

Survey of Current Business

In This Issue . . .

- Integrated Economic and Environmental Satellite Accounts
- Accounting for Mineral Resources: Issues and BEA's Initial Estimates
- Benchmark Input-Output Accounts for the U.S. Economy, 1987
U.S. DEPARTMENT OF COMMERCE \leadsto ECONOMICS AND STATISTICS ADMINISTRATION BUREAU OF ECONOMIC ANALYSIS

SURVEY of Current Business

U.S. Department of Commerce

Ronald H. Brown, Secretary Ce should be addressed to the Editor in-Chief, Survey of Current Business, Bureau of Economic Analysis, U.S. Department of Commerce, Washington, DC 20230.

Subscriptions to the Survey of Current Business are maintained, and their prices set, by the Government Printing Office, an agency of the U.S. Congress. Send correspondence on circulation and subscription matters (including address changes) to:

Superintendent of Documents,
U.S. Government Printing Office,

Washington, DC 20402.
Make checks payable to the Superintendent of Documents.

Subscription and single-copy prices:
Second-class mail: $\$ 34.00$ domestic, $\$ 42.50$ foreign.
First-class mail: \$71.00.
Single copy: $\quad \$ 9.00$ domestic, $\$ 11.25$ foreign.

Second-class postage paid at Washington, DC and at additional mailing offices. (Usps 337-790).
The Secretary of Commerce has determined that the publication of this periodical is necessary in the transaction of the public business required by law of this Department.

Economics and Statistics Administration

Bureau of Economic Analysis
Carol S. Carson, Director
J. Steven Landefeld, Deputy Director

Editor-in-Chief Douglas R. Fox
 Managing Editor Leland L. Scott

Publication Staff: W. Ronnie Foster, M. Gretchen Gibson, Ernestine T. Gladden, Eric B. Manning, Donald J. Parschalk

this issue of the Survey went to the printer on May 11, 1994.
It incorporates data from the following monthly bea news releases:
Gross Domestic Product (April 28),
Personal Income and Outlays (April 29), and
Composite Indexes of Leading, Coincident, and Lagging Indicators (May 3).

T A B L E
 O F
 CONTENTS

$\mathcal{S}_{\text {pecial in this issue }}$
33 Integrated Economic and Environmental Satellite Accounts
BEA has designed a new set of accounts to provide a statistical picture for analysis of the interaction of the economy and the environment. The new accounts extend the definition of capital in BEA's existing accounts to cover natural and environmental resources. They would supplement, not replace, the existing accounts.

50 Accounting for Mineral Resources: Issues and beA's Initial Estimates
Mineral resources, when estimated as part of the supplemental accounts described in the companion article summarized above, add between 3 and 7 percent (depending on the valuation method) to the Nation's private stock of capital. From 1958 to 1991, in current dollars, additions to the stock more than offset depletion; in constant dollars, additions about offset depletion. Factoring mineral resources into measures of income and capital stock lowers the average rate of return in the mineral industry from 23 percent to between 4 and 5 percent.

73 Benchmark Input-Output Accounts for the U.S. Economy, 1987

The U.S. input-output (I-O) accounts present a detailed picture of how industries interact-providing input to, and taking output from, each other-to produce GDP. In preparing the 1987 benchmark I-O accounts, BEA developed a set of abbreviated procedures to speed up completion, and it initiated some improvements in the tables.

Regular features

1 Business Situation

U.S. economic activity slowed in the first quarter of 1994. Real GDP increased 2.6 percent, down from a 7.0 -percent increase in the fourth quarter of 1993. At 2.3 percent, inflation remained moderate. In 1993, corporate profits increased $\$ 59.4$ billion, up from a $\$ 37.7$ billion increase in 1992.
117 Total and Per Capita Personal Income by State and RegionIn the fourth quarter of 1993, personal income picked up, as farm income re-bounded from a third-quarter drop that was due to floods in the Midwest,drought in the Southeast, and reduced subsidy payments. For the year 1993, percapita personal income in 42 States increased faster than prices.
127 Local Area Personal Income: Estimates for 1990-92 and Revisions to the Estimates for 1981-91Estimates of personal income and per capita personal income for counties andmetropolitan areas have been revised to incorporate newly available source dataand changes in the definitions of county-based metropolitan areas.

Reports and statistical presentations

10 National Income and Product Accounts

10 Selected nipa Tables
29 nipa Charts
31 Selected Monthly Estimates
C-1 Business Cycle Indicators
C-1 Data tables
C-6 Footnotes for pages C-1 through C-5
C-7 Charts
C-28 Business cycle expansions and contractions
C-29 Cyclical leads and lags for selected indicators
C-30 Titles and sources of series

S-1 Sources for Current Business Statistics

Inside back cover: BEA Information
(A listing of recent bea publications available from GPO)

BEGINNING WITH THIS ISSUE

- A new section presents monthly estimates for personal income, the disposition of personal income, and U.S. international transactions in goods and services. The three tables in this section, which will appear each month, are on pages 31-32.
* The "Current Business Statistics" section has been discontinued. The list of sources for these series, which was published in last month's Survey, is reprinted beginning on page $\mathrm{S}-1$ of this issue.

THE B USINESS SITUATION

This article was prepared by Daniel Larkins, Larry R. Moran, and Ralph W. Morris.

τhe economy's uneven expansion continued in the first quarter of 1994, according to the advance estimates of the national income and product accounts (nipa's). The growth of real gross domestic product (GDP) slowed to 2.6 percent from 7.0 percent in the fourth quarter of 1993 (chart 1). ${ }^{1}$ The deceleration was accounted for by sharply slower growth in the production of goods other than motor vehicles and by a downturn in the production of structures; the production of motor vehicles surged again in the first quarter, and the production of services registered another modest increase (table 1).
Real gross domestic purchases also grew less in the first quarter than in the fourth-4.1 percent after 6.7 percent. The slowdown was more than accounted for by final sales to domestic purchasers; inventory investment accelerated sharply (table 2). Within final sales, residential and nonresidential fixed investment increased less than in the fourth quarter, as did personal consumption expenditures, and government purchases dropped after no change.
Exports and imports are the link between goods and services produced in the United States (GDP) and goods and services purchased by U.S. residents (gross domestic purchases). In the first quarter, exports turned down, and imports slowed sharply. In the fourth quarter, both exports and imports had increased substantially.
The fixed-weighted price index for gross domestic purchases increased 2.3 percent in the first quarter, the same rate as in the fourth quarter. The fixed-weighted price index for GDP increased 2.9 percent after increasing 2.3 percent. The difference between the fourth-quarter increases in the two indexes reflects a step-up in the prices of exports and a downturn in the prices of imports.

Northridge earthquake.-The Northridge earthquake struck southern California on the morning of January 17. The destruction it caused--and the reconstruction and relief efforts that resulted-

1. Quarterly estimates in the NIPA's are expressed at seasonally adjusted annual rates, and quarterly changes are differences between these rates. Quarter-to-quarter percent changes are annualized. Real, or constant-dollar, estimates are expressed in 1987 dollars.
affected the components of first-quarter GDP and gross domestic purchases, but most of these effects are embedded in the source data that are used to estimate the components. Thus, the effects of the earthquake and reconstruction cannot be disentangled from the effects of unseasonably cold weather in much of the Nation or, indeed, from the effects of any other factor.

However, the Bureau of Economic Analysis did estimate the extent of the earthquake's damage to fixed capital. It is estimated that the earthquake caused the consumption of fixed capital (including residential capital) owned by business to increase $\$ 41$ billion in constant dollars

and $\$ 47$ billion in current dollars (at annual rates). Reflecting the increase in consumption of fixed capital, real net domestic product (NDP) decreased 1.1 percent in the first quarter; if there had been no earthquake, real NDP would
have increased about 2.4 percent. (NDP is GDP less the consumption of fixed capital.)

The consumption of fixed capital is deducted in the calculation of two components of personal income: Rental income of persons with cap-

Table 1.-Real Gross Domestic Product, by Major Type of Product [Seasonally adjusted at annual rates]

	Billions of 1987 dollars					Percent change from preceding quarter			
	Level	Change from preceding quarter				1993			1994
		1993			1994	11	III	IV	1
	1994:1	11	III	IV	1				
Gross domestic product ..	5,259.0	23.9	36.2	87.3	33.4	1.9	2.9	7.0	2.6
Goods ..	2,161.0	8.9	5.8	56.0	30.1	1.7	1.1	11.2	5.8
Motor vehicles ..	240.5	-2.6	-10.2	21.7	25.4	-4.9	-18.6	53.0	56.3
Other ..	1,920.5	11.5	16.0	34.3	4.7	2.5	3.5	7.5	1.0
Services ...	2,617.7	12.2	19.2	9.3	11.7	1.9	3.0	1.4	1.8
Structures ..	480.3	2.8	11.1	22.1	-8.4	2.5	10.1	20.3	-6.7

NOTE-Most series are found in table 1.4 of the "Selected NiPA Tables." Output of motor
vehicles is the sum of auto output and truck output from tables 8.4 and 8.6 , respectively.
Table 2.-Real Gross Domestic Product, Real Gross Domestic Purchases, and Real Final Sales to Domestic Purchasers
[Seasonally acjusted at annual rates]

	Billions of 1987 dollars					Percent change from preceding quarter			
	Level	Change from preceding quarter				1993			1994
		1993			1994	II	III	IV	1
	1994:1	II	III	IV	1				
Gross domestic product ..	5,259.0	23.9	36.2	87.3	33.4	1.9	2.9	7.0	2.6
Less: Exports of goods and services \qquad Plus: Imports of goods and services \qquad	605.0 709.3	5.2 20.5	-1.3 9.8	28.1 26.3	-15.0 4.8	3.6 13.3	-.9 6.0	20.4 16.4	-9.3 2.8
Equals: Gross domestic purchases ...	5,363.3	39.3	47.2	85.4	53.3	3.1	3.7	6.7	4.1
Less: Change in business inventaries ...	30.5	-16.3	-6.5	2.0	22.0	
Farm ...	-. 2	-4.1	-8.8	8.5	4.2	\cdots
Nonfarm ...	30.7	-12.2	2.3	-6.5	17.8
Equals: Final sales to domestic purchasers	5,332.8	55.5	53.8	83.5	31.2	4.4	4.2	6.6	2.4
Personal consumption expenditures \qquad	3,539.8	28.9	36.9 10.5	37.3 30.9	32.9 8.4	3.4 16.6	4.4	$\begin{array}{r}4.4 \\ 22.5 \\ \hline\end{array}$	3.8
Residential investment ..	232.2	-5.2	5.9	15.1	5.0	-9.5	11.9	31.7	9.1
Government purchases ..	926.8	9.8	. 6	.	-14.9	4.3	. 3	0	-6.2

Note.-Dollar levels are found in tables 1.2 and 1.6 of the "Selected NIPA Tables." Percent
changes are found in table 8.1.
Table 3.-Motor Vehicle Output, Sales, and Inventories
[Seasonally adiusted at annual rates]

	Billions of 1987 dollars					Percent change from preceding quarter			
	Level	Change from preceding quarter				1993			1994
		1993			1994	11	III	IV	1
	1994:1	11	III	IV	1				
Output ...	240.5	-2.6	-10.2	21.7	25.4	-4.9	-18.6	53.0	56.3
	138.0	. 9	-9.9	11.5	13.0	3.0	-28.4	47.1	48.6
	102.5	-3.5	-. 3	10.2	12.4	-15.7	-1.5	61.7	67.5
Final sales ...	235.6	14.1	-7.7	13.8	24.1	32.9	-14.2	31.0	54.0
Autos ..	136.4	7.2	-4.9	2.9	17.2	27.8	-15.2	10.4	71.5
Trucks ...	99.2	6.9	-2.8	10.9	6.9	40.8	-12.7	65.3	33.4
Change in business inventories ...	4.9	-16.7	-2.5	7.9	1.4		\ldots
Autos ...	1.6	-6.3	-5.1	8.7	-4.2
Trucks ...	3.3	-10.4	2.6	-. 8	5.6	-	-

NoTE.-Dollar levels for cars and trucks are found in tables 8.4 and 8.6, respectively, of the
"Selected NIPA Tables."
ital consumption adjustment, and proprietors' income with inventory valuation and capital consumption adjustments. These incomes are not estimated on a constant-dollar basis in the NIPA's; the estimates reported below are in current dollars and are expressed at annual rates.
Earthquake damage to residential capital other than repairable damage reduced rental income of persons by $\$ 31$ billion, about one-third of which was offset by insurance benefits. Earthquake damage to fixed capital other than repairable damage reduced proprietors' income by $\$ 21 / 2$ billion, about half of which was offset by insurance benefits.
The source data used to estimate first-quarter corporate profits are not yet available; however, other data indicate that profits were reduced by about $\$ 29$ billion by the earthquake. Nonrepairable damage to corporate equipment and structures amounted to $\$ 131 / 2$ billion, about onethird of which was offset by insurance benefits. In addition, benefits paid by insurance companies reduced profits by about $\$ 20$ billion.

Motor vehicles.-Motor vehicle output and sales jumped sharply for the second consecutive quarter; inventories also increased. The first-quarter jump in output was about the same as the jump in the fourth quarter, and it was evenly split between autos and trucks. The first-quarter jump in sales was about twice the fourth-quarter jump, and it was mostly accounted for by autos. The increase in inventories was much smaller than in the fourth quarter, and it was more than accounted for by trucks.
Output increased 56.3 percent in the first quarter after increasing 53.0 percent in the fourth (table 3). Truck output increased 67.5 percent after increasing 61.7 percent; auto output increased 48.6 percent after increasing 47.1 percent.

Final sales increased 54.0 percent in the first quarter after increasing 31.0 percent in the fourth. Auto sales increased 71.5 percent after increasing 10.4 percent. Domestic-car sales accounted for nearly three-fourths of the first-quarter increase in new-car sales. In units, domestic-car sales increased to 7.5 million from 7.1 million, and imported-car sales increased to 2.0 million from 1.9 million. Truck sales increased 33.4 percent after increasing 65.3 percent. Light domestic trucks accounted for nearly all of the first-quarter increase; sales of minivans, sport utilities, and full-size pickups remained very strong. In units, light domestic trucks increased to 5.9 million from 5.5 million, light imported trucks increased
to 0.2 million from 0.1 million, and "other" trucks were unchanged at 0.4 million.
About half of the first-quarter jump in motor vehicle sales was accounted for by consumers. Business and net exports accounted for most of the rest.

Sales to consumers increased 29.3 percent after increasing 26.3 percent; auto sales accounted for three-fourths of the first-quarter jump. The strength in first-quarter sales to consumers is consistent with recent improvements in consumer attitudes and incomes. The Index of Consumer Sentiment (prepared by the University of Michigan's Survey Research Center) jumped from 84.0 in the fourth quarter to 93.0 in the first, its highest level in 5 years. Real disposable personal income increased 2.7 percent, the fourth consecutive increase; over the past four quarters, it has increased 3.9 percent. In addition, interest rates on new-vehicle loans remained low; for example, the rate on 48 -month new car loans at commercial banks averaged 7.54 percent in February.

The first-quarter increase in motor vehicle inventories was more than accounted for by trucks. Auto inventories decreased in the first quarter after increasing in the fourth; based on units, the inventory-sales ratio for domestic new cars was unchanged at 2.5 -just above the traditional industry target of 2.4.

Prices

The fixed-weighted price index for gross domestic purchases increased 2.3 percent in the first quarter, the same rate as in the fourth quarter (table 4). A slowdown in food prices and a downturn in energy prices roughly offset an acceleration in prices paid by the Federal Government for employee services.

Prices of personal consumption expenditures increased 2.1 percent after increasing 2.8 percent. A slowdown in food prices mainly reflected downturns in the prices of fresh fruits and vegetables and slowdowns in the prices of seafood and poultry. Gasoline and oil contributed the most to the downturn in energy prices, but electricity and gas also contributed; fuel oil and coal turned up. Slowdowns were widespread in prices of other personal consumption expenditures; two exceptions were transportation services and durable goods excluding both motor vehicles and "furniture and household equipment."

Prices of nonresidential fixed investment increased 1.8 percent after increasing 1.2 percent. Prices of nonresidential structures in-
creased somewhat less in the first quarter than in the fourth. Prices of producers' durable equipment increased after little change. Prices of transportation equipment posted the largest increase in 3 years, and prices of information processing equipment decreased again, reflecting a decrease in computer prices.

Prices of residential investment increased 2.2 percent after increasing 3.2 percent. The firstquarter increase was substantially below the 3.9-percent average rate of increase over the preceding six quarters and substantially above the
1.0-percent average rate of increase over the six quarters before that.
Prices of government purchases increased 3.7 percent after increasing 1.0 percent. Prices paid by the Federal Government increased 4.6 percent after increasing 0.5 percent; the step-up was attributable to a pay raise for Federal employees. ${ }^{2}$ Prices paid by State and local governments increased 3.0 percent after increasing 1.5 percent; prices of goods turned up, and prices of serv-

[^0]
First-Quarter 1994 Advance gdp Estimate: Source Data and Assumptions

The advance GDP estimate for the first quarter is based on the following major source data, some of which are subject to revision. (The number of months for which data were available is shown in parentheses.)
Personal consumption expenditures: Sales of retail stores (3) and unit auto and truck sales (3);

Nonresidential fixed investment: Unit auto and truck sales (3), construction put in place (2), manufacturers' shipments of machinery and equipment (3), and exports and imports of machinery and equipment (2);
Residential investment. Construction put in place (2) and housing starts (3);
Change in business inventories: Manufacturing and trade inventories (2) and unit auto and truck inventories (3);

Net exports of goods and services: Exports and imports of goods and services (2);
Government purchases: Military outlays (3), other Federal outlays (2), State and local construction put in place (2), and State and local employment (3);
gdp prices: Consumer Price Index (3), Producer Price Index (3), price indexes for nonpetroleum merchandise exports and imports (3), and values and quantities of petroleum imports (2).
The Bureau of Economic Analysis (bea) made assumptions for the source data that were not available. A table detailing these assumptions is available on the Department of Commerce's Economic Bulletin Board or from bea; the assumptions are summarized in table A.

Table A.-Summary of Major Data Assumptions for Advance Estimate, 1994:I
[Billions of dollars, seasonally adjusted at annual rates]

	1993			1994		
	October	November	December	January	February	March
Fixed investment:						
Nonresidential structures:						
Value of new nonresidential construction put in place ..	135.6	138.7	139.0	132.2	129.6	$136.8{ }^{1}$
Producers' durable equipment:						
Manufacturers' shipments less exports, aircraft industry, nondefense	4.3	3.1	5.2	1.0	2.5	11.5^{2} 370.3^{2}
Residential structures:						
1 1-unit structures ..	139.5	144.5	150.8	150.6	151.4	$155.6{ }^{1}$
	10.5	11.2	11.3	10.6	10.8	11.2^{1}
Change in business inventories nonfarm: Change in inventories for manulacturing and trade (except nonmerchant wholesalers) for industries other than motor vehicles and equipment in trade						
	6.1	37.0	-32.9	15.1	53.1	$35.0{ }^{1}$
Net exports:						
Exports of merchandise:						
U.S. exports, excluding gold, balance-of-payments basis	457.2	459.9	486.8	457.3	440.6	$456.9{ }^{1}$
Imports of merchandise:						
U.S. imports, excluding gold, balance-of-payments basis Net merchandise trade (exports less imports) \qquad	611.9	599.3	595.1	593.5	603.2	$610.1{ }^{1}$
	-154.7	-139.3	-108.3	-136.2	-162.6	-153.2 ${ }^{1}$
Government purchases:						
State and local:						
Structures:						
Value of new construction put in place ... 116.1		120.7	124.6	112.0	110.2	$118.8{ }^{1}$
1. Assumed. 2. Aircraft industry shipments, which were available through March, were used (along with through Fe exports and imports) to estimate the first-quarter change in producers' durable equipment	Shipments of uary.	complete civilia	ian aircratt.	usual sourc	data, are	ailable only

ices increased somewhat more than in the fourth quarter.

The price index for GDP, which measures the prices paid for goods and services produced in the United States, increased 2.9 percent after increasing 2.3 percent. This index, unlike the index for gross domestic purchases, includes prices of exports and excludes prices of imports. Export prices increased more in the first quarter than in the fourth. All major end-use categories of exports except nonautomotive capital

Table 4.-Price Indexes (Fixed Weights): Change From Preceding Quarter
Percent change at annual rates; based on seasonally adjusted index numbers ($1987=100$)]

	1993			1994
	II	III	IV	1
Gross domestic product	2.8	2.1	2.3	2.9
Less: Exports of goods and services \qquad Plus: Imports of goods and services \qquad	2.8 3.8	- $\begin{array}{r}.6 \\ -2.7\end{array}$.7 1.1	3.7 -1.6
Equals: Gross domestic purchases	2.9	1.8	2.3	2.3
Less: Change in business inventories				
Equals: Final sales to domestic purchasers	2.9	1.8	2.3	2.4
Personal consumption expenditures	2.9	1.4	2.8	2.1
Food	2.3	3	3.2	1.1
Energy	-1.5	-4.2	2.4	-1.5
Other personal consumption expenditures	3.4	2.0	2.8	2.5
Nonresidential fixed investment	2.5	1.9	1.2	1.8
Nonresidential structures	3.8	3.4	3.2	2.5
Producers' durable equipment	1.8	1.0	1	1.3
Residential investment	5.0	4.6	3.2	2.2
Government purchases	2.6	2.5	1.0	3.7
Addenda:				
Merchandise imports	4.1	-3.4	3	-1.7
Petroleum and products	16.1	-36.6	-27.5	-32.0
Other merchandise	3.0	5	3.2	1.2

Nate.-Percent changes in major aggregates are tound in table

CHART 2

Gross Domestic Purchases Prices (Fixed Weights): Change From Preceding Quarter

and consumer goods contributed to the step-up. Import prices turned down. The price of imported petroleum and products posted its third straight drop of roughly 30 percent; all other major end-use categories of imports except industrial supplies and materials contributed to the downturrı.

Personal income

Real disposable personal income (DPI) increased 2.7 percent in the first quarter after increasing 5.4 percent in the fourth (chart 3). The deceleration was more than accounted for by a slowdown in current-dollar DPI, which increased 4.1 percent after increasing 7.8 percent. The personal saving rate-saving as a percentage of currentdollar DPI-decreased 0.3 percentage point to 3.7 percent, its lowest level in the current expansion.

Personal income increased $\$ 65.4$ billion in the first quarter after increasing $\$ 100.0$ billion in the

CHART 3

Selected Personal Income and Saving Measures

Percent

[^1]U.S. Depertment of Commerce, Bureau of Economic Analyas
fourth (table 5). Proprietors' income and rental income of persons more than accounted for the slowdown.

Farm proprietors' income increased $\$ 3.6$ billion after increasing $\$ 31.6$ billion. Federal subsidy payments to farm proprietors decreased $\$ 4.1$ billion after increasing $\$ 14.5$ billion. If the subsidies and the adjustments for the effects of last year's floods and drought on fourth-quarter income are excluded, farm proprietors' income increased $\$ 4.5$ billion in the first quarter after increasing $\$ 11.0$ billion in the fourth; the slowdown reflected weaker increases in farm prices and lower livestock production.
Nonfarm proprietors' income increased $\$ 5.0$ billion after increasing $\$ 13.0$ billion. The deceleration reflected slowdowns in residential construction and in retail sales. Rental income of persons decreased $\$ 12.9$ billion after increasing $\$ 2.7$ billion. As mentioned earlier, nonfarm proprietors' income and rental income in the first
quarter were reduced by adjustments for damage resulting from the Northridge earthquake.
Wage and salary disbursements increased $\$ 51.1$ billion after increasing $\$ 34.2$ billion. Wages and salaries in both private industry and government increased more in the first quarter than in the fourth. In private industry, a step-up to $\$ 44.5$ billion from $\$ 31.6$ billion was concentrated in the service and distributive industries; manufacturing also contributed, reflecting bonus payments to employees in the motor vehicle industry. In government, a step-up to $\$ 6.6$ billion from $\$ 2.6$ billion mainly reflected the Federal pay raise; the rest was accounted for by an adjustment to State and local government compensation that reflected rescue and cleanup efforts associated with the earthquake.

Transfer payments increased $\$ 14.8$ billion after increasing $\$ 11.3$ billion. The step-up was due to cost-of-living adjustments (cola's) to benefits under social security and several other Federal

Table 5.-Personal Income and Its Disposition
[Biliions of dollars; seasonally adjusted at annual rates]

NOTE.-Most dollar levels are found in table 2.1 of the "Selected NIPA Tables."
IVA Inventory valuation adjustment
CCAdi Capital consumption adjustment
retirement and income support programs; the cola's, which became effective in January, added $\$ 8.9$ billion to transfer payments. Emergency unemployment benefits decreased $\$ 4.7$ billion after decreasing $\$ 2.5$ billion.
Personal contributions for social insurance, which are subtracted in deriving the personal income total, increased $\$ 9.9$ billion after increasing $\$ 2.4$ billion. The first-quarter increase was boosted $\$ 6.2$ billion by several program changes: An increase in the social security taxable wage base for employees and in the social security taxable earnings base for the self-employed from $\$ 57,600$ to $\$ 60,600$; the removal of the $\$ 135,000$ cap on the medicare taxable wage base; and an increase in the monthly premium for supplementary medical insurance.
Personal tax and nontax payments increased $\$ 16.5$ billion after increasing $\$ 10.2$ billion. The first-quarter increase in Federal income tax payments reflected the effects of tax rate changes and other provisions of the Omnibus Budget Reconciliation Act of 1993, as well as the growth in wages and salaries. The increase was restrained by the annual revision of the withholding tables to reflect the inflation indexing provisions of earlier tax law.

Corporate Profits and Property Income in 1993

Profits from current production-profits before tax plus inventory valuation adjustment (IVA) and capital consumption adjustment (ccadj)increased $\$ 59.4$ billion in 1993 , to $\$ 466.6$ billion, after increasing $\$ 37.7$ billion in 1992 (table 6). ${ }^{3}$
Profits from the domestic operations of nonfinancial corporations increased $\$ 42.2$ billion after increasing $\$ 44.4$ billion. In both years, real gross product of these corporations increased about 4 percent. Moreover, profits per unit increased substantially in both years, as unit labor costs increased much less than unit prices.
Profits from the domestic operations of financial corporations increased $\$ 20.7$ billion after decreasing $\$ 2.0$ billion. The upturn was more than accounted for by property and casualty insurance carriers, whose profits had turned negative in 1992 in the wake of Hurricanes Andrew and Iniki.

Profits from the rest of the world decreased $\$ 3.6$ billion after decreasing $\$ 4.6$ billion. In both years, payments (outflows) increased more than receipts

[^2](inflows), reflecting the stronger growth in the U.S. economy than in many foreign economies.

Cash flow from current production, a profitsrelated measure of internally generated funds available to corporations for investment, increased $\$ 25.4$ billion after increasing $\$ 21.4$ billion. Cash flow as a percentage of nonresidential fixed investment was 85.4 percent in 1993, down from 89.7 percent in 1992, but still much higher than its 72.1 -percent average in the 1980's.

Current-production measures of profits are not available for individual industries because estimates of the ccadj by industry do not exist; profits before tax (PBT) with IVA is the best available measure. Most manufacturing industries posted smaller increases in 1993 than in 1992; however, profits from petroleum refining increased much more than in 1992. In contrast to the slowdown in manufacturing profits, profits in trade and in the transportation and utilities group turned up.

Related measures.-Pbt increased $\$ 54.0$ billion after increasing $\$ 33.1$ billion. The difference be-

Table 6.-Corporate Profits

	Level	Change from preceding year	
	1993	1992	1993
	Billions of dollars		
Profits from current production	466.6	37.7	59.4
Domestic ..	407.9	42.3	63.0
Financial ...	87.4	-2.0	20.7
Nonfinancial ..	320.5	44.4	42.2
Rest of the world ..	58.7	-4.6	-3.6
IVA	-7.1	-10.2	-1.8
CCAdj	24.3	14.9	7.2
Profits before tax	449.4	33.1	54.0
Profits tax liability ..	174.0	16.5	27.7
Profits atter tax ..	275.4	16.6	26.3
Cash flow from current production	532.4	21.4	25.4
Profits by industry:			
Profits before tax with IVA	442.3	22.8	52.2
Domestic	383.6	27.4	55.8
Financial	99.0	-2.6	20.9
Nonsinancial	284.6	30.1	34.8
Manufacturing ..	131.7	25.7	16.2
Trade ...	54.4	-1.1	8.1
Transportation and public utilities	57.8	-2.4	5.8
Other ...	40.6	7.8	4.6
Rest of the world ...	58.7	-4.6	-3.6
Receipts (inflows)	71.3	1.7	6.1
Payments (outflows)	12.6	6.3	9.6
		Dollars	
Unit prices, costs, and profits of domestic nonfinancial corporations:			
Unit price	1.164	0.012	0.015
Unit labor cost ..	. 768	. 004	. 006
Unit nonlabor cost 287	-. 004	-. 002
Unit profits from current production 109	. 013	. 010
NoTE.-Dollar levels of these and other profits series are fo and 7.15 of the "Selected NIPA Tables." IVA Inventory valuation adjustment CCAdj Capital consumption adjustment	nd in tables	$s 1.14,1.1$	$\overline{5.6 .16 \mathrm{C}},$

tween the increase in PBT and the increase in profits from current production in 1993 reflected an increase in the ccadj that more than offset a decrease in the iva.
The ccadj is the difference between the predominantly tax-based depreciation measure that underlies PBT and bea's estimate of the consumption of fixed capital. The ccadj increased $\$ 7.2$ billion in 1993.
The iva is an estimate, with the sign reversed, of the inventory profits that are included in pвт. Inventory profits increased \$1.8 billion in 1993.

Property income

Corporate property income includes net interest payments as well as profits from current production. For domestic nonfinancial corporations, net interest payments decreased $\$ 1.6$ billion in

Table 7.-Property Income of Domestic Nonfinancial Corporations and Related Series, 1959-93
[Billions of dollars]

Year	Property income					Domestic income (6)	Net reproducible assets ${ }^{1}$ (7)
	Total (1)	Profits from current production			Net interest(5)		
			Profits tax liability	Profits atter tax			
		(2)	(3)	(4)			
1959	45.8	42.6	20.7	21.9	3.1	217.2	392.0
1960	43.4	40.0	19.2	20.8	3.5	224.6	406.9
1961	44.7	40.8	19.5	21.3	4.0	230.1	417.7
1962	52.7	48.2	20.6	27.5	4.5	252.8	431.0
1963	58.6	53.8	22.8	31.0	4.8	269.7	448.6
1964	65.4	60.0	24.0	36.1	5.3	292.0	471.0
1965 ...	76.4	70.3	27.2	43.1	6.1	322.8	503.4
1966	82.3	74.9	29.5	45.4	7.4	356.2	551.0
1967	80.5	71.8	27.8	43.9	8.8	372.8	603.9
1968	86.1	76.0	33.6	42.4	10.1	409.3	660.4
1969	84.4	71.3	33.3	37.9	13.2	443.3	729.3
1970	74.2	57.1	27.2	29.9	17.1	452.8	800.2
1971	85.3	67.2	29.9	37.2	18.1	487.3	871.0
1972	96.1	77.0	33.8	43.2	19.2	543.2	955.2
1973 ...	106.0	83.6	40.2	43.4	22.5	612.0	1,076.2
1974	98.9	70.6	42.2	28.4	28.3	655.7	1,273.1
1975	120.2	91.5	41.5	50.0	28.7	700.6	1,468.0
1976	139.0	111.5	53.0	58.5	27.5	795.7	1.612 .9
1977	162.6	132.0	59.9	72.1	30.6	904.4	$1,779.3$
1978	182.4	146.1	67.1	79.0	36.3	1,032.6	2,000.4
1979 ...	183.2	138.1	69.6	68.5	45.1	1,147.4	2,283.1
1980	178.9	120.7	67.0	53.7	58.2	1,232.4	2,606.0
1981	208.9	136.9	63.9	73.0	71.9	1,373.6	$2,938.1$
1982	194.0	111.5	46.3	65.2	82.5	1,404.0	3,180.3
1983	236.6	159.9	59.4	100.4	76.7	1,508.2	3,300.2
1984	302.2	214.3	73.7	140.7	87.9	1,741.4	3,435.8
1985	312.1	221.4	69.9	151.5	90.7	1,815.3	3,606.7
1986	302.0	203.8	75.6	128.2	98.3	1,883.6	3,744.1
1987	350.0	244.2	93.5	150.8	105.8	2,024.9	3,889.6
1988	396.0	274.4	101.7	172.6	121.6	2,210.2	4,101.4
1989	401.8	255.2	99.5	155.7	146.6	2,322.0	4,327.7
1990	404.9	256.4	93.9	162.5	148.5	2,425.8	4,516.6
1991	375.2	233.9	82.7	151.2	141.3	2,429.0	4,634.0
1992	413.6	278.3	98.2	180.1	135.3	2,563.1	4,698.8
1993	454.2	320.5	117.0	203.5	133.7	2,709.8	4,827.1

1. Structures, equipment, and inventories, valued at current replacement cost. Data are averages of end-or-year values for adjacent years.

NOTE.-PToperty income is profits from current production plus net interest. Profits from current production is corporate profits with inventory valuation adjustment and capital consumption adjustment. Profits after tax is also shown with inventory valuation adjustment and capital consumption adjustment. Current data on most series are shown in table 1.16 of the "Selected NIPA Tables." The value of structures and equipment through 1992 are from Fixed Reproducible Tangible Wealth in the United States, 1925-89, (Washington DC: U.S. Government Printing Office, 1993) and from Survey of Current Business 73 (September 1993): 64-65. Data on structures and equipment for 1993 and all data on inventories are unpublished BEA estimates.

1993, to $\$ 133.7$ billion, after decreasing $\$ 6.0$ billion in 1992.
Chart 4 and table 7 provide a perspective on the recent changes in both types of property income. From 1970 to 1990, both types trended up, but net interest, which increased at an average annual rate of 11.4 percent, generally increased much faster than profits, which increased at an average annual rate of 7.8 percent. As a result, the share of net interest in property income rose from 23.0 percent in 1970 to 36.7 percent in 1990.
Since 1990, however, net interest has decreased each year (at an average rate of 3.4 percent); the downtrend reflects the ebbing of the wave of leveraged buyouts that were so prominent in the 1980's, the efforts by corporations to restructure balance sheets, and falling interest rates. Profits, in contrast, decreased only in 1991; in 1992 and 1993, profits increased at an average rate of 17.1 percent. As a consequence, the share of net interest in property income slid to 29.4 percent in 1993.

Further perspective on recent changes in property income can be gained by examining the relationship of property income to the stock of net reproducible assets and to domestic income. Net reproducible assets consist of fixed capital stock and inventories, both of which are measured at current replacement cost; these assets increased 2.7 percent in 1993 after increasing 1.2 percent in 1992. From 1970 to 1990, in contrast, these assets grew at an average rate of 9.0 percent. Domestic income of corporations is property

U.S. Depertment of Commerce, Bureau of Econcmic Anatysis
income plus compensation of employees; it increased 5.7 percent in 1993 after increasing 5.5 percent in 1992.

The ratio of property income to the stock of net reproducible assets is the average rate of return on these assets. The use of property income, rather than profits alone, as the numerator of this ratio captures the total return to investment (profits plus interest) regardless of whether the investment was financed by equity or by debt. ${ }^{4}$

The ratio of property income to domestic income is property income's share of domestic income-that is, the fraction of domestic income that is not used to compensate labor. Property
4. Rates of return can be calculated in many other ways; several are discussed in some detail in the box "Rates of Return" in Survey of Current Business 69 (April 1989): 8.

