 5
Maine.	120.2	120.3	120.1	120.9	111.9	107.4	112.5	117.1	117. 6	$118,6$	120.9	121.6	123.2	116.4	115.6
Maryland	282.5	284.0	277.8	275.9	270.1	269.4	267.2	264.3	265.2	264.7	265.6	270.0	277.6	259.2	254.4
Massachus	722.9	727.6	720.2	733.5	730.6	734.9	741.8	738.8	733.6	736.6	732.1	725.5	719.4	717.7	740.5
Michigan	1,157.2	1, 195.8	1, 217.6	1, 239.3	1, 238.9	1, 241.1	1, 237.4	1, 219.6	1,204. 6	1, 189.8	1, 163. 2	1,126.9	1, 099.4	1, 080.5	1,111.1
Minnesota	227.9	232.2	228.0	218.3	216.1	216.2	216.5	1, 215.0	213.3	1, 217.0	1, 215.5	1, 213.4	1, 223.5	1, 211.5	206.6
Mississipp	98.2	97.9	98.3	97.7	97.0	98.9	98.8	98.3	98. 0	98.9	98.8	98.0	98.1	95. 2	94.3
Missouri ${ }^{2}$	419.1	422.7	414.1	420.7	417.7	418.1	417.4	413.0	405.7	406.3	404.2	401.6	400.3	389.8	372.9
Monta	20.1	19.9	19.9	19.2	18.5	17.1	16.7	16.6	17.3	18.9	19.7	20.4	20.0	18.4	18.1
Nebraska	60.6	61.2	62.0	61.6	59.3	59.5	59.8	59.9	61.4	62.0	61.7	61.3	61.8	59.8	54.8
Nevada ${ }^{2}$-...	4.3	4.4	4. 4	4.3	4.2	4.2	4.1	4.2	4.1	4.3	4.4	4.4	4.4	4.2	3.6
New Hampshi	82.2	82.9	81.7	82.4	81.7	82. 2	83.3	84.5	84.2	83.2	83.4	81.8	81.9	81.2	82.2
New Jersey	843. 4	842.3	832.5	842. 9	836.0	836.7	851.1	847.8	845.0	849.2	847.9	843.5	839.8	824.4	810.5
New Mexic	16.1	16.6	16.7	16.5	16.5	16.4	16.1	16.1	16.0	16.1	16.7	16.8	16.7	15.6	14.2
New York	2,009.3	2, 013.2	1,969.0	1, 982.6	1, 964. 2	1,987.2	2, 030.6	2, 014.9	1,986.9	2. 010.4		2, 020.0	2,008. 2	1, 942.0	1,918.2
North Carol	449.5	445.9	1, 433.4	1, 431.8	432.2	1. 433.8	438.9	2, 439.6	1, 441.2	2. 447.6	2, 449.5	2, 450.2	2, 446.8	1, 8432.4	1, 432.9
North Dak	6.6	6.7	6.7	6.7	6.5	6. 5	6.5	6.4	6.7	6.7	6.8	$\text { 6. } 6$	6.5	6.5	$\begin{array}{r}6.1 \\ \hline 1.315 .2\end{array}$
Ohio.	1, 414.3	1, 411.5	1, 408. 1	1, 413.8	1, 408. 2	1, 412.5	1, 421.9	$1,409.6$	$1,394.9$	$1,385,7$	$1,368.1$	$1,362.5$	$1,349.5$	1,317.3	
Oklahoma	86.5	86.6	85.3	1, 84.8	1, 84.6	1, 84.3	1, 83.5	1, 82.8	1, 82.9	1, 84.0	1, 84.2	1, 83.1	1,82.3	80.1	73.2
Oregon ${ }^{2}$	158.5	155. 2	157.2	149.7	145.0	141.0	135.0	130.3	129.2	135.6	144. 1	152.1	162.1	145.5	147.7
Pennsylvani	1, 518.4	1, 524.8	1, 521.1	1, 529.8	1,525.6	1, 529.5	1,534.7	1, 527.0	1, 518.8	1, 519.5	1,510.9	1, 507.6	1,492.9	1, 444.5	1,494.1
Rhode Island South Carolina	$\begin{aligned} & 145.8 \\ & 997.3 \end{aligned}$	1, 146.4	1, 145.8	1, 147.5	1, 146.8	1, 147.3	1, 149.4	1, 149.2	1, 148.4	1, 150.2	151.4	1, 149.6	148.4	1, 144.4	149.8
South Carolina South Dakota ${ }^{2}$	222.3 12.1	223.2	220.7 12.2	222.5	221.3	222.9	222.4	221.8	221.9	222.3	221. 7	221.4	221.7	218.1	218.4
South Dakota ${ }^{2}$	12.1	12.2	12. 2	12.2	11.7	11.6	11.5	11.6	11.8	12.4	12.7	12.5	12.2	12.0	11.6
Tennessee	293.4	295.5	294.0	292.8	293.1	289.8	288.4	286.4	285.9	287.6	285.5	283.3	282.6	274.3	264.6
Texas	435.0	437.9	438.6	437.6	437.5	437.1	437.9	437.2	436. 4	437.5	437. 1	434.6	432.3	425.9	401.9
Utah	38.2	33.7	35.3	31.9	31.2	30.6	29.9	29.6	29.7	31.2	32.8	34.1	432.7 36.7	$\begin{array}{r}30.8 \\ \hline\end{array}$	31.3
Vermon	41.3	41.3	39.9	40.5	40.8	40.7	40.5	40.3	39.6	39.3	39.4	39.3	37.8	38.3	38.7
Virginia...	260.2	257.0	254.8	254.0	253.2	254.5	255.2	254.6	256.0	258.0	256. 2	255.7	252.4	247.6	242.6
Washington	211.7	204.9	207.5	202.6	190.9	186.8	189.3	186.8	186.6	190.1	196.6	207.5	212.8	192.1	191.8
West Virginia	138.3	138.8	135.1	137.6	137. 6	137.3	137.0	134.7	136.4	138. 1	136. 2	135.2	136.9	134.6	138. 1
Wisconsin-	479.6	482.5	479.4	471.0	477. 1	479.4	481.6	478.8	474.8	475. 0	475.8	470.1	479.0	466.9	463.1
Wyoming ${ }^{2}$	7.0	7.0	6.8	6.4	6.0	6.0	6.0	5. 9	6. 0	6.5	7.0	7.2	6.7	6.3	6.1

${ }^{1}$ Data for earlier years are available upon request to the Bureau of Labor Statistics or the cooperating State agency. State agencies also make available more detailed industry data
${ }_{2}$ Revised series; not comparable with data previously published.

Cooperating State Agencies

Alabama-Department of Industrial Relations, Montgomery 5
Arizona-Unemployment Compensation Division, Employment Security Commission, Phoenix.
Arkansas-Employment Security Division, Department of Labor, Little Rock.
alifornia-Division of Labor Statistics and Research, Department of Industrial Relations, San Francisco 1
colorado-U. S. Bureau of Labor Statistics, Denver 2
onnecticut-Employment Security Division, Department of Labor, Hartford 15
Delaware-Federal Reserve Bank of Philadelphia, Philadelphia 1, Pennsylania
District of Columbia-U. S. Employment Service for D. C., Washington 25.
Florida-Industrial Commission, Tallahasse
Georgia-Employment Security Agency, Department of Labor, Atlanta 3. Idaho-Employment Security Agency, Boise.
Illinois-Illinois State Employment Service and Division of Unemployment Compensation, Chicago 54.
Indiana-Employment Security Division, Indianapolis 9.
Iowa-Employment Security Commission, Des Moines 8
Kansas-Employment Security Division, State Labor Department, Topeka.
Kentucky-Bureau of Employment Security, Department of Economic Security, Frankfort.
Louisiana-Division of Employment Security, Department of Labor, Baton
Rouge 4.
Maine-Employment Security Commission, Augusta.
Maryland-Department of Employment Security, Baltimore 1
Massachusetts-Division of statistics. Department of Labor and Industries, Boston 8.
Michigan-Employment Security Commission, Detroit 2.

Minnesota-Department of Employment Security, St. Paul 1.
Mississippi-Employment Security Commission, Jackson.
Missouri-Division of Employment Security, Jefferson City.
Montana-Unemployment Compensation Commission, Helena.
Nebraska-Division of Employment Security, Department of Labor, Lincoln 1.
Nevada-Employment Security Department, Carson City
New Hampshire-Division of Employment Security, Department of Labor, Concord.
New Jersey-Department of Labor and Industry, Trenton 8.
New Mexico-Employment Security Commission, Albuquerque.
New York-Bureau of Research and Statistics, Division of Employment, New York Department of Labor, 1440 Broadway, New York 18. North Carolina-Department of Labor, Raleigh.
North Dakota-Unemployment Compensation Division, Bismarck.
Ohio-Bureau of Unemployment Compensation, Columbus 16
Oklahoma-Employment Security Commission, Oklahoma City 2.
Oregon-Unemployment Compensation Commission, Salem
Pennsylvania-Federal Reserve Bank of Philadelphia, Philadelphia 1 (mfg.); Bureau of Research and Information, Department of Labor and Industry, Harrisburg (nonmfg.)
Rhode Island-Department of Labor, Providence 3.
South Carolina-Employment Security Commission, Columbia 1.
South Dakota-Employment Security Department, A berdeen.
Tennessee-Department of Employment Security, Nashville 3.
Texas-Employment Commission, Austin 19.
Utah-Department of Employment Security, Industrial Commission, Salt Lake City 13.
Vermont-Unemployment Compensation Commission, Montpelier.
Virginia-Division of Research and Statistics, Department of Labor and Industry, Richmond 14.
Washington-Employment Security Department, Olympia
West Virginia-Department of Employment Security, Charleston 5
Wisconsin-Industrial Commission, Madison 3.
Wyoming-Employment Security Commission, Casper.

TABLE A-8: Insured unemployment under State unemployment insurance programs, ${ }^{1}$ by geographic division and State
[In thousands]

[^48]Figures may not add to exact column totals because of rounding.
Source: U. S. Department of Labor, Bureau of Employment Security;

B: Labor Turnover

Table B-1: Monthly labor turnover rates (per 100 employees) in manufacturing industries, by class of turnover ${ }^{1}$

${ }^{1}$ Month-to-month changes in total employment in manufacturing industries as indicated by labor turnover rates are not comparable with the changes shown by the Bureau's employment and payroll reports, for the following reasons:
(1) Accessions and separations are computed for the entire calendar month; the employment and payroll reports, for the most part, refer to a 1 -week pay period ending nearest the 15th of the month.
(2) The turnover sample is not so large as that of the employment and payroll sample and includes proportionately fewer small plants; certain industries are not covered. The major industries excluded are: printing, publishing, and allied industries; canning and preserving fruits, vegetables, and sea foods; women's, misses', and children's outerwear; and fertilizers
(3) Plants are not included in the turnover computations in months when work stoppages are in progress; the influence of such stoppage is reflected, however, in the employment and payroll figures. Prior to 1943, rates relate to production workers only.

Preliminary

Prior to 1940, miscellaneous separations were included with quits.
\dagger Beginning with data for October 1952, components may not add to total because of rounding.
Note: Information on concepts, methodology, etc., is given in a technical note on "Measurement of Labor Turnover," which appeared in the May 1953 Monthly Labor Review.

Table B-2: Monthly labor turnover rates (per 100 employees) in selected groups and industries ${ }^{1}$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Industry group and industry} \& \multicolumn{10}{|c|}{Separation} \& \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Total accession}} \\
\hline \& \multicolumn{2}{|c|}{Total} \& \multicolumn{2}{|c|}{Quit} \& \multicolumn{2}{|l|}{Discharge} \& \multicolumn{2}{|c|}{Layoff} \& \multicolumn{2}{|l|}{Misc., incl. military} \& \& \\
\hline \& Sept. 1953 \& \[
\begin{aligned}
\& \text { Aug. } \\
\& 1953
\end{aligned}
\] \& Sept. 1953 \& \[
\underset{1953}{\text { Aug. }}
\] \& \begin{tabular}{l}
Sept. \\
1953
\end{tabular} \& \[
\underset{1953}{\text { Aug. }}
\] \& Sept. 1953 \& \[
{ }_{1953}
\] \& \[
\begin{aligned}
\& \text { Sept. } \\
\& 1953
\end{aligned}
\] \& \[
\underset{1953}{\text { Aug. }}
\] \& Sept. 1953 \& \[
{ }_{1953}^{\text {Aug. }}
\] \\
\hline \multicolumn{13}{|l|}{Manufacturing} \\
\hline All manufacturing \& 5. 3 \& 4.8 \& 3.1 \& 2.9 \& 0.4 \& 0.4 \& 1.5 \& 1.3 \& 0.3 \& 0.3 \& 4.0 \& \\
\hline Durable goods : \& 5. 5 \& 4.9 \& 3.1 \& 2.8 \& . 4 \& . 4 \& 1.8 \& 1. 4 \& 0.3
.3 \& 0.3
.3 \& 4.0
4.1 \& 4.3
4.3 \\
\hline Nondurable goods \({ }^{3}\) \& 4.8 \& 4.6 \& 3.2 \& 3.0 \& .3 \& .4 \& 1.1 \& 1. 0 \& . 2 \& . 3 \& 4.1
3.8 \& 4.3
4.3 \\
\hline Ordnance and accessories_.---------------- \& 5.1 \& 4.2 \& 3.2 \& 2.9 \& . 6 \& . 7 \& 1.0 \& . 5 \& . 2 \& . 1 \& 4.1 \& 4.3 \\
\hline Food and kindred products \& 6. 6 \& 6. 6 \& 4. 0 \& 3.7 \& . 5 \& . 7 \& 1.9 \& 1. 9 \& . 2 \& . 2 \& 5.6 \& 6.9 \\
\hline Meat products \& 5. 0 \& 5.7 \& 2. 5 \& 2. 5 \& .4 \& .5 \& 1.9 \& 2. 4 \& . 2 \& . 3 \& 5. 5 \& 5.9 \\
\hline Grain-mill products
Bakery products..- \& 5.6
6.0 \& 5.3
6.1 \& 4.4
4.8 \& 3.8
4.4 \& . 6 \& . 9 \& .4
.5 \& 1.4 \& .2 \& .3 \& 5. 5 \& 5. 4 \\
\hline Bakery products... Beverages: \& 6.0 \& 6.1 \& 4.8 \& 4.4 \& . 6 \& . 6 \& . 5 \& 1.0 \& . 1 \& . 1 \& 6. 2 \& 6.3 \\
\hline Malt liquors \& 9.5 \& 8.7 \& 4.4 \& 3.6 \& . 6 \& . 9 \& 4.2 \& 4.0 \& 2 \& 2 \& 3.9 \& 7.0 \\
\hline Tobacco manufactures \& 2. 9 \& 2. 9 \& 2. 4 \& 2.3 \& . 3 \& . 3 \& . 1 \& . 1 \& . 1 \& 1 \& 4.1 \& 3.8 \\
\hline Oigarettes. \& 2.5
3.4 \& 2.4
3.4 \& 1.9 \& 1.8
3.0 \& .3
.2
.8 \& . 4 \& .1 \& .1 \& (4) 2 \& .2 \& 2. 9 \& 3. 3 \\
\hline Tobacco and snuff \& 2. 0 \& 2. \({ }^{3}\) \& 1.0 \& 1. 4 \& . 5 \& . 3 \& . 1 \& . 1 \& \({ }^{(4)} .3\) \& . 1 \& 5. 6 \& 4.7
1.6 \\
\hline Textile-mill products.- \& 4.9 \& 4. 6 \& 2.8 \& 2.7 \& . 3 \& . 3 \& 1.6 \& 1. 3 \& . 2 \& . 3 \& 3.4 \& 3.8 \\
\hline Yarn and thread mills \& 7.2
4.9 \& 5. 4 \& 2.9 \& 2.7 \& . 2 \& .2 \& 3. 9 \& 2. 2 \& . 1 \& . 3 \& 2. 9 \& 3. 9 \\
\hline Cotton, silk, synthetic fiber \& 4.6 \& 5.7 \& 3.0 \& 2.9
3.0 \& . 3 \& . 3 \& 1.4 \& 1. 1.4 \& .4 \& . 4 \& 4. 1 \& 3. 9 \\
\hline Woolen and worsted .----- \& 8.1 \& 8. 4 \& 2.1 \& 1.8 \& . 3 \& . 2 \& 5.4 \& 6.0 \& . 2 \& . 3 \& 4.0
4.8 \& 3.8
4.3 \\
\hline Knitting mills.. \& 3. 9 \& 3.7 \& 2.7 \& 2.8 \& .2 \& . 3 \& . 8 \& . 4 \& . 1 \& .1 \& 3.0 \& 4. 7 \\
\hline Full-fashioned hosiery \& 2.8 \& 2.8 \& 2.4 \& 2.4 \& . 1 \& . 1 \& . 2 \& . 1 \& . 1 \& . 1 \& 2. 4 \& 2.9 \\
\hline Seamless hosiery- \& 4. 1 \& 3. 6 \& 2.9 \& 2. 6 \& .\(^{2}\) \& . 1 \& . 7 \& . 6 \& . 3 \& (4) 2 \& 3. 4 \& 3. 9 \\
\hline Dyeing and finishing textiles \& 4.5 \& 4. 2
3.8 \& 3.0
2.8 \& 3.4
2.4 \& . 14 \& . 4 \& 1. 1 \& \(\xrightarrow{.3}\) \& .1 \& \({ }^{(4)}\) \& 2. 7 \& 3. 6 \\
\hline Carpets, rugs, other floor coverings.- \& 3.1 \& 3.3 \& 2.1 \& 1.8 \& . 3 \& . 3 \& 1.1
.5 \& . 9 \& . 2 \& . 3 \& 2.5 \& 3.8
3.3 \\
\hline Apparel and other finished textile prod- \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline \& \[
\begin{aligned}
\& 4.9 \\
\& 3.7
\end{aligned}
\] \& \[
\begin{aligned}
\& 5.2 \\
\& 4.8
\end{aligned}
\] \& \[
\begin{aligned}
\& 4.2 \\
\& 2.7
\end{aligned}
\] \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 4.2 \\
\& 3.3
\end{aligned}
\]} \& \multirow[t]{2}{*}{\[
.2
\]} \& \multirow[t]{2}{*}{. 2} \& \multirow[t]{2}{*}{\[
.4
\]} \& \multirow[t]{2}{*}{1.6} \& \multirow[t]{2}{*}{. 1} \& \multirow[t]{2}{*}{. 1} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& \text { 4. } 9 \\
\& \text { 4. } 3
\end{aligned}
\]} \& \multirow[t]{2}{*}{4.9
4.8} \\
\hline Men's and boys' furnishings and work \& \& \[
4.8
\] \& \[
2.7
\] \& \& \& \& \& \& \& \& \& \\
\hline \& 5.3 \& 5.1 \& 4.8 \& 4.6 \& . 1 \& . 2 \& . 3. \& . 3 \& . 1 \& . 1 \& 5.3 \& 5.3 \\
\hline \multicolumn{13}{|l|}{Lumber and wood products (except fur-} \\
\hline Logging camps and contractors.-.-.----- \& 6.6
8.5 \& \[
\begin{aligned}
\& 5.8 \\
\& 8.7
\end{aligned}
\] \& \[
\begin{aligned}
\& 4.7 \\
\& 7.5
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { 4. } 2 \\
\& 5.9
\end{aligned}
\] \& \multirow[t]{2}{*}{.3
.3
.4} \& \multirow[t]{2}{*}{.4
.4
.4} \& 1.4
.6
1.6 \& 1. 2.0 \& \multirow[t]{2}{*}{.3
.1
.2} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& .2 \\
\& .3 \\
\& .3
\end{aligned}
\]} \& \multirow[t]{2}{*}{4. 3
5. 8
4.2} \& \multirow[t]{2}{*}{5.4
8.3
5.0} \\
\hline Sawmills and planing mills --- \& 6.4 \& 5.2 \& 4.6 \& 4.1 \& \& \& 1. 2 \& -. 6 \& \& \& \& \\
\hline Millwork. plywood, and prefabricated structural wood products \& 5.5 \& 4.8 \& 2.9 \& 3.4 \& . 2 \& . 3 \& 2.3 \& . 8 \& . 1 \& . 3 \& 3.2 \& 4.0 \\
\hline Furniture and fixtures.- \& \multirow[t]{3}{*}{\[
\begin{aligned}
\& 6.3 \\
\& 5.8 \\
\& 7.5
\end{aligned}
\]} \& \multirow[t]{3}{*}{\[
\begin{aligned}
\& 6.2 \\
\& 6.2 \\
\& 6.3
\end{aligned}
\]} \& \multirow[t]{3}{*}{\[
\begin{aligned}
\& \text { 4.3 } \\
\& \text { 3. } 9 \\
\& \text { 5.2 }
\end{aligned}
\]} \& \multirow[t]{3}{*}{\[
\begin{aligned}
\& 4.2 \\
\& 4.0 \\
\& 4.6
\end{aligned}
\]} \& \multirow[t]{3}{*}{.5
.4
.8
.8} \& \multirow[t]{3}{*}{.5
.5
.4} \& \multirow[t]{2}{*}{1. 3} \& \multirow[t]{3}{*}{\[
\begin{aligned}
\& 1.3 \\
\& \text { 1.4 } \\
\& 1.0
\end{aligned}
\]} \& \multirow[t]{3}{*}{.1
.2
.2
.2} \& \multirow[t]{3}{*}{\[
\begin{aligned}
\& .2 \\
\& .2 \\
\& .2
\end{aligned}
\]} \& \multirow[t]{3}{*}{\[
\begin{aligned}
\& 5.5 \\
\& 5.6 \\
\& 5.3
\end{aligned}
\]} \& \multirow[t]{3}{*}{5.8
5.3
7.1} \\
\hline Household furniture - \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline Other furniture and fixtures \& \& \& \& \& \& \& 1.2 \& \& \& \& \& \\
\hline Paper and allied products-..-.-. \& \multirow[t]{3}{*}{\[
\begin{aligned}
\& 4.5 \\
\& 3.4 \\
\& 6.1
\end{aligned}
\]} \& \multirow[t]{3}{*}{\[
\begin{aligned}
\& 3.9 \\
\& 2.8 \\
\& 5.4
\end{aligned}
\]} \& \multirow[t]{3}{*}{\[
\begin{aligned}
\& 3.3 \\
\& 2.6 \\
\& 4.4
\end{aligned}
\]} \& \multirow[t]{3}{*}{\[
\begin{aligned}
\& 2.9 \\
\& 2.1 \\
\& 4.3
\end{aligned}
\]} \& \multirow[t]{3}{*}{\[
\begin{aligned}
\& .5 \\
\& .3 \\
\& .8
\end{aligned}
\]} \& \multirow[t]{3}{*}{\[
\begin{aligned}
\& .5 \\
\& .3 \\
\& .8
\end{aligned}
\]} \& \multirow[t]{3}{*}{\[
\begin{aligned}
\& .5 \\
\& .3 \\
\& .7
\end{aligned}
\]} \& \multirow[t]{3}{*}{.3
.2
.1} \& \multirow[t]{3}{*}{\[
\begin{aligned}
\& .3 \\
\& .3 \\
\& .2
\end{aligned}
\]} \& \multirow[t]{3}{*}{.3
.2
.2} \& \multirow[t]{3}{*}{\[
\begin{aligned}
\& 3.6 \\
\& 2.7 \\
\& 5.4
\end{aligned}
\]} \& \multirow[t]{3}{*}{4. 3
3.2
6.2} \\
\hline Pulp, paper, and paperboard mills...- \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline Paperboard containers and boxes. \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline Chemicals and allied products. \& \multirow[t]{6}{*}{3.1
3.6
2.8
4.0
4.2
2.2
3.8} \& \multirow[t]{6}{*}{\[
\begin{aligned}
\& 2.6 \\
\& 3.7 \\
\& 2.3 \\
\& 2.8 \\
\& 2.1 \\
\& 3.1
\end{aligned}
\]} \& \multirow[t]{6}{*}{\[
\begin{aligned}
\& 2.1 \\
\& 2.4 \\
\& 1.8 \\
\& 1.3 \\
\& 1.9 \\
\& 2.6
\end{aligned}
\]} \& \multirow[t]{6}{*}{\[
\begin{aligned}
\& 1.6 \\
\& 2.5 \\
\& 1.2 \\
\& .9 \\
\& 1.6 \\
\& 2.0
\end{aligned}
\]} \& \multirow[t]{6}{*}{.3
.2
.1
.1
.1
.6} \& \multirow[t]{6}{*}{.8
.4
.4
.2
.1
.1
.3} \& \multirow[t]{6}{*}{\[
\begin{array}{r}
.5 \\
.6 \\
.7 \\
2.4 \\
.5 \\
.5
\end{array}
\]} \& \multirow[t]{6}{*}{.6
.4
.8
1.7
.3
.7} \& \multirow[t]{6}{*}{.2
.2
.1
.2
.2
.1} \& \multirow[t]{6}{*}{.2
.4
.2
.2
.1
.3} \& \multirow[t]{6}{*}{2.1
2.5
1.4
2.6
1.4
2.8

1.8} \& \multirow[t]{6}{*}{2.2
2.8
1.6
1.9
1.8
2.1}

\hline Industrial inorganic chemicals \& \& \& \& \& \& \& \& \& \& \& \&

\hline Industrial organic chemicals \& \& \& \& \& \& \& \& \& \& \& \&

\hline Synthetic fliers - \& \& \& \& \& \& \& \& \& \& \& \&

\hline Drugs and medicines \& \& \& \& \& \& \& \& \& \& \& \&

\hline Paints, pigments, and fillers \& \& \& \& \& \& \& \& \& \& \& \&

\hline Products of petroleum and coal. \& \multirow[t]{2}{*}{2.3 1.6} \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 1.7 \\
& 1.2
\end{aligned}
$$} \& \multirow[t]{2}{*}{1.6} \& \multirow[t]{2}{*}{1.2

.8} \& \multirow[t]{2}{*}{${ }_{(4)}{ }^{.1}$} \& \multirow[t]{2}{*}{(4) 1} \& \multirow[t]{2}{*}{. 4} \& \multirow[t]{2}{*}{.2
.1} \& \multirow[t]{2}{*}{. 2} \& \multirow[t]{2}{*}{. 2} \& \multirow[t]{2}{*}{1.3
.7} \& \multirow[t]{2}{*}{1.3
.7}

\hline Petroleum refining...... \& \& \& \& \& \& \& \& \& \& \& \&

\hline Rubber products \& \multirow[t]{4}{*}{4. 5
4.3
4.8

4.6} \& \multirow[t]{4}{*}{$$
\begin{aligned}
& 3.8 \\
& 2.6 \\
& 4.7 \\
& 4.8
\end{aligned}
$$} \& \multirow[t]{4}{*}{2.5

1.5
4.3

3.1} \& \multirow[t]{4}{*}{$$
\begin{aligned}
& 2.3 \\
& 1.3 \\
& 4.3 \\
& 2.8
\end{aligned}
$$} \& \multirow[t]{4}{*}{.2

.1
.2
.3} \& \multirow[t]{4}{*}{.2
.1
.2

.3} \& \multirow[t]{4}{*}{$$
\begin{array}{r}
1.4 \\
2.4 \\
.2 \\
.9
\end{array}
$$} \& \multirow[t]{4}{*}{\[

$$
\begin{array}{r}
1.0 \\
\left({ }^{4} .9\right. \\
{ }^{(4)} 1.4
\end{array}
$$

\]} \& \multirow[t]{4}{*}{\[

$$
\begin{aligned}
& .4 \\
& .3 \\
& .2 \\
& .4
\end{aligned}
$$
\]} \& \multirow[t]{4}{*}{.3

.
.4.
.3
.3} \& \multirow[t]{4}{*}{2.9
1.3
4.2
4.1} \& \multirow[t]{4}{*}{2.9
1.4
6.1
3.4}

\hline Tires and inner tubes \& \& \& \& \& \& \& \& \& \& \& \&

\hline Rubber fontwear-(-. \& \& \& \& \& \& \& \& \& \& \& \&

\hline Other rubber products. \& \& \& \& \& \& \& \& \& \& \& \&

\hline Leather and leather products \& \multirow[t]{2}{*}{5.6
4.3

5. 9} \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 5.2 \\
& 3.7 \\
& 5.5
\end{aligned}
$$} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 3.8 \\
& 2.1 \\
& 4.2
\end{aligned}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 3.8 \\
& 1.9 \\
& 4.2
\end{aligned}
$$
\]} \& \multirow[t]{2}{*}{.2

.1
.3} \& . 3 \& 1.4 \& . 9 \& 2 \& . 2 \& 3.5 \&

\hline Leather
Footwear (except rubber) \& \& \& \& \& \& .3
.3
.3 \& 1. 1.8 \& 1. 4 \& . 2 \& . 1 \& 2. 2.6 \& 2. 8

\hline Stone, clay, and glass products. \& 3.8 \& 4. 2 \& 2.5 \& 2.6 \& . 3 \& . 3 \& 1.3
.8 \& 1. 9 \& . 2 \& . 2 \& 3.7 \& 4.2

\hline Glass and glass products.- \& 3.3 \& 5.0 \& 1.8 \& 2.5 \& . 3 \& . 3 \& 1. 0 \& 1.9 \& . 3 \& $\stackrel{3}{3}$ \& 3.5 \& 4. 2

\hline Cement, hydraulic. \& 3.8 \& 3.0 \& 2.4 \& 2.2 \& .4 \& .4 \& 1.7 \& 1.1 \& .3 \& $\stackrel{3}{ }$ \& 4.8 2.4 \& 6. 2.8

\hline Structural clay products \& 5.6 \& 4.8 \& 4.2 \& 3.4 \& . 4 \& . 4 \& . 8 \& . 8 \& . 3 \& . 1 \& 4.3 \& 4.8

\hline Pottery and related products \& 3.2 \& 3.5 \& 2.3 \& 2.3 \& .2 \& .4 \& . 6 \& . 7 \& . 2 \& . 2 \& 4.3 \& | 4. |
| :--- |
| 3.2 |
| 1 |

\hline Primary metal industries \& 4.2 \& 3.8 \& 2.2 \& 2.1 \& . 3 \& . 4 \& 1.4 \& 1.1 \& . 3 \& . 3 \& 2.5 \& 2.9

\hline Blast furnaces, steel works, and rolling mills \qquad \& 3.2 \& 2.8 \& 2.0 \& 1.8 \& . 1 \& . 2 \& 8 \& 1.1 \& - \& - \& 2.5 \& 2.9

\hline Iron and steel foundries. \& 5. 9 \& 5.7 \& 2.6 \& 2.7 \& . 4 \& . 5 \& 2.7 \& 2. 2 \& . 1 \& . 3 \& 1. 3.1 \& 2.1

\hline Gray-iron foundries \& 6.1 \& 4.6 \& 2.6 \& 2.7 \& .5 \& . 5 \& 2.7 \& 1.1 \& .3 \& .4 \& 4. 0 \& 5.0

\hline Malleable-iron foundries \& 6.0 \& 8.2 \& 3.3 \& 3.1 \& . 4 \& . 7 \& 2.1 \& 4.2 \& .1 \& $\stackrel{4}{3}$ \& 4.0 \& 5.1

\hline Steel foundries...... \& 5.8 \& 5.6 \& 2.2 \& 2.5 \& . 4 \& . 5 \& 3.0 \& 2.5 \& . 1 \& . 1 \& 1. 8 \& 2. 2.6

\hline Primary smelting and refining of nonferrous metals: \& \& \& \& \& \& \& \& \& \& \& \&

\hline Primary smelting and refining of copper. lead, and zinc. \& 3.3 \& 2.4 \& 2.3 \& 1.4 \& . 4 \& . 4 \& . 2 \& . 1 \& . 3 \& . 4 \& 2.2 \& 2.1

\hline Rolling, drawing, and alloying of nonferrous metals: \& \& \& \& \& \& \& \& \& \& \& \&

\hline Rolling, drawing, and alloying of \& \& \& \& \& \& \& \& \& \& \& \&

\hline \& 3.3 \& 2.7 \& 1.7 \& 1.8 \& . 5 \& . 4 \& 1.1 \& . 3 \& . 1 \& . 2 \& 2. 3 \& 2.4

\hline Nonferrous foundries --...-...- \& 7.7 \& 7.3 \& 2.8 \& 2.8 \& . 8 \& . 7 \& 3.8 \& 3.5 \& . 3 \& . 3 \& 4.3 \& 3.8

\hline Other primary metal industries: Iron and steel forgings \& 5.3 \& 3.6 \& 2.3 \& 2.6 \& . 4 \& . 4 \& 2.4 \& . 3 \& . 2 \& . 2 \& 2.9 \& 3.4

\hline
\end{tabular}

Table B-2: Monthly labor turnover rates (per 100 employees) in selected groups and industries ${ }^{1}$ Continued

${ }^{1}$ See footnote 1, table B-1. Current month data subject to revision without notation; revised figures for earlier months will be indicated by footnotes.
2 See footnote 2, table A-2.
${ }^{2}$ See footnote 3, table A-2. Printing, publishing, and allied industries are excluded.

C: Earnings and Hours
Table C-1: Hours and gross earnings of production workers or nonsupervisory employees ${ }^{1}$

See footnotes at end of table.

TABLE C-1: Hours and gross earnings of production workers or nonsupervisory employees ${ }^{1}-$ Continued

[^49]TABLE C-1: Hours and gross earnings of production workers or nonsupervisory employees ${ }^{1}$ - Continued

Year and month	Manufacturing-Continued																	
	Food and kindred products-Continued																	
	Confectionery			Beverages ?			Botlled soft drinks			Malt liquors			Distilled, rectified, and blended liquors			Miscellaneous food products ${ }^{3}$		
	Avg. wkly. earn-	Avg. wkly. hours	A vg. hrly. ings	Avg. wkly. earn- ings	Avg. wkly. hours	A Fg . hrly. earn- ings	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earnings	Avg. wkly. earn- ings	Avg. wkly. hours	Avg. hrly. ing3	Avg. wkly. earn- ings	Avg. wkly. hours	Avg. hrly. earn- ings	Avg. wkly. earn- ings	Avg. wkly. hours	$\mathrm{A} \nabla \mathrm{g}$. hrly. earnings
1951: Aver	\$48.36	40.3	\$1. 20	\$68. 39	41.7	\$1. 64	\$53.19	43.6	\$1. 22	\$78.91	41.1	\$1.92	\$68. 74	40.2	\$1. 71	\$57.11	42.3	\$1.35
	50.67	39.9	1.27	71.14	41.6	1.71	55.73	43.2	1.29	82. 20	41.1	2.00	70.88	39.6	1.79	59.78	42.1	1.42
	52.10	40.7	1.28	71.62	41.4	1.73	56.59	43.2	1.31	83.23	40.8	2. 04	69.63	38.9	1.79	61.92	42.7	1.45
1952: Novemb	52.07	41.0	1.27	72.51	41.2	1.76	55.73	41.8	1.33	82.82	40.6	2.04	76. 54	41.6	1.84	61. 19	42.2	1.45
	52.45	41.3	1.27	71.98	40.9	1.76	58.36	42.6	1.37	82.62	40.5	2.04	69.50	38.4	1.81	60.47	41.7	1. 45
1953: January $\begin{aligned} & \text { Februar } \\ & \text { March } \\ & \text { April.-. } \\ & \text { May } \\ & \text { June... } \\ & \text { July } \\ & \text { August } \\ & \text { Septem }\end{aligned}$	50.18	38.9	1. 29	70.93	40.3	1.76	56.71	41.7	1.36	80.79	39.8	2.03	70.67	38.2	1.85	61.27	41.4	1. 48
	50.30	39.3	1.28	71.51	40.4	1. 77	57.12	42.0	1. 36	82.40	40.0	2.06	69.93	37.8	1.85	61.54	41.3	1. 49
	50.83	39.1	1.30	71.96	40.2	1.79	58.23	42.5	1.37	82.95	39.5	2. 10	69. 01	37. 3	1.85	61.27	41.4	1. 48
	49.66	38.2	1.30	73.49	40.6	1.81	57.40	41.9	1.37	85.46	40.5	2.11	71. 24	38.3	1.86	61.39	41.2	1.49
	52.00	39.1	1.33	76.54	41.6	1.84	60.20	43.0	1.40	89.66	41.7	2.15	70.67	38.2	1.85	61.86	41.8	1.48
	52.13	38.9	1.34	79.66	42.6	1.87	63.05	44.4	1. 42	94.98	42.4	2. 24	72. 91	39.2	1.86	61.86	41.8	1. 48
	50.65	37.8	1.34	80.60	43.1	1.87	64.08	44.5	1. 44	97. 45	43. 7	2. 23	71.05	38.2	1.86	63.57	42.1	1. 51
	${ }_{53}^{51.88}$	39.3	1.32	79.95	42.3	1.89	61.92	43.3	1. 43	94. 57	42.6	2. 22	73. 70	39.2	1.88	63.72	42.2	1.51
	53.06	39.6	1.34	81.06	42.0	1.93	63.66	43.9	1. 45	95.68	41. 6	2.30	73.33	38.8	1.89	65.06	42.8	1. 52
	Food and kindred products-Continued						Tobacco manufactures											
	Corn sirup, sugar, oil, and starch			Manufactured ice			Total: Tobacco manufactures			Cigarettes			Cigars			Tobaceo and snuff		
1951: A	\$73. 37	44.2	\$1. 66	\$55. 90	46. 2	\$1. 21	\$43. 51	38.5	\$1.13	\$54.37	39.4	\$1. 38	\$39.10	37.6	\$1.04	\$45.99	37.7	\$1. 22
	77.00	43.5	1.77	59.80	46. 0	1.30	44. 93	38.4	1.17	56.45	39.2	1.44	40.13	37.5	1.07	47.87	37.4	1.28
	79.12	43.0	1.84	61.58	46.3	1.33	45. 54	40.3	1.13	59.45	41.0	1.45	41.04	38.0	1.08	50.44	38.5	1.31
1952: Novemb	79.79	42.9	1.86	62.88	45.9	1.37	45.05	38.5	1.17	58.11	39.8	1.46	42.46	38.6	1.10	49. 26	37.6	1.31
	75.12	42.2	1.78	61.16	45.3	1.35	46. 26	39.2	1.18	59.98	40.8	1.47	41.80	38.0	1. 10	50.18	38.9	1.29
1953: January $\begin{aligned} & \text { Februar } \\ & \text { March } \\ & \text { April. } \\ & \text { May } \\ & \text { June. } \\ & \text { July } \\ & \text { Jugust }\end{aligned}$	75. 95	41.5	1.83	61.61	45.3	1.36	46. 59	38.5	1. 21	57.67	39.5	1.46	41. 51	37.4	1.11	49.91	38.1	1. 31
	77.78	42. 5	1.83	60.21	44.6	1.35	45. 39	36. 9	1.23	54.75	37.5	1.46	41.51	37.4	1.11	49. 48	37.2	1.33
	76.74	42. 4	1.81	60.48	44.8	1.35	47.63	37.8	1.26	57.04	38.8	1. 47	41.66	37.2	1.12	47.88	36. 0	1.33
	78.86	42.4	1.86	60.62	44.9	1.35	47.62	37.2	1. 28	57.37	38.5	1.49	41. 25	36.5	1. 13	49.48	37.2	1.33
	78.81	42.6	1.85	62.24	46.1	1.35	46. 99	37.0	1.27	53.55	35.7	1.50	42.83	37.9	1.13	50.52	37.7	1.34
	81.65	43.2	1.89	62.15	45.7	1.36	46.99	37.0	1.27	54. 45	36.3	1. 50	42. 22	37.7	1.12	51.03	37.8	1.35
	81.78	43.5	1.88	65. 00	47.1	1. 38	47.87	37.4	1.28	58.89	39.0	1. 51	41.22	36.8	1.12	50.63	37.5	1.35
	79.57	42.1	1.89	65.08	47.5	1.37	47. 70	39.1	1.22	62.68	40.7	1. 54	42.71	37.8	1.13	52. 63	38.7	1.36
	84.78	43.7	1.94	67. 02	47.2	1.42	46. 49	39.4	1.18	60.89	39.8	1.53	43.78	38.4	1.14	54.40	40.6	1.34
	Tobaceo manufac-tures-Continued			Textile-mill products														
	Tobacco stemming and redrying			Total: Textile-mill products			Scouring and combing plants			Yarn $\underset{\text { mills } 2}{\text { and }}$ thread			Yarn mills			Thread mills		
1951: Avera	\$38.02	39.2	\$0.97	\$51. 60	38.8	\$1. 33	\$57.82	39.6	\$1.46	\$47. 86	38.6	\$1.24	\$48.13	38.5	\$1.25	\$48. 64	38.6	\$1. 26
	38.91	39.3	. 99	53.18	39.1	1.36	62.80	40.0	1. 57	49.15	38. 7	1.27	49.15	38.7	1. 27	49. 79	38.6	1. 29
	39.01	42.4	. 92	54.67	40.2	1.36	65.47	41.7	1.57	50.56	39.5	1.28	50.69	39.6	1. 28	51.33	40.1	1. 28
1952: Novemb	36.00	37.5	96	55.35	40.4	1.37	61.38	37.2	1.65	50.30	39.3	1.28	50.30	39.3	1.28	50.31	39.0	1. 29
	39.50	39.5	1.00	55. 90	40.8	1.37	65. 25	41.3	1.58	51.20	40.0	1.28	51.33	40.1	1.28	52.22	40.8	1. 28
1953: January $\begin{aligned} & \text { Februar } \\ & \text { March } \\ & \text { April } \\ & \text { May } \\ & \text { May } \\ & \text { June.-. } \\ & \text { July } \\ & \text { August } \\ & \text { Septem }\end{aligned}$	40.58	39.4	1.03	54. 94	40.1	1.37	64.71	40.7	1.59	50.18	39.2	1.28	50.18	39.2	1.28	50.18	39.2	1.28
	37.80	35.0	1.08	54.94	40.1	1.37	63. 02	40.4	1. 56	50.18	39.2	1.28	20.18	39.2	1.28	52.78	40.6	1. 30
	43.96	38.9	1.13	54.80	40.0	1.37	63.92	40.2	1. 59	50.30	39.3	1. 28	50.18	39.2	1.28	53.56	41.2	1. 30
	42.34	36.5	1.16	53.84	39.3	1.37	61.30	38.8	1. 58	48.77	38.4	1. 27	48.51	38.2	1.27	50.29	39.6	1.27
	42.83	36.3	1.18	53. 98	39.4	1.37	64.15	40.6	1.58	49.15	38.7	1.27	48. 90	38.5	1.27	50.65	40.2	1. 26
	42.13	35.7	1.18	53.72	39.5	1. 36	65. 35	41.1	1.59	49.66	39.1	1.27	49.53	39.0	1.27	50.42	39.7	1.27
	41.65	35.6	1.17	53.18	39.1	1. 36	66. 14	41. 6	1. 59	49.15	38.7	1.27	49.15	38.7	1.27	49.39	39.2	1.26
	39.69	39.3	1.01	52. 90	38.9	1.36	62.09	39.3	1.58	48.39	38.1	1.27	48.13	37.9	1.27	49. 40	38.9	1.27
	37.81	39.8	. 95	51.51	37.6	1.37	63.14	38.5	1.64	46.85	36.6	1.28	46. 70	36.2 !	1.29	48.13	38.2	1.26
	Textile-mill products-Continued																	
	Broad-woven fabric mills ${ }^{2}$			Cotton, silk, synthetic fiber									Woolen and worsted			Narrow fabrics and smallwares		
				United States			North			South								
1951: Averag	\$51. 74	39.2	\$1.32	\$50. 70	39.3	\$1.29	\$53. 54	38.8	\$1.38	\$49. 25	39.4	\$1.25	\$57.87	39.1	\$1.48	\$51.48	39.6	\$1.30
	51.99	38.8	1.34	49.79	38.6	1.29	55. 25	38.1	1.45	48.76	38.7	1.26	62.56	40.1	1.56	54. 14	40.1	1.35
	54.14	40.1	1.35	51.74	39.8	1.30	56.63	39.6	1. 43	50.55	39.8	1.27	64.43	41.3	1.56	55.76	41.3	1.35
1952: November	54.68	40.5	1.35	52.78	40.6	1.30	57.28	39.5	1.45	51.94	40.9	1.27	63.44	39.9	1. 59	54.94	40.4	1.36
December	55.35	41.0	1.35	53.17	40.9	1.30	58.75	40.8	1. 44	51. 94	40.9	1.27	65.83	41.4	1. 59	56. 03	41.2	1.36
1953: January	54.54	40.4	1.35	52. 26	40.2	1.30	58.06	40.6	1. 43	50.93	40.1	1.27	64.53	41.1	1.57	55. 62	40.9	1.35
February	54.27	40.2	1.35	52. 26	40. 2	1.30	57. 92	40.5	1. 43	50.93	40.1	1.27	63.43	40.4	1. 57	54. 95	40.7	1. 36
March.	53.60	40.0	1. 34	52.13	40. 1	1.30	57. 23	40.3	1. 42	50.93	40.1	1.27	61.93	39.7	1. 56	55. 22	40.6	1.36
A pril	53. 20	39.7	1.34	51.48	39.6	1. 30	56.12	39.8	1. 41	50.17	39.5	1.27	62.56	40.1	1.56	55. 08	40.5	1.36
May	53.73	40.1	1.34	52.00	40.0	1.30	56.40	40.0	1.41	50.80	40.0	1.27	63.34	40.6	1. 56	55. 20	40.0	1. 38
June.	53.47	39.9	1. 34	51.21	39.7	1.29	56. 54	40.1	1. 41	49. 90	39.6	1.26	63.90	40.7	1. 57	55.75	40.4	1.38
July	52.93	39.5	1.34	50.70	39.3	1. 29	55.86	39.9	1. 40	49. 27	39.1	1. 26	64.06	40.8	1. 57	53. 96	39.1	1. 38
August	52.14 50.79	39.2 37.9	1.33	50.44 49.14	39.1 37.8	1. 29	56. 26	39.9	1. 41	49.01	38.9	1.26	61.62	39.5	1. 56	53. 16	38.8	1.37
September.-	50.79	37.9	1.34	49.14	37.8	1.30							60.06	38.5	1.56	53.84	39.3	1.37

See footnotes at end of table.