Table 8.-Rate of Return, Income Share, and Average Product of Capital, Domestic Nonfinancial Corporations, 1959-93
[Percent]

Year	Rate of return					Share of domestic income			
	Property income					Property income			
	Total	Profits from current production			$\begin{aligned} & \text { Net } \\ & \text { inter- } \\ & \text { est } \end{aligned}$	Total	$\begin{aligned} & \text { Prof- } \\ & \text { its } \\ & \text { from } \\ & \text { cur- } \\ & \text { rent } \\ & \text { pro- } \\ & \text { duc- } \\ & \text { tion } \end{aligned}$	$\begin{aligned} & \text { Net } \\ & \text { inter- } \\ & \text { est } \end{aligned}$	Average produCt of capital
			Profits tax liability	$\begin{aligned} & \text { Prof- } \\ & \text { its } \\ & \text { after } \\ & \text { tax } \end{aligned}$					
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
1959	11.7	10.9	5.3	5.6	0.8	21.1	19.6	1.4	0.555
1960	10.7	9.8	4.7	5.1	. 9	19.3	17.8	1.5	. 554
1961	10.7	9.8	4.7	5.1	. 9	19.4	17.7	1.7	. 552
1962 ...	12.2	11.2	4.8	6.4	1.1	20.8	19.1	1.8	. 587
1963	13.1	12.0	5.1	6.9	1.1	21.7	19.9	1.8	. 604
1964	13.9	12.7	5.1	7.7	1.1	22.4	20.6	1.8	. 621
1965 ..	15.2	14.0	5.4	8.6	1.2	23.7	21.8	1.9	. 641
1966 ...	14.9	13.6	5.4	8.2	1.3	23.1	21.0	2.1	. 645
1967 ...	13.3	11.9	4.6	7.3	1.5	21.6	19.2	2.4	. 616
1968	13.0	11.5	5.1	6.4	1.5	21.0	18.6	2.5	. 619
1969 ...	11.6	9.8	4.6	5.2	1.8	19.0	16.1	3.0	. 611
1970 ...	9.3	7.1	3.4	3.7	2.1	16.4	12.6	3.8	. 567
1971 ...	9.8	7.7	3.4	4.3	2.1	17.5	13.8	3.7	. 560
1972 ...	10.1	8.1	3.5	4.5	2.0	17.7	14.2	3.5	. 571
1973 ...	9.9	7.8	3.7	4.0	2.1	17.3	13.7	3.7	. 572
$1974 .$.	7.8	5.5	3.3	2.2	2.2	15.1	10.8	4.3	. 517
1975 ...	8.2	6.2	2.8	3.4	2.0	17.2	13.1	4.1	. 477
1976 ..	8.6	6.9	3.3	3.6	1.7	17.5	14.0	3.5	. 491
1977 ...	9.1	7.4	3.4	4.1	1.7	18.0	14.6	3.4	. 506
1978	9.1	7.3	3.4	3.9	1.8	17.7	14.1	3.5	. 514
1979 ...	8.0	6.0	3.0	3.0	2.0	15.9	12.0	3.9	. 503
1980 ...	6.9	4.6	2.6	2.1	2.2	14.5	9.8	4.7	. 476
1981	7.1	4.7	2.2	2.5	2.4	15.2	9.9	5.2	. 467
1982	6.1	3.5	1.5	2.1	2.6	13.8	7.9	5.9	. 442
1983	7.2	4.8	1.8	3.0	2.3	15.6	10.6	5.1	. 462
1984	8.8	6.2	2.1	4.1	2.6	17.6	12.5	5.1	. 500
1985 ...	8.7	6.1	1.9	4.2	2.5	17.1	12.2	5.0	. 509
1986	8.1	5.4	2.0	3.4	2.6	16.0	10.8	5.2	. 506
1987 ...	9.0	6.3	2.4	3.9	2.7	17.3	12.1	5.2	. 520
1988	9.7	6.7	2.5	4.2	3.0	17.9	12.4	5.5	. 542
1989	9.3	5.9	2.3	3.6	3.4	17.3	11.0	6.3	. 538
1990	9.0	5.7	2.1	3.6	3.3	16.7	10.6	6.1	. 539
1991	8.1	5.0	1.8	3.3	3.0	15.4	9.6	5.8	. 526
1992	8.8	5.9	2.1	3.8	2.9	16.1	10.9	5.3	. 547
1993	9.4	6.6	2.4	4.2	2.8	16.8	11.8	4.9	. 560

Source: Table 7.
Note-Columns $1-5$ are percentages of the slock of net reproducible assets (structures, equipment, and inventories) valued at current repicicement cost Columns $6-8$ are percentages of domestic income. Column 9 is calculated as the ratio of column 1 to column 6 .
income's share is related to the rate of return by a third ratio-the ratio of domestic income to the value of net reproducible assets, which measures the average annual product per dollar of capital. ${ }^{5}$
The three ratios are plotted for $1970-93$ in chart 5 and are reported, along with related ratios, for 1959-93 in table 8. Property income's rate of return (column 1) and its share of domestic income (column 6) appear to have shifted to lower levels around 1970. The rate of return fell from an average of 12.8 percent in 1959-69 to an average of 8.6 percent in 1970-93; the share of domestic income fell from an average of 21.2 percent to an average of 16.6 percent.

In 1993, property income's rate of return and its share of domestic income continued to rebound from cyclical decreases in 1991 that took the ratios to their lowest levels in almost a decade. Higher profits were responsible for the rebounds in both ratios. eff

[^3] capital services, not capital stock.

CHART 5

Selected Ratios, Domestic
Nonfinancial Corporations, 1970-93
Percent

Percent

U.S. Deportment of Commerce, Brieen of Economic Analyis

NATIONAL INCOME AND PRODUCT ACCOUNTS

Selected Nipa Tables

New estimates in this issue: "Advance" estimates for the first quarter of 1994.
The selected set of national income and product accounts (NIPA) tables shown in this section presents quarterly estimates, which are updated monthly. (In most tables, the annual estimates are also shown.) These tables are available on the day of the gross domestic product (GDP) news release on printouts and diskettes on a subscription basis or from the Commerce Department's Economic Bulletin Board. For order information, write to the National Income and Wealth Division (be-54), Bureau of Economic Analysis, Washington, DC 20230 or call (202) 606-5304.

Tables containing the estimates for 1929-87 are available in the two-volume set National Income and Product Accounts of the United States; see inside back cover for order information. For 1988-92, the complete official time series of NIPA estimates can be found as follows:

	1988	1989	1990-92
Most tables.	NIPA 's, vol. 2	July 1992 Survey	Aug. 1993 SURVEY
Tables 1.15, 1.16, and 7.15.....			Sept. 1993 Survey
Tables 3.15-3.20 and 9.1-9.6...		Sept. 1992 Survey	
Tables 7.1, 7.2, and 8.1........	Sept. 1993 SURVEY	Sept. 1993 Survey	"
Tables 7.3-7.12.	Apr. 1993 Survey	Apr. 1993 Survey	"

Summary NIPA series back to 1929 are in the September 1993 SURVEy. Errata to published nipa tables appear in the September 1992, April 1993, October 1993, and March 1994 issues. nipa tables are also available, most beginning with 1929, on diskettes or magnetic tape. For more information on the presentation of the estimates, see "A Look at How bea Presents the Nipa's" in the February 1994 Survey.

Note.-This section of the Survey is prepared by the National Income and Wealth Division and the Government Division.

Table 1.1.-Gross Domestic Product
[Billions of dollars]

	1992	1993	Seasonally adjusted at annual rates					
			1992	1993				1994
			IV	1	II	III	IV	1
Gross domestic product	8,038.5	6,377.9	6,194.4	6,261.6	6,327.6	6,395.9	6,526.5	6,609.4
Personal consumption expenditures \qquad	4,139.9	4,391.8	4,256.2	4,296.2	4,359.9	4,419.1	$\|4,492.0\|$	4,549.4
Durable goods \qquad Nondurable goods \qquad	497.3 $1,300.9$	537.9 $1,350.0$	516.6 $1,331.7$ 1	515.3 $1,335.3$	$\begin{array}{r}531.6 \\ 1,344.8 \\ \hline\end{array}$	541.9 $1,352.4$	$\begin{array}{r} 562.8 \\ 1,367.5 \end{array}$	577.4 $1,376.1$
Services	2,341.6	2,503.9	2,407.9	2,445.5	2,483.4	2,524.8	1,367.5	2,595.9
Gross private domestic investment \qquad	796.5	891.7	833.3	874.1	874.1	884.0	934.5	978.0
Fixed investment	789.1	876.1623.71787	$\begin{aligned} & 821.3 \\ & 579.5 \end{aligned}$	$\begin{aligned} & 839.5 \\ & 594.7 \end{aligned}$	$\begin{aligned} & 861.0 \\ & 619.1 \end{aligned}$	$\begin{aligned} & 876.3 \\ & 624.9 \end{aligned}$	$\begin{aligned} & 927.6 \\ & 656.0 \end{aligned}$	943.8664.7
Nonresidential	565.5							
Structures \qquad Producers' durable	172.6	178.7445.0	171.1408.3	$\begin{aligned} & 172.4 \\ & 422.2 \end{aligned}$	177.6441.6	179.1445.8	$\begin{aligned} & 185.8 \\ & 470.2 \end{aligned}$	178.9
equipment	392.9							485.8279.1
Residential \qquad	223.6	252.4	241.8	244.9	241.9	251.3	271.6	
inventories	7.3	$\begin{aligned} & 15.6 \\ & 21.1 \end{aligned}$	12.0	$\begin{aligned} & 34.6 \\ & 33.0 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 16.8 \end{aligned}$	7.722.6	6.912.0	34.233.7.5
Nonfarm	2.3		9.5					
Farm	5.0	-5.5	2.4	1.5	-3.7	-14.9	-5.0	
Net exports of goods and services \qquad	-29.6	-63.6	-38.8	-48.3	-65.1	-71.9	-69.1	-82.4
Exports	640.5	$\begin{aligned} & 661.7 \\ & 725.3 \end{aligned}$	$\begin{aligned} & 654.7 \\ & 693.5 \end{aligned}$	$\begin{aligned} & 651.3 \\ & 699.6 \end{aligned}$	$\begin{aligned} & 660.0 \\ & 725.0 \end{aligned}$	$\begin{aligned} & 653.2 \\ & 725.1 \end{aligned}$	$\begin{aligned} & 682.4 \\ & 751.5 \end{aligned}$	$\begin{aligned} & 668.8 \\ & 751.2 \end{aligned}$
Imports	670.1							
Government purchases	1,131.8	1,158.1	1,143.8	1,139.7	1,158.6	1,164.8	1,169.1	1,164.4
Federal	448.8	$\begin{array}{c\|c} 8 & 443.4 \\ 8 & 303.4 \end{array}$	$\begin{aligned} & 452.4 \\ & 315.7 \end{aligned}$	$\begin{aligned} & 442.7 \\ & 304.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 447.5 \\ & 307.6 \end{aligned}$	$\begin{aligned} & 443.6 \\ & 301.9 \end{aligned}$	$\begin{aligned} & 440.0 \\ & 299.2 \end{aligned}$	$\begin{aligned} & 434.0 \\ & 292.8 \\ & 141.2 \\ & 730.3 \end{aligned}$
National defense	313.8							
Nondefense	135.0	140.1	136.7	137.9	140.0	141.7	140.7	
State and local	683.0	714.6	691.4	697.0	711.1	721.2	729.2	

NOTE.-Percent changes from preceding period for selected items in this table are shown in table 8.1.

Table 1.2.-Gross Domestic Product in Constant Dollars [Billions of 1987 dollars]

	1992	1993	Seasonally adjusted at annual rates					
			1992	1993				1994
			IV	1	II	III	IV	1
Gross domestic product	$4,986.3$$3,341.8$456.6$1,062.9$$1,822.3$	5,136.0	5,068.3	5,078.2	5,102.1	5,138.3	5,225.6	5,259.0
Personal consumption expenditures \qquad		3,453.2	3,397.2	$\left\lvert\, \begin{array}{\|c\|c\|c\|} \hline, 403.8 \\ \hline \end{array}\right.$	$\left\lvert\, \begin{aligned} & 3,432.7 \\ & \hline \end{aligned}\right.$	3,469.6	3,506.9	3,539.8
Durable goods \qquad Nondurable goods		4,088.1	473.4 $1,081.8$	471.9 $1,076.0$ 1	484.2 $1,083.1$ 1	493.1 $1,093.0$	510.9 $1,100.2$	522.9 $1,106.7$
Services		1,875.2	1,842.0	1,855.9	1,865.4	1,883.5	1,895.8	1,910.2
Gross private domestic investment \qquad	732.9	820.3	763.0	803.0	803.6	813.4	861.4	896.7
Fixed investment.	726.4	$\left\|\begin{array}{l} 806.0 \\ 591.8 \end{array}\right\|$	$\begin{aligned} & 754.3 \\ & 543.7 \end{aligned}$	$\begin{aligned} & 773.7 \\ & 562.3 \end{aligned}$	$\begin{aligned} & 790.6 \\ & 584.3 \end{aligned}$	$\begin{aligned} & 806.9 \\ & 594.8 \end{aligned}$	$\begin{aligned} & 852.9 \\ & 625.7 \end{aligned}$	$\begin{aligned} & 866.2 \\ & 634.1 \end{aligned}$
Nonresidential	529.2							
Structures \qquad Producers' durable	150.6	151.5	148.0	148.2	151.1	151.2	155.6	148.9485.1
equipment	378.6	440.2	395.7210.6	$\begin{aligned} & 414.1 \\ & 211.4 \end{aligned}$	$\begin{aligned} & 433.2 \\ & 206.2 \end{aligned}$	$\begin{aligned} & 443.6 \\ & 212.1 \end{aligned}$	$\begin{aligned} & 470.0 \\ & 227.2 \end{aligned}$	
Residential \qquad Change in business	197.1	214.2			206.2	212.1	227.2	232.2
inventories	6.5	$\begin{array}{l\|l\|} 5 & 14.3 \\ 7 & 19.7 \\ \hline \end{array}$	8.77.51.	$\begin{aligned} & 29.3 \\ & 29.3 \end{aligned}$	13.0	$\begin{array}{r} 6.5 \\ 19.4 \end{array}$	8.512.9	30.530.7
Nontarm	2.7				17.1			
Farm	3.8	-5.3	1.2	0		19.4 -12.9	-4.4	-. 2
Net exports of goods and services \qquad	-33.6	-76.5	-38.8	-59.9	-75.2	-86.3	-84.5	-104.2
Exports	578.0	$\begin{array}{c\|c} 0 & 598.3 \\ 6 & 674.8 \end{array}$	$\begin{aligned} & 591.6 \\ & 630.3 \end{aligned}$	$\begin{aligned} & 588.0 \\ & 647.9 \end{aligned}$	$\begin{aligned} & 593.2 \\ & 668.4 \end{aligned}$	$\begin{aligned} & 591.9 \\ & 678.2 \end{aligned}$	$\begin{aligned} & 620.0 \\ & 704.5 \end{aligned}$	$\begin{array}{r} 605.0 \\ 709.3 \end{array}$
Imports	611.6							
Government purchases	945.2	938.9	946.9	931.3	941.1	941.7	941.7	926.8
Federal	373.0	$\begin{aligned} & 354.9 \\ & 242.4 \end{aligned}$	$\begin{aligned} & 373.7 \\ & 261.3 \end{aligned}$	$\begin{aligned} & 357.6 \\ & 246.0 \end{aligned}$	$\begin{aligned} & 359.4 \\ & 246.4 \end{aligned}$	$\begin{aligned} & 353.7 \\ & 240.1 \end{aligned}$	$\begin{aligned} & 349.0 \\ & 237.1 \end{aligned}$	$\begin{aligned} & 338.0 \\ & 228.4 \\ & 109.6 \\ & 588.9 \end{aligned}$
National defense	261.2							
Nondefense	111.8	112.5	112.4	111.5573.7	$\begin{aligned} & 113.0 \\ & 581.6 \end{aligned}$	$\begin{aligned} & 113.7 \\ & 588.0 \end{aligned}$	$\begin{aligned} & 111.8 \\ & 592.8 \end{aligned}$	
State and local	572.2	584.0	$\begin{aligned} & 112.4 \\ & 573.2 \\ & \hline \end{aligned}$					

Table 1.3.-Gross Domestic Product by Major Type of Product
[Billions of dollars]

1. Exports and imports of certain goods, primarily military equipment purchased and sold by the Federal Government, are included in services.

NOTE.-Percent changes from preceding period for selected items in this table are shown in table 8.1.
Table 1.5.-Relation of Gross Domestic Product, Gross Domestic Purchases, and Final Sales to Domestic Purchasers
[Billions of dollars]

Gross domestic product ...	6,038.5	6,377.9	6,194.4	6,261.6	6,327.6	6,395.9	6,526.5	6,609.4
Less: Exports of goods and services \qquad	640.5	661.7	654.7	651.3	660.0	653.2	682.4	668.8
Plus: Imports of goods and services \qquad	670.1	725.3	693.5	699.6	725.0	725.1	751.5	751.2
Equals: Gross domestic purchases ${ }^{1}$ \qquad	6,068.2	6,441.5	6,233.2	6,309.9	6,392.7	6,467.8	6,595.6	6,691.8
Less: Change in business inventories \qquad	7.3	15.6	12.0	34.6	13.1	7.7	6.9	34.2
Equals: Final sales to domestic purchasers ${ }^{2}$.....	6,060.8	6,425.9	6,221.2	6,275.4	6,379.5	6,460.1	6,588.7	6,657.6

1. Purchases by U.S. residents of goods and services wherever produced.
2. Final sales to U.S. residents of goods and services wherever produced

NOTE.-Percent changes from preceding period for selected items in this table are shown in table 8.1.
Table 1.7.-Gross Domestic Product by Sector
[Billions of dollars]

Gross domestic product \qquad	6,038.5	6,377.9	6,194.4	6,261.6	6,327.6	6,395.9	6,526.5	6,609.4
Business	5,114.4	5,404.5	5,254.4	5,303.0	5,359.0	5,416.6	5,539.5	5,607.9
Noniarm	5,006.4	5,306.9	5,138.7	5,184.7	5,263.7	5,330.1	5,449.1	5,508.7
Nonfarm less housing	4,505.4	4,791.0	4,639.6	4,674.0	4,751.0	4,812.8	4,926.4	4,967.7
Housing	501.0	515.9	499.1	510.8	512.7	517.4	522.8	541.0
Farm	84.4	82.4	83.6	83.8	83.3	73.2	89.2	98.1
Statistical discrepancy	23.6	15.2	32.1	34.4	12.0	13.3	1.2	1.2
Households and institutions	267.0	286.3	275.7	280.3	284.7	288.1	292.3	297.8
Private househoids	10.1	11.1	10.6	10.8	11.0	11.3	11.5	11.7
Nonprofit institutions	256.9	275.2	265.2	269.5	273.7	276.8	280.8	286.1
General government ..	657.1	687.1	664.3	678.4	683.9	691.2	694.7	703.7
Federal	199.8	207.0	198.7	206.2	206.2	208.3	207.1	210.8
State and local	457.3	480.1	465.6	472.1	477.7	483.0	487.6	492.9
Addendum: Gross domestic business product less housing \qquad	4,608.9							

Table 1.4.-Gross Domestic Product by Major Type of Product in Constant Dollars
[Billions of 1987 dollars)

	1992	1993	Seasonally adjusted at annual rates					
			1992	1993				1994
			IV	1	II	III	IV	1
Gross domestic product \qquad	4,986.3	5,136.0	5,068.3	5,078.2	5,102.1	5,138.3	5,225.6	5,259.0
Final sales of domestic product \qquad	4,979.8	5,121.7	5,059.6	5,048.9	5,089.1	5,131.8	5,217.1	5,228.6
Change in business inventories \qquad	6.5	14.3	8.7	29.3	13.0	6.5	8.5	30.5
Goods ${ }^{1}$...............................	2,005.7	2,083.8	2,057.7	2,060.2	2,069.1	2,074.9	2,130.9	2,161.0
Final sales	1,999.2	2,069.5	2,049.0	2,030.9	2,056.1	2,068.5	2,122.5	2,130.6
Change in business inventories \qquad	6.5	14.3	8.7	29.3	13.0	6.5	8.5	30.5
Durable goods	914.0	981.2	941.8	951.2	968.9	982.5	1,022.2	1,047.8
Final sales	911.7	970.6	942.6	938.2	964.9	968.7	1,010.5	1,020.9
Change in business inventories \qquad	2.4	10.6	-. 8	13.0	3.9	13.9	11.7	26.9
Nondurable goods	1,091.7	1,102.6	1,116.0	1,109.0	1,400.2	1,092.4	1,108.7	1,113.3
Final sales	1,087.6	1,098.9	1,106.4	1,092.7	1,091.1	1,099.8	1,111.9	1,109.7
Change in business inventories \qquad	4.1	3.7	9.6	16.3	9.1	-7.4	-3.2	3.6
Services ${ }^{1}$............................	2,534.7	2,586.4	2,556.5	2,565.3	2,577.5	2,596.7	2,606.0	2,617.7
Structures	445.8	465.9	454.2	452.7	455.5	466.6	488.7	480.3

1. Exports and imports of certain goods, primarily military equipment purchased and sold by the Federal Government, are included in services.

NOTE.-Percent changes from preceding period for selected items in this table are shown in table 8.1.
Table 1.6.-Relation of Gross Domestic Product, Gross Domestic Purchases, and Final Sales to Domestic Purchasers in Constant Dollars

$$
\text { [Billions of } 1987 \text { dollars] }
$$

Gross domestic product	4,986.3	5,136.0	5,068.3	5,078.2	5,102.1	5,138.3	5,225.6	5,259.0
Less: Exports of goods and services \qquad	578.0	598.3	591.6	588.0	593.2	591.9	620.0	605.0
Plus: Imports of goods and services \qquad	611.6	674.8	630.3	647.9	668.4	678.2	704.5	709.3
Equals: Gross domestic purchases ${ }^{1}$ \qquad	5,019.9	5,212.5	5,107.1	5,138.1	5,177,4	5,224.6	5,310.0	5,363.3
Less: Change in business inventories \qquad	6.5	14.3	8.7	29.3	13.0	6.5	8.5	30.5
Equals: Final sales to domestic purchasers ${ }^{2}$.....	5,013.4	5,198.2	5,098.4	5,108.8	5,164.3	5,218.1	5,301.6	5,332.8

1. Purchases by U.S. residents of goods and services wherever produced.
2. Final sales to U.S. residents of goods and services wherever produced.

NOTE.-Percent changes from preceding period for selected items in this table are shown in table 8.1
Table 1.8.-Gross Domestic Product by Sector in Constant Dollars [Billions of 1987 dollars]

Gross domestic product \qquad	4,986.3	5,136.0	5,068.3	5,078.2	5,102.1	5,138.3	5,225.6	5,259.0
Business	4,267.6	4,408.0	4,346.2	4,353.9	4,374.1	4,408.4	4,495.4	4,527.3
Nonfarm	4,168.4	4,321.1	4,240.0	4,247.4	4,288.1	4,330.1	4,418.7	4,446.6
Nonfarm less housing	3,769.3	3,915.8	3,839.3	3,844.8	3,883.7	3,924.0	4,010.6	4,036.6
Housing	399.1	405.3	400.7	402.6	404.4	406.1	408.1	410.0
Farm	79.6	74.4	79.7	78.2	76.2	67.5	75.7	79.7
Statistical discrepancy	19.7	12.5	26.5	28.3	9.8	10.8	1.0	1.0
Households and institutions	209.1	217.0	212.4	213.5	216.8	218.4	219.4	221.1
Private households Nomprofit institutions	8.8 200.4	9.3 207.7	9.0 203.4	9.2 204.3	9.3 207.5	9.4 209.0	9.5 209.9	9.6 211.5
General government	509.5	511.1	509.8	510.8	511.3	511.5	510.8	510.6
Federal \qquad State and local \qquad	$\begin{aligned} & 150.5 \\ & 359.0 \end{aligned}$	147.2 363.9	148.8	148.8 362.0	147.8	146.9	145.1	143.9 366.7
Addendum: Gross domestic business product less housing	3,864.9							

Table 1.9.-Relation of Gross Domestic Product, Gross National Product, Net National Product, National Income, and Personal Income

Table 1.10.-Relation of Gross Domestic Product, Gross National Product, Net National Product, and National Income in Constant Dollars
[Billions of 1987 dollars]

	1992	1993	Seasonally adjusted at annual rates					
			1992	1993				1994
			N	1	II	III	IV	1
Gross domestic product	4,986.3	5,136.0	5,068.3	5,078.2	5,102.1	5,138.3	5,225.6	5,259.0
Plus: Receipts of factor income from the rest of the world ${ }^{1}$ \qquad	105.5	104.7	98.9	98.3	105.0	107.1	108.5	
Less: Payments of factor income to the rest of the world ${ }^{2}$ \qquad	97.7	102.2	98.8	95.8	103.0	99.6	110.4
Equals: Gross national product \qquad	4,994.0	5,138.6	5,068.4	5,080.7	5,104.1	5,145.8	5,223.7
Less: Consumption of fixed capital \qquad	595.0	598.6	584.0	595.0	592.5	604.4	602.4	648.9
Equals: Net national product	4,399.0	4,540.0	4,484.4	4,485.8	4,511.6	4,541.4	4,621.3	
Less: Indirect business tax and nontax liability plus business transfer payments less subsidies plus current surplus of government								
enterprises \qquad Statistical discrepancy	402.0	417.5	409.3	411.6	414.9	419.1	424.4	428.0
Statistical discrepancy	19.7	12.5	26.5	28.3	9.8	10.8	1.0	
Equals: National income	3,977.3	4,110.1	4,048.6	4,045.9	4,087.0	4,111.4	4,196.0	
Addenda:								
Net domestic product	4,391.2	4,537.5	4,484.4	4,483.3	4,509.6	4,533.8	4,623.2	4,610.1
Domestic income	3,969.5	4,107.5	4,048.5	4,043.4	4,085.0	4,103.9	4,197.8	...
Gross national income	4,974.3	5,126.1	5,041.9	5,052.5	5,094.3	5,135.0	5,222.7

1. Consists largely of receipts by U.S. residents of interest and dividends and reinvested earnings of foreign affiliates of U.S. corporations.
2. Consists largely of payments to foreign residents of interest and dividends and reinvested earnings of U.S. affiliates of foreign corporations.

Table 1.11.-Command-Basis Gross National Product in Constant Dollars
[Bililions of 1987 doliars]

Gross national product	4,994.0	5,138.6	5,068.4	5,080.7	5,104.1	5,145.8	5,223.7	
Less: Exports of goods and services and receipts of factor income from the rest of the world \qquad	683.5	703.0	690.4	686.4	698.1	699.0	728.5	
Plus: Command-basis exports of goods and services and receipts of factor income ${ }^{1}$	689.3	719.5	692.4	700.4	712.5	718.1	746.8	
Equals: Command-basis gross national product	4,999.8	5,155.0	5,070.3	5,094.8	5,118.4	5,164.9	5,241.9
Addendum: Terms of trade ${ }^{2}$ \qquad	100.9	102.3	100.3	102.0	102.1	102.7	102.5

1. Exports of goods and services and receipts of factor income deflated by the implicit price deflator for imports of goods and services and payments of factor income.
2. Ratio of the implicit price deflator for exports of goods and services and receipts of factor income to the corresponding implicit price deflator for imports with the decimal point shifted two places to the right.
NoTE.-Percent changes from preceding period for selected items in this table are shown in table 8.1.

Table 1.14.-National Income by Type of Income [Bilions of dollars]

	1992	1993	Seasonally adjusted at annual rates					
			992	1993				1994
			V		II	III	IV	
National in	. 6	5,140.3	4,975.8	5,038.9	5,104.0	5,143.2	5,275.0	
Compensation of employees	3,582.0	2.2	3,658.6	3,705.1	3,750.6	3,793.9	3,839.2	3,907.2
Wages and salaries.	2,953.1	3,100.5	3,015.8	3,054.3	3,082.7	3,115.4	3,149.6	3,200.7
Government....	567.5	589.7	574.2	584.1	586.3	592.8		602.0
Other	2,385.6	2,510.8	2,441.6	2,470.2	2,496.3	2,522.6	2,554.2	2,598.8
Supplements to wages and salaries \qquad	629.0	1.7	642.8	650.7	668.0	678.5	689.6	706.5
Employer contributions								
Other labor income	3062.7	350.7	311.3 331.5	312.2 3885	321.4 346.6	${ }_{354.7}^{323.8}$	${ }_{362.9}^{326.7}$	${ }_{371.9}^{334.5}$
Proprietors' income with IVA and CCAdJ	414.3	3.2	431.2	444.1	439.4	422.5	467.0	475
arm...	43.7	46.0	47.6	55.7	47.0	24.8	56.4	60.0
Proprietors' income with			54.8		4.1	32.1		7.0
CCAdj	-7.5	-7.1	-7.2	-7.1	-7.1	-7.3	-7.0	. 0
Noniarm ...	370.6	397.3	383.6	388.4	392.4	397.6	410.6	415.6
Proprietors' income	358.0	385.3	362.2	376.4	380.3	385.4	399.2	405.2
$\begin{aligned} & \text { CAA } \\ & \text { OAJ } \end{aligned}$	13.1	-1.0 13.0	$\begin{array}{r}73.7 \\ \hline\end{array}$	-1.6 13.7	-1.2 13.3	12.7	12.3	-1.0 11.5
Rental income of								
with CCAdj.	-8.9	12.6	-1.2	7.5	12.7	13.7	16.4	3.5
Rental income of persons	57.4	75.2	57.4	71.3	73.2	77.2	79.0	
CCAdj	-6	-62.6	-58.6	-63.8	. 4	-63.5	-62.6	5.6
Corporate profits with IVA and CCAd]	407	466.6	439.5	432.1	458.1	468	507.9	
Corporate profits with	390.1	442.3	414.8	407.0	433.4	444	484	
Profits before tax...		449.4	40.9	4	445.6	443	488	
Profits tax liability	146.3	174.0	155.0	160.9	173.3	169.5	192.5	
Profits atter tax	249.1	275.4	254.9	258.	272.	274	295.9	
	150.5	169.0	162.9	167.5	168.5	169.7	170.3	171.
Undistributed profits	98.6	106.4	92.0	91.4	103.9	104.6	碞	
IVA	-5.3	7.1	4.9	-12.7	-12.2	1.0	4.3	-17.7
CCAdj	7.1	24.3	24.7	25.1	24.7	23.8	23.9	20.6
Net interest	442.0	445.6	447.7	450.1	443.2	444.6	.	
Addenda:								
Corporate profits after tax with IVA and CCAd	260.9				284.8		315.4	
Net cash flow with IVA								
and CAdi	507.0	532.4	8.2	505.9	. 5	3.3	559.0	
Undistributed profits with IVA and CCAdj	110.	123.6	121.	103	116.3	129.	145.1	
Consumption of fixed								
capital								
Less: IVA E...............	-5.3	-7.1	4.9	-12.7	-12.2		-4.3	-17.7
Equals: Net cash fiow	512.3	539.5	513.2	518.7	533.	542.3	3	

Table 1.16.-Gross Domestic Product of Corporate Business in Current Dollars and Gross Domestic Product of Nonfinancial Corporate Business in Current and Constant Dollars

Table 2.1.—Personal Income and Its Disposition [Billions of dollars]

	1992	1993	Seasonally adjusted at annual rates					
			1992	1993				1994
			IV	1	11	III	IV	1
Personal income Wage and salary disbursements Commodity-producing industries \qquad Manufacturing \qquad Distributive industries Service industries \qquad \qquad Government \qquad Other labor income \qquad Proprietors' income with inventory valuation and capital consumption adjustments \qquad Farm Nonfarm \qquad \qquad	5,144.9	5,388.3	5,328.3	5,254.7	5,373.2	5,412.7	5,512.7	5,578.1
	2,973.1	3,080.5	3,095.8	2,974.3	3,082.7	3,115.4	3,149.6	3,200.7
	756.5	763.6	783.3	740.7	765.1	769.4	779.3	789.5
	577.6	577.3	602.0	559.7	580.3	581.5	587.8	595.8
	682.0	706.6	709.9	682.9	709.1	714.4	720.1	733.5
	967.0	1,020.6	1,028.4	966.6	1,022.2	1,038.8	1,054.7	1,075.8
	567.5	589.7	574.2	584.1	586.3	592.8	595.4	602.0
	322.7	350.7	331.5	338.5	346.6	354.7	362.9	371.9
	414.3	443.2	431.2	444.1	439.4	422.5	467.0	475.6
	43.7	46.0	47.6	55.7	47.0	24.8	56.4	60.0
	370.6	397.3	383.6	388.4	392.4	397.6	410.6	415.6
Rental income of persons with capital consumption adjustment	-8.9	12.6	-1.2	7.5	12.7	13.7	16.4	3.5
Personal dividend income	140.4	158.3	152.3	157.0	157.8	159.0	159.4	160.7
Personal interest income	694.3	695.2	694.5	695.4	693.1	695.7	696.7	700.2
Transter payments to persons	858.4	912.1	877.4	894.4	905.5	918.5	929.8	944.6
Old-age, survivors, disability, and health insurance benefits	413.9	438.4	420.8	433.1	435.0	439.4	446.1	457.6
Government unemployment	413.9	438.4	420.8	433.1	435.0	439.4	446.1	457.6
insurance benefits	39.2	34.1	37.8	34.5	34.4	35.1	32.3	26.9
Veterans benefits	19.3	20.0	19.0	20.0	20.2	20.1	19.6	19.9
Government employees retirement benefits	108.3	115.5	110.2	112.8	114.6	116.4	118.3	119.0
Other transfer payments	277.7	304.1	289.7	294.0	301.3	307.5	313.5	321.2
Aid to families with dependent children	23.3	23.9	23.5	23.6	24.1	24.0	24.1	23.9
Other	254.4	280.2	266.2	270.4	277.2	283.5	289.4	297.3
Less: Personal contributions for social insurance \qquad	249.3	264.3	253.3	256.6	264.5	266.8	269.2	279.1
Less: Personal tax and nontax payments	644.8	681.6	670.7	657.1	681.0	689.0	699.2	715.7
Equals: Disposable personal income \qquad	4,500.2	4,706.7	4,657.6	4,597.5	4,692.2	4,723.7	4,813.5	4,862.4
Less: Personal outlays	4,261.5	4,516.8	4,377.9	4,419.7	4,483.6	4,544.0	4,620.1	4,680.4
Personal consumption expenditures \qquad	4,139.9	4,391.8	4,256.2	4,296.2	4,359.9	4,419.1	4,492.0	4,549.4
Interest paid by persons	111.1	114.0	111.3	112.5	112.7	114.1	116.8	119.3
Personal transier payments to rest of the world (net)	10.4	11.0	10.5	11.0	11.0	10.8	11.2	11.7
Equals: Personal saving	238.7	189.9	279.7	177.9	208.7	179.7	193.4	182.0
Addenda: Disposable personal income:								
Total, billions of 1987 dollars \qquad	3,632.5	3,700.9	3,717.6	3,642.6	3,694.4	3,708.7	3,757.9	3,783.3
Per capita:								
Current dollars 1987 dollars \qquad	$\begin{aligned} & 17,615 \\ & 14,219 \end{aligned}$	18,225 14,330	18,153	17,876 14,163	18,196 14,326	18,265	18,561 14,491	18,705 14,554
Population (mid-period. millions) \qquad	255.5	258.3	256.6	257.2	257.9	258.6	259.3	259.9
Personal saving as percentage of disposable personal income \qquad	5.3	4.0	6.0	3.9	4.4	3.8	4.0	3.7

NOTE.-Percent changes from preceding period for selected items in this table are shown in table 8.1.