Table C-1: Hours and gross earnings of production workers or nonsupervisory employees ${ }^{1}$-Continued

Year and month	Manufacturing-Continued																				
	Apparel and other finished textile products-Continued																				
	Shirts, collars, and nightwear			Separate trousers			Work shirts			Women's outerwear ${ }^{2}$			Women's dresses			Household apparel					
	A Vg . wkly. earnings	Avg. wkly. hours	Avg. hrly. earn- ings	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earn- ings	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earnings	Avg. wkly. earn- ings \qquad	Avg. wkly. hours	Avg. brly. earnings	Avg. wkly. earn- ings ings	Avg. wkly. hours	Avg. hrly. earn ings	Avg. wkly. earn-	Avg. wkly. hours	Avg. hrly. earnings			
1951:	$\begin{array}{r} \$ 38.09 \\ 39.96 \\ 40.23 \end{array}$	$\begin{aligned} & 35.6 \\ & 37.0 \\ & 37.6 \end{aligned}$	$\begin{array}{r} \$ 1.07 \\ 1.08 \\ 1.07 \end{array}$	$\begin{array}{r} \$ 40.32 \\ 42.86 \\ 43.55 \end{array}$	$\begin{aligned} & 36.0 \\ & 37.6 \\ & 38.2 \end{aligned}$	$\begin{array}{r} \$ 1.12 \\ 1.14 \end{array}$	$\begin{array}{r} \$ 33.20 \\ 35.15 \end{array}$	$\begin{aligned} & 35.7 \\ & 37.8 \end{aligned}$	$\begin{array}{r} \$ 0.93 \\ .93 \\ 02 \end{array}$	$\$ 51.16$52.3954	$\begin{aligned} & 34.8 \\ & 35.4 \end{aligned}$	$\$ 1.47$1.481.4	$\$ 50.54$51.4853	$\begin{aligned} & 35.1 \\ & 35.5 \end{aligned}$	$\$ 1.44$1.45	$\$ 38.01$39.96	$\begin{aligned} & 36.9 \\ & 37.7 \end{aligned}$	$\$ 1.03$1.06			
							$\begin{aligned} & 35.10 \\ & 35.99 \end{aligned}$	38.7	. 93		35.5	1.53	53.45	$35.4 \quad 1.51$		39.38	37.5	1.05			
1952: November-..--	42.			13. 55		$\begin{aligned} & 1.14 \\ & 1.14 \end{aligned}$	$\begin{aligned} & 34.96 \\ & 34.68 \end{aligned}$	38.0		51.7454.30	$\begin{array}{ll}35.2 & 1.47 \\ 36.2 & 1.50\end{array}$		51. 10	35.036.4	1.46 1.47	41.42 38.0 40.45 37.8		1. 09			
	41. 80	38.7	1.08	43.89	38. 5																
		37.0	1.09	44. 39	38. 6	1.15	33. 76	36. 3	. 93	54.93	35.9	1.53	52.69	35.6	1.48	40. 02	37.4	1. 07			
	40.82 41.36	37.8	1.08	44. 93	38.4	1.17	34. 78	37.8	. 92	55. 69	36.4	1. 53	53. 34	35.8	1.49	40.34	37.7	1.07			
	$\begin{aligned} & 41.36 \\ & 41.42 \end{aligned}$	38.3	1.08	46.10	39,4	1.17	35. 22	38.7	. 91	54.45	36.3	1.50	54. 75	36.5	1. 50	41. 69	38.6	1.08			
	$\begin{aligned} & 41.42 \\ & 40.66 \end{aligned}$	37.3	1.09	44.93	33.1	1.17	34.96 34.68	38.0	92	51.84	36.0	1.44	55. 78	36.7	1.52	40. 45	37.8	1. 07			
	$\begin{aligned} & 40.66 \\ & 41.78 \end{aligned}$	37.3	1.12	46.10	38.1	1. 21	34.76	38.2	. 91	50.66	34.7	1.46	49. 16	33.9	1. 45	39. 53	36.6				
	41.13	36.437.236.1	$\begin{aligned} & 1.13 \\ & 1.12 \\ & 1.13 \end{aligned}$	$\begin{aligned} & 43.66 \\ & 44.89 \end{aligned}$	37.037.136.1	$\begin{aligned} & 1.18 \\ & 1.21 \\ & 1.21 \\ & \hline \end{aligned}$	$\begin{aligned} & 34.10 \\ & 34.22 \\ & 35.79 \end{aligned}$	38.238.936.2	$\begin{array}{r} .92 \\ .92 \\ .92 \end{array}$	$\begin{aligned} & \text { ou. } 00 \\ & 52.59 \\ & 54.91 \end{aligned}$	$\begin{aligned} & 34.6 \\ & 35.6 \\ & 35.2 \end{aligned}$	$\begin{aligned} & 1.40 \\ & 1.52 \\ & 1.56 \end{aligned}$	$\begin{aligned} & 43.10 \\ & 4.76 \\ & 53.66 \end{aligned}$	$\begin{aligned} & 35.9 \\ & 34.1 \\ & 35.3 \end{aligned}$	$\begin{aligned} & 1.43 \\ & 1.52 \end{aligned}$	$\begin{aligned} & 33.40 \\ & 38.45 \\ & 38.20 \end{aligned}$	35.6	1.081.081.07			
	41. 6640.79																35.7				
				43.68			34.39		. 95	49.27	32.2	1.53	49.70	32.7	1.52	36.95	33.9	1. 09			
September	Women's suits, coats, and skitts			Women's and children's undergarments:			Underwear and nightwear, except corsets			Corsets and allied garments			Millinery			Children's outerwear					
1951: A verage......--	$\begin{array}{r} \$ 63.83 \\ 64.94 \\ 67.32 \end{array}$	32.933.3	$\begin{array}{r} \$ 1.94 \\ 1.95 \end{array}$	$\begin{array}{r} \$ 41.22 \\ 43.62 \\ 44.66 \end{array}$	$\begin{aligned} & 36.8 \\ & 37.6 \end{aligned}$	$\begin{array}{r} \$ 1.12 \\ 1.16 \end{array}$	$\begin{array}{r} \$ 39.74 \\ 40.92 \end{array}$	$\begin{aligned} & 36.8 \\ & 37.2 \end{aligned}$	\$1.08	$\begin{array}{r} \$ 43.79 \\ 47.24 \end{array}$	$\begin{aligned} & 36.8 \\ & 38.1 \end{aligned}$	$\begin{array}{r} \$ 1.19 \\ 1.24 \end{array}$	$\begin{array}{r} \$ 57.60 \\ 58.60 \end{array}$	$\begin{aligned} & 36.0 \\ & 36.4 \end{aligned}$	$\begin{gathered} \$ 1.60 \\ 1.61 \end{gathered}$	$\$ 41.38$43.52	36.337.2	\$1.141.17			
									1.10												
1952: November-..-1953: Jecember_-.---	62.2768.36	32.6			$\begin{array}{llll}45.43 & 38.5 & 1.18\end{array}$			43.84	38.8	1. 13	48.01	38.1	1. 26	48.47	32.1	1. 51					
		34.7 1.97 35.2 2.02		$\begin{aligned} & 44.37 \\ & 43.66 \end{aligned}$	37.637.0	1.18 1.18	41.8941.10	38.836.736	1.12	48.13	$\begin{aligned} & 38.0 \\ & 37.6 \end{aligned}$	$\begin{aligned} & 1.27 \\ & 1.28 \end{aligned}$	55.1361.29	35.8	1. 54	43.64 43.55	$36.6 \quad 1.19$				
	+68.36			1.12					37.6					1.63	$\begin{array}{llll}\text { 4. } \\ 44.40 & 37.0 & 1.20\end{array}$						
1953: January	$\begin{aligned} & 7.15 \\ & 63.77 \\ & 54.65 \\ & 55.02 \\ & 62.51 \\ & 68.34 \\ & 69.22 \\ & 60.30 \end{aligned}$	$35.4 \quad 2.01$			$\begin{aligned} & 43.66 \\ & 44.63 \end{aligned}$	37.537.7	1.19	41.10 42.00	36.7 37.5	1.12	48.13 48.88	37.6 37.6	1.30	67.77	40.1	1.69	$\begin{array}{llll}45.50 & 37.6 & 1.21\end{array}$				
		32.78	1.95	44.8644.39	1. 19		42. 22	37.7	1. 12	49.52	37.8	40.4			1. 65	44. 51	37.4	1.19			
			$29.7 \quad 1.84$		37. 3	1.19	41. 55	37.1	1.12	49.39	37.7	1.31	51. 79	34.3	1. 51	42. 46	36.6	1.16			
		29.9	1.84	44.04	36.7	1.20	40.77	36.4	1.12	48.73	37.2	1.31	44.40	30.0	1.48	43.17	36.9	1.17			
		32.9	1.90	44. 04	36.7	1. 20	41. 47	36.7	1.13	47. 71	36.7	1.30	50.05	32.5	1. 54	45. 26	37.1	1. 22			
		34.0	2.01	41.54	35.5	1.17	39.29	35.4	1.11	44. 50	35.6	1.25	58.55	35.7	1.64	45. 51	37.0	1.23			
		34.1	2.03	43.42	36.8	1.18	40.63	36.6	1.11	47.86	37.1	1.29	64.13	38.4	1.67	45.38	36.3	1.25			
		30.0	2.01	42.83	36.3	1.18	40.77	36.4	1.12	45.85	36.1]	1.27	57.46	33.8	1.70	42.38	33.9	1.25			
					parel a	d othe	r flnishe	dextile	prod	cts-Co	ntinued					$\begin{aligned} & \text { Lumber } \\ & \text { produ } \\ & \text { furnit } \end{aligned}$	$\begin{aligned} & \text { er and } \\ & \text { ucts } \\ & \text { iture) } \end{aligned}$	$\begin{array}{r} \text { wood } \\ \text { (except } \end{array}$			
	$\begin{array}{\|c} \text { Miscella } \\ \text { and } \end{array}$	neous a accessor	ties	Other tile	fabricate product	$\begin{aligned} & \text { ed tex- } \\ & t_{\text {ts }} \end{aligned}$	Curtain and furni	ns, drap other ishings	peries, house-		tile bag		Can	vas prod		Total: wood cept	Lumb produ furnitu	er and cts (ex- re)			
1951: Average	\$42.44	36.9	\$1.15	\$44. 49	37.7	\$1. 18	\$39. 89	36.6	\$1.09	\$44.93	38.4	\$1.17	\$47. 12	39.6	\$1. 18	\$59.98	40.8	\$1.47			
1952: Average	43.15	37.2	1.16	46.46	38.4	1.21	42.67	38.1	1.12	47. 60	38.7	1.23	49.88	39.9	1.25	63.45	41.2	1. 54			
September	45.43	38.5	1.18	47.58	39.0	1.22	43.90	39.2	1.12	50.93	40.1	1.27	50.53	40.1	1. 26	67.23	41.5	1.62			
1952: November	45. 90	38.9	1. 18	49. 23	39.7	1. 24	44.97	39.8	1.13	49.39	39.2	1. 26	49. 52	39.3	1. 28	65. 92	41.2	1. 60			
1053. December	45. 08	38.2	1. 18	48. 50	38.8	1. 25	43. 82	38.1	1.15	50.04	39.4	1.27	50.30	39.3	1. 28	65.00	41.4	1. 57			
1953: January	43. 52	37. 2	1.17	48. 26	38.0	1. 27	42. 55	37.0	1.15	49.53	39.0	1.27	50.05	38.8	1. 29	63.09	40.7	1.55			
February	44.13	37.4 37	1. 18	47.63	37.8	1. 26	42. 90	37.3	1.15	48. 01	37.8	1.27	51.22	38.8	1.32	63.96	41.0	1. 56			
March	44. 72	37.9 37	1. 18	48. 64	38.3	1.27	43. 82	38. 1	1.15	48. 13	37.6	1. 28	49.67	38.5	1. 29	64.21	40.9	1. 57			
Apr	44. 01	37.3	1.18	47.75	37.6	1.27	42. 80	36. 9	1.16	47. 88	37. 7	1.27	50.70	39.0	1. 30	65. 19	41.0	1. 59			
June	44.27	37.2	1.19	48.13	37.6	1.2	41.	36.	1	49.	37.	1.3	52. 28	\%	1.30	66. 10	40.8	1.62			
July	43.07	36.5	1. 18	47.37	37.3	1.27	40.18	36.2	1.11	49.52	${ }_{37} 8$	1.	5.36	40.	1	6.		1. 63			
August	44.76	37.3	1.20	47.75	37.9	1. 26	43.17	38.2	1.13	49.65	37.9	1.31	50. 96	38.9	1.31	67.24	41.0	1.63			
September	44.17	36.5	1.21	46.49	36.9	1.26	41.81	37.0	1.13	49.14	37.8	1.30	50.05	38.5	1.30	66.83	40.5	1. 65			
						Lumb	and	od pr	cts	xcept	rniture))-Con	inued								
									Sawmi	ills and	planing	mills, g	eneral			Millwo	k,	wood,			
								nited Sta	tes		Sout			West			actural ducts:	wood			
1951: A verage	\$71. 53	39.3	\$1.82	\$59.13	40.5	\$1.46	\$59.54	40.5	\$1. 47	\$41. 36	42.2	\$0.98	\$76. 04	38.6	\$1.97	\$64. 02	42.4	\$1.51			
1952: Average	77. 68	41.1	1.89	63. 24	40.8	1. 55	63.65	40.8	1.56	43.03	42. 6	1.01	81. 51	39.0	2.09	66. 94	42.1	1.59			
September	82.19	41.3	1.99	66.91	41.3	1.62	67.73	41.3	1.64	43.96	43.1	1.02	85.54	39.6	2.16	68.95	42.3	1.63			
1952: November	81. 20	40.6	2.00	65. 76	41.1	1. 60	66. 42	41.0	1.62	43. 76	42.9	1.02	84.50	39.3	2.15	67.88	41.9	1.62			
December	76. 63	39.5	1. 94	64. 37	41.0	1. 57	65. 03	40. 9	1. 59	44. 17	43.3	1.02	82. 22	38.6	2.13	69. 01	42.6	1. 62			
1953: January.	76. 19	40.1	1. 90	62. 47	40.3	1. 55	63. 11	40. 2	1. 57	42. 42	42.0	1. 01	80.77	38.1	2.12	67. 65	41. 5	1. 63			
February	77.74	40.7	1. 91	63. 34	40.6	1. 56	63. 99	40.5	1. 58	42. 84	42.0	1.02	82.26	38.8	2.12	69.21	42.2	1. 64			
March	77. 18	40. 2	1.92	63. 43	40.4	1. 57	64. 08	40.3	1. 59	42. 53	41.7	1. 02	82.47	38.9	2.12	69.63	42.2	1.65			
April	79.78	39.3	2. 03	64.71	40.7	1.59	65. 37	40. 6	1. 61	43.76	42.9	1.02	82.64	38.8	2. 13	69. 63	42.2	1.65			
May	80.55	39.1	2.06	65. 61	40.5	1.62	66. 42	40.5	1.64	43. 16	41.9	1.03	84.24	39.0	2. 16	69.89	42.1	1. 66			
	84. 46	40.8	2.07	67.16	41.2	1. 63	67. 98	41.2	1. 65	43. 76	42. 9	1.02	85. 46	39.2	2.18	69.89	42.1	1.66			
July	83.84	40.5	2.07	65. 85	40.4	1.63	66. 66	40.4	1.65	43.98	42.7	1.03	83.11	38.3	2.17	68.31	41.4	1.65			
August....-	77.59 80.58	38.6 39.5	2.01 2.04	68.72 67.89	41.4 40.9	1.66 1.66	69. 58	41.4 40.9	1.68	43.99	42.3	1.04	88.48	40.4	2.19	68.31	41.4	1.65			
September	80.58	39.5	2.04	67.89	40.9	1.66	68.71	40.9	1.68							66.40	40.0	166			

See footnotes at end of table.

TABLE C-1: Hours and gross earnings of production workers or nonsupervisory employees ${ }^{1}$-Continued

[^50]Table C-1: Hours and gross earnings of production workers or nonsupervisory employees ${ }^{1}$ - Continued

Year and month	Manufacturing-Continued																	
	Printing, publishing, and allied industries-Continued																	
	Books			Commercial printing			Lithographing			Greeting cards			Bookbinding anḍ related industries			Miscellaneous publishing and printing services		
	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earn. ings	A $\vee \mathrm{g}$. wkly. earnings	Avg. wkly. hours	Avg. hrly. earnings	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earnings	Avg. wkly. earn- ings	Avg. wkly. hours	Avg. hrly. earn- ings	Avg. wkly. earn. ings	Avg. wkly. hours	A Vg . hrly. earnings	AVg. wkly. earn- ings	Avg. wkly. hours	A Fg . hrly. earnings
1951: A verage 1952: A verage September...-	\$67.32	39.6	\$1.70	\$75. 20	40.0	\$1.88	\$75. 79	40.1	\$1.89	\$43.47	37.8	\$1.15	\$62. 24	39.9	\$1.56	\$91.42	38.9	\$2.35
	71. 24	39.8	1.79	80.00	40.2	1.99	81.61	40.2	2.03	45.84	38.2	1.20	62.33	39.2	1.59	98.25	39.3	2. 50
	75.17	41.3	1.82	81.41	40.5	2.01	86.74	41.5	2. 09	45.72	38.1	1.20	63.20	39.5	1. 60	99.82	39.3	2. 54
1952: November... December	72. 18	40.1	1.80	81.20	40.2	2.02	84.87	41.2	2.06	47.80	39.5	1.21	65.69	40.3	1.63	100. 22	39.3	2.55
	73.85	40.8	1.81	83.64	40.8	2.05	83.64	40.8	2.05	47.09	38.6	1.22	66.26	40.4	1. 64	102.51	40.2	2. 55
1953: January	73.05	39.7	1.84	82. 42	40.4	2.04	82.37	39.6	2.08	47. 50	38.0	1.25	65.93	40.2	1. 64	102. 03	39.7	2. 57
	71.92	39.3	1.83	82.19	39.9	2.06	84. 44	40.4	2. 09	46. 62	37.0	1.26	65.11	39.7	1. 64	103. 36	39.6	2.61
	74. 77	40.2	1.86	83.84	40.5	2. 07	84.24	40.5	2. 08	48. 51	38.2	1. 27	65.76	40.1	1. 64	106. 37	40.6	2. 62
	74.03	39.8	1.86	84.02	40.2	2. 09	85. 06	40.7	2. 09	48. 63	37.7	1.29	65. 74	39.6	1. 66	102.56	39.6	2. 59
	74. 99	40.1	1.87	83.81	40.1	2. 09	85.07	40.9	2.08	48.50	37.6	1.29	66.63	39.9	1.67	101.39	39.3	2. 58
	73. 45	39.7	1.85	84.00	40.0	2. 10	85.46	40.5	2. 11	46. 75	37.1	1.26	66. 70	39.7	1.68	102.83	39.4	2. 61
	72.35 74.37	38.9 40.2	1.86	83.60	40.0	2. 09	87.34	41.2	2.12	45. 23	35.9	1. 26	65.86	39.2	1. 68	103. 23	39.4	2.62
	$\begin{array}{r}72.89 \\ \hline\end{array}$	39.4	1.85 1. 85	84.21 85.20	40.0	2.13	87.56 87.53	41.3 40.9	2.14 2.14	47.75 47.71	3.6 36.7	1. 1.30	67.09 66.47	39.7 39.1	1. 1.69	105.07 107.05	39.5 39.5	2.66 2.71
	Chemicals and allied products																	
	Total: Chemicals and allied products			Industrial inorganic chemicals ${ }^{2}$			Alkalies and chlorine			Industrial organic chemicals ${ }^{2}$			Plastics, except synthetic rubber			Synthetic rubber		
1951: A	\$67.81	41.6	\$1.63	\$74.88	41.6	\$1.80	\$74.93	41.4	\$1.81	\$71.98	40.9	\$1.76	\$72.66	42.0	\$1.73	\$78. 31	41.0	\$1.91
	70.45	41.2	1.71	77.08	41.0	1.88	76.52	40.7	1.88	75.11	40.6	1.85	76.31	41.7	1.83	80.20	40.3	1.99
	71.04	41.4	1.72	77.71	40.9	1.90	76.38	40.2	1. 90	76. 92	40.7	1.89	77.89	42.1	1.85	82. 21	40.3	2. 04
1952: November..... December	72.56	41.7	1.74	79.90	41.4	1.93	79.04	41.6	1.90	78.06	41.3	1.89	82.40	43.6	1.89	83.03	40.5	2.05
	72. 98	41.7	1.75	79.87	41.6	1. 92	79. 46	41.6	1. 91	78. 28	41.2	1. 90	81.22	43.2	1.88	85.08	41.1	2.07
1953: January	72. 51	41.2	1.76	79.54	41.0	1.94	79. 27	41.5	1.91	77.33	40.7	1.90	80.94	42.6	1.90	84.04	40.6	2.07
	73.10	41.3	1.77	80.36	41.0	1.96	79.71	41.3	1. 93	77.38	40.3	1.92	81.13	42.7	1. 90	85. 68	40.8	2.10
	73.87	41.5	1.78	80.56	41.1	1.96	79.90	41.4	1. 93	79.15	40.8	1.94	81.56	42.7	1.91	85.86	40.5	2.12
	74.29	41.5	1. 79	81.56	41.4	1.97	81.32	41.7	1.95	79.76	40.9	1.95	81.94	42.9	1. 91	86. 51	41.0	2.11
	75.12	41.5	1.81	81.77	41.3	1.98	80.75	41.2	1. 96	79.73	41.1	1.94	83.42	43.0	1.94	87.34	41.2	2.12
	75.35	41.4	1.82	84.00	42.0	2.00	87.60	43.8	2. 00	80.36	41.0	1.96	83.85	43.0	1.95	86.71	40.9	2.12
	76.78	41.5	1.85	83.21	41.4	2.01	84. 64	41.9	2.02	81.59	41.0	1.99	82.68	42.4	1.95	87.91	40.7	2.16
	76.41	41.3	1.85	83. 23	40.8	2. 04	82. 62	40.7	2.03	80.59	40.7	1.98	83.73	42.5	1.97	88.51	40.6	2.18
	77.98	41.7	1.87	86.11	41.2	2.09	84.46	40.8	2.07	83.85	40.9	2.05	85.00	42.5	2.00	91.30	40.4	2.26
	Synthetic fibers			Explosives			Drugs and medicines			Soap, cleaning and polishing preparations ${ }^{2}$			Soap and olycerin			Paints, pigments, and fllers ${ }^{2}$		
1951: Av	\$62.65	39.4	\$1.59	\$67.77	40.1	\$1. 69	\$62.47	41.1	\$1. 52	\$70.89	41.7	\$1.70	\$77.19	41.5	\$1.86	\$68. 55	41.8	\$1.64
	66.47	39.8	1.67	70.09	39.6	1.77	63.44	39.9	1.59	73.93	41.3	1.79	81.14	41.4	1.96	71.38	41.5	1.72
	67.94	40.2	1. 69	71.89	39.5	1.82	63.12	39.7	1. 59	77.23	42.2	1.83	86.03	42.8	2. 01	71.86	41.3	1.74
1952: N	67.43	39.9	1.69	72.58	40.1	1.81	64.06	39.3	1.63	76.68	41.9	1.83	84.00	42.0	2.00	73.39	41.7	1.76
Decembe	67.43	39.9	1. 69	73.12	40.4	1.81	64.62	39.4	1. 64	78.07	42.2	1.85	85.06	41.9	2.03	74.27	42.2	1.76
1953: January	67.32	39.6	1. 70	71.37	39.0	1.83	64. 12	39.1	1. 64	77.93	41.9	1.86	85. 27	41.8	2.04	73.57	41.8	1. 76
	66.69 68.85	39.0	1. 71	71.00	38.8	1.83	68.39	41.2	1. 66	78.35	41.9	1.87	85.28	41.6	2.05	74.64	41.7	1. 79
	68. 85	39.8	1.73	73.47	39.5	1.86	68.06	41.0	1. 66	78.81	41.7	1.89	86.11	41.4	2. 08	75.42	41.9	1.80
	68.68	39.7	1.73	74.07	39.4	1.88	68.23	41.1	1. 66	77.68	41.1	1.89	85. 28	41.0	2.08	76.02	42.0	1.81
	69.37	40.1	1.73	73.87	39.5	1.87	68.06	41.0	1. 66	76.89	40.9	1.88	84.04	40.6	2.07	78.32	42.8	1.83
	69.77	40.1	1.74	73. 53	38.7	1.90	66. 90	40.3	1. 66	77.08	41.0	1.88	83.84	40.7	2. 06	76. 20	42.1	1.81
	71.38 70.62	40.1 39.9	1. 78	76. 02	39.8	1.91	68. 28	40.4	1. 69	76. 70	40.8	1.88	83. 43	40.5	2.06	76.31	41.7	1.83
	$\begin{array}{r}70.62 \\ 74.40 \\ \hline\end{array}$	$\begin{array}{r}39.9 \\ 40.0 \\ \hline\end{array}$	1.77 1.86	$\begin{array}{r}75.79 \\ 77.74 \\ \hline\end{array}$	40.1 40.7	1.89 1.91	73.10 73.44	43.0 43.2	1.70 1.70	78.66 79.68	41.4 41.5	1.90 1.92	85.48 87.78	40.9 41.6	2.09 2.11	75.58 76.41	41.3 41.3	1.83 1.85
	Paints, varnishes, lacquers, and enamels			Gum and wood chemicals			Fertilizers			Vegetable and animal oils and fats ${ }^{2}$			Vegetable oils			Animal oils and fats		
1851: A verage \qquad 1952: A verage \qquad September	\$67. 72	41.8	\$1. 62	\$56. 55	42.2	\$1. 34	\$52. 33	42.2	\$1. 24	\$59.34	46.0	\$1. 29	\$55. 22	46.4	\$1.19	\$68. 40	45.0	\$1.52
	70.47	41.7	1. 69	59.36	42.1	1.41	56. 23	42.6	1.32	61.51	45.9	1.34	57.07	46.4	1.23	70.34	44.8	1.57
	70.97	41.5	1.71	59.21	41.7	1. 42	57. 51	42.6	1.35	61.10	47.0	1. 30	57. 12	48.0	1.19	69.73	44.7	1.56
1952: November...December.....	72.49	41.9	1.73	59.92	41.9	1.43	56.15	41.9	1.34	62.27	47.9	1.30	58.19	48.9	1.19	73.80	45.0	1. 64
	73.18	42.3	1.73	59.86	41.0	1.46	57.53	42.3	1.36	61.57	47.0	1.31	56.88	47.4	1.20	73.76	46.1	1. 60
1953: January ${ }^{\text {February }}$ March	72.91	41.9	1.74	62.25	41.5	1. 50	57.12	42. 0	1.36	61.18	46.0	1.33	56.73	46.5	1. 22	71.84	44.9	1.60
	73. 57	41.8	1.76	61.09	41.0	1. 49	57.24	42.4	1.35	61.74	45.4	1.36	56.75	45.4	1.25	73.39	45.3	1. 62
	74.76	42.0	1.78	61.80	41.2	1.50	59. 00	43.7	1.35	62.83	45.2	1.39	58.11	45.4	1.28	73.02	44.8	1. 63
	75. 54	42.2	1.79	61.65	41.1	1. 50	60.69	44.3	1.37	63.35	44.3	1. 43	58.21	44. 1	1.32	73.02	44.8	1. 63
	77.65 -4.76	42.9	1.81	64. 22	41.7	1.54	60.63	42.7	1.42	65.86	44.2	1.49	59.62	43.2	1.38	75. 41	45.7	1.65
	74. 70	42.0 41.5	1.78	64.02 66.50	41.3	1. 55	59.08	41.9	1.41	67.49	44.4	1. 52	62.35	43.3	1.44	75. 28	45.9	1.64
	74. 16	41.5 41.2	1.80 1.80	64.57	42.9 42.2	1. 55	59.92 58.65	42.2 41.3	1. 1.42	67.18 65.10	44.2 43.4	1.52 1.50	61.92 60.07	42.7 42.3	1. 1.45	73.92 73.06	46.2 45.1	1.60 1.62
	73.98	41.1	1.80	68.79	42.2	1.63	61.03	41.8	1.46	65.10	46.5	1.40	59.56	46.9	1. 27	75. 86	45.7	1. 66

See footnotes at end of table.

Table C-1: Hours and gross earnings of production workers or nonsupervisory employees ${ }^{1}$ - Continued

Year and month	Manufacturing-Continued																	
	Chemicals and allied products-Continued									Products of petroleum and coal								
	Miscellaneous chemicals ${ }^{2}$			Essential oils, perfumes, cosmetics			Compressed and liquified gases			Total: Products of petroleum and coal			Petroleum refining			Coke and other petroleum and coal products		
	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earnings	Avg. wkiy. earnings	Avg. wkly. hours	Avg. hrly. earnings	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earnings	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earnings	Avg. wkly. earnings	Avg. wkly. hours	Avg. brly. earnings	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earn-
1951: Average 1952: Average September.	\$63. 50	41.5	\$1. 53	\$51. 74	38.9	\$1.33	\$72.42	42.6	\$1.70	\$80.98	40.9	\$1.98	\$84. 66	40.7	\$2. 08	\$69. 39	41.8	\$1.66
	65.35	41.1	1. 59	54. 49	39.2	1.39	73. 92	42.0	1.76	84.85	40.6	2. 09	88. 44	40.2	2. 20	73. 74	41.9	1. 76
	65.12	40.7	1.60	53.41	38.7	1.38	75.12	42.2	1.78	88. 99	41.2	2.16	91.94	40.5	2.27	79.42	43.4	1.83
1952: November December	67.48	41.4	1. 63	56. 37	39.7	1.42	76. 14	42. 3	1.80	87.94	40.9	2.15	91.98	40.7	2.28	75.89	41.7	1.82
	68.06	41.5	1. 64	56. 09	39.5	1. 42	77.11	42.6	1.81	88.10	40.6	2.17	92.34	40.5	2. 28	74. 62	41.0	1.82
1953: January	68.39	41.2	1. 66	56.12	38.7	1.45	76.62	42.1	1.82	88.10	40.6	2.17	91.94	40.5	2.27	75.44	41.0	1.84
	68.88	41.0	1.68	55.54	38.3	1.45	80.65	42.9	1.88	87.45	40.3	2.17	91.03	40.1	2. 27	75. 62	41.1	1.
	69.38	41.3	1. 68	57.18	38.9	1.47	79.95	42.3	1.89	87.89	40.5	2.17	91.71	40.4	2.27	75.30	40.7	1.85
	68. 95	40.8	1. 69	56.83	38.4	1. 48	79.38	42.0	1.89	88. 29	40.5	2.18	91.88	40.3	2. 28	76.45	41.1	1. 86
	68.95	40.8	1. 69	56. 92	38.2	1. 49	78. 73	42.1	1.87	89. 60	41.1	2.18	92.57	40.6	2.28	79.48	42.5	1.87
	69. 70	41.0	1. 70	57.37	38.5	1. 49	79.38	42.0	1.89	88. 94	40.8	2.18	91.94	40.5	2.27	78.58	41.8	1.88
	69.60	40.7	1.71	56.17	37.7	1.49	81.18	42.5	1.91	92.32	41.4	2.23	96.00	41.2	2.33	80.60	42.2	1.91
	70.00	40.7	1.72	57.00	38.0	1. 50	81.94	42.9	1.91	91.43	41.0	2.23	94.13	40.4	2.33	83.61	43.1	1.94
	70.76	40.9	1.73	58.61	39.6	1. 48	83.14	43.3	1.92	94.35	41.2	2.29	97.27	40.7	2.39	84.08	42.9	1.96
	Rubber products												Leather and leather products					
	Total: Rubber products			Tires and inner tubes			Rubber footwear			Other rubber products			Total: Leather and leather products			Leather: tanned, curried, and finished		
1951:	\$68. 61	40.6	\$1. 69	\$78. 01	39.6	\$1. 97	\$57. 81	41.0	\$1.41	\$63. 19	41.3	\$1. 53	\$46. 86	36.9	\$1. 27	\$60. 61	39.1	\$1. 55
	74. 48	40.7	1.83	85.65	40.4	2.12	62. 22	40.4	1.54	66. 58	41.1	1.62	50. 69	38.4	1.32	64. 48	39.8	1. 62
	75.21	41.4	1.83	86.28	40.7	2.12	62.99	40.9	1.54	67.65	41.5	1.63	51.21	38.5	1.33	65. 93	40.2	1.64
1952: November-.. December	76.86	41.1	1.87	87.23	40.2	2. 17	68.30	41.9	1. 63	69.81	41.8	1.67	50.76	37.6	1.35	67.80	40.6	1.67
	79.19	41.9	1.89	90.42	41.1	2. 20	66.49	41.3	1. 61	72. 33	42.8	1. 69	53. 46	39.6	1.35	69.22	41.2	1. 68
1953: January.	78.09	41.1	1.90	89.24	40.2	2.22	64.96	40.1	1. 62	71.74	42.2	1.70	53.06	39.3	1.35	67. 70	40.3	1.68
	79.30	41.3	1. 92	91.80	40.8	2.25	67.57	41.2	1. 64	71.06	41.8	1.70	53.19	39.4	1.35	67.70	40.3	1.68
	80.29	41.6	1.93	93. 83	41.7	2.25	67.57	41.2	1.64	71.72	41.7	1.72	53.84	39.3	1.37	67.03	39.9	1.68
	79.32	41.1	1. 93	91. 58	40.7	2. 25	67.82	41.1	1. 65	71.21	41.4	1. 72	51.79	37.8	1. 37	67.60	40.0	1. 69
	78.18	40.3	1. 94	91.30	40.4	2.26	60.31	37.0	1. 63	70.93	41.0	1.73	51.61	37.4	1.38	69.19	40.7	1. 70
	78.55	40.7	1. 93	89. 20	40.0	2. 23	68. 06	41.0	1. 66	71.28	41.2	1.73	52.33	38.2	1.37	69. 26	40.5	1. 71
	78.98	40.5	1. 95	90.45	40.2	2.25	68. 64	41.1	1.67	70.64	40.6	1.74	51.82	38.1	1. 36	68.46	39.8	1.72
	75. 84	39.5	1.92	86.69	38.7	2.24	65. 69	40.3	1.63	68.80	40.0	1. 72	51.92	37.9	1.37	69. 20	40.0	1.73
	73.15	38.5	1.90	80.44	36.4	2.21	63.68	39.8	1.60	69.37	40.1	1.73	49.48	35.6	1.39	68.60	39.2	1.75
	Leather and leather products-Continued																	
	Industrial leather belting and packing			Boot and shoe cut stock and findings			Footwear (except rubber)			Luggage			Handbags and small leather goods			Gloves and miscellaneous leather goods		
1951:	\$64. 50	43.0	\$1. 50	\$46. 25	37.6	\$1. 23	\$44. 28	36.0	\$1. 23	\$53. 72		\$1. 36		37.9	\$1.15	\$42. 67	37.1	\$1.15
	64.12	41.1	1. 56	49. 40	38.9	1.27	48. 26	38.0	1.27	56.84	40.6	1.40	45. 08	38.2	1.18	44.15	37.1	1.19
	67.26	42.3	1.59	48.90	38.2	1.28	48.77	38.1	1.28	57.39	40.7	1. 41	46.34	38.3	1.21	44.74	37.6	1.19
1952: Novem	64. 43	41.3	1. 56	47.97	36.9	1. 30	47.19	36.3	1. 30	62.75	42.4	1.48	48. 12	40.1	1.20	45. 60	38.0	1. 20
	67. 31	42. 6	1. 58	51.73	40.1	1. 29	51. 09	39.3	1. 30	61.17	41.9	1.46	46. 05	38.7	1.19	45. 01	37.2	1.21
	69.23	43.0	1.61	51.35	39.5	1.30	51.48	39.3	1.31	57.34	40.1	1.43	45.36	37.8	1.20	43.92	36.3	1.21
	70.09	43.0	1.63	51.22	39.4	1.30	51.61	39.4	1.31	56.16	39.0	1. 44	48. 09	39.1	1.23	44.28	36.9	1.20
	71.94	43.6	1.65	51.35	39.2	1.31	52.00	39.1	1.33	59.28	40.6	1.46	48. 31	39.6	1.22	44.03	37.0	1.19
	68.22	41.6	1.64	50. 29	38.1	1. 32	49.10	37.2	1.32	58.75	40.8	1.44	45.87	37.6	1.22	44.77	37.0	1. 21
	67.39	41.6	1.62	49. 37	37.4	1. 32	48. 81	36.7	1.33	57.60	40.0	1.44	44.04	36.4	1.21	43.92	36.3	1.21
	64.88	40.3	1. 61	51. 74	38.9	1. 33	49.90	37.8	1.32	55. 57	37.8	1.47	46. 36	38.0	1. 22	44.17	36. 5	1.21
	63.68	39.8	1.60	50.95	38.6	1.32	49.65	37.9	1.31		38.8	1.45	45. 99	37.7	1.22	42. 83	35.4	1.21
	69. 96	42.4	1.65	50. 94	38.3	1.33	49.24	37.3	1.32	56.30	39.1	1.44	47. 58	39.0	1.22	44.53	36.5	1.22
	68.06	41.5	1.64	47.35	35.6	1.33	45.89	34.5	1.33	59.70	39.8	1.50	44.53	36.2	1.23	42.94	35.2	1.22
	Stone, clay, and glass products																	
	Total: Stone, clay, and giass products			Flat glass			Glass and giassware, pressed or blown ${ }^{3}$			Glass containers			Pressed and blown plass			Glass products made of purchased glass		
1951: Ave	\$63. 91	41.5	\$1. 54	\$83.85	40.9	\$2. 05	\$59. 20	40.0	\$1. 48	\$60. 55	40.1	\$1. 51	\$57. 46	39.9	\$1. 44	\$53. 19	40.6	\$1.31
	6617	41.1	1.61	86.05	40.4	2. 13	62.09	39.8	1. 56	63. 12	39.7	1. 59	60.89	39.8	1. 53	56.30	40.8	1.38
	67.48	41.4	1.63	86.55	39.7	2.18	63.12	39.7	1.59	64.80	40.0	1.62	61.07	39.4	1. 55	57.13	41.1	1. 39
1952: November	68.97	41.3	1. 67	97.81	41.8	2. 34	64.64	39.9	1.62	65. 61	40.5	1.62	63. 67	39.3	1. 62	60.91	42.3	1. 44
1953: $\begin{aligned} & \text { Decembe } \\ & \text { January } \\ & \text { February } \\ & \text { March.. } \\ & \text { April. } \\ & \text { May-... } \\ & \text { June... } \\ & \text { July_-.- } \\ & \text { August } \\ & \text { Septemb }\end{aligned}$	69. 31	41.5	1.67	95. 71	40.9	2.34	65. 53	40.7	1. 61	67.08	40.9	1. 64	63. 59	40.5	1. 57	63. 22	43.9	1. 44
	68. 21	40.6	1.68	99.53	41.3	2.41	64.15	39.6	1. 62	65.34	39.6	1.65	62.41	39.5	1.58	60. 06	42.0	1. 43
	69. 29	41.0	1. 69	98. 18	41.6	2. 36	86. 23	39.9	1. 66	66. 63	39.9	1.67	65.27	39.8	1.64	60.20	42.1	1.43
	70.21	41.3	1. 70	98.47	41.9	2. 35	67.80	40.6	1.67	69.05	41.1	1.68	66.40	40.0	1. 66	61.17	41.9	1.46
	70.28	41.1	1.71	97.63	41. 9	2. 33	67.89	39.7	1.71	70.58	40.1	1. 1.76	64. 68	39.2	1.65	59.57	40.8	1.46
	70.86	41.2	1.72	101. 52	42.3	2. 40	68.46	39.8	1. 72	71.46	40.6	1.76	64.57	38.9	1. 66	59.18	41.1	1. 44
	70.69	41.1	1. 72	95. 65	40.7	2. 35	68.40	40.0	1. 71	71.23	40.7	1. 75	64.91	39.1	1. 66	58.75	40.8	1. 44
	70.58	40.8	1.73	96. 46	40.7	2. 37	67.08	39.0	1. 72	67. 73	38.7	1.75	65.80	39.4	1.67	57. 28	39.5	1.45
	71.51	41.1	1.74	94.87	40.2	2. 36	68.63	39.9	1. 72	71.51	40.4	1.77	64.85	39.3	1. 65	59.13	40.5	1. 46
	71.10	40.4	1. 76	91.96	38.8	2.37	69.87	39.7	1.76	69.81	39.0	1.79	69.66	40.5	1. 72	58.80	40.0	1.47

See footnotes at end of table.