Table 2.2.—Personal Consumption Expenditures by Major Type of Product
[Billions of dollars]

	1992	1993	Seasonally adjusted at annual rates					
			1992	1993				1994
			IV	1	11	III	IV	1
Personal consumption expenditures \qquad	4,139.9	4,391.8	4,256.2	4,296.2	4,359,9	$\left.\begin{array}{r} 4,419.1 \\ 541.9 \end{array} \right\rvert\,$	$\begin{array}{r} 4,492.0 \\ 562.8 \end{array}$	4,549.4
Durable goods	497.3	537.9	516.6	515.3				577.4
Motor vehicles and parts.	204.3	222.3	213.7	211.7	220.8	221.7	235.1	250.0
Furniture and household equipment \qquad					208.6	214.0		
Other	98.5	103.9	100.2	100.3	102.2	106.2	106.9	107.6
Nondurable goods ...	1,300.9	1,350.0	1,331.7	1,335.3	1,344.8	1,352.4	1,367.5	1,376.1
	633.7	$\begin{aligned} & 657.8 \\ & 237.3 \end{aligned}$	$\begin{aligned} & 647.6 \\ & 236.1 \end{aligned}$	$\begin{aligned} & 648.2 \\ & 233.1 \end{aligned}$	$\begin{aligned} & 654.1 \\ & 235.2 \end{aligned}$	$\begin{aligned} & 660.0 \\ & 238.2 \end{aligned}$	$\begin{aligned} & 669.1 \\ & 242.7 \end{aligned}$	671.7243.2
Clothing and shoes	228.2							
Gasoline and oil	103.4	$\begin{array}{r} 103.7 \\ 15.1 \\ 1 \end{array}$	105.213.9	106.0	103.6	102.415.4	102.9	101.4
Fuel oil and coal	13.8			15.1332.9	14.9		$\begin{array}{r} 15.0 \\ 337.7 \\ 2,561.8 \end{array}$	16.9342.8
Other	321.8	336.0	328.9		337.2	$\left.\begin{array}{r} 336.4 \\ 2,524.8 \end{array} \right\rvert\,$		
Services..	2,341.6	2,503.9	2,407.9	2,445.5	2,483.4			2,595.9
Housing	600.0	$\begin{aligned} & 627.9 \\ & 251.2 \end{aligned}$	609.2	$\begin{aligned} & 617.6 \\ & 245.7 \end{aligned}$	$\begin{aligned} & 625.1 \\ & 246.7 \end{aligned}$	$\begin{aligned} & 631.1 \\ & 255.2 \end{aligned}$	$\begin{aligned} & 637.8 \\ & 257.3 \end{aligned}$	647.5256.5
Household operation	234.4		245.0					
Electricity and gas \qquad Other household	105.8	113.4	111.0	111.1	109.8	$\begin{aligned} & 116.4 \\ & 138.7 \end{aligned}$	$\begin{aligned} & 116.2 \\ & 141.1 \end{aligned}$	116.8
operation	128.7	$\begin{aligned} & 137.8 \\ & 170.0 \end{aligned}$	$\begin{aligned} & 134.0 \\ & 162.4 \end{aligned}$	134.5	136.9			139.6176.7
Transportation	155.4			166.3	169.1	170.9	141.1 173.8	
Medical care	628.4	680.9773.8	$\begin{aligned} & 646.9 \\ & 744.3 \end{aligned}$	662.2753.8	675.4	686.9	699.2	710.0805.2
Other	723.5				767.1	780.7	793.7	

Table 2.3.-Personal Consumption Expenditures by Major Type of Product in Constant Dollars [Billions of 1987 dollars]

Personal consumption expenditures \qquad	3,341.8	3,453.2	3,397.2	3,403.8	3,432.7	3,469.6	3,506.9	3,539.8
Durable goods	456.6	490.0	473.4	471.9	484.2	493.1	510.9	522.9
Motor vehicles and parts	182.3	191.7	188.6	185.7	191.3	189.9	199.7	211.7
Furniture and household								
equipment	194.8	216.3	204.2	206.5	212.4	219.4	227.1	227.2
Other	79.5	82.0	80.6	79.7	80.6	83.7	84.1	84.0
Nondurable goods	1,062.9	1,088.1	1,081.8	1,076.0	1,083.1	1,093.0	1,100.2	1,106.7
Food	520.5	531.0	529.3	526.7	528.6	532.6	536.0	536.4
Clothing and shoes	193.7	199.5	200.0	194.8	197.8	200.6	204.6	205.5
Gasoline and oil ...	83.9	84.9	84.4	83.9	84.1	86.2	85.4	84.6
Fuel oil and coal	11.9	13.0	11.9	12.9	12.6	13.2	13.1	14.5
Other ..	252.9	259.8	256.2	257.7	259.9	260.4	261.1	265.6
Services	1,822.3	1,875.2	1,842.0	1,855.9	1,865.4	1,883.5	1,895.8	1,910.2
Housing	484.2	492.0	486.7	488.8	490.7	493.3	495.3	497.8
Household operation	211.7	218.9	216.6	217.9	215.6	220.8	221.3	222.8
Electricity and gas \qquad Other household	95.3	99.0	98.5	99.1	96.2	100.6	100.3	101.2
operation	116.4	119.9	118.1	118.8	119.4	120.2	121.1	121.5
Transportation	122.7	126.3	123.7	124.5	126.1	126.5	128.0	128.7
Medical care	449.2	463.4	453.2	458.0	461.1	465.1	469.3	472.7
Other	554.4	574.6	561.7	566.8	571.8	577.9	581.9	588.2

Table 3.2.-Federal Government Receipts and Expenditures
[Billions of dollars]

	1992	1993	Seasonally adjusted at annual rates					
			1992	1993				1994
			IV	1	11	III	IV	1
Receipts	1,183.0	1,269.5	1,221.1	1,218.4	1,268.0	1,275.9	1,315.7	
Personal tax and nontax receipts \qquad Income taxes \qquad Estate and gift taxes \qquad Nontaxes \qquad								
	490.8	521.3	511.8	502.1	520.7	527.1	535.1	549.0
	478.0	506.7	498.3	489.1	506.0	512.7	519.0	532.5
	11.3	13.0	12.1	11.6	13.2	12.8	14.4	14.6
	1.4	1.6	1.4	1.5	1.5	1.5	1.7	1.9
Corporate profits tax accruals	120.2	143.1	127.1	132.4	142.4	139.3	158.1	
Federal Reserve banks	16.8	15.3	15.8	15.7	15.3	15.1	15.3	
Other	103.5	127.7	111.3	116.7	127.2	124.2	142.8	
Indirect business tax and								
nontax accruals	81.3	87.3	83.5	81.5	86.2	86.7	95.0	92.9
Excise taxes	46.8	50.3	46.5	47.4	48.5	48.8	56.6	54.4
Customs duties	18.3	19.8	19.1	18.8	20.4	20.0	20.1	19.6
Nontaxes	16.2	17.2	18.0	15.3	17.3	17.8	18.3	18.9
Contributions for social insurance \qquad	490.7	517.8	498.7	502.3	518.7	522.8	527.5	544.6
Expenditures	1,459.3	1,495.9	1,485.3	1,481.9	1,490.6	1,488.5	1,522.6	1,497.1
Purchases.	448.8	443.4	452.4	442.7	447.5	443.6	440.0	434.0
National detense ...	313.8	303.4	315.7	304.8	307.6	301.9	299.2	292.8
Nondelense	135.0	140.1	136.7	137.9	140.0	141.7	140.7	141.2
Transier payments (net)	624.5	651.9	641.7	642.0	645.6	652.8	667.2	665.2
To persons	608.2	636.1	617.1	628.9	632.7	639.1	643.7	652.3
To rest of the world (net) ...	16.3	15.8	24.6	13.1	12.9	13.7	23.5	12.8
Grants-in-aid to State and local governments \qquad	171.4	186.2	176.7	176.1	182.8	188.6	197.4	187.9
Net interest paid	187.1	180.8	181.3	178.3	182.5	182.2	180.4	174.8
Interest paid	219.9	217.5	216.4	214.1	219.0	219.9	217.2	212.4
To persons and business	178.7	175.0	175.0	172.4	176.9	176.7	174.0	169.1
To rest of the world (net)	41.2	42.5	41.4	41.6	42.1	43.2	43.2	43.2
Less: Interest received by government	32.8	36.7	35.1	35.7	36.5	37.7	36.7	37.5
Subsidies less current surpius	27.5	33.6	33.2	42.9	32.3	21.4	37.7	35.1
Subsidies	31.7	36.2	36.1	43.7	35.9	24.8	40.5	37.7
Less: Current surplus of government enterprises ..	4.1	2.7	2.9	. 8	3.6	3.4	2.8	2.5
Less: Wage accruals less disbursements \qquad	0	0	0	0	0	0	0	0
Surplus or deficit $(-)$, national income and product accounts	-276.3	-226.4	-264.2	-263.5	-222.6	-212.7	-207.0	
Social insurance funds	32.2	41.3	36.4	30.2	45.2	44.7	45.3	57.2
Other	-308.5	-267.8	-300.6	-293.7	-267.8	-257.4	-252.3

Table 3.3.-State and Local Government Receipts and Expenditures [Billions of dollars]

	1992	1993	Seasonally adjusted at annual rates					
			1992	1993				1994
			IV	1	II	III	N	1
Receipts ...	837.8	888.1	861.6	860.2	881.0	894.2	917.0	
Personal tax and nontax								
receipts	154.0	160.3	158.8	155.0	160.3	162.0	164.1	166.6
Income taxes	116.7	120.8	120.8	116.4	121.0	122.1	123.6	125.5
Nontaxes	18.3	19.7	18.8	19.2	19.5	19.8	20.2	20.5
Other	19.0	19.9	19.2	19.5	19.8	20.0	20.3	20.6
Corporate profits tax accruals	26.0	31.0	27.9	28.5	30.8	30.1	34.4	
Indirect business tax and								
nontax accruals	421.5	443.1	432.2	434.1	440.0	445.7	452.7	456.7
Sales taxes	200.8	211.7	205.7	206.5	209.3	212.8	218.2	220.2
Property taxes	177.7	186.9	181.4	183.9	186.5	187.9	189.3	190.8
Other 43.0 44.5 45.1 43.6 44.3 45.0 45.2 45.7 Contributions for social								
insurance	64.9	67.4	65.9	66.5	67.2		68.3	69.0
Federal grants-in-aid \qquad Expenditures \qquad	171.4830.6	$\begin{aligned} & 186.2 \\ & 886.2 \end{aligned}$	$\begin{aligned} & 176.7 \\ & 848.0 \end{aligned}$	$\begin{aligned} & 176.1 \\ & 859.4 \end{aligned}$	$\begin{aligned} & 182.8 \\ & 880.0 \end{aligned}$		909.7	187.9
						$\begin{aligned} & 188.6 \\ & 895.9 \end{aligned}$		916.7
Purchases \qquad Compensation of employees \qquad Other \qquad	$\begin{aligned} & 683.0 \\ & 457.3 \\ & 225.7 \end{aligned}$	$\begin{aligned} & 714.6 \\ & 480.1 \\ & 234.5 \end{aligned}$	$\begin{aligned} & 691.4 \\ & 465.6 \\ & 225.7 \end{aligned}$	$\begin{aligned} & 697.0 \\ & 472.1 \\ & 224.9 \end{aligned}$	$\begin{aligned} & 711.1 \\ & 477.7 \end{aligned}$	$\begin{aligned} & 721.2 \\ & 483.0 \\ & 238.3 \end{aligned}$	$\begin{aligned} & 729.2 \\ & 487.6 \\ & 241.6 \end{aligned}$	730.3
								492.9
					233.4			237.4
Transfer payments to persons	228.6	254.1	238.4	244.1	251.0	257.2	263.9	270.2
Net interest paid \qquad Interest paid \qquad Less: Interest received by government \qquad	$\begin{array}{r} -46.0 \\ 66.1 \\ 112.1 \end{array}$	$\begin{array}{r} -45.3 \\ 68.7 \\ 113.9 \end{array}$	$\begin{array}{r} -45.7 \\ 67.1 \\ 112.8 \end{array}$	$\begin{array}{r} -45.5 \\ 67.7 \end{array}$	$\begin{array}{r} -45.3 \\ 68.4 \end{array}$	$\begin{array}{r} -45.2 \\ 69.0 \end{array}$	$\begin{array}{r} -45.0 \\ 69.6 \end{array}$	-44.970.2
				113.2	113.7	114.2	114.6	115.
Less: Dividends received by government \qquad	10.2	10.7	10.5	10.5	10.7	10.8	10.9	11.0
Subsidies less current surplus of government enterprises Subsidies. \qquad Less: Current surplus of government enterprises ..	$\begin{array}{r} -24.8 \\ .4 \\ 25.2 \end{array}$	$\begin{array}{r} -26.5 \\ .5 \\ 27.0 \end{array}$	$\begin{array}{r} -25.5 \\ .4 \\ 25.9 \end{array}$	$\begin{array}{r} -25.8 \\ .4 \\ 26.2 \end{array}$	$\begin{array}{r} -26.2 \\ .5 \\ 26.6 \end{array}$	$\begin{array}{r} -26.7 \\ .5 \end{array}$	$\begin{array}{r} -27.4 \\ .5 \end{array}$	
								$\begin{array}{r} -27.9 \\ .5 \end{array}$
						27.1	27.9	28.4
Less: Wage accruals less disbursements \qquad	0	0	0	0	0	0	0	0
Surplus or deficit (-), national income and product accounts	$\begin{array}{r} 7.2 \\ 59.4 \\ -52.2 \end{array}$	$\begin{array}{r} 1.8 \\ 58.6 \\ -56.7 \end{array}$	13.559.6-46.0	$\begin{array}{r} .8 \\ 59.0 \\ -58.2 \end{array}$	$\begin{array}{r} 1.1 \\ 58.9 \\ -57.8 \end{array}$	$\begin{array}{r} -1.7 \\ 58.5 \\ -60.2 \end{array}$	$\begin{array}{r} 7.2 \\ 57.9 \\ -50.7 \end{array}$	
Social insurance funds								-1........
Other								

Table 3.7B.-Government Purchases by Type
[Billions of dollars]

	1992	1993	Seasonally adjusted at annual rates					
			1992	1993				1994
			IV	1	11	III	IV	1
Government purchases	1,131.8	1,158.1	1,143.8	1,139.7	1,158.6	1,164.8	1,169.1	1,164.4
Federal	448.8	443.4	452.4	442.7	447.5	443.6	440.0	434.0
National defense	313.8	303.4	315.7	304.8	307.6	301.9	299.2	292.8
Durable goods	79.0	70.6	78.9	74.4	75.3	67.4	65.1	62.2
Nondurable goods	10.3	9.4	9.8	9.0	10.2	9.3	9.1	8.0
Services Compensation of	218.9	218.1	221.0	216.4	217.0	219.4	219.8	217.5
employees	135.7	137.0	133.7	137.2	136.4	137.9	136.3	138.1
Military	90.7	91.0	89.2	91.5	91.2	90.7	90.5	91.6
Civilian	45.0	46.0	44.5	45.7	45.2	47.2	45.8	46.5
Other services	83.2	81.2	87.3	79.1	80.6	81.5	83.5	79.4
Structures	5.6	5.3	6.0	5.0	5.0	5.8	5.2	5.2
Nondefense ...	135.0	140.1	136.7	137.9	140.0	141.7	140.7	141.2
Durable goods	7.1	7.5	7.4	7.3	7.9	7.3	7.3	7.0
Nondurable goods \qquad	8.6	7.2	9.3	7.8	7.6	7.3	6.3	6.4
Corporation inventory change ...	-7	-. 3	,	-. 4	-7.3	-. 7.5	-. 2	-. 2.
Other nondurables	9.2	7.5	9.3	8.1	7.9	7.5	6.5	6.6
Services	109.0	114.6	109.7	112.2	114.3	116.1	115.6	116.9
Compensation of employees \qquad	64.1	70.0	65.0	69.0	69.8	70.4	70.8	72.6
Other services	44.9	44.6	44.7	43.2	44.6	45.7	44.8	44.3
Structures	10.3	10.8	10.3	10.5	10.1	11.0	11.5	10.9
State and local	683.0	714.6	691.4	697.0	711.1	721.2	729.2	730.3
Durable goods	37.6	39.3	38.2	38.7	39.2	39.7	39.8	40.4
Nondurable goods	60.2	62.2	60.7	61.7	63.0	62.3	61.9	63.0
Services	485.3	506.9	493.5	499.6	504.4	509.9	513.9	519.9
Compensation of employees \qquad	457.3	480.1	465.6	472.1	477.7	483.0	487.6	492.9
Other services	28.0	26.8	27.9	27.5	26.6	26.9	26.3	27.0
Structures	99.8	106.2	99.0	97.1	104.5	109.4	113.6	107.0

Table 3.10.-National Defense Purchases
[Billions of dollars]

National defense purchases \qquad	313.8	303.4	315.7	304.8	307.6	301.9	299.2	292.8
Durable goods	79.0	70.6	78.9	74.4	75.3	67.4	65.1	62.2
Military equipment	73.2	66.3	72.6	70.5	70.5	63.1	60.9	58.2
Aircraft	22.7	20.9	21.9	20.8	22.5	20.1	20.1	19.3
Missiles	14.3	12.1	14.2	13.5	12.9	11.6	10.4	10.4
Ships	12.1	10.7	11.6	11.1	11.3	10.0	10.1	9.1
Vehicles	3.8	3.0	3.9	4.2	3.2	2.3	2.1	2.2
Electronic equipment	6.6	6.3	7.1	6.6	6.8	6.4	5.6	5.5
Other	13.6	13.3	14.0	14.2	13.9	12.6	12.5	11.8
Other durable goods	5.8	4.3	6.3	3.9	4.8	4.3	4.2	4.0
Nondurable goods	10.3	9.4	9.8	9.0	10.2	9.3	9.1	8.0
Petroleum products ...	3.5	3.2	3.0	3.0	3.4	3.3	2.9	2.5
Ammunition	3.4	3.6	3.6	3.5	4.0	3.1	3.8	3.1
Other nondurable goods	3.4	2.7	3.2	2.5	2.7	2.9	2.5	2.4
Services	218.9	218.1	221.0	216.4	217.0	219.4	219.8	217.5
Compensation of employees \qquad	135.7	137.0	133.7	137.2	136.4	137.9	136.3	138.1
Military	90.7	91.0	89.2	91.5	91.2	90.7	90.5	91.6
Civilian	45.0	46.0	44.5	45.7	45.2	47.2	45.8	46.5
Other services	83.2	81.2	87.3	79.1	80.6	81.5	83.5	79.4
Contractual research and development	26.5	26.6	27.5	27.2	26.6	25.5	27.1	24.5
Installation support ${ }^{1}$.......	23.4	23.2	24.3	22.1	21.9	24.9	24.0	24.5
Weapons support ${ }^{2}$........	10.0	9.1	10.0	9.1	9.6	9.1	8.6	8.1
Personnel support ${ }^{3}$........	13.3	12.8	13.4	11.6	12.2	13.3	14.1	14.2
Transportation of material	5.8	5.2	6.1	5.0	5.3	5.6	5.0	4.5
Travel of persons	6.2	6.3	7.2	6.3	6.4	6.5	6.0	4.8
Other	-2.0	-2.1	-1.1	-2.2	-1.5	-3.3	-1.3	-1.3
Structures	5.6	5.3	6.0	5.0	5.0	5.8	5.2	5.2
Military facilities	3.5	3.2	3.8	3.0	3.0	3.6	3.0	3.0
Other	2.1	2.1	2.2	2.0	2.1	2.2	2.2	2.2

1. Includes utilities, communications, rental payments, maintenance and repair, and payments to contractors to operate installations.
2. Includes depot maintenance and contractual services for weapons systems, other than research and development.
3. Includes compensation of toreign personnel, consulting, training, and education.

Table 3.8B.-Government Purchases by Type in Constant Dollars
[Bilions of 1987 dolars]

	1992	1993	Seasonally adjusted at annual rates					
			1992	1993				1994
			IV	1	11	III	IV	1
Govermment purchases	945.2	938.9	948.9	931.3	941.1	941.7	941.7	926.8
Federal	373.0	354.9	373.7	357.6	359.4	353.7	349.0	338.0
National defense	261.2	242.4	261.3	246.0	246.4	240.1	237.1	228.4
Durable goods	73.2	63.6	72.6	67.2	67.4	60.9	58.9	55.8
Nondurable goods	9.4	8.7	8.6	8.3	9.2	8.7	8.5	7.6
Services	173.6	165.6	174.7	166.1	165.5	165.4	165.3	160.6
Compensation of employees								
employees	$\begin{array}{r} 100.9 \\ 66.4 \end{array}$	95.8 63.4	99.0 65.4	97.7 64.4	96.4 63.8 8.8	95.3 63.1	93.8 62.2	93.1 61.8
Civilian	34.5	32.4	33.7	33.3	32.7	32.2	31.6	31.3
Other services	72.7	69.8	75.7	68.4	69.0	70.1	71.5	67.6
Structures	5.0	4.5	5.3	4.4	4.4	5.0	4.4	4.3
Nondefense ...	111.8	112.5	112.4	111.5	113.0	113.7	111.8	109.6
Durable goods	7.5	8.1	7.9	7.8	8.4	8.1	8.2	7.3
Nondurable goods	7.9	6.5	8.4	7.2	6.9	6.4	5.4	5.6
Commodity Credit Corporation inventory change ...	-. 4	-. 3	0	-7.	-. 2	-. 3	-. 3	-. 2
Other nondurables	8.3	6.8	8.4	7.4	7.1	6.7	5.8	5.8
Services	87.4	88.6	87.2	87.3	88.9	89.8	88.4	87.4
Compensation of employees \qquad	49.6	51.3	49.8	51.0	51.4	51.6	51.3	50.8
Other senvices	37.8	37.3	37.4	36.3	37.4	38.2	37.2	36.7
Structures	9.0	9.2	8.9	9.1	8.7	9.4	9.8	9.2
State and local	572.2	584.0	573.2	573.7	581.6	588.0	592.8	588.9
Durable goods	33.3	34.1	33.6	33.8	34.0	34.3	34.5	34.7
Nondurable goods	52.1	53.5	52.7	53.0	53.4	53.8	54.0	54.4
Services	395.8	402.6	398.2	400.1	401.9	403.4	405.0	406.4
Compensation of employees. \qquad	359.0	363.9	361.0	362.0	363.4	364.5	365.7	366.7
Other services	36.7	38.7	37.3	38.1	38.4	38.9	39.3	39.7
Structures	91.1	93.8	88.6	86.9	92.4	96.5	99.3	93.3

Table 3.11.-National Defense Purchases in Constant Dollars
[Billions of 1987 dollars]

National defense purchases \qquad	261.2	242.4	261.3	246.0	246.4	240.1	237.1	228.4
Durable goods	73.2	63.6	72.6	67.2	67.4	60.9	58.9	55.8
Military equipment	67.1	58.7	66.3	62.9	62.1	55.9	53.9	51.6
Aircraft	20.2	17.5	19.0	17.7	18.8	16.6	16.7	15.7
Missiles	15.3	12.7	15.7	14.1	13.2	12.4	11.2	11.6
Ships	10.3	8.9	9.8	9.3	9.5	8.3	8.4	7.5
Vehicles	3.4	2.5	3.4	3.6	2.6	2.0	1.8	1.9
Electronic equipment	6.1	5.8	6.5	6.0	6.2	5.9	5.1	5.0
Other	11.8	11.4	11.9	12.1	11.8	10.8	10.7	10.0
Other durable goods	6.1	4.9	6.4	4.4	5.3	5.0	5.0	4.2
Nondurable goods	9.4	8.7	8.6	8.3	9.2	8.7	8.5	7.6
Petroleum products	2.9	2.8	2.4	2.7	2.9	2.9	2.6	2.5
Ammunition	3.5	3.6	3.3	3.4	3.9	3.1	3.8	2.8
Other nondurable goods	3.0	2.4	2.9	2.2	2.4	2.7	2.2	2.2
Services	173.6	165.6	174.7	166.1	165.5	165.4	165.3	160.6
Compensation of								
employees	100.9	95.8	99.0	97.7	96.4	95.3	93.8	93.1
Military	66.4	63.4	65.4	64.4	63.8	63.1	62.2	61.8
Civilian	34.5	32.4	33.7	33.3	32.7	32.2	31.6	31.3
Other services	72.7	69.8	75.7	68.4	69.0	70.1	71.5	67.6
Contractual research and development	23.6	23.4	24.1	23.8	23.4	22.4	242	21.7
Installation support ${ }^{1}$...	20.6	20.1	21.2	19.4	19.1	21.4	20.5	21.0
Weapons support ${ }^{2}$.........	8.4	7.4	8.2	7.4	7.8	7.4	6.9	6.4
Personnel support ${ }^{3}$........	10.0	9.6	9.9	8.7	9.1	10.0	10.6	10.6
Transportation of material \qquad	6.1	5.4	6.6	5.3	5.4	58	53	4.6
Travel of persons	5.6	5.4	6.4	5.4	5.5	5.6	5.1	4.1
Other	-1.6	-1.6	-8	-1.6	-1.1	-2.5	-1.0	-. 9
Structures	5.0	4.5	5.3	4.4	4.4	5.0	4.4	4.3
Military facilities	3.3	2.9	3.5	2.8	2.8	3.3	2.8	2.7
Other	1.7	1.6	8	6	6	. 7	1.7	1.6

[^4]Table 4.1.-Foreign Transactions in the National Income and Product Accounts
[Billions of dollars]

	1992	1993	Seasonally adjusted at annuad rates					
			1992	1993				1994
			IV	1	11	III	IV	1
Receipts from rest of the world	769.7	793.4	777.0	774.1	791.8	788.3	819.6	
Exports of goods and services	640.5	661.7	654.7	651.3	660.0	653.2	682.4	668.8
Merchandise ${ }^{1}$	448.7	461.5	462.0	453.2	458.6	452.2	482.0	465.8
Durable	300.8	314.6	311.1	306.9	314.0	307.4	330.2	321.7
Nondurable	147.9	146.9	150.9	146.3	144.6	144.8	151.8	144.1
	191.7	200.2	192.8	198.0	201.3	200.9	200.4	203.0
Receipts of factor income ${ }^{2}$................	129.2	131.7	122.3	122.8	131.9	135.1	137.2	
Capital grants received by the United States (net) \qquad	0	0	0	0	0	0	0	0
Payments to rest of the world .	769.7	793.4	777.0	774.1	791.8	788.3	819.6	
Imports of goods and services	670.1	725.3	693.5	699.6	725.0	725.1	751.5	751.2
Merchandise ${ }^{1}$.............................	544.5	592.1	564.7	569.6	592.6	591.9	614.2	614.6
Durable	346.3	385.7	359.7	368.8	379.5	384.5	409.8	414.6
Nondurable	198.2	206.4	205.1	200.7	213.1	207.3	204.4	200.0
Services ${ }^{1}$..................................	125.6	133.2	128.7	130.0	132.4	133.3	137.2	136.6
Payments of factor income ${ }^{3}$..............	121.9	131.6	124.8	122.4	132.3	128.7	142.8	
Transfer payments (net)	32.7	32.8	41.2	29.7	29.9	30.9	40.8	30.8
From persons (net)	10.4	11.0	10.5	11.0	11.0	10.8	11.2	11.7
From government (net)	16.3	15.8	24.6	13.1	12.9	13.7	23.5	12.8
From business	6.0	6.0	6.1	5.6	6.0	6.3	6.0	6.3
Net foreign investment	-55.1	-96.2	-82.4	-77.6	-95.4	-96.4	-115.5

1. Exports and imports of certain goods, primarily military equipment purchased and sold by the Federal Government, are included in services.
2. Consists largely of receipts by U.S. residents of interest and dividends and reinvested earnings of foreign affiliates of U.S. corporations.
3. Consists largely of payments to foreign residents of interest and dividends and reinvested earnings of U.S. atfiliates of foreign corporations.

Table 4.3.-Exports and Imports of Merchandise by End-Use Category [Bililions of dollars]

Exports of merchandise	448.7	461.5	462.0	453.2	458.6	452.2	482.0	465.8
Foods, feeds, and bevera	40.3	40.5	41.9	40.8	39.6	38.9	42.6	39.4
Industrial supplies and materials	105.2	103.2	104.9	103.0	103.0	102.4	104.3	100.9
Durable goods	36.9	37.6	37.2	37.2	37.6	38.1	37.6	36.9
Nondurable goods	68.4	65.5	67.7	65.8	65.4	64.2	66.7	64.1
Capital goods, except automotive	176.9	183.4	182.0	177.8	183.3	178.5	193.8	188.4
Civilian aircraft, engines, and parts ...	37.7	32.8	37.1	33.1	36.4	27.1	34.5	33.5
Computers, peripherals, and parts	28.8	29.3	30.0	28.8	28.0	29.6	30.7	31.2
Other	110.4	121.3	114.9	115.9	118.8	121.9	128.6	123.7
Automotive vehicles, engines, and parts	47.1	51.6	50.9	51.2	51.3	48.4	55.6	54.1
Consumer goods, except automotive	50.4	53.6	53.3	51.5	52.2	54.2	56.6	54.0
Durable goods	25.6	27.4	26.5	26.3	27.2	27.5	28.7	27.9
Nondurable goods	24.8	26.2	26.8	25.2	25.1	26.7	27.9	26.2
Other	28.9	29.3	28.9	28.8	29.3	29.9	29.1	28.9
Durable goods	14.5	14.6	14.5	14.4	14.6	14.9	14.6	14.5
Nondurable goods	14.5	14.6	14.5	14.4	14.6	14.9	14.	14.5
Imports of merchandise.	544.5	592.1	564.7	569.6	592.6	591.9	614.2	614.6
Foods, feeds, and beverages \qquad Industrial supplies and materials, except	27.9	28.1	27.6	27.4	27.5	28.3	29.0	28.8
petroleum and products	82.3	89.1	84.2	86.4	87.3	89.0	93.6	97.0
Durable goods	39.5	43.6	40.3	41.7	41.1	43.3	48.2	48.7
Nondurable goods	42.8	45.5	43.9	44.8	46.2	45.7	45.3	48.2
Petroleum and products	51.6	51.5	54.9	51.0	57.3	50.2	47.5	40.9
Capital goods, except automotive	134.2	152.3	141.8	142.6	150.7	152.6	163.1	168.7
Civilian aircraft, engines, and parts ...	12.6	11.3	13.0	10.5	11.8	10.5	12.4	10.3
Computers, peripherals, and parts	31.8	38.2	34.6	35.9	37.2	39.0	40.5	41.7
Other	89.8	102.8	94.2	96.2	101.7	103.1	110.2	116.7
Automotive vehicles, engines, and parts	91.8	102.4	95.1	100.5	102.1	100.1	106.9	105.9
Consumer goods, except automotive	123.0	134.3	126.5	128.9	132.9	137.6	137.7	137.3
Durable goods	63.9	70.2	65.2	67.7	68.2	71.5	73.3	73.2
Nondurable goods	59.1	64.1	61.3	61.2	64.7	66.2	64.4	64.1
Other	33.8	34.5	34.8	32.7	34.8	33.9	36.6	36.0
Durable goods	16.9	17.3	17.4	16.4	17.4	17.0	18.3	18.0
Nondurable goods	16.9	17.3	17.4	16.4	17.4	0	18.	8.0
Addenda:								
Exports of agricultural products ${ }^{1}$.......	44.0	43.6	45.5	43.4	43.1	42.4	45.4	43.0
Exports of nonagricultural products ...	404.7	418.0	416.4	409.9	415.5	409.8	436.6	422.9
Imports of nonpetroleum products	492.9	540	509.9	518.5	535.3	541.7	566	573.7

Table 4.2.-Exports and Imports of Goods and Services and Receipts and Payments of Factor Income in Constant Dollars
[Billions of 1987 dollars]

	1992	1993	Seasonally adjusted at annual rates					
			$\begin{array}{\|c\|} \hline 1992 \\ \hline \text { IV } \\ \hline \end{array}$	1993				$\begin{array}{\|c\|} \hline 1994 \\ \hline 1 \end{array}$
				1	11	III	IV	
Exports of goods and services	578.0	598.3	591.6	588.0	593.2	591.9	620.0	605.0
Merchandise ${ }^{1}$...	422.7	440.5	437.3	430.2	434.5	434.1	463.0	446.7
Durable	288.0	306.5	300.0	296.5	302.4	302.2	324.9	318.0
Nondurable	134.7	134.0	137.3	133.7	132.1	131.9	138.1	128.8
Services ${ }^{1}$....................................	155.4	157.8	154.3	157.8	158.6	157.8	157.0	158.3
Receipts of factor income ${ }^{2}$................	105.5	104.7	98.9	98.3	105.0	107.1	108.5	
Imports of goods and services	611.6	674.8	630.3	647.9	668.4	678.2	704.5	709.3
Merchandise ${ }^{1}$................................	511.9	571.4	530.3	545.9	565.7	574.9	598.9	604.0
Durable	332.5	379.5	348.0	360.5	372.1	381.0	404.5	410.6
Nondurable	179.4	191.8	182.4	185.5	193.6	193.9	194.4	193.4
Services ${ }^{1}$....................................	99.7	103.4	100.0	102.0	102.7	103.3	105.6	105.3
Payments of factor income ${ }^{3}$..............	97.7	102.2	98.8	95.8	103.0	99.6	110.4	

1. Exports and imports of certain goods, primarily military equipment purchased and sold by the Federal Government, are included in services.
2. Consists largely of receipts by U.S. residents of interest and dividends and reinvested earnings of foreign affiliates of U.S. corporations.
3. Consists largely of payments to foreign residents of interest and dividends and reinvested earnings of U.S. affiliates of foreign corporations.

Table 4.4.-Exports and Imports of Merchandise by End-Use Category in Constant Dollars
[Billions of 1987 doliars]

Exports of merchandise..	422.7	440.5	437.3	430.2	434.5	434.1	463.0	446.7
Foods, feeds, and beverages	35.7	35.4	37.7	36.4	35.2	33.7	36.4	32.4
Industrial supplies and materials	97.5	95.1	96.6	94.7	94.0	94.3	97.4	92.3
Durable goods	32.1	31.1	31.9	31.1	30.6	31.4	31.2	29.9
Nondurable goods	65.4	64.0	64.7	63.6	63.4	63.0	66.2	62.4
Capital goods, except automotive	178.4	192.7	186.8	184.3	189.5	190.5	206.5	203.5
Civilian aircraft, engines, and parts	30.9	26.1	30.0	26.6	29.0	21.6	27.2	26.3
Computers, peripherais, and parts	51.0	60.8	56.4	55.9	57.0	62.5	67.6	69.7
Other ...	96.6	105.8	100.5	101.8	103.4	106.3	111.7	107.5
Automotive vehicles, engines, and parts	41.9	45.6	45.1	45.3	45.3	42.8	49.1	47.5
Consumer goods, except automotive	43.5	45.9	45.5	44.1	44.9	46.5	48.2	46.0
Durable goods	22.7	24.3	23.4	23.2	24.1	24.4	25.4	24.6
Nondurable goods	20.8	21.7	22.2	21.0	20.8	22.1	22.8	21.4
Other	25.6	25.7	25.5	25.4	25.7	26.3	25.5	25.1
Durable goods	12.8	12.9	12.8	12.7	12.8	13.1	12.8	12.5
Nondurable goods	12.8	12.9	12.8	12.7	12.8	13.1	12.8	12.5
Imports of merchandise	511.9	571.4	530.3	545.9	565.7	574.9	598.9	604.0
Foods, feeds, and beverages \qquad Industrial supplies and materials, except	26.0	25.8	25.6	26.1	25.6	25.7	25.8	25.6
petroleum and products	72.0	78.0	73.3	75.3	76.0	78.8	81.9	83.9
Durable goods	34.1	37.2	34.8	35.3	34.9	37.6	41.1	40.6
Nondurable goods	37.9	40.8	38.5	40.0	41.1	41.1	40.8	43.3
Petroleum and products	51.2	56.5	52.8	53.4	57.8	56.7	58.1	55.2
Capital goods, except automotive	148.4	179.3	160.0	165.3	175.8	181.4	194.5	202.6
Civilian aircraft, engines, and parts ...	10.3	9.0	10.5	8.5	9.4	8.4	9.8	8.1
Computers, peripherals, and parts	59.7	82.5	68.2	73.1	79.0	85.8	92.0	96.4
Other	78.3	87.8	81.3	83.8	87.4	87.2	92.7	98.2
Automotive vehicles, engines, and parts	79.7	87.4	81.9	87.0	87.4	85.3	89.8	88.5
Consumer goods, except automotive	105.2	114.7	106.7	110.2	113.0	117.8	117.6	117.5
Durable goods	55.6	60.8	56.2	58.6	58.9	62.0	63.6	63.5
Nondurable goods	49.6	53.9	50.5	51.6	54.1	55.8	54.0	54.0
Other	29.5	29.7	30.1	28.5	30.0	29.3	31.2	30.7
Durable goods	14.7	14.9	15.0	14.2	15.0	14.6	15.6	15.3
Nondurable goods	14.7	14.9	15.0	14.2	15.0	14.6	15.6	15.3
Addenda:								
Exports of agricultural products ${ }^{1}$,......	39.7	38.5	41.1	38.7	38.8	37.3	39.1	35.4
Exports of nonagricultural products ...	382.9	402.0	396.1	391.5	395.7	396.8	423.9	411.3
Imports of nonpetroleum products	460.8	514.8	477.6	492.5	507.9	518.2	540.7	548.8

[^5]Table 5.1.-Gross Saving and Investment
[Bililions of dollars)

	1992	1993	Seasonally adjusted at annual rates					
			1992	1993				1994
			IV	1	II	III	IV	1
Gross saving	717.8	780.2	718.8	762.0	766.7	774.3	817.8	
Gross private saving	986.9	1,004.8	969.4	1,024.8	988.3	988.7	1,017.5	
Personal saving	238.7	189.9	279.7	177.9	208.7	179.7	193.4	182.0
Undistributed corporate profits with inventory valuation and capital								
consumption adjustments	110.4	123.6	121.7	103.7	116.3	129.3	145.1	
Undistributed profits	98.6	106.4	92.0	91.4	103.9	104.6	125.6
Inventory valuation adiusiment \qquad	-5.3	-7.1	4.9	-12.7	-12.2	1.0	-4.3	-17.7
Capital consumption adjustment \qquad	17.1	24.3	24.7	25.1	24.7	23.8	23.9	20.6
Corporate consumption of fixed capital \qquad	396.6	408.8	396.5	402.2	405.2	414.0	413.9	432.8
Noncorporate consumption of fixed capital \qquad	261.3	262.5	251.5	261.0	258.1	265.7	265.1	301.7
Wage accruals less disbursements	-20.0	20.0	-80.0	80.0	0	0	0	0
Govemment surplus or deficit (-), national income and product accounts	-269,1	-224.6	-250.6	-262.8	-221.5	-214.4	-199.7	
Federal	-276.3	-226.4	-264.2	-263.5	-222.6	-212.7	-207.0	
State and local	7.2	1.8	13.5	. 8	1.1	-1.7	7.2	
Capital grants received by the United States (net)	0	0	0	0	0	0	0	0
Gross investment	741.4	795.4	750.9	796.5	778.7	787.6	819.0	
Gross private domestic investment \qquad	796.5	891.7	833.3	874.1	874.1	884.0	934.5	978.0
Net foreign investment	-55.1	-96.2	-82.4	-77.6	-95.4	-96.4	-115.5	
Statistical discrepancy	23.6	15.2	32.1	34.4	12.0	13.3	1.2	

Table 5.4.-Fixed Investment by Type
[Billions of dollars]

	1992	1993	Seasonally adjusted at annual rates					
			$\begin{array}{\|c\|} \hline 1992 \\ \hline \mathrm{IV} \\ \hline \end{array}$	1993				$\begin{array}{\|c\|} \hline 1994 \\ \hline 1 \end{array}$
				1	II	III	IV	
Fixed investment	789.1	876.1	821.3	839.5	861.0	876.3	927.6	943.8
Nonresidential	565.5	623.7	579.5	594.7	619.1	624.9	656.0	664.7
Structures	172.6	178.7	171.1	172.4	177.6	179.1	185.8	178.9
Nonresidential buildings, including farm \qquad	114.6	119.4	111.9	114.8	117.1	119.6	125.9	122.5
Utilities	35.8	36.5	36.9	35.1	36.6	36.6	37.8	35.4
Mining exploration, shafts, and wells \qquad	12.4	13.7	12.6	12.8	14.0	14.4	13.5	13.3
Other structures	9.8	9.2	9.7	9.7	9.8	8.6	8.6	7.8
Producers' durable equipment	392.9	445.0	408.3	422.2	441.6	445.8	470.2	485.8
Information processing and related								
equipment	135.5	151.9	139.7	142.7	147.0	154.6	163.4	168.1
Computers and peripheral equioment ${ }^{1}$	39.8	48.1	40.7	45.8	46.1	49.5	50.9	52.3
Other ...	95.7	103.9	98.9	96.9	100.9	105.1	112.5	115.8
Industrial equipment	87.2	97.8	91.2	92.4	95.9	98.7	104.0	108.0
Transportation and retated								
equipment	90.7	105.4	96.1	101.3	110.1	101.9	108.3	113.7
Other	79.5	89.9	81.3	85.8	88.5	90.6	94.5	95.9
Residential	223.6	252.4	241.8	244.9	241.9	251.3	271.6	279.1
Structures	216.3	244.6	234.3	237.3	234.2	243.4	263.5	271.1
Single family	116.5	133.8	124.3	132.4	127.5	131.1	144.0	151.7
Multifamily	13.1	10.8	11.7	10.3	10.3	11.4	11.1	10.9
Other structures	86.7	100.1	98.3	94.6	96.4	100.9	108.4	108.5
Producers' durable equipment	7.3	7.8	7.5	7.5	7.6	7.9	8.1	8.0

1. Includes new compulers and periopheral equipment only.

Table 5.5.-Fixed Investment by Type in Constant Dollars
[Billions of 1987 dollars]

	1992	1993	Seasonally adjusted at annual rates					
			1992	1993				1994
			IV	1	II	III	IV	I
Fixed investment	726.4	806.0	754.3	773.7	790.6	806.9	852.9	866.2
Nonresidential	529.2	591.8	543.7	562.3	584.3	594.8	625.7	634.1
Structures	150.6	151.5	148.0	148.2	151.1	151.2	155.6	148.9
Nonresidential buildings, including farm \qquad	100.8	101.8	97.5	99.3	100.5	101.5	106.0	102.6
Utilities	30.9	30.6	31.6	29.9	30.6	30.5	31.2	29.0
Mining exploration, shafts, and wells	10.0	11.1	10.3	10.4	11.4	11.7	10.9	10.6
Other structures	8.9	8.1	8.6	8.6	8.7	7.5	7.5	6.8
Producers' durable equipment	378.6	440.2	395.7	414.1	433.2	443.6	470.0	485.1
Information processing and related								
equipment \qquad computers and peripheral	159.9	195.2	168.5	178.6	186.8	200.9	214.6	222.4
Computers and peripheral equipment ${ }^{1}$ \qquad	71.2	100.4	77.2	89.5	94.5	105.1	112.4	117.2
Other	88.7	94.8	91.3	89.0	92.3	95.9	102.2	105.2
Industrial equipment	72.7	80.2	75.7	76.7	78.8	80.5	84.7	87.9
Transportation and related equipment	77.7	88.8	82.1	85.7	92.8	85.7	91.0	94.1
Other ...	68.3	76.1	69.4	73.2	74.9	76.5	79.7	80.7
Residential	197.1	214.2	210.6	211.4	206.2	212.1	227.2	232.2
Structures	190.1	206.8	203.3	204.1	198.9	204.6	219.6	224.6
Single family	102.7	113.1	107.9	113.9	108.7	110.0	119.6	125.6
Multifamily	11.8	9.3	10.4	9.1	9.0	9.8	9.4	9.3
Other structures	75.6	84.4	85.0	81.1	81.2	84.8	90.5	89.7
Producers' durable equipment	7.0	4	7.2	7.3	7.3	7.5	7.7	7.6

1. Includes new computers and peripheral equipment only.

Table 5.10.-Change in Business Inventories by Industry
[Billions of dollars]

	1982	1993	Seasonally adjusted at annual rales					
			1992	1993				1994
			IV	1	11	III	IV	1
Change in business inventories	7.3	15.6	12.0	34.6	13.1	7.7	6.9	34.2
Farm ...	5.0	-5.5	2.4	1.5	-3.7	-14.9	-5.0	. 5
Nonfarm	2.3	21.1	9.5	33.0	16.8	22.6	12.0	33.7
Change in book value ...	8.8	31.2	3.3	51.7	34.8	21.9	16.2	57.4
Inventory valuation adjustment	-6.4	-10.1	6.2	-18.7	-18.0	. 7	-4.3	-23.7
Manufacturing	-6.0	-. 8	-14.2	-1.8	4.2	2.9	-8.7	7.2
Durable goods	-10.6	-1.7	-17.0	-5.5	. 4	2.6	-4.3	5.3
Nondurable goods	4.6	. 9	2.8	3.7	3.9	. 2	-4.4	1.8
Wholesale trade	6.1	4.2	13.5	7	6.8	7.7	1.4	4.6
Durable goods	3.9	1.3	3.8	-3.2	. 6	7.0	1.0	7.2
Nondurable goods	2.2	2.8	9.7	3.9	6.3	. 7	. 4	-2.6
Merchant wholesalers ...	6.3	3.9	15.0	-. 3	6.1	10.0	0	2.3
Durable goods	4.4	1.0	5.5	-3.7	1.8	6.2	-. 2	5.4
Nondurable goods	1.8	2.9	9.5	3.5	4.2	3.7	. 2	-3.1
Normerchant wholesalers	-. 2	. 2	-1.5	. 9	. 8	-2.2	1.4	2.3
Durable goods	-. 5	. 3	-1.7	. 5	-1.3	. 8	1.2	1.8
Nondurabie goods 3	-. 1	. 2	. 4	2.0	-3.0	. 2	. 5
Retail trade	6.5	12.2	10.5	27.6	3.0	5.3	12.8	13.8
Durable goods	4.8	8.7	6.5	21.9	. 4	-. 4	12.9	12.3
Automotive	-. 7	3.2	-1.9	19.0	-. 6	-8.4	2.9	7.5
Other	5.5	5.5	8.4	2.9	1.0	8.0	10.0	4.8
Nondurable goods	1.6	3.5	4.0	5.8	2.6	5.7	-. 1	1.6
Other	-4.3	5.6	-. 2	6.5	2.8	6.7	6.5	8.1
Durable goods	3.8	2.6	5.5	1.9	1.4	5.6	1.4	5.3
Nondurable goods	-8.1	3.0	-5.8	4.6	1.4	1.1	5.1	2.8

Table 5.12.-Inventories and Final Sales of Domestic Business by Industry
[Billions of dollars]

	Seasonally adiusted quarterly totals					
	$\begin{array}{\|c\|} \hline 1992 \\ \hline \text { IV } \end{array}$	1993				$\frac{1994}{1}$
		1	11	III	IV	
Inventories ${ }^{\text { }}$..	1,099.0	1,119.5	1,119.6	1,130.9	1,134.8	1,149.9
Farm ...	95.1	99.1	95.4	95.1	92.7	95.6
Nonfarm	1,003.9	1,020.4	1,024.2	1,035.8	1,042.1	1,054.3
Durable goods	580.9	590.7	592.1	600.3	607.5	618.0
Nondurable goods	423.0	429.7	432.2	435.5	434.6	436.3
Manufacturing	400.9	402.0	402.4	407.0	405.0	407.7
Durable goods	251.0	250.8	250.7	254.2	253.8	256.6
Nondurable goods	149.9	151.2	151.7	152.8	151.2	151.1
Wholesale trade	247.9	249.6	251.3	254.6	256.7	258.9
Durable goods	155.4	155.9	156.6	159.1	160.3	163.1
Nondurable goods	92.5	93.7	94.7	95.5	96.4	95.8
Merchant wholesalers ..	221.4	222.6	224.1	227.6	229.4	230.6
Durable goods ...	139.4	139.5	140.5	142.5	143.3	145.3
Nondurable goods	82.0	83.1	83.7	85.0	86.0	85.3
Nonmerchant wholesalers	26.5	27.0	27.2	27.0	27.3	28.3
Durable goods	16.0	16.4	16.1	16.6	17.0	17.8
Nondurable goods	10.4	10.6	11.1	10.4	10.4	10.5
Retail trade	269.5	280.1	281.2	282.7	286.6	291.4
Durable goods	129.4	137.0	138.0	138.2	143.0	146.4
Automotive ..	62.5	68.2	69.3	66.9	68.5	70.7
Other	67.0	68.7	68.7	71.3	74.5	75.8
Nondurable goods	140.1	143.1	143.3	144.5	143.6	145.0
Other	85.6	88.7	89.3	91.5	93.8	96.3
Final sales of domestic business ${ }^{2}$	436.9	439.0	445.5	450.7	461.1	464.5
Final sales of goods and structures of domestic business ${ }^{2}$ \qquad	240.5	240.4	243.9	245.9	253.8	254.9
Ratio of inventories to final sales of domestic business						
Inventories to final sales	2.52	2.55	2.51	2.51	2.46	2.48
Nonfarm inventories to final sales	2.30	2.32	2.30	2.30	2.26	2.27
Nonfarm inventories to final sales of goods and structures	4.17	4.24	4.20	4.21	4.11	4.14

[^6]2. Quarterly totals at monthly rates. Final saies of domestic business equals final sales of domestic product less gross product of households and institutions and general government and includes a small amount of final sales by farm.

Table 5.11.-Change in Business Inventories by Industry in Constant Dollars
[Bililions of 1987 dollars]

	1992	1993	Seasonally adjusted at annual rates					
			1992	1993				1994
			IV	1	11	III	IV	1
Change in business inventories	6.5	14.3	8.7	29.3	13.0	6.5	8.5	30.5
Farm ..	3.8	-5.3	1.2	0	-4.1	-12.9	-4.4	-. 2
Nonfarm ...	2.7	19.7	7.5	29.3	17.1	19.4	12.9	30.7
Manufacturing	-4.7	. 5	-12.5	-. 8	5.0	3.1	-5.3	7.8
Durable goods	-8.9	-. 5	-15.1	-4.6	1.4	2.8	-1.7	5.5
Nondurable goods	4.2	1.0	2.6	3.8	3.6	. 3	-3.6	2.3
Wholesale trade .	5.4	3.7	10.7	7	6.6	6.4	1.2	4.8
Durable goods	3.6	1.3	3.4	-2.8	. 6	6.3	1.1	6.6
Nondurable goods	1.8	2.4	7.3	3.6	6.1	. 1	,	-1.9
Merchant wholesalers .	5.6	3.5	12.8	-. 1	5.9	8.5	-. 4	2.6
Durable goods	4.0	. 9	5.0	-3.3	1.7	5.6	-. 3	4.8
Nondurable goods	1.6	2.5	7.7	3.2	4.2	2.9	-1	-2.3
Nonmerchant wholesalers	-. 2	. 3	-2.1	. 8	.7	-2.1	1.6	2.2
Durable goods	-. 4	. 4	-1.6	. 4	-1.2	. 8	1.4	1.8
Nondurable goods	3	-. 1	-. 4	4	1.8	-2.8	. 2	. 4
Retail trade	5.9	10.7	9.7	24.0	3.0	4.8	11.1	11.5
Durable goods	4.3	7.6	5.9	18.9	8	-. 1	11.0	10.3
Automotive	-. 6	2.9	-1.7	16.6	-. 5	-7.1	2.4	6.2
Other	4.9	4.8	7.6	2.3	1.2	7.0	8.6	4.1
Nondurable goods	1.6	3.1	3.8	5.1	2.3	4.9	. 1	1.2
Other	-3.9	4.7	-. 4	5.4	2.4	5.0	5.9	6.5
Durable goods	3.4	2.2	4.9	1.6	1.2	4.8	1.2	4.4
Nondurable goods	-7.3	2.5	-5.3	3.8	1.2	. 2	4.7	2.2

Table 5.13.-Inventories and Final Sales of Domestic Business by Industry in Constant Dollars
[Billions of 1987 dollars]

	Seasonally adjusted quarterly totais					
	$\frac{1992}{\mathrm{IV}}$	1993				$\frac{1994}{1}$
		1	11	III	IV	
Inventories ${ }^{1}$......................................	985.3	992.6	995.9	997.5	999.6	1,007.2
Farm	88.1	88.1	87.1	83.9	82.8	82.7
Nonfarm	897.2	904.5	908.8	913.6	916.8	924.5
Durable goods	525.3	528.6	529.6	533.0	535.9	542.7
Nondurable goods	371.8	375.9	379.2	380.6	380.9	381.8
Manufacturing	365.9	365.7	366.9	367.7	366.4	368.4
Durable goods	231.9	230.7	231.1	231.8	231.4	232.8
Nondurable goods	134.0	135.0	135.8	135.9	135.0	135.6
Wholesale trade	217.7	217.9	219.6	221.2	221.5	222.7
Durable goods	138.5	137.8	138.0	139.5	139.8	141.5
Nondurable goods	79.2	80.1	81.6	81.6	81.7	81.2
Merchant wholesalers	193.8	193.8	195.3	197.4	197.3	197.9
Durable goods	124.0	123.1	123.6	125.0	124.9	126.1
Nondurable goods	69.8	70.6	71.7	72.4	72.4	71.8
Nonmerchant wholesalers	23.9	24.2	24.3	23.8	24.2	24.7
Durable goods	14.6	14.7	14.4	14.6	14.9	15.4
Nondurable goods	9.4	9.5	9.9	9.2	9.3	9.4
Retail trade	236.4	242.4	243.2	244.4	247.1	250.0
Durable goods	115.2	119.9	120.1	120.1	122.9	125.4
Automotive	56.5	60.6	60.5	58.7	59.4	60.9
Other	58.7	59.3	59.6	61.4	63.5	64.5
Nondurable goods	121.2	122.5	123.0	124.2	124.3	124.6
Other ...	77.1	78.5	79.1	80.3	81.8	83.5
Final sales of domestic business ${ }^{2}$	361.5	360.4	363.4	366.8	373.9	374.7
Final sales of goods and structures of domestic business ${ }^{2}$	208.6	207.0	209.3	211.3	217.6	217.6
Ratio of inventories to final sales of domestic business						
Inventories to final sales	2.73	2.75	2.74	2.72	2.67	2.69
Nonfarm inventories to final sales	2.48	2.51	2.50	2.49	2.45	2.47
Nonfarm inventories to final sales of goods and structures \qquad	4.30	4.37	4.34	4.32	4.21	4.25

[^7]Table 6.1C.-National Income Without Capital Consumption Adjustment by Industry
[Billions of dollars]

	1992	1993	Seasonally adjusted at annual rates					
			1992	1993				1994
			IV	1	II	III	IV	1
National income without capital consumption adjustment	4,880.3	5,772.7	5,003.2	5,071.1	5,133.6	5,177.6	5,308.6	
Domestic industries	4,873.0	5,172.5	5,005.7	5,070.7	5,134.1	5,171.2	5,314.2	
Private industries	4,138.5	4,407.2	4,262.0	4,313.3	4,372.8	4,401.9	4,540.7	
Agriculture, forestry, and fisheries \qquad	100.9	105.3	104.3	112.5	106.7	84.2	117.6	
Mining	38.5	40.1	40.1	40.2	39.3	39.6	41.1	
Construction	212.8	228.0	218.1	219.3	224.7	231.6	236.4	
Manufacturing	895.3	928.2	919.0	909.6	925.8	922.5	954.8	
Durable goods	501.7	522.6	518.8	507.6	518.0	520.8	543.9	
Nondurable goods	393.6	405.6	400.2	401.9	407.7	401.8	411.0	.
Transportation and public utilities \qquad	356.1	376.1	361.4	369.0	370.7	378.4	386.1	
Transportation	151.0	161.8	154.4	157.4	158.9	164.4	166.7	
Communications Electric, gas, and sanitary services	103.7 101.5	107.4 106.9	106.4 100.6	105.4 106.2	108.2 103.6	108.5 105.6	107.3 112.1	
Wholesale trade	283.6	297.7	297.8	288.2	299.8	297.4	305.2	
Retail trade	416.7	444.9	428.7	432.2	441.1	449.1	457.3	
Finance, insurance, and real estate \qquad	748.9	816.0	768.3	801.2	805.9	818.2	838.8	
Services	1,085.8	1,171.0	1,124.4	1,141.1	1,158.9	1,180.7	1,203.4
Government	734.5	765.3	743.8	757.4	761.3	769.2	773.5	
Rest of the word	7.3	. 2	-2.5	. 4	-. 5	6.4	-5.6	

Table 6.16C.-Corporate Profits by Industry
[Billions of dollars]

	1992	1993	Seasonally adiusted at annual rates					
			1992	1993				1994
			N	1	11	III	N	1
Corporate profits with inventory valuation and capital consumption adjustments \qquad	407.2	466.6	439.5	432.1	458.1	468.5	507.9	
Domestic industries	344.9	407.9	384.8	373.0	400.0	405.8	452.8	
Financial	66.7	87.4	70.7	81.0	85.0	87.6	96.1	
Nonfinancial	278.3	320.5	314.1	292.1	315.0	318.2	356.7	
Rest of the world	62.3	58.7	54.7	59.0	58.1	62.7	55.1	
Receipts from the rest of the world ...	65.2	71.3	60.5	66.7	71.4	74.0	73.2	
Less: Payments to the rest of the world \qquad	3.0	12.6	5.8	7.7	13.3	11.3	18.1	
Corporate profits with inventory valuation adjustment \qquad	390.1	442.3	414.8	407.0	433.4	444.8	484.0	
Domestic industries	327.8	383.6	360.1	348.0	375.3	382.1	428.9	
Financial	78.1	99.0	82.0	92.3	96.4	99.3	108.1	
Federal Reserve banks .	17.8	16.2	16.7	16.6	16.2	16.0	16.2	
Other	60.3	82.8	65.3	75.7	80.2	83.3	91.9	
Nonfinancial	249.8	284.6	278.1	255.7	278.9	282.8	320.8	
Manufacturing	115.5	131.7	128.0	118.9	132.5	126.7	148.9	
Durable goods	48.3	60.2	58.0	48.0	58.4	59.9	74.4	
Primary metal industries	. 6	1.4	0	-. 5	2.5	1.1	2.6	
Fabricated metal products Industrial machinery and	7.4	6.5	6.6	5.5	6.9	6.3	7.6	
equipment	6.6	7.2	7.8	5.7	6.2	8.8	8.0	
Electronic and other electric equipment	12.1	14.6	17.6	14.9	12.1	14.4	17.2	
Motor vehicles and equipment	3.5	9.0	4.9	3.1	10.0	8.1	15.0	
Other	18.1	21.4	21.0	19.4	20.7	21.3	24.1	
Nondurable goods	67.2	71.6	70.0	70.9	74.2	66.8	74.5	
Food and kindred products ... Chemicals and allied	17.0	15.1	15.2	18.0	14.8	14.6	13.0	
products	15.7	16.8	17.7	18.4	16.3	14.6	17.9	
Petroleum and coal products	6.1	11.9	5.0	7.2	13.5	12.0	14.9	
Other	28.5	27.7	32.1	27.3	29.5	25.6	28.6	
Transportation and public utilities ..	52.0	57.8	50.4	53.3	53.9	59.0	64.9	
Wholesale and retail trade	46.3	54.4	57.7	46.0	55.4	55.1	61.4	
Rest of the world ...	36.0	40.6	42.0	37.5	37.2	42.1	45.8	
Rest of the world	62.3	58.7	54.7	59.0	58.1	62.7	55.1	

Table 7.1.-Fixed-Weighted and Alternative Quantity and Price Indexes for Gross Domestic Product
(Index numbers, 1987=100

	1992	1993	Seasonally adjusted							1992	1993	Seasonally adjusted					
			$\begin{array}{\|c\|} \hline 1992 \\ \hline \text { IV } \\ \hline \end{array}$	1993				$\begin{array}{\|c} 1994 \\ \hline 1 \end{array}$				1992		199			1994
				1	11	III	N					IV	1	II	III	IV	1
Gross domestic product:									Non								
Curfent dollars	133.0	140.5	136.4	137.9	139.4	140.9	143.8	145.6	Curr	113.6	125.3	116.4	119.5	124.4	125.5	131.8	133.5
Fixed 1987 weights	109.8	113.1	111.6	111.9	112.4	113.2	115.1	115.8	weig								
Chain-type annual weights	109.5	112.5	111.3	111.4	111.9	112.5	114.2		Fixed 1987 weights	$\begin{array}{\|c} 1 \\ 106.3 \\ 103.3 \end{array}$	$\begin{aligned} & 118.9 \\ & 113.3 \end{aligned}$	109.2	113.0 108.4	117.4 112.4	119.5 113.4	125.7	27
Benchmark-years weights	109.4	112.3	111.1	111.2	111.7	112.3	114.0		Chain-type annual weights Benchmark-years weights	$\begin{aligned} & 103.3 \\ & 104.1 \end{aligned}$	$\begin{aligned} & 113.3 \\ & 114.4 \end{aligned}$	$\left.\begin{aligned} & 105.7 \\ & 106.7 \end{aligned} \right\rvert\,$	108.4 109.4	$\begin{aligned} & 112.4 \\ & 113.5 \end{aligned}$	$\begin{aligned} & 113.4 \\ & 114.5 \end{aligned}$	$\begin{aligned} & 119.0 \\ & 120.1 \end{aligned}$	
Price indexes: Fixed 1987 weights	122.1	125.9	123.5	124.8	125.6	126.3	127.0	127.9	Benchmark-years weights Price indexes:	104.1	114.4	106.7	109.4	113.5	114.5	120.1	
Chain-ype annual weights	121.5	125.0	122.6	123.8	124.7	125.3	126.0		Fixed 1987 weights	111.4	113.3	112.0	112.4	113.1	113.6	114.0	114.5
Benchmark-years weights	121.7	125.2	122.9	124.1	124.9	125.6	126.3		Chain-type annual weights	109.9	111.0	110.1	110.4	110.9	111.2	111.4	
Implicit price deflator	121.1	124.2	122.2	123.3	124.0	124.5	124.9	125.7	Benchmark-years weights	109.1	110.2	109.4	109.6	110.1	110.5	110.6	
Personal consumption expenditures:									Implicit price deflator	106.9	105.4	106.6	105.7	106.0	105.1	104.8	104.8
Current dollars	135.6	143.9	139.4	140.8	142.8	144.8	147.2	149.1	Structures								
Quantity indexes: Fixed 1987 weights							1149	116.0	Current dollars .	100.7	104.3	99.9	100.6	103.7	104.5	108.4	104.4
Fixed Chain -type annual weights	109.5	112.3	111.3	11.9	111.7	112.8	113.9	16.0	Quantity indexes:								
Benchmark-years weights ...	109.1	112.4	110.8	110.9	111.8	112.9	114.0		Fixed 1987 weights	87.9	88.5	86.4	86.5	88.2	88.3	90.8	86.9
Price indexes:									Chain-type annual weights	87.9	88.5	86.4	86.5	88.3	88.3	90.9	
Fixed 1987 weights	124.9	128.7	126.5	127.5	128.4	128.9	129.8	130.4	Benchmark-years weights	87.9	88.5	86.4	86.5	88.3	88.4	90.9	
Chain-type annual weights ...	124.4	128.0	125.8	126.8	127.7	128.2	129.1		Price indexes:								
Benchmark-years weights	124.5	128.1	125.9	127.0	127.9	128.3	129.2		Fixed 1987 weights	114.6	117.8	115.6	116.3	117.4	118.4	119.3	120.1
Implicit price deflator	123.9	127.2	125.3	126.2	127.0	127.4	128.1	128.5	Chain-type annual weights	114.6	117.9	115.6	116.3	117.4	118.4	119.3	
Durable goods:									Benchmark-years weights	114.6	117.8	115.6	116.3	117.4	118.3	119.3	
Current doliars.	123.2	133.2	128.0	127.6	131.7	134.2	139.4	143.0	Implicit price deflator	114.6	117.9	115.7	116.3	117.5	118.5	119.4	120.1
Quantity indexes: Fixed 1987 weights	113	121.4	7.3	116.9	119.9	122.1	126.6	129.5	Producers' durable								
Chain-type annual weights	111.6	118.9	115.5	114.8	117.7	119.5	123.6		equipment:								
Benchmark-years weights	111.8	119.1	115.7	115.0	117.9	119.8	123.8		Current dollars	120.3	136.3	125.1	129.3	135.3	136.6	144.0	148.8
Price indexes:									Quantity indexes:								
Fixed 1987 weights	111.5 110.4	113.8	112.1	112.6	113.5	114.1	114.9	115.4	Fixed 1987 weights	116.0	134.9	121.2	126.9	132.7	135.9	144.0	148.6
Chain-type annual weights Benchmark-years weights	110.4	112.2	110.8	111.2	112.0	112.5	113.2		Chain-type annual weights	111.8	127.0	116.4	120.4	125.8	127.2	134.5	
Benchmark-years weights \qquad Implicit price deflator \qquad	$\left\|\begin{array}{\|c\|} 110.2 \\ 108.9 \end{array}\right\|$	112.1	110.7 109.1	111.1 109.2	111.9	112.4 109.9	113.1 110.1	110.4	Benchmark-years weights	112.8	128.3	117.6	121.7	127.1	128.6	136.0	
Nondurable goods:									Fixed 1987 weights	109.7	110.9	110.1	110.4	110.9	111.2	111.2	11.6
Current dollars	128.7	133.5	131.7	132.1	133.0	133.8	135.2	136.1	Chain-type annual weights	107.6	107.7	107.5	107.6	107.8	107.9	107.7	
Quantity indexes:									Benchmark-years weights	106.7	106.9	106.7	106.8	107.0	107.1	106.9	
Fixed 1987 weights	105.1	107.6	107.0	106.4	107.1	108.1	108.8	109.5	Implicit price deflator	103.8	101.1	103.2	102.0	101.9	100.5	100.0	100.1
Chain-type annual weights	104.9	107.2	106.7	106.1	106.8	107.7	108.4										
Benchmark-years weights Price indexes:	104.9	107.2	106.7	106.1	106.8	107.7	108.4		Residential: Current dollars	99.3	112.1	107.4	108.7	107.4	111.6	120.6	123.9
Fixed 1987 weights	123.0	124.9	123.8	124.9	125.0	124.5	125.1	125.2	Quantity indexes:								
Chain-type annual weights	122.7	124.5	123.5	124.5	124.6	124.2	124.8		Fixed 1987 weights	87.5	95.1	93.5	93.8	91.6	94.2	100.9	103.1
Benchmark-years weights	122.7 122.4	124.6	123.5	124.5	124.7	124.3	124.8		Chain-type annual weights	87.5	95.1	93.5	93.8	91.6	94.1	100.9	
Implicit price deflator	122.4	124.1	123.1	124.1	124.2	123.7	124.3	1243	Benchmark-years weights	87.5	95.2	93.5	93.9	91.6	94.2	101.0	
Services:									Price indexes:								
Current dollars ...	143.0	152.9	147.1	149.4	151.7	154.2	156.5	158.5	Fixed 1987 weights	113.4	117.7	114.8	115.8	117.2	18.5	119.5	120.1
Quantity indexes:									Chain-type annual weights	113.5	117.8	114.9	115.9	117.3	118.6	119.5	
Fixed 1987 weights	111.3	114.5	112.5	113.3	113.9	115.0	115.8	116.7	Benchmark-years weights	113.4	117.7	114.8	115.8	117.2	118.5	119.4	
Chain-type annual weights Benchmark-years weights	111.0	114.0	112.0	112.8	113.4 113.5	114.4	115.2		Implicit price deflator	113.4	117.8	114.9	115.8	117.3	118.5	119.5	120.2
Price indexes:									Exports of goods and services:								
Fixed 1987 weights	129.5	134.7	131.6	132.8	134.2	135.2	136.3	137.4	Current dollars	176.0	181.8	179.9	178.9	181.3	179.5	187.5	183.8
Chain-type annual weights Benchmark-years weights	128.9	133.9	130.9	132.1	133.5	134.5	135.6		Quantity indexes:								
Benchmark-years weights Implicit price deflator	129.1	134.2	131.2	132.4	133.8	134.7	135.9		Fixed 1987 weights ...	158.8	164.4	162.5	161.6	163.0	162.6	170.4	166.2
Implicit price deflator	128.5	133.5	130.7	131.8	133.1	134.0	135.1	135.9	Chain-type annual weights	155.9	160.0	159.0	157.9	159.2	157.8	164.9	
Gross private domestic investment: Current dollars									Benchmark-years weights	156.8	161.0	160.0	158.9	160.2	158.8	166.0	
Current dollars \qquad Quantity indexes:	106.3	119.0	111.2	116.7	116.7	118.0	124.7	130.5	Price indexes:								
Fixed 1987 weights	97.8	109.5	101.8	107.2	107.2	108.6	115.0	119.7	Fixed 1987 weights	113.7	115.4	114.3	114.7	115.5	115.7	115.9	116.9
Chain-type annual weights	96.2	105.9	99.9	104.4	104.1	104.6	110.6		Chain-type annual weights	112.9	113.9	113.2	113.4	114.1	114.1	114.2	
Benchmark-years weights	96.5	106.4	100.4	104.9	104.6	105.1	111.2		Benchmark-years weights	112.3	113.4	112.6	112.9	113.5	113.5	113.6	
Price indexes:									Implicit price deflator	110.8	110.6	110.7	110.8	111.3	110.4	110.1	110.5
Fixed 1987 weights									Imports of goods and services:								
Chain-type annual weights Benchmark-years weights								Current dollars	132.2	143.0	136.8	138.0	143.0	143.0	148.2	148.1
Implicit price deflator									Quantity indexes:								
Fixed investment:									Fixed 1987 weights	120.6	133.1	124.3	127.8	131.8	133.8	138.9	139.9
Current dollars ...	109.1	121.2	113.6	116.1	119.1	121.2	128.3	130.5	Chain-type annual weights	11	126.7	119.5	122.	125.8	127.0	131.	
Quantity indexes:									Benchmark-years weights Price indexes:	117.	128.1	120.9	123.7	127.2	128.	133.
Fixed 1987 weights	100.5	111.5	104.3	107.0	109.3	111.6	$\begin{gathered} 118.0 \\ 113.3 \end{gathered}$	19.8		115.1	115.0	115.9	114.5		114.8	115.1	114.6
Chain-type annual weights	98.4	107.6	101.9	1038	105.9	107.3	113.3	Fixed 1987 weights	113.4	112.0	114.1	112.5	113.4		115.1	
Benchmark-years weights \qquad Price indexes:	98.9	108.3	102.6	104.5	106.6	108.1	114.1		Chain-type annual weights	113.4 112.3	112.8	114.1	112.5	113.4	112.5	112.6	
Fixed 1987 weights	112.0	114.7	112.8	113.5	114.4	115.2	115.7	116.2	Implicit price deflator	109.6	107.5	110.	108.0	108.5	106.9	106.	105.9
Chain-lype annual weights	111.0	112.9	111.5	112.0	112.7	113.3	113.7										
Benchmark-years weights	110.3	112.3	110.9	111.4	112.1	112.7	113.1										
Implicit price deflator		108.	108.9	10	108.91	108		109.0									

Table 7.1.-Fixed-Weighted and Alternative Quantity and Price Indexes for Gross Domestic Product-Continued
[Index numbers, 1987=100]

NOTE.-The quantity and price indexes in this table are calculated from weighted averages of the detailed output and prices used to prepare each aggregate and component. The fixed-weighted measures use as weights the composition of output in 1987. For the alternative indexes, the chain-type indexes with annual weights use weights for the preceding and current years, and the indexes with benchmark-years weights use weights of 1959, 1963, 1967, 1972, 1977, 1982, and 1987 and the most recent year. Percent changes from preceding period for selected items in this table are shown in table 8.1.

Table 7.2.-Fixed-Weighted and Alternative Quantity and Price Indexes for Gross Domestic Product, Final Sales, and Purchases [Index numbers, 1987=100]

1. Equals GDP less change in business inventories.
2. Equals GDP less net exports of goods and services or equals the sum of personal consumption expenditures, gross private domestic investment, and government purchases.
3. Equais gross domestic purchases less change in business inventories or equals the sum of personal consumption expenditures, gross private domestic fixed investment, and government purchases.
NOTE.-Percent changes from preceding period for selected items in this table are shown in table 8.1.

Table 7.3.-Fixed-Weighted and Alternative Quantity and Price Indexes for Gross National Product and Command-Basis Gross National Product

	1992	1993	Seasonally adjusted					
			$\begin{array}{\|c\|} \hline 1992 \\ \hline \text { IV } \\ \hline \end{array}$	1993				$\begin{array}{\|c} 1994 \\ \hline 1 \end{array}$
				I	11	III	IV	
Gross national product:								
Current dollars	133.0	140.3	136.3	137.8	139.2	140.9	143.5	
Quantity indexes: Fixed 1987 weights	109.9	113.1	111.5	111.8	112.3	113.2	114.9	
Chain-type annual weights	109.6	112.4	111.2	11.3	111.8	112.5	114.0	
Benchmark-years weights	109.5	112.3	111.0	111.2	111.7	112.4	113.9
Price indexes:								
Fixed 1987 weights	122.1	125.9	123.4	124.7	125.6	126.2	126.9	
Chain-type annual weights	121.4	124.9	122.5	123.8	124.6	125.2	126.0
Benchmark-years weights	121.6	125.2	122.8	124.0	124.9	125.5	126.3	
Implicit price deflator	121.1	124.1	122.2	123.3	124.0	124.4	124.8
Less: Exports of goods and services and receipts of tactor income: Current dollars	164.1	169.2	165.7	165.0	168.8			
Quantity index, fixed 1987 weights ...	145.7	149.9	147.2	146.3	148.9	149.0	155.3	
Plus: Command-basis exports of goods and services and receipts of factor income: Current dollars	176.0	181.8	179.9	178.9	181.3	179.5	187.5	
Quantity index, fixed 1987 weights ...	147.0	153.4	147.6	149.3	151.9	153.1	159.2	
Equals: Command-basis gross national product: Current dollars \qquad Quantity index, fixed 1987 weights ..								
	133.0	140.3	136.3	137.8	139.2	140.9	143.5
	110.0	113.4	111.6	112.1	112.6	113.7	115.3

NOTE.-Percent changes from preceding period for selected items in this table are shown in table 8.1
Table 7.4.-Price Indexes for Personal Consumption Expenditures by Major Type of Product, Fixed 1987 Weights
[Index numbers, 1987=100]

Personal consumption expenditures \qquad	124.9	128.7	126.5	127.5	128.4	128.9	129.8	130.4
Durable goods	111.5	113.8	112.1	112.6	113.5	114.1	114.9	115.4
Mo	112.2	115.8	113.3	113.9	115.3	116.6	117.5	17.9
Furniture and household equipment	104.0	104.3	104.2	103.9	104.2	104.3	105.0	105.3
Other	124.2	126.8	124.3	126.1	127.2	126.8	127.1	128.3
Nondurable goods	123.0	124.9	123.8	124.9	125.0	124.5	125.1	125.2
Food	122.0	124.3	122.7	123.5	124.2	124.3	125.3	125.7
Clothing and shoes	117.9	119.1	118.2	119.8	119.0	118.9	118.8	118.6
Gasoline and oil	123.3	122.2	124.7	126.3	123.1	118.8	120.4	119.8
Fuel oil and coal	116.5	116.1	117.3	116.2	117.4	116.5	114.3	115.9
Other	128.8	131.6	130.3	131.4	132.2	131.5	131.4	131.4
Services	129.5	134.7	131.6	132.8	134.2	135.2	136.3	137.4
Housing	124.1	127.8	125.4	126.5	127.6	128.1	129.0	130.3
Household operation	112.5	115.6	113.9	113.5	115.3	116.4	117.1	117.4
Electricity and gas	111.0	114.6	112.7	112.2	114.2	115.8	116.0	115.5
Other household operation ...	113.8	116.4	114.9	114.6	116.2	116.9	118.0	119.2
Transportation	128.3	135.5	131.9	134.4	134.9	136.0	136.7	138.2
Medical care	140.9	148.5	144.0	145.9	147.9	149.3	150.7	152.0
Other	132.2	137.2	134.4	135.4	136.6	137.6	139.1	140.0
Addenda: Price indexes for personal								
consumption expenditures: Chain-type annual weights	124.4	128.0	125.8	126.8	127.7	128.2	129.1	
Benchmark-years weights	124.5	128	125	127.0	127.9	128	129.2	

NOTE.-Percent changes from preceding period for selected items in this table are shown in table 8.1.

Table 7.6.-Price Indexes for Fixed Investment by Type, Fixed 1987 Weights
[Index numbers, 1987=100]

1. Includes new computers and periphera! equipment only.

Note.-Percent changes from preceding period for selected items in this table are shown in table 8.1
Table 7.9.-Price Indexes for Exports and Imports of Goods and Services and for Receipts and Payments of Factor Income, Fixed 1987 Weights
[index numbers, 1987=100]

Exports of goods and services	113.7	115.4	114.3	114.7	115.5	115.7	115.9	116.9
erchandise ${ }^{1}$	109.6	110.4	109.7	110.0	110.5	110.5	110.7	1.8
Durable	109.3	110.7	109.8	110.3	111.1	110.8	110.8	111.4
Nondurable	110.2	109.8	109.5	109.4	109.3	110.0	110.4	112.7
Services ${ }^{1}$	123.7	127.6	125.5	126.2	127.7	128.2	128.5	129.2
Receipts of factor income ${ }^{2}$	122.5	125.7	123.7	124.9	125.6	126.1	126.5	
Imports of goods and services	115.1	115.0	115.9	114.5	115.6	114.8	115.1	14.6
Merchandise ${ }^{1}$	112.1	112.0	113.1	111.6	112.7	111.8	111.9	111.4
Durable	112.8	114.3	113.5	113.3	114.1	114.3	115.4	115.9
Nondurable	110.7	108.0	112.4	108.6	110.3	107.3	105.7	103.5
Services ${ }^{1}$	128.9	128.4	128.3	127.5	128.2	128.3	129.6	129.2
Payments of factor income ${ }^{3}$	125.0	129.1	126.6	127.9	128.9	129.6	130.1	
Addenda: Price indexes for exports of goods and services:								
Chain-type annual weights ...	112.9	113.9	113.2	113.4	114.1	114.1	114.2	
Benchmark-years weights	112.3	13.	12	112.9	113.5	113.5	6	
Price indexes for imports of goods and services:								
Chain-type annual weights	113.4	112.8	114.1	112.5	113.4	112.5	112.6	
Benchmark-years weights	112.3	111.7	113.0	111.5	112.4	111.5	111.5	

1. Exports and imports of certain goods, primarily military equipment purchased and sold by the federal

Govemment, are included in services.
2. Consists largely of receipts by U.S. residents of interest and dividends and reinvested earnings of foreign affiliates of U.S. corporations.
3. Consists largely of payments to foreign residents of interest and dividends and reinvested earnings of U.S. affiliates of foreign corporations.