TABLE C-1: Hours and gross earnings of production workers or nonsupervisory employees ${ }^{1}$-Continued

Year and month	Manufacturing-Continued																	
	Stone, clay, and glass products-Continued																	
	Cement, hydraulic			Structural clay products ${ }^{2}$			Brick and hollow tile			Hhoor and wall tile			Sewer pipe			Clay refractories		
	Avg. wkly. ings	Avg. wkly. hours	Avg. brly. earn- ings	Avg. wkly. earnings	A Vg . wkly. hours	Avg. hrly. earn- ings	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earnings	Avg. wkly. earnings	A vg. wkly. hours	A vg. hrly. earnings	A $\nabla \mathrm{g}$. wkly. earnings	Avg. wkly. hours	Avg. hrly. earn. ings	A vg . wkly earnings	Avg. wkly. hours	Avg. hrly. earnings
1951: Average........ 1952: A verage September	\$65. 21	41.8	\$1. 56	\$60. 03	41.4	\$1. 45	\$57. 92	42.9	\$1. 35	\$60. 25	39.9	\$1. 51	\$58. 15	40.1	\$1. 45	\$63. 76	40. 1	\$1. 59
	67.72	41.8	1. 62	60.09	40.6	1.48	58.51	42.4	1.38	62. 64	39.9	1. 57	59. 98	39.2	1.53	${ }^{61} 60$	38.5	1. 60
	69.22	41.7	1.66	61.35	40.9	1.50	60.49	42.9	1.41	63.76	40.1	1.59	61.38	39.6	1. 55	59.72	37.8	1.58
1952: Novem	71. 23	41.9	1. 70	61.51	40.2	1.53	59.36	42.1	1. 41	63. 68	39.8	1. 60	62.09	39.3	1. 58	63.41	37.3	1. 70
	71.23	41.9	1. 70	61.81	40.4	1. 53	58.80	42.0	1. 40	64.87	398	1.63	63.04	39.9	1. 58	64. 64	37.8	1. 71
1953: January $\begin{aligned} & \text { Februa } \\ & \text { March } \\ & \text { April } \\ & \text { May } \\ & \text { June.- } \\ & \text { July } \\ & \text { August } \\ & \text { Septem }\end{aligned}$	70.97	41.5	1. 71	60.28	39.4	1. 53	56.30	40.8	1.38	65. 20	40.0	1.63	59.59	38.2	1. 56	63.41	37.3	1.70
	70.55	41.5	1. 70	61. 05	39. 9	1. 53	57.13	41. 4	1.38	65. 44	39.9	1. 64	60.68	38.9	1. 56	64.43	37.9	1. 70
	71.40	42.0	1.70	62. 37	40.5	1. 54	59. 50	42.2	1. 41	66. 33	40.2	1.65	62.81	395	1. 59	65. 32	38.2	1. 71
	71.23	41.9	1. 70	63.09	40.7	1. 55	60.92	42. 6	1.43	66. 40	40.0	1. 66	64.08	40. 3	1. 59	64. 26	37.8	1. 70
	72.38	41.6	1.74	63.24	40.8	1. 55	60.35	42.2	1. 43	66. 80	40.0	1.67	64. 88	40.3	1.61	65. 28	38.4	1.70
	73.99	41.8	1.77	64. 74	41.5	1. 56	62.64	43.2	1. 45	67.97	40.7	1.67	66. 01	41.0	1.61	66.13	38. 9	1. 70
	76. 26	41.9	1.82	65.41	41.4	1.58	62.35	43.0	1.45	68.64	41.1	1.67	66.91	41.3	1.62	68.20	38.1	1. 79
	75. 00	41.9	1.79	65.57	41.5	1. 58	62.93	43.1	1.46	68.97	41.3	1. 67	66. 10	40.8	1. 62	69. 24	38.9	1. 78
	77. 56	41.7	1.86	64.40	40.5	1. 59	61.89	42.1	1.47	69.12	40.9	1.69	65.11	39.7	1.64	66.93	37.6	1. 78
	Pottery and related products			Concrete, gypsum, and plaster products ${ }^{2}$			Concrete products			Cut-stone and stone products			Miscellaneous nonmetallic mineral products ${ }^{\prime}$			Abrasive products		
1951: A	\$57. 91	38.1	\$1. 52	\$68.25	45.2	\$1. 51	\$67 50	45. 0	\$1. 50	\$58, 93	41.5	\$1. 42	\$68. 46	42.0	\$1. 63	\$72. 28	41.3	\$1. 75
	61.15	38.7	1. 58	70.65	45.0	1. 57	70. 22	45.3	1. 55	60.01	41.1	1. 46	69.83	40.6	1.72	73.45 71.98	39.7 38	1.85 1.86
	62.08	38.8	1.60	72. 66	45.7	1. 59	72. 22	46.0	1.57	61.17	41.9	1.46	70.76	40.9	1.73	71.98	38.7	1.86
1952: Novem	63. 52	39.7	1.60	71.32	44.3	1.61	70.31	44.5	1. 58	62.88	41.1	1. 53	72.39	40.9	1.77	79.07	41.4	1.91
	63. 11	39.2	1,61	72.45	45.0	1.61	71.87	45. 2	1.59	62.02	40.8	1. 52	72.92	41.2	1. 77	81.67	42. 1	1.94
	62.65	38.2	1. 64	69.12	43. 2	1.60	67.82	43.2	1. 57	60.85	40.3	1. 51	73. 16	41.1	1.78	81.06	42.0	1.93
	63. 96	39.0	1.64	70.79	43.7	1. 62	69. 64	43.8	1. 59	62. 17	40.9	1. 52	73. 62	40.9	1.80	80.54	41.3	1.95
	62.87	38.1	1.65	72.32	44.1	1. 64	71. 16	44.2	1.61	62.88	41.1	1.53	74.57	41.2	1.81	81.51	41.8	1.95
	61.92	37.3	1.66	71.88	44.1	1. 63	71.16	44.2	1. 61	64.90	41.6	1. 56	75.30	41.6	1. 81	82. 52	42.1	1. 96
	61.09	36.8	1.66	73. 54	44.3	1.66	72.82	44.4	1.64	64.17	41.4	1. 55	73.67	40.7	1.81	79.59	40.4	1.97
	60.76	36.6	1.66	73.37	44.2	1. 66	71. 72	44.0	1.63	64.02	41.3	1. 55	73.35	40.3	1.82	78.01	39.6	1.97
	59.57	36.1	1.65	76.33	44.9	1. 70	75.77	45.1	1.68	64.79	41.8	1.55	74.34	40.4	1.84	78.61	39.5	1. 99
	59.07	35.8	1.65	74.56	43.6	1.71	72.31	43.3	1.67	63.96	41.0	1.56	74.40	40.0	1.86	73.68	37.4	1.97
	Stone, clay, and glass products-Con.						Primary metal industries											
	Asbestos products			Nonclay refractories			Total: Primary metal industries			Blast furnaces, steelworks, and rolling mills			Blast furnaces, steebworks, and rolling mills, except electrometallurgical products			Electrometallurgical products		
1951: A verage.-.-... 1952: A verage........ September.	\$69.44	43. 4	\$1. 60	$\begin{array}{r} \$ 66.78 \\ 65.70 \\ 66.96 \end{array}$	38.636.337.2	$\begin{array}{r} \$ 1.73 \\ 1.81 \end{array}$	$\begin{array}{r} \$ 75.12 \\ 77.33 \\ 81.79 \end{array}$	$\begin{aligned} & 41.5 \\ & 40.7 \end{aligned}$	$\begin{array}{r} \$ 1.81 \\ 1.90 \end{array}$	$\begin{array}{r} \$ 77.30 \\ 79.60 \\ 87.12 \end{array}$	40.9 40.0	$\$ 1.89$1.99	$\begin{array}{r} \$ 77.30 \\ 79.60 \end{array}$	$\begin{array}{ll} 40 & 9 \\ 40 & 0 \end{array}$	$\begin{array}{r} \$ 1.89 \\ 1.99 \end{array}$	$\begin{array}{r} \$ 74.46 \\ 76.04 \end{array}$	41.641.1	$\$ 1.79$1.85
	71.5774.13	42.6	1.68															
		43.1	1.72			1.80		41.1	1.99		40.9	2. 13	87.12	40.9	2. 13	76.48	40.9	1.87
1952: November-. December	74. 9974.21	43.6	1.72	$\begin{aligned} & 66.05 \\ & 69.91 \end{aligned}$	$\begin{aligned} & 34.4 \\ & 36.6 \end{aligned}$	1.92	82.8084.02	$41.4 \quad 2.00$		$\begin{aligned} & 86.31 \\ & 86.51 \end{aligned}$	41.1	2.10	86.31	41.1	2. 10	79.07	41.4	1.91
		43.4	1.71			1. 91		41.8	2.01		41.0	2.11	86. 51	41.0	2.11	79.87	41.6	1.92
1953: January	72. 58	42.2	1.72	71. 96	36. 9	1.95	84. 65	41.7	2. 03	89.01	41.4	2.15	89.01	41.4	2.15	80.29	41.6	1.93
		41.9	1. 74	74.65	37. 7	1. 98	83. 21	41.4	2. 01	85. 89	40.9	2. 10	85.89	40.9	2.10	80.51	41.5	1. 94
	72.91 75.08	42.9	1.75	71. 20	367	1.94	84. 23	41.7	2.02	85. 89	40.9	2. 10	85.89	40. 9	2. 10	79.30	41.3	1. 82
	76. 7278.04	43. 1	1. 78	72.36	37.3	1. 94	83. 22	41.2	2. 02	84. 63	40.3	2. 10	84.63	40.3	2.10	79.10	41.2	1. 92
		43.6	1.79	71. 00	36. 6	1.94	83.84	41.3	2.03	86.72	41.1	2.11	86.72	41.1	2.11	79. 95	41.0	1.95
	$\begin{aligned} & 78.04 \\ & 7.43 \\ & 77.51 \\ & 75.65 \\ & 76.32 \end{aligned}$	43.5	1.78	68.35	35.6	1. 92	84.87	41.4	2.05	87. 53	40.9	2.14	87.53	40.9	2.14	79.95	41.0	1.95
		43.3	1.79	70.72	35.9	1.97	85. 07	40.9	2.08	89.76	40.8	2. 20	89. 76	40.8	2. 20	83.82	41.7	2.01
		42.5	1.78	71.40	35.7	2. 00	85. 28	41.0	2. 08	90.64	41.2	2. 20	90.64	41.2	2. 20	81. 99	41.2	1. 99
		42.4	1.80	72.36	36.0	2. 01	85.65	40.4	2.12	91.35	40.6	2.25	91.35	40.6	2.25	86. 29	42.3	2.04
	Primary metal industries-Continued																	
	Iron and steel foundries ${ }^{2}$			Gray-iron foundries			Malleable-iron foundries			Steel foundries			$\begin{array}{\|cc\|} \hline \text { Primary } & \text { smelting } \\ \text { and } & \text { refining of } \\ \text { nonferrous metals }{ }^{2} \\ \hline \end{array}$			Primary smelting and refining of copper, lead, and zinc		
1951: Average.......	$\begin{array}{r} \$ 71.66 \\ 72.22 \\ 73.80 \end{array}$	42.4	1. 1.69	$\$ 70.05$69.8972.69	$\begin{aligned} & 42.2 \\ & 40.4 \end{aligned}$	\$1. 66	$\begin{array}{r} \$ 72.07 \\ 70.56 \end{array}$	$\begin{aligned} & 41.9 \\ & 39.2 \end{aligned}$	$\begin{array}{r} \$ 1.72 \\ 1.80 \end{array}$	$\begin{array}{r} \$ 75.86 \\ 77.70 \end{array}$	$\begin{aligned} & 43.1 \\ & 42.0 \end{aligned}$	\$1. 76	$\begin{array}{r} \$ 69.97 \\ 75.48 \end{array}$	41.441.7	$\begin{array}{r} \$ 1.69 \\ 1.81 \end{array}$	$\begin{array}{r} \$ 69.38 \\ 75.06 \end{array}$	41.3	$\$ 1.68$1.801.83
1952: Average......--		40.841.0										1.85					41.7	
			1. 80		41.3	1.76	73.82	39.9	1.85	75. 67	40.9	1.85	77.56	41.7	1.86	76.49	41.8	1.83
1952: Novemb	74.30	40.6	1.831.851	$\begin{aligned} & 71.91 \\ & 73.75 \end{aligned}$	$\begin{aligned} & 40.4 \\ & 41.2 \end{aligned}$	$\begin{aligned} & \text { 1. } 78 \\ & \text { 1. } 79 \end{aligned}$	$\begin{aligned} & 75.17 \\ & 76.63 \end{aligned}$	$\begin{aligned} & 40.2 \\ & 41.2 \end{aligned}$	$\begin{aligned} & 1.87 \\ & 1.86 \end{aligned}$	$\begin{aligned} & 79.10 \\ & 83.10 \end{aligned}$	$\begin{aligned} & 41.2 \\ & 42.4 \end{aligned}$	1.921.96	$\begin{aligned} & 77.79 \\ & 78.58 \end{aligned}$	$\begin{aligned} & 41.6 \\ & 41.8 \end{aligned}$	$\begin{aligned} & 1.87 \\ & 1.88 \end{aligned}$	76.8677.89	42.042.1	$\begin{aligned} & 1.83 \\ & 1.85 \end{aligned}$
1953: Danuary	$\begin{aligned} & 76.96 \\ & 74.89 \end{aligned}$	41.640.7																
			1.84	72. 32	40.4	1. 79	75. 70	40.7	1.86	79.528129	41.2	1.93	79. 61	$41.9 \quad 1.90$		77.89 42.1 1.85 78.54 42.0 1.87		
February	76.6378.96	41.242.0		$\begin{aligned} & 73.49 \\ & 76.49 \end{aligned}$	40.641.8	1.811.881.81	80.79	42.3 42.5	1. 91		41.9	1.94	79.65	41.7	1.91	79.15	42.0 1.87 42.1 1.88 42.1 1.88	
March			1.88				81.60	42.5	1.92	8229	422	1.95	79.65	41.7	1.91	79.15	42. 1	1.88
April	78.4077.27	41.7	1.88	77. 10	41.9	1.84	79. 68	41.5	1. 92	80. 95	41.3	1.96	79.46	41.6	1.91	78.35	41.9	1.87
May		41.1	1.88	75. 81	41.2	1.84	79. 23	41.7	1. 90	79.58	40.6	1.96	79.46	41.6	1.91	78.35	41.8	1.87
June.	78.44	41. 5	1.89	76.78	41.5	1.85	79.52	41.2	1.93	81.95	41.6	1.97	80.10	41.5	1.93	79.61	41.9	1. 90
July.	77.33	40.7	1. 90	75. 89	40.8	1.86	78.09	41.1	1.90	79. 19	40. 2	1.97	80.34	41.2	1.95	79.84	41.8	1. 91
August	76.55	40.5	1. 89	74.70	40.6	1. 84	75.79	40.1	1.89	79.99	40.4	1. 98	80.38	40.8	1.97	79. 49	41.4	1. 92
September	75.05	39.5	1.90	73.84	39.7	1.86	74.09	39.2	1.89	78.60	39.3	2.00	84.67	41.3	2.05	83.58	42.0	1.99

See footnotes at end of table.

TABLE C-1: Hours and gross earnings of production workers or nonsupervisory employees ${ }^{1}$ - Continued

Year and month	Manufacturing-Continued																			
	Primary metal industries-Continued																			
	Primary refining of aluminum			Secondary smelting and refining of nonferrous metals			Rolling, drawing, and alloying of nonferrous metals ${ }^{3}$			Rolling, drawing, and alloying of copper			Rolling, drawing, and alloying of aluminum			Nonferrous foundries				
	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earnings	Avg. wkly. earntngs	Avg. wkly. bours	A vg. hrly. ings	Avg. wkly. ings ras	Avg. wkly. hours	Avg. hrly. earn- ings	Avg. wkly. earnings	Avg. wkly hours	Avg. hrly. earnings	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earnings	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earnings		
1951: A verage 1952: A verage September	$\begin{array}{r} \$ 70.97 \\ 76.08 \\ 80.90 \end{array}$	$\begin{aligned} & 41.5 \\ & 41.8 \\ & 41.7 \end{aligned}$	$\begin{array}{r} \$ 1.71 \\ 1.82 \\ 1.94 \end{array}$	$\begin{array}{r} \$ 64.94 \\ 68.15 \\ 68.97 \end{array}$	$\begin{aligned} & 41.1 \\ & 41.3 \\ & 41.3 \end{aligned}$	$\begin{array}{r} \$ 1.58 \\ 1.65 \\ 1.67 \end{array}$	$\begin{array}{r} \$ 68.78 \\ 74.88 \\ 77.33 \end{array}$	$\begin{aligned} & 40.7 \\ & \text { 41. } 6 \\ & 41.8 \end{aligned}$	$\begin{array}{r} \$ 1.69 \\ 1.80 \\ 1.85 \end{array}$	$\begin{array}{r} \$ 70.76 \\ 76.49 \\ 79.66 \end{array}$	$\begin{aligned} & 40.9 \\ & 41.8 \\ & 426 \end{aligned}$	$\begin{array}{r} \$ 1.73 \\ 1.83 \\ 1.87 \end{array}$	$\begin{array}{r} \$ 64.22 \\ 69.95 \\ 72.89 \end{array}$	39.4 40.2	$\begin{array}{r} \$ 1.63 \\ 1.74 \\ 1.85 \end{array}$	$\$ 73.74$ 77.79	41.9 41.6	$\begin{array}{r} \$ 1.76 \\ 1.87 \\ 1.90 \end{array}$		
1952: November	81.18	41.0	1.98	73. 44	2	1.70	80. 28	7		83.14	43.3	192		$\begin{aligned} & 40.8 \\ & 40.9 \end{aligned}$	1.85 1.85		41.7			
1953: Danuary	81. 56	41.4 41.4 1.94 1.97		71. 72	43.7	1.73	82. 75	43.2		86.0085.22			75.48 75.67		$\begin{aligned} & 1.85 \\ & 1.85 \end{aligned}$	84. 00	42. 2			
				41.7	1. 72	43.1		1.92	43.7		1.95	77. 61	$\begin{aligned} & 40.9 \\ & 41.5 \end{aligned}$	1.87	42.7		$\begin{aligned} & 1.94 \\ & 1.94 \end{aligned}$			
	81.9879.3880.59	$\begin{aligned} & 40.9 \\ & 40.5 \end{aligned}$	1.981.961		72. 91	42.4	1.74	82.75	43.1	1.93	85.5086.09	${ }_{43}^{43 .} 7$	1.97	78. 68	42.3424	1.86	82. 84	42.1	1.95	
				74.62	1. 76			43.3	$\begin{aligned} & 7.09 \\ & 77.29 \\ & 77.42 \end{aligned}$					1.87		82. 10				
	80.59	$\begin{aligned} & 40.5 \\ & 40.7 \end{aligned}$	1.96 1.98 1	$\begin{aligned} & \text { 74.02 } \\ & \text { 74. } 69 \end{aligned}$	42.3	1.75	83.38	43. 2		1.941.96	81.3289.2090.25	44.1	1.98		42.4 41.4	82.71 80.56 80.	$41.1 \quad 1.96$			
	80.5780.7980.00	40.9 40.6	1.97		42.2 41.6		85. 26	43.0	44.6 4.9			2.00	$\begin{aligned} & 77.42 \\ & 74.59 \\ & 7 . \end{aligned}$	$\begin{aligned} & 41.4 \\ & 40.1 \end{aligned}$	$\begin{aligned} & \text { 1. } 87 \\ & 1.86 \end{aligned}$	80.34				
		40.039.5	2.00	71. 69	41.6 40.5	1.76		$\begin{aligned} & 42.2 \\ & 41.9 \end{aligned}$	1.96	43.4		1. 99	77.27 75.60	41.1 40.0	$\begin{aligned} & 1.88 \\ & 1.89 \end{aligned}$	80.9780.59	$41.1 \quad 1.97$			
	81. 37		2. 06	73.69	41.4	1.78	$\begin{aligned} & 82.29 \\ & 82.54 \end{aligned}$		$\begin{aligned} & 1.95 \\ & 1.97 \end{aligned}$		$\begin{aligned} & 90.20 \\ & 86.37 \\ & 86.20 \end{aligned}$		75.60 75.46	40.0 39.1			40.71 .98			
	86.72	39.6	2. 19	73.98	41.1	1.80	83.02	41.1	2.02	83.64	41,2	2.03	79.60	39.8	$\begin{aligned} & 1.93 \\ & 2.00 \end{aligned}$	$\begin{gathered} 78.99 \\ 79.19 \end{gathered}$		1.96 1.97		
	Primary metal industries-Continued												Fabricated metal products (except ordnance, machinery, and transportation equipment)							
	Miscellaneous primary metal industries ${ }^{3}$			Iron and steel forgings			Wire draving			Welded and heavy. riveted pipe			Total: Fabricated metal products (except ordnance, machinery, and transportation equipment)			Tin cans and other tinware				
1951: A verage \qquad 1952: A verage \qquad September	$\$ 80.65$ 82.15	42.9	$\$ 1.88$ 1.97	$\begin{array}{r} \$ 84.87 \\ 86.09 \\ 81.81 \end{array}$	$\begin{aligned} & 43.3 \\ & 42.2 \end{aligned}$	$\begin{array}{r} \$ 1.96 \\ 2.04 \\ 2.01 \end{array}$	$\begin{array}{r} \$ 80.41 \\ 80.54 \\ 82.00 \end{array}$	$\begin{aligned} & 43.0 \\ & 41.3 \end{aligned}$	$\begin{array}{r} \$ 1.87 \\ 1.95 \end{array}$	$\begin{array}{r} \$ 75.07 \\ 81.14 \end{array}$	$\begin{aligned} & 40.8 \\ & 41.4 \end{aligned}$	$\begin{gathered} \$ 1.84 \\ 1.96 \end{gathered}$	$\begin{array}{r} \$ 68.81 \\ 72.38 \\ 74.52 \end{array}$	$\begin{aligned} & 41.7 \\ & 41.6 \end{aligned}$	$\begin{array}{r} \$ 1.65 \\ 1.74 \end{array}$	$\begin{array}{r} \$ 66.49 \\ 69.72 \\ 74.04 \end{array}$	41.341.543.3			
			1.99															$\text { 1. } 68$		
1952: November	87.55	42.5	2. 06	89. 25	42.5	2. 10	86. 51	42.2	2.05	87. 55	42.5	2. 06	75.90	42.4	1.79					
December	90.06	43.3	2. 08	95. 47	44.2	2.16	86. 50	42.4	2.04	87.55	42.5	2. 06	$78 \cdot 37$	43.3	1.81	74.52	42.1	1.73 1.77		
1953: January	88.87	43.0	2. 09	94. 83	43. 5	2. 18	87. 55	42.5	2. 06	85. 90	41.7	2.06	76.74	42.4	1.81	7351	41.3	1.78		
March	89.03 90.09	42.6 42.9	2.09 2.10	93. 96	43. 3	2.17 219	84.87 86.93	41.4 42.2	2. 2.05	86.73 87.36	42.1 42.0	2. 206 2.08	76. 80	42.2	1. 82	7339	41.0	1. 79		
April.	88.41	42.3	2. 09	92. 65	42.5	2. 18	86.11	41.8	2.06	85.91	41.5	2. 07	77. 23	42.4	1.83	73 73 73	40.9	1. 79		
May	86.74	41.5	2.09	90.92	41.9	2. 17	85. 49	41.5	2. 06	82.01	40.4	2.03	77.04	42.	1.83	7380	41.0	1.80		
June	86.94	41.6	2.09	89.44	41.6	2.15	86.73	41.9	2.07	81. 59	39.8	2.05	77. 28	42.0	1.84	74.16	41.2	1.80		
July	85. 89	40.9	2. 10	88. 99	41.2	2. 16	84.45	40.6	2. 08	82. 18	39.7	2.07		41.3	1.85	78. 32	41.8	1.80		
August	86.72	41.1	2. 11	89.86	41.6	2. 16	81. 23	40.3	2.09	83. 18	39.8	2.09	76. 59	41.4	1.85	78. 94	42.8 42.9	1.83 1.84		
September	85.63	40.2	2. 13	87.42	40.1	2. 18	82.74	39.4	2.10	82.95	39.5	2. 10	75. 70	40.7	1.86	77.83	42.9 42.3	1.84 1.84		
							Fabr	ated	tal p	ducts-	Contin									
	Cutlery and	hand rdwa	$\begin{aligned} & \text { tools, } \\ & \mathrm{ce}^{2} \end{aligned}$		and ols			and tools			rdware		Heatin (exce and supp		ratus ctric) bers'	Sanit plum	$\begin{aligned} & y \text { ware } \\ & \gamma 8^{\prime} \text { sup } \end{aligned}$	and plies		
1951: A verage	\$66. 30	41.7	\$1.59	\$60.74	41.6	\$1. 46	\$69.70	42.5		\$66. 49	41.3	\$1.61	\$68. 71	40.9	\$1. 68	\$75. 24	41.8			
1952: A verage-	69. 05	41.1	1.68	63. 55	41.0	1. 55	69.38	41.3	1. 68	70. 69	41.1	1. 72	70.99	40.8	1.74	73.60	40.0	1. 84		
1952. Noptember	70.04	41.2	1.70	65.05	41.7	1. 56	68.95	40.8	1.69	72. 69	41.3	1.76	73. 39	41.7	1.76	75.11	40.6	1.85		
1952: November December	$\begin{aligned} & 73.60 \\ & 75.25 \end{aligned}$	42.3 43.0	1.74 1.75	67.84 68.75	42.4 42.7	1.60 1.61	72.38 73.43	41.6	1.74	76. 25	42.6	1. 79	73. 34	41.2	1.78	76. 30	40.8	1.87		
1953: January.	74.80	42.5	1.76	66. 40	41.5	1. 60	74.10	42.1	1.76	78.30 77.83	43.5	1.80 1.81	75.78	42.15	1.80	78. 62	41.6	1. 89		
Fehruary	74. 69	42.2	1. 77	66.49	413	1.61	74. 58	41.9	1.78	77.11	42.6	1.81	74.21	41.0	1.81	75. 73	40.1	1.88		
March	74. 69	42.2	1.77	66. 40	41.5	1. 60	75.78	42.1	1.80	76. 93	42.5	1.81	74.21	41.0	1.81	76.76	40.6	1.89 1.90		
April	74.87	42.3	1.77	66.65	41.4	1.61	75.54	42.2	1.79	77.71	42.7	1.82	74. 48	40.7	1.83	77.38	40.3	1.92		
May	75. 12	42. 2	1. 78	66. 08	41.3	1.60	75. 00	41.9	1.79	78.14	42.7	1.83	73.31	40.5	1.81	76.19	40.1	1. 90		
July.	75.36 73.39	42.1	1.79 1.79	65. 92	41.2 40.3	1.60	75.96	42.2	1.80	78. 02	42.4	1. 84	72. 98	40.1	1.82	74. 26	39.5	1. 88		
August	72. 62	40.8	1. 78	67. 57	41.2	1.64	73.03	40.8	1.80 1.79	75.03 73.89	41.0	1.83 1.82	72. 98	40.1	1.82	74. 09	39.2	1.89		
September	72. 62	40.8	1. 78	67.16	40.7	1.65	73.39	41.0	1. 79	74.07	40.7	1.82	72.80 71.76	40.0 39.0	1.82 1.84	74.29 72.95	39.1 37.8	1. 90 1.93		
	Oil burn tric cookin not el sified	ers, no heating q appa sewhere	nelecand atus, clas.	Fabrica metal	ed stru produc	$\begin{aligned} & \text { ctural } \\ & \text { ts }^{2} \end{aligned}$	Structu ornam work	al steel ental	$\begin{aligned} & \text { and } \\ & \text { metal- } \end{aligned}$	$\begin{aligned} & \text { Metal } \\ & \text { frames } \\ & \text { and tr } \end{aligned}$	$\begin{aligned} & \text { doors, } \\ & 8 \mathrm{sim} \\ & \text { rim } \end{aligned}$	sash, ding,	Boiler	op prod	ducts	Sheet	metalw			
1951: Average	\$66. 18	40.6	\$1. 63	\$71. 49	42.3	\$1. 69			\$1. 69	\$71. 57	42.1	\$1. 70	\$71.90	42.8	\$1.68					
1952: A verage	69. 87	41.1	1.70	74. 87	42.3	1. 77	75. 05	42.4	1.77	74. 23	41.7	1.78	74.80	42.5	\$1.76	$\begin{array}{r}\text { 370 } \\ 75.18 \\ \hline\end{array}$		$\$ 1.68$ 1.79		
September----	72.83	42.1	1. 73	76.86	42.7	1.80	77.83	43.0	1.81	71. 45	41.3	1. 73	75.36	42.1	1. 79	7.18 79.24	43.3	1.79 1.83		
1952: November.	72.45 74.87	41.4 42.3			42.7	1.83	77. 90	42.8	1. 82	80.14	42.4	1.89	76.99	42. 3	1.82	80.11	43.3	1.85		
1953: January--	74. 87	42.3 40.7	1.77	79.92	43.2 42.6	1.85 1.84 1.8	78. 51 78.94 78.	42.9 42.9	1.83 1.84 1	81.89 78.40	43.11	1.90	80 78.48 1	43. 5	1. 1.84	80. 35	43.2	1. 86		
February	73.16	41.1	1.78	79. 24	42.6	1. 86	79.18	42.8	1.85	77.49	41.7	1.88 1.89	78. 78	42.6 42.9	1.84 1.86	78. 20	42.5	1.84		
March	73.34	41.2	1.78	79. 79	42.9	1.86	79.92	43.2	1.85	80. 56	42.4	1.90	79.55	43.0	1.85	79.29 79	42.4 42.3	1. 87 1.87		
April	73. 21	40.9	1. 79	79.61	42.8	1.86	79.55	43.0	1.85	78. 58	41.8	1.88	80.35	43.2	1.86	80.33	42.5	1.89		
May	72. 27	40.6	1. 78	79.85	42.7	1.87	80. 35	43.2	1.86	79. 34	42. 2	1. 88	79.85	42.7	1.87	79.99	42.1	1.89		
June	72. 32	40. 4	1. 79	80.46	42.8	1.88	81.97	43.6	1. 88	81. 13	42.7	1.90	80. 09	42.6	1.88	78.81	41.7	1.89		
July	72.50 72.32	40.5 40.4	1.79 1.79	79.00 81.56	41.8	1. 89	79.71	42. 4	1. 88	78. 44	41.5	1.89	80. 98	42.4	1.91	75.79	40.1	1.89		
September	71.50	39.5	1.81	80.45	41.9	1.91 1.92	82.41 80.41	${ }_{42.1}^{43.4}$	1.90 1	78.31	41.0	1.91	82.41	42. 7	1.93	80.37	42.3	1. 90		
								42.1	1.91	77.50	40.6	1.91	81.06	42.0	1.93	81.25	42.1	1. 93		

See footnotes at end of table.

Table C-1: Hours and gross earnings of production workers or nonsupervisory employees ${ }^{1}$ - Continued
Manufacturing-Continued

See footnotes at end of table.

Table C-1: Hours and gross earnings of production workers or nonsupervisory employees ${ }^{1}$-Continued

Year and month	Manufacturing-Continued																	
	Machinery (except electrical)-Continued																	
	Special-industry machinery (except metalworking machinery) ${ }^{\text {a }}$			Food-products machinery			Textile machinery			Paper-industries machinery			Printing-trades machinery and equipment			General industrial machinery ${ }^{\prime}$		
	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earnings	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earnings	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earnings	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earnings	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earnings	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earnings
1951: Ave	\$74. 73	43.7	\$1.71	\$74. 56	43.1	\$1. 73	\$68. 79	42.2	\$1. 63	\$80.07	47.1	\$1. 70	\$82. 09	43.9	\$1.87	\$77. 08	44.3	\$1. 74
	77.40	43.0	1.80	77, 96	42. 6	1.83	68. 54	40.8	1.68	82. 08	45.6	1.80	87.36	43.9	1. 99	79. 24	43.3	1.83
	78. 26	43.0	1.82	78. 26	42.3	1.85	69.80	41.3	1. 69	81.99	45.3	1.81	86.76	43.6	1.99	79.74	43.1	1.85
1952: November \qquad December \qquad	78.94	42.9	1.84	78. 68	42.3	1.86	70.28	41. 1	1. 71	81.88	44.5	1.84	91. 67	44. 5	2.06	80.60	43.1	1. 87
	81.65	43.9	1.86	81.27	43.0	1.89	73. 18	42.3	1. 73	86.12	46.3	1. 86	94. 71	45.1	2.10	83. 98	44.2	1. 90
1953: January $\begin{aligned} & \text { Februa } \\ & \text { March } \\ & \text { April } \\ & \text { May } \\ & \text { June.... } \\ & \text { July... } \\ & \text { August } \\ & \text { Septem }\end{aligned}$	80.54	43.3	1.86	80. 04	42.8	1.87	73.08	42.0	1. 74	82. 98	45.1	1.84	95. 85	45.0	2.13	82.46	43.4	1.90
	81.78	43.5	1.88	79.71	42.4	1. 88	73.60	42.3	1. 74	82.70	44.7	1.85	94.55	44.6	2.12	82.51	43.2	1.91
	82.16	43.7	1.88	82. 08	43.2	1. 90	73. 08	42.0	1. 74	83. 62	45. 2	1.85	96. 06	45.1	2. 13	84. 53	43.8	1. 93
	81.8481.65	43.3	1. 89	79.61	41.9	1.90	72.38	41.6	1. 74	84. 22	44.8	1.88	95. 64	44. 9	2.13	83.76	43.4	1. 93
		43.2	1.89	83. 28	43. 6	1. 91	72.80	41.6	1.75	83. 22	44.5	1.87	94. 13	44. 4	2. 12	83. 76	43. 4	1. 93
	$\begin{aligned} & 81.65 \\ & 81.27 \end{aligned}$	43.0	1.89	81.51	42.9	1.90	72.45	41.4	1. 75	82.84	44.3	1.87	92.00	43.6	2. 11	83. 38	43.2	1.93
	81.27 80.37	42.3	1. 90	82.75	43.1	1.92	69. 60	40.0	1.74	81.97	43.6	1. 88	93. 93	44.1	2.13	82. 60	42.8	1.93
	79.76	42.2	1.89	82.70 81	43.3	1. 91	70.12	40.3 39.3	1.74 1 1	81. 22	43.9 43.6	1.85 1.89	89, 88	42.8 43.3	2.10	82.84 83.89	42.7 42.8	1.94
		41.7	1.92	81. 67	42.1	1.94	69.17		1.76	82.40	43.6	1.89	92.66	43.3	2.14	83.89	42.8	1.96
	Pumps, air and gas compressors			Conveyors and conveying equipment			Blowers, exhaust and ventilating fans			Industrial trucks, tractors, etc.			Mechanical powertransmission equipment			Mechanical stokers and industrial furnaces and ovens		
1951: A verage 1952: A verage September....	$\begin{array}{r} \$ 76.88 \\ 78.66 \\ 77.76 \end{array}$	44.7	\$1. 72	\$77. 35	43.7	\$1. 77	\$71. 64	42.9	\$1. 67	\$80. 28	45. 1	\$1.78	\$79. 12	44. 7	\$1. 77	\$72. 58	43.2	\$1.68
		43.7	1.80	79.79	42. 9	1.86	74. 47	42.8	1. 74	81.22	43. 2	1.88	80.17	43. 1	1. 86	76.97	43.0	1. 79
		43.2	1.80	80.09	42.6	1.88	75.86	43.1	1.76	80.22	42.0	1.91	80.33	42.5	1.89	80.41	43.7	1.84
	79.67 43.3 1.84			81.51	42.9	1.90	75.86	43.1	1.76	83.61	43.1	1.94	83. 33	43.4	1.92	76.13	41.6	1.83
	82.0981.16	43.9	1.87	85. 75	44.2	1.94	76. 36	42.9	1. 78	86. 78	44. 5	1.95	86.14	44.4	1.94	79. 92	43.2	1.85
		43.4	1.87	83.57	43.3	1.93	75. 58	42.7	1.77	83.42	43.0	1.94	85.61	43.9	1.95	79. 18	42.8	1.85
	81.2283.47	43.2	1. 88	82.75	43.1	1. 92	75. 23	42. 5	1. 77	82. 41	42.7	1.93	86. 68	44.0	1.97	79. 34	42. 2	1.88
		43.7	1. 91	85. 55	44. 1	1.94	76. 11	43. 0	1. 77	85. 22	43.7	1.95	87. 47	44.4	1.97	82.32	43.1	1.91
	83.4782.7082.56	43.3	1.91	85. 22	43. 7	1.95	76. 01	42.7	1. 78	84. 24	43.2	1. 95	86. 24	44.0	1.96	80.46	42.8	1.88
		43.0	1.92	85.36	44.0	1.94	76. 54	43.0	1.78	84.83	43.5	1.95	86. 24	44.0	1.96	81.13	42.7	1.90
	82. 56	42.9	1.92	84.97	43.8	1.94	77.51	43.3	1. 79	82.74	42.0	1.97	85. 06	43.4	1.96	81.02	42.2	1.92
	$\begin{aligned} & 80.83 \\ & 81.06 \\ & 84.28 \end{aligned}$	42.1	1. 92	85.36	44.0	1.94	75. 58	42.7	1.77	83.50	42.6	1. 96	85.50	43.4	1.97	77. 46	41.2	1.88
		42.0	1. 93	82.06	42.3	1.94	79.97	43.7	1.83	82.32	42.0	1.96	85. 46	43. 6	1.96	80. 48	41.7	1.93
		43.0	1.96	84.08	42.9	1.96	77.79	41.6	1.87	83.42	43.0	1.94	84. 55	42.7	1.98	79.73	41.1	1.94
	Office and store machines and devices?			Computing machines and cash registers			Typewriters			Service-industry and household machines ${ }^{2}$			Domestic laundry equipment			Commercial laundry, dry-cleaning, and pressing machines		
1951: Averag	$\begin{array}{r} \$ 73.33 \\ 75.26 \\ 76.67 \end{array}$	41.9	\$1.75	\$78. 85	41. 5	\$1. 90	\$68. 16	42.6	\$1. 60	\$70.64	40.6	\$1. 74	\$69.32	40.3	\$1. 72	\$75. 37	44.6	\$1. 69
		40.9	1. 84	81.80	40.9	2. 00	68.88	41.0	1. 68	75. 81	41.2	1. 84	75.07	40. 8	1.84	76. 65	43.8	1. 75
		41.0	1.87	83.84	41.1	2.04	68.78	40.7	1.69	78.35	41.9	1.87	78.07	42.2	1.85	76.03	43.2	1. 76
1952: November-...-		40.7	1.87	83.84	41.1	2.04	69. 53	40.9	1.70	77.46	41.2	1.88	79.99	42.1	1.90	77.07	43.3	1. 78
	$\begin{aligned} & 76.11 \\ & 76.86 \end{aligned}$	41.1	1. 87	83.84	41.1	2.04	70. 28	41.1	1.71	81.18	42.5	1.91	78.77	41.9	1.88	80.91	44.7	1. 81
1953: January	76.9276.14	40.7	1.89	84.46	41.2	2.05	69.37	40.1	1. 73	80.79	42.3	1.91	81.75	42.8	1.91	78. 04	43. 6	1. 79
		40.5	1.88	82.42	40.4	2.04	69. 89	40.4	1. 73	80.26	41.8	1.92	83.42	43.0	1.94	76.43	42.7	1. 79
	$\begin{aligned} & 76.55 \\ & 76.95 \end{aligned}$	40.5	1.89	82.62	40.3	2.05	69. 55	40.2	1.73	81.45	42.2	1.93	80.06	41.7	1. 92	75.47	42.4	1.78
		40.5	1. 90	82.82	40.4	2.05	69. 43	39.9	1. 74	80. 51	41.5	1. 94	76. 24	39.5	1.93	75. 72	42.3	1. 79
	75.7977.57	40.1	1.89	81.40	39.9	2.04	69. 03	39.9	1.73	78.53	40.9	1. 92	77.78	40. 3	1.93	75. 18	42.0	1.79
		40.4	1.92	83.62	40. 2	2.08	70.75	40.2	1.76	77.95	40.6	1.92	77.41	39.9	1.94	76. 44	42.0	1. 82
	$\begin{array}{r} 77.01 \\ 77.59 \end{array}$	39.9	1. 93	83. 01	40.1	2. 07	70.98	40.1	1.77	79.15	40.8	1.94	74. 88	38.6	1.94	76. 74	42. 4	1.81
		40.2	1. 93	82.18	39.7	2. 07	71. 51	40. 4	1.77	77. 39	40.1	1.93	75.05	39.5	1.90	76. 93	42.5	1.81
	78.38	40.4	1.94	82.61	40.1	2.06	72.54	40.3	1.80	76.83	39.4	1.95	75.85	38.7	1.96	74.89	40.7	1.84
	Sewing machines			Refrigerators and airconditioning units			Miscellaneous machinery parts ${ }^{2}$			Fabricated pipe, fittings, and valves			Ball and roller bearings			Machine shops (job andrepair)		
1951: Average...-.--	$\begin{array}{r} \$ 79.42 \\ 76.73 \\ 75.58 \end{array}$	43.4	\$1.83	\$69. 65	39.8	\$1.75	\$74.30	43.2	\$1. 72	\$71. 81	43.0	\$1. 67	\$76. 82	43.4	\$1. 77	\$74.30	43.2	\$1. 72
1952: Average.-.-.---		40.6	1. 89	76. 04	41.1	1.85	75. 36	42. 1	1.79	73. 39	41.7	1.76	74. 57	41.2	1.81	78. 55	43. 4	1. 81
		40.2	1.88	79.38	42.0	1.89	75.06	41.7	1.80	73.81	41.7	1.77	73.38	40.1	1.83	78.44	43.1	1.82
1952: November	78.09	41.1	1. 90	77.68	41.1	1.89	77.28	42.0	1.84	76.13	41.6	1.83	76.45	41.1	1.86	79.86	43.4	1.84
1953: January	79.6876.3876	41.5	1. 92	81.60	42.5	1.92	79. 61	42.8	1.86	77.75	41.8	1.86	79. 29	42.4	1.87	81.96	44.3	1.85
		40.2	1. 90	82.22	42.6	1.93	77.33	41.8	1.85	75. 67	40.9	1.85	77.98	41.7	1.87	79.30	43.1	1.84
February	76. 57	40.3	1. 90	81.29	41.9	1.94	78. 35	41.9	1.87	75. 89	40.8	1.86	79.19	41.9	1.89	80.29	43.4	1.85
March	77.38	40.3	1. 92	83. 50	42.6	1.96	79.52	42. 3	1.88	77. 23	41.3	1.87	80.18	42.2	1.90	80.91	43.5	1.86
Anpril	$\begin{aligned} & 78.01 \\ & 76.62 \end{aligned}$	39.8	1. 96	82.12	41.9	1.96	79.15	42.1	1.88	77. 83	41.4	1. 88	79.38	42.0	1.89	80.78	43.2	1.87
May		39.7	1. 93	79.73	41.1	1.94	77.64	41.3	1.88	76. 70	40.8	1.88	76. 52	40.7	1.88	79.48	42.5	1.87
June		39.9	1.93	78.96	40.7	1.94	78. 44	41.5	1.89	77. 08	41.0	1. 88	78.12	40.9	1.91	80. 09	42.6	1. 88
July Aust	77.01 77.99	40.2 40.1	1.94 1.91	80.16 78.20	40.9 39.9	1.96 1.96	76.17 78.28	40.3 41.2	1.89 1.90	73.13 77.16	38.9 40.4	1.88 1.91	76.95 77.04	40.5 41.2	1.90 1.87	78.77 79.99	41.9 42.1	1.88 1.90
September	$\begin{aligned} & 76.59 \\ & 76.80 \end{aligned}$	40.0	1.92	77.22	39.0	1.98	78.88	${ }_{41.3}$	1.91	79.13	41.0	1.93	77.87	41.2	1.89	79.84	41.8	1. 91

See footnotes at end of table.