NOTE, - Percent changes from preceding period for selected items in this table are shown in table 8.1.

Table 7.10.—Price Indexes for Exports and Imports of Merchandise by End-Use Category, Fixed 1987 Weights
[index numbers, $1987=100$]

	1992	1993	Seasonally adjusted					
			1992	1993				1994
			IV	1	II	III	IV	1
Exports of merchandise	109.6	110.4	109.7	110.0	110.5	110.5	110.7	111.8
Foods, feeds, and beverages	114.5	116.1	111.7	113.1	113.1	118.2	120.1	124.8
Industrial supplies and materials	108.3	109.2	108.8	109.1	110.4	109.1	108.3	110.5
Durable goods	116.5	125.2	118.7	122.3	127.5	126.2	124.9	128.0
Nondurable goods	104.6	101.9	104.4	103.1	102.6	101.3	100.8	102.5
Capital goods, except automotive	105.8	105.9	105.8	105.8	106.0	105.7	106.0	106.0
Civilian aircraft, engines, and parts ...	122.1	125.6	123.5	124.6	125.4	125.1	126.8	127.2
Computers, peripherals, and parts	58.9	52.1	56.3	54.9	52.7	51.2	49.7	48.9
Other	116.5	117.9	117.0	117.1	117.9	118.1	118.6	118.6
Automotive vehicles, engines, and parts	112.3	113.2	113.0	113.3	113.3	113.1	113.3	113.8
Consumer goods, except automotive	118.0	119.8	118.8	119.6	119.7	119.7	120.1	120.4
Durable goods	114.5	115.0	115.0	115.4	114.9	114.8	114.8	115.2
Nondurable goods	120.9	124.0	122.1	123.3	123.9	124.1	124.8	124.9
Other	113.0	113.9	113.4	113.4	114.1	113.8	114.1	115.3
Durable goods	113.0	113.9	113.4	113.4	114.1	113.8	114.1	115.3
Nondurable goods	113.0	113.9	113.4	113.4	114.1	113.8	114.1	115.3
Imports of merchandise	112.1	112.0	113.1	111.6	112.7	111.8	111.9	111.4
Foods, feeds, and beverages	108.1	107.9	107.2	105.7	106.6	108.8	110.7	110.9
Industrial supplies and materials, except petroleum and products \qquad	114.2	114.3	114.4	114.8	115.0	113.4	114.0	115.4
Durable goods	115.3	117.0	114.7	117.6	117.4	115.5	117.3	120.0
Nondurable goods	113.1	111.5	114.0	111.9	112.4	111.1	110.4	110.6
Petroleum and products	100.8	91.4	104.0	95.5	99.1	88.5	81.6	74.1
Capital goods, except automotive	107.3	108.0	108.0	106.9	107.7	108.6	109.0	108.8
Civilian aircraft, engines, and parts ...	122.2	125.6	123.5	124.6	125.4	125.2	126.9	127.2
Computers, peripherals, and parts	61.4	55.6	59.0	57.8	56.3	55.0	53.4	52.4
Other	116.5	118.4	117.8	116.5	117.8	119.3	120.1	120.1
Automotive vehicles, engines, and parts	114.8	116.9	115.9	115.1	116.5	117.0	118.9	119.5
Consumer goods, except automotive	118.3	119.4	119.8	118.8	119.7	119.5	119.7	119.5
Durable goods	116.9	118.4	117.9	117.9	118.7	118.4	118.6	118.5
Nondurable goods	120.1	120.7	122.3	119.8	120.9	120.8	121.1	120.7
Other	114.7	116.0	115.8	114.8	115.8	116.0	117.3	117.4
Durable goods	114.7	115.9	115.8	114.8	115.8	116.0	117.3	117.4
Nondurable goods	114.7	115.9	115.8	114.8	115.8	116.0	117.3	117.4
Addenda:								
Exports of agricultural products ${ }^{1}$.......	111.5	113.3	109.8	111.1	110.5	115.0	116.6	121.8
Exports of nonagricultural products ...	109.4	110.0	109.7	109.8	110.5	109.9	109.9	110.5
Imports of nonpetroleum products	113.4	114.3	114.2	113.4	114.3	114.4	115.3	115.6

Table 7.11.-Price Indexes for Government Purchases by Type, Fixed 1987 Weights

	1992	1993	Seasonally adjusted					
			1992	1993				1994
			IV	1	II	III	IV	
Govemment purchases	120.6	124.3	121.7	123.2	124.0	124.8	125.1	126.2
Federal	121.8	126.2	122.8	125.1	125.8	126.8	127.0	128.4
National defense	122.3	127.2	123.5	125.9	126.8	127.9	128.1	129
Durable goods	113.7 115.6	117.6 113.1 1	115.3 117.8	117.1	117.9 115.9	112.6	110.8	117.8 106.1
Services	127.1	132.9	128.0	131.2	132.1	134.0	134	136
Compensation of employees	134.6	143.1	135.1	140.6	141.7	144.7	145	148
${ }_{\text {Military }}$...........................	1366 1306	14318	136.6 1320	142.3	143	143	145	148.6
Other services	116.4	118.5	1178	1178	118	118.	144.9	${ }_{19.3}^{148.5}$
Structures	114.0	117.7	116.2	117.2	117.4	117.3	118.	119.7
Nondefense	0.2	123.0	120.9	122.5	122.5	123.4	123.6	125.8
Durable goods	1.2			94.0	94.0	94.1		
Nondurable goods \qquad Commodity Credit Corporation inventory change								
Other nondurables	107.9	105.9	106.0	106.0	106.3	106.0	105.2	106.7
Services	124.5	129.0	125.5	128.0	128.3	129.3	130	143
Compensation of employees.	129.3	1368	130.6	135.2	135.	136.4	138.2	143.0
Structuresa.o........................	117.7	118.7	1148	115.1	118.1	116.3	119.5	119.8
state and local	119.6	122.8	120.9	121.8	122.7	123.2	123.6	124.6
Durable goods..	113.2	115.3	113.6	114.5	115.4	115.8	115.6	16
Nondurable goods	115.4	116.0	114.9	116.2	117.	115.6	114.2	115.
Services	122.6	126.1	124.0	125.0	12.	126.6	127.2	28.
Compensation of employees...	127.5	132.1	129.2	130.6	131.6	132.7	133.5	${ }^{134.6}$
	69.3 109.5	${ }^{60.5} 113$	${ }^{671.0}$	111.5	60.3 113.0	60.1 113.3	57.8 114.4	
Addenda: Price indexes for government purchases: Chain-type annual weights Benchmark-years weights								
	120.0	123.5	121.0	122.4	123.2	123.9	124.4	
	120.2	123.7	121.3	122.6	123.5	124.2	124.6	
Price indexes for Federal national defense purchases: Chain-type annual weights Benchmark-years weights$\qquad$$\qquad$	121.2	125.8	122.2	124.4	125.3	126.6	126.9	
	121.2	125.9	122.2	124.5	125.4	126.6	127.0	
Price indexes for Federal nondefense purchases: Chain-type annual weights Benchmark-years weights \qquad								
	119.1	122.3	119.7	121.6	121.8	122.5	123.3	
	120.5	123.8	121.2	123.0	123.3	124.0	124.8	
Price indexes for State and local purchases: Chain-type annual weights \qquad Benchmark-years weights \qquad								
	$\begin{aligned} & 119.6 \\ & 119.5 \end{aligned}$	$\begin{aligned} & 122.7 \\ & 122.6 \end{aligned}$	$\left\|\begin{array}{c} 120.8 \\ 120.7 \end{array}\right\|$	121.7 121.6	122.6 122.5	$\left\|\begin{array}{l} 123.1 \\ 123.0 \end{array}\right\|$	123.5	

Table 7.12.-Price Indexes for National Defense Purchases, Fixed 1987 Weights
[Index numbers, 1987=100]

	1992	1993	Seasonally adjusted					
			1992	1993				$\begin{array}{\|c} \hline 1994 \\ \hline 1 \end{array}$
			IV	1	11	III	IV	
National defense purchases ...	122.3	127.2	123.5	125.9	126.8	127.9	128.1	129.2
Durable goods	113.7	117.6	115.3	117.1	117.9	117.9	117.6	117.8
Military equipment	114.4	118.8	116.2	118.2	119.1	119.0	118.8	118.9
Aircraft ...	118.4	125.7	121.8	124.8	125.3	127.0	125.8	127.5
Missiles	98.6	98.3	97.4	99.1	99.9	96.8	97.5	91.0
Ships	118.4	121.7	119.2	120.7	121.4	122.7	122.1	123.3
Vehicles	120.9	128.0	124.1	126.0	130.8	126.9	128.3	131.0
Electronic equipment	109.2	109.8	109.6	109.7	109.6	109.6	110.0	110.3
Other	116.6	118.2	117.9	118.2	118.2	117.9	118.3	118.8
Other durable goods	106.5	106.1	106.3	106.3	106.2	105.8	106.0	106.3
Nondurable goods	115.6	113.1	117.8	113.0	115.9	112.6	110.8	106.1
Petroleum products	119.7	112.5	124.2	111.1	119.7	110.8	108.3	94.0
Ammunition	108.5	111.4	111.5	111.3	111.1	112.6	110.5	111.0
Other nondurable goods	117.9	115.3	116.8	116.7	116.2	114.3	113.8	114.7
Services	127.1	132.9	128.0	131.2	132.1	134.0	134.4	136.5
Compensation of employees.	134.6	143.1	135.1	140.6	141.7	144.7	145.4	148.6
Military	136.6	143.8	136.6	142.3	143.3	143.9	145.7	148.6
Civilian	130.6	141.7	132.0	137.1	138.3	146.5	144.9	148.5
Other services	116.4	118.5	117.8	117.8	118.5	118.8	118.8	119.3
Contractual research and development	111.9	113.1	113.5	113.8	113.6	113.2	111.7	112.5
Installation support ${ }^{1}$...........................	113.5	115.7	114.5	113.8	115.4	116.8	116.9	117.0
Weapons support ${ }^{2}$.............................	120.5	124.4	122.1	123.1	124.0	124.4	126.1	127.7
Personnel support ${ }^{3}$	134.7	136.0	136.8	134.9	136.4	136.0	136.9	136.7
Transportation of material	104.6	105.2	104.5	104.9	104.8	105.8	105.3	105.3
Travel of persons \qquad Other	110.6	116.4	111.3	115.6	115.6	116.2	118.2	119.2
Structures	114.0	117.7	116.2	117.2	117.4	117.3	118.8	119.7
Military facilities	106.1	108.3	107.5	108.1	108.0	107.7	109.4	110.7
Other ..	128.6	135.0	132.2	133.9	134.8	135.0	136.0	136.2
Addenda: Price indexes for national defense purchases: Chain-type annual weights \qquad Benchmark-years weights \qquad								
	121.2	125.8	122.2	124.4	125.3	126.6	126.9	
	121.2	125.9	122.2	124.5	125.4	126.6	127.0	

1. Includes utilities, communications, rental payments, maintenance and repair, and payments to contractors to operate installations.
2. Includes depot maintenance and contractual services for weapons systems, other than research and development.
3. Includes compensation of foreign personnel, consulting, training, and education.

Table 7.13.-Implicit Price Deflators for the Relation of Gross Domestic Product, Gross National Product, Net National Product, and National Income
[Index numbers, 1987=100]

Gross domestic product	121.1	124.2	122.2	123.3	124.0	124.5	124.9	125.
Plus: Receipts of factor income from the rest of the world 1 \qquad	122.5	125.8	123.7	124.9	125.6	126.1	126.5	
Less: Payments of factor income to the rest of the world ${ }^{2}$ \qquad	124.8	128.7	126.3	127.7	128.4	129.2	129.4	
Equals: Gross national product	121.1	124.1	122.2	123.3	124.0	124.4	124.8	
Less: Consumption of fixed capita	110.6	112.2	111.0	111.5	11.9	12.5	112.7	113.2
Equals: Net national product	122.5	125.7	123.6	124.8	125.5	126.0	126.4	
Less: Indirect business tax and nontax liability plus business transfer payments less subsidies plus current surplus of government enterprises...	131.3	132.1	131.0	127.7	132.1	135.1	133.3	
Statistical discrepancy	119.8	122.6	120.9	121.8	122.5	122.9	123.2	
Equals: National income	121.6	125.1	122.9	124.5	124.9	125.1	125.7	
Addenda:								
Net domestic product	122.5	125.8	123.7	124.9	125.6	126.1	126.5	27.
Domestic income	121.7	125.1	123.0	124.6	125.0	125.2	125.8	

[^8]affiliates of U.S. corporations.
2. Consists largely of payments to foreign residents of interest and dividends and reinvested earnings of U.S.
2. Consists largely of payment
affiliates of foreign corporations.

Table 7.14.-Implicit Price Deflators for Gross Domestic Product by Sector
[Index numbers, 1987=100]

	1992	1993	Seasonally adjusted					
			1992	1993				1994
			IV	1	11	III	IV	1
Gross domestic product	121.1	124.2	122.2	123.3	124.0	124.5	124.9	125.7
Business	119.8	122.6	120.9	121.8	122.5	122.9	123.2	123.9
Noniarm	120.1	122.8	121.2	122.1	122.8	123.1	123.3	123.9
Nonfarm less housing	119.5	122.4	120.8	121.6	122.3	122.7	122.8	123.1
Housing	125.5	127.3	124.5	126.9	126.8	127.4	128.1	131.9
Farm ..	106.1	110.7	104.9	107.1	109.3	108.3	117.8	123.0
Statistical discrepancy	119.8	122.6	120.9	121.8	122.5	122.9	123.2	123.9
Households and institutions	127.7	131.9	129.8	131.3	131.3	131.9	133.2	134.7
Private households	115.7	119.4	117.4	117.9	118.7	120.0	121.1	121.7
Nonprofit institutions	128.2	132.5	130.4	131.9	131.9	132.4	133.8	135.3
General government	129.0	134.4	130.3	132.8	133.8	135.1	136.0	137.8
Federal ..	132.8	140.6	133.5	138.6	139.5	141.8	142.8	146.5
State and local	127.4	131.9	129.0	130.4	131.4	132.5	133.3	134.4
Addendum: Gross domestic business product less housing \qquad	119.3				

Table 7.15.-Current-Dollar Cost and Profit Per Unit of ConstantDollar Gross Domestic Product of Nonfinancial Corporate Business [Dollars]

Current-dollar cost and profit per unit of constant-dollar gross domestic product ${ }^{1}$	1.149	1.164	1.154	1.162	1.164	1.164	1.165	
Consumption of fixed capital	. 125	23	122	124	123	. 124	122	
Net domestic product ..	1.024	1.040	1.032	1.037	1.041	1.039	1.044	
Indirect business tax and nontax liability plus business transfer payments less subsidies \qquad	116	. 118	. 116	. 116	. 118	118	118	
Domestic income 908	. 923	. 916	. 921	. 923	. 922	. 925	
Compensation of employees 762	. 768	. 761	. 772	. 770	. 769	. 762	
Corporate profits with inventory valuation and capital								
consumption adjustments 099	. 109	. 109	. 102	. 108	. 108	. 118	
Profits tax liability Profits ati............	. 035	. 040	. 037	. 037	$.040$. 038	. 044	
Profits after tax with inventory valuation and capital consumption adjustments \qquad	. 064	. 069	. 072	. 065	. 068	. 070	075	
Net interest 048	. 046	. 046	. 047	. 046	. 045	. 044	

1. Equals the deflator for gross domestic product of nonfinancial corporate business with the decimal point shifted two places to the left.

Table 8.1.-Percent Change From Preceding Period in Selected Series
[Percent]

Table 8.1.-Percent Change From Preceding Period in Selected Series-Continued [Percent]

	1992	1993	Seasonally adjusted at annual rates					
			1992	1993				1994
			IV	1	II	lil	IV	1
Nondefense: Curfent dollars \qquad Quantity indexes: Fixed 1987 weights \qquad Chain-type annual weights Benchmark-years weights Price indexes: Fixed 1987 weights \qquad Chain-type annual weights Benchmark-years weights		3.8		3.6	6.2	4.9	-2.8	1.4
	9.4		1.8					
	$\begin{aligned} & 6.2 \\ & 6.2 \end{aligned}$	6	-. 4	-3.2	5.5	2.5	-6.5	-7.6
		8	-. 1	-3.5	5.5	2.9	-5.9	
	6.2	. 8	-. 1	-3.5	5.5	2.9	-5.9
	3.1	2.4	1.9	5.7	0	2.9	. 6	7.3
	3.1	2.7	1.9	6.3	. 8	2.3	2.6
	3.1	2.7	1.9	6.3	. 8	2.3	2.6
State and local:								
Current dollars ...	4.5	4.6	3.1	3.3	8.3	5.8	4.5	. 6
Quantity indexes:								
Fixed 1987 weights	2.2	2.1	0	. 3	5.6	4.5	3.3	-2.6
Chain-type annual weights	2.1	2.0	.1	. 4	5.2	4.2	3.1
Benchmark-years weights \qquad	2.1			. 4	5.2	4.2	3.1	
Fixed 1987 weights	2.5	2.6	2.9	3.0	2.9	1.8	1.5	3.0
Chain-type annual weights	2.4	2.6	2.9	2.9	3.0	1.6	1.4	
Benchmark-years weights	2.4	2.6	2.9	2.9	3.0	1.6	1.4
Addenda: Final sales of domestic product:								
Final sales of domestic product: Current dollars	5.2	5.5	9.1	2.9	5.7	4.8	8.5	3.5
Quantity indexes:								
Fixed 1987 weights	2.3	2.8	5.8	-. 8	3.2	3.4	6.8	. 9
Chain-type annual weights	2.0	2.6	5.6	-1.1	3.0	2.7	6.1	
Benchmark-years weights	2.1	2.5	5.5	-1.1	3.0	2.7	6.1	
Price indexes:								
Fixed 1987 weights	3.3	3.1	3.2	4.3	2.8	2.1	2.3	2.9
Chain-type annual weights ...	3.1	2.9	2.7	4.1	2.7	2.1	2.4	
Benchmark-years weights	3.2	3.0	2.8	4.1	2.7	2.1	2.4	
Gross domestic purchases:								
Current dollars	5.7	6.2	9.1	5.0	5.4	4.8	8.1	6.0
Quantity indexes:								
Fixed 1987 weights	2.9	3.8	5.4	2.5	3.1	3.7	6.7	4.1
Chain-type annual weights	2.5	3.3	5.1	1.7	2.7	3.0	6.0	
Benchmark-years weights	2.7	3.3	5.1	1.7	2.7	3.0	6.0
Price indexes: Fixed 1987 weights								
Fixed 1987 weights	3.3	2.9	2.8	3.5	2.9	1.8	2.3	2.3
Chain-type annual weights	3.1	2.8	2.7	3.4	2.8	1.7	2.4	
Benchmark-years weights	3.2		2.7	3.4	2.8	1.7	2.4	\ldots
Final sales to domestic purchasers:								
Current dollars	5.4	6.0	9.0	3.5	6.8	5.2	8.2	4.2
Quantity indexes:								
Fixed Chain-type annual weights	2.5	3.7	5.5 5.2	. 8	4.4	4.2	$\begin{aligned} & 6.6 \\ & 5.8 \end{aligned}$	2.4
Benchmark-years weights	2.4	3.2	5.2	. 3	4.0	3.5	5.8
Price indexes:								
Fixed 1987 weights	3.3	2.9	2.8	3.5	2.9	1.8	2.3	2.4
Chain-type annual weights	3.1	2.8	2.7	3.3	2.8	1.7	2.4	
Benchmark-years weights	3.2	2.8	2.7	3.3	2.8	1.7	2.4
Gross national product:		5.5	8.5	4.6	4.2	4.8		
Current dollars \qquad Quantity indexes:	5.4						7.6
Fixed 1987 weights	2.52.22.	2.9	5.0	$\begin{array}{r} 1.0 \\ .6 \end{array}$	1.91.7	3.32.7	5.2.
Chain-type annual weights		2.6	4.9					
Benchmark-years weights	2.3	2.6	4.8	. 6	1.7	2.7	5.4
Price indexes:								
Fixed 1987 weights	3.3	3.1	3.1	$\begin{aligned} & 4.3 \\ & 4.1 \end{aligned}$	$\begin{aligned} & 2.8 \\ & 2.7 \end{aligned}$	2.1	2.3	
Chain-type annual weights								
Benchmark-years weights	3.2	2.9	2.8	4.1	2.7	2.1	2.4	\cdots
Command-basis gross national product: Quantity index, fixed 1987 weights	2.5	3.1	4.7	1.9	1.9	3.7	6.1	\ldots
Disposable personal income: Current dollars \qquad 1987 dollars \qquad	$\begin{aligned} & 6.4 \\ & 2.9 \\ & \hline \end{aligned}$						6.1	
		4.6	15.1	-5.1	8.5	2.7	7.8	4.1
		1.9	10.6	-7.8	5.8	1.6	5.4	2.7

NOTE.-Except for disposable personal income, the quantity and price indexes in this table are calculated from weighted averages of the detailed output and prices used to prepare each aggregate and component. The fixedweighted measures use as weights the composition of output in 1987. For the alternative indexes, the chain-lype indexes with annual weights use weights for the preceding and current years, and the indexes with benchmarkyears weights use weights of 1959, 1963, 1967, 1972, 1977, 1982, and 1987 and the most recent year.

Table 8.2.-Selected Per Capita Product and Income Series in Current and Constant Dollars and Population of the United States [Dollars]

	1992	1993	Seasonally adjusted at annual rates					
			1992	1993				1994
			IV	1	11	III	IV	1
Current dollars: Gross domestic product \qquad Gross national product \qquad Personal income. Disposable personal income \qquad	23,637	24,696	24,143	24,346	24,538	24,732	25,166	25,426
	20,139	24,69720,864	$\begin{aligned} & 24,134 \\ & 20,767 \end{aligned}$	$\begin{aligned} & 24,347 \\ & 20,430 \end{aligned}$	$\begin{aligned} & 24,556 \\ & 20,837 \end{aligned}$	$\begin{aligned} & 24,756 \\ & 20,930 \end{aligned}$	$\begin{aligned} & 25,145 \\ & 21,257 \end{aligned}$	21,458
	17,615	18,225	18,153	17,876	18,196	18,265	18,561	18,705
Personal consumption	16,2051,947							
expenditures ...		17,006	16,589	16,7042,004	16,907	$\begin{array}{r} 17,088 \\ 2,095 \end{array}$	17,321	17,5012,221
Durable goods		2,083	2,013		2,062		2,170	
Nondurable goods	$\begin{aligned} & 5,092 \\ & 9,166 \end{aligned}$	$\begin{aligned} & 5,227 \\ & 9,695 \end{aligned}$	$\begin{aligned} & 5,190 \\ & 9,385 \end{aligned}$	$\begin{aligned} & 5,192 \\ & 9,508 \end{aligned}$	$\begin{aligned} & 5,215 \\ & 9,631 \end{aligned}$	$\begin{aligned} & 5,229 \\ & 9,763 \end{aligned}$	$\begin{aligned} & 5,273 \\ & 9,878 \end{aligned}$	$\begin{aligned} & 5,294 \\ & 9,986 \end{aligned}$
Services								
Constant (1987)								
Gross domestic product \qquad	19,518	19,888	19,754	19,74419,754	19,786	19,869	20,150	20,231
Gross national product \qquad	19,548	19,897	19,755		19,793	19,898		
Disposable personal income \qquad	14,219	14,330	14,490	19,754			20,143	14,554
Personal				14,163	14,326	14,341	14,491	
consumption expenditures	13,081	$\begin{array}{r} 13,372 \\ 1,897 \end{array}$	$\begin{array}{r} 13,241 \\ 1,845 \end{array}$	$\begin{array}{r} 13,234 \\ 1,835 \end{array}$	$\begin{array}{r} 13,312 \\ 1,878 \end{array}$	$\begin{array}{r} 13,416 \\ 1,907 \end{array}$	$\begin{array}{r} 13,523 \\ 1,970 \end{array}$	$\begin{array}{r} 13,617 \\ 2,012 \end{array}$
Durable goods	1,787							
Nondurable	4.161		$\begin{aligned} & 4,216 \\ & 7,179 \end{aligned}$					
Services	7,133	$\begin{aligned} & 4,213 \\ & 7,261 \end{aligned}$		$\begin{aligned} & 4,184 \\ & 7,216 \end{aligned}$	$\begin{aligned} & 4,200 \\ & 7,234 \end{aligned}$	$\begin{aligned} & 4,226 \\ & 7,283 \end{aligned}$	$\begin{aligned} & 4,242 \\ & 7,310 \end{aligned}$	$\begin{aligned} & 4,257 \\ & 7,348 \end{aligned}$
Population (midperiod, thousands) \qquad		258,254	256,569	257,197	257,872	258,612		
	255,472						259,334	259,949

Table 8.3.-Auto Output
[Billions of dollars]

	1992	1993	Seasonally adjusted at annual rates					
			1992	1993				1994
			IV	1	II	III	IV	1
Auto output	133.2	142.5	136.4	142.8	145.9	134.6	146.7	166.3
Final sales	133.5	137.6	137.2	131.4	140.8	137.0	141.2	161.2
Personal consumption expenditures ..	126.7	134.3	130.9	127.7	133.6	135.4	140.7	150.8
New autos	87.3	91.3	90.3	86.8	90.3	90.2	98.1	103.3
Net purchases of used autos	39.5	43.0	40.6	40.9	43.3	45.2	42.6	47.5
Producers' durable equipment	37.6	39.1	37.1	36.9	42.2	38.9	38.2	40.7
New autos	62.2	67.0	62.7	61.8	72.6	67.4	66.4	71.5
Net purchases of used autos	-24.6	-28.0	-25.6	-24.9	-30.4	-28.5	-28.2	-30.8
Net exports	-32.8	-37.7	-32.6	-35.3	-37.0	-39.3	-39.2	-32.0
Exports	14.3	14.5	15.9	14.5	14.9	13.2	15.4	16.6
Imports	47.0	52.2	48.4	49.8	51.8	52.5	54.7	48.6
Government purchases	2.0	1.9	1.8	2.1	2.0	2.0	1.5	1.7
Change in business inventories of new and used autos \qquad	-. 3	4.9	-. 8	11.4	5.0	-2.4	5.5	5.1
New ..	. 3	3.4	-. 7	12.0	1.6	-3.4	3.5	6.1
Used ...	-. 6	1.4	-. 1	-. 7	3.5	1.0	2.0	-1.0
Addenda:								
Domestic output of new autos ${ }^{1}$........	104.1	110.7	108.0	114.6	111.9	99.3	117.2	132.2
Sales of imported new autos ${ }^{2}$..........	60.1	64.1	60.5	59.6	65.5	69.6	61.8	64.8

Table 8.5.-Truck Output [Billions of dollars]

Truck output ${ }^{1}$....................	83.3	101.3	93.7	100.0	97.0	98.0	110.3	127.2
Final sales	82.2	101.8	92.0	92.4	102.0	99.9	113.1	123.1
Personal consumption expenditures ..	43.3	52.3	47.8	49.7	52.0	50.0	57.7	61.2
Producers' durable equipment	37.1	49.2	41.1	45.3	48.2	48.6	54.8	60.2
Net exports	-5.1	-5.4	-4.6	-6.7	-6.4	-4.8	-3.6	-3.5
Exports ..	5.6	5.8	6.0	5.2	5.7	5.4	6.9	6.6
Imports	10.7	11.2	10.7	11.9	12.1	10.2	10.5	10.1
Government purchases	6.9	5.6	7.7	4.1	8.2	6.0	4.2	5.2
Change in business inventories	1.2	-. 5	1.7	7.7	-5.0	-1.9	-2.8	4.2

Table 8.4.-Auto Output in Constant Dollars
[Billions of 1987 dollars]

Table 8.6.-Truck Output in Constant Dollars
[Billions of 1987 dollars]

Truck output ${ }^{1}$........................	71.4	83.5	79.5	83.7	80.2	79.9	90.1	102.5
Final sales	70.4	83.8	78.1	77.3	84.2	81.4	92.3	99.2
Personal consumption expenditures ..	37.1	43.3	40.7	42.0	43.3	40.9	46.9	49.5
Producers' durable equipment	31.8	40.4	34.8	37.6	39.6	39.5	44.8	48.4
Net exports	-4.4	-4.5	-3.9	-5.7	-5.4	-4.0	-2.9	-2.9
Exports	4.8	4.8	5.1	4.4	4.6	4.4	5.7	5.3
Imports	9.1	9.2	9.1	10.1	10.0	8.4	8.6	8.1
Government purchases	5.9	4.6	6.6	3.4	6.7	4.9	3.5	4.2
Change in business inventories	1.0	-. 4	1.4	6.3	-4.1	-1.5	-2.3	3.3

1. Includes new trucks only.

nipa Charts

REAL GDP AND ITS COMPONENTS: TRENDS AND CYCLES

SELECTED SERIES: RECENT QUARTERS

Percent change

1. Percent change at annual rate from preceding quarter; based on seasonally adjusted estimates.
. Peasonally adjusted annual rate; IVA is inventory valuation adjustment, and CCAdj is capitai consumption adjustment.
. Personal saving as percentage of disposable personal income; based on seasonally adjusted estimates.
U.S. Department of Commerce, Bureau of Economic Analysis

Selected Monthly Estimates

Table 1.-Personal Income
[Billions of dollars; monthly estimates seasonally adjusted at annual rates]

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} \& \multirow{2}{*}{1992} \& \multirow{2}{*}{1993} \& \multicolumn{11}{|c|}{1993} \& \multicolumn{3}{|c|}{1994} \\
\hline \& \& \& Feb. \& Mar. \& Apr. \& May \& June \& July \& Aug. \& Sept. \& Oct. \& Nov. \& Dec. \& Jan. \({ }^{\text {r }}\) \& Feb. \({ }^{\text {r }}\) \& Mar. \({ }^{\text {P }}\) \\
\hline Personal income \& 5,144.9 \& 5,388.3 \& 5,249.1 \& 5,289.2 \& 5,365.6 \& 5,380.4 \& 5,373.6 \& 5,365.1 \& 5,432.3 \& 5,440.6 \& 5,478.7 \& 5,511.2 \& 5,548.1 \& 5,501.1 \& 5,600.0 \& 5,633.1 \\
\hline \& 2,973.1 \& 3.080 .5
2.490 .8 \& 2,976.3 \& \({ }_{2,3929.9}^{2,975}\) \& 3,4868.3 \& 3.093.8 \& 3.086 .0
2.497 .9 \& \(3,101.6\)
\(2,511.3\) \& \begin{tabular}{l}
3,124.3 \\
2.531 .8 \\
\hline
\end{tabular} \& 3.120.8

2.524 .9 \& 3,1197.7
2.543 .3 \& 3.147 .1

2.552 .0 \& $$
3.164 .0
$$ \& 3.191 .5

2.590 .6 \& 3,19795.6 \& 3, ${ }_{2}^{3.212 .9}$

\hline Private industries \qquad Commodity-producing industries \& 2,405.6 \& 2.469 .6 \& 2,793.9 \& 2, 740.8 \& 2,463.8 \& ${ }^{2,507.3}$ \& ${ }^{2} \mathbf{7 6 9 3 7 . 9}$ \& 2,511.3 \& $\begin{array}{r}2,531.8 \\ 769.4 \\ \hline\end{array}$ \& ${ }^{2} \mathbf{7} 772.15$ \& 2,5434.6 \& 2,552.0 \& 2,583.2 \& ${ }^{2} \mathbf{7} 89.6$ \& ${ }^{2,5959.6}$ \& ${ }^{2} \mathbf{7} 9102.6$

\hline Commodity-producing industries \qquad Manufacturing \& 756.5
577.6 \& 763.6
577.3 \& 742.7
5610 \& 740.8
559.6 \& 765.2
582.1 \& 766.7
580.3 \& 763.3
578.4 \& 766.8
579.5 \& 769.4
581.2 \& 772.1
583.7 \& 774.6

584.0 \& | 797.5 |
| :--- |
| 8 | \& 591.8 \& 592.1 \& 597.2 \& 792.6

598.1

\hline Distributive industries \& 682.0 \& 706.6 \& 684.3 \& 683.0 \& 704.9 \& 713.1 \& 709.2 \& 713.2 \& 717.3 \& 712.8 \& 719.0 \& 718.4 \& 722.9 \& 731.4 \& 731.4 \& 737.6

\hline Sevice industries .. \& 967.0 \& 1,020.6 \& 967.0 \& 969.0 \& 1,013.6 \& 1,027.5 \& 1,025.4 \& 1,031.3 \& 1,045.1 \& 1,040.0 \& 1,049.7 \& 1.054.1 \& 1,060.4 \& 1,073.6 \& 1,073.8 \& 1,079.8

\hline Government ... \& 567.5 \& 589.7 \& 582.3 \& 583.0 \& 584.5 \& 586.4 \& 588.1 \& 590.3 \& 592.6 \& 595.5 \& 594.4 \& 595.1 \& 596.8 \& 600.9 \& 602.2 \& 602.8

\hline Other labor income \& 322.7 \& 350.7 \& 338.5 \& 341.2 \& 343.9 \& 346.6 \& 349.3 \& 352.0 \& 354.7 \& 357.4 \& 360.1 \& 362.9 \& 365.8 \& 368.8 \& 371.9 \& 375.1

\hline | Proprietors' income with IVA and CCAdj \qquad |
| :--- |
| Farm \qquad | \& 414.3

43.7 \& 443.2
46.0 \& 436.9
48.2 \& 470.2
82.0 \& 449.4

59.7 \& | 437.9 |
| :--- |
| 45.2 | \& 430.8

36.0 \& 403.8
10.6 \& 430.5
31.1 \& 433.2
32.7 \& 449.8

43.9 \& | 470.4 |
| :---: |
| 60.0 | \& 480.8

65.3 \& | 464.7 |
| :--- |
| 54.1 | \& 478.0

62.2 \& 484.1
63.6

\hline Nontarm ... \& 370.6 \& 397.3 \& 388.7 \& 388.2 \& 389.7 \& 392.7 \& 394.8 \& 393.1 \& 399.4 \& 400.4 \& 406.0 \& 410.4 \& 415.4 \& 410.6 \& 415.8 \& 420.5

\hline Rental income of persons with CCAdj \& -8.9 \& 12.6 \& 9.5 \& 8.1 \& 14.3 \& 12.0 \& 11.9 \& 7.1 \& 16.1 \& 17.9 \& 16.8 \& 16.4 \& 15.9 \& -43.7 \& 24.6 \& 29.5

\hline Personal dividend income \& 140.4 \& 158.3 \& 157.1 \& 157.2 \& 157.5 \& 157.8 \& 158.2 \& 158.6 \& 159.0 \& 159.3 \& 159.4 \& 159.4 \& 159.5 \& 159.7 \& 160.4 \& 162.0

\hline Personal interest income ... \& 694.3 \& 695.2 \& 695.3 \& 695.2 \& 694.1 \& 693.1 \& 692.0 \& 693.6 \& 695.7 \& 697.8 \& 697.3 \& 696.7 \& 696.2 \& 697.9 \& 700.1 \& 702.5

\hline Transter payments to persons \& 858.4 \& 912.1 \& 892.6 \& 898.3 \& 901.7 \& 904.5 \& 910.2 \& 914.3 \& 919.4 \& 921.8 \& 925.9 \& 927.5 \& 936.2 \& 940.7 \& 946.2 \& 947.0

\hline Old-age, survivors, disability, and heatth insurance beneitits \& 413.9 \& 438.4 \& 432.5 \& 432.5 \& 434.7 \& 435.1 \& 435.3 \& 438.9 \& 438.4 \& 44.0 \& 444.1 \& 444.3 \& 450.0 \& 455.0 \& 458.4 \& 459.3

\hline Goverrment unemployment insurance benefits \& 39.2 \& 34.1 \& 32.9 \& 36.0 \& 34.0 \& 32.8 \& 36.4 \& 34.3 \& 34.2 \& 34.7 \& 32.0 \& 31.8 \& 32.9 \& 28.6 \& 27.0 \& 25.1

\hline Other .. \& 405.2 \& 439.6 \& 427.2 \& 429.7 \& 433.0 \& 436.7 \& 438.4 \& 441.1 \& 444.7 \& 446.2 \& 449.8 \& 451.4 \& 453.2 \& 457.1 \& 460.7 \& 462.6

\hline Less: Personal contributions for social insurance \& 249.3 \& 264.3 \& 256.9 \& 256.9 \& 263.5 \& 265.3 \& 264.9 \& 265.9 \& 267.4 \& 267.0 \& 268.3 \& 269.1 \& 270.2 \& 278.4 \& 278.9 \& 280.0

\hline Addenda: \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline Total nonfarm income .. \& 5,080.1 \& 5,320.0 \& 5,179.0 \& 5,185.1 \& 5,283.7 \& 5,312.8 \& 5,315.0 \& 5,332.2 \& 5,378.7 \& 5,385.4 \& 5,412.1 \& 5,428.4 \& 5,459.9 \& 5,423.9 \& 5,514.6 \& 5,546.1 87.0

\hline Total farm income ${ }^{1}$.. \& 64.8 \& 68.3 \& 70.1 \& 104.0 \& 81.9 \& 67.6 \& 58.6 \& 33.0 \& 53.6 \& 55.3 \& 66.6 \& 82.8 \& 88.3 \& 77.2 \& 85.4 \& 87.0

\hline
\end{tabular}

p Preiminary.
Source: U.S. Department of Commerce, Bureau of Economic Analysis.
CCAdj Capital consumption adjustment

1. Equals farm proprietors' income, farm wages, farm other labor income, and agricultural net interest.

IVA Inventory valuation adiustment

Table 2.-The Disposition of Personal Income
[Monthly estimates seasonally adjusted at annual rates]

Table 3.-U.S. International Transactions in Goods and Services
[Millions of dollars; monthly estimates seasonally adjusted]

	1992	1993	1993											1994		
			Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan. ${ }^{\text {r }}$	Feb. ${ }^{\text {P }}$	Mar.
Exports of goods and services	619,848	643,563	51,829	54,090	53,568	53,746	52,583	52,399	52,731	53,660	54,957	54,735	57,250	54,296	52,902	
Goods	440,138	456,771	36,253	38,382	37,841	38,249	36,977	36,577	37,224	38,134	39,371	39,451	41,469	38,528	37,165	
Foods, feeds, and beverages	40,209	40,391	3,447	3,468	3,411	3,310	3,151	3,223	3,053	3,432	3,499	3,472	3,666	3,314	3,174	
Industrial supplies and materials	109,307	111,953	8,683	9,238	9,109	9,676	8,833	9,327	8,967	9,581	9,893	9,681	9,792	8,977	8,605	
Capital goods, except automotive	176,709	183,037	14,251	15,579	15,226	15,278	15,255	14,336	15,296	14,999	15,579	15,565	17,186	16,097	15,242	
Automotive vehicles, engines, and parts	47,080	51,691	4,380	4,307	4,424	4,298	4,115	3.792	4,170	4.125	4.521	4,740	4,635	4,425	4,497	
Consumer goods (nonfood), except automotive	50,382	53,413	4,237	4,351	4,242	4,501	4,291	4,442	4,491	4,597	4,559	4.791	4,666	4,515	4,425	
Other goods	24,476	24,288	1,931	1,951	2,067	1,866	1,994	1,989	2,073	2,151	2,041	1.987	2,288	1,979	1,956	
Adiustments ${ }^{1}$..	-8,026	-8,002	-675	-513	-638	-681	-662	-532	-826	-751	-721	-785	-765	-778	-734	
Services	179,710	186,792	15,576	15,708	15,727	15,497	15,586	15,822	15,507	15,526	15,586	15,284	15,781	15,767	15,737	
Travel	53,861	56,501	4,722	4,668	4,796	4,690	4,700	4,911	4,705	4,669	4,726	4,531	4,874	4,898	4,857	
Passenger fares	17,353	17,849	1,519	1,491	1,522	1,491	1,517	1,542	1,475	1,459	1,476	1,416	1,507	1,539	1.509	
Other transportation	22,773	23,508	1,891	2,026	2,000	1,942	1,951	1,916	1,893	1,951	2,052	1,938	2,009	2,005	1,983	
Royalties and license fees	20,238	20,414	1,628	1,646	1,725	1,746	1,752	1,732	1,725	1,718	1,709	1,705	1,705	1,719	1,721	
Other private services	53,601	56,434	4,735	4,774	4,588	4,543	4,606	4,683	4,703	4,761	4,728	4,829	4,836	4,703	4,764	
Transters under U.S. military agency sales contracts ${ }^{2}$.......	11,015	11,259	1,027	1,039	1,002	985	963	971	947	912	832	802	787	838	835	
U.S. Government miscellaneous services	869	827	54	63	94	99	97	68	60	56	63	63	63	66	69	
imports of goods and services	659,575	720,324	55,464	61,038	60,252	58,647	60,886	59,290	59,775	61,843	63,417	62,190	61,398	60,938	62,608	
Goods	536,276	589,210	44,992	50,168	49,331	48,059	50,076	48,334	48,871	50,702	52,015	50,802	50,217	49,878	51,051	
Foods, feeds, and beverages	27,857	28,050	2,174	2,389	2,240	2,304	2,341	2,316	2,331	2.437	2,563	2,348	2,343	2,457	2,379	
Industrial supplies and materials	138,273	145,021	11,052	12,643	12,643	12,265	12,753	12,096	11,734	12,193	12,493	12,283	11,561	11,566	12,092	
Capital goods, except automotive	134,193	152,788	+1,718	12,379	12,426	12,302	13,094	12,822	12,456	13,004	13,653	13,283	13,966	14,181	13,965	
Automotive vehicles, engines, and parts	91,779	102,447	8,347	8,850	8,777	8.159	8.589	7.769	8,523	8,742	8,995	8,811	8,912	8.466	8,823	
Consumer goods (nonfood), except automotive	122,973	133,852	10,264	11,489	11,094	10,671	11,307	11,001	11,680	11,612	11,740	11,504	11,080	11,266	11,431	
Other goods ...	17,590	18,354	1,278	1,598	1,481	1,605	1,614	1,529	1,373	1,518	1,547	1.687	1,740	1,538	1,572	
Adjustments ${ }^{1}$...	3,611	8,699	160	821	671	753	378	800	774	1,196	1,025	887	616	403	789	
Services	123,299	131,114	10,472	10,869	10,921	10,588	10,811	10,956	10,904	11,141	11,402	11,388	11,181	11,061	11,556	
Travel ...	39,872	42,329	3.447	3,494	3,521	3,366	3,376	3,503	3,457	3,634	3,715	3,698	3,613	3,555	3,708	
Passenger fares ...	10,943	11,256	911	933	944	894	905	911	918	960	1,008	1,004	951	948	994	
Other transporiation ...	23,454	24,511	1,870	2,149	2,088	2,003	2,093	2,080	2,020	2,044	2,133	2,085	2,036	1,987	1,989	
Royalties and license fees ...	4,986	4,748	361	369	393	401	407	410	411	412	409	409	409	414	683	
Other private services ..	27,988	33,595	2,618	2,668	2,718	2,674	2,791	2,843	2,901	2,905	2,954	3.013	2,995	2,989	3,026	
Direct defense expenditures ${ }^{2}$.....................................	13,766	12,286	1,066	1,058	1.067	1,060	1.050	1,000	983	975	984	983	983	972	961	
U.S. Government miscellaneous services	2,290	2,388	199	198	191	190	190	210	213	212	199	196	194	196	195	
Memoranda:																
Balance on goods ..	-96,138	-132,439	-8,739	-11,787	-11,491	-9,810	-13,098	-11,757	-11,647	-12,568	-12,643	-11,351	-8,748	-11,350	-13,886	
Balance on services ...	56,411	55,678	5,104	4,839	4,806	4.909	4,775	4,866	4,603	4,385	4,184	3,896	4,600	4,707	4,181
Balance on goods and services	-39,727	-76,761	-3,635	-6,948	-6,684	-4,901	-8,323	-6,891	-7,044	-8,183	-8,460	-7,455	-4,148	-6,643	-9,706	

${ }^{p}$ Preliminary
${ }^{r}$ Revised.

1. Reflects adjustments necessary to bring the Census Bureau's component data in line with the concepts and
definitions used to prepare BEA's international and national accounts.
2. Contanns goods that cannot be separately identified.
3. Contains goods that cannot be separately identified.

Source: U.S. Department of Commerce, Bureau of Economic Analysis and Bureau of the Census.

Integrated Economic and Environmental Satellite Accounts

Abstract

The existing systems of national economic accounts—including national income and product accounts, input-output accounts, and balance sheets-are without question premier tools for analysis and decisionmaking. Since their origins over 50 years ago, they have been refined, extended, and updated to reflect changes in the economy and to respond to changing analytical and policy concerns. Continuing this evolution, this article and its companion "Accounting for Mineral Resources: Issues and bea's Initial Estimates," beginning on page 50, present new work by beA on an accounting framework that covers the interactions of the economy and the environment. To do so, this framework provides new breakdowns that are relevant to the analysis of these interactions and extends the existing accounts' definition of capital to cover natural and environmental resources. The framework takes the form of a satellite account-an account that supplements, rather than replaces, the existing accounts.

This article presents the analytical and economic accounting background for the new work, an overview of the satellite accounting framework, and a long-term plan to implement the framework. Because it introduces a topic that has both economic and environmental dimensions, some parts of the article may appear elementary-perhaps even oversimplified-to readers familiar with the economic (and economic accounting) dimensions, while other parts may appear elementary to those familiar with the environmental dimensions.

The second article discusses the conceptual and methodological issues in mineral resource accounting and presents estimates of mineral stocks and changes in those stocks for the past several decades. It is a technically oriented article that describes in some detail the alternative valuation methods and the source data and estimating procedures used to prepare the new estimates.

Over the years, the national economic accounts have benefited from discussion and critique of concepts, source data, and estimating methods. The same is to be expected for the IEESA's, as BEA's new integrated economic and environmental satellite accounts are being called. I invite your comments.

Carol S. Carson

Director, Bureau of Economic Analysis

\mathcal{T}he economy and the natural environment interact at many points, and these interactions raise analytical questions.

- The Nation's wealth includes natural resources, such as oil and gas reserves and timber, that are used in production. At what rate are these resources being used?
- The income of producers in the mineral industries includes a return to the drilling rigs, mining equipment, and other structures and equipment engaged in them and a return to the mineral. What share is attributable to the mineral?
- Economic activity adds to the proved stock of natural resources by exploration and technological innovation. How much of the use
of natural resources in production has been offset by these additions?
- Households, governments, and business all make expenditures to maintain or restore the environment. What share of their spending is for the environment?
- The economy disposes of wastes into the air and water, and the resulting degradation of the environment imposes costs, such as lower timber yields and fish harvests and higher cleaning costs. What are these costs? Which sectors bear them?

The answers to questions such as these about the interaction of the economy and the environment are often based on partial and sometimes even inconsistent information, suggesting the need to identify and quantify the interactions
within a systematic framework as a basis for more informed analysis and decisionmaking. This article introduces the integrated economic and environmental satellite accounts (ieesa's), which are meant to help fill that need. The ieesa's are a supplementary set of accounts structured to show the interactions of the economy and the environment more fully than the existing economic accounts. While the ieesa's build on the existing economic accounts, they do not replace them; likewise, IEESA measures do not replace measures, such as gross domestic product (GDP), from the existing accounts.

The Bureau of Economic Analysis (bea) began work leading to this article-and to the companion article about mineral resources, which begins on page 50-in 1992. At that time, as part of a long-term program to modernize its economic accounts, bea began research on two sets of accounts to supplement the existing national accounts. One of these sets of supplementary accounts, called satellite accounts, focused on the stock, and changes in the stock, of natural resources. ${ }^{1}$ (The roles that satellite accounts can

1. The other set, on research and development, will be introduced in an upcoming issue of the Survey of Current Business.
serve and their general structure are introduced in the accompanying box.) Work on the natural resources satellite accounts was given added impetus and extended in scope in 1993 when President Clinton, as part of his April 21 Earth Day address, gave high priority to the development of "Green GDP measures [that] would incorporate changes in the natural environment into the calculations of national income and wealth." At that time, bea committed to producing initial estimates of natural resource depletion within a year.

The first section of this article discusses the analytical and economic accounting background of the ieesa's and concludes with a summary of a United Nations system of satellite accounts for the environment, after which bea's accounts are fashioned. The second section introduces the main features of the ieesa's, presents an inventory of available data sources, and considers uses of the new accounts. The final section describes bea's long-term work plan for developing the satellite accounts, the first phase of which is completed with the presentation of the two articles in this issue of the Survey of Current Business. Bibliographic references for both articles begin on page 62.

Satellite Accounts: What Are They?

Satellite accounts are frameworks designed to expand the analytical capacity of the national accounts without overburdening them or interfering with their generalpurpose orientation. In this role, satellite accounts organize information in an internally consistent way that suits the particular analytical focus at hand, yet they maintain links to the existing national accounts. Further, because they supplement, rather than replace, the existing accounts, they can be a laboratory for economic accounting in that they provide room for conceptual development and methodological refinement.

In their most flexible applications, satellite accounts may use definitions and concepts that differ from the existing accounts. For example, a satellite account may be built around a broader concept of capital formation than the existing accounts. This flexibility is being used in BEA's work on integrated economic and environmental accounts and on research and development accounts. Satellite accounts such as these use different concepts and definitions by design; in other respects, they retain consistency with the existing accounts.

Satellite accounts can add detail or other information about a particular aspect of the economy to that in the existing accounts; for instance, they can integrate monetary and physical data. They can ar-
range information differently, perhaps by cutting across sectors to assemble information on both intermediate and final consumption. For example, a satellite account can assemble business expenditures on training-treated as intermediate consumption in the existing accounts-and education-related expenditures by households and government to analyze the role of education in the economy. They can use a classification other than the primary one. For example, they can identify expenditures on "research in education" as part of research expenditures even though they are included in education expenditures in the existing accounts.

The terminology and concepts associated with satellite accounts reflect the experiences of several countries that have constructed them, largely on an ad hoc basis, for fields such as health, education, agriculture, research and development, and the environment. The System of National Accounts 1993, the newly revised international guidelines, includes a chapter that provides a general framework for satellite accounts and demonstrates how that framework can be used for some of the fields in which such accounts would be most useful. This chapter represents, in a real sense, the coming of age of satellite accounts as an analytical tool.

The Background for Integrated Economic and Environmental Accounting

The analytical background

It is, of course, a simplification to speak of the economy and the environment as two distinct realms. It can be argued, for example, that the economy is part of nature because the economic activity of human beings in producing food and shelter parallels the similar activity of animals. In this simplification, the economy is defined as the human activities relating to income, production, consumption, accumulation, and wealth (although there is a continuing discussion about the scope to be given, for example, to the term "production"). The term "environment" refers to the environment of human beings, which is made up of the biological resources, subsoil resources, land and related ecosystem resources, water, and air. From the standpoint of the economy, the environment can be thought of as consisting of a range of natural resource and environmental assets that provide an identifiable and significant flow of goods and services to the economy.

The economy uses these productive natural assets in a wide range of ways. Crude oil pumped from proved reserves, for example, is used in the production of petroleum products, while clean water in lakes and oceans is used in the production of fish, paper products, and electric power. The economy's uses of the goods and services provided by these environmental assets can be grouped into two general classes. When use of the natural asset permanently or temporarily reduces its quantity, the use is viewed as involving a flow of a good or service, and the quantitative reduction in the asset is called depletion. In that class of uses, biological resources, for example, are used as food, as raw materials for clothing, and as building materials and fuel. Water is used for drinking, cooling, processing, and irrigation.

When use of the natural asset reduces its quality, the qualitative reduction in the asset is called degradation. These qualitative uses include the conversion of land from one use to another, such as the partial development of forestland. The development of forestland results in a reduction in the economic value of the land as forestland because of the reduction in the flow of recreational services associated with its degradation as a wildlife area and tourist destination. In another kind of qualitative use, natural assets are used as a sink for the disposal of residual pollutants that are byproducts of production.

The use of natural assets describes only part of the interaction between the economy and the environment. There are also feedback effects. Materials balance and energy accounting highlight both the use of the natural assets and the feedback effects from the use; thus, they capture the full interaction between the economy and the environment. ${ }^{2}$ In the case of natural resources, oil pumped from reserves today reduces the quantities that can be extracted from existing fields in the future; similarly, overharvesting of fish stocks today reduces yields in the future.

In the case of environmental assets, the feedback is more complicated, with effects that often fall on other industries and consumers. For example, when businesses use environmental goods and services along with labor and capital in production, residuals-such as lead and cadmium, or carbon monoxide and sulfur oxides-are also produced and are then disposed of into the environment. Up to a point, the environment is able to assimilate these residuals; beyond that point, however, significant environmental degradation affects the ability of the environment to provide

[^9]
Acknowledgments

This article and its companion are the initial products of BEA's naturai resource accounting project. J. Steven Landefeld, BEA's Deputy Director, directed the project. He and Carol S. Carson, bea's Director, were the principal authors of the two articles. Gerald F. Donahoe, Chief of the National Income and Wealth Division, coordinated and supervised the preparation of the estimates for this project. The other authors and their areas of responsibility were as follows: Bruce T. Grimm, sNA accounting issues, present discounted value minerals estimates, and rates of return; Stephanie L. Howell, ieesa framework and estimates other than minerals; Arnold J. Katz, conceptual issues, minerals methods, and oil and gas transactions estimates; Gary L. Rutledge, pollution abatement and control estimates; Timothy F. Slaper, minerals concepts and methods, current-rent minerals estimates, and oil and gas replacement-cost estimates; Eric J. Troyer, minerals methods and estimates. BEA also acknowledges the many outside experts who provided advice on source data and methods. In particular, Richard W. Haynes, of the U.S. Department of Agriculture Forest Service, provided data and essential assistance with the issues and methods involved in the valuation of standing timber.
raw materials to the economy (and to assimilate residuals). Degradation of air and water quality, for example, may lead to economic feedback-for example, lower timber yields and fish harvests, higher rates of depreciation in plant and equipment, additional cleaning costs, and increased health expenditures. In addition, either because of governmental regulations or the need to dispose of residuals that the environment can no longer handle, businesses and others may need to make expenditures for pollution abatement and control.

Integrated economic and environmental accounting aims to provide a picture of these interactions between the economy and the environment. Although this picture, as already noted, has numerous elements and is complex, by definition it does not cover many of the transformations and interactions within the environment itself-for example, the disposal of waste products from wild fish and mammals or the conversion of natural carbon dioxide into oxygen by plant matter on land and in the oceans. The accounts highlight the fact that economic sustainability depends on environmental sustainability, and they provide data to help analyze the costs and benefits for the careful stewardship of our economic and environmental assets. Consistent and detailed accounting of the interactions between the economy and the environment provides a common framework for integrating the work of environmental specialists, economists, and other analysts from a wide range of disciplines.

The economic accounting background

Economic accountants have long been aware of the issues that arise with respect to natural resources and the environment. One of the issues, which is also reviewed in the companion article, is whether the economic accounts should reflect the parallelism that is apparent in business accounting between depreciation, a charge for the using up of plant and equipment in production, and depletion, a charge for the using up of natural resources in production. In particular, because depletion of mineral resources has long been chargeable against profits in the U.S. tax code and because tax return tabulations have been used as source data for profits and other property income components of the national income and product accounts (Nipa's), explicit decisions were required on the treatment of depletion in the accounts. Initially, depletion was treated symmetrically with depreciation, but
no entry was made for additions to the stock of mineral resources parallel to the treatment of investments in structures and equipment. As a result of dissatisfaction with this asymmetric treatment, the entry for depletion was removed beginning in 1947.

In the late 1960's and early 1970's, environmental accounting issues came up as part of a broader interest in social accounting. Work by James Tobin and William Nordhaus, among others, on adjusting traditional economic accounts for changes in leisure time, disamenities of urbanization, exhaustion of natural resources, population growth, and other aspects of welfare produced indicators of economic well-being. However, the seemingly limitless scope, the range of uncertainty, and the degree of subjectivity involved in such measures of nonmarket activities limited the usefulness of, and interest in, these social indicators. It was felt that inclusion of such measures would sharply diminish the usefulness of traditional economic accounts for analyzing market activities. Attention subsequently focused on more readily identifiable and directly relevant market issues, such as the extent to which expenditures that relate to the protection and restoration of the environment (and other socalled defensive expenditures) are identifiable in the economic accounts.

In response to this interest in environmental protection, in the mid-1970's, bea was a pioneer in the development of estimates of pollution abatement and control (PAC) expenditures in a national accounting framework. Further, presaging what was to come, the framework for these estimates can be viewed as an early form of a satellite account. The pac estimates focus on an area of interest and provide detail that would have burdened presentation of the more general NIPA estimates.

The steps in the evolution of natural resource and environmental accounting since the early 1980's can be summarized in terms of international efforts, in which there was active U.S. participation, and the literature related to these effects. For this purpose, 1982 is a reasonable place to start. In that year, the United Nations Environment Program (Unep) was given the mandate to develop methodological guidelines on environmental accounting. In its earlier work, UNEP had tried to clarify the linkages between economic development and the environment to help integrate issues of environmental and resource management into the framework of economic decisionmaking. To follow up on
the mandate, unep and the World Bank sponsored a series of workshops in 1983-86 to explore the current state of environmental and natural resource accounting. The general thinking was that although economists had long considered the "external effects" of production and consumption, they had not taken into account the effects on the resource system as a whole and the consequence that eventually someone was going to have to bear the "external costs." A broader view would internalize environmental costs in the production process, for which it would be essential to calculate costs and benefits properly and to distinguish clearly between true income and the drawing down of assets by depletion or degradation. Accordingly, the workshops focused on the shortcomings of traditional economic accounting: GDP does not adequately represent true income because environmental protection costs are treated as generating income and because depletion and degradation of natural resources are not charged against current income. A number of remedies for these shortcomings were proposed, but workable methodologies and good data were lacking, and some of the proposals were conflicting. ${ }^{3}$

Although the empirical foundations for integrating environmental and economic accounting estimates were lacking in the mid-1980's, a growing body of research and information was accumulating. ${ }^{4}$ France, Norway, and the Netherlands were working toward physical accounting matrices, which they have integrated into cost-benefit and cost-effectiveness work in the environmental policy field. Subsequently, Canada, the United Kingdom, Japan, and Australia all did preliminary work toward supplementing their traditional accounts. The United Nations and the World Bank jointly sponsored pilot studies with statisticians in Mexico and Papua New Guinea. In addition to these country efforts, researchers-such as Henry Peskin, working with the Environmental Protection Agency in a study of the Chesapeake Bay region, and Robert Repetto and his associates at the World Resources Institute, in their studies of China, Costa Rica, and the Philippines-have added significantly to the growing literature on environmental accounting.

In the meantime, a revision of the System of National Accounts (sNA), the international guidelines followed by most countries in preparing their economic accounts, was undertaken. A ma-

[^10]jor issue was the extent to which the revised SNA would remedy the perceived shortcomings of traditional national accounts.
The discussion stimulated by the 1987 report of the World Commission on Environment and Development, Our Common Future, gave added reason to explore statistical measures that would provide appropriate tools to guide policy and decisionmaking.[34] This report focused on sustainable development--that is, development that meets the needs of the present without compromising the ability to meet the needs of the future. According to the report, the Commission had been established by the United Nations General Assembly because of the growing realization that it is impossible to separate economic development issues from environmental issues-the realization, in other words, that many forms of development erode the environmental resources upon which they are based, and that such environmental degradation can undermine economic development.

By 1989, it became clear that, given the divergent views on a number of conceptual and practical issues in natural resource and environmental accounting, international consensus in time for a fundamental change in the SNA as part of the ongoing revision was not possible. Therefore, it was agreed that the revised sna would address links to environmental concerns, such as the definition and boundary for assets, and that a satellite account for integrated economic and environmental accounting would be pursued. The United Nations undertook the preparation of a handbook to provide guidance on the construction of the satellite account.
Subsequently, this approach found support in several forums. In May 1991, a Special Conference of the International Association for Research in Income and Wealth brought together economic accountants and environmental specialists to discuss a preliminary version of the United Nations handbook. In June 1992, the United Nations Conference on Environment and Development (the "Earth Summit") in Rio de Janeiro included a program for establishing systems of integrated accounts as a complement to the existing system in its Agenda 21.[29] Agenda 21 urged national offices that prepare economic accounts to undertake the work and urged the United Nations to distribute widely, and then refine, its handbook. In October 1992, economic accountants, in a seminar held to review the revised SNA, generally welcomed the features that link to the environment and the section of the revised SNA's chapter
on satellite accounts that discusses integrated economic and environmental accounts based on the United Nations handbook. In February 1993, the Statistical Commission of the United Nations endorsed the revised sna. ${ }^{5}$ The Commission, in highlighting the important features of the revised SNA, noted that it laid the groundwork for dealing with the interaction between the economy and the environment.

The United Nations System of Environmental and Economic Accounting

The United Nations System of Environmental and Economic Accounting (seea), as described in the handbook, is a flexible, expandable satellite system.[30] It draws on the materials balance approach to present the full range of interactions between the economy and the environment. The seea builds on, and is designed to be used with, the System of National Accounts 1993 (hereafter SNA 1993) [31]. Like the SNa, the seea is primarily concerned with the implications of the environment for production, income, consumption, and wealth.

The seea has four stages, each successively providing a more comprehensive accounting for the interaction between the economy and the environment. The four-stage presentation recognizes the need to develop concepts, to inventory and augment source data, and to adapt the implementation to differing analytical needs. The starting point is the SNA 1993, which incorporated several features that anticipated the needs of environmental accounting. ${ }^{6}$ Stage A disaggregates, or provides additional detail on, environmentally related economic activities and assets. This stage, for example, focuses on actual expenditures intended to prevent or repair the degradation of the environment. It includes a detailed breakdown of the stocks of natural resource assets and changes in these stocks. Finally, it includes sector links to show the supply and uses of natural re-

[^11]sources. The use of natural resources-depletion and degradation-can be broken down into intermediate inputs by industry, investment, final consumption by households and government, and imports and exports.
Stage B begins with the physical counterpart of stage A. It maps, in physical terms, the interaction between the environment and the economy. It provides the physical quantities to which prices are applied to derive the economic values included in the economic accounts. These physical accounts also provide a bridge to natural resource accounting and to materials and energy balances accounting. Stage B then links the physical quantities to monetary values.
Stage C provides far more comprehensive and explicit measures of the interaction between the economy and the environment. It does so, first, by the use of alternative valuation techniquesthat is, alternatives to the use of values tied to the market, the valuation used in the SNA 1993 and in traditional accounting systems. The alternative valuation techniques include estimates based on maintenance costs, or the costs necessary to maintain at least the present level of environmental assets, and estimates based on contingent valuation, or the willingness to pay for reductions in depletion or degradation of natural assets. Second, it does so by the more explicit introduction of environmental effects on the measures of national production, investment, income, and wealth. Stages A and B of the seea (as well as the $S N A 1993$) record environmental effects either as changes in the value of assets or as changes in the distribution of income among the factors of production; these changes do not explicitly affect gross domestic product, final demand, or net domestic product.

Stage D consists of further extensions of the seea. These extensions are provided for the purpose of "opening a window on further analytical applications," and they will require further research. They include household production and the use of recreational and other unpriced environmental services in household production.

Framework for the ieesa's

bea's ieesa's build on the accumulating experience represented in the seea. This experience is consistent with two lessons from social accounting in the 1970's. First, such accounts should be focused on a specific set of issues. Second, given the kind of uses to which the estimates would be put, the early stage of conceptual develop-
ment, and the statistical uncertainties (even if the estimates are limited to the effect on market activities), such estimates should be developed in a supplemental, or satellite, framework.

Structural features

The ieesa's are structured to focus on the interaction of the economy and the environment. The interactions covered are those that can be tied to market activities and thus valued in market prices or proxies thereof. They are shown as effects on production, income, consumption and wealth.
The accounts have two main structural features. First, natural resources and environmental resources are treated like productive assets. These resources, along with structures and equipment, are treated as part of the Nation's wealth, and the flow of goods and services from them are identified and their contribution to production measured. Second, the accounts provide substantial detail on expenditures and assets that are relevant to understanding and analyzing the interaction. Fully implemented ieesa's would permit identification of the economic contribution of natural and environmental resources by industry, by type of income, and by product. Ultimately, accounts by region would add an important analytical dimension.

Natural and environmental resources as productive assets.-An example helps to explain the reasoning behind treating natural and environmental resources like productive assets in the economic accounts. This example is much simplified, notably in that it shows only one side of an account, focuses on aggregates, and uses descriptive rather than technically precise terminology. In this example, all income from production goes to either "wages" or "profits." Wages are recorded as earned; however, profits-that is, total revenues less labor and other operating expenditures-are reduced by an entry for "depreciation," where depreciation is the amount that must be set aside to cover the using up of capital in production. Thus, for an industry and for all industries combined, wages plus profits and depreciation equals gross domestic product (GDP).
In the traditional accounts, the economy would be pictured as follows:

Wages	6,000
Plus: Profits	3,000
Depreciation	1,000
Gross domestic product	10,000

Because depreciation is included in GDP, GDP is not a measure of sustainable income; that is, if a nation consumed all of its GDP, it would reduce the productive capacity available to future generations because it had consumed the amount it should have set aside to cover the using up of capital. In fact, the "gross" in the name, gross domestic product, refers to that feature. As a better measure of sustainable income, the traditional accounts provide net domestic product (NDP), which is calculated as GDP less depreciation.

Gross domestic product	10,000
Less: Depreciation.	1,000
Net domestic product.	9,000

Capital in the traditional accounts is limited to structures and equipment. In the ieesa's, natural and environmental resources are viewed as having characteristics similar to structures and equipment: Labor and materials are devoted to producing them, and they then yield a flow of services over time. For that reason, the iefsa's include these resources, along with structures and equipment, as part of the Nation's wealth and give them the same treatment as structures and equipment in the traditional accounts. The ieesa's deal with three points of asymmetry between the treatment of natural resources-for example, mineral reserves-and of structures and equipment encountered in traditional accounts. In traditional accounts: (1) depreciation is subtracted from profits to determine true, or sustainable, profits, but depletion is not; (2) depreciation is subtracted from GDP to estimate NDP, but depletion is not; and (3) additions to the stock of plant and equipment are added to GDP as capital formation, but additions to mineral reserves are not.

The depletion of mineral reserves is like the depreciation of plant and equipment: It is the amount that must be set aside to cover the cost of using up mineral resources in production. If an oil company earns $\$ 3,000$ in profits but depletes its mineral reserves by $\$ 100$, then its true economic profits are only $\$ 2,900$, the amount over and above its depletion of assets. In the ieesa's, therefore, an estimate is made of the amount of profits that should be recognized as depletion. This amount is subtracted from profits and entered, like depreciation, as a separate component, thereby dealing with the first point of asymmetry. Further, depletion, like depreciation, must
be subtracted from GDP to arrive at NDP. Doing so deals with the second point of asymmetry.

Wages	6,000
Plus: Profits (iebsa)	2,900
Depreciation	1,000
Depletion	100
Gross domestic product (IEESA)	10,000
Less: Depreciation...	1,000
Depletion..	100
Net domestic product (iessa)	8,900

Note that recognizing depletion lowers profits and changes the composition of GDP, but the level of GDP itself is not reduced; recognizing depletion reduces NDP in comparison with the traditional accounts' NDP.
In the ieesa's, additions to mineral reserves (for example, extensions as a result of investments in improved technology or additions as a result of exploration) are treated like additions to the stock of structures and equipment-that is, as capital formation. Additions to reserves do not appear in the traditional accounts; therefore, to treat them as capital formation, they are added to GDp. In the ieesa's, additions to reserves raise capital formation, profits, GDP, and NDP. Recognizing the additions to reserves thus deals with the third point of asymmetry. If the additions amounted to 150 , the economy would be pictured as follows:

Wages.	6,000
Plus: Profits (ieesa).	3,050
Of which: Capital formation in mineral	150
Depreciation.	1,000
Depletion ...	100
Gross domestic product (ieesa)	10,150
Less: Depreciation.	1,000
Depletion	100
Net domestic product (iersa)	9,050

Compared with the traditional accounts, both the composition and level of gDp differ. Thus, the ieesa's give a view of an industry's production that reflects changes in its resource base. The ieesa's measure of ndp, therefore, is a better measure of sustainable income than the traditional accounts' measure because it incorporates changes in mineral wealth as well as structures and equipment. Whether the ieesa's measure of NDP is higher or lower than in the traditional accounts depends on whether depletion or additions is larger, and this will vary from resource to resource and from period to period. Estimates of this kind for all natural and environmental resources would help gauge whether the current level of GDP can be maintained by the Nation's natural resource base.

Detail that highlights the interaction.-In the iebsa's, the standard economic accounting categories are disaggregated to show detail that highlights the interaction of the economy and the environment. For example, the expenditures detail shows spending by households, government, and business to maintain or restore the environment. The asset detail shows environmental management (conservation and development, and water supply) and waste-management projects (sanitary services, air and water pollution abatement and control) within the standard category of nonresidential fixed capital.
The estimating requirements underlying these two main structural features of the ieesa's are apparent in the ieesa tables, even when, as shown in this article, they are in skeleton form. Table 1, an asset account, and table 2, a production account, use modified forms of tables presented in the seea.

Asset accounts

Integrated economic and environmental accounting requires the measurement of stocks and flows related to assets, which are presented in an asset account. An asset account is like a balance sheet in that it presents stocks, or holdings, at a point in time. (Because an asset account is limited to nonfinancial assets, it does not include liabilities and net worth, as would a balance sheet.) However, an asset account also presents flows related to the assets during a period of time.
The ieesa's provide a complete accounting for the relevant assets-that is, they show both stocks and flows associated with changes in those stocks. Column 1 in table 1 provides for estimates of opening stocks. Columns $2-5$ provide for estimates of the flows that represent different kinds of changes in the stock: First, a net total and then three flows: The decrease in stocks due to depreciation (or more formally, in economic accounting terms, consumption of fixed capital), depletion, or degradation; the increase in stocks due to capital formation in the form of new structures and equipment, additions to inventories, additions to the stock of natural and environmental assets; and changes in value due to price changes and to changes in the volume of assets other than those due to economic activity (for example, natural disasters). Column 6 provides for estimates of closing stocks.

Table 1 presents the nonfinancial assets that bea would try to include in ieesa asset accounts. The table's rows generally follow the subcategories of the SNA 1993 and the SEEA, but some of
the subcategories are regrouped to broaden both the production boundary and the definition of assets. Nonfinancial assets are divided into made assets, developed natural assets, and environmen-
tal assets. Made assets, which largely replicate the scope of nonfinancial assets in traditional income and wealth accounts, are subdivided into fixed assets and inventories. Developed natural assets are

Table 1.-IEESA Asset Account, 1987
[Billions of dollars!
This table can serve as an inventory of the estimates currently available for the IEESA's. In decreasing order of quality, the estimates that have been filled in are as follows: For made assets, estimates of fixed reproducible tangible stock and inventories, from BEA's national income and product accounts or based on them, and pollution abatement stock, from BEA estimates (rows 1-21); for subsoil assets, the highs and lows of the range based on alternative valuation methods, from the companion article (rows $36-41$); and best-available, or rough-order-of-magnitude, estimates for some other developed natural assets (selected rows 23-35 and 4247) and some environmental assets (selected rows 48-55) prepared by BEA based on a wide range of source data described in this article. The "n.a."-not availableentries represent a research agenda.

	Row	Opening stocks (1)	Change				$\underset{(1+2)}{\text { Closing slocks }}$
			Total, net $(3+4+5)$ ($3+4+5$) (2)	Depreciation, depletion, degradation (3)	Capital formation (4)	Revaluation and other changes (5)	
PRODUCED ASSETS							
Made assets		11,565.9	667.4	-607.9	905.8	369.4	12,233.3
Fixed assets	2	10,535.2	608.2	-607.9	875.8	340.2	11,143.4
Residential structures and equipment, private and government		6,5301.6	318.1 290.1	--1098.8	${ }_{645.3}^{230.5}$	$\begin{array}{r}199.4 \\ 142.9 \\ \hline\end{array}$	6,8.823.7
Natural resource related ..	5	503.7	23.1	-19.2	30.3	12.0	526.8
	6	241.3	8.4	-7.0	10.6	4.7	249.6
Conservation and development ..	7	152.7	3.6	-4.4	5.3	2.7	156.4
Water supply facilities	8	88.5	4.8	-2.5	5.3	2.0	93.3
		$\begin{array}{r}262.4 \\ 1729 \\ \hline\end{array}$	14.7	$\begin{array}{r}-12.2 \\ -56 \\ \hline-2\end{array}$	19.7	7.3 4.8	277.1 1858
Sanitary services Air pollution abatement and control	10 11 1	$\begin{array}{r}172.9 \\ 45.3 \\ \hline\end{array}$	12.8 .6	-5.6 -4.1	$\begin{array}{r}13.7 \\ 3.5 \\ \hline\end{array}$	4.8 1.8	185.8 45.9
Water pollution abatement and control \qquad	12	44.2	1.3	-2.5 -2.5	${ }_{2.6}^{3.5}$	1.2	45.5
Other ...	13	6,029.9	267.0	-478.9	615.0	130.9	6,296.9
Inventories ${ }^{1}$....		1,030.7	59.3		30.1	29.2	1,090.0
Government	15	184.9 7973	6.8 62.4	\cdots	2.9	3.8	191.7
	17	48.5	-9.9	...)	-5.5	-4.4	38.6
Corn	18	10.2	3	\cdots	-1.1	1.4	10.5
Soybeans	19	5.0	-1	-1.0		
	20 21	2.6 30.7	-10.1	\cdots	-3.2	-6.9	2.6
	22	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Cultivated biological resources	23	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Cultivated fixed natural growth assets	24	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Livestock for breeding, dairy, draught, etc ..	25	n.a.	n.a.	n.a.	n.a.		n.a.
Cish enck......	${ }_{27}^{26}$	12.9	n.a	n.a.	$\stackrel{-3}{\text { n.a }}$		
	$\stackrel{28}{28}$	n.a.	$\stackrel{1}{2}$	n.a.		n.a.	2.2.
	29	288.8	47.0	-6.9	9.0	44.9	335.7
Work-in-progress on natural growth products ..	30	n.a.	n.a.		n.a.	n.a.	n.a.
	31	n.a.	n.a.	\cdots	n.a.	n.a.	n.a.
Cattle \qquad	32 33	24.1 n.a a	7.5.	$\cdots \cdots \cdots \cdots \cdots \cdots \cdots$	n	7.5 n.a. arem	31.6 n.a a
Calves	34	n.a. 5.0	$\stackrel{\text { n.a. }}{ }$.-.).-.	n..	1.4	n.a. 5.9
	35	1.8	3				
Proved subsoil assets ${ }^{2}$.............		$270.0 \leftrightarrow 1066.9$	57.8↔-116.6	-16.7 $\rightarrow-61.6$	$16.6 \leftrightarrow 64.6$	$58 \leftrightarrow-119.6$	299.4 $¢ 950.3$
	37	58.2 ¢ 325.9	$-22.5 \leftrightarrow-84.7$	-5.1 ¢-30.6	5.8↔34.2	$-23.1 \leftrightarrow-88.3$	$35.7 \leftrightarrow 241.2$
Gas (including natura gas liquids) ...	38	$42.7 \leftrightarrow 259.3$	$6.6 \leftrightarrow-57.2$	-5.6↔-20.3	4.1 ¢ 14.9	8.1 ¢ $\leftrightarrow-51.8$	49.4 $\leftrightarrow 202.2$
Coal	39	140.7 $\mathrm{H}^{207.7}$	2.2 ¢ $\uparrow-3.4$	$-5.4 \leftrightarrow-7.6$	4.4 ¢ 6.3	3.2 ¢-2.1	$143.0{ }^{1}+204.2$
Metals	40	$\underset{28.4 \leftrightarrow 58.7}{ }$	$67.2 \leftrightarrow 29.5$ $4.3 \leftrightarrow-8$	$-.2 \leftrightarrow-2.2$ $-4 \leftrightarrow-9$	$\stackrel{2.2 \leftrightarrow 9.2}{1 \leftrightarrow 0}$	$\underset{4.6 \leftrightarrow 1}{65.2}$ ¢	$38.5 \leftrightarrow 244.8$ $3.8 \leftrightarrow 57$.
				-.4↔-.9	. $\leftrightarrow 0$	$4.6 \leftrightarrow .1$	$32.8 \leftrightarrow 57.9$
Developed land.....	42	n.a.	n.a.	n.a.	n.a.	n.a.	
Land underlying structures (private)	43	4,053.3	253.0	n.a.	n.a.	n.a.	4,306.3
Agricultural land (excluding vineyards, orchards)	44	441.3	42.4	n.a.	-2.8	45.2	483.7
	45	n.a.	n.a.	$-.5$	n.a.	n.a.	
Recreational land and water (public) Forests and other wooded land	46 47	\% $\begin{array}{r}\text { n.a.a } \\ 285.8\end{array}$	$\begin{gathered} \text { n.a. } \\ 28.8 \end{gathered}$	-..a	.9 -6	n.a. 29.4	n.1.a.
NONPRODUCEDIENVIRONMENTAL ASSETS							
Uncultivated biological resources		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Wild fish	49	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Timber and other plants of uncultivated forests ..	50	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	51	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Unproved subsoil assets	52	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Undeveloped land	53	n.a.	n.a.	-19.9	19.9	n.a.	n.a.
Water (economic effects of changes in the stock) Air (economic effects of changes in the stock) \qquad	54 55	,	n.a.	-38.7 -27.1	38.7 27.1	n.a.	

n.a. Not available.