See footnotes at end of table.

TABLE C-1: Hours and gross earnings of production workers or nonsupervisory employees ${ }^{1}$-Continued

TABLE C-1: Hours and gross earnings of production workers or nonsupervisory employees ${ }^{1}$ - Continued

TABLE C-1: Hours and gross earnings of production workers or nonsupervisory employees ${ }^{1}$ - Continued

${ }^{1}$ Data are based upon reports from cooperating establishments covering both full- and part-time employees who worked during, or received pay for, any part of the pay period ending nearest the 15th of the month. For mining, manufacturing, laundries, and cleaning and dyeing plants, data refer to production and related workers only. For the remaining industries, unless otherwise noted, data relate to nonsupervisory employees and working supervisors. Data for the three current months are subject to revision without notation; revised figures for earlier months will be identified by asterisks the first month they are published.
${ }^{2}$ Italicized titles which follow are components of this industry.
8 See footnote 2, table A-2.
See footnote 3, table A-2. are based upon monthly data summarized in the M-300 report by the Interare based upon monthly data summarized in all employees who received pay state commerce commission executives, officials, and staff assistants (ICC Group I).
Group Ia include privately and government operated local railwaysand buslines.

1 Data relate to employees in such occupations in the telephone industry as switchboard operators, service assistants, operating-room instructors, and pay-station attendants. During 1952 such employees made up 47 percent of pay-station attendants. During 1952 such employees made up 47 percentats the total number of nornuper data.
eporting hours and earnings data. central office craftsmen; installation and exchange repair craftsmen; line, central office cratsmen, instanation laborers. During 1952 such employees cable, and conduit craftsmen; and laborers. During 1952 such employees made up 23 percent of the total number of nonsupervisory
elephone establishments reporting hours and earnings data. gers, and those compensated entirely on a commission basis and are not strictly comparable with figures shown for 1951.
${ }^{10}$ Data on average weekly hours and average hourly earnings are not available.
${ }_{11}$ Money payments only; additional value of board, room, uniforms, and tips, not included.
See Note on p. 1337

TABLE C-2: Gross average weekly earnings of production workers in selected industries, in current and 1947-49 dollars ${ }^{1}$

Year and month	Manufacturing		Bituminous coal mining		Laundries		Year and month	Manufacturing		Bituminous coal mining		Laundries	
	Current dollars	$\begin{aligned} & \text { 1947-49 } \\ & \text { dollars } \end{aligned}$	Curren1 dollars	$\begin{aligned} & 1947-49 \\ & \text { dollars } \end{aligned}$	Current dollars	$\begin{aligned} & \text { 1947-49 } \\ & \text { dollars } \end{aligned}$		Current dollars	$\begin{aligned} & \text { 1947-49 } \\ & \text { dollars } \end{aligned}$	Current dollars	$\begin{aligned} & \text { 1947-49 } \\ & \text { dollars } \end{aligned}$	Current dollars	$\begin{aligned} & \text { 1947-49 } \\ & \text { dollars } \end{aligned}$
1939: A verage	$\begin{aligned} & \$ 23.86 \\ & 29.58 \\ & 43.82 \\ & 54.14 \\ & 54.92 \\ & 59.33 \\ & 64.71 \\ & 67.97 \end{aligned}$	$\begin{array}{r} \$ 40.17 \\ 47.03 \\ 52.54 \\ 52.67 \\ 53.95 \\ 57.71 \\ 58.30 \\ 59.89 \end{array}$	$\begin{array}{r} \$ 23.88 \\ 30.86 \\ 58.03 \\ 72.12 \\ 63.28 \\ 70.35 \\ 77.79 \\ 78.32 \end{array}$	$\$ 40.20$ 49.06 69.58 62. 16 68. 43 70.08 69.00	$\begin{array}{r} \$ 17.64 \\ 18.69 \\ 30.20 \\ 34.23 \\ 34.98 \\ 3.47 \\ 37.81 \\ 38.63 \end{array}$	$\begin{array}{r} \$ 29.70 \\ 29.71 \\ 36.21 \\ 33.30 \\ 34.36 \\ 34.50 \\ 34.06 \\ 34.04 \end{array}$	1952: Septem	$\$ 69.63$70.3877.2872.14	$\begin{array}{r} \$ 61.03 \\ 61.63 \\ 61.49 \\ 63.23 \end{array}$	$\begin{array}{r} \$ 87.91 \\ 75.58 \\ 86.27 \\ 91.73 \end{array}$	$\begin{array}{r} \$ 77.05 \\ 66.18 \\ 75.48 \\ 80.39 \end{array}$	$\begin{array}{r} \$ 38.95 \\ 38.86 \\ 38.88 \\ 39.55 \end{array}$	$\$ 34.14$ 34.03 34.02 34.66
1941: A verage													
1946: A verage-													
1949: A verage.													
1950: A verage								71.34 71.17 71.93 71.40 71.63 71.63 71.33 71.51 71.02	$\begin{aligned} & 62.63 \\ & 62.76 \\ & 63.32 \\ & 62.80 \\ & 62.83 \\ & 62.56 \\ & 62.19 \\ & 62.18 \\ & 61.65 \end{aligned}$	87.79 81.42 81.76 79. 61 84.97 91.25 84.97 94.37 86.80	77.0871.8071.9770.0274.5479.6974.0882.0675.35	39.3638.8839.3839.5840.6740.2839.3039.1039.90	$\begin{aligned} & 34.56 \\ & 34.29 \\ & 34.67 \\ & 34.81 \\ & 35.68 \\ & 35.18 \\ & 34.26 \\ & 34.00 \\ & 34.64 \end{aligned}$
1951: A verage													
1952: A verage													

${ }^{1}$ These series indicate changes in the level of average weekly earnings prior to and after adjustment for changes in purchasing power as determined from the Bureau's Consumer Price Index, the years 1947-49 having been selected for the base period.
${ }^{2}$ Preliminary.
See Note on p. 1337.

Table C-3: Gross and net spendable average weekly earnings of production workers in manufacturing industries, in current and 1947-49 dollars ${ }^{1}$

Period	Gross average weekly earnings		Net spendable average weekly earnings				Period	Gross average weekly earnings		Net spendable average weekly earnings			
			W orker with no dependents		Worker with 3 dependents					W orker with no dependents		W orker with 3 dependents	
	Amount	$\left[\begin{array}{c} \text { Index } \\ (1947-49 \\ =100) \end{array}\right.$	Current dollars	$\begin{aligned} & \text { 1947-49 } \\ & \text { dollars } \end{aligned}$	$\begin{aligned} & \text { Cur- } \\ & \text { rent } \end{aligned}$ dollars	$\begin{aligned} & \text { 1947-49 } \\ & \text { dollars } \end{aligned}$		Amount	$\begin{gathered} \text { Index } \\ (1947-49 \\ =100) \end{gathered}$	Current dollars	$\begin{aligned} & \text { 1947-49 } \\ & \text { dollars } \end{aligned}$	Current dollars	$\begin{aligned} & \text { 1947-49 } \\ & \text { dollars } \end{aligned}$
1941: January-	\$26. 64	50.3	\$25. 41	\$42. 14	\$26.37	\$43. 73	1952: September	\$69.63	131.5	\$56.93	\$49.89		
1945: January	47.50 45.45	89.7	39. 40	51.77	45.17	59.36	October-	70.38	132.9	57.52	50.37	${ }^{65.53}$	$\begin{array}{r}\text { \$56. } \\ 57.38 \\ \hline\end{array}$
1946: June.	45.45 43.31	85.8 81.8	37. 80	48.77	43. 57	56.22	November	70.28	132.7	57.44	50.25	65.45	57. 26
	43.31	81.8	37.30	46. 74	42.78	53.61	December	72.14	136.2	58.89	51.61	66. 94	58.67
1939: A verage	23.86	45.1	23.58	39.70	23. 62	39.76	1953: January	71.34	134.7				
1940: A verage	25. 20	47.6	24. 69	41. 22	24.95	41. 65	February	71.17	134.4	58.13	51.26	${ }_{66.16}$	58.21 58.34
	29.58	55. 9	28. 05	44. 59	29.28	46. 55	March	71.93	135.8	58.72	51.69	66. 77	58.78
1943: A verage	38. 65	69.2 81.5	31.77 36.01	45. 48	36.28 41.39	52. 05	April	71. 40	134.8	58.31	51.28	66. 34	58.35
1944: Average.	46.08	87.0	31.01 38.29	40. 92	41.39 44.06	55. 93 58.59	May	71. 63	135.3	58.49	51.31	66.53	58.36
1945: A verage	44.39	83.8	36. 97	48.08	42.74	55.58		71. 63	135.3	58. 49	51.08	66.53	58.10
1946: A verage	43.82	82.8	37.72	45.23	43. 20	51.80	August ${ }^{2}$	71. 51	134.7	58.26 58.40	50. 79	66. 29	57.79
1947: A verage	49.97	94.4	42. 76	44.77	48.24	50.51	September ${ }^{2}$	71.02	134.1	58.40	50.78	66.43	57.77
1948: A verage..	54.14	102.2	47. 43	46. 14	53.17	51.72	September ${ }^{2}$		134.1	58.02	50.36	66.04	57.33
1949: A verage	54.92	103.7	48.09	47. 24	53.83	52.88							
1950: A verage	59.33	112.0	51.09	49.70	57.21	55. 65							
1951: A verage	64. 71	122.2	54.04	48. 68	61.28	55. 21							
1952: Average	67.97	128.4	55.66	49.04	63.62	56.05							

[^51]age weekly earnings for all production workers in manufacturing industries without direct regard to marital status and family composition. The primary value of the spendable series is that of measuring relative changes in disposable earnings for 2 types of income-receivers.
${ }^{2}$ Preliminary.
See Note on p. 1337.

TABLE C-4: Average hourly earnings, gross and excluding overtime, of production workers in manufacturing industries ${ }^{1}$

Period	Manufacturing			Durable goods		Nondurable goods		Perlod	Manufacturing			Durable goods		Nondurable goods	
	Gross amount	Excluding overtime		Gross	Ex- cluding overtime	Gross	Ex-cluding overtime		Gross amount	Excluding overtime		Gross	Ex- cluding overtime	Gross	Ex- clud. ing over- time
		Amount	$\begin{gathered} \text { Index } \\ (1947-49 \\ =100) \end{gathered}$							Amount	$\begin{gathered} \text { Index } \\ (1947-49 \\ =100) \end{gathered}$				
1941: A verage	\$0.729	\$0. 702	54. 5	\$0.808	\$0.770	\$0.640	\$0.625	1952: September.--	\$1.69	\$1. 63	126. 6	\$1.80	\$1. 73	\$1.54	\$1. 49
1942: A verage	. 853	. 805	62.5	. 947	. 881	. 723	. 698	October..-.	1. 70	1.63	126.6	1.81	1.73	1. 54	1.49
1943: A verage	. 961	. 894	69.4	1.059	. 976	. 803	. 763	November---	1.71	1. 65	128.1	1.82	1.74	1. 56	1. 51
1944: A verage	1. 019	. 947	73.5	1.117	1.029	. 861	. 814	December---	1.73	1.65	128.1	1.83	1.75	1. 57	1. 51
1945: A verage	1.023	${ }^{2} .963$	${ }^{2} 74.8$	1.111	${ }^{2} 1.042$. 904	8. 858		1.73	1.65	128.1	1.83	1.75	1.57	1.51
1946: A verage	1. 086	1.051	81.6	1.156	1.122	1.015	. 981	1953: January -----	1. 74	1. 67	129.7	1.84	1. 76	1. 58	1. 53
1947: A verage	1. 237	1. 198	93.0	1. 292	1.250	1.171	1.133	February-.--	1. 74	1. 68	130.4	1.85	1.77	1. 58	1. 54
1948: A verage	1. 350	1.310	101.7	1. 410	1.366	1.278	1. 241	March..----	1.75	1. 68	130.4	1.85	1. 77	1. 59	1. 54
1949: Average	1. 401	1.367	106.1	1. 469	1. 434	1. 325	1. 292	April	1.75	1. 69	131. 2	1.86	1.78	1. 59	1.55
1950: A verage	1. 465	1. 415	109.9	1. 1.537	1. 480	1.378	1.337	May----------	1.76	1. 69	131.2	1.86	1. 79	1. 60	1. 55
1951: A verage	1. 59	1. 53	118.8	1. 67	1. 60	1. 48	1. 43	June.------------	1.76	1. 70	132.0	1.87	1. 80	1.60	1. 55
1952: A verage	1. 67	1.61	125.0	1.76	1.69	1. 54	1. 49	July	1. 77	1.71	132.8	1.88	1.81	1.61	1. 56
								August ${ }^{3}$....-	1.77	1. 71	132.8	1.88	1.81	1.61	1. 56
								September ${ }^{3}$--	1.78	1.73	134.3	1.89	1.83	1.62	1. 58

1 Overtime is defined as work in excess of 40 hours per week and paid for at time and one-half. The computation of average hourly earnings excluding overtime makes no allowance for special rates of pay for work done on holidays.
${ }^{2}$ 11-month average; August 1945 excluded because of VJ-holiday period. ${ }^{8}$ Preliminary.
See Note on p. 1337.

Table C-5. Hours and gross earnings of production workers in manufacturing industries for selected States and areas ${ }^{1}$

Year and month	Alabama									Arizona						Arkansas State		
	State			Birmingham			Mobile			State			Phoenix					
	Avg. wkly. ings	Avg. wkly. hours	Avg. hrly. earn- ings	Avg. wkly. earn-	Avg. wkly. hours	Avg. hrly. earn-	Avg. wkly. earn-	Avg. wkly. hours	Avg. hrly. earnings	Avg. wkly. earn- ings	Avg. wkly. hours	Avg. brly. earnings	Avg. wkly. earn- ings	Avg. wkly. hours	Avg. hrly. earn- ings	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earn- ings
1951: Average	\$50. 93	40.1	\$1. 27	\$60. 35	40.5	\$1. 49	\$54. 95	40.7	\$1.35	\$66.81	43.1	\$1. 55	\$65. 26	42.1	\$1. 55	\$44. 19	40.5	\$1. 09
1952: Average	52. 53	40.1	1.31	63.18	40.5	1. 56	60.20	40.4	1. 49				71. 40	42. 0	1. 70	47. 20	41.4	1.14
1952: September	54.95	40.7	1.35	66.99	40.6	1.65	61.71	40.6	1. 52	${ }^{2} 80.48$	243.5	21.85	75. 65	42.5	1.78	48.88	42.5	1.15
October-	54.81	40.9	1.34	67. 73	41.3	1.64	62.31	40.2	1.55	79. 67	43.3	1.84	73. 46	41.5	1.77	49.07 48.38	42.3 41.0	1.16 1.18
Novembe	55. 35	41.0	1.35 1.37	66. 64	40.1	1.65	59.00	39.6 41.0	1.49	78. 74	43.3 44	1.80	76.46	41.6 43.2	1.77	49. 26	42.1	1.18 1.17
1953: January	55. 48	40.2	1.38	68.45	40.5	1.69	59.95	39.7	1.51	78.55	43.4	1.81	76.01	42.7	1.78	48.31	40.6	1. 19
February	54.92	39.8	1.38	67.37	40.1	1.68	59.43	39.1	1.52	77. 46	42.1	1.84	74. 57	41.2	1.81	48.55	40.8	1.19
March	55.35	40.4	1.37	68.45	40.5	1.69	59. 04	39.1	1.51	78. 86	42.4	1.86	76.31	41.7	1.83	49. 20	41.0	1.20
April	55.61	40.3	1.38	68.28	40.4	1.69	62.02	39.5	1. 57	80.14	42.4	1.89	77.28	42.0	1.84	49. 80	41.5	1.20
May	55.34	40.1	1.38	67.32	39.6	1.70	63.18	40.5	1.56	76.96	41.6	1.85	73. 67	40.7	1.81	48. 52	40.1	1.21
	55. 20	40.0	1.38	68.06	39.8	1.71	63.36	40.1	1. 58	79. 29	42.4	1.87	75. 71	41.6	1.82	49.73	41.1	1.21
July.	55. 32	39.8	1.39	70.80	40.0	1. 77	66.26	40.9	1.62	78.81	41.7	1.89	76.82	41.3	1.86	50. 09	41.4	1.21
August	55. 48	40.2	1.38	70.12	40.3	1.74	65.53	40.7	1.61	79.46	41. 6	1.91	77. 76	40.5	1.92	49. 53	40. 6	1.22
September	55.16	39.4	1.40	70.62	39.9	1. 77	66.66	40.4	1.65	81. 06	42.0	1.93	80.36	41.0	1.96	49.73	41.1	1.21
	Arka	nsas-C	on.								alifornia							
	Little	Rockttle Ro	North k		State			Fresno			S Angel			cramen			an Dieg	
1951: Average	\$45. 25	41.9	\$1.08	\$71. 79	40.5	\$1. 77	\$61. 08	37.1	\$1. 65	\$71.22	40.9	\$1. 74	\$72. 03	41.1	\$1.75	\$70. 39	40.9	\$1. 72
1952: Average	45.81	40.9	1.12	75.85	40.6	1.87	64.27	37.6	1.71	76.20	41.3	1.84	73.00	39.8	1. 83	69, 92	38.5	1.82
1952: September	46.93	41.9	1.12	77.90	41.3	1.88	66. 65	38.5	1.73	77.84	41.7	1.86	89.80 81.93	47.5 44	1.89 1.84	72.89	39.3 38.8	1.86
October	47.01	41.1	1.13 1.13	77.81	41.2 40.4	1.89 1.91	69. 84	48.1 38.1	1.75	77. 70	41.3	1.88	71.07	37.6	1.89	70.97	38.3	1.85
December	47.15	41.0	1.15	78.07	40.7	1.92	68.01	38.5	1.77	79. 18	41.8	1.90	76.08	39.7	1.92	72.80	39.0	1.87
1953: January	46.69	40.6	1.15	77.51	40.1	1.93	66.63	37.4	1.78	78. 78	41.2	1.91	71.63	37.7	1.90	72.64	38.6	1.88
February	47.50	41.3	1.15	77.61	40.1	1.94	68.12	37.6	1.81	78.01	40.8	1.91	71.66	37.4	1.91	73. 20	38.6	1. 90
March_	47.10	40.6	1.16	78. 30	40.2	1.95	69.85	38.4	1.82	78.60	40.8	1.92	73.15	38.0	1.93	74. 42	39.0	1.91
April	47.62	40.7	1.17	78. 47	40.2	1.95	67.04	36.9	1.82	79.31	41.1	1.93	65.69	34.8	1.89	74.30	38.7	1.92
May	47.20	40.0	1.18	78.57	40.0	1.96	67.46	37.4	1. 80	78. 61	40.6	1. 93	70.34	37.4	1.88	74.38	38.6	1. 93
June	49.15	41.3	1.19	79. 05	40.0	1.98	67.89	37.5	1.81	78.88	40. 5	1.95	71. 05	37.8	1.88	74.71	38.7	1.93
July	49.14	42.0	1.17	7. 60	40.0	1.97	66. 26	36.7	1.81	79.08	40.6 40	1.95	76.33	39.7	1.92 1.84 1	76.14		
August	$\begin{aligned} & 48.55 \\ & 47.91 \end{aligned}$	40.8 40.6	1.19	79.62 78.83	40.6 39.9	1.96 1.98	69.00 66.90	38.8 37.5	1.78 1.79	79.75 78.78	40.9 40.2	1.95 1.96	74.09 88.16	40.2 44.7	1.84 1.97	76.93 73.72	39.6 37.8	1.94 1.95
	California-Continued									Colorado						Connecticut		
	San FranciscoOakland			San Jose			Stockton			State			Denver			State		
1951: Average	\$73. 11	39.5	\$1.85	\$69. 30	41.4	\$1. 67	\$68. 75	40.6	\$1. 69	\$64. 02	41.3	\$1. 55	\$63.08	41.5	\$1. 52	\$67. 20	42.6	\$1. 58
1952: Average	77. 27	39.6	1.95	72.00	40.8	1.76	71.30	39.3	1. 81	67.16	41.2	1.63	67.07	41.4	1.62	70.28	42.0	1.67
1952: September	79.70 79.14	40.5 40.3	1.97 1.96	71.95 70.36	42.6 40.6	1.69 1.73	73.45 75.03	41.7 42.3	1.76 1.77	65.77 67.82	40.6 41.1	1.62 1.65	68. 62	42.1 42.8	1.63	71. 74	42.0 42.5	1.69 1.70
Novembe	78.12	39.2	1. 99	71.03	38.8	1.83	72. 29	38.1	1.90	71.15	42.1	1. 69	73.01	43.2	1.69	73.63	42.8	1.72
December	79.27	39.5	2.01	73.57	39.5	1.86	75.13	39.7	1.89	71. 32	42.2	1.69	71. 06	42.3	1.68	74.99	43.3	1.73
1953: January	78.12	38.8	2.01	75.98	39.8	1.91	74.41	39.4	1.89	68.91	40.3	1.71	68.95	40.8	1.69	74.32	42.9	1.73
February	78.93	39.2	2.02	75.85	39.2	1. 94	75.66	39.5	1.91	69.43	40.6	1.71	69.29	41.0	1.69	74.45	42.8	1.74
March.	80.03	39.4	2.03	77.93	40.2	1.94	77.00	39.9	1.93	70.69	41.1	1. 72	70.79	41.4	1.71	74. 90	42.8	1.75
April.	79.70	39.3	2.03	73.96	38.1	1. 94	73.88	38.9	1.90	71. 28	41.2	1.73	71.38	41.5	1.72	74. 55	42.6	1.75
May	80.43	39.5	2.03	78.24	39.9	1. 96	74.85	39.1	1.92	71. 28	41.2	1. 73	70. 52	41.0	1. 72	74. 98	42.6	1.76
June	80.66	39.3	2.05	79.90	40.0	2.00	72.67	38.0	1.91	72.83	42.1	1.73	72.14	41.7	1.73	74.80	42.5	1.76
July	79. 56	38.8	2.05	71. 57	39.5	1. 81	72. 02	40.0	1.80	72.45	41.4	1. 75	71.80	41.5	1.73	73. 57	41.8	1. 76
August-1.-.---	81.11	39.7	2.04	74. 01	41.4	1. 79	74.70	40.9	1.83	72. 56	41.7	1. 74	71.97	41.6	1. 73	74. $5^{\prime \prime}$	42.1	1. 77
	80.39	39.1	2.06	76.40	42.5	1. 80	71.15	38.8	1.83	70.75	40.2	1.76	72.28	41.3	1. 75	74.23	41.7	1.78
	Connecticut-Continued																	
	Bridgeport			Hartford			New Britain			New Haven			Stamford			Waterbury		
1951: Average	\$68. 48	42.1	\$1. 63	\$75. 60	45.1	\$1. 68	\$68. 67	43.9	\$1. 56	\$60. 27	41.0	\$1. 47	\$70. 41	42.0	\$1. 68	\$66. 11	42.3	\$1. 56
1952: A verage- 1952 September	72. 58	42.2	1. 72	77.28	43.7	1. 77	69.53	42.2	1.65	65.00	41.4	1.57	74.64	41. 9	1.78	68.75	41.8	1.65
	73. 95	42. 5	1.74	75. 28	42.2	1.79	69. 08	41.7	1.66	66.88	41.8	1.60	77. 01	42.6	1.81	71. 23	42.5	1.68
	74.73	42.7	1.75	77.42	43.2	1. 79	69.88	42.0	1.67	68. 04	42.0	1.62	78. 54	42.8	1.84	72. 51	43. 1	1.68
	75.76	42.8	1. 77	80.55	44.4	1.81	71. 91	42.7	1.68	69. 70	42.5	1. 64	77.36	42.4	1.82	74. 02	43.1	1. 71
	77.25	43.4	1. 78	81.62	44.7	1.82	71. 72	42.5	1.69	70.19	42.8	1. 64	78.12	42.5	1.84	74.09	43.4	1. 71
1953: January-....--	75. 83	42.6	1. 78	79. 75	43.9	1.82	73. 06	43.1	1. 70	68.39	41.7	1.64	77. 18	42.2	1.83	73. 89	42.8	1.73
	75.96	42.2	1.80	79.75	43.9	1.82	72.64	42.6	1. 70	69. 89	42.1	1. 66	78. 60	41.9	1.87	75. 52	43.2	1.75
	76.93	42.5	1.81	80.63	44.3	1.82	74.04	42.8	1.73	70.22	42.3	1. 66	79. 71	42.4	1.88	76.04	43.3	1.76
	76.44	42.0	1.82	80. 44	44.2	1.82	73. 53	42.5	1.73	70.14	42.0	1.67	79. 76	42.2	1.89	76. 64	43.3	1.77
	75.66	41.8	1.81	79.72	43.8	1.82	74. 04	42.8	1. 73	70.47	42.2	1.67	79. 80	42.0	1. 90	79. 12	44.2	1.79
	74.93	41.4	1.81	79.35	43.6	1.82	74.12	42.6	1. 74	71.32	42.2	1.69	78. 58	41.8	1.88	79. 30	44.3	1.79
	73.67	40.7	1.81	80. 34	43.9	1.83	73. 01	42.2	1.73	68.88	41.0	1.68	76.19	40.1	1. 90	78. 04	43.6	1.79
	74. 62	41. 0	1. 82	79.61	43. 5	1.83	73. 78	42.4	1. 74	71.49	42.3	1. 69	84. 00	43.3	1. 94	76. 29	43. 1	1.77
	74.89	40.7	1.84	81. 47	43.8	1.86	72.92	41.2	1. 77	70.38	41.4	1.70	82.88	42.5	1.95	75.76	42.8	1.77

See footnotes at end of table.

Table C-5: Hours and gross earnings of production workers in manufacturing industries for selected States and areas ${ }^{1}$-Continued