The calculated value of the entry was negative.
estimate for inventories differs from the NIPA estimate by the amount of government inventories added and cattle and calves shown separately. in full implementation of the IEESA account, farm inventories would include
only harvested crops.
methods) that produc ill columns result from the valuation method (see text for further discussion of the alternative Nots hat produces the low and high estimates of opening stocks.
NoTE.-Leaders indicate an entry is not apolicabie.
subdivided into cultivated biological resources, proved subsoil assets, and developed land. Environmental assets are subdivided into uncultivated biological resources, unproved subsoil assets, undeveloped land, water, and air (the last two in terms of the economic effects of changes in the stock).

Made and developed natural assets.-To better highlight the interaction of the economy and the environment, table 1 provides more detail on natural resource and environmentally related produced assets than the traditional income and wealth accounts. Within made assets, nonresidential fixed capital is disaggregated into environmental management (conservation and development, and water supply) and waste-management projects (sanitary services, air and water pollution abatement and control). Detail is also provided on farm inventories of finished goods.

Within cultivated biological resources, table 1 provides detail beyond that contained in the traditional accounts, such as cultivated fixed natural growth assets (for example, livestock), and categories not included in the traditional accounts (for example, trees on timberland).

The treatment of proved subsoil assets and cultivated land in table 1 differs from the seea treatment. Proved reserves are generally defined as those reserves that are proved to a high degree of certainty-by test wells or other test data-and are recoverable under current economic conditions and with current technology. In the seea, they are classified as nonproduced assets. In table 1, these assets, along with cultivated natural growth assets, are included in the category "developed natural assets." As will be illustrated in the production accounts, capital formation that adds to the stock of these assets-both by bringing undeveloped or uncultivated assets into the category of developed natural assets and by adding to their value within that category-is treated in a manner similar to capital formation that adds to the stock of structures and equipment.

This treatment was adopted because it is difficult to rationalize describing proved reserves and cultivated land as "nonproduced" natural assets when expenditures are required to prove or develop them. Agricultural land, for example, must be "produced" in that expenditures must be undertaken to convert uncultivated land areas into commercially valuable farmland, which yields a return over a number of years. Wetland areas, if they are to become farmland, must be drained and graded and vegetation cleared.

Unproved mineral reserves also require expenditures for test wells, engineering studies, and other exploration and development investments before they are recorded as proved reserves.

Similar treatments of these developed natural assets and made assets facilitate consistent treatment of capital formation of natural assets and more conventional capital formation, such as investment in structures and equipment. Under this treatment, as mineral reserves, for example, are proved, the total value of the produced assets-structures and equipment as well as the proved reserve's value-is included as capital formation. Similarly, as oilfield machinery is depreciated, proved reserves associated with the machinery are depleted.
The other major difference between developed assets in table 1 and in the comparable sEEA presentation is in the treatment of soil. In the SEEA, soil-that is, productive soil on agricultural land-is treated as separate from agricultural land. In table 1 , soil is a subcategory of agricultural land because the value of agricultural land is inseparable from the value of the soil. Available estimates suggest that the effect of soil erosion, or depletion, on agricultural productivity and land values in the United States is quite small. Nevertheless, though soil is not treated separately, it is shown separately because its erosion has a significant effect on environmental quality through its effect on water quality.

Environmental assets.-This grouping includes natural assets with significant economic value that differ from developed natural assets in that they are generally used as raw inputs into production in their natural state, either as intermediate products or as investments. For example, uncultivated biological resources, such as tuna harvested from the ocean, are included as environmental assets, whereas cultivated biological resources, such as rockfish raised on a fish farm, are included in developed assets. Other categories in environmental assets are uncultivated land, unproved subsoil assets, water, and air.

The inclusion of unproved subsoil assets broadens the definition of subsoil assets to include reserves that, though unproved, have an economic value over and above that of other undeveloped land because of their location or geologic characteristics. As capital expenditures are made to "prove" these properties, they move from nonproduced to produced assets. This broader definition of subsoil resources will facilitate longer term planning and analysis of the use of mineral resources. The stock of proved reserves-like the
stock of drill presses-can be expanded by additional investment; hence, firms will keep on hand the stock of reserves dictated by current market prices, finding costs, and interest rates. Thus, complete analysis of mineral resources requires consideration of unproved, as well as of proved, reserves.
In a distinction similar to that between proved and unproved subsoil assets, cultivated landsuch as agricultural land, parkland, and land underlying buildings-is included in developed natural assets, whereas uncultivated land--such as wetlands and forestland (not included as timberland)-is included in environmental assets. The agricultural land must be developed before it can be used as farmland, whereas wetlands are used-for example, for their disposal services-in their natural state by the economy. Water, which is subdivided by type, and air also provide services to the economy in the form of recreational and waste disposal services.
Although these environmental assets differ from made and developed natural assets, investments that add to the stock of these assets, as noted below in the production accounts, are treated symmetrically with investments that add to the stock of structures and equipment and of developed assets. These investments, for example, include pollution abatement and control to improve the quality and waste disposal capacity of the air and water, or at least to offset the degradation/depletion (which is also recorded in the production account) occurring in the current period. These investments represent a decision by the economy to devote its resources to investments that improve air and water quality, rather than investments in structures and equipment, and investments that add to the stock of clean air and water should be counted just as investments that add to the stock of made and developed assets are counted.

Estimates: Coverage, sources, and methods.-The estimates recorded for 1987 in table 1 should be regarded as rough-order-of-magnitude, or bestavailable, estimates. (The estimates are for 1987 because that is the last year for which data from the quinquennial economic census-used in a number of cases as a benchmark from which to estimate forward and backward--are available.) In most cases, only one estimate, rather than a range, is available. Many of the table's cells do not contain estimates, and the quality of the estimates varies greatly. In general, the quality and availability of the estimates declines as one moves down the rows from produced to nonpro-
duced assets, reflecting the increasing conceptual and empirical difficulties in producing such estimates. The estimates may be best regarded as a measure of the work to be undertaken; they are presented here to serve as a road map for areas in which source data and estimating methods must be developed or improved.
Within made assets, the estimates of nonresidential stocks of pollution abatement (PA) structures and equipment are constructed using the same perpetual inventory techniques used to produce bea's exiting capital stock estimates (see the box on page 44). These stock estimates capture nonresidential investments for PA that are readily identifiable. When companies and plants change their production processes (or equipment) to embody PA features, the PA portions of these investments are included to the extent they can be identified; however, identification is difficult, and understatement of PA stocks can occur. Estimates of government inventories are from unpublished nIPA data. For inventories owned by the Federal Government, the estimates are based on information on inventories from Federal agencies. For State and local governments, the estimates are based on the level of their purchases of nondurable goods; it is assumed that they hold 1 month of these purchases in inventories. The farm inventories of finished goods for agriculture are extensions of the existing inventory data in the nipa's (following the ieesa, crops not yet harvested are shown as work-in-progress). Stock estimates for several components that would be of interest in the household sector, such as PA equipment in consumer durables and residential capital (for example, pa equipment installed in cars and septic systems in homes), are not available.
Within developed natural assets, most of the estimates are an extension of the existing national accounts data. The existing accounts include estimates for livestock only, with no split between those raised for breeding, dairy, or draft (cultivated fixed natural growth assets) and those raised for slaughter (work in progress on natural growth products). In table 1, these splits were made using assumptions based on data from the U.S. Department of Agriculture (UsDA). The estimates of the value of vineyards and orchards are based on Federal Reserve Board estimates of the value of agricultural land and estimates of the acres of land in vineyards and orchards from the Bureau of the Census. Estimates of the value of fish stocks or of changes in these stocks are not yet available (and are in phase iI of BEA's plan).

The values of trees on timberland were estimated based on stumpage value estimates provided by the U.S. Forest Service's Pacific Northwest Research Station. The stumpage value estimates are based on the concept of net rent to the timber stand-as distinct from the land the forest sits upon-and are derived mainly from private market data on payments for logging rights. As such, they should correspond to the present discounted value of the timber sales from the tract less the costs of logging, access, transportation, and processing. All timber on timberland in the

United States-public and private-is included in this category. Timber on other forestland is included in nonproduced/environmental assets. This somewhat arbitrary distinction is made partly on conceptual grounds and partly on the availability of source data. All timber in the national forests is in a sense managed, although depending on the forest, management ranges from active, such as planting, to relatively passive, such as self-seeding, fire control, and rotational harvests. Practically, no data are available for the exact definition of "cultivated timber tracts."

Stock of Plant and Equipment for Air and Water Pollution Abatement in the United States, 1980-91

This box presents estimates of the gross and net stocks of plant and equipment ($\mathrm{P} \mathrm{\& E}$) for air and water pollution abatement (PA) in the United States during 1980-91. Gross and net stocks of PA P\&E help to protect air and water from degradation by stationary and point industrial sources of pollutant emissions. ${ }^{1}$
In 1991, the gross stock of air and water PA P\&E was about $\$ 183.5$ billion (table A). ${ }^{2}$ In constant (1987) dollars, the gross stock was $\$ 165.0$ billion in 1991, about 2.0 percent of the real gross stock of all fixed nonresidential nonfarm business capital. Between 1980 and 1991, the real gross stock of air and water PA P\&E grew at an annual rate of 2.6 percent. Growth in nonmanufacturing stocks outpaced that in manufacturing stocks, mainly reflecting PA P\&E spending by electric utilities. The real net stock of air and water PA P\&E--that is, after subtracting depreciation-was $\$ 91.3$ billion in 1991, up from $\$ 85.8$ billion in 1980.
The PA P\&E stock estimates are useful when studying market production and economic well-being. They are helpful in determining how pollution abatement spending affects prices, total capital costs, and the profitability of capital. They are also helpful in constructing rough measures of the value of the degradation in air and water quality that has been avoided through pollution abatement. ${ }^{3}$

The $1980-91$ PA P\&E estimates were prepared by the perpetual inventory method: Past PA P\&E flows (capital spending) were cumulated and discards deducted, in accordance with lifespans of capital goods, to arrive at gross stocks of pA P\&E. Net stocks were calculated by subtracting accumulated depreciation from gross stocks. Gross and net stock estimates for $1980-91$ are valued at constant and at current cost-that is, using 1987 prices (for constant cost) and replacement or current-year prices (for current cost).

Data on an establishment basis for manufacturing PA P\&E spending are mainly from the Pollution Abatement Costs and Expenditures (pace) Survey by the Bureau of the Census. Data for electric util-

[^12]ities are mainly from the Pollution Abatement (PA) Supplement to the Census Bureau's P\&E survey; the Pa Supplement reports PA P\&E spending for three industries-electric utilities, petroleum, and mining. The PA Supplement reports PA P\&E on a company basis, but for electric utilities (unlike for petroleum and mining), such data approximate an establishment basis. The PA P\&E spending estimates for mining and for nonmanufacturing except mining and electric utilities are prepared by indirect methods; a variety of data sources are used, including the PA Supplement, an environmental protection expenditures survey by the American Petroleum Institute, and the Census of Mineral Industries.

Table A.-Gross and Net Stocks of Air and Water Pollution Abatement Plant and Equipment in Nonfarm Business, by Major Industry Group, Current-Cost and Constant-Cost Valuations, 1980-91

	Gross stocks					Net stocks				
	$\begin{gathered} \text { All non- } \\ \text { farm } \\ \text { indus- } \\ \text { tries } \end{gathered}$	Manufacturing			Non-manu-facturing	All nonfarm industries	Manufacturing			Non-manu-facturing
		Total	Durables	Non-durables			Total	$\begin{aligned} & \text { Dura- } \\ & \text { bles } \end{aligned}$	Non-durables	
	Billions of current dollars									
1980	103.43	58.78	24.55	34.24	44.65	71.14	37.65	15.94	21.71	33.49
1981	118.66	66.31	28.04	38.27	52.35	79.54	40.94	17.56	23.39	38.60
1982	129.00	70.16	29.72	40.43	58.84	84.46	41.76	17.80	23.95	42.70
1983	135.72	71.37	30.25	41.12	64.35	86.43	40.67	17.20	23.48	45.75
1984	142.68	72.85	31.05	41.80	69.83	88.47	39.81	16.86	22.95	48.66
1985	147.25	73.83	31.70	42.14	73.41	89.05	39.07	16.60	22.47	49.97
1986	151.04	74.05	31.96	42.08	77.00	89.49	38.24	16.26	21.99	51.24
1987	157.59	75.59	32.56	43.03	82.00	91.38	38.15	16.07	22.08	53.23
1988.	165.04	77.73	33.26	44.48	87.30	93.86	38.65	15.97	22.68	55.21
1989 ...	170.82	79.69	33.83	45.86	91.13	95.67	39.54	16.07	23.47	56.13
1990.	176.91	82.83	34.28	48.55	94.07	98.19	41.75	16.25	25.49	56.44
1991	183.50	87.02	34.84	52.18	96.48	101.58	45.17	16.71	28.46	56.40
	Billions of constant (1987) dollars									
1980.	124.67	71.13	29.55	41.57	53.54	85.79	45.64	19.22	26.42	40.16
1981.	132.26	73.56	30.91	42.66	58.70	88.84	45.54	19.38	26.15	43.31
1982 ...	138.61	74.96	31.59	43.36	63.66	90.92	44.71	18.95	25.76	46.22
1983.	142.56	74.97	31.67	43.30	67.58	90.85	42.79	18.03	24.76	48.06
1984.	146.66	74.94	31.86	43.08	71.72	90.98	41.00	17.32	23.68	49.98
1985	149.58	74.81	32.07	42.74	74.77	90.52	39.62	16.81	22.81	50.91
1986 ...	152.08	74.53	32.16	42.37	77.55	90.12	38.50	16.36	22.14	51.61
1987.	154.47	74.36	32.04	42.32	80.11	89.52	37.53	15.81	21.71	52.00
1988 ...	155.86	73.93	31.62	42.31	81.93	88.55	36.76	15.19	21.57	51.80
1989	157.52	74.05	31.42	42.63	83.48	88.16	36.75	14.93	21.82	51.40
1990	161.03	75.76	31.31	44.45	85.27	89.36	38.20	14.86	23.35	51.15
1991	164.97	78.36	31.37	47.00	86.60	91.31	40.69	15.05	25.64	50.63

For proved subsoil assets, the estimates shown are the highs and lows of ranges presented, along with a description of the sources and methods used to prepare them, in the companion article beginning on page 50. The estimates represent the range of differences associated with common methods for valuing nonrenewable natural resources.

The estimates within the category "developed land" are of uneven quality. The estimates of the value of agricultural land are relatively good and are based on USDA estimates of farm real estate values less bea estimates of the value of farm structures. Soil estimates, from the USDA, reflect the annual effect of soil depletion in terms of extra fertilizer costs and reduced productivity. The estimates of residential land, included in table 1 as part of land underlying structures, also are of reasonable quality. The estimates of the other private land underlying structures are of more uncertain quality. The Federal Reserve Board produces these estimates of land values by taking estimates of real estate values from a variety of sources and subtracting BEA's estimates of the value of nonresidential structures. The Federal Reserve's estimates of real estate values are based, in part, on less than comprehensive price indexes; they do not, for example, appear to cover adequately the value of mineral tracts, timberland, or industrial buildings and land. bea's estimates of nonresidential structures are based on perpetual inventory methods-with assumed depreciation schedules and replacementcost indexes-and may therefore differ from the current market value of the structures included in the real estate estimates. Although over longer periods of time the perpetual inventory estimates are of good quality, during periods of declining or rapidly increasing real estate values, they may produce unreasonable results. Also, to the extent that the value of natural resource assets are not included in the real estate price indexes, the overall value of developed land will be over- or under-stated according to the path of natural resource prices relative to commercial and other land values.

The seea recommends that national parks be classified as uncultivated land because their protection, and not their use, is the main function of governmental regulation. However, because these parks are extensively maintained, improved upon, and used by consumers for recreation, they are included in recreational land in table 1. The estimate of capital formation in recreational land is based on Federal Government mainte-
nance and repair expenditures for parks; State and local expenditures are not available. It is assumed that these expenditures exactly offset the degradation/depletion of recreational land; in the case of recreational land, the only estimates available were of maintenance and repair expenditures. This assumption is made only so that both investment and degradation/depletion estimates are illustrated by the table and not to imply any judgment about the true value of degradation/depletion. (Phase II and III of bea's work plan, described in the next section, includes work to build on the damage assessment and recreational valuation literature to construct estimates of the market value of recreational and environmental amenities.)
For environmental assets, the estimates are more uncertain than even the most uncertain estimates for developed land and proved reserves of subsoil assets. Indeed, most of this section of the table, especially that for renewable natural resources, is shown with "n.a." for "not available." No value is available for the stock of undeveloped land and its associated ecosystems, for unproved subsoil assets, and for uncultivated biological resources (wild animals and fish, plants, and forests).

Compared with the accounting for proved reserves of nonrenewable resources, where the economic literature extends back over 50 years, valuation methods and concepts for many of the renewable resources are less well developed. Renewable natural resources are inherently more difficult to value than nonrenewable natural resources for several reasons: Renewable resources, such as stocks or schools of wild fish, often have a commercial or production value as well as an amenity or a recreational value; often, ownership rights cannot be established, and they cannot be sold; and they are able to regenerate, so their use does not necessarily result in a net reduction in either their yield or the value of their stock.
These difficulties notwithstanding, there has been rapid progress in environmental-benefit valuation for renewable natural resources in recent years as economists have tried to keep pace with regulatory, legal, and policy needs for environmental damage and impact measures. Further work by BEA to translate these new concepts and measures into a consistent national framework would need to rely heavily on the expertise of other units within the U.S. Government-for example, the National Oceanic and Atmospheric Administration, the Environmental Protection Agency, USDA, and the Department of Interior.

The seea does not recommend that the stock of air-which is truly a global common-or water be valued; instead, it recommends that valuation be limited to changes in these assets-their degradation and investments in their restoration. For these assets, table 1 includes only aggregate values for the degradation of air and water and for expenditures to restore them or to prevent their degradation.

The estimates in table $\mathbf{1}$ for degradation of air and water quality-as well as for undeveloped land-are simply place markers that assume that maintenance exactly offsets degradation: They are aggregate estimates of the total costs of pollution of these media. The estimates for air, water, and undeveloped land pollution are estimates, from the Environmental Protection Agency, of the direct costs of public and private pollution control activities in the United States. Estimates of air pollution include the annualized costs of air pollution and radiation. Water pollution estimates are the annualized costs of maintaining water quality, including drinking water. Estimates of undeveloped land pollution are the annualized costs associated with Superfund, toxic chemicals, and pesticides. The estimates of costs to restore or prevent the degradation of the environment (which, as noted earlier, are treated as capital formation in that they offset degradation and depletion of air, water, and undeveloped land) are based on current PaC expenditures and the flow of services from the stock of PA equipment and structures (the estimated return on the net stock plus depreciation). (Note that these direct pac costs differ from the environment cleanup and waste disposal service costs discussed later in the article. These costs are indirect costs imposed by pollution in the form of health costs, higher maintenance and repair expenditures, or longer trips to reach clean recreational sites.)

Production accounts

The next step in integrating economic and environmental accounting is to combine the appropriate flows from the asset account with the flows in a production account. With this integration, the production account explicitly includes the use of natural resources and environmental services in production through entries for depletion and degradation, and it explicitly includes the additions to the stock of natural and environmental assets through entries for investments that add to stocks of developed natural resources or that restore stocks of environmental assets.

Table 2 combines features of the supply and use tables in the SNA 1993. The table has four quadrants (one empty, except for a total), which are separated by double lines; a total column at the far right; and a total row at the bottom. The left and right upper quadrants show the use of goods and services (commodities) named at the beginning of the rows, summing to total uses as measured by total commodity output. The lefthand upper and lower quadrants show the use of intermediate inputs and factors of production by the industries named at the top of each column, summing to total supply as measured by total output.
A more typical supply and use table would show substantial industry and commodity detail-often a hundred of more industries and commodities. For the purposes at hand, this detail has been collapsed into an "other industries" column (column 3) and "Other" rows (rows 6 and 13). Detail is provided where it is especially relevant to the analysis of the environment. Such a table provides a bird's-eye view of production, income, and consumption, as highlighted in the paragraphs that follow.
Columns 1-4 in the upper left quadrant record the use of commodities by domestic industries in the production of other commodities-that is, intermediate use. Columns 5-9 record the use of commodities across the final demand categories that make up gross domestic product, including final consumption by households and government. Column 7 records the estimates in the "capital formation" column from table 1. (The made assets are recorded in rows $1-13$, the developed natural and environmental assets in rows 14-24.)
In the left quadrants, rows 11-13 show the use of other commodities (that is, other than assets) as intermediate inputs. These commodities consist of expenditures for environmental cleanup and waste disposal services (row 12) and "other" (row 13). Total intermediate inputs used by industries are in row 25 . Rows $26-41$ record value added, or income. Rows $26-28$ record the value added in the form of compensation of employees, indirect business taxes, and corporate profits and other property income. Rows 29-32 record, from table 1, the use of made fixed assets, including the depreciation of structures and equipment used in environmental management (row 30) and in pac (row 31). Rows 33-41 record the use of fixed natural and environmental assets, with depletion and degradation of each of the eight categories of assets shown separately.

The estimates presented in table 2 are taken from table 1. As is indicated by the "n.a."not available-in the table, many valuation and measurement issues remain before an ieesa production account can be completed. Further, work toward filling in the estimates would proceed in tandem with work on modernizing bea's national accounts in line with the SNA (see the next section). For example, treating expenditures on government structures, equipment, and
inventories as capital formation implements a feature of the sNA. In the table, a " Z " indicates the estimates that would reflect both work toward the ieesa's and sNa-related changes.

In addition to a production account such as table 2 , the seea calls for parallel quantity tables. Further, because many environmental issues have their primary impact on specific regions or industries, the extension of the integrated national accounts aggregates within beA's regional

Table 2.-IEESA Production Account, 1987
[Billions of dollars]

and input-output programs is an important extension.

Uses of the new accounts

Integrated economic and environmental accounts are the subject of intense interest, and expectations may differ from actual results. Among some observers, especially those extrapolating from studies conducted in resource-dependent developing economies, there is an expectation that such accounts will show that U.S. economic growth as currently measured is not sustainable, because the stocks of natural and environmental resources that ultimately determine economic growth are being run down. This expectation may well stem from focusing on depletion and degradation to the exclusion of additions.

The ieesa's will help to identify the use of the various natural and environmental resources. A priori, however, it is difficult to say whether there will be a net reduction or increase in their value overall. For example, while it is almost certainly true that the economic value of the stocks of some assets, such as bluefin tuna, are declining, the stocks of other environmental assets, such as timber stocks, have been increasing as planting and growth have more than offset harvests, fire, and land conversions. Similarly, while losses of wetlands from development continue to outnumber gains from wetland restorations, increasing rates of investments in cleaner air and water since the mid-1970's appear to have resulted in net improvements in air and water quality; many of the measures of air and water quality, such as the ambient concentrations of air and water pollutants, have shown improvement.

Because of these offsetting changes, it is conceivable that when all entries in table $2-$ or if not all, at least enough more than at present to avoid risks of conclusions based on partial results-have been filled in, the table will show that ieesa ndp differs little from traditional ndp.? Nevertheless, the information about specific natural resources and specific industries, products, or regions will provide valuable insight about

[^13]sustainability and the implications of different regulations, taxes, and consumption patterns. In the United States, such information should prove useful in a wide range of policy issues.
Economic accounts do not provide normative data. They either report market values or proxies for market values. If a problem with property rights leads to the undervaluation and overexploitation of a resource, a set of integrated economic accounts will not reveal the "right" price or the "correct" level of stocks. They will, however, provide the data-for example, about changes in the value of the stocks and the share of income to be attributed to the resource-needed for objective analysis of the problem.

bea's Plan for Natural Resource and Environmental Accounting

bea's plan calls for work on the ieesa's to be undertaken in conjunction with modernizing its economic accounts. bea's national accounts are now undergoing the first major redesign since the 1950 's. The redesign, which will be along the lines of the SNA 1993, will feature an integrated set of current and capital accounts, sector by sector. Fully developed capital accounts, along with balance sheets, are essential for a comprehensive set of economic accounts. The conceptual work on these accounts and the more specialized work on natural resources and the environment will be mutually supporting. Further, to make reasoned policy choices involving trade-offs among kinds of capital, one would want a view of the total capital stock-natural and made-consistently covered and appropriately valued.
bea has developed a three-phase plan for the ieesa's. With this issue of the Survey, bea has completed the first phase of work.

Phase I: Overall framework and prototype estimates --The overall iebsa framework is designed to build upon the existing national accounts and is in line with the guidance embodied in the new international sna about a satellite system and the companion seea.

In its initial work, bea has focused on mineral resources, consisting of oil and gas, coal, metals, and other minerals with a scarcity value. As described in the companion article, the focus, in accordance with SNA recommendations, is on proved reserves, the basis for valuation is market values, and the treatment given mineral resources-which require expenditures to prove and which provide "services" over a long
timespan-is similar to the treatment of fixed capital in the existing accounts.

The prototype estimates include stocks and flows in accounts that supplement bea's national wealth accounts and NIPA's. These prototype estimates provide a comprehensive picture of the stocks of natural assets and the changes in them. They also allow an examination of the practical consequences of several alternative methods of valuing the stock of resources, additions, and depletion. The alternative methods represent the Bureau's technical assessment of the best estimates and framework that are feasible with existing sources and methods.

Phase II: Renewable natural resources.-The plan calls for work to extend the accounts to renewable natural resource assets, such as trees
on timberland, fish stocks, and water resources. Development of these estimates will be more difficult than for mineral resources because they must be based on less refined concepts and less data.
Phase III: Environmental assets.-Building on this work, the plan calls for moving on to issues associated with a broader range of environmental assets, including the economic value of the degradation of clean air and water or the value of recreational assets such as lakes and national forests. Clearly, significant advances will be required in the underlying environmental and economic data, as well as in concepts and methods, and cooperative effort with the scientific, statistical, and economic communities will be needed to produce such estimates.

Accounting for Mineral Resources: Issues and bea's Initial Estimates

Among natural assets, the characteristics of minerals-oil, gas, coal, and nonfuel minerals-are the most similar to the characteristics of assets included in traditional economic accounting systems. Not surprisingly then, minerals have long been considered as candidates for a treatment that is symmetrical with the treatment given other assets. Such a treatment is at the heart of the integrated economic and environmental satellite accounts (IEESA's), which are the subject of a companion article, beginning on page 33. Failure to account symmetrically for mineral resources as a form of capital has been blamed both for their over- or under-exploitation and for incomplete analysis and policy decisions in areas relating to productivity and budgeting.
The companion article noted three points of asymmetry between the treatment given assets such as structures and equipment in the traditional economic accounts and the treatment given natural assets. First, in traditional economic accounts, there is no entry for additions to the stock of natural resources parallel to the entry for additions to the stock of structures and equipment. Second, there is no explicit entry for the contribution of natural resources to current production, as measured by gross domestic product (GDP), parallel to the entries that capture the value added of structures and equipment. Finally, there is no entry for the using up of the stock of natural resources parallel to the entry for the depreciation of structures and equipment used to arrive at net domestic product (NDP) which is used by some as a shorthand measure of sustainable product.

This treatment given mineral resources in the traditional economic accounts is anomalous in several respects. First, firms spend large amounts of time and other resources in "proving" mineral reserves, and these reserves, like structures and equipment, yield a flow of services over many years. As firms prove these reserves, they are entered, along with investments in new structures and equipment, in the firms' balance sheets. Additions to these reserves are also recognized by investors and reflected in firms' equity prices. Second, the value added of a resource like coal or
oil is included in GDP even though no explicit entry for its contribution is made: Its value added is in a sense "appropriated" by the other factors of production and is included in the rents, royalties, and profits of the owners of invested capital. Finally, although the traditional economic accounts do not include an entry for depletion of natural resources, firms and investors recognize depletion in assessing the value of firms and the sustainability of their current profit levels.
The treatment of natural resources in the mining industry has long been debated in economics literature. ${ }^{1}$ While there is a conceptual case for symmetrical treatment of mineral resources and invested capital, the absence of good market prices to value additions, depletion, and stocks has been a stumbling block. Property rights issues, incomplete information, asymmetry in bargaining, and the structure of payments for mineral rights create a situation in which either there are no observable prices or prices are seriously incomplete or unrepresentative. Partly as a result of this situation, traditional economic accounts have treated the value added of mineral resources as free gifts of nature, making entries neither to the flow accounts for additions to, or depletion of, the stock of these resources nor to the wealth accounts.
The omission of explicit entries for mineral resources has import beyond the economic accounts. The absence of an entry, or market price, for depletion may-in combination with common property rights-mean that the accounts do not identify overexploitation. This possibility is particularly important because a large share of the Nation's mineral resources are on public lands. (However, as the current problems in the New England fisheries suggest, the issue clearly has import for a wide range of other resources.) Such omissions have also been cited as the source of problems in productivity analysis. Despite the inclusion of land, labor, and capital in the most elementary production function used in studying

[^14]productivity, measures of natural resources have generally not been available. Finally, the absence of measures of natural resource stocks and stock changes on Federal lands has been cited as contributing to less-than-optimal Federal budgeting decisions. ${ }^{2}$
As previously mentioned, this article is the second of two articles reporting on the ieesa's. It provides initial estimates of the value of additions, depletion, revaluations, and stocks of mineral resources and on the impact such estimates would have on the estimates of the Nation's production, income, and wealth. This article begins with a summary of the major conceptual and methodological issues in accounting for mineral resources. Next, the article describes alternative methods of valuation that can be used to develop ieesa estimates for minerals, and it then presents estimates for oil, gas, coal, metals, and other minerals using these methods. An appendix provides information on data sources and methods. Tables 1-5 appear at the end of the article: Table 1.1-1.6 present estimates of oil-opening stocks, additions, depletion, and the revaluation adjustment-for 1947-91; tables 2.1-2.6 present estimates of gas for 1947-91; tables 3.1-3.4 present estimates of coal for 1958-91; tables 4.1-4.4 present estimates of metals for 195891; and tables 5.1-5.4 present estimates of other minerals for 1958-91.

Conceptual and Methodological Issues

In addressing conceptual and methodological issues for mineral resources, as for natural resources and the environment more broadly, BEA has attempted to follow two principles. First, the treatment in the satellite accounts should be consistent with the principles of economic theory. Second, the satellite accounts should embody some concepts and definitions that differ from those of the existing accounts in order achieve their purpose of showing the interaction of the economy and the environment, but in other respects they should be consistent with the existing accounts. Satellite accounts provide the flexibility to make changes that are useful in analyzing natural resources and long-term economic growth, but consistency with the existing accounts will allow the satellite accounts covering mineral resources to link to, and build upon, the existing economic accounts, including the input-output and regional accounts.

[^15]The conceptual and methodological issues discussed in this section can be divided into two main groups. The first group deals with the accounting treatment for mineral resources. The second group deals with valuation.

Accounting issues

Treatment of additions to reserves.-Symmetrical treatment of proved mineral resources with structures and equipment requires treatment of additions to the stock as capital formation and of deductions as depletion. Capital formation records the initial production of the capital, as well as its addition to the capital stock; depreciation records the reduction in the capital stock associated with its use, as reflected in NDP. Over the life of the asset, depreciation sums to the value of the original investment.

In economic accounting, as in business accounting, what comes off the books must have gone on the books. This business accounting requirement was one of the reasons why estimates of depletion of natural resources have not been included in official estimates of NDP. Beginning in 1942, depletion allowances for minerals and timber were deducted from GDP in the estimates of net national product made by the U.S. Department of Commerce. Discoveries of minerals, however, were not included in capital formation and net product. The depletion allowances were eliminated in 1947 because of this absence of an entry for capital formation.
Despite this accounting requirement for symmetrical treatment of additions and reductions, a number of economists have called for a return to the 1942 treatment-that is, an entry for depletion but not for additions. This position seems to have been based on at least three considerations, each of which is evaluated in the paragraphs that follow.

First, an entry for depletion will respond to at least part of the concern about the treatment of mineral resources in the traditional accounts. If the goal is to produce a measure of NDP that reflects the depletion of mineral resources in GDP, deduction of depletion to arrive at an alternative NDP will provide such a measure. Although it cannot be explicitly identified, as noted previously, the contribution of mineral resources is already included in gDp. Deduction of an estimate of depletion will give a partial measure of sustainability, one that indicates the using up of the existing stock of mineral resources.

What such a partial measure will not do is allow the detailed identification of the contribution
of the mineral resource to income, production, consumption, or wealth, either in the aggregate or by sector. Nor will it provide a complete measure of sustainability. Without an entry for additions, deduction of depletion alone to calculate an alternative NDP may produce misleading signals regarding the sustainability of a nation's production and wealth. For example, with only depletion accounted for, a nation adding to its stock of reserves-through exploration and development and through improved recovery techniques-at a rate that more than offsets depletion would nonetheless have an alternative ndp lower than the traditional ndp. The lower NDP would suggest that the country was running down its resources and that the current level of production was at the expense of future production, despite the fact that reserves were actually increasing.

Second, estimates of the value of additions to the resource stocks are quite volatile, uncertain, and, at times, large. Volatility in resource prices, changes in mining technology, and uncertainty about the ultimate recoverability from existing reserves all affect the value of mineral reserves. It is not clear, however, that the volatility introduced by such estimates would be any larger than that already observed in investment, particularly inventory investment, the most volatile component of traditional accounts.

Third, probably the most important reason for the lack of enthusiasm for including additions to reserves as capital formation in GDP is that additions to reserves are so different from additions to capital stock. This difference, in combination with the volatility of additions to reserves, would limit the usefulness of accounts for conventional macroeconomic analysis. The inclusion of large additions to mineral resources in GDP, such as those associated with the North Slope in Alaska and the North Sea in Europe, are important additions to a nation's wealth and have a significant impact on economic activity, but the effect differs from that associated with investment in a new factory. Both add to wealth, but for the factors of production involved in building the factory, payments have been made, and the resources are available for current consumption. In contrast, much of the increase in wealth associated with adding proved reserves accrues to mining companies and landowners in the form of increases in land values and equity prices. To make these resources available for current consumption would require the "producers" of the mine or well to sell their product.