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Year and month} \& \multicolumn{6}{|c|}{Delaware} \& \multicolumn{6}{|c|}{Florida} \& \multicolumn{6}{|c|}{Georgia} \\
\hline \& \multicolumn{3}{|c|}{State} \& \multicolumn{3}{|c|}{Wilmington} \& \multicolumn{3}{|c|}{State} \& \multicolumn{3}{|l|}{Tampa-St Petersburg} \& \multicolumn{3}{|c|}{State} \& \multicolumn{3}{|c|}{Atlanta} \\
\hline \& Avg. wkly. earnings \& Avg. wkly. hours \& Avg. hrly. earnings \& Avg. wkly. earn- \& Avg. wkly. hours \& Avg. hrly. earnings \& Avg. wkly. earnings \& Avg. wkly. hours \& Avg. hrly. earnings \& Avg. wkly. earn-
ings \& Avg. wkly. hours \& \begin{tabular}{l}
Avg. hrly. earn-
ings \\
,
\end{tabular} \& Avg. wkly. earn- \& Avg. wkly. hours \& Avg. hrly. earnings \& \begin{tabular}{l}
Avg. \\
wkly. \\
earn- \\
ings
\end{tabular} \& Avg. wkly. hours \& Avg. hrly. earnings \\
\hline \multirow[b]{7}{*}{} \& \$63.50 \& 41.5 \& \$1. 53 \& \$72, 89 \& 41.3 \& \$1.77 \& \$49.86 \& 42.5 \& \$1.17 \& \$47.34 \& 41.0 \& \$1. 16 \& \$46. 25 \& 39.9 \& \$1. 16 \& \$53. 22 \& 40.6
40.8 \& \$1. 31 \\
\hline \& \$63. 46 \& 41.0 \& 1. 62 \& 76.85 \& 40.9 \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 1.88 \\
\& 1.89
\end{aligned}
\]} \& 53.43
54.14 \& 42. 8 \& 1.125
1.28
1.28 \& 51. 68 \& \[
\begin{aligned}
\& 41.8 \\
\& 41.5
\end{aligned}
\] \& 1.24 \& \& 39.9
40.7 \& 1.21 \& 57.94
59.86 \& 41.0 \& \multirow[t]{2}{*}{1. 1.46} \\
\hline \& \multirow[t]{2}{*}{66.26} \& \multirow[t]{2}{*}{42.4
40.9} \& \multirow[t]{2}{*}{1.62} \& 78. 29 \& 41.4 \& \& 54.14
53.72 \& 42.2 \& \[
\begin{aligned}
\& 1.28 \\
\& 1.28
\end{aligned}
\] \& \[
51.88
\] \& \& 1. 25 \& 49. 25 \& 40.5 \& 1.22 \& 59.86 \& \multirow[t]{2}{*}{41.0
41.3} \& \\
\hline \& \& \& \& \multirow[t]{2}{*}{78.34
79.68} \& \multirow[t]{2}{*}{41.2} \& \multirow[t]{2}{*}{1. 93} \& \multirow[t]{2}{*}{55. 53} \& 43.3 \& \multirow[t]{2}{*}{1.28} \& 52.17
54.44 \& 41.8
42.9 \& 1.27 \& 49.41
50.02 \& \multirow[t]{2}{*}{41.0
41.1} \& \multirow[t]{2}{*}{1.22
1.23
1.2} \& \multirow[t]{2}{*}{60.71
61.83} \& \& 1.46
1.47 \\
\hline \& 68.30 \& 40.9 \& 1.67 \& \& \& \& \& \multirow[t]{2}{*}{43.4
43.4} \& \& 54. 21 \& 42.5 \& 1.28 \& 50.02
50.55 \& \& \& \& 41.3
41.5 \& 1.47
1.49
1.48 \\
\hline \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{41.7} \& \multirow[t]{2}{*}{1. 1.73} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 83.32 \\
\& 83.16
\end{aligned}
\]} \& \multirow[t]{2}{*}{42.3
41.3} \& \multirow[t]{2}{*}{1.97
1.96
1.97} \& \multirow[t]{2}{*}{55. 63
55.72} \& \& 1.28 \& \multirow[t]{2}{*}{55.53
55.39} \& \multirow[t]{2}{*}{42.7
43.4} \& \multirow[t]{2}{*}{1.30
1.28
1.28} \& 50.55
49.97 \& 41.1
40.3 \& 1.23 1.24 \& 61.83
60.24 \& 40.7 \& 1. 48 \\
\hline \& \& \& \& \& \& \& \& 43.3 \& 1.29 \& \& \& \& \begin{tabular}{l}
49.97 \\
50.50 \\
\hline
\end{tabular} \& 40.4 \& 1. 25 \& \multirow[t]{2}{*}{63. 34} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 41.4 \\
\& 41.4
\end{aligned}
\]} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& \text { 1. } 53 \\
\& \text { 1. } 52
\end{aligned}
\]} \\
\hline \multirow[t]{8}{*}{1953: January_.....-} \& 72.10
69.67 \& 40.6
40.8 \& 1.72 \& \[
\begin{aligned}
\& 83.16 \\
\& 81.11
\end{aligned}
\] \& 41.3
41.4 \& \[
\begin{aligned}
\& 1.97 \\
\& 1.96
\end{aligned}
\] \& 55. 72
55.50 \& 43.1 \& \multirow[t]{2}{*}{1.29
1.30} \& \multirow[t]{2}{*}{53.15
53.75} \& 41.6 \& 1.28 \& 50.75 \& 40.6
40.6 \& 1.25
1.25 \& \& \& \\
\hline \& 69.65
70.90 \& 41.1 \& 1.73 \& 81.10
84.08 \& 42.0 \& \multirow[t]{2}{*}{2. 2.00} \& \multirow[t]{2}{*}{55. 13
54.87
54} \& \multirow[b]{2}{*}{42.1} \& \& \& \multirow[t]{2}{*}{42.0
41.5} \& 1.28 \& 50.75
50.38 \& \multirow[t]{2}{*}{40.6
40.3
40.4} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 1.25 \\
\& 1.25
\end{aligned}
\]} \& \multirow[t]{2}{*}{62.83} \& \multicolumn{2}{|l|}{\[
\begin{array}{l|l}
41.3 \& 1.52 \\
41.5 \& 1.54 \\
\hline
\end{array}
\]} \\
\hline \& 69.33 \& 41.0 \& \multirow[t]{2}{*}{1.69} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 81.00 \\
\& 81.62
\end{aligned}
\]} \& \multirow[t]{2}{*}{41.2
42.2} \& \& \& \& \[
\begin{aligned}
\& 1.30 \\
\& \text { 1. }
\end{aligned}
\] \& \begin{tabular}{l}
53.75 \\
53.90
\end{tabular} \& \& 1.30 \& 50.38
50.90 \& \& \& \& \& 1.57 \\
\hline \& 70.41 \& \multirow[t]{2}{*}{41.2
40.4} \& \& \& \& \& 54.86 \& 41.9 \& 1.31 \& 53. 21 \& 41.1 \& 1.30 \& 50.90
50.27 \& 40.4
39.9 \& 1.26 \& 63. 40 \& 40.9 \& 1. 55 \\
\hline \& 69.69 \& \& 1.73 \& 85. 52 \& 41.9 \& 2.04 \& 55. 08 \& 41.4 \& 1.33 \& 53. 81 \& 41.3
40.4 \& 1.30 \& 50.80
50.8 \& 39.9
40.0 \& 1.27
1.27 \& 64. 68 \& 41.2 \& 1. 57 \\
\hline \& 67.17 \& 40.2
41 \& 1.67
1.69 \& 80.14
79.79 \& 40.7
40.4 \& 1.97
1.98 \& \[
\begin{aligned}
\& 54.74 \\
\& 55.15
\end{aligned}
\] \& 41.2
41.2 \& 1.33
1.34 \& 52.61 \& 40.4
40.2 \& 1.31 \& 49.54 \& 38.7 \& 1.28 \& 63.20 \& 40.0 \& 1.58 \\
\hline \& 69.76 \& \& \& \& Idaho \& \& \& \& \& \& \& Illin \& nois \& \& \& \& \& \\
\hline \& Georgia \& -Conti \& inued \& \& Idaho \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline \& \& avannah \& \& \& State \& \& \& State \& \& Daver
Islan \& \[
\begin{aligned}
\& \text { enport-R } \\
\& \text { ind-Moli }
\end{aligned}
\] \& ine \& \& Peoria \& \& \& ockford \& \\
\hline 1951: Average \& \$55. 59 \& 41. 8 \& \$1.33 \& \$69. 60 \& 40.7 \& \$1. 71 \& \$68. 72 \& 41.4 \& \$1. 66 \& \$73.05 \& 40.5 \& \$1. 80 \& \$71.
71
71.67 \& 41.9
39.8 \& \(\$ 1.71\)
1.80 \& \$75.
78.
787 \& 45.5
44.7 \& \(\$ 1.66\)
1.77 \\
\hline 1952: Average. \& 60. 21 \& 42.7 \& 1. 41 \& 75.03 \& 41. 0 \& 1.83 \& 72.18 \& 41.2 \& 1.75 \& 75.86 \& 40.1 \& 1.89 \& 71. 28 \& 39.5 \& 1.80 \& 78. 49 \& 44.1 \& 1.78 \\
\hline 1952: September \& 59. 78 \& 42.1 \& 1. 42 \& 75. 66 \& 41.8 \& 1.81 \& 74. 59 \& 41.5
41.9 \& 1.78 \& 75.92 \& 41.4 \& 1.83 \& 73. 22 \& 40.3 \& 1.82 \& 82.00 \& 45.3 \& 1.81 \\
\hline October- \& 61.34
62.06 \& 42.6
43.1 \& 1.44
1.44 \& 72.68
76.86 \& 39.5
41.1 \& 1.87 \& 75. 02 \& 41.7 \& 1. 80 \& 76.54 \& 40.8 \& 1.87 \& 71. 68 \& 39.5 \& 1.81 \& 82.85 \& 45.4 \& 1. 82 \\
\hline Decembe \& 62.64 \& 43.5 \& 1.44 \& 76.96 \& 41.6 \& 1.85 \& 76.81 \& 42.3 \& 1. 82 \& 80.98 \& 42.3 \& 1.91 \& 74.57 \& 39.9 \& 1.87 \& 84.74 \& \& \\
\hline 1953: January \& 59.90 \& 41.8 \& 1.44 \& 75.92 \& 40.6 \& 1. 87 \& 75. 91 \& 41.6 \& 1.82 \& \& \& \& \& \& \& \& \& \\
\hline February \& 61.15 \& 41.6 \& 1. 47 \& 72.67 \& 40.6 \& 1. 1.79 \& 76.36 \& 41.6 \& 1.84 \& \& \& \& \& \& \& \& \& \\
\hline March \& 63.49 \& 42.9 \& 1.48 \& 70.98 \& 40.1 \& 1.77 \& 77.04 \& 41.8 \& 1.84 \& \& \& \& \& \& \& \& \& \\
\hline April. \& 62. 16 \& 42.0 \& 1.48 \& 72. 67 \& 40.6 \& 1.79 \& 76. 48 \& 41.3
41.1 \& 1.85 \& \& \& \& \& \& \& \& \& \\
\hline July \& 65. 48 \& 42.8 \& 1.53 \& 78.81 \& 41.7 \& 1.92 \& 75. 52 \& 40.7 \& 1.86 \& \& \& \& \& \& \& \& \& \\
\hline August \& 64.41 \& 42.1 \& 1. 53 \& 80. 56 \& 41.1 \& 1.96 \& 76. 21 \& 41.2 \& 1.85 \& \& \& \& \& \& \& \& \& \\
\hline September \& 63.55 \& 41.0 \& 1.55 \& 76.03 \& 39.6 \& 1.92 \& 76.56 \& 40.8 \& 1.88 \& \& \& \& \& \& \& \& \& \\
\hline \& \& Indiana \& \& \& \& \& wa \& \& \& \& \& \& \& Kansas \& \& \& \& \\
\hline \& \& State \& \& \& State \& \& \& Des Moi \& ines \& \& State \& \& \& Topeka \& \& \& Wichita \& \\
\hline \& \$70.08 \& 41.1 \& \$1. 71 \& \$64.81 \& 41.8 \& \$1. 55 \& \$66. 39 \& 40.0 \& \$1.66 \& \$67.84 \& 43.1 \& \$1. 58 \& \$60. 26 \& 41.6 \& \$1. 45 \& \$75. 44 \& 44.9 \& \$1.68 \\
\hline 1952: Average \& 72.64 \& 40.8 \& 1.78 \& 67.08 \& 41.5 \& 1.62 \& 69.86 \& 40.3 \& 1.73 \& 71.42 \& 42.6 \& 1. 68 \& 65.55 \& 42.2 \& 1. 56 \& 77. 00 \& 43. 6 \& 1.77 \\
\hline 1952: September \& 74.51 \& 41.2 \& 1.81 \& 67.38 \& 41.8 \& 1. 61 \& 73. 42 \& 41.3 \& 1.78 \& 73.31 \& 42.9 \& 1.71 \& 64. 65 \& 41.8 \& 1. 1.57 \& 79.34 \& 43.9 \& 1.81 \\
\hline October \& 75. 77 \& 41.5 \& 1.82 \& 68. 69 \& 42.1 \& 1. 63 \& 74.37 \& 41.9 \& 1.78 \& 73. 68
74 \& 43.0 \& 1. 74 \& 65.97 \& 41.7 \& 1. 58 \& 80.84 \& 44.5 \& 1.82 \\
\hline November \& 76. 57 \& 41.3 \& 1.86 \& 69.35 \& 42.4 \& 1. 64 \& 71. 62 \& 40.4 \& 11.78 \& 76. 88 \& \& \& \& 44.4 \& 1. 66 \& 82.19 \& 44.7 \& 1.84 \\
\hline December \& 77. 66 \& 41.7 \& 1.86 \& 71.51 \& 43.1 \& 1.66 \& 75.62
74.77 \& 42.3
41.0 \& 1.79
1.82 \& 76.88 \& 42.6 \& 1. 78 \& 68.80 \& 41.8 \& 1. 64 \& 80.17 \& 43.5 \& 1.84 \\
\hline 1953: January \& 77.25 \& 41.5 \& 1.86 \& 70.44 \& 42.0 \& 1.68 \& 74.77 \& 41.0 \& 1.82
1.81 \& 74. 22 \& 42.3 \& 1.76 \& 66. 28 \& 42.0 \& 1. 58 \& 79.71 \& 43.4 \& 1.84 \\
\hline February \& 77.54 \& 41.4 \& 1.87 \& 69.06
69.09 \& 41.1 \& 1.68 \& 73. 48 \& 40.4 \& 1.82 \& 74.54 \& 42.1 \& 1. 77 \& 70.99 \& 43.6 \& 1. 63 \& 77.86 \& 42.2 \& 1. 84 \\
\hline March \& 77. 92 \& 41.6 \& 1.88
1.88 \& 69.09
67.39 \& 40.3 \& 1.67 \& 72.24 \& 39.9 \& 1.81 \& 74.91 \& 41.8 \& 1. 79 \& 67.18 \& 40.6 \& 1. 66 \& 78.35 \& 42.0 \& 1.87 \\
\hline April \& 77.46
76.93 \& 41.2
40.8 \& 1.88 \& 68.61 \& 40.3
40.8 \& 1.68 \& 73.80 \& 40.2 \& 1.83 \& 73. 11 \& 41.2 \& 1. 77 \& 58. 81 \& 38.2 \& 1. 54 \& 77.17 \& 41.4 \& 1.87 \\
\hline May \& 76.93
77.15 \& 40.8
41.0 \& 1.88 \& 68.50 \& 40.8 \& 1.68 \& 74.77 \& 40.6 \& 1.84 \& 73.37 \& 41.0 \& 1. 78 \& 62.42 \& 40.6 \& 1.54 \& 74. 26 \& 40.4
39.8 \& 1.84 \\
\hline July \& 77.21 \& 40.1 \& 1.92 \& 66. 30 \& 39. 6 \& 1. 67 \& 70.32 \& 37.9 \& 1.86 \& 73.78 \& 41.3 \& 1.79
1.81
1 \& 63. 40 \& 40.3
41.5 \& 1. 1.61 \& 74.43 \& 39.8
39.9 \& 1.86 \\
\hline August \& 76. 94 \& 40.4 \& 1. 90 \& 67.30 \& 40.5 \& 1.66
1.71 \& 76. 17 \& 40.5
40.4 \& 1.88
1.90 \& 74.75 \& 41.3
40.4 \& \& 66.97
65.57 \& 41.5
39.9 \& 1.64 \& 73.59 \& 39.3 \& 1.87 \\
\hline September \& 77.07 \& 40.5 \& 1.90 \& 69.10 \& 40.4 \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline \& \& Kentuck \& \& \& \& \& \& Louisiana \& \& \& \& \& \& \& \& Maine \& \& \\
\hline \& \& State \& \& \& State \& \& \& Baton Ro \& uge \& \& ew Orle \& eans \& \& State \& \& \& Portlan \& \\
\hline \& \& \& \& \& \& \& \& \& \& \& \& \$1.33 \& \$52. 44 \& 40.2 \& \$1. 31 \& \$53.92 \& 41.2 \& \$1. 31 \\
\hline 1951: Average \& \& \& \& - \(\begin{array}{r}\$ 55.21 \\ 59.22\end{array}\) \& 41.2
42.0 \& \begin{tabular}{|}
\(\$ 1.34\) \\
1.41
\end{tabular} \& \& 41.4 \& \& \({ }^{-1} 56.82\) \& 40.3 \& 1. 41 \& 55. 17 \& 40.8 \& 1.35 \& 56.96 \& 41.9 \& 1. 36 \\
\hline 1952: Average--- \& \$62.73 \& 42.4 \& \$1.49 \& - \(\begin{aligned} \& 59.22 \\ \& 60.62\end{aligned}\) \& 42.1 \& 1. 44 \& 88.20 \& 42.2 \& 2. 09 \& 58.75 \& 40.8 \& 1.44 \& 55.45 \& 41.1 \& 1.35 \& 57.99 \& 42.5 \& 1.36 \\
\hline 1952: September \& 63.18
65.14 \& 43.4 \& 1.50 \& 60.35 \& 42.8 \& 1.41 \& 86.73 \& 41.3 \& 2. 10 \& 59. 20 \& 41.4 \& 1. 43 \& 56.47 \& 41.2 \& 1.37 \& 59.13
58.16 \& 42.2 \& 1.38 \\
\hline November \& 66.53 \& 43.2 \& 1.54 \& 460.33 \& 43.4 \& 1.39 \& 85.90 \& 41.3 \& 2.08 \& 59.57 \& 40.8 \& 1. 16 \& - \(\begin{aligned} \& 55.25 \\ \& 57\end{aligned}\) \& 41.0
41.3 \& 1.38
1.39 \& \({ }^{59.93}\) \& 42.5 \& 1.41 \\
\hline December \& 67.36 \& 43.6 \& 1.55 \& 561.20 \& 42.8 \& 1.43 \& 85. 44 \& 40.3 \& 2. 12 \& 58.87 \& 40.6 \& 1.45
1.49 \& - \(\begin{aligned} \& 57.22 \\ \& 58.32\end{aligned}\) \& 41.3
42.0 \& 1.39 \& 59.39 \& 41.9 \& 1.42 \\
\hline 1953: January \& 65. 67 \& 42.7 \& 1. 54 \& 4
61.72
61.98 \& 41.7 \& - 1.48 \& 90.74
85.88 \& 42.8
40.7 \& 2. 11 \& \(1{ }^{1} \mathbf{6 0 . 1 9}\) \& 49.6
39 \& 1.52 \& 58.34 \& 41.6 \& 1. 40 \& 60. 20 \& 42.1 \& 1. 43 \\
\hline February \& 66. 55 \& 42.3 \& 1.57 \& \begin{tabular}{l|l}
7 \& 61.98 \\
63.00
\end{tabular} \& 41.6
42.0 \& 1.49
1.50 \& 85.88
86.10 \& 40.7
41.0 \& 2. 10 \& 60.75 \& 40.5 \& 1.50 \& 57.96 \& 41.6 \& 1. 39 \& 60.15 \& 42.1 \& 1. 43 \\
\hline March \& 67.87
67 \& 42.6
42.4 \& 1.60
1.60 \& \begin{tabular}{|l|l}
O
\end{tabular} \(\begin{aligned} \& 63.00 \\
\& 64.30\end{aligned}\) \& 42.0
42.3 \& 1. 50 \& - \(\begin{aligned} \& 86.10 \\ \& 86.53\end{aligned}\) \& 41.0
41.4 \& 2. 09 \& 63.76 \& 41.4 \& 1.54 \& 56.88 \& 40.5 \& 1. 40 \& -58.82 \& 41.5
42.0 \& 1. 1.42 \\
\hline April \& 67.69
68.10 \& 42.4
42.1 \& 1.60
1.62 \& \begin{tabular}{|l|l}
¢
\end{tabular} \(\begin{aligned} \& 64.30 \\
\& 64.02\end{aligned}\) \& 42.3
41.3 \& - 1.55 \& 5 \(\begin{aligned} \& \text { 80. } 20 \\ \& 88 .\end{aligned}\) \& - 41.8 \& 2.11 \& 162.06 \& 40.3 \& 1. 54 \& 56. 57 \& 40.7 \& 1.39 \& 59.49
58.27 \& 42.0 \& 1.42 \\
\hline May \& 68.10
67.98 \& 41.5 \& 1.62 \& \begin{tabular}{l|l}
\hline 64.19 \\
\hline 63.19
\end{tabular} \& 41.3 \& 1.53 \& 89.46 \& - 42.2 \& 2. 12 \& 61.45 \& 39.9 \& 1. 54 \& 4
56.79
56 \& 40.9
40.3 \& 1.39
1.41 \& - \(\begin{aligned} \& 58.27 \\ \& 60.62\end{aligned}\) \& 41.5 \& 1. 1.43 \\
\hline July. \& 68.01 \& 41.4 \& 1.64 \& +64.58 \& 41.4 \& 1.56 \& -92.45 \& - 43.2 \& 2. 14 \& \begin{tabular}{l|l|l}
4 \& 61.85 \\
43.83
\end{tabular} \& 39.9
40.4 \& 1. 1.55 \& - \(\begin{aligned} \& \text { 56. } 60 \\ \& 56.31\end{aligned}\) \& 40.3
40.3 \& 1.41
1.40 \& 60.38 \& 42.2 \& 1.43 \\
\hline August \& 70.00 \& 42.5 \& 1.65 \& -64.02 \& 41.3 \& 1.55 \& -89.02 \& \begin{tabular}{|l}
41.6 \\
42.0
\end{tabular} \& 2. 23 \& \begin{tabular}{l|l|l}
4 \& 63.83 \\
63.04
\end{tabular} \& 40.4
39.9 \& 1.58
1.58 \& 86.

56. \& 40.1 \& 1.41 \& 161.08 \& 42.0 \& 1. 45

\hline Septembe \& 70.14 \& 41.8 \& 1.68 \& -64.78 \& 41.0 \& 1. 58 \& 93.66 \& - 42.0 \& 2. 23 \& 63.04 \& \& \& \& \& \& \& \&

\hline
\end{tabular}

See footnotes at end of table.

Table C-5. Hours and gross earnings of production workers in manufacturing industries for selected States and areas ${ }^{1}$-Continued

Year and month	Maryland						Massachusetts											
	State			Baltimore			State			Boston			Fall River			New Bedford		
	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earnings	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earnings	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earnings	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earnings	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earnings	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earnings
1951: Average 1952: Average 1952: September October November December. 1953: January February...... March. April. May. June. July. August September	\$60. 84	40.9	\$1.49	\$64.35	41.2	\$1.56	\$60. 75	40.5	\$1.50	\$62. 37	40.7	\$1. 53	\$46. 34	37.0	\$1. 25	\$52.43	38.9	\$1.35
	63.84	40.5	1. 58	67. 22	40.7	1.65	63.43	40.4	1.57	65. 04	40.4	1.61	49.63	37.6	1.32	53. 52	38.5	1. 39
	63. 90	41.3	1. 55	69. 14	41.6	1. 66	64.62	40.9	1. 58	66.67	40.9	1. 63	52.27	39.6	1.32	55. 18	39.7	1. 39
	64.78	41.3	1. 57	68.90	41.2	1. 67	64.87	40.8	1. 59	66. 02	40.5	1.63	51. 99	38.8	1.34	56.23	39.6	1. 42
	65.46	41.1	1. 59	69.56	41.3	1. 69	64.96	40.6	1. 60	66. 66	40.4	1. 65	50.65	37.8	1.34	56. 48	39.5	1. 43
	66.97	41.6	1. 61	71.00	41.9	1.70	66. 98	41.6	1. 61	68.72	41.4	1. 66	53.47	39.9	1.34	56. 68	40.2	1. 41
	66. 59	41.0	1. 62	70. 50	41.2	1.71	66. 74	41.2	1. 62	67.98	41.2	1. 65	54. 40	40.0	1. 36	56.14	40.1	1. 40
	66. 71	40.7	1. 64	70.38	40.9	1.72	66. 83	41.0	1. 63	67.80	40.6	1. 67	53. 86	39.6	1. 36	56. 00	40.0	1. 40
	67.68	41.0	1. 65	71.34	41.2	1.73	67.16	41.2	1. 63	67.97	40.7	1. 67	54.54	40.1	1. 36	55.32	39.8	1. 39
	67. 45	40.8	1. 65	71.20	40.9	1.74	66.34	40.7	1. 63	67.54	40.2	1. 68	52.92	39. 2	1.35	54. 65	39.6	1.38
	67.35	41.0	1.64	71.28	41.1	1.73	66.91	40.8	1. 64	67.87	40.4	1. 68	52.92	39.2	1.35	55. 58	39.7	1. 40
	67.57	41.1	1. 64	72.02	41.3	1.75	67.16	40.7	1. 65	68. 11	40.3	1. 69	54. 12	39.5	1.37	57.23	40.3	1. 42
	67.24	40.4	1. 66	72. 70	40.9	1.78	66. 90	40.3	1. 66	67.89	39.7	1. 71	52.33	38.2	1.37	56. 52	39.8	1. 42
	66.13	40.3	1. 64	72.03	40.8	1.77	66. 66	40.4	1. 65	69. 08	40.4	1.71	52.22	38.4	1.36	56. 66	39.9	1. 42
	66.51	40.1	1.66	71.71	40.3	1.78	66.07	39.8	1. 66	68.28	39.7	1.72	53.27	38.6	1.38	55.77	39.0	1. 43
	Massachusetts-Continued						Michigan											
	Springfield-Holyoke			Worcester			State			Detroit			Flint			Grand Rapids		
1951: Average	\$64. 74	41.5	\$1. 56	\$67. 72	41.1	\$1. 65	\$74. 55	40.1	\$1.86	\$76. 32	39.4	\$1.94	\$76.08	40.0	\$1.90	\$70. 64	41.6	\$1.70
	69.39	41.8	1. 66	68.21	40.6	1.68	81.34	41.0	1.98	81.36	40.5	2.08	85. 00	41.3	2.06	74.64	41.7	1. 79
	70. 14	42.0	1. 67	68.78	40.7	1. 69	85. 72	42.1	2.04	89.92	41.9	2.15	96.01	44.8	2. 14	76.85	42.2	1.82
	70.31	42.1	1. 67	69. 29	41.0	1. 69	87. 54	42.6	2.06	92.40	42. 6	2.17	97.07	45.0	2. 16	79.02	42.9	1.84
	70. 30	41.6	1. 69	69.36	40.8	1. 70	86.55	42.2	2.05	90. 69	42.2	2.15	97.91	45.1	2. 17	76. 62	41.8	1. 83
	72.08	42.4	1. 70	71.72	41.7	1. 72	89. 63	43.3	2.07	91.35	43.6	2.16	96. 17	44.4	2.17	81. 58	43.6	1.87
1953: January $\begin{aligned} & \text { Februar } \\ & \text { March } \\ & \text { April. } \\ & \text { May } \\ & \text { Mune... } \\ & \text { July } \\ & \text { Jugust } \\ & \text { Aug } \\ & \text { Septemb }\end{aligned}$	70.47	41.7	1. 70	71.80	41.5	1.73	86. 31	42.1	2. 05	88. 31	41.4	2. 13	98. 44	46. 0	2. 14	79.69	42.8	1. 86
	70. 97	41.5	1. 71	71. 10	41.1	1.73	86. 44	42.0	2. 06	88.31	41.4	2.13	101.95	46.7	2.18	77.23	41.5	1.86
	70.55	41.5	1. 70	72.14	41.7	1.73	87.14	42.3	2.06	88. 99	41.7	2. 13	99. 50	46.0	2.16	79.54	42.4	1.88
	71.04	41.3	1. 72	71. 69	41.2	1.74	87.02	42.1	2. 07	88. 56	41.5	2.13	108. 70	48.9	2. 22	80.64	42.6	1. 89
	71.04	41.3	1. 72	72.04	41.4	1.74	86. 23	41.9	2.06	87.80	41.2	2.13	100.84	46.9	2.15	80.11	42.5	1.89
	71.62	41.4	1. 73	71. 75	41.0	1.75	87. 28	41.6	2. 10	88.96	40.9	2.18	101. 53	44.2	2.30	81.77	42.7	1.92
	71.10	41.1	1. 73	72.57	41.0	1.77	85. 84	40.8	2. 10	87.16	40.0	2. 18	105.82	45. 3	2.34	79.37	41.6	1. 92
	70.00	40.7	1. 72	72.69	41.3	1. 76	86. 15	41.2	2. 09	89.71	41.0	2. 19	98. 35	44.3	2. 22	80. 66	42.1	1. 92
	68.11	39.6	1.72	69.92	39.5	1.77	85. 41	40.4	2.11	88.05	39.7	2.22	99.15	44.5	2. 23	80.29	41.6	1.93
	Michigan-Continued									Minnesota								
	Lansing			Muskegon			Saginaw			State			Duluth			Minneapolis		
1951: Average	\$77. 43	40.2	\$1. 93	\$75. 18	39.4									40.1	\$1.65	\$65. 82	41.7	\$1. 58
	84.79	41.2	2. 06	82.37	40.2	2.05	78.44	41.7	1.88	69.35	41.7	1.66	68. 11	39.5	1. 72	70.16	41.9	1. 67
	94.98	44.3	2. 14	78.99	39.3	2.01	89.71	44.9	2.00	69.52	41.8	1. 66	67.77	37.7	1.80	71.90	42.2	1. 71
	89. 76	42.5	2.11	81.04		2.03	86. 42	44.0	1.96	72.18	42.1	1. 71	69. 68	38.7	1.80	71.28	41.8	1. 71
	89. 51	42.3	2.12	90.99	42.8	2.13	79.61	41.4	1.92	71. 02	41.6	1.71	68. 18	38.6	1.77	71. 26	42.0	1.71
	98.05	45. 1	2. 17	89.72	42.5	2.11	81. 96	42.4	1. 93	72.40	42.0	1. 72	70.18	39.4	1.78	72. 48	42.3	1. 72
1953: January ${ }^{\text {February }}$ -	98. 45	45.2	2. 18	89. 25	42.4	2.11	81.89	42.3	1. 94	71. 56	41.5	1. 72	70.86	39.3	1. 80	71. 58	41.4	1. 73
	95. 65	44.1	2. 17	87.74	41.7	2.10	87.21	44.0	1. 98	71.65	41.3	1. 73	70.56	39.1	1.80	72. 19	41.6	1. 74
	96. 33	44.7	2. 16	85. 04	41.2	2. 06	92.54	45.7	2. 03	71. 48	41.2	1. 74	66. 90	38.1	1.76	72.18	41.3	1. 75
	94.69	44.0	2.15	83.51	40.6	2. 06	91.98	45. 4	2.03	71. 10	40.7	1. 75	69. 65	38.7	1.80	71. 98	41.1	1. 76
	99. 65	45.9	2. 17	80.77	39.4	2.05	90.87	45.3	2. 01	72.03	41.1	1. 75	69. 34	38.3	1.81	70.70	40.5	1. 75
	101. 64	45.6	2. 33	81.32	39.9	2.04	95.22	46. 0	2.07	72. 58	41.2	1. 76	70.79	39.0	1.82	72.78	41.1	1. 77
	93. 56	42.8	2. 19	81.61	39.5	2. 07	90.57	44.2	2.05	72. 09	41.4	1. 74	72. 07	39.1	1.84	73.88	41.6	1. 78
	92.18	42.5	2. 17	78.40	38.3	2. 05	84.28	42.5	1.98	71.85	41.6	1. 73	79.11	41.4	1.91	72.45	41.1	1. 78
	86. 42	39.9	2. 17	80.33	38.9	2.07	81.67	41.1	1.99	72.65	40.9	1.78	71. 97	39.1	1.84	74.82	41.4	1.81
	Minnesota-Con.			Mississippi						Missouri								
	St. Paul			State			Jackson			State			Kansas City			St. Louis		
1951: Average 1952: Average	\$66. 03	40.5	\$1. 63	\$42.40	41.1	\$1.03				\$59.94	40.0	\$1. 50	\$65. 80	41.3	\$1. 60	\$63. 11	39.9	\$1.58
	70.27	40.3	1. 74	45.45	41.7	1.09	\$48. 03	42.5	\$1. 13	64.21	40.5	1.58	69.60	40.7	1.71	67.27	40.3	1. 67
1952: September....-	70.84	40.0	1. 77	46.42	42.2	1.10	49.76	42.9	1.16	65.52	40.9	1. 60	71. 75	41.0	1. 75	68. 58	40.6	1.69
	73. 51	41.2	1. 79	47. 02	42.8	1. 10	50.05	43.9	1. 14	66. 29	40.9	1. 62	70. 40	40.0	1. 76	69.28	40.9	1. 69
	73. 83	41.1	1. 80	47.30	43.0	1. 10	48.56	42.6	1.14	65. 51	40.0	1. 64	69.83	39.9	1. 75	69.33	40.5	1.71
	74.54	41.6	1. 79	46. 64	42.4	1.10	49.34	42.9	1. 15	66.61	40.7	1. 64	70.12	40.3	1. 74	71.00	41.3	1. 72
1953: January	71.57	40.1	1. 78	46. 59	41.6	1.12	51.88	43.6	1. 19	65.51	39.9	1. 64	70.82	40.7	1. 74	70.28	40.3	1.75
	73. 31	40.6	1.81	46. 78	41.4	1.13	49. 03	41.2	1. 19	66. 72	40.4	1. 65	72.45	41.4	1.75	71.18	40.7	1.75
	72.66	40.4	1. 80	46. 67	41.3	1.13	49.08	40.9	1. 20	67.60	40.6	1. 66	70.18	40.1	1. 75	72. 26	40.9	1.77
	73. 28	40.5	1. 81	47. 73	41.5	1.15	50.14	41.1	1. 22	66. 79	40.1	1.67	69. 08	39.7	1. 74	72.00	40.5	1. 78
	73. 47	40.4	1. 82	46. 51	40.8	1. 14	49. 57	40.3	1. 23	67.07	39.9	1.68	69. 08	39.7	1. 74	72.36	40.5	1. 79
	74. 23	40.3	1. 84	46. 78	41.4	1. 13	49. 20	41.0	1. 20	68. 05	40.2	1. 69	71.75	41.0	1.75	72.25	40.2	1. 80
	74. 43	40.0	1. 86	46. 53	41.0	1.13	47.84	40.2	1. 19	68. 51	40.1	1. 71	73. 69	41.4	1.78	72. 59	40.1	1. 81
	72.79 75.95	39.3 39.8	1.85 1.91	47.20 46.68	41.4 39.9	1.14 1.17	47.88 49.37	39.9 40.8	1.20	68.72 68.15	40.5 39.1	1.70	74. 82	41.8 40.3	1.79	72. 48	40.4	1. 80
									1.21	68.15	3.1	1.74	71.78	40.3	1.78	72.60	39.4	1.85

See footnotes at"end of table.

zed for FRASER

Table C-5. Hours and gross earnings of production workers in manufacturing industries for selected States and areas ${ }^{1}$ Continued

Year and month	Montana			Nebraska			Nevada			New Hampshire						New Jersey		
	State			State			State			State			Manchester			State		
	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earn- ings	Avg. wkly. ings	Avg. wkly. hours	Avg. hrly. earn-	Avg. wkly. ings	Avg. wkly. hours	Avg. hrly. earn-	Avg. wkly. ings	Avg. wkly. hours	Avg. hrly. earnings	Avg. wkly. ings	Avg. wkly. hours	Avg. hrly. earn- ings	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earnings
1951: Average	\$72. 13	41.2	\$1.75	\$58.84	42.6	\$1.38	\$73. 54	41.2	\$1.79	\$54. 27	40. 5	\$1. 34	\$51. 84	38.4	\$1. 35	\$67.28	41.1	\$1. 64
1952: Average	76. 46	41.0	1.86	61.16	41.9	1.46	80.90	41.7	1.94	56.17	40.7	1. 38	54.32	38.8	1.40	71.02	41.1	1. 73
1952: September	77.59	41.0	1.89	60.54	41.2	1. 47	80.45	41.9	1.92	57.27	41.2	1.39	55. 27	39.2	1.41	72. 38	41.5	1. 74
October-.	77.73	41.4	1.88	61.79	41.8	1. 48	81.95	41. 6	1.97	55. 32	39.8	1.39	52.17	37.0	1.41	72. 54	41.5	1.75
Novembe	77.58	40.8	1.90	63.78	42.4	1. 51	83.16	42.0	1.98	56.00	40.0	1. 40	53.58	38.0	1.41	73. 29	41.5	1. 77
December	77.91	40.6	1. 92	65. 88	43.0	1. 53	82. 94	42.1	1.97	58.66	41.6	1. 41	57.37	40.4	1. 42	74.58	41.9	1.78
1953: January	78.49	40.7	1.93	62.01	40.1	1.55	82.74	42.0	1.97	57.96	41.4	1. 40	56. 40	40.0	1.41	74. 48	41.7	1. 79
February	80.11	41.4	1.94	62.75	41.1	1. 53	83.83	41.5	2.02	58.38	41.7	1. 40	56. 54	40.1	1.41	74. 27	41.4	1.79
March	78.07	41.1	1.90	62.75	41.0	1. 53	85. 46	42.1	2.03	57.82	41.3	1. 40	56. 66	39.9	1. 42	73.95	41.2	1. 79
April	79.03	41.0	1.93	63.31	41.1	1. 54	84. 22	41.9	2.01	56.96	40.4	1. 41	54. 14	38.4	1. 41	74. 28	41.2	1.80
May	78. 07	40. 6	1. 92	64. 00	41.1	1. 56	86. 43	43.1	2. 01	56. 96	40.4	1. 41	53. 68	37.8 391	1.42	74. 76	41.1	1.81
July	78. 23	40.5	1.93	64. 51	41.9	1. 54	83.84	41.1	2.04	57. 37	40.4	1. 42	54. 43	38.6	1.41	74.95	40.8	1.84
August	81.13	41.5	1.95	65.33	41.8	1. 56	89. 46	42.4	2.11	57.51	40.5	1. 42	56. 06	39.2	1.43	73.59	40.5	1.82
September	80.04	41.1	1.95	66. 95	42.1	1. 59	87. 43	40.1	2.18	57.02	39.6	1. 44	54.10	38.1	1.42	73.53	40.2	1.83
	New Jersey-Continued												New Mexico					
	Newark-Jersey City			Paterson			Perth Amboy			Trenton			State			Albuquerque		
1951: Average	\$69. 01	41.6	\$1. 66	\$67. 94	41.3	\$1. 65	\$67.65	41.2	\$1. 64	\$65. 85	40.7	\$1. 62	\$68.02	43. 6	\$1. 56	\$69.00	45.1	\$1. 53
1952: Average	72.33	41.4	1.75	72.04	41.5	1.74	71.31	41.1	1.73	68.69	40.5	1. 70	71.88	43.3	1. 66	71.83	43.8	1. 64
1952: Septembe	73. 44	41.8	1.76	73.65	41.8	1.76	72.83	41.5	1.75	71. 01	41.0	1. 73	73. 52	43. 5	1.69	74.46	45.4	1. 64
October	74.39	42.1	1. 77	73. 99	41.8	1.77	72.96	41.5	1.76	71.50	41.4	1.73	71.71	43. 2	1. 66	75. 26	44.8	1. 68
November	74.20	41.8	1.78	75. 65	42.2	1.79	74. 03	41.8	1.77	74.31	41.7	1.78	72.42	42.6	1.70	72.93	44.2	1. 65
December	75.61	42.1	1. 80	76.37	42.5	1.80	74. 29	41.5	1.79	76.71	42.9	1. 79	72. 41	43.1	1.68	72.87	43.9	1. 66
1953: January	75.31	41.7	1.81	75.86	42.1	1.80	74. 46	41.3	1.80	76. 82	42.7	1. 80	71. 75	41.0	1.75	73.00	43.2	1. 69
February	75.65	41.5	1.82	74.84	41.6	1.80	74. 51	41.3	1.80	76.68	42.2	1.82	71. 178	40.9 42.1	1.74	72.76	43.0 42.8	1. 1.60
April	75.61	41.5	1.82	74.17	41.0	1.81	74. 61	41.2	1.81	74.81	41.4	1.81	70. 49	39.6	1.78	68.97	40.1	1. 72
May	75.56	41.2	1.83	74.68	41.1	1.82	74. 67	41.3	1.81	75. 24	41.5	1.81	75.71	41.6	1.82	71.98	40.9	1.76
June	76.69	41.5	1.85	75.17	41.3	1.82	75.12	41.3	1.82	75. 12	41.3	1.82	75. 42	41.9	1.80	73.02	42.7	1. 71
July	76. 01	40.8	1.86	74.05	40.6	1.82	77.16	41.8	1.85	75.68	41.2	1.84	72. 75	41.1	1.77	69. 43	40.6	1. 71
August.....-.	75.60	40.8	1.85	73. 63	40.5	1.82	76.51	41.2	1.86	71.68	40.0	1. 79	75. 71	41.6	1.82	70. 52	41.0	1. 72
	75.27	40.6	1.85	72. 92	40.0	1.82	75.62	40.7	1.86	70.84	39.6	1. 79	76.36	41.5	1.84	69.20	40.0	1.73
	New York																	
	State			$\begin{aligned} & \text { Albany-Schenectady- } \\ & \text { Troy } \end{aligned}$			Binghamton			Buffalo			Elmira			Nassau and Suffolk Counties		
1951: Averag	\$64. 90	39.7	\$1. 63	\$70. 75	41.5	\$1. 70	\$61.05	39.2	\$1. 56	\$73. 76	41.7	\$1.77	\$64.85	40.7	\$1. 60	\$75. 24	43.8	\$1. 72
1952: Average	67.77	39.8	1.70	72.45	40.9	1.77	64.59	39.1	1.65	77.35	41.4	1.87	68. 48	40.7	1. 68	82. 69	44.9	1.84
1952: September	68.97	40.2	1. 72	73. 21	41.1	1.78	65.46	39.4	1. 66	78. 41	41.5	1.89	67.74	40. 2	1. 68	81.87	44.1	1.86
October-..	69. 07	40. 2	1. 72	74. 48	41. 4	1. 80	67.26	40.3	1. 67	80. 76	42. 2	1.92	70. 08	40.7	1. 72	83.66 85.73	44.7	1. 87
November	69.74	40. 4	1. 73	73. 05	42. 0	1.74	67.73 68.86	40.6	1.67	82. 24	42.6 4	1.93	70.85 72.89	41.0	1.73	85. 73 88.57	45.2 46.2	1.90
1953. December	70.81 70.82	40.7	1.74	74.05 73.18	42.3	1.75 1.79	68.86 67.94	41.0 40.3	1.68 1.69	82.68 81.56	42.7 42.0	1.94 1.94	72.89 72.50	41.7 41.3	1.75 1.76	88.57 86.84	46.2 45.2	1. 92
1953: January-	70.82 71.04	40.3 40.2	1.76 1.77	73. 18	41.0 41.3	1.79 1.81	67.94	40.3 39.9	1.69	81.56 82.59	42.2	1.96	71.55	40.8	1.76	87.79	44.7	1. 96
March	71.26	40.2	1.77	76.82	41.1	1.87	67.30	39.8	1. 69	83. 02	42.2	1.97	73. 40	41.4	1.77	84. 90	43.2	1.97
April	70.54	39.9	1. 77	77.84	40.8	1.91	67.41	39.7	1. 70	83. 00	42.0	1.97	71.98	40.5	1.78	79. 83	40.9	1.95
May	70.59	39.8	1. 77	76.93	40.4	1.90	67.76	39.9	1. 70	82.67	41.8	1.98	71.73	40.8	1. 76	83.79	42.4	1. 98
June	71.27	39.9	1.78	78.60	40.9	1.92	68.06	40.0	1. 70	84. 41	42.1	2.00	71.98	40.8	1. 76	83. 34	42.2	1. 98
July	71.25	39.5	1.80	76.13	40.0	1.90	67.04	39.4	1. 70	85. 20	42.1	2.02	68.93	39.3	1. 76	82.96	41.8	1. 99
August	71.45	39.7	1. 80	77.62	40.3	1.93	65.81	38.8	1. 70	84.40	41.8	2.02	70.20	39.8	1.77	82.67	41.9	1.97
September	70.42	39.0	1.80	77.11	40.0	1.93	65.81	38.6	1.71	81.04	40.1	2.02	71.35	39.7	1.80	84. 28	42.2	2. 00
	New York - Continued															North Carolina		
	New York City			Rochester			Syracuse			Utica-Rome			Westchester County			State		
1951: Average	\$63. 23	37.8	\$1.67	\$69.43	41.5	\$1.68	\$68. 86	42.8	\$1. 61	\$62. 25	40.3	\$1. 55	\$63. 41	39.7	\$1. 60	\$46. 00	39.1	\$1.18
1952: Average	65. 49	38.1	1. 72	72.61	41.2	1.77	71. 16	41.9	1. 70	65. 54	40.5	1. 62	66.25	39.8	1. 66	47.67	39. 6	1. 20
1952: September	67.09	38.5	1. 74	73. 54	41.5	1.77	73. 75	42.7	1. 73	65. 05	40.5	1. 61	69.50	40.8	1. 70	48. 89	40.7	1. 20
October-	65.88	38.3	1. 72	74. 14	41. 6	1.78	73. 68	42. 4	1. 74	66. 55	40.7	1.64	69. 85	40.8	1. 71	49.78	41.2	1. 21
November	66. 60	38.6 38.9	1.72 1.74	75.35	41.9 42.2	1.80 1.80	73. 92	42.3 42.7	1. 1.76	68. 43	41.7	1.66	67. 41	39.9 40.0	1.70	49.67 50.30	40.9 41.2	1.22
1953: January	67.83	38.4	1. 77	75.86	41.9	1.81	76. 52	42.8	1. 79	68.97	41.4	1. 66	68.78	40.2	1.71	49.11	40.1	1. 23
February	68.07	38.4	1. 77	74.67	41.3	1.81	76. 40	42.4	1.80	68.66	41.3	1.66	69.85	40.5	1. 73	49.08	39.9	1. 23
March	68.07	38.5	1.77	76.14	41.9	1.82	77.44	42.6	1.82	68.92	41.2	1. 67	71.11	40.9	1. 74	49. 32	40.1	1. 23
April.	66.84	38.2	1.75	76.61	41.9	1.83	77.87	42.7	1.82	69. 29	41.1	1. 68	69.83	40.2	1.74	48.22	39.2	1. 23
May	66.51	38.1	1. 75	76. 67	41.8	1.83	77. 09	42.4	1.82	69.10	40.8	1. 69	69. 92	40. 1	1. 74	48. 98	39. 5	1. 24
June	66.74	38.0	1. 76	77.58	41.8	1.86	77.44	42.3	1.83	69. 38	40.9	1. 70	72.83	40.7	1. 79	48.19	39. 5	1. 22
July	67.29	37.5	1. 79	76. 49	41.4	1.85	76.25	41.7	1.83	68.50	40.5	1. 69	69. 31	39. 2	1. 77	48. 34	39.3	1. 23
August	67.76	37.7	1.80	76.78	41.6	1.85	76. 82	41.8	1.84	68. 98	40.6	1. 70	70.92	40.0	1. 77	48. 46	39.4	1. 23
September...-	65.91	36.7	1.80	77.90	42.1	1.85	76. 75	41.9	1.83	69.74	40.8	1.71	69.59	39.3	1. 77	47.11	38.3	1. 23

[^52]TABLE C-5. Hours and gross earnings of production workers in manufacturing industries for selected States and areas ${ }^{1}$-Continued

Year and month	North CarolinaContinued			North Dakota						Ohio			Oklahoma					
	Charlotte			State			Fargo			State			State			Oklahoma City		
	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earnings	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earn- ings	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earnings	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earnings	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earnings	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earnings
1951: Average	\$49.48	40.1	\$1.24	\$59.72	44.9	\$1.33	\$61.08	43.7	\$1.40				\$62. 60	42.3	\$1.48	\$60.48	43.2	\$1.40
	51.01	40.3	1.27	64.04	45.1	1.42	67.78	44.3	1. 53	\$75.14	41.1	\$1.83	65.68	42.1	1.56	63.36	43.4	1.46
	53.47	41.8	1.28	65. 70	45.5	1.44	71.52	43.9	1.63	77.28	41.5	1.86	67.04	41.9	1.60	64.38	43. 5	1.48
	51. 83	41.1	1.26	66.34	46.4	1.43	73. 45	46.6	1.58	78.26	41.7	1.88	68.26	42.4	1.61	63. 66	43.6	1.46
	52.03	41.0	1.27	68.83	46.7	1.47	75.52	47.2	1.60	78.46	41.6	1.89	68.48	42.8	1.60	64. 09	43.9	1.46
	52.06 50.82 51.	40.9	1.27	65.25	44.9	1.45	68.66	44.2	1. 55	80.03	42.2	1.90	70.09	43.0	1.63	65. 42	44.5	1.47
1953: Januar $\begin{aligned} & \text { Februa } \\ & \text { March } \\ & \text { April } \\ & \text { May } \\ & \text { June } \\ & \text { July. } \\ & \text { August } \\ & \text { Septem }\end{aligned}$	50.82 51.18	40.2	1.27	63.06	43.7	1.44	64.85	42.6	1. 52	79.76	41.7	1.91	68.15	41.3	1.65	63.75	42.5	1.50
	51.18	40.3 40.9	1.27 1.28	61.53 61.28	42.7 42.7	1.44 1.44	64.16 62.37	42.0	1.53	79.41 80.49	41.4	1.92 1.93	69.64 70.22	41.7	1.67	64.14	42.2	1. 52
	51. 44	40.5	1.27	63.64	43.3	1.47	63.72	41.5 41.2	1.55	80.49 79.76	41.8 41.4	1.93 1.93	70. 22 69.63	41.8 41.2	1.68	66. 07 65.91	42.9 42.8	1.54 1.54
	51.73	40.1	1.29	64.98	44.2	1.47	66.44	41.8	1.59	79.72	41.2	1.93	69.72	41.5	1.68	68.02	43.6	1.56
	51.84	40.5	1.28	66.87	45.7	1. 46	67.90	43.5	1.56	80.21	41.2	1.95	68.56	41.3	1.66	67.39	43.2	1.56
	51. 58	40.3	1.28	69.00	46.4	1.49	70.45	43.3	1.63	80.41	41.1	1.96	70.30	41.6	1.69	66. 94	42.1	1.59
	51.71	40.4	1.28	68.75	46.7	1.47	67.65	43.0	1.57	79.88	40.9	1.95	69.94	40.9	1.71	66. 72	41.7	1.60
	49.76	38.6	1.29	65.74	45.4	1.45	67.77	44.5	1. 52	79.86	40.6	1.97	71.04	41.3	1.72	68.36	42.2	1. 62
	Oklahoma-Con.			Oregon						Pennsylvania								
	Tulsa			State			Portland			State			Allentown-Bethle-hem-Easton			Erie ${ }^{3}$		
1951: Avera	\$66.37	43.1	\$1.54	\$75. 61	39.1	\$1.94	\$70.89	39.1	\$1.82	\$63. 74	40.2	\$1. 59	\$61. 62	39.6	\$1. 56	\$67.24	41.1	\$1. 64
	72. 59	42.7	1.70	79.56	38.9	2.05	73.39	38.7	1.90	66.54	40.2	1.66	63.76	39.6	1.61	70.33	41.2	1.71
	73. 33	41.9	1.75	79.82	38.3	2. 09	73.30	38.8	1.89	68.50	40.4	1.70	67.62	40.3	1.68	69.97	41.6	1.68
	74.27	42.2	1.76	78.91	38.9	2.03	72. 93	39.2	1.86	68.94	40.6	1.70	65.92	40.0	1.65	68.34	40.7	1.68
	78.37	43.3	1.81	82.14	39.1	2.10	73.37	38.2	1.92	69.58	40.4	1.72	68.82	40.7	1.69	71.83	41.4	1.74
	77.53	42.6	1.82	81.24	39.1	2.08	74.95	38.8	1.93	70.91	40.7	1. 74	66.03	39.4	1.68	72.13	41.1	1.76
1953: Janu	74.88	41.6	1.80	80.64	38.7	2.08	74.51	38.4	1.94	71.31	40.5	1.76	68.54	39.8	1.72	77.34	42.4	1.82
	75.89	41.7	1.82	80.97	38.7	2. 09	74.20	38.3	1.94	70.88	40.4	1.75	66.77	39.6	1.69	75.31	41.4	1.82
	75.84	41.9	1.81	82.38	39.0	2.11	76.84	38.9	1.97	71.36	40.6	1.76	66. 96	39.6	1. 69	78.51	42.6	1.84
	75. 26	40.9	1.84	82.42	38.6	2.13	76.60	38.8	1.98	70.48	40.1	1.76	65. 74	38.9	1. 69	80.68	43.1	1.87
	74. 80	41.1	1.82	83.28	38.8	2.14	78. 01	38.8	2.01	70.95	40.3	1.76	67.42	39.2	1. 72	74.23	41.1	1.81
	74.93 75.58	41.4	1.81	83.58	38.6	2.16	76.17	32.9	2.01	70.92	40.0	1.77	66. 57	38.5	1. 73	73.69	41.1	1.79
	75.58	41.3	1.83	83.05	39.1 38.4	2.12	75.33	38.2	1.97	70. 71	39.5	1.79	66. 24	38.2	1.73	70.80	39.2	1.81
	74.93	40.5	1.85	80.32	37.9 37	2.12	75.71	38.6 38.1	1.99	71.97 72.16	39.8 39.4	1.81	67.97 69.09	39.2 38.9	1.73	74.21 73.16	40.4 40.2	1.84 1.82
	Pennsylvania-Continued																	
	Harrisburg			Lancaster ${ }^{3}$			Philadelphia			Pittsburgh			Reading ${ }^{3}$			Scranton ${ }^{3}$		
1951: A verag	\$57.89	40.4	\$1.43	\$57. 21	41.4	\$1.38	\$65. 89	40.7	\$1.62	\$72.85	40.7	\$1.79	\$60.92	39.0	\$1.56	\$48.27		\$1.26
1952: Averag 1952: Septem Octobe Novem Decem	61.07	40.5	1. 51	59.49	41.2	1.44	69.97	40.8	1. 72	75.94	40.5	1.88	62.13	39.4	1.58	51.08	38.7	1.32
	63.65	40.7	1. 56	59.71	41.7	1. 43	71.19	41.1	1.73	80.33	40.9	1.96	63.75	40.3	1.58	52.03	39.3	1.32
	63. 93	40.9	1. 56	61.26	41.9	1.46	71.41	40.9	1.75	80.26	41.2	1. 95	65.85	40.7	1.62	51.94	39.2	1.33
	64. 72	40.4	1.60	59.44	40.3	1.48	72.81	41.3	1.76	80.09	40.8	1.96	64. 48	39.9	1.62	51.81	39.1	1.33
	63.71	40.5	1.57	63.50	42.5	1.49	73.76	41.6	1.77	81.94	41.3	1.98	67.40	40.8	1.65	51.89	38.9	1.33
1953: Janu	65. 57	40.6	1.62	62.00	41.5	1.49	73.11	40.8	1.79	82.37	41.0	2.01	67.05	40.2	1.67	53.80	39.1	1.38
	63.48	40.1	1. 58	63.75	42.3	1.51	73. 68	41.0	1.80	81.15	40.8	1.99	65.69	40.2	1.63	54.15	39.1	1.39
	64.11	40.4 39.5	1. 59	62.78	41.8	1. 50	73.77	41.1	1.80	81.44	40.8	2.00	67.86	41.1	1. 65	55. 56	40.0	1.39
	62.37	39.5 40.2	1.58	63.03	41.8	1.51	73. 06	40.7	1.80	79.52	39.8	2.00	67.03	40.7	1. 65	55. 64	39.6	1.41
	64.40	39.9	1.61	62,90	41.8 41.6	1.51	73.60	40.8 40.6	1.80	80.84 81	40.5	2.00	67.40	40.7	1. 66	55. 54	39.9	1.39
	63.10	39.0	1. 62	63.65	41.6	1.53	73. 28	40.6 40.0	1.82	81.76 82.34	40.8 40.4	2.00 2.04	67. 40	40.6	1.66	54.74	39.3	1.39
	63. 75	39.4	1.62	63.33	41.5	1.53	74.58	40.0 40.4	1.83 1.85	82.34 83.84	40.4 40.7	2.04 2.06	67.10 66.26	40.4 39.7	1.66 1.67	54.83 54.16	39.5 38.8 38	1.39
	63.46	38.6	1.64	62.20	40.6	1.53	75.08	40.3	1.86	84.48	40.4	2.09	66.26 63.13	38.1	1.66	54.16 55.17	38.8 38.8	1.42
	Pennsylvania-Continued						Rhode Island						South Carolina					
	Wilkes-BarreHazleton ${ }^{3}$			York ${ }^{3}$			State			Providence			State			Charleston		
1951: A verage	\$45. 98	36.9	\$1. 25	\$54.71	41.2	\$1.33	\$55. 86	39.9	\$1.40	\$56.38	40.5	\$1.39		39.9	\$1.19	\$45.65	40.4	\$1.13
1952: A verage	49.74	38.0	1.31	57.13	41.4	1.38	59.62	40.2	1.48	59.16	40.8	1.45	47.88	39.9	1.20	48.03	40.7	1.18
1952: Septemb October Novemb Decembe	50.70	38.7	1.31	56.48	40.9	1.38	61.18	41.2	1. 48	60.86	41.4	1.47	49.78	40.8	1.22	48.73	41.3	1.18
	52.11	38.8	1.34	59.88	42.5	1.41	60.16	40.3	1. 49	59.86	41.0	1.46	49.73	41.1	1.21	49.32	41.1	1.20
	53. 29	39.5	1.35	58.03	41.1	1.41	60.61	39.6	1.53	59.60	40.0	1.49	50.14	41.1	1.22	48.67	40.9	1.19
	51.42	38.6	1.33	61.33	42.5	1.44	63.30	41.8	1.51	63.15	42.1	1.50	51.04	41.5	1.23	47.88	39.9	1.20
1953: January_......-	52. 07	38.2	1.36	61.29	42.3	1.45	62.07	41.2	1.51	61.12	41.3	1.48	49.82	40.5	1. 23	47.52	39.6	1.20
	51.61	38.4	1.34	61.91	42.0	1.47	61.51	40.9	1.50	61.65	41.1	1.50	49.82	40.5	1.23	49.17	40.3	1.22
	51.78 50.09	38.5	1.35	63.92	42.7	1.50	61.48	40.9	1.50	62.10	41.4	1. 50	49.45	40.2	1.23	48.80	40.0	1.22
	50.09 51.13	37.3 38.1	1.34 1.34	63.51 62.56	42.2 41.9	1.51 1.49	61.24 60.95	40.7 40.4	1.50	60.75	40.5	1.50	49.97	40.3	1.24	52. 07	41.0	1.27
	51.07	37.8	1.35	64.73	42.7	1.52	61.81	40.4 40.8	1.51 1.52	60.64 61.16	40.7	1.49	49.72	40.1	1.24	49.85	40.2	1.24
	49.79	37.1	1.34	62.18	41.1	1.51	60.77	40.1	1.51	60.60	40.4	1.50	50. 42 49	40.5 39.9	1.24	50. 88 49.48	40.7 39.9	1.25 1.24
	50.73	37.3	1.36	63.42	42.0	1.51	57.46	37.8	1.52	60.79	40.8	1.49	49.35	39.8	1.24	49.52	39.3	1.26
	49.50	36.4	1.36	61.38	40.7	1.51	58.29	37.9	1. 54	59.80	39.6	1.51	49.64	39.4	1.26	51.21	39.7	1. 29

See footnotes at end of table.

Table C-5. Hours and gross earnings of production workers in manufacturing industries for selected States and areas 1 - Continued

Year and month	South Dakota						Tennessee											
	State			Sioux Falls			State			Chattanooga			Knoxville			Memphis		
	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earn- ings	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earn- ings	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earn- ings	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earnings	Avg. wkly. earn- ings	Avg. wkly. hours	Avg. hrly. earn- ings	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earn- ings
1951: Average	$\$ 58.46$62.7663.5063.1666.1866.5666.3460.9162.1960.8463.3564.5163.2762.3565.36	43.3	\$1.35	\$62.84	44.5	\$1.41	\$51.86	40.2	\$1. 29	\$53. 59	40.6	\$1. 32	\$58. 49	40.9	\$1. 43	\$58. 22	42.542.9	$\$ 1.37$1.46
		44.2	1. 42	69.01	45.4	1.52	54. 67	40.8	1.34	55. 76	41.0	1.36	61. 20	40.8	1. 50	62.63		
		44.3	1. 43	70.80	46.3	1.53	55.88	41.7	1.34	56. 85	41.8	1.36	63.76	41.4	1. 54	63.94	43.5	1. 47
		44.1	1. 43	69.13	45.1	1. 53	56. 58	41.6	1. 36	57.27	41.8	1.37	66. 03	42.6	1. 55	64.08	43.3	1. 48
		45.8	1.44	73.14	47.9	1. 53	56.86	41.5	1.37	57.55	41.7	1.38	66.14	42.4	1. 56	63.49	42.9	1.48
		45.8	1. 45	75. 91	49.2	1. 54	56.99	41.6	1.37	58.80	42.3	1.39	63.91	41.5	1. 54	63.62	42.7	1. 49
1953: Januar $\begin{aligned} & \text { Februa } \\ & \text { March } \\ & \text { April } \\ & \text { May- } \\ & \text { June. } \\ & \text { July-. } \\ & \text { Augus } \\ & \text { Septen }\end{aligned}$			1.48	74.77	48.0	1. 56	55. 48	40.5	1.37	56.17	40.7	1.38	62. 00	40.0	1. 55	61.50	41.0	1. 50
		44.8 41.4	1.47	67.09	42.8	1. 57	56. 03	40.6	1. 38	56.70	40.5	1. 40	63. 58	40.5	1. 57	63. 69	41.9	1. 52
		42.4	1. 47	67.83	43.2	1. 57	56. 58	41.0	1. 38	57.95	41.1	141	64.53	41.1	157	64.90	42.7	1.52
		41.2	1. 48	66. 88	42.2	1.58	56. 98	40.7	1. 40	57.51	40.5	1. 42	66. 30	41.7	1.59	65. 48	42.8	1. 53
		43.3	1,46	69.62	44.0	1.58	56. 57	40.7	139	57.08	40.2	1. 42	66.56	41.6	1. 60	64.14	42.2	1. 52
		43.5	1.48	70.36	44.4	1.58	56.57	40.7	1.39	57.63	40.3	1.43	66.08	41.3	1. 60	63.12	41.8	1. 51
		42.642.8	1. 49	68.87	43.7	1. 58	56. 84	40.6	1. 40	57.49	40.2	1. 43	63.99	40.5	1.58	64.45	42.4	1. 52
			1.46	67.34	42.9	1. 57	57.12	40.8	1. 40	59.04	41.0	1. 44	65. 44	40.9	1. 60	63.12	41.8	
		$\begin{aligned} & 42.8 \\ & 43.9 \end{aligned}$	1.49	67.70	43.4	1. 56	57.89	40.2	1.44	57.38	39.3	1.46	67.06	40.4	1.66	63.80	41.7	1. 53
	Tennessee-Con.			Texas			Utah						Vermont					
	Nashville			State			State			Salt Lake City ${ }^{3}$			State			Burlington		
1951: A verage....-.-	\$53. 20	40.3	\$1.32	\$62. 75	42.4	\$1.48	\$64. 53	41.1	\$1. 57	\$66. 78	42.0	\$1. 59	\$57.32	43.3	\$1.33	\$55.03	40.5	\$1.36
1952: A verage...----	55. 07	40.2	1.37	66. 57	42.4	1. 57	66. 73	40.2	1. 66	70.64	41.8	1.69	59.35	42.7	1.39	56. 49	39.5	1.43
1952: $\begin{aligned} & \text { Septemb } \\ & \text { October } \\ & \text { Novemb } \\ & \text { Decemb }\end{aligned}$	55.76	40.7	1.37	69. 76	43. 6	1. 60	67.32	41.3	1. 63	71.06	41.8	1.70	60.51	43.1	1. 40	57.21	39.4	1. 45
	56. 03	40.9	1.37	68. 80	43. 0	1. 60	64.34	38.3	1. 68	70. 72	41.6	1.70	60.84	43.1	1. 41	58. 01	40.3	1. 44
	56.30	40.5	1. 39	69.50	42.9	1.62	69.55	40.2	1. 73	73.78	42.4	1.74	57.82	40.8	1. 42	55. 25	37.7	1.47
	57.82	41.6	1.39	70.25	43.1	1. 63	70.12	40.3	1. 74	75.68	43.0	1.76	60.93	42.8	1. 42	57.99	39.5	1. 47
1953: January $\begin{aligned} & \text { Februar } \\ & \text { March } \\ & \text { April. } \\ & \text { May } \\ & \text { June.... } \\ & \text { July } \\ & \text { Jus. } \\ & \text { August } \\ & \text { Septemb }\end{aligned}$	56.28	40.2	1. 40	68.62	42.1	1. 63	71.78	40.1	1. 79	72. 10	41.2	1. 75	61.23	42.9	1.43	57.97	38. 9	1. 49
	57.37	40.4	1. 42	67.97	41.7	1. 63	71.96	40.2	1. 79	73.10	41.3	1.77	61.75	43.1	1.43	58.62	39.2	1. 50
	58.08	40.9	1.42	68.97	41.8	1.65	73.08	40.6	1. 80	73. 22	41.6	1.76	61.79	43.2	1.43	59.01	40.0	1.48
	58.90	$\begin{aligned} & 40.9 \\ & 41.2 \end{aligned}$	1. 44	69.39	41.8	1. 66	73.08	40.6	1. 80	74. 16	41.9	1. 77	62.37	43.1	1. 44	57.98	39.4	1. 47
	59.33		1.44	68.39	41.2	1. 66	72.27	40.6	1.78	72.80	40.9	1.78	62.97	43.2	1.45	59. 24	39.8	1. 49
	58.63	$\begin{aligned} & 41.2 \\ & 41.0 \end{aligned}$	1.43	69.30	41.5	1. 67	72.85	40.7	1. 79	74.05	41.6	1.78	63.20	43.2	1.46	58.99	39.5	1.49
	58. 03	$\begin{aligned} & 40.3 \\ & 40.1 \end{aligned}$	1. 44	70.89	41.7	1. 70	73.18	42.3	1.73	72. 98	41.7	1. 75	62. 20	42.6	1. 46	56. 93	38.6	1. 47
	57.74		1. 44	70.81	41.9	1.69	73.89	40.6	1.82	74.88	41.6	1.80	62.83	43.1	1. 46	58.87	40.2	1. 46
	57.48	39.1	1.47	70.96	41.5	1. 71	71.15	42.1	1. 69	76.08	41.8	1.82	63.25	43.3	1. 46	59.45	40.1	1.48
	Vermont-Con.			Virginia									Washington					
	Springfield			State			Norfolk-Portsmouth			Richmond			State			Seattle		
1951: Average	\$73. 01	47.1	\$1. 55	\$51. 05	40.2	\$1.27							\$72. 45	38.7	\$1.87	\$72. 60	39.1	\$1. 85
1952: Average	78.12	46.5	1.68	53.47	40.2	1.33	\$56. 44	41.5	\$1.36	\$56. 68	40.2	\$1. 41	76.16	38.7	1.97	74.36	38.5	1. 93
1952: Septembe $\begin{aligned} & \text { October } \\ & \text { Novembe } \\ & \text { Decembe }\end{aligned}$	80.76	47.0	1. 72	54.67	40.8	1.34	58. 66	42.2	1.39	56. 68	40. 2	1.41	77.16	39.1	1.97	76. 47	38.8	1.97
	79.31	46.1	1.72	54.67	40.8	1.34	58. 52	41.8	1.40	58.20	407	1.43	76. 51	38.6	1. 98	76. 28	38.7	1. 97
	75.78	43.3	1.75	55.62	41.2	1.35	54.92	39.8	1.38	58.90	40.9	1.44	77.51	38.2	2. 03	76.88	38.7	1.99
	79.63	45.5	1. 75	56. 17	41.0	1.37	56.16	40.4	1. 39	60.03	41.4	1.45	78.75	38.9	2.03	75.69	38.6	1. 96
1953: January $\begin{aligned} & \text { Jebruary } \\ & \text { March } \\ & \text { April } \\ & \text { May } \\ & \text { Mua. } \\ & \text { June...- } \\ & \text { July } \\ & \text { August } \\ & \text { Septemb }\end{aligned}$	78.92	45.0	1. 75	55. 21	40.3	1.37	55. 74	40.1	1. 39	58.18	40.4	1. 44	79.13	38.8	2.04	75.89	38.2	1.98
	80.14	45.7	1. 75	54. 79	39.7	1. 38	55. 58	39.7	1. 40	59. 28	40.6	1.46	79. 68	39.2	2.03	75. 71	38.4	1.97
	80.88	45.9	1.76	56.02	40.3	1. 39	57. 94	40.8	1. 42	59.16	40.8	1.45	79.84	39.1	2.04	77.22	38.9	1.98
	82. 93	45.3	1.83	54. 49	39.2	1.39	59.57	40.8	1.46	59.98	40.8	1.47	79. 23	38.8	2. 04	76. 04	38.5	1. 98
	82. 51	45.4	1.82	54.90	39.5	1.39	57.51	40.5	1.42	58.36	39.7	1.47	78. 73	38.6	2.04	74.65	37.9	197
	82.54	45.5	1.81	57.39	40.7	1.41	58.46	40.6	1.44	58.51	39.8	1.47	79.59	38.9	2.05	75.83	38.1	1.99
	82.20	45.7	1. 80	54. 74	39.1	1. 40	62.13	41.7	1.49	58.31	39.4	1. 48	79. 91	39.6	2. 02	75. 84	38.3	1. 98
	82. 67	45.6	1.81	55. 58	39.7	1. 40	59. 60	40.0	1.49	60.83	41.1	1. 48	79.16	38.7	2.05	77. 50	38.7	2. 00
	82.64	45.4	1.82	55.41	39.3	1.41	61.50	41.0	1.50	60.34	40.5	1.49	77.67	37.9	2.05	76.30	38.0	2.01
	Washington-Continued						West Virginia						Wisconsin					
	Spokane			Tacoma			State			Charleston			State			Kenosha		
1951: Average.-.-.--	\$70. 02	40.3	\$1. 73	\$69.63	38.1	\$1. 83	\$63.36	40.1	\$1. 58				\$68. 77	42.5	\$1. 62	\$73. 74	412	\$1. 79
1952: Average	7421	40.2	1.85	75.10	38.9	1.93	65.82	39.7	1.66	\$78.35	40.2	\$1.95	71.77	42.2	1.70	75.34	40.1	1.88
1952: September $\begin{aligned} & \text { October--. } \\ & \text { November } \\ & \text { December }\end{aligned}$	74.84	39.0	1.92	76.50	39.8	1.92	67. 26	39.8	1. 69	80.39	40.6	1.98	71. 14	42.1	1. 69	75. 40	39.4	1.91
	75. 47	39.7	1. 90	76.16	38.6	1.97	68.17	40.1	1. 70	81.19	40.8	1. 99	7355	42.5	173	79.31	40.7	1.95
	76. 95	40.4	1. 91	74.07	37.4	1.98	68. 68	40.4	1. 70	81.40	40.7	2.00	75.12	42.8	1.75	78.42	40.6	1. 93
	75.95	40.3	1.89	74.11	37.9	1.95	68.91	40.3	1.71	81.61	40.4	2.02	75. 90	42.9	1. 77	76.71	40.1	1.91
1953: January...	77.80	40.5	1.92	75.82	38.5	1.97	69.55	40.2	1. 73	83.43	41.3	2.02	75. 19	42.3	1.78	81.40	41.2	1.97
	77.97	40.4	1.93	76.96	38.9	1.98	69.60	40.0	1.74	83.44	40.7	2.05	75.67	42.3	1. 79	81.96	41.4	1.98
	79.82	40.9	1. 95	77.33	38.8	1.99	70.18	40.1	1.75	85. 07	40.9	2.08	76. 28	42.5	1. 79	79. 29	40.2	1.97
	76. 50	39.3	1.95	76.15	38.4	1.98	70.05	39.8	1. 76	85. 05	40.5	2.10	76. 22	42.3	1.80	80.30	40.6	1. 98
	72.85	37.6	1. 94	76.80	38.2	2.01	71.96	40.2	1.77	85. 06	40.7	2.09	75.76	42.1	1.80	77.36	39.7	1.95
	77.83	39.7	1. 96	76. 90	38.0	2.02	70.84	39.8	1. 78	85.05	40.5	2. 10	74. 55	41.9	1. 78	74.79	38.8	1. 93
	80.04	40.1	2. 00	80.20	39.2	2.05	71. 68	39.6	1. 81	88.18	41.4	2.13	72. 05	41.9	1. 72	73. 28	38.5	1.90
	77.59	39.1	1. 98	77.46	39.0	1.98	71.02	39.9	1.78	85.26	40.6	2.10	73. 72	42. 0	1. 76	74.75	39.2	1.91 1.95
	81.79	37.9	2.16	74.21	37.9	1.96	71.19	38.9	1.83	88.00	40.0	2. 20	72.98	41.4	1.76	78.06	40.1	1.95

See footnotes at end of table.

Table C-5. Hours and gross earnings of production workers in manufacturing industries for selected States and areas ${ }^{1}$-Continued

Year and month	W isconsin-Continued												Wyoming					
	La Crosse			Madison			Milwaukee			Racine			State			Casper		
	Avg. wkly. earn-	Avg. wkly. hours	Avg. hrly. earnings	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earnings	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earnings	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earnings	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earnings	Avg. wkly. earnings	Avg. wkly. hours	Avg. hrly. earnings
1951: Average	\$63. 11	39.2	\$1. 61	\$69.36	41.3	\$1. 68	\$74. 79	42.2	\$1. 77	\$75. 54	41.9	\$1. 80	\$71.89	39.2	\$1. 83			
1952: Average.	68.47	39.5	1.73	73.56	41.0	1.80	77.79	41.7	1. 86	77.85	41.2	1.89	76.36	40.4	1.89			
1952: September-	68.88	39.4	1. 75	73.17	40.8	1.81	78.32	41.5	1.89	77.17	41.2	1.88	78.72	41.0	1. 92	\$90. 86	41.3	\$2. 20
October-	69. 41	39. 4	1. 76	75. 11	41.2	1.84	79.51	41.9	1. 90	78.84	41.7	1. 89	75. 01	39.9	1. 88	89. 47	40.3	2. 22
November		39.9 40.6	1. 76	77.54 80.30	42.0 43.0	1.85 1.87	81.41 82.34	42.4 42.6	1.92 1.93	80.08 79.49	42.0 41.7	1. 1.91	78.72 78.38	41.0 40.4	1. 1.92	94.02 89.15	41.6 39.8	2. 2.24
1953: January --	69.11	38.0	1. 82	76.75	40.8	1.89	81.26	42.0	1.94	80.21	41.8	1.92	77.81	39.1	1.99	94.39	41.4	2. 28
February	71. 92	39.8	1.81	75.12	40.4	1.87	81.37	41.8	194	79.81	41.4	1. 93	79.60	40.2	1.98	88.76	39.1	2. 27
March	71.74	39.4	1.82	73. 94	40.2	1.85	81.83	41.9	1.95	82.09	42.2	1. 95	79.39	40.3	1.97	90.40	40.0	2.26
April	71.53	39.3	1. 82	73.14	39.7	1. 84	82.12	41.9	1. 96	80.82	41.9	1. 93	78. 21	39.5	1.98	91.25	40.2	2. 27
May	72.61	39.7	1. 83	73.81	39.7	1.86	80.84	41.4	195	79.57	41.5	1. 92	79. 20	40.0	1.98	93.30	41.1	2.27
June.	73.49	40.1	1.83	76.40	40.3	1.90	79.80	41.1	194	78.41	41.1	1. 91	79. 20	39.8	1.99	91.88	40.3	2. 28
July.	71. 53	38.8	1.84	72.13	39.4	1.83	79.76	41.2	1.94	75.61	40.3	1.88	84.67	41.1	2.06	94.25	40.8	2.31
August	73.58	39.7	1.85	72. 78	39.4	1.85	83.07	42.0	1.98	76. 15	40.3	1.89	80. 54	41.3	1.95	96.17	41.1	2. 34
September	76.05	40.6	1.87	74.72	39.7	1.88	81.97	41.2	1. 99	76. 53	40.5	1.89	78.59	39.1	2.01	91.34	39.2	2. 33

1 Data for earlier years are available upon request to the Bureau of Labor Statistics or the cooperating State agency. State agencies also make available more detailed industry data. See table A-7 for addresses of cooperating State agencies.

D: Prices and Cost of Living

Table D-1: Consumer Price Index ${ }^{1}$-United States average, all items and commodity groups
[1947-49 $=100$]

Year and month	All items	Total food ${ }^{2}$	Apparel	Housing ${ }^{3}$						Trans-portation	Medicsl care	Personal caré	Reading and recreation	Other goods and services
				Total ${ }^{8}$	Rent	Gasand electricity	Solid fuels and fuel oil	House-furnishings	Household operation					
1947: A verage.	95.5	95, 9	97.1	95.0	94.4	97.6	88.8	97.2	97.2	906	94.9	97.6	95. 5	96.1
1948: Average	102.8	1114.1	103. 5	101.7	100.7	100.0	104.4	103.2	102.6	100.9	100.9	101.3	100.4	100.5
1949: A verage	101.8	100.0	99.4	103.3	105.0	102.5	105.8	99.6	100.1	108.5	104. 1	101.1	104.1	103.4
1950: A verage	102.8	101.2	98.1	106. 1	108.8	102.7	110.5	100.3	101.2	111.3	106.0	101.1	103.4	105.2
1951: Average	111.0	112.6	106. 9	112.4	113.1	103.1	116.4	111.2	109.0	118.4	111.1	110.5	106.5	109.7
1952: Average	113.5	114.6	105.8	114.6	117.9	104.5	118.7	108.5	111.8	126.2	117.2	111.8	107.0	115.4
1950: January	100.6	97.0	96.7	104.4	107. 5	102. 5	109.9	97.4	99.4	110.2	105.0	99.4	104. 3	103. 9
Februar	100.4	96.5	96.7	104.6	107.7	102.8	109.6	97.6	99.4	110.0	105.0	99.2	104.6	103.9
March	100.7	97.3	96.8	104.6	107.8	102.8	109.9	97.7	99.5	109.8	105.1	99.1	104.4	103.9
April	100.8	97.7	96.7	104.7	108. 1	102.9	109.7	97.7	99.4	109.6	105. 1	99.1	104.0	103.8
May	101.3	98.9	96.5	104.7	108.5	102.8	106.8	97.5	99.7	110.1	105. 3	99.0	103.8	103.9
June	101.8	100.5	96.5	104.9	108.7	102. 7	107.6	97.4	99.6	109.9	105. 4	99.2	102.5	103.7
July	102.9	103.1	96.4	105.3	109.1	102.8	108.1	98.1	99.9	111.2	105.6	99.5	101.7	104. 1
August	103. 7	103.9	97.1	106. 1	109.3	102.7	109.8	99.7	101. 2	112.4	106. 0	100.8	101.9	10 ¢. 3
Septembe	104. 4	104.0	99.2	107.1	109.5	102.8	111.6	102.4	102. 3	112.7	107.0	101.3	102.7	106.8
October.	105. 0	104.3	100.9	108.1	109.6	102.7	113.4	104.7	103.6	112. 6	107.1	103.3	103.0	107.1
November	105.5	104.4	101.6	108. 8	110.0	102.7	114.3	106.0	104.4	112.9	107.4	106. 1	103.6	107.4
December.	106.9	107.1	102.2	109.4	1104	102.7	114.8	107.1	105.6	114.1	108.0	107. 4	104.1	107.9
1951: January	108.6	109.9	103.8	110.4	110.6	103.1	115.1	109.3	107.2	114.7	108.5	109.8	105. 6	108.4
February	109.9	111.9	105. 6	111.2	111.3	103.1	116.4	110.5	108.1	115.8	108.9	110.6	106.4	108. 7
March.	110.3	112.0	108.2	111.7	111.9	103.1	116. 7	111.1	108.4	116.9	109.9	110.7	107.0	108.9
April	110.4	111.7	106.4	111.9	112.2	102.8	116. 7	111.6	108.3	117.2	110.3	110.7	107.3	109.0
May	110.9	112.6	106.6	112.2	112.5	103.2	115.2	112.1	108.7	117.6	110.7	110.8	107.3	109.2
June	110.8	112.3	106. 6	112.3	112.7	103.0	115.4	112.0	108.7	117.5	111.0	110.8	106. 5	109.1
July	110.9	112.7	106.3	112.6	113.1	103.1	115.9	112.0	109.1	117.8	111.0	110.6	106. 8	109.1
August	110.9	112.4	106. 4	112.6	113.6	103.2	116.2	111.1	109.0	118.7	111.2	110.4	10 K .4	109.1
September	111.6	112.5	109.3	112.9	114.2	103. 2	116. 6	111.3	108.8	119.7	111.8	110.0	105.8	109.6
October...	112.1	113.5	109.2	113.2	114.8	103.3	117.1	110.9	109.6	120.5	112.6	110.0	105. 9	109.6
November	112.8	114.6	108. 5	113.7	115.4	103.3	117.4	111.1	110.4	122.1	113.1	110.6	106.3	112.4
December	113.1	115.0	108.1	113.9	115.6	103.4	117.6	110.8	111.1	122. 2	114.3	111.1	106. 5	112.8
1952: January--	113.1	115. 0	107.0	113.9	116.0	103.5	117.7	110.2	110.9	122.8	114.7	111.0	107.2	113.2
Fehruary	112. 4	112.6	106.8	114.0	116.4	103.8	117.6	110.0	110.8	123.7	114.8	111.1	106.6	114.4
March.-	112.4	112.7	106. 4	114.0	116.7	103.8	117.7	109.4	111.0	124.4	115.7	111.0	106. 3	114.8
April	112.9	113.9	106.0	114.0	116.9	103.9	117.3	108.7	111.0	124.8	115.9	111.3	106. 2	115.2
May	113. 0	114.3	105. 8	114.0	117.4	104.1	115. 6	108.3	111.2	125. 1	116.1	111.6	106. 2	115. 8
June.	113.4	114.6	105. 6	114.0	117.6	104.3	115.8	107. 7	111.2	126. 3	117.8	111.7	106.8	115.7
July	114.1	116.3	105. 3	114.4	117.9	104.2	118.6	107.6	111.8	126.8	118.0	111.9	107.0	116. 0
Angust	114.3	116.6	105. 1	114.6	118. 2	105. 0	119.0	107.6	111.9	127. 0	118. 1	112.1	107. 0	115. 9
September	114.1	115.4	105.8	114.8	118.3	105.0	119.6	108. 1	112.1	127.7	118.8	112.1	107.3	1159
October-...	114.2	115.0	105. 6	115.2	118.8	105.0	121.1	107.9	112.8	128.4	118.9	112.3	107.6	1158
November	114.3	115.0	105.2	115.7	119.5	105.4	121.6	108. 0	113.3	128.9	118. 9	112. 4	107.4	115.8
December.	114.1	113.8	105.1	116.4	120.7	105.6	123.2	108.2	113.4	128.9	119.3	112.5	108. 0	115.9
1953: January	113.9	113.1	104.6	116.4	121.1	105. 9	123.3	107.7	113.4	129.3	119.4	112.4	107.8	115.9
February	113.4	111.5	104. 6	116.6	121. 5	106. 1	123.3	108.0	113.5	129.1	119.3	112.5	107.5	115.8
March...	113. 6	111.7	104. 7	116.8	121. 7	106. 5	124.4	108.0	114.0	129.3	119.5	112. 4	107. 7	117.5
Anril.	113.7	111.5	104.6	117.0	122.1	106. 5	123. 6	107.8	114.3	129.4	120.2	112.5	1079	117.9
May	114.0	112.1	104. 7	117.1	123. 0	106. 6	121.8	107.6	114.7	129. 4	120.7	112. 8	108. 0	118. 0
June.	114.5	113.7	104.6	117.4	123.3	106.4	121.8	108.0	115. 4	129.4	121.1	112. 6	107.8	118. 2
July	114.7	113.8	104. 4	117.8	123.8	106.4	123.7	108. 1	115.7	129.7	121.5	112.6	107. 4	118.3
August	115. 0	114. 1	104. 3	118. 0	125. 1	106. 9	123.9	107.4	115.8	130.6	121.8	112.7	107.6	118.4
September	115. 2	113.8	105.3	118.4	126.0	106.9	124. 6	108.1	116.0	130.7	122.6	112.9	107.8	118.5
October..	115.4	113.6	105.5	118.7	126.8	107.0	125.7	108.1	116.6	130.7	122.8	113.2	108.6	119.7

[^53]and the following reports: Consumers' Price Index, Report of a Special Subcommittee of the House Committee on Education and Labor (1951); and Report of the President's Committee on the Cost of Living (1945).
Mimeographed tables are available upon request showing indexes for the United States and 20 individusl cities regularly surveyed by the Bureau for "All items" and 8 major components from 1947 to date. Indexes are also available from 1913 for "All items," food, apparel, and rent, for all large cities combined, and from varying dates for indiridual cities.
${ }^{2}$ Includes "Food away from home" (restaurant meals and other food bought and eaten away from home); prior to January 1953, prices for this category were estimated to move like prices for "Food at home" but, since that date, have been measured by prices of restaurant meals.
3 Includes "Other shelter."

- Includes tobacco, alcoholic beverages, and "miscellaneous services" (such as legal services, banking fees, and burial services).

Table D-2: Consumer Price Index ${ }^{1}$ - United States average, food and its subgroups
[1947-49=100]

Year and month	Total food ${ }^{2}$	Food at home						Year and month	Total food ${ }^{2}$	Food at home					
		Total food at home	Cereals and bakery products	Meats, poultry, and fish	Dairy products	Fruits and vegetables	Other foods ${ }^{8}$			Total food at home	Cereals and bakery products	Meats, poultry, and fish	Dairy products	Fruits and vegetables	Other foods ${ }^{3}$
1947: A $\mathrm{g}_{\text {g }}$	95.9	95.9	94.0	93.5	96.7	97.6	100.1	1951: Oct	113.5	113.5	114.6	119.1	107.9	103.2	118.9
1948: A Vg.	104.1	104.1	103.4	106. 1	106.3	100.5	102. 5	Nov	114.6	114.6	115. 1	117.7	109.2	109.5	118.5
1949: A $\nabla \mathrm{g}$	100.0	100.0	102.7	100.5	96.9	101.9	97.5	Dec	115.0	115.0	115.2	116.3	110.7	115.8	114.5
1950: A vg	101.2	101.2	104.5	104.9	95.9	97.6	101.2	1952: Jan	115.0	115.0	115.3	117.1	112.0	118.2	109.1
1951: A vg	112. 6	112.6	114.0	117. 2	107.0	106.7	114.6	Feb	112.6	112.6	115. 5	116.7	112.7	109.5	105.8
1952: Avg	114.6	114.6	116.8	116.2	111.5	117. 2	109.3	Mar	112.7	112.7	115. 7	115.2	112.0	113.7	104. 4
1950: Jan.	97.0	97.0	102. 2	94.4	95.6	100.3	95.1	Apr	113.9	113.9	115.6	114.8	110.4	121.1	105. 0
Feb	96.5	96.5	102.3	95.6	95.3	97.6	93.5	May	114.3	114.3	117.2	114.5	109.3	124.3	104.4
Mar	97.3	97.3	102. 3	98.7	94.7	95.5	95.5	June	114.6	114.6	116.9	116.5	108.9	122.4	105. 2
A pr	97.7	97.7	102.4	99.5	93.3	97.4	95.1	July.....--	116.3	116.3	117.6	116.4	110.2	124.0	111.5
May	98.9	98.9	102. 7	103.4	92.6	99.0	93.5	Aug	116.6	116.6	117.5	119.4	111.0	118.7	113.1
June	100.5	100.5	102.7	106. 1	92.3	102.5	94.1	Sept	115. 4	115.4	117.4	119.2	112.5	111.5	113.7
July	103.1	103.1	103.8	110.1	93.8	103.6	97.7	Oet.	115. 0	115. 0	117.5	116.9	113.2	111.3	115.1
Aug.	103.9	103.9	106. 2	112. 2	95.7	94.7	105.3	Nov	115.0	115.0	117.5	114.3	113.3	115.9	114.3
Sept	104. 0	104.0	107.0	112.4	97.0	91.1	107.7	1053. Dec	113.8	113.8	117.7	113.0	112.7	115.8	110.6
Oct	104.3	104.3	107.2	109.0	99.6	92.9	110.4	1953: Jan_...-----	113.1	112.9	117.7	110.9	111.6	116.7	109. 7
Nov	104. 4	104.4	107.4	107.7	100.1	95.8	109. 2	Feb-.------	111.5	111.1	117.6	107.7	110.7	115.9	107.3
Dec.	107. 1	107.1	107.5	109.1	100. 7	99.9	117.0	Mar...-.--	111.7	111.3	117.7	107.4	110.3	115.5	109.1
1951: Jan	109.9	109.9	112. 2	113.5	105. 2	104.8	111.2	Apr.-...--	111.5	111.1	118.0	106.8	109.0	115. 0	110.4
Feb	111.9	111.9	113.2	116.3	106. 1	109. 8	110.3	May .-...--	112.1	111. 7	118.4	109.2	107.8	115. 2	110.3
Mar	112.0	112.0	113.4	117.2	106. 2	106. 3	112.7	June_.-...-	113.7	113.7	118.9	111.3	107.5	121.7	110.9
Apr	111.7	111.7	113.9	117.3	106. 0	105. 2	112.4	July - ---. -	113.8	113.8	119.1	112.0	108.3	118.2	112.3
May	112.6	112.6	113.9	117.4	105. 7	108. 5	113.5	Aug--.-.--	114.1	114.1	119.5	114.1	109.1	112.7	114.4
June	112.3	112.3	114.0	116.9	105.9	107. 7	113.8	Sept_-...--	113.8	113.5	120.3	113.5	109.6	106.6	116.7
July	112.7	112.7	114.3	117.6	106. 5	107. 0	114.8	Oct_.......-	113.6	113.3	120.4	111.1	110.1	107.7	117.4
Aug	112.4	112.4	114.2	118.4	106. 9	102.3	116.5	Nov							
Sept.-.------	112.5	112.5	114.6	118.6	107.2	100.4	118.4	Dec							

See footnote 1 to table D-1. Indexes for 18 food subgroups (1935-39 $=$ 100) from 1923 to December 1952 were published in the March 1953 Monthly Labor Review and in previous issues.
${ }^{2}$ See footnote 2 to table D-1
${ }^{2}$ Includes eggs, fats and oils, sugar and sweets, beverages (nonalcoholic) and other miscellaneous foods.

Table D-3: Consumer Price Index ${ }^{1}$-United States average, all items and food

Year	$1947-49=100$		$1935-39=100$	Year and month	$1947-49=100$		$1935-39=100$	Year and month	$1947-49=100$		$1935-39=100$
	All items	Total food ${ }^{2}$	All items		All items	Total food ${ }^{2}$	All items		All items	Total food ${ }^{2}$	All items
1913: A verage	42.3	39.6	70.7	1941: A verage.--	62.9	52.2	105. 2	1951: June.	110.8	112.3	185. 2
1914: A verage.	42.9	40.5	71.8	1942: A verage.	69.7	61.3	116. 6	July.	110.9	112.7	185. 5
1915: A verage	43.4	40.0	72.5	1943: A verage	74.0	68.3	123.7	August	110.9	112.4	185. 5
1916: A verage	46.6	45.0	77.9	1944: A verage	75.2	67.4	125. 7	September	111.6	112.5	186.6
1917: A verage	54.8	57.9	91.6	1945: A verage	76.9	68.9	128.6	October-.-	112.1	113.5	187.4
1918: A verage	64.3	66.5	107.5	1946: Average	83.4	79.0	139.5	November	112.8	114.6	188.6
1919: A verage	74.0	74.2	123.8	1947: A verage	95. 5	95.9	159.6	December	113.1	115. 0	189.1
1920: A verage	85.7	83.6	143.3	1948: A verage	102.8	104.1	171.9	1952: January	113.1	115. 0	189.1
1921: A verage	76.4	63.5	127.7	1949: A verage.	101.8	100.0	170.2	February	112.4	112.6	187.9
1922: A verage	71.6	59.4	119.7	1950: A verage.	102.8	101.2	171.9	March	112.4	112.7	188.0
1923: A verage	72.9	61.4	121. 9	1951: A verage	111.0	112.6	185. 6	April	112.9	113.9	188.7
1924: A verage	73.1	60.8	122. 2	1952: Average	113.5	114.6	189.8	May	113.0	114.3	189.0
1925: A verage	75.0	65.8	125.4	1950: January	100.6	97.0	168.2	June	113.4	114.6	189.6
1926: A verage	75.6	68.0	126.4	February	100.4	96.5	167.9	July	114.1	116. 3	190.8
1927: A verage	74.2	65.5	124.0	March	100.7	97.3	168.4	August	114.3	116.6	191.1
1928: A verage	73.3	64.8	122.6	April	100.8	97.7	168.5	September	114.1	115. 4	190.8
1929: A verage	73.3	65.6	122. ${ }^{\text {or }}$	May	101.3	98.9	169.3	October...	114.2	115. 0	190.9
1930: A verage	71.4	62.4	119.4	June	101.8	100. 5	170. 2	November	114.3	115.0	191.1
1931: A verage.	65.0	51.4	108.7	July.	102.9	103.1	172.0	December	114.1	113.8	190.7
1932: A verage	58.4	42.8	97.6	August	103. 7	103.9	173.4	1953: January	113.9	113.1	190.4
1933. A verage	55.3	41.6	92.4	September	104. 4	104. 0	174. 6	February	113.4	111.5	189.6
1934: A verage	57.2	46. 4	95.7	October	105. 0	104.3	175. 6	March	113.6	111.7	189.9
1935: A verage	58.7	49.7	98.1	November	105. 5	104. 4	176. 4	April	113.7	111.5	190.1
1936: A verage	59.3	50.1	99.1	December	106. 9	107.1	178.8	May	114.0	112.1	190.6
1937: A verage	61.4	52.1	102.7	1951: January.	108.6	109.9	181.5	June	114.5	113.7	191.4
1938: A verage	60.3	48.4	100.8	February	109.9	111.9	183.8	July	114.7	113.8	191.8
1939: A verage	59.4	47.1	99.4	March	110.3	112.0	184.5	August	115.0	114.1	192. 3
1940: A verage	59.9	47.8	100.2	A pril	110.4	111.7	184.6	September	115.2	113.8	192.6
				May	110.9	112.6	185.4	October.	115.4	113.6	192.9

${ }^{1}$ See footnote 1 to table D-1. ${ }^{2}$ See footnote 2 to table D-1.

Table D-4: Consumer Price Index ${ }^{1}$-All items indexes for selected dates, by city

City	$1947-49=100$														1935-39 $=100$	
	$\begin{aligned} & \text { Oct. } \\ & 1953 \end{aligned}$	$\begin{gathered} \text { Sept. } \\ 1953 \end{gathered}$	$\begin{aligned} & \text { Aug. } \\ & 1953 \end{aligned}$	$\begin{aligned} & \text { July } \\ & 1953 \end{aligned}$	$\begin{aligned} & \text { June } \\ & 1953 \end{aligned}$	$\begin{aligned} & \text { May } \\ & 1953 \end{aligned}$	$\begin{aligned} & \text { Apr. } \\ & 1953 \end{aligned}$	$\underset{1953}{\text { Mar. }}$	$\begin{aligned} & \text { Feb. } \\ & 1953 \end{aligned}$	$\begin{aligned} & \text { Jan. } \\ & 1953 \end{aligned}$	$\begin{aligned} & \text { Dec. } \\ & 1952 \end{aligned}$	$\begin{aligned} & \text { Nov. } \\ & 1952 \end{aligned}$	$\begin{aligned} & \text { Oct. } \\ & 1952 \end{aligned}$	$\begin{aligned} & \text { June } \\ & 1950 \end{aligned}$	Revisep series Oct. 1953	Old series June ${ }^{4}$ 1953
United States average 2	115.4	115.2	115.0	114.7	114.5	114.0	113.7	113.6	113.4	113.9	114.1	114.3	114.2	101.8	192.9	190.9
A tlanta, Ga	${ }^{(3)}$	117.6	${ }^{(3)}$	${ }^{(3)}$	117.1	${ }^{(3)}$	${ }^{(2)}$	116.7	${ }^{(3)}$	${ }^{(8)}$	${ }^{(8)}$	117.1	${ }^{(3)}$	${ }^{(3)}$	${ }^{(3)}$	197.7
Baltimore, M	(3)	115.0	${ }^{(3)}$	${ }^{(3)}$	115.1	${ }^{(3)}$	${ }^{(3)}$	114.2	${ }^{(3)}$	${ }^{(3)}$	114.4	${ }^{(3)}$	(3)	101.6	(3)	194.6
Boston, Mass	113.8	${ }^{(3)}$	${ }^{(3)}$	113. 1	${ }^{(3)}$	(3)	111.7	${ }^{(3)}$	$\left.{ }^{3}\right)$	112.1	112.4	112.7	113.4	102.8	183.2	180.6
Chicago, Ill	117.1	116. 6	116.3	115.7	115. 3	114.6	114.2	113.8	113.9	114.2	114. 6	115. 1	115. 0	102.8	199.4	195.7
Cincinnati, O	${ }^{(3)}$	115.3	${ }^{(3)}$	${ }^{(3)}$	114.5	${ }^{(3)}$	${ }^{(8)}$	112.6	${ }^{(3)}$	${ }^{(3)}$	112.5	112.5	113.3	101.2	${ }^{(3)}$	195.0
Cleveland, Ohio	${ }^{(3)}$	${ }^{(3)}$	115.1	(3)	${ }^{(3)}$	113.7	(${ }^{\text {a }}$	${ }^{(3)}$	112.5	${ }^{(3)}$	${ }^{(8)}$	113.6	${ }^{(3)}$	(8)	${ }^{(3)}$	(3)
Detroit, Mich	117.2	116. 9	116.9	116. 9	116. 6	115. 8	115.2	115.2	115.1	115.7	116. 0	115.3	115. 5	102.8	197.8	200.4
Houston, Tex	${ }^{(3)}$	${ }^{(3)}$	116.8	${ }^{(3)}$	${ }^{(3)}$	116.8	${ }^{(3)}$	(3)	116. 1	${ }^{(8)}$	116.7	116. 0	116. 1	103.8	${ }^{(3)}$	193.4
Kansas City, Mo	115. 7	(3)	${ }^{(3)}$	115.3	${ }^{(3)}$	${ }^{(3)}$	114.3	(3)	${ }^{(3)}$	114.3	${ }^{(3)}$	${ }^{(3)}$	115. 2	${ }^{(3)}$	186.3	
Los Angeles, Calif	116.3	116.2	115.8	115.8	115.4	115.3	115.6	115.4	114.9	115.4	115.3	115.1	114.8	101.3	194.3	188.7
M inneapolis, Minn	116. 6	(3)	${ }^{(3)}$	115.6	${ }^{(3)}$	${ }^{(3)}$	115.1	${ }^{(3)}$	(8)	114.4	114. 6	${ }^{(3)}$	${ }^{(3)}$	102.1	193.1	
New York, N. Y	113.3	113.2	112.7	112.1	112.0	111.4	111.1	111. 2	111.1	111.7	112. 0	112.9	112.4	100.9	187.5	185. 4
Philadelphia, Pa	115.3	115. 2	114.9	114.7	114.6	113.8	113.7	114.1	113.7	114.3	114.7	114.7	114.6	101.6	191.9	190.5
Pittsburgh, Pa	114.7	${ }^{(3)}$	${ }^{(3)}$	113.8	${ }^{(3)}$	${ }^{(8)}$	112.8	${ }^{(3)}$	${ }^{(3)}$	112.6	113.4	113.5	113.4	101.1	195.0	194.6
Portiand, Oreg	116.1	${ }^{(3)}$	${ }^{(8)}$	115.5	${ }^{(3)}$	${ }^{(3)}$	115.4	${ }^{(3)}$	${ }^{(3)}$	114.6	${ }^{(3)}$	${ }^{(3)}$	115.0	${ }^{(3)}$	201.1	${ }^{(3)}$
St. Louis, Mo.	${ }^{(3)}$	117.1	${ }^{(3)}$	${ }^{(3)}$	115.8	${ }^{(3)}$	${ }^{(3)}$	114.7	${ }^{(3)}$	${ }^{(8)}$	114.9	${ }^{(8)}$	(8)	101.1	$\left.{ }^{3}\right)$	192.9
San Francisco, Calif	(3)	116.9	(3)	(3)	116.1	${ }^{(3)}$	${ }^{(3)}$	115.5	(3)	${ }^{(3)}$	115.6	${ }^{(3)}$	${ }^{(3)}$	100.9	(3)	199.1
Scranton, Pa .-	${ }^{(3)}$	${ }^{(3)}$	113. 2	${ }^{(3)}$	${ }^{(3)}$	112. 0	(3)	${ }^{(3)}$	112.2	${ }^{(3)}$	${ }^{(8)}$	113.1	${ }^{(3)}$	${ }^{(3)}$	(3)	${ }^{(3)}$
Seattle, W ash	(3)	${ }^{(3)}$	116.8	${ }^{(3)}$	(3)	116. 2	(3)	(3)	114.6	(3)	(8)	115.6	(3)	(3)	(3)	(3)
W ashington, D.	(3)	${ }^{(3)}$	114.2	${ }^{(3)}$	${ }^{(3)}$	113.5	${ }^{(3)}$	${ }^{(3)}$	113.0	${ }^{(3)}$	${ }^{(3)}$	113.8	${ }^{(3)}$	${ }^{(3)}$	${ }^{(3)}$	${ }^{(3)}$

[^54]
June 1953

 196. 6
198.2 198.2
190.8

Mobile Ala
-- \qquad 185.6
\qquad 190.8

Portland, Maine. 185.6
-181.9

May 1953

Cleveland, Ohio_..-------------192.8	
Milwaukee, Wis_.------------196.9	Seattle, Wash ..-.-.-.-.-.-.-.-- 195.4
New Orleans, La_-..----------190.1	Washington, D. C..---------185. 18

April 1953

Buflalo, N. Y	187.3	Minneapolis, Minn_---------188.0
Denver, Colo	189.1	Portland, Oreg_--------------198.9
Indianapolis, Ind	192.5	Richmond, Va.....-----------181.5
Kansas City, Mo	181.8	Savannah, Ga_..........-.-.-.- 197.7
Manchester, N.	184.7	

Table D-5: Consumer Price Index ${ }^{1}$-All items and commodity groups, except food, ${ }^{2}$ by city
[1947-49=100]

${ }^{1}$ See footnote 1 to table D-1.
2 See tables D-2, D-3, D-6, and D-7, for food.

Table D-6: Consumer Price Index ${ }^{1}$-Food and its subgroups, by city
$[1947-49=100$

[^55]${ }^{2}$ See footnote 2 to table D-1.
${ }^{8}$ A verage of 46 cities beginning January 1953. See footnote 1 to table D-1. 4 See footnote 3 to table D-2.

TABLE D-7: Average retail prices of selected foods

38 cities.
 ${ }^{2} 41$ cities
 ${ }^{8} 12$ cities.
 43 cities.
 $\checkmark 42$ cities.

(36 cities.
 45 cities.

840 cities.
${ }^{2} 44$ cities beginning July 1953, 43 cities December 1952 through June 1953.
Note.-The United States average retail food prices appearing in table D-7 are based on prices collected monthly in 46 cities for use in the calculation of the food component of the revised Consumer Price Index. Average retail food prices for each of 20 large cities are published monthly and are available upon request. Prices for the 26 mediumsized and small cities are not published on an individual city basis.

TABLE D-8: Indexes of wholesale prices, by group and subgroup of commodities ${ }^{1}$

Table D-8: Indexes of wholesale prices, by group and subgroup of commodities ${ }^{1}$ - Continued $[1947-49=100]$

1 The revised wholesale price index $(1947-49=100)$ is the official index for January 1952 and subsequent months. The official index for December 1951 and previous dates is the former index $(1826=100)$. The revised index has been computed back to January 1947 for purposes of comparison and analysis. Prices are collected from manufacturers and other producers. In some cases they are secured from trade publications or from other Government agencies which collect price quotations in the course of their regular work. For a more detailed description of the index, see A Description of the Revised Wholesale Price Index, Monthly Labor Review, February 1952 (p. 180), or reprint
Serial No. R. 2067.
${ }^{2}$ Preliminary.
${ }^{3}$ Not availahle.
4 Figures shown in this series are the official indexes. Beginning with January 1953 the method of calculating excise taxes and discounts was changed and official indexes for earlier dates are not strictly comparable with these. For analytical purposes indexes prior to 1953 have been recalculated for com. parability and are available on request.

* Revised.

Table D-9: Special wholesale price indexes ${ }^{1}$
$[1947-49=100]$

Commodity group	1953										1952			1950
	Oct. ${ }^{2}$	Sept.	Ang.	July	June	May	Apr.	Mar.	Feb.	Jan.	Dec.	Nov.	Oct.	June
All foods	105. 2	*106.8	104.8	104.9	103.8	104.1	103. 4	104.0	104. 1	105. 0	104. 5	108.6	109.5	95.0
All fish Special metals	111.3	104. 9	107.8	102. 5	100.9	106. 5	103.4 98.9	102.8	108. 0	110.5	104. 6	113. 2	101. 6	92. 4
Special metals and metal Metalworking machinery	125.7	* 126.2	126.8	126.8	125. 0	124. 1	123.6	124.2	123. 5	123. 0	123.0	122. 9	123.1	108. 3
Machinery and equipmen	139.6	+139.7	139. 1	138.8	138. 7	138. 2	137.6	136. 6	136.5	136. 4	136.4	136. 3	136.3	109.8
Total tractors.....	127.2	+127.1	126.5	126.0	125. 3	124. 4	123. 7	122.8	122.5	122. 4	122. 4	122.3	122. 2	106. 1
Steel mill products	142.5	*142. 6	142.7	142.7	137.1	134.4	131.1	131.1	130.9	131. 1	130.9	130.9	131.0	107. 5
Building materials.	120.1	120.4	120.8	121.3	120.5	120.2	119.9	119.2	118.7	118.5	118.3	118.4	118.6	114.9 107.5
Soaps...........-	86.5	*86. 2	85.8	85.8	85.5	87.1	87.2	86.7	86.6	87.1	87.2	86.8	87.0	80.9
Synthetic detergents...... Refined petroleum product	91.0	91.0	91.0	90.8	80.8	90.8	90.8	91.8	91.8	91.8	91.8	91.8	91.8	82.9
Refined petroleum product	115.8 113.5	115.6 113.8	115.6	116. 1	109.1	109.1	108. 9	108. 6	107. 2	107. 7	107.7	108. 0	108. 4	102. 1
Mid-continent petroleum	113.5 110.1	113.8 109.6	113.8 109.6	113.8 109.7	107.3 100.0	107.8 99.6	109.3 99.6	108.5 99.6	108.8 99.7	111. 6	111.8 101.0	111.8 101.8	111.8	98.1 101.8
Gulf coast petroleum	122.8	122.8	122.8	124.1	116.8	116.8	115.2	114.6	114.6	115.0	115.0	115. 0	115.0	109. 7
Pacific coast petroleum-.-.-.	118.8	118.8	118.8	118.8	118.8	118.8	118.8	118.8	108. 7	104. 2	104. 2	104. 2	107.0	94.1
Pulp, paper and products, exel. bld	117.4	116.7	116.1	115.6	115.6	115.2	115.2	115.0	115.2	115.7	115.8	115. 4	115.5	95.6

[^56]E: Work Stoppages
Table E-1: Work stoppages resulting from labor-management disputes ${ }^{1}$

Month and year	Number of stoppages		Workers involved in stoppages		Man-days idle during month or year	
	Beginning in month or year	In effect during month	Beginning in month or year	In effect during month	Number	Percent of estimated work. ing time
1935-39 (average).	2, 8623,5734,750		$1,130,000$$2,380.000$			
1947-49 (average)					$39,710,000$ $38,000,000$.46 .47
1945	4,750		3, 470, 000	4,600,000	116,000,000 1.43	
1947.	4,985		$2,170,000$$1,960,000$		$\begin{array}{r} 34,600,000 \end{array}$$\text { 34. } 100,000$.41.37
1948	3,4193,606					
1949			3, 030.000		$\begin{aligned} & 34.100,000 \\ & 50,500,000 \end{aligned}$. 59
1950	3,6064,8434,737		2, 410, 000		38, 800, 000	.44.43.
1951			2, 220, 000		$22,900,000$$59,100,000$	
$1952{ }^{2}$	4,737 5,117		3,540, 000			. 23
1952: October-	459269179	768535	450,000	584,000215,000	$\begin{aligned} & 5,000,000 \\ & 1.560 .000 \end{aligned}$.53.20.09
November.			98,80033,600			
December--	179350	369		82, 300	854.000	. 09
1953: January ${ }^{\text {a }}$		500550	200,000120,000	250,000200,000	$1,250,000$$1,000,000$	
February ${ }^{8}$	$\begin{array}{r}350 \\ 350 \\ \hline\end{array}$. 12
March ${ }^{3}$	450500	650	180, 000	230,000350,000	$1,100,000$$2,500,000$	
Anril ${ }^{3}$ -		700750	275,000 270,000			. 127
May ${ }^{3}$	$\begin{aligned} & 525 \\ & 500 \end{aligned}$		270,000 250,000	350,000 370	$3,750,000$$3.000,000$. 34
July ${ }^{\text {J }}$	475	725 700	250,000 $2 ¢ 0,000$	400,000 410,000		. 30
August ${ }^{\text {- }}$	450375	675600	230,000110,000	$\begin{aligned} & 400,000 \\ & 210,000 \end{aligned}$	$2,800.00 \mathrm{n}$. 31
September ${ }^{3}$					$1,550,000$.17.15
October ${ }^{3}$-.-	350	550	190, 000	250, 000	$1,450,000$	

${ }^{1}$ All known work stoppages, arising out of labor-management disputes, involving six or more workers and continuing as long as a full day or shift are included in reports of the Bureau of Labor Statistics. Figures on "workers involved" and "man-days idle" cover all workers made idle for one or more shifts in establishments directly involved in a stoppage. They do not
measure the indirect or secondary effects on other establishments or industries whose employees are made idle as a result of material or service shortages. Does not include memorial stoppage in cosl mining industry.
${ }^{3}$ Preliminary.

F: Building and Construction

Table F-1: Expenditures for new construction ${ }^{1}$

[Value of work put in place]

Type of construction	Expenditures (in millions)														
	1953											1952		1952	1951
	Nov. ${ }^{2}$	Oct. ${ }^{3}$	Sept.	Aug.	July	June	May	April	Mar.	Feb.	Jan.	Dec.	Nov.	Total	Total
Total new construction ${ }^{\text {a }}$	\$2,998	\$3, 214	\$3, 290	\$3,319	\$3, 270	\$3, 199	\$2,941	\$2, 735	\$2, 521	\$2, 278	\$2, 361	\$2, 550	\$2, 858	\$32, 638	\$30, 895
Private construction	2,047	2,118	2, 165	2,199	2, 181	2,149	1,988	1,851	1,729	1,575	1,627	1,795	1, 934	21, 812	21,564
Residential building (nonfarm) New dwelling units.	1,020	1, 055 930	1,077 950	1,105	1,111	1,110 980	1, 0880	1,844 830 83	1863 770	1,758	1816 735	942	1,021	11, 100	10, 973
New dwelling units...... Additions and alterations.	900 95	930 100	950 102	970 110	975 112	980 107	880 105	830 94	770 74	675 64	735 63	850	915	9,870	9. 849
Nonhousekeeping ${ }^{\text {d }}$	25	125	125	110	112	107 23	105 22	94 20	74 19	64 19	63 18	71 18	91 18	1.045 185 5	934 190
Nonresidential building (nonfarm)	522	511	506	498	492	479	451	426	430	434	431	433	443	5, 014	5,152
Industrial.	178	178	179	179	178	187	192	193	198	204	201	193	194	2. 320	2, 117
Commercial Warehouses, office, and loft	190	178	174	168	165	152	129	113	114	112	109	112	113	1,137	1,371
Warehouses, offce, and loft buildings.	79	75	71	66	60	56	52	49	49	50	51	50	49	515	544
Stores, restaurants, and garages	111	103	103	102	105	96	77	64	65	62	58	62	64	622	827
Other nonresidential building......-	154	155	153	151	149	140	130	120	118	118	121	128	136	1,557	1,664
Religious.-	46	46	45	43	41	38	35	33	33	34	35	37	38	1,398	${ }^{1} 452$
Educational...	41	41	39	38	36	34	32	31	30	31	32	33	33	351	345
	17	16	15	15	15	14	13	11	10	10	11	11	12	125	164
Hospital and institutional ${ }^{7}$	26	26	26	27	27	26	26	25	26	26	27	28	30	394	419
Miscellaneous	24	26	28	28	30	28	24	20	19	17	16	19	23	288	284
Farm construction Public utilities	100	119	144	158	155	148	138	120	108	100	97	97	112	1,610	1, 646
Public utilities	396	423	428	427	410	399	380	352	320	275	275	314	347	4,003	3, 729
Railroad- Telephone and telegra	45 50	49	44	44	43	41	40	40	34	27	29	43	38	438	399
Other public utilities.	301	319	330	54	53 314	306	-52	-48	+4888	$\begin{array}{r}43 \\ 205 \\ \hline\end{array}$	44	45	48	- 570	- 487
All other private ${ }^{\text {a }}$ -	9	10	10	11	13	13	12	264 9	28	8	20	226 9	261	$\begin{array}{r}2,995 \\ 85 \\ \hline 8\end{array}$	2,843 64
Public construction - .-.	951	1,096	1,125	1,120	1,089	1, 050	953	884	792	703	734	755	924	10, 826	9,331
Residential building ${ }^{\text {N }}$ -	41	45	1, 47	1, 43	1, 46	50	49	49	47	48	47	49	49	654	+ 595
Nonresidential building (other than military or naval facilities)	362	374	378	373	372	384	374	369	353	315	329	342	361	4, 119	
Industrial	140	145	150	154	154	169	162	158	153	123	131	142	154	1,667	3, 964
Educational	158	160	155	150	147	142	140	139	133	131	132	134	138	1,619	1, 513
Hospital and institutional	22	23	25	26	28	32	33	34	33	33	34	36	38	473	528
Other nonresidential...-	42	46	48	43	43	41	39	38	34	28	31	30	33	360	482
Military and naval facilities ${ }^{10}$	105	112	116	121	121	121	115	114	111	104	109	111	121	1,388	887
Highways	280	390	400	405	375	330	260	200	140	110	115	112	240	2,860	2,518
Sewer and water-1.-.............- Miscellaneous public service enter-	67	69	73	71	67	63	61	60	57	54	56	56	58	692	${ }^{2} 716$
prises ${ }^{11}$	18	21	23	19	19	17	15	14	13	11	13	13	16	193	
Conservation and development All other public	68	74	76	77	79	76	70	70	65	56	61	67	74	854	853
All other public ${ }^{13}$........	10	11	12	11	10	9	9	8	6	5	5	5	5	66	80

${ }^{1}$ Joint estimates of the Bureau of Labor Statistics, U. S. Department of Labor, and the Building Materials Division, U. S. Department of Commerce. Estimated construction expenditures represent the monetary value of the volume of work accomplished during the given period of time. These figures shonld be differentiated from permit valuation data reported in the tabulations for building authorized (tables F-3 and F-4) and the data on value of contract awards reported in table F-2
Preliminary
Revised
Includes major additions and alterations.

- Includes hotels, dormitories, and tourist courts and cabins.

Expenditures by privately owned public utilities for nonresidential building are included under "Public utilities."

1 Includes Federal contributions toward construction of private nonprofit hospital facilities under the National Hospital Program

- Covers privately owned sewer and water facilities, roads and bridges, and miscellaneous nonhuilding items such as parks and playgrounds.
Includes nonhousekeeping publie residential construction as well as housekeeping units.
10 Covers all construction, building as well as nonbuilding (except for production facilities, which are included in public industrial building). production facilities, which are included in public industrial building). systems, and local transit facilities.
${ }_{12}^{12}$ Covers public construction not elsewhere classified such as parks, playgrounds, and memorials.

Table F-2: Value of contracts awarded and force-account work started on federally financed new construction, by type of construction ${ }^{1}$

[^57][^58]Table F-3: Urban building authorized, by principal class of construction and by type of building ${ }^{1}$

Period	Valuation (in thousands)									Number of new dwelling units-Housekeeping only				
	Total all classes:	New residential building						New non-residential building	Addi- tions, alterstions, and repairs	Privately financed				Publicly financed
		Housekeeping					Non-house-keeping 1			Total	$\underset{\text { ily }}{\text { 1-fam- }}$	${\underset{i l y}{ }{ }^{2-f a m}-1}^{2}$	Multi fam: ily	
		Privately financed dwelling units				Publicly financed dwelling units								
		Total	1-family	$\begin{gathered} \text { 2-fam- } \\ \text { lly }^{8} \end{gathered}$	Multi. family ${ }^{4}$									
1942	\$2, 707, 573	\$598, 570	\$478, 658	\$42, 629	\$77, 283	\$290, 933	\$22,910	\$1, 510, 688	\$278, 472	184, 892	138, 908	15,747	30,237	95, 946
1947	- ${ }^{4,7} 563,348$	2, $2,885,374$	1, 830, 2680	103,042	181,531 372,586	355,587 42,249	43,369 29,831	1, 458, 602	771. 023	430, 195	358, 151	24, 326	47, 718	98, 310
1948	6,972.784	3, 422, 927	2, 745, 219	181, 493	496, 215	42,249 139,334	29, 831	1, 713, 4889	892,404 $1,004,549$	502,312 516	393,606 392	33, 423	75. 283	5, 833
1949	7, 398, 144	3, 724, 924	2, 845, 399	132, 365	747, 160	285, 627	38,034 39,785	2, 2 , 410,315	1, 004, 939	516, 179 575,286	392.532 413,543	36.306 26,431	87,341 135,312	15, 114
1950	10, 480, 350	5, 819, 360	4, 850, 763	178, 985	798, 612	327, 553	84, 504	3,156, 475	1.092, 458	788, 499	624, 377	33, 310	140.812	32,194 38,953
1951	8, 918,168	4. 380,137	3, 817, 697	171, 343	391, 097	587, 476	37, 875	2, 815, 669	1, 097, 011	534, 605	435, 219	29, 895	69, 491	38.953
1852	8, 926, 672	4, 647, 014	4, 050, 435	213, 790	382, 789	460, 375	51, 713	2, 637, 037	1, 130, 534	563, 211	457, 389	37, 454	68, 368	63.626
1952: January	527, 773	267, 068	230, 354	16, 287	20,426	28,684	1,432	159, 148		34, 426	27, 902	2, 892	3, 632	
March	611. 085 783.787	345.392 408.651	300,957 353,504	17, 276	27, 160 36,341	26,089 80 80	1,632	106, 558	77, 4112	43, 237	35, 003	3, 419	3, 21.5	3, 047
April.	858.403	465,793	409, 964	18,807 20,425	36,341 35,404	80,957 75,698	4, 570 3,257	197,739 219,581	91,869 94 1074	50, 026 56,325	40, 204	3,471	6, 351	10,094
May	829.940	443, 519	388, 013	20, 737	34, 769	62, 057	6, $\mathbf{3} \mathbf{3}$	211, 040	94.074 106,595	56, 53,352	45, 964	3,566 3,550	6,795 8,130	9,235 6,736
June	887, 561	411, 226	368, 060	17,489	25, 678	63, 586	3, 605	291, 571	117, 592	48,909	41, 107	3, 080	- 4,722	6,736 7,008
July..	807. 019	420, 336	369, 052	17,301	33, 983	22, 554	2,395	252, 128	109, 607	50, 636	41, 842	2, 938	5, 856	7,008 2
August	751, 678	401. 450	347. 555	19,001	34, 894	12, 118	5,781	232, 974	99.354	48,768	39, 110	3, 289	6, 369	1,663
October-	822, 292	438,618 450	381.202 388.207	20, 719	33,697 44 189	15,947	7,247	233, 568	104. 746	52, 528	42, 767	3,588	6, 173	1,701
Novembe	644, 786	319, 189	278, 724	14,498	47, 287	15, 21,822	4, 7 4, 451	246, 654	105, 539	52, 785	42, 655	3, 055	7,075	1,624
December	602, 222	275, 596	233, 845	13, 770	27, 081	35, 172	7, 370	214, 990	79, 73,094	38,314 33,905	30.854 26.309	2,521	4, 939	2,475
1953: January	500, 397	278, 931	233, 070	13,369	32, 492	32, 280	5, 153	195, 643	78, 390					
February	665, 229	331, 971	281, 720	16, 345	33, 906	33,111	3,101	213, 028	84, 088	34,914 39,953	26, 21,047	2,347 2,815	5,734	3.973 3,869
March	$\begin{array}{r}941,507 \\ 1 \\ \hline 15,568\end{array}$	482, 342	417, 691	19,881	44, 790	80, 979	6,693	268. 016	103, 478	56, 068	44, 647	3. 342	8,070	9, 268 18
May	$1,015,269$ 910	501, 327 454,976	438. 360 395.168	20, 964 20.095	42,003 39,713	26,005 23,150	7,077	362.123	119, 037	57, 225	46, 074	3,524	7,627	3,918
June	886. 089	447. 820	${ }^{385} 5891$	16. 970	44.959	19,976	6, 4,677	211, 049	114,859 125,563	52, ${ }^{51,791}$	42, 477	3,294	6, 968	2, 457
July	884,063	410, 770	352, 921	17, 967	39, 882	5, 210	11,135	332, 523	124, 425	51, 46 46	41, 351	2. 63.5 2.906	7. 73.5	2, 282
August ${ }^{\text {a }}$	802, 374	392, 541	338, 663	14,682	39, 196	9,730	13, 109	278.386	108, 609	44, 528	35, 686	2, 2406	6, 7796	571 1,046
September	785, 682	377, 700	322, 997	14, 674	40, 029	21, 929	15, 425	254,387	116, 240	47, 721	33, 615	2,383	6,723	2, 678

[^59]Urban is defined according to the 1940 Census, and includes all incorporated places of 2,500 inhabitants or more in 1940 and a small number of places, usually minor civil divisions, classifled as urban under special rule.
Sums of components do not always equal totals exactly because of rounding.
${ }^{2}$ Covers additions, alterations, and repairs, as well as new residential and onresidential building.
${ }^{3}$ Includes units in 1 -family and 2 -family structures with stores.
Includes units in multifamily structures with stores.
Covers hotels, dormitories, tourist cabins, and other nonhousekeeping residential buildings.
${ }^{6}$ Revised.
' Preliminary.

Table $\mathrm{F}-4$: New nonresidential building authorized in all urban places, ${ }^{1}$ by general type and by geographic division ${ }^{2}$

Geographic division and type of new nonresidential building	Valuation (in thousands)														
	1953									1952				1952 Total	1951 Total
	Sept. ${ }^{3}$	Aug. ${ }^{4}$	July	June	May	Apr.	Mar.	Feb.	Jan.	Dec.	Nov.	Oct.	Sept.		
All types	\$254, 387	\$278, 386	\$332. 523	\$288, 053	311, 049	\$362, 123	\$268, 016	\$213, 028	\$195. 643	\$214, 990	\$217, 14 14,312	\$246. 654 20,554	$\begin{array}{r}\text { \$233, 568 } \\ 18,337 \\ \hline\end{array}$	\$2, 637, 037 \$2, 815,669	
	15,378	11, 952	16, 233	17, 486	21, 323	22, 552	14, 538		12. 952	7,398 30.952	14,312 52 52 123	20,554 30,510	16,337 41,537	165,928 440,529	197. 698
	37. 062	44, 733	40,125	46, 485	47,769	50,012 92 818	40,731 49,537	29.334 57 1	21, 679 38.805 11.	30.952 46,413	52,323 50,315	30,510 55,290	41, 537	440, 529 597.588	423, 143 744.183
	56. 482	74963 23.548	102,275 30,470	68, 768	76,925 32,934	25.074	19,846	18,280	11,544	18, 391	10, 736	25, 093	24, 945	215, 776	744, 205,435
	25. 533	40, 810	44,496	35, 810	36, 831	52, 476	22, 261	35, 083	30, 272	26, 219	21,967	21,322	23, 856	276, 78.3	306, 997
	10,684	10.086	8, 5.58	10.164	6, 575	11, 631	10,891	9,150	7. 216	7,737	9, 879	11. 913	10. 443	120, 165	117, 328
	28.193	22, 425	28, 101	41, 131	28,552	50, 546	28, 222	22,049	26, 94.5	23, 035	17,547	22, 861	22, 221	274, $1+2$	281, 588
	15,421	9, 961	17, 762	10.749	11,082	17, 562	12,836	8, 978	9, 602	9, 958	6, 904	12, 450	7,500	101, 699	103, 345
	39,875	39,908	44,503	38, 877	49, 058	39,452	69, 154	28, 170	36. 599	44, 886	33. 105	46, 162	30, 870	444, 429	435, 953
Industrial buildings ${ }^{\text {s }}$	25, 972	41, 198	39.523	37, 982	46, 826	48,178	32,097	23, 252	19, 088	26, 302	30. 342	22.773	40, 434	351, 520	513, 007
New England	1,704	1. 291	$\begin{aligned} & 1,982 \\ & 6,213 \end{aligned}$	$\begin{aligned} & 2,553 \\ & 7,335 \end{aligned}$	2,237	48, 1,904	32,097 2,559	1,284	19,788 1,109	2, 512		$\begin{aligned} & 1,514 \\ & 4,522 \end{aligned}$	$\begin{aligned} & 3,423 \\ & 7,628 \end{aligned}$	$\begin{aligned} & 28.097 \\ & 60.949 \end{aligned}$	31,91697$\mathbf{9 7}, 144$
Middle Atlantic	5,501	4.729			$\begin{array}{r} 4,131 \\ 70,762 \end{array}$	$\begin{array}{r} 9010 \\ 10,228 \end{array}$	6, 983	1,725 5,051 1	3, 086	$\begin{aligned} & 4,121 \\ & 9,469 \end{aligned}$					
East North Central-	6. 307	21,1562. 147	$\begin{array}{r}18,09 \\ 3,055 \\ \hline\end{array}$	12,3801,225			7,787		4, 458		$\begin{array}{r} 6,085 \\ 11,612 \end{array}$	$\begin{aligned} & 4,522 \\ & 5,059 \end{aligned}$		$\begin{array}{r} 60,949 \\ 111,839 \end{array}$	
West North Central.	3, 090				20, 1,246 1,24	$\begin{array}{r} 10,228 \\ 2,316 \end{array}$		1,6291,577	$\begin{aligned} & 1,712 \\ & 2,780 \end{aligned}$			$\begin{aligned} & 5,059 \\ & 3,954 \end{aligned}$		$\begin{gathered} 111,839 \\ 24,305 \end{gathered}$	205,815 25,306
South Atlantic	1,357	$\begin{aligned} & 2,341 \\ & 1,359 \end{aligned}$	$\begin{aligned} & 3,055 \\ & 2,199 \end{aligned}$	$\begin{aligned} & 1,225 \\ & 3,774 \end{aligned}$	3,689	2,316 12,340					$\begin{array}{ll} 1,02 \\ 1,142 \end{array}$	$1,936$	5,444	$\begin{aligned} & 24,305 \\ & 25,237 \end{aligned}$	24. 181
East South Central.	441		662801	, 707	${ }^{4} 477$	- 3,771	$1,752$	577	$\begin{aligned} & 2,780 \\ & 1,552 \end{aligned}$	$\begin{array}{r} 4,078 \\ 109 \end{array}$	$\begin{aligned} & 1,142 \\ & 1,938 \end{aligned}$	399	869	$\begin{aligned} & 25,237 \\ & 16,084 \end{aligned}$	$\begin{array}{r} 28,584 \\ 18,28 \\ 6,103 \\ 75,629 \end{array}$
West South Central_	2, 033	2, 258			1,713492	$\begin{array}{r} 1,987 \\ 668 \end{array}$		$\begin{array}{r} 361 \\ 4,475 \end{array}$	$\begin{aligned} & 797 \\ & 489 \end{aligned}$	$\begin{aligned} & 647 \\ & 338 \end{aligned}$	$\begin{array}{r} 640 \\ \mathbf{1}, 208 \end{array}$	$\begin{aligned} & 812 \\ & 361 \end{aligned}$	1,177	$\begin{array}{r} 17,192 \\ 5.983 \end{array}$	
Mountain.	271		$\begin{array}{r} 801 \\ 625 \\ 5,587 \end{array}$										1,086		
Commercial buildings ${ }^{\text {en }}$	93, 263	5,562			9,107	124, $\begin{array}{r}587 \\ \hline 18\end{array}$	8,17884,822	4, 572	3, 105	3,280	4, 214	4, 215	4. 437	5.983 6,103 61.834 75,629	
		91, 247	$\begin{array}{r} 5,587 \\ 112,910 \end{array}$	$\begin{array}{r} 96,137 \\ 2,832 \end{array}$	101, 017					63,181	53,6732,219	84, 291	75, 300	61.831 686.346	$\begin{gathered} 739,912 \\ 36,506 \\ 111,793 \end{gathered}$
New England.....--	4.935	$\begin{array}{r} 3,649 \\ 13,096 \end{array}$	$\begin{array}{r} 3,487 \\ 16.260 \end{array}$		21, 798	$\begin{array}{r} 7,481 \\ 17,639 \end{array}$	$\begin{array}{r} 5,180 \\ 14,338 \end{array}$	$\begin{gathered} 1,374 \\ 9,739 \end{gathered}$	$\begin{array}{r} 5,105 \\ 7,148 \end{array}$	$\begin{aligned} & 1,647 \\ & 9.319 \end{aligned}$		$\begin{array}{r} 2,557 \\ 12,519 \end{array}$	$\begin{array}{r} 2,765 \\ 15,082 \end{array}$	28,766121,120	
Midतle Atlantic.	16. 293			16, 237							12.632				
East North Central.	22.023	20, 176	26, 805	16, 182	17,706	35, 344	14,945	12,915	11, 075	16,949	9, 555	25, 865	11,778	144. 107	$\begin{aligned} & 111,793 \\ & 155,535 \end{aligned}$
West North Central.	7,928	8, 056	6. 699	6, 808	10, 296	12, 813	5, 278	4, 193	2. 175	4, 495	4, 292	6, 048	7, 51	56. 0	43, 206
South Atlantic	8, 977	21, 162	22, 294	12,903	14,316	11,493	9, 166	11, 234	10, 470	7,474	6, 6	9,246	8.102	S7, 085	99, 315
Enst Sonth Central	3, 514	3. 083	3, 666	3, 405	2, 782	2,951	2, 88	2, 017	3,385	1, 951	1,466	$\stackrel{2}{8} 547$	2,106	.	5
West South Central	9, 386	5, 715	12.671	20, 5.58	10, 736	13,493	13,347	9, 291	11,829	9, 786	6, 437	8, 0.381	11,800	91, 774	93.132
Mountain	8. 080	3, 149	5. 045	- 3,307	4,204 14 1459	10,471	3,186 16,499	3, 8,606	4,697	10,325	8, 326	11, 029	14.144	101, 032	137. 730
Pacific.-	12, 126	13, 162	15.934	102,894	119, 215	123, 702	114, 991	80,144	71, 923	83, 808	105, 549	84, 771	81, 482	1, 101. 141	1, 146, 507
Community buildings ${ }^{7}$ -	96,029 7.172	100, 476	1366,250 8,911	102,894 6, 649	119,215 8,881	123,702 9,282	14,397	80, 1,541	1230 1	2,145	8, 001	6,750	8,306	78, 221	106, 079
New Englan Middle A tlan	11,327	4,541 23,349	9,949	12,890	14,607	19,593	16, 169	14, 509	9.840	13,951	30,392	10, 435	13, 811	193, 155	167, 869
East North Central	17,844	20. 252	46, 284	26, 956	25,579	27, 351	19, 144	14, 396	18,737	13, 746	18, 161	15, 764	20, 169	227, 139	263, 047
West North Centra	11. 921	9, 697	18, 026	7. 136	17, 728	6, 626	10, 319	9,515	6, 189	9, 416	3, 247	12, 210	10, 105	103.7	106. 060
South Atlantic	12, 070	8, 913	15, 814	13.360	15, 572	24. 538	7, 181	15, 302	9, 082	9,31	11,386	7,975	5.1	115, 5	142,405
East South Central_	5. 435	4, 406	1,469	4,500	2, 258	3,575	4,977	5, 886	1,451	3, 918	5, 743	8, 041	6, 113	57. 008	43.328
West Snuth Centra	10, 209	11, 011	8,758	15, 499	12, 920	14, 414	10, 292	9, 0331	11,406	9, 009	8, 624	8,428 3,356	6, 648	$\begin{array}{r}11, \\ 34,827 \\ \hline\end{array}$	124.350
Mountain	3, 371	4. 877	9. 246	5,385	3,800	4.718	7,515	${ }_{6}^{621}$	3, 053	-7, ${ }^{\text {15, }} \mathbf{0} 5$	17,453	11,812	8,599	174, 243	141, 209
Pacific	16.681	13.432	17,792	10,518	17,871	13, 6185		$\begin{array}{r}\text { 9, } 290 \\ 22 \\ \hline 29\end{array}$		13, 720	re, ${ }^{17}$, 814	23, 037	6,838	152, 537	109, 308
Public buildings	3,875	7, 711	4, 384 20	13, 700	13,824 1,294 1	13, 476	6,003 149	22, 739	10,937 606	$\begin{array}{r}13,720 \\ \hline\end{array}$	5,8163	6, 421	350	13, 951	4,354
New England M:ddle Atiant	125	711 285	20 381	6, 14.5	1,585	609	51	256	40	546	731	165	1,342	19,434	16. 242
East North Central.	448	731	666	1, 269	5,467	5,743	1,133	17, 488	673	1,638	2, 222	1, 188	607	15,6.56	25, 332
West North Central	502	285	467	606	332	1,502	51	452	243	,		544	603	4, 246	2,463
South Atlantic	209	1,227	611	4, 114	1,197	287	189	1,812	1,027	1,926	1, 212	814	2, 499	16,547	18, 147
East South Central.	44	55	0	175	419	639	480	105	125		248	50	519	10.841	305
West South Central_	387	212	14	176	360	2, 608	648	339	450	1,119	319	2, 163	111	7,348	5,899
Mountain .	906	96	506		320	419		307	289	281	184	451	520	14,480	4, 101
Pacific.	1,254	3, 484	1,718	790	2,850	53	3, 302	1,912	7, 485	7,458	405	11, 240	286	50,	22,466
Public works and utility					7,787	,547	11,482	2, 758	20,81	14, 31	8, 740	9,889	7,919	135, 52	115,708
buildings New England	13,641 143	11,668	14,140 536	$\begin{array}{r}12,13 \\ 3,632 \\ \hline\end{array}$	2,860	1,597	1, 1,716	379	4,651	344	924	1, 260	359	6. 246	8,801
Middle Atlantic	1,528	1,301	5,335	1,112	709	1,065	1,586	345	735	1,477	494	791	1,413	23, 540	11, 161
Esst North Central.	2, 565	4, 184	1,509	3,904	605	7,383	1,700	4,611	2, 314	2, 247	5, 019	661	1, 826	33, 612	35, 028
West North Central	418	1, 363	614	1,174	573	351	376	1,840	778	1,465	226	330	700	7. 618	9, 672
South Atlantic	1,156	1,6ก2	2, 078	181	673	2, 541	1,767	3, 858	5,919	1,287	939	420	986	12,736	9,629
East South Central.	650	123	889	28	287	24	848	180	380	312	154	410	407	3, 720	1,988
West South Cent	3,724	890	1,760	654	777	15, 505	662	812	1,470	246	312	784	1,002	13. 991	11,058
Mountain	1,576	462	951	74	44	128	120	20	312	340	216	5,128	444	3, 365	2,094
Pacific.	1,880	1,176	468	1,354	1,258	2, 954	2, 708	713	4, 2 P,	6,596	416	5,105	71	24, 648	26. 279
Allother buildings	21,607	26, 707	25, 316	25, 226	22, 380	20,334	18,620	11,736	8, 215	13, 6681				209, 10 509	191, 1044
New England	1,425 2		1,297	1,401	1,631 1,937	1, ${ }^{1}, 0972$	537 1,625	${ }_{760} 7$	252	1, 539	1281 1,991	2, 2,057	2, 260	10,	18, 935
Middle Altantic.	2, 2828	1,975	1, 8 , 612	2, 766	1,937	2, 6977	1,625 4,829	2,564	1,547	2, 364	3,745	6, 753	8, 020	65. 234	59,426
West North Central-	1,901	8, 1,999	1,609	1,635	2, 758	1,465	1,453	651	447	582	1,389	2,007	3, 108	19,839	18,727
South Athatic.	1,763	5,565	1,499	1,478	1,384	1,277	2, 206	1,300	994	2, 141	673	93	1,669	19, 605	13, 320
Enst South Central.	599	1,060	1,872	1,349	383	671	778	385	353	1,447	330	407	429	6, 497	6, 587
West South Central.	2, 454	2, 339	4, 096	3, 218	2, 046	2, 540	2,417	2,182	994	2, 228	1,185	2, 635	1,446	20,	18.821
Mountain.	1,216	1,021	1,340	1,767	2,221	1, 158	1,307 3,470	-523	+ ${ }^{762}$	2, 174	2, 292	2, 213 2,761	2, 622	12, 35	12, 640
P	2, 665	3, 093	3, 004	3,535	3,213	2,985	3,470	3,077	2. 036	2,174	2,292	2,761	2, 622		

${ }^{1}$ Building for which permits were issued and Federal contracts awarded In all urban places, including an estimate of building undertaken in some smaller urban places that do not issue permits. Sums of components do not always equal totals exactly because of rounding.
${ }_{2}$ For scope and source of urban estimates, see table F-3, footnote 1. ${ }^{3}$ Preliminary
${ }^{\text {B }}$ Revised. Includes factories, navy yards, army ordnance plants, bakeries, ice plants industrial warehouses, and other buildings at the site of these and similar production plants.

- Includes amusement and recreation buildings, stores and other mercantile buildings, commercial garages, gasoline and service stations, etc. ${ }^{7}$ Includes churches, hospitals, and other institutional buildings, schools, libraries, etc.
${ }^{8}$ Includes Federal, State, county, and municipal buildings, such as courthouses, city halls, fire and police stations, jails, prisons, arsenals, armories, army barracks, etc. ind lectric plants, public comfort stations, gas and electric plants, public comfort stations, etc.
10 Includes private garages, sheds, stables and barns, and other buildings not elsewhere classiffed.

Table F-5: Number and construction cost of new permanent nonfarm dwelling units started, by urban or rural location, and by source of funds ${ }^{1}$

Period	Number of new dwelling units started									Estimated construction cost (in thousands)'		
	All units			Privately financed			Publicly financed					
	Tots nonfarm	Urban	Rural farm	Total nonfarm	Urban	Rural nonfarm	Total nonfarm	Urban	Rural nonfarm	Total	Privately financed	Publicly financed
1925		752,000 434,300 $\begin{array}{r}96,200 \\ 403,700 \\ \hline\end{array}$ 479, 800524,900 588,80088780 595,300609,600	185,00048,000271,80045,600266,800369,200406,700436,300568,200496,000517,400	$\begin{array}{r}937,000 \\ 93,000 \\ \hline\end{array}$ 619, 500 662, 500 845,600 013 500 988, 800 $1,020,100$ $1,068,500$	752,00045,000369,50093,200395,700476,400510,000656,600785,60063,600554,600	$\begin{array}{r} 185,000 \\ 48,000 \\ 250,000 \\ 45,500 \\ 266,800 \\ 369,200 \\ 403,500 \\ 432,200 \\ 566,600 \\ 488,800 \\ 513,900 \end{array}$	0086,6003,1008,003,40018,10036,3043,80077,2058,500	0064,8003,0008,0003,40014,90032,20042,20064,00055,000	$\begin{array}{r} 0 \\ 0 \\ 21,800 \\ 100 \\ 0 \\ 0 \\ 3,200 \\ 4,100 \\ 1,600 \\ 7,200 \\ 3,500 \end{array}$	\$4, 475, 000	\$4, 475, 000	
19331										$\begin{array}{r} 285,446 \\ 2,86,192 \end{array}$	$\begin{array}{r} 285,446 \\ 2,530,765 \end{array}$	
1944												$\begin{array}{r} \$ 295,427 \\ 12,823 \end{array}$
1946										3,769, 767	3,713,776	
1947										5, 643, 436	5,617, 425	26, 011
1948										7, 203, 119	7.028, 980	174, 139
1950										7,702, 971	7, 374. 269	
195										9,800, 892	$\stackrel{\text { 9, }}{9} 186,123$	370,224 614 689
1952										10, 208, 883	9, 706,276	614, 502,769
1951: First quarte	280, 300	147, 800	112,500	248, 900	137, 200	111,700	11,400	10, 600	$\begin{aligned} & 800 \\ & 500 \\ & 300 \\ & \hline \end{aligned}$	2, 293, 7574	2, 191,489	
January		49, 600	36, 300	82, 200			3,700					102,485 34,586
February		47, 000 51,200	${ }_{42}^{42,600}$		$\begin{aligned} & 45,260 \\ & 47 \\ & \hline \end{aligned}$	33,30042,600	4,4, 100 3,600	3,8003,800		716. 629	$\begin{array}{r}681,607 \\ 788,868 \\ \hline\end{array}$	
Second quar	329, 700	51,200 192,009							$\begin{aligned} & 300 \\ & (7) \end{aligned}$	- 821, 745		32.8
A pril	101, 0000	51,90055,400	44,30045,600	280,20097,30097,600	48,48,500052,	134,00045,000450			$\begin{array}{r} 6,000 \\ 300 \\ 300 \end{array}$	$\begin{array}{r} 2,964,810 \\ 866,652 \\ 922,661 \end{array}$	2, $\begin{array}{r}\text { 542, } \\ \text { 8238 } \\ \text { 839 } \\ \text { 839 } \\ \hline 809\end{array}$	$\begin{aligned} & 3, \\ & 37 \\ & 27.352 \\ & 0 \end{aligned}$
May												
June	132,500	84,700141200	47,800134,800	90, 300	47, 900	42, 400	42,200	3,100 36,800	$\begin{array}{r} 500 \\ 5,400 \\ \hline 100 \end{array}$	$\begin{array}{r} 922,661 \\ \mathbf{1}, 175,497 \end{array}$	895,399 825,590	
Third				$86,800$	$\begin{aligned} & 135,700 \\ & 42,300 \\ & 45,100 \end{aligned}$	$\begin{array}{r} 134,700 \\ 44,500 \\ 4,200 \end{array}$	$\begin{gathered} 5,600 \\ 3,700 \\ \quad 800 \\ \hline \end{gathered}$	$\begin{aligned} & 5,500 \\ & 3,600 \end{aligned}$		$\begin{array}{r} 2,527,033 \\ 827,173 \end{array}$		$54,837$$\text { 35, } 390$
July Aust	$\begin{aligned} & 970,500 \\ & 89,100 \end{aligned}$	$\begin{array}{r}\text { 45, } \\ 4500 \\ 45,900 \\ \hline 1290\end{array}$	$\begin{aligned} & 134,800 \\ & 44,600 \\ & 43,200 \end{aligned}$						$\begin{array}{r} 100 \\ 100 \\ 0 \end{array}$			
August-								$\begin{array}{r} 0,000 \\ 1,100 \end{array}$		804, 317	791,783 795,624	
Fourth qua	225 , 3	114,300	47,000 111,000	$\begin{array}{r}220,600 \\ 88 \\ 72,200 \\ \\ \hline 8\end{array}$	$\begin{aligned} & 45,100 \\ & 48,300 \end{aligned}$	$\begin{aligned} & 43,200 \\ & 47,000 \end{aligned}$	$\begin{array}{r} 800 \\ 1,100 \end{array}$		$\text { (i) }{ }^{0}$		$\begin{array}{r} 884,789 \\ 1,973,200 \\ 796,682 \\ 650,660 \end{array}$	$\begin{aligned} & 10,754 \\ & 41,875 \\ & 10,273 \\ & 21,418 \end{aligned}$
Octobe	90,74,5007600	$\begin{aligned} & 44,400 \\ & 38,500 \\ & 31,400 \end{aligned}$	$\begin{array}{r} 45,600 \\ 36,000 \\ 29,400 \end{array}$		109,90043,40036,200	$\begin{array}{r} 110,700 \\ 45,500 \\ 36,000 \end{array}$		$\begin{aligned} & 4,400 \\ & 1,000 \\ & 2,300 \end{aligned}$	$\begin{aligned} & 300 \\ & 100 \\ & \text { (2) } \end{aligned}$			
Novem												
Decemb	60,800			59, 500	30,300	29, 200	1,300	1,100		536, 042	525, 858	
1952: First quarte	246, 500	137,400	$\begin{array}{r} 109,100 \\ 28,800 \\ 34,800 \\ 45,400 \end{array}$	226,800	119, 100	107, 700	19,700	18,3003,300	1,400	2,167,659	2,006, 918	
January-	64, 900	36, 100		61, 400	32, 800	28,600	3,500			566, 665	2,537,697	
Februar				74, 300			12,800	$\begin{array}{r} 3,100 \\ 11,900 \end{array}$	300900	682,895 918,099	- $\begin{aligned} & 654,631 \\ & 814,590\end{aligned}$	$\begin{array}{r} 28,968 \\ 28,264 \\ 103,509 \end{array}$
Second qua	103,900 319,300	175,800	143, 500	991, 100	46,600 152,700	44,500 142,200				2, 920, 186	$\begin{array}{r} 2,750,653 \\ 874,524 \end{array}$	
${ }^{\text {Ap }}$ pril	106, 200	$\begin{aligned} & 59,000 \\ & 60,700 \\ & 50.100 \\ & 50.00 \end{aligned}$	$\begin{aligned} & 47,200 \\ & 48,900 \\ & 47,400 \\ & \hline \end{aligned}$	$\begin{array}{r}\text { 97, } \\ \text { 1000 } \\ \text { 10, } \\ 9600 \\ \hline 000\end{array}$	50,400 52,400 49,900	46,60048,60048	24,400 9,200 8,600	$\begin{array}{r} 23,100 \\ 8,600 \\ 8,300 \end{array}$	1,300600300			214,533 74.477
May	109, 600									1,006, 552	926, 803	
Third qua	302, 500					$\begin{array}{r}47,000 \\ 47 \\ \hline 14600\end{array}$	6, 6004,800	8,2008,2004	400400	, 964, 633	904, 326	
Third qua		1566,00052,40050,80050	$\begin{array}{r}\text { 146, } \\ 50 \\ 500 \\ \text { 200 } \\ \hline\end{array}$	297, 700	$\begin{array}{r}49,900 \\ 151.600 \\ 50,900 \\ \hline\end{array}$					2, 761, 316		60,30742,94714,37713,273
Auly	99, 100			$\begin{array}{r} 97,400 \\ 99,200 \\ 99 \end{array}$		50,20048.000	1, $\begin{aligned} & \text { 1, } 500 \\ & 1,700\end{aligned}$	$\begin{aligned} & 4,400 \\ & 1,500 \\ & 1,400 \end{aligned}$	(1)	945.		
September			48,30048,000		49,40051,300					895, 675	882,446	
Fourth quart	258,700	$\begin{array}{r}52,800 \\ \text { 52, } \\ \hline\end{array}$				47, 900	1,600	1,500	100	920, 054	904, 7	15,345
October	101, 100	53,800	47, 300	99, 200	52, 100	47\%100	9,600	9,200	400	2, 359, 822	2, 275,	84, 486
Novem	86, 100	46.000	40	82, 300	42,300	40, 000	3,800	3, 700	100	785. 969		17,976 34,305
Decem	71, 500	600	30, 900	67,600	36,800	30,800	3,900	3,800	100	645, 176	612, 971	- 324,205
93: First quarte	257. 100	140, 600			123, 80	114, 300	19,000	16,800	2,200	2, 346, 213	2, 183, 710	162, 503
January	72, 100	38, 400	33,700	68, 200	35, 400			3, 000		2, 641,703	610.344	31, 359
February	$\begin{array}{r}79,200 \\ 105 \\ \hline 800\end{array}$	43, 100	36.100	73, 800	38,600	35, 200	5, 400	4,500	900	720, 234	674,399	45, 835
3econd qua	105.800	59.100	46.700	96. 100	49,800	46, 300	9,700	9,30n	400	984, 276	898,967	85, 309
April	- $\begin{aligned} & \text { 324, } \\ & 111,40\end{aligned}$	165,900 57,400	158,400 54,000	315,000 107,400	158,000 54,100	157,000 53.300	9,300 4,000	7,900	1,400	3, 083,256	3,000, 120	83, 136
May.	108, 300	65, 200	53, 100	105, 600	52, 500	53, 100	${ }^{\text {2, }} 700$		(7)	1,057, ${ }^{1} 989$	${ }^{1,022,836}$	35, 063
June..	104, 600	53,300	51, 300		51, 400	50,600	2, 600	1,900	700	-998, 136	${ }^{\text {975,5 } 991}$	22, 545
July qua	282,700 96,700			278,400 96,400						2, 741, 780	2, 703, 441	38,339
August ${ }^{8}$	94, 000	(10)	(8, ${ }^{\text {a }}$	93, 900	(1)	(10)	1300	${ }^{300}$	(10)	941, 973	938,	3,072
September	92, 000	(10)	(10)	89, 000	((10)	$\xrightarrow[3,000]{1,0}$	(10)	(10)	- 904,778		- $\begin{array}{r}\text { 9, } \\ 2608 \\ \hline 180\end{array}$
October ${ }^{8}$	88,000	(10)	(10)	88, 000	(10)	(10)	(${ }^{\text {(})}$	(1)	(10)	(10)	(10)	(10)

${ }^{1}$ The estimates shown here do not include temporary units, conversions, dormitory accommodations, trailers, or military barracks. They do include prefabricated housing units.
These estimates are based on building-permit records, which, beginning With 1945, have been adjusted for lapsed permits and for lag between permit issuance and start of construction. They are based also on reports of Federal construction contract awards and beginning in 1946 on field surveys in non-permit-issuing places. The data in this table refer to nonfarm dwelling units started, and not to urban dwelling units authorized, as shown in table F-3.
All of these estimates contain some error. For example, if the estimate of nonfarm starts is 50,000 , the chances are about 19 out of 20 that an actual enumeration would produce a figure between 48,000 and 52,000 .
${ }^{2}$ Private construction costs are based on permit valuation, adjusted for understatement of costs shown on permit applications. Public construction costs are based on contract values or estimated construction costs for ndividual projects.
${ }^{8}$ Depression, low year.
4 Recovery peak year prior to wartime limitations.

- Last full year under wartime control.
- Housing peak year.
, Less than 50 units.
8 Preliminary.
- Revised.
${ }^{10}$ Not available.

[^0]: ${ }^{1}$ A research team sponsored by the University of Illinois has conducted a 6 -year study of union-management relations in 8 companies (representing 5 industries) in the midwestern community, Illini City. In Vol. 1-The Case Studies (published Oct. 22, 1953), the investigators trace the history of the labor-management relationships in each industry or company and describe the situation in 1948-50. The case studies cover grain processing, metal products, garment manufacture, trucking, and building construction. In Vol. 2-Explorations in Comparative Analysis (to be available in the spring of 1954), the investigators compare the relationships discovered and attempt to develop generalizations, testing 20 hypotheses taken from the literature on labor-management relations.-EDITOR'S NOTE.

[^1]: ${ }^{2}$ The Worker Speaks His Mind, Harvard University Press, Cambridge, Mass. (fortheoming).

[^2]: ${ }^{3}$ A project covering Local 12 of the National Brotherhood of Packinghouse Workers (Ind.) and the Kansas City Swift \& Co. plant.

[^3]: 4 See Monthly Labor Review, December 1948 (p. 626) and May 1949 (p. 542), for a summary of three of the National Planning Association's case studies in its series on Causes of Industrial Peace Under Collective Bargaining. The Association has published 13 of 15 projected studies over the period September 1948 to November 1953.

[^4]: *Of the Bureau's Division of Wages and Industrial Relations.
 ${ }^{1}$ For analysis of wage differences among 40 major labor markets surveyed during 1951-52, see Monthly Labor Review, December 1952 (p. 620), and BLS Bulletin 1135. For list of bulletins covering individual areas included in the 1952-53 study see on p. II of the September 1953 Review. Part of the 195253 findings are summarized here. A comprehensive summary bulletin is in preparation.
 ${ }^{2}$ Major industry groupings covered by each of these studies, in addition to manufacturing, were transportation (except railroads), communication, and other public utilities; wholesale and retail trade; finance, insurance, and real estate; and selected service industries.

[^5]: ${ }^{3}$ Sampling techniques permitted computation of separate averages for manufacturing and public utilities in each of the 20 areas; retail trade in 13 areas; wholesale trade and finance in 12 areas; and services in 5 areas.

[^6]: ${ }^{1}$ Earnings based on standard salaries paid for standard work schedules. Data limited to women workers employed full time.
 Data The areas were surveyed during the following months: 1952: AugustDallas; September-Portland; October-Baltimore, Cleveland, Kansas City, and Philadelphia; November-Denver, Newark-Jersey City, and Minne-

[^7]: 4The "middle range" as used here is the central part of the earnings array, excluding the upper and lower fourths.

[^8]: *Of the Social Security Department, United Automobile Workers (CIO).
 ${ }^{1}$ Presumptive permanent total disability is a common provision. Quotation is from the New York law.
 ${ }^{2}$ Federal Grants for Vocational Rehabilitation. By Mary E. MacDonald. Chicago, University of Chicago Press, 1944 (p. 11).
 ${ }^{3}$ See Rehabilitation and Employment of the Injured Workman. By Colonel John N. Smith. (In Workmen's Compensation Problems, U. S. Department of Labor, Bureau of Labor Standards, 1953. Bull. 167, pp. 222-226.)

[^9]: 4 Rehabilitation of the Disabled. Washington, United Mine Workers of America Welfare and Retirement Fund, [1950?] (p. 10).
 ${ }^{6}$ By David Hinshaw. New York, G. P. Putnam's Sons, 1948.

 - Hope for paraplegics is in itself a startling innovation. "Until the last 10 years," as Dr. Rusk has pointed out, "paraplegics had been no problem because the mortality rate was 90 percent the first year. There were 400 paraplegics in World War I. Only two are living today . . . In this war it was a different story. We had 2,500 and they didn't die because you could control their infection and we knew about the management of their bed sores." (In Application of Rehabilitation to Workmen's Compensation, Medical Aspects of Workmen's Compensation, Commerce and Industry Association of New York, Inc., 1953, p. 62.)
 ${ }^{7}$ See Annual Report of the Federal Security Agency, 1952. Washington, Office of Vocational Rehabilitation (pp. 251-275).
 ${ }^{3}$ See Rehabilitation of Older Workers. Edited by Wilma Donahue. Ann Arbor, Mich., 1953.

[^10]: ${ }^{2}$ Rehabilitation in Workmen's Compensation. By Dr. Alexander P. Aitken. (In Workmen's Compensation Problems, U. S. Department of Labor, Bureau of Labor Standards, 1953. Bull. 167, p. 212.)

 10 Ibid., p. 207.
 ${ }_{11}$ General Acts of 1918, chapter 231.
 ${ }_{12}$ Workmen's Compensation Law of 1913, Ch. 112, sec. 23 (as amended by Ch. 288, acts of 1919).

[^11]: One purpose of this act is to restore the injured person as soon as possible to a condition of self-support and maintenance as an able-bodied workman, and final settlement shall not be made in any case until the commission is satisfied that such restoration is probably as complete as can be made . . . the commission is authorized to expend money from the accident fund to accomplish this purpose in each case and the amounts so spent shall not be charged against the compensation allowed by this act to the injured workman . . . ${ }^{12}$

[^12]: ${ }^{13}$ See Report of Rehabilitation Committee to 1950 Annual Convention of the IAIABC. (In Workmen's Compensation Problems, U. S. Department of Labor, Bureau of Labor Standards, 1950. Bull. 142, p. 173.)
 ${ }^{14}$ See Report of the Task Force on the Handicapped to the Chairman. Washington, Office of Defense Mobilization, Manpower Policy Commitee, 1952 (p. 31).
 ${ }_{15}$ Hearings, Special Subcommittee, House Committee on Education and Labor, pursuant to H. Res. 115, 1953, pp. 49-50.
 ${ }^{10}$ Rehabilitation of the Severely Disabled: UMWA Welfare and Retirement Fund Experience. By Kenneth E. Pohlmann. (In American Journal of Public Health and the Nation's Health, New York, April 1953, p. 451.)

[^13]: ${ }^{17}$ Disabled Men Work Again. (In American Journal of Public Health and the Nation's Health, New York, July 1952, p. 790.) See also The Rising Cost of Workmen's Compensation Cases and New Methods of Control, published by the Liberty Mutual Insurance Co.

[^14]: ${ }^{1}$ For definition, see footnote 1 on accompanying table.
 ${ }^{2}$ Final figure released on November 4, 1953, which supersedes the preliminary figure previously published.

[^15]: ${ }^{2}$ The severity rate is the average number of days lost or charged for each thousand employee-hours worked. The standard time-loss ratings for fatalities and permanent disabilities are given in Method of Compiling Industrial Injury Rates, approved by the American Standards Association 1945.
 ${ }_{3}$ Totals include figures not shown separately because of insufficient information.
 ${ }^{4}$ Less than 0.05

[^16]: ${ }^{3}$ Most plants within the fluid-milk industry are small; data in the chart are shown, therefore, for only one size group above the 500 employee level.

[^17]: 4 For definition, see footnote 2 on accompanying table.

[^18]: ${ }^{1}$ Based on a paper presented at the fall meeting of the President's Committee on Employment of the Physically Handicapped, Washington, D. C., September 22, 1953.

[^19]: ${ }^{1}$ The American Management Association is, in its own words, "a cooperative organization of businessmen, government officials, consultants, college instructors, and other professionals who are interested in the development of better management methods." Since 1923, it has carried on its program through conferences, workshop seminars, training courses, expositions, publications (including 3 business magazines), and research. This meeting was one of a series of conferences regularly held on various activities of business and industry.

[^20]: ${ }^{1}$ The study was limited to establishments with more than 20 workers. In the 33 areas, the number of employees of such laundries totaled about 99,000 . Data were collected by personal visit of Bureau field representatives to two-fifths of the establishments in this group, with a total of 53,000 employees.
 ${ }^{2}$ See Earnings in Power Laundries in June 1952, Monthly Labor Review, November 1952 (p. 518). More detailed reports of earnings and related practices for individual areas are available on request.

[^21]: ${ }^{1}$ Rounded to nearest half-dollar; excludes premium pay for overtime and night work; includes commission earnings.
 ${ }^{2}$ Insufficient data to justify presentation of an average.

[^22]: ${ }^{3}$ Piecework systems were not in effect for the production jobs studied in laundries in Portland (Oreg.) and the San Francisco Bay area

[^23]: ${ }^{1}$ Excludes premium pay for overtime and nightwork.

[^24]: ${ }^{2}$ Insufficient data to warrant presentation of an average.

[^25]: ${ }^{1}$ The percentage increase does not reflect the effect on earnings of any changes in the occupational composition of the machinery labor force during this period, of shifts in employment among wage areas, or of changes in premium pay for overtime and night work. It is affected not only by general wage changes, merit increases in pay, or changes in incentive earnings within a plant, but also by any shifts in employment among plants within an area and by any changes in the ratio of time and incentive workers in a job. The methods used in constructing the indexes on which this article is based are described in Wage Trends in Machinery Manufacturing, 1945-51, Monthly Labor Review, January 1952 (p. 48).
 ${ }^{2}$ In most of the communities studied, at least three-fifths of the entire increase in machinery earnings since 1945 occurred in the first 4 years following World War II.

[^26]: ${ }^{1}$ Data for some cities December 1950, February or March 1951 rather than January 1951.
 ${ }^{2}$ Data for some cities September, October or November rather than December 1951.
 ${ }^{3}$ Latest data for some cities October, November, or December 1952, or February 1953 rather than January 1953

[^27]: ${ }^{1}$ Union scales are defined as the minimum wage scales or maximum schedules of hours agreed upon through collective bargaining between trade unions and employers. Rates in excess of the negotiated minimum, which may be paid for special qualifications or other reasons, are not included.
 The information presented in this report was based on union scales in effect on July 1,195 , and covered approximately 685,000 journeymen and 170,000 helpers and laborers in 52 cities with populations of 100,000 or more. Data were obtained primarily from local union officials by mail questionnaire; in some instances, Bureau representatives visited local union officials to obtain the desired information.
 Mimengraphed listings of union scales are available for any of the 52 cities included in the survey. A forthcoming bulletin will contain more detailed information on the industry.

 The current survey differs in several important respects from previous annual surveys of wage scales in the building construction industry. First, the limited funds available for wage surveys necessitated a reduction from 77 to 52 in the number of cities to be covered. The current survey was designed to represent union wage scales in all cities of 100,000 or more population. All cities with a half million or more population were included, but some cities in the population groups of 250,000 to 500,000 and 100,000 to 250,000 were omitted. Second, weights were assigned to some of the localities surveyed in order to compensate for those which were not surveyed. This procedure differs from that in earlier surveys which covered 77 areas, and in which averages for the smaller-sized cities were not necessarily representative of average scales prevailing in that population group. Because a greater proportion of larger cities than of smaller cities was included with equal weight in past surveys, the data were disproportionately influenced by the large citles, which typically have the higher wage scales. This upward bias is removed in the current survey through a revised procedure which gives greater weight to the smaller cities studied. In order to provide appropriate representation in the combination of data, each geographic region and population group was considered separately whon city weights were assigned.
 ${ }^{2}$ A verage hourly scales, designed to show current levels, are based on all scales reported in effect on July 1, 1953, weighted by the number of union members receiving that rate. These averages are not designed for close year-to-year comparisons because of fluctuations in membership and in classiffeations studied.

[^28]: ${ }^{3}$ A verage cents-per-hour and percent changes from July 1, 1952, to July 1, 1953, are based on comparable quotations for the various occupational classifications in both periods weighted by the membership reported for the current survey.
 The reduction in the number of cities covered and the change in the method of computation had only a minor effect on the amount of change between two conscutive periods, and virtually no effect on the index series.

[^29]: 1 The survey was limited to establishments employing 21 or more workers. The earnings data exclude premium pay for overtime and late-shift work.
 ${ }_{2}$ These products include bags, coated and glazed paper, envelopes, paperboard containers and boxes, pulp goods, and wallpaper.

[^30]: ${ }^{3}$ The regions used in this study include: New England-Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont, Middle Atlantic-New Jersey, New York, and Pennsylvania; South-Alabama, Arkansas, Delaware, Florida, Georgia, Kentucky, Louisiana, Maryland, Mississippi, North Carolina, Oklahoma, South Carolina, Tennessee, Texas, Virginia, and West Virginia; Great Lakes-Illinois, Indiana, Michigan, Minnesota, Ohio, and Wisconsin; Middle West-Iowa, Kansas, Missouri, Nebraska, North Dakota, and South Dakota; Far West-Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, and Wyoming.
 ${ }^{4}$ Data for the Middle West and Far West regions were not adequate to justify presentation of specific information. Wage rates reported for the Middle West were about comparable with the Middle Atlantic region. Average earnings for the Far West were higher than in any other region.

[^31]: ${ }^{1}$ Excludes premium pay for overtime and nightwork.

[^32]: ${ }_{1}$ Prepared in the U. S. Department of Labor, Office of the Solicitor.
 The cases covered in this article represent a selection of the significant decisions believed to be of special interest. No attempt has been made to reflect all recent judicial and administrative developments in the field of labor law or to indicate the effect of particular decisions in jurisdictions in which contrary results may be reached, based upon local statutory provisions, the existence of local precedents, or a different approach by the courts to the issue presented.
 ${ }_{2}$ United States v. Longshoremen's Association, et al. (D. C. S. N. Y., Oct. 5, 20 , and 23,1953).
 ${ }_{3}^{2}$ NLRB v. National Die Casting Cu. (C. A. 7, Oct. 9, 1953).
 ${ }^{4}$ In re Compliance Stutus of International Fur \& Leather Workers Union, Local 214 (106 NLRB No. 223, Oct. 15, 1953).
 ${ }^{5}$ National Labor Relations Board, Statement of Policy, Oct. 23, 1953, (Federal Register, Nov. 11, 1953, pp. 7185-7186).

[^33]: ${ }^{6}$ In re Moksnes Mfg. Co. (106 NLRB No. 204, Sept. 30, 1953).
 ${ }^{7} N L R B v$. Pacific Moulded Products Co. (C. A. 9, Sept. 2, 1953).
 ${ }^{8} N L R B$ v. Hekman Furniture Co. (C. A. 6, Oct. 16, 1953).
 ${ }^{-}$In re Marathon Electric Mfg. Corp. (106 NLRB No. 199, Sept. 29, 1953).

[^34]: ${ }^{10}$ In re Roscoe Skipper, Inc. (106 NLRB No. 209, Oct. 5, 1953).
 ${ }^{11} 198$ F (2d) 655 (C. A. 6).
 ${ }^{12}$ In re California Inland Broadcasting Co. (106 NLRB No. 218; Oct. 13, 1953).
 ${ }^{13}$ Texas Co. v. Texas Employment Commission, et al. (Beaumont Ct. of Civ. App., Tex., Sept. 17, 1953).
 ${ }^{14}$ Golden McCloud, et al. v. Board of Review (Cir. Ct. of Kanawha Co., W. Va., June 3, 1953).
 ${ }^{15}$ Carchia v. England and Keystone Mfg. Co. (Municipal Ct. for the Dorchester Dist., Mass., Mar. 18, 1953).

[^35]: ${ }^{1}$ Prepared in the Bureau's Division of Wages and Industrial Relations. ${ }_{2}$ See Monthly Labor Review, November 1953 (p. 1215).
 ${ }^{3}$ Federal Judge Edward Weinfeld, in granting the 80-day injunction, had directed the Association to attempt to settle its differences with its employees before the order expired.

[^36]: 4 Under the Taft-Hartley Act a union may not use the services of the Board for representation elections or unfair labor practice charges unless: each local and national officer files a sworn affidavit stating that "he is not a member of the Communist Party or affiliated with such party, and that he does not believe in, and is not a member of or supports any organization that believes in or teaches, the overthrow of the United States Government."

[^37]: ${ }^{8}$ See Monthly Labor Review, November 1953 (p. 1215).

[^38]: - Editor's Note.-On November 3, dealers raised milk prices by 1 cent a quart. Industry spokesmen attributed half this increase to higher labor costs resulting from the strike settlement and half to higher farm prices under a Federal-State milk marketing order.
 ${ }^{7}$ See Monthly Labor Review, June 1953 (p. 639).
 ${ }^{8}$ Editor's Note.-The sale of the Willow Run plant to General Motors Corp. was announced on November 10, 1953.

[^39]: - See Monthly Labor Review, May 1953 (p. 496).

[^40]: ${ }^{10}$ The Economics of the Guaranteed Wage, Washington, 1953.
 ${ }_{11}$ The Guaranteed Annual Wage: An Active Issue, New York, 1953.

[^41]: ${ }^{1}$ This table is included in the March, June, September, and December issues of the Review.
 Note.-Beginning with the May 1953 issue, data shown in tables A-2, A-3, A-4, A-5, C-1, C-2, C-3, and C-4 have been revised because of adjustment to more recent benchmark levels. These data cannot be used with those appearing in previous issues of the Monthly Labor Review. Comparable data for earlier years are available upon request to the Bureau of Labor Statistics.

[^42]: ${ }^{1}$ Estimates are subject to sampling variation which may be large in cases where the quantities shown are relatively small. Therefore, the smaller estimates should be used with caution. All data exclude persons in institutions. Because of rounding, the individual figures do not necessarily add to group totals.
 ${ }^{2}$ Beginning with January 1953, figures are not entirely comparable with those for previous months as a result of the introduction of materials from the 1950 Census into the estimating procedure used in deriving current labor force estimates. However, the differences are minor in most respects. In addition, revised estimating procedure, instituted in September 1953, resulted in some slight discontinuities in the series on agricultural and non-
 Population Reports, Series P-57, Nos. 129 and 135 , Monthly Report on the Population Reports, Series P-57, Nos. 129 and 135, Monthly Report on the beginning January 1953 includes an additional 150,000 members of the Armed Forces-the number overseas in 1940 who had been omitted from the 1940 Forces-the number overseas in 1940 who

[^43]: ${ }^{3}$ Census survey week contained legal holiday.
 ${ }^{4}$ Total labor force, which consists of the civilian labor force and the Armed Forces, is not shown for the most recent months because of security estrictions.
 ${ }^{5}$ Excludes persons engaged only in incidental unpaid family work (less than 15 hours); these persons are classified as not in the labor force.

 - Includes persons who had a job or business, but who did not work during he census week because of illness, bad weather, vacation, labor dispute, or because of temporary layoff with definite instructions to return to work within 30 days of layoff. Does not include unpaid family workers.
 Source: U. S. Department of Commerce, Bureau of the Census.

[^44]: See footnotes at end of table.

[^45]: See footnotes at end of table.

[^46]: See footnotes at end of table

[^47]: ${ }^{1}$ Includes all executive agencies (except Central Intelligence Agency) and Government corporations. Civilian employment in navy yards, arsenals, hospitals, and on force-account construction is also included.
 2 Includes the 48 States and the District of Columbia
 ${ }^{3}$ Includes all Federal civilian employment in Washington Standard Metropolitan Area (District of Columbia and adjacent Maryland and Virginia counties)

[^48]: ${ }^{1}$ Average of weekly data adjusted for split weeks in the month. For a technical description of this series, see the April 1950 Monthly Labor Review (p. 382).

[^49]: See footnotes at end of table.

[^50]: See footnotes at end of table.

[^51]: ${ }^{1}$ Net spendable average weekly earnings are obtained by deducting from gross average weekly earnings, social security and income taxes for which the specified type of worker is liable. The amount of income tax liability depends, of course, on the number of dependents supported by the worker as well as on the level of his gross income. Net spendable earnings have, therefore, been computed for 2 types of income-receivers: (1) A worker with no dependents; (2) a worker with 3 dependents. See footnote 1, table C-2.
 The computation of net spendable earnings for both the worker with no dependents and the worker with 3 dependents are based upon the gross aver-

[^52]: See footnotes at end of table.

[^53]: ${ }^{1}$ A major revision was incorporated in the Consumer Price Index beginning January 1953. The revised index, based on 46 cities, has been linked to the previously published "interim adjusted" indexes for $i 4$ cities and rebased on $1947-49=100$ to form a continuous series. For the convenience of users, th "All-items" indexes are also shown on the $1935-39=100$ base in table D-3. The revised Consumer Price Index measures the average change in prices of goods and services purchased by urban wage-earner and salaried-clerical worker families. Data for 46 large, medium, and small cities are combined for the United States average.
 For a history and description of the index, see The Consumer Price Index, in the February 1953 Monthly Labor Review; the pamphlet, The Consumer Price Index-A Short Description of the Index as Revised, 1953; The Interim Adjustment of Consumers' Price Index, in the April 1951 Monthly Labor Adjustment or Consumers' Price Inderim Adjustment of Consumers' Price Index, Bulletin 1039,

[^54]: 1 See footnote 1 to table D-1. Indexes are based on time-to-time changes in the cost of goods and services purchased by urban wage-earner and clerical worker families. They do not indicate whether it costs more to live in one city than in another.
 ${ }_{2}^{2}$ A verage of 46 cities beginning January 1953. See footnote 1 to table D-1.
 ${ }^{3}$ Prior to January 1953, indexes were computed monthly for 9 of these cities and once every 3 months for the remaining 11 cities on a rotating cycle. Beginning in January 1953, indexes are computed monthly for 5 cities and once every 3 months for the 15 remaining cities on a rotating cycle.
 "All "old series" indexes discontinued as of June 1953. Last "old series" indexes $(1935-39=100)$ for the 14 cities not included in the revised index and for cities not surveyed in June are as follows:

[^55]: 1 See footnote 1 to table D-1. Indexes for 56 cities for total food (1935$39=100$ or June $1940=100$) were published in the March 1953 Monthly Labor Review and in previous issues. See table D-7 for U. S. average prices for 46 Review and in p
 cities combined.

[^56]: See foctnote 1, table D-8
 Preliminary

 * Revised.

[^57]: ${ }^{1}$ Excludes classified military projects, but includes projects for the Atomic Energy Commission. Data for Federal-aid programs cover amounts contributed by both owner and the Federal Government. Force-account work is done not through a contractor, but directly by a Government agency, using a separate work force to perform nonmaintenance construction on the agency's own properties.
 ${ }_{2}$ Beginning with data for January 1953, awards of less than $\$ 25,000$ in value are excluded; over the past 2 years the total value of such awards has represented less than 1% of the total.
 ${ }^{8}$ Revised.
 Includes major additions and alterations.
 Excludes hangars and other buildings, which are included under "Other nonresidential" huilding construction.
 ${ }^{\mathbf{t}}$ Less than $\$ 25,000$.

[^58]: ${ }^{7}$ Includes projects under the Federal School Construction Program, which provides aid for areas affected by Federal Government activities.

 8 Includes armories, offices, and customhouses.
 Includes all buildings on civilian airports and military airfields and air bases with the exception of barracks and other troop housing, which are included under "Troop housing."
 ${ }_{10}$ Covers all industrial plants under Federal Government ownership, including those which are privately operated.
 ${ }^{11}$ Includes types of buildings not elsewhere classified.
 12 Includes sewer and water projects, railroad construction, and other types of projects not elsewhere classified.
 ${ }^{\text {F D December } 1952 \text { volume is high principally because of contracts let for ex- }}$ pansion of TVA facilities to provide power for the A tomic Energy Commission and the Tennessee Valley Authority.

[^59]: 1 Building for which building permits were issued and Federal contracts awarded in all urban places, including an estimate of building undertaken in some smaller urban places that do not issue permits

 The data cover federally and nonfederally financed building construction combined. Estimates of non-Federal (private and State and local government) urban building construction are based primarily on building-permit reports received from places containing about 85 percent of the urban population of the country; estimates of federally financed projects are compiled from notifications of construction contracts awarded, which are obtained from other Federal agencies. Data from building permits are not adjusted to allow for lapsed permits or for lag between permit issuance and the start of construction. Thus, the estimates do not represent construction actually started during the month