Many of the concerns about volatility and the different nature of additions to mineral reserves can be diffused by placing these values in a satellite account that allows integrated analysis of mineral resources outside the main accounts. This inclusion of natural resources in a satellite account allows researchers the flexibility to experiment without impairing the usefulness of the traditional accounts. In addition, within the ieesa's, the effect of volatility in mineral prices is largely confined to the revaluation account and has a limited effect on the estimates of current income, production, and consumption.
Fixed capital or inventory treatment.-Even when economic theorists have thought of natural resources as a type of capital, they have disagreed about whether the resources should be treated as fixed capital or as inventories. ${ }^{3}$ This disagreement may seem a bit strange because proved mineral reserves seem to fit the classic characteristics of fixed capital: Expenditures of materials and labor are needed to produce a productive asset ("roundabout" production), which yields a stream of product over long periods of time. The rent to owners of fixed assets comprises the reduction in the value of the asset due to its use in the current period (depreciation) and a return equal to what the current value of the asset could earn if invested elsewhere. Inventories, on the other hand, are buffer stocks of inputs and final products that help to smooth production and avoid lost sales. As a rule, inventories are sold within a year or one accounting cycle. Although interest or holding costs are a consideration in determining inventory levels, they are much less important than for fixed capital.

Part of the rationale for treating mineral reserves as inventories may arise from the perception that they differ from fixed capital in that they are a set number of units waiting to be used up in production. However, like the output from a new machine, the number of units extracted from a new field or mine is quite uncertain and varies over time with the path of future demand, changes in technology, prices, costs, and returns on alternative investments. In addition, although a piece of machinery may not appear from the

[^16]exterior to be used up in production, its parts or service life are most certainly "used up" in production; this "using up" is reflected in the decline in its value, or the depreciation on the equipment.

To emphasize the replaceability of proved reserves, some analysts have chosen to describe these reserves as inventories. This motive notwithstanding, treatment of mineral reserves symmetrically with fixed investment in structures and equipment would serve equally well as a reminder of the "reproducibility" of proved reserves in the ieesa's.

Proved reserves or total resources.-The amount of mineral resources that can be recovered, given current economic conditions, is not certain. Reserves are generally classified by the degree of certainty attached to the estimates. For example, proved petroleum reserves are estimated physical quantities that have been demonstrated by geologic and engineering data to be recoverable under current economic conditions and technology. Reserves whose recovery under current economic conditions is less certain are classified as either "probable" or "possible." Estimates are also available on the total amount of reserves that remain to be discovered-that is, of "undiscovered" reserves. There are a variety of perspectives on which of these measures of reserves should be used in accounting for minerals. Should the accounts be concerned only with "proved" reserves, or should they also account for "probable," "possible," or even "undiscovered" reserves?

Authors who have focused on proved reserves have tended to do so because of the large uncertainty associated with the other measures. As noted in the companion article, BEA ultimately intends to include unproved reserves as part of "nonproduced/environmental" assets, but the mineral reserve estimates presented here are restricted to proved reserves.

One means of dealing with the uncertainty in valuing unproved reserves may be the use of "option" values. Unproved reserves are clearly bought and sold, and the values or options that could be used in these transactions might be used to develop average option values to be used in valuing the entire stock of a nation's reserves. An operational methodology for making such estimates has not yet been identified.

Valuation issues

The absence of complete data on mineral resource prices has meant that the value and contribution of mineral resources to income, production, consumption, and wealth have usually had to be based on methodologies that produce proxy estimates of their market price. There are two elements to making such estimates. The first is separating the contribution of the resource in the ground-which is implicitly included in the price of a marketed mineral product-from that of other factors of production. The second is determining the appropriate per-unit value for estimating the value of the stock of the resource and the value of changes in the stock, including additions, depletion, and revaluations.

In addition, it is useful to identify several terms at the outset. First, "rent" refers to the concept of the return to factors of production after deduction of variable costs. More empirically, "gross rent" is simply gross revenues less expenditures on intermediate goods and employee compensation. (Rent in these situations is not to be confused with "rental income of persons" found in the national income and product accounts.) Second, "invested capital" refers to the structures and equipment in which the firm or industry has invested.

Identifying the return to the resource.-The price of a unit of the resource-for example, a barrel of oil-reflects, in addition to the cost of goods and services used in its production, a return to labor, a return to invested capital, and a return to the resource. The first step in identifying the value of a barrel in the ground is to determine the rent, in this case the rent to the resource and the capitalized value of investments in mining. In industries such as petroleum mining, good data are generally available on the variable costs, so arriving at gross rent is, at least conceptually, relatively simple. The next step is to determine the share of gross rent that accrues to the invested capital and the share that accrues to the resource.

In theory, the rent to owners of both the invested capital and the oil in the ground should equal the reduction in the value of each asset due to its use in the current period (depreciation and depletion, respectively) plus a return equal to what the current value of the well (the invested capital and the oil in the ground) could earn if invested elsewhere. The desirable way to measure the rent would be to observe market prices for these transactions; however, often there is no transaction, and the observable transactions that
take place are often not representative of the full value of the oil. As a result, the various methods described in the next section use indirect techniques to estimate the market value of the return to invested capital, and they derive the return to the oil in the ground as a residual.

Valuing the resource stock and depletion.-Valuing the stock of a resource and valuing the decline in the stock's value associated with extraction are complicated because the extraction takes place over a long period of time. Unless the price, or value, of that resource rises enough to offset the income that could have been earned on alternative investments (including an inflation premium), resources extracted in the future will be worth less, in real terms, than those extracted today. In theory, the market value of the stock should be equal to the present discounted value of the future stream of rent from the stock, whereas depletion is the decline in the value of the stock associated with extraction in the current period. Translating the current per-unit rent of a resource into a per-unit value appropriate for valuing the stock and depletion requires information about the future path of extraction, prices, and interest rates. Unfortunately, such information is generally not available. In the absence of market prices, estimation of the current value of the resource requires either resort to economic theory, use of a set of explicit assumptions, or empirical estimation.

Empirical estimation of the factors required for computing the present discounted value of the resource is fraught with difficulties, in part because of the volatility of mineral markets. Simplistic assumptions do at least as well as econometric forecasts in tests of their predictive accuracy, and the assumptions are relatively easy to understand.

Alternative Methods of Valuing Mineral Resources

bea has prepared estimates using four methods of valuing resource stocks and changesdepletion, additions, and revaluations-in the stocks. ${ }^{4}$ These methods rely on estimates of three

[^17]variables: (1) The normal return to invested capital, based on some average rate of return to all investment in the economy; (2) the return to capital based on the market value of the capital stock in the oil industry; and (3) the per-unit capital cost of additions to the stock of proved reserves. The use of these variables as described in the following paragraphs represents BEA's assessment of the best estimates given existing source data and frameworks. The accompanying box provides an algebraic description of the methods.

Current rent estimates

The simplest assumption that can be used is based on Harold Hotelling's observation that in equilibrium, the price of the marginal unit of a nonrenewable natural resource net of extraction costs (the current per-unit rent to the resource) should increase over time at a rate equal to the nominal rate of interest. ${ }^{5}$ At any rate of increase in the per-unit rent above (below) the rate of return on alternative investments, entry (exit) and increases (decreases) in the rate of extraction will combine to reestablish the equilibrium rate of increase in the resource rent. If this observation holds, the value of the stock of the resource is independent of when it is extracted and is equal to the current per-unit rent to the resource times the number of units of the resource. ${ }^{6}$
The following two methods assume that over time the rent per unit will increase at the rate of interest; they simply use the current per-unit rent to value the resource and depletion.
The first method, current rent method I, utilizes an estimate of a normal, or average, rate of return to investment to estimate the rent to the associated capital invested in the mining industry and then derives the resource rent as a residual. This method applies this average, economywide rate of return to investment to an estimate of the replacement cost, or market value, of the net stock of associated capital invested in mining and then adds depreciation to estimate a "normal" rent to invested capital. The rate of return used is 6 percent, approximately the 45 -year average real rate of return to investment in corporate bonds and equities for the period ending in 1991, which is an estimate of the rate of return available on al-

[^18]ternative investments. The steps in estimating the rent to and value of the resource are as follows:

1. Gross rent is calculated as total revenue less current operating expenditures. (Current operating expenditures are those associated with bringing the mineral from the deposit to the wellhead or mine gate.)
2. The resource rent is obtained by subtracting the rent to capital (both depreciation and a normal rate of return for capital) from the gross rent.
3. The per-unit rent to the resource equals the resource rent divided by the physical quantity extracted.
4. The value of the resource equals the per-unit rent times the physical quantity of reserves. Additions and depletion are valued at rent per unit times the physical quantities of added and extracted reserves.
5. Revaluations-the effect of price changesare computed as a residual: The value of the resource at the end of the current year less its value at the end of the preceding year, plus depletion during the year, less additions during the year.

The advantage of this method is that it is relatively straightforward and requires few assumptions. The main disadvantage is that an explicit assumption must be made regarding the

Algebraic Description of the Alternative Methods of Valuing Mineral Resources

Current rent method ${ }_{\mathrm{I}}$ (Based on average return to capital):

$$
\begin{aligned}
G R & =T R-C O E \\
R R & =G R-(r N S+D E P) \\
\delta r & =R R / Q E \\
V R & =\delta r(Q R E S) \\
D E P L & =\delta r(Q E) \\
V A & =\delta r(Q A D D) \\
R E V A L & =V A(t)-V A(t-1)+D E P L-V A
\end{aligned}
$$

Current rent method in (Based on value of capital stock): *

$$
\begin{aligned}
\delta G R & =G R / Q E \\
V & =\delta G R(Q R E S) \\
V R & =V-N S \\
\delta r & =V R / Q R E S
\end{aligned}
$$

Net present discounted value: *

$$
\begin{aligned}
\Phi & =\sum_{j=1}^{T} \frac{1 / T}{(1+i)^{j-1 / 2}} \\
\delta r & =\Phi[(V-N S) /(Q R E S)]
\end{aligned}
$$

Replacement cost: *

$$
\begin{aligned}
b f & =[(Q E / Q R E S) /((Q E / Q R E S)+r)] \\
\delta r & =b f[(T R-C O E) / Q]-(\$ A D D / Q)
\end{aligned}
$$

Transaction price: *

$$
\begin{aligned}
\delta G R & =(T V / T Q) \\
\delta r & =\delta G R-(N S / Q R E S)
\end{aligned}
$$

* DEPL, VA, REVAL for all methods are computed using the same formulas as presented for current rent method I .

Definitions:

Aggregate value measures:
$T R=$ total revenue
$C O=$ other extraction expenses, including compensation of employees, materials consumed, and overhead cost allocated to current production
$G R=$ gross rent
$R R=$ resource rent
$N S=$ net stock of capital valued at current replacement cost
$T V=$ value of purchased reserves during the year
$V=$ value of the proved reserves (resource and fixed capital values)
$V R=$ value of the resource stock
$V A=$ value of the annual additions
$D E P=$ depreciation
$D E P L=$ value of the annual depletions
REVAL = the effect of price changes on the value of the stock
$\$ A D D=$ the annual exploration and development expenditures for drilling oil and gas wells in fields of proven reserves (including overhead costs allocated to development)
$\Phi=$ Net discounted present value factor

Quantity measures:

$Q E=$ quantity of the resource extracted during the year
$Q R E S=$ stock of reserves
$Q A D D=$ Quantity of resources added to reserves during the year (through new discoveries, extensions of existing sites, or revisions in estimated reserves)
$T Q=$ quantity of proved reserves purchased during the year
Per unit measures:
$\delta G R=$ gross rent per unit $(G R / Q)$
$\delta r=$ resource rent per unit
Rates and other items:
$r=$ real rate of interest, or discount rate
$N=$ Life span of a resource (e.g., well or mine), R / Q
$j=$ current year
$T=$ life of asset (NIPA convention)
$a=$ reserve decline rate, Q / R
$b f=$ barrel factor
appropriate rate of return. In addition to the conceptual and empirical problems in identifying an appropriate rate, prespecification of a rate does not allow for relatively low or high rates of return in the mining industry due to conditions specific to the industry.

An alternative method, current rent method iI, derives resource rent by removing the market value of capital, both physical and capitalized expenditures, from the value of the resource reserve. The steps to deriving the per-unit rent are as follows:

1. Gross rent per unit is derived by dividing gross rent by the physical quantity of extraction.
2. The total value of the mineral reserve (the resource and the associated invested capital) equals the gross rent per unit times the quantity of reserves.
3. The value of the resource equals the total value of reserves less the current replacement value of the net stock of invested capital.
4. Resource rent per unit equals the value of the resource divided by the quantity of reserves.

The advantage of this method is that it does not require an explicit assumption about the return to invested capital associated with the resource.

Present discounted value estimates

If it is assumed that rent to the resource does not rise enough to compensate the owners of the resource for the nominal interest they could earn on alternative investments, then the stream of future rents must be discounted by the difference between the rate of increase in resource rent and the nominal interest rate. As noted previously, with discounting, identical dollar values during different time periods have different present values, so valuation by present discounted values requires-in addition to an assumed discount rate-a number of assumptions about the stream of future rents.
In bea's implementation of this method, three simplifying assumptions were made so that each cohort of additions to reserves did not have to be tracked separately throughout its economic life. First, extraction resulting from additions to proved reserves was assumed to be constant in each year of a field's life, and depletions were assumed to result equally from all cohorts still in the stock. Second, new reserves were assumed to be extracted at constant rates over the same timeframe used for depreciating wells and mines in
the niPa's: 16 years until 1972 and 12 years thereafter. Finally, extractions were assumed to occur at midyear and were valued using the per-unit rents described for current rent method II.
Two real rates of discount- 3 percent and 10 percent-were chosen to illustrate the effects of a broad range of rates on the values of additions, depletion, and stocks of reserves. Thus, the relatively high and relatively low rates chosen encompass many of the alternatives that have been used in discounting. ${ }^{7}$ The 3 -percent discount rate has often been used to approximate the rate of time preference. The 10 -percent rate has often been used to approximate the long-term real rate of return to business investment.
The steps for estimating the present discounted value estimate of the resource rent per unit are as follows:

1. A discount factor was derived using an estimate of the real rate of discount-the nominal interest rate less the rate of increase in the resource rent-and the NIPA estimates of the lifespans of mineshafts and wells.
2. The rent per unit equals the discount factor times the gross rent per unit derived from the current rent method that is based on the value of capital stock in the mineral industry. ${ }^{8}$

Replacement-cost estimates

The replacement-cost method subtracts from gross rent the cost per unit of adding new reserves, thereby identifying the resource rent as a residual. It uses the per-unit cost of proving new reserves to represent invested capital's share of the gross rent. The value of a unit of resource in the ground is estimated; the cost to replace it by investment is subtracted from that in-ground value, and the residual is the resource rent. This method uses current rates of extraction to estimate future production and uses an

[^19]assumed discount rate of 6 percent. ${ }^{9}$ Because of the lack of production cost data, transactions data for the sale of reserves, and techniques to estimate those market values for all other minerals, the replacement-cost method is used only for oil and gas. The steps for deriving the per-unit resource rent are as follows:

1. The barrel factor-which is used to calculate the value of a barrel of oil in the groundis equal to the depletion rate of the reserves divided by the sum of the real discount rate and the depletion rate. ${ }^{10}$
2. The per-unit resource rent is calculated by multiplying the gross rent per unit by the barrel factor and subtracting the per-unit exploration and development cost.

Transactions-price estimates

When oil and gas firms seek to replace the reserves that have been depleted as a result of their production, they face a "make or buy" decision. They can either make new reserves by financing exploration and development efforts, or they can buy reserves that have already been proved by others. This article refers to the purchase price of proved reserves as a "transactions price" because it represents a price that was paid in an actual transaction. The costs of acquiring new reserves by financing exploration and development efforts are termed "finding costs." In equilibrium, and ignoring the different tax treatment of purchasing and drilling for oil, the finding costs should be equal to the transactions price.

If available, transactions prices are ideal for valuing reserves. As it turns out, such transactions are relatively infrequent because companies generally develop their own reserves. As a result, the few transactions that occur are not easily generalized for estimating the total value of reserves.
The estimates of resource values for oil and natural gas presented here are derived from transactions prices constructed from publicly available data on the activities of large energy-producing firms. The derivation of per-unit resource rent is as follows:

1. The per-unit gross rent for the resource and its associated invested capital is obtained by
2. The method outlined here is based on the approach used by M.A. Adelman, which has been modified to estimate the resource rent and hence the depletion and the value of oil and gas resources.
3. Note that if the resource appreciates at a rate equal to the nominal interest rate, the real discount rate (nominal rate less the increase in prices) is zero, and the barrel factor has a value of one; in this case, the current rent is used to value reserves and depletion.
dividing aggregate expenditures for the purchase of the rights to proved reserves by the quantity of purchased reserves.
4. The per-unit resource rent equals the perunit gross rent less the per-unit net stock of associated capital invested in the oil and gas industry.

Estimates for Mineral Resources

The value of resource reserves and changes in reserves were estimated for the period 1958-91 for major mineral resources using the four valuation methods just discussed. ${ }^{18}$ The minerals valued include the fuels (petroleum, natural gas, coal, and uranium), the metals (iron ore, copper, lead, zinc, gold, silver, and molybdenum), and other minerals (phosphate rock, sulfur, boron, diatomite, gypsum, and potash). Petroleum and gas account for the lion's share of mineral production. The other minerals were selected because, of the minerals that have scarcity value, their value of production was relatively high.
The picture that emerges from the various estimates of the value of U.S. mineral stocks is broadly similar, regardless of which methodology is used:

- The value of additions has tended to exceed depletions; since 1958 , the value of the stocks of proved mineral reserves in the aggregate has grown in current dollars, while showing little change in constant (1987) dollars (charts 1 and 2 and table A).
- Changes in the stocks of these productive assets over time have largely reflected changes in their resource rents. Increases in resource rents have been accompanied by greater investment in exploration and enhanced recovery technology, and decreases in rents for some resources have been accompanied by reduced exploration activity and the closing of marginal fields and mines.
- Proved mineral reserves constitute a significant share of the economy's stock of productive resources. Addition of the value of the stock of these mineral resources to the value of structures, equipment, and inventories for 1991 would raise the total by $\$ 471-\$ 916$ billion, or 3-7 percent, depending on the valuation method used.
- The stocks of proved mineral resources are worth much more than the stocks of invested

[^20]
CHART 1

Stocks and Changes in the Stocks

 of Subsoil Assets, Current DollarsBillion \$

structures and equipment associated with the resources. In 1991, the value of the stock of subsoil assets was 2 to 4 times as large as the value of the associated stock of invested structures and equipment and inventories.

- Valuing the effect of depletion and additions, as well as including the value of resource stocks, provides a significantly different picture of returns. Compared with rates of return calculated using income and capital stock as measured in the existing accounts, the IEESA-based average rates of return on capital in the mining industry for 1958-91 are lower-4-5 percent rather than 23 percent (table B). Rates of return for all private capital slip from 16 percent using measures in the existing accounts to $14-15$ percent using ieesa measures for the mining industries.
- Although the trends that emerge from the alternative methods are similar, the range of estimates is large. The highest estimates of stocks, depletion, and additions were obtained from the current rent estimates based on capital stock values, and the lowest were from the current rent estimates based on average rates of return to capital.

The stock of proved reserves increased from s103-\$182 billion in 1958 to $\$ 471-\$ 916$ billion in 1991. In constant dollars, the stock rose somewhat and then fell, but over the period showed little change: From $\$ 544-\$ 1,077$ billion in 1958 , the real stock slipped only slightly to $\$ 530-\$ 1,030$ billion in 1991. The patterns vary by type of mineral and reflect the effects of prices and costs of production, the volatility in international minerals prices, increasing environmental regulation, and the effect of strikes and other factors specific to each industry.

For petroleum, despite periodic concerns that the United States was running out of oil, additions have offset depletion throughout the period as oil companies have responded to higher net returns by stepping up exploration and improved recovery techniques to produce stocks of proved reserves sufficient to meet current and intermediate-term needs in light of current prices, costs, and interest rates. The one spike in the constant-dollar oil and gas series was in 1970, the year of the Alaskan oil strike.

For coal, idditions have exceeded depletions, resulting in a generally rising constant-dollar salue of stocks over time. For other minerals, the stock patterns have varied, with declining stocks in metals refecting large declines in the returns o metals.

The 1991 stock of mineral reserves would add 3-7 percent to the 1991 value of reproducible tangible wealth of $\$ 13,637$ billion, of which private nonresidential structures and equipment were $\$ 5,440$ billion. Over time, the mineral reserves share of an expanded estimate of national wealth has fallen; in 1958, mineral reserves would have added 9-17 percent to reproducible tangible wealth. This decline appears to reflect several factors, including the economy's increased reliance on foreign resources and the increased efficiency in the use of fuels and other minerals.

Although industry makes large investments in exploring and developing mineral resources, the value of the invested capital associated with oilfields and mines is small relative to the value of the mineral reserves themselves. In 1991, the value of subsoil assets was $2-4$ times as large as the associated capital invested in mining. Addition of these stocks of productive natural assets provides a more comprehensive picture of both the assets and the returns in the mineral industries.

Treatment of natural resources symmetrically with investments in equipment and structures provides a very different picture of rates of return to mining. Rates of return in the mineral industries calculated using income and capital stock as measured in the existing accountsspecifically, by dividing property-type income by the replacement value of structures, equipment, and inventories-averaged 23.1 percent for 1958 91. The more complete ieesa estimate deducts depletion and adds additions to property-type income, and it adds the value of resource stocks to the value of structures, equipment, and inventories. Depending on the valuation method used, the iefsa rate of return would be $3.5-5.2$ percent. The effects of including mining resources are so large that the rate of return to all private capital is reduced from 16.1 percent to $14.1-14.9$ percent. These ieesa rates of return provide a significantly different picture of the social rate of return to investments in the mining industries and the sustainability of the industries' output. ${ }^{12}$

As noted, the highest estimates of resource reserves are from the current rent method based on the value of capital stock invested in the industry. ${ }^{13}$ The value of subsoil assets using this

12 Given the effect of tax laws, transfer pricing, and excluded assets, comparison of rates of return across methods is difficult at best. Many of the numing industries have relatively little invested capital (fixed or inventory) assinjated with the resources, and hence the computed returns to reproducible - ap:tal are overstated relative to those that mining companies, which do count the value of property, have on their books.
13. Over the period of this analysis, the current rent per unit for all the resoinces mereased at an annual rate of 4^{-8} percent. Based on a real time
method was $\$ 916$ billion in 1991. The lowest value in 1991, $\$ 471$ billion, was obtained from the current rent method based on a normal return to invested capital. The present discounted value estimates fell somewhere in between- $\$ 638-\$ 812$ billion.

The replacement-cost and transactions-price estimates were computed only for oil and gas. The transactions-price estimates, despite considerable smoothing, were quite volatile and erratic.
preference rate of 3 percent-or a nominal rate of approximately 6 percentthe current rent methods may not be too far off the mark over long periods of time, given the range of uncertainty in the estimates of rates of return. If one chooses a higher discount rate, then some discounting should occur.

CHART 2

Stocks and Changes in the Stocks of Subsoil Assets, Constant Dollars

Billion 1987 \$

[^21]U.S. Deparment of Commerce, Eureau of Economic Analysis

Table A.1-Value of the Resource, Additions, and Depletion of All Subsoil Assets, Current Rent Method I (Rate of Return)

Year	Billions of current dollars					Billions of 1987 dollars			
	Opening stock (1)	Additions (2)	Depletion (3)	Revaluation adjustment (4)	$\begin{gathered} \text { Closing } \\ \text { stock } \\ (1+2-3+4) \\ \text { (5) } \end{gathered}$	Opening stock (6)	Additions (7)	Deple- tion (8)	Closing stock $(6+7-8)$ (9)
1958	102.6	4.6	4.3	2.8	105.6	544.4	31.4	25.9	550.0
1959 ...	105.6	5.9	4.4	-2.0	105.2	550.0	39.5	27.3	562.2
1960 ...	105.2	2.6	4.5	13.9	117.2	562.2	24.1	27.7	558.5
1961 ...	117.2	6.0	4.6	1.5	120.1	558.5	33.9	28.2	564.2
1962 ...	120.1	6.9	4.8	3.2	125.4	564.2	34.6	29.0	569.8
1963 ...	125.4	6.0	5.3	9.6	135.8	569.8	32.9	30.3	572.5
1964.	135.8	8.2	5.5	3.2	141.7	572.5	39.4	31.1	580.7
1965	141.7	7.9	5.5	-2.3	141.8	580.7	42.3	32.1	590.9
1966	141.8	7.4	5.8	-. 6	142.7	590.9	39.9	34.1	596.6
1967 ...	142.7	7.2	6.1	-3.9	140.0	596.6	40.2	36.0	600.9
1968	140.0	5.9	6.2	-1.2	138.4	600.9	31.7	37.3	595.3
1969	138.4	3.4	6.5	4.1	139.5	595.3	22.6	38.5	579.5
1970	139.5	20.5	7.1	6.8	159.7	579.5	112.7	40.4	651.8
1971	159.7	5.9	7.0	-6.5	152.1	651.8	28.4	39.9	640.4
1972	152.1	3.7	6.5	-1.4	147.9	640.4	21.7	40.2	621.8
1973	147.9	4.2	7.6	51.1	195.7	621.8	22.9	39.6	605.1
1974	195.7	7.6	8.3	38.2	233.1	605.1	26.2	38.1	593.2
1975	233.1	5.1	10.7	50.3	277.8	593.2	20.4	36.4	577.2
1976.	277.8	8.4	15.7	66.6	337.1	577.2	18.2	36.0	559.5
1977 ...	337.1	21.0	17.9	-17.6	322.6	559.5	40.8	36.3	564.0
1978.	322.6	13.8	18.4	21.5	339.5	564.0	27.3	37.3	554.0
1979	339.5	23.5	21.6	56.7	398.1	554.0	41.5	37.9	557.6
1980 ...	398.1	33.9	27.2	43.5	448.3	557.6	45.0	38.3	564.3
1981 ...	448.3	31.1	26.3	-73.7	379.4	564.3	32.6	38.0	558.9
1982 ...	379.4	43.9	43.6	-94.5	285.2	558.9	26.7	37.1	548.6
1983	285.2	68.7	68.1	314.7	600.6	548.6	28.8	36.0	541.3
1984	600.6	86.3	74.5	128.9	741.3	541.3	39.4	38.1	542.7
1985	741.3	62.1	62.3	-146.7	594.4	542.7	40.4	37.6	545.5
1986 ...	594.4	33.8	46.4	-110.2	471.6	545.5	30.3	36.7	539.1
1987	471.6	36.8	36.0	-34.8	437.5	539.1	37.1	36.4	539.8
1988	437.5	16.4	17.5	-65.3	371.1	539.8	25.5	36.6	528.7
1989 ...	371.1	20.6	16.9	35.1	409.9	528.7	34.1	35.7	527.1
1990.	409.9	29.1	22.4	54.6	471.2	527.1	38.8	35.7	530.3
1991	471.2	19.6	24.2	14.0	480.6	530.3	25.0	35.6	519.7

Table A.3.-Value of the Resource, Additions, and Depletion of All Subsoil Assets, Present Discounted Value Method Using 3\% Discount Rate

Year	Billions of current dollars					Billions of 1987 dollars			
	Opening stock (1)	Additions (2)	$\begin{gathered} \text { Deple } \\ \text { tion } \\ \text { (3) } \end{gathered}$	Revaluation adjustment (4)	$\begin{gathered} \text { Closing } \\ \text { stock } \\ (1+2-3+4) \end{gathered}$ (5)	Opening stock	Additions (7)	Deple- tion (8)	Closing stock ${ }^{1}$ (6+7-8) (9)
1958	155.6	6.1	5.6	5.0	161.1	921.6	42.0	34.6	929.4
1959 ...	161.1	7.6	5.7	-1.1	161.9	929.4	52.0	36.5	946.0
1960 ...	161.9	3.4	5.9	4.5	163.9	946.0	27.5	37.5	935.1
1961	163.9	7.9	6.0	3.5	169.3	935.1	48.9	38.2	946.4
1962 ..	169.3	9.2	6.2	3.5	176.0	946.4	54.5	39.3	962.6
1963 ...	176.0	7.5	6.5	4.6	181.6	962.6	46.8	41.0	968.6
1964 ...	181.6	10.0	6.7	. 2	185.1	968.6	58.7	42.4	986.0
1965 ...	185.1	9.8	6.8	-. 4	187.7	986.0	60.6	43.7	1,003.9
1966 ...	187.7	9.1	7.1	-1.2	188.5	1,003.9	56.9	46.5	1,014.8
1967	188.5	9.2	7.4	2.8	193.1	1,014.8	57.5	48.7	1,024.0
1968	193.1	7.5	7.6	. 1	193.1	1,024.0	44.7	50.7	1,017.4
1969	193.1	4.5	7.9	2.1	191.8	1,017.4	28.6	52.7	991.3
1970	191.8	24.7	8.7	14.2	222.0	991.3	146.7	55.3	1,089.1
1971.	222.0	8.7	9.0	6.9	228.5	1,089.1	41.5	54.8	1,074.7
1972	228.5	5.5	9.3	6.4	231.2	1,074.7	29.3	55.2	1,046.7
1973	231.2	5.6	9.6	36.1	263.4	1,046.7	29.7	55.2	1,020.3
1974	263.4	10.2	11.9	68.2	329.8	1,020.3	37.4	52.9	1,004.0
1975	329.8	7.9	15.4	86.8	409.2	1,004.0	25.9	50.3	978.7
1976	409.2	11.4	20.3	76.6	476.9	978.7	25.3	50.3	953.1
1977	476.9	28.9	23.3	48.0	530.5	953.1	57.1	50.5	959.8
1978	530.5	19.4	25.9	30.5	554.5	959.8	38.6	52.3	945.9
1979	554.5	36.4	30.9	92.4	652.4	945.9	55.6	53.7	949.6
1980	652.4	42.8	37.3	109.8	767.7	949.6	60.1	53.9	956.7
1981.	767.7	35.1	42.9	14.9	774.8	956.7	39.3	53.6	942.6
1982 ...	774.8	42.4	62.6	157.3	911.8	942.6	31.7	51.7	922.8
1983	911.8	71.2	80.6	215.5	1,117.9	922.8	37.6	50.2	911.0
1984	1,117.9	86.3	84.1	19.6	1,139.6	911.0	47.8	53.1	906.5
1985	1,139.6	80.4	76.6	-105.0	1,038.4	906.5	58.5	52.6	914.1
1986	1,038.4	54.0	62.7	-87.2	942.4	914.1	47.2	51.3	911.3
1987	942.4	54.3	51.3	-104.2	841.4	911.3	54.3	51.3	916.0
1988	841.4	28.1	37.5	-97.6	734.4	916.0	35.8	52.3	900.6
1989	734.4	42.4	37.3	26.5	766.0	900.6	54.7	51.3	904.1
1990	766.0	50.9	41.8	37.2	812.4	904.1	60.7	51.5	913.6
1991.	812.4	36.3	43.1	-. 1	805.4	913.6	42.3	51.4	903.9

Table A.2.-Value of the Resource, Additions, and Depletion of All Subsoil Assets, Current Rent Method II (Value of Capital)

Year	Billions of current dollars					Billions of 1987 doliars			
	Opening stock (1)	Additions (2)	Depletion (3)	Revaluation adjustment (4)	$\begin{aligned} & \text { Closing } \\ & \text { stock } \\ & (1+2-3+4) \end{aligned}$ (5)	Opening stock (6)	Additions (7)	Deplefion (8)	Closing stock $(6+7-8)$ (9)
1958	181.9	7.7	7.1	5.9	188.3	1,077.4	52.7	43.6	1,086.5
1959 ..	188.3	9.5	7.2	-1.5	189.3	1,086.5	65.3	45.9	1,105.9
1960	189.3	4.3	7.4	5.5	191.6	1,105.9	34.5	47.3	1,093.1
1961 ..	191.6	9.9	7.5	4.0	198.0	1,093.1	61.4	48.1	1,106.4
1962 .	198.0	11.6	7.8	3.9	205.7	1,106.4	68.4	49.5	1,125.2
1963.	205.7	9.5	8.2	5.3	212.3	1,125.2	58.8	51.7	1,132.3
1964.	212.3	12.6	8.5	0	216.4	1,132.3	73.6	53.4	1,152.6
1965	216.4	12.3	8.6	-.7	219.4	1,152.6	76.0	55.0	1,173.6
1966	219.4	11.4	9.0	-1.5	220.4	1,173.6	71.4	58.6	1.186.4
1967	220.4	11.5	9.3	3.2	225.8	1,186.4	72.2	61.4	1,197.1
1968.	225.8	9.4	9.6	. 2	225.8	1,197.1	56.1	63.9	1,189.3
1969	225.8	5.6	10.0	2.8	224.2	1,189.3	35.9	66.4	1,158.8
1970.	224.2	31.0	11.0	15.3	259.5	1,158.8	184.1	69.7	1,273.2
1971	259.5	10.9	11.4	8.1	267.1	1,273.2	52.1	69.0	1,256.4
1972.	267.1	6.9	11.7	7.9	270.3	1,256.4	36.8	69.6	1,223.6
1973 ..	270.3	6.7	12.0	42.2	307.1	1,223.6	35.3	68.9	1,190.0
1974 ...	307.1	12.1	14.9	79.4	383.7	1,190.0	44.4	66.1	1,168.3
1975.	383.7	9.4	19.2	101.1	475.0	1,168.3	30.8	62.9	1,136.1
1976	475.0	13.6	25.2	88.9	552.3	1,136.1	30.1	62.3	1,103.9
1977 .	552.3	34.4	28.9	55.2	613.1	1,103.9	67.8	62.6	1,109.1
1978.	613.1	23.1	31.8	35.0	639.3	1,109.1	45.8	64.4	1,090.5
1979.	639.3	43.2	37.7	105.6	750.4	1,090.5	67.3	65.5	1,092.3
1980	750.4	50.7	45.5	125.3	881.0	1,092.3	71.4	65.7	1,097.9
1981.	881.0	41.7	52.3	16.7	887.1	1,097.9	46.7	65.4	1,079.3
1982.	887.1	50.3	76.0	180.2	1,041.6	1,079.3	37.7	62.8	1,054.2
1983.	1,041.6	84.6	97.3	245.2	1,274.2	1,054.2	44.7	60.6	1,038.3
1984	1,274.2	102.5	101.8	21.1	1,296.0	1,038.3	56.8	64.2	1,030.8
1985.	1,296.0	95.5	92.0	-121.4	1,178.1	1,030.8	69.5	63.2	1,037.1
1986	1,178.1	64.1	75.3	-100.1	1,066.9	1,037.1	56.0	61.6	1,031.6
1987.	1,066.9	64.6	61.5	-119.6	950.3	1,031.6	64.6	61.5	1,034.6
1988 ..	950.3	33.4	44.6	-111.5	827.6	1,034.6	42.5	62.2	1,014.9
1989.	827.6	50.4	44.4	29.6	863.2	1,014.9	65.0	61.1	1,018.8
1990.	863.2	60.5	49.7	41.5	915.5	1,018.8	72.1	61.3	1,029.6
1991	915.5	43.1	51.3	. 4	907.6	1,029.6	50.3	61.2	1,018.7

Table A.4.-Value of the Resource, Additions, and Depletion of All Subsoil Assets, Present Discounted Value Method Using 10\% Discount Rate

Year	Billions of current dollars					Billions of 1987 dollars			
	Opening stock (1)	Additions	Depletion	Revaluation adjustment (4)	$\begin{aligned} & \text { Closing } \\ & \text { stock } \\ & (1+2-3+4) \end{aligned}$ (5)	Opening stock (6)	Additions (7)	Deple tion (8)	Closing stock? $(6+7-8)$ (9)
1958.	114.7	3.9	3.6	3.8	118.8	674.6	27.0	22.3	680.4
1959	118.8	4.9	3.7	-. 6	119.3	680.4	33.5	23.6	692.7
1960.	119.3	2.2	3.8	3.1	120.8	692.7	17.7	24.3	684.7
1961	120.8	5.1	3.9	2.8	124.8	684.7	31.5	24.7	693.3
1962	124.8	6.0	4.0	2.9	129.7	693.3	35.1	25.4	705.4
1963	129.7	4.9	4.2	3.5	133.8	705.4	30.2	26.5	710.0
1964	133.8	6.5	4.3	. 5	136.4	710.0	37.8	27.4	722.8
1965	136.4	6.3	4.4	0	138.3	722.8	39.0	28.2	736.0
1966	138.3	5.9	4.6	-. 6	139.0	736.0	36.6	30.1	744.0
1967	139.0	5.9	4.8	2.3	142.3	744.0	37.0	31.5	750.6
1968	142.3	4.8	4.9	. 1	142.4	750.6	28.8	32.8	745.4
1969	142.4	2.9	5.1	1.3	141.4	745.4	18.4	34.0	726.1
1970	141.4	15.9	5.6	12.0	163.6	726.1	94.4	35.7	798.5
1971	163.6	5.6	5.8	5.0	168.4	798.5	26.7	35.4	788.1
1972	168.4	3.6	6.0	4.4	170.4	788.1	18.9	35.7	767.7
1973	170.4	4.0	6.2	26.8	195.0	767.7	21.0	35.7	751.8
1974	195.0	7.2	7.8	50.8	245.2	751.8	26.5	34.4	743.5
1975	245.2	5.6	10.1	64.8	305.5	743.5	18.3	33.1	728.4
1976	305.5	8.1	13.4	57.3	357.5	728.4	17.9	33.2	712.7
1977	357.5	20.5	15.4	36.8	399.4	712.7	40.4	33.5	720.8
1978	399.4	13.7	17.2	23.2	419.1	720.8	27.3	34.8	713.4
1979	419.1	25.7	20.6	70.9	495.1	713.4	40.1	35.8	719.7
1980	495.1	30.3	25.0	84.6	584.9	719.7	42.5	36.1	728.9
1981	584.9	24.8	29.4	12.3	592.7	728.9	27.8	36.7	721.6
1982	592.7	30.0	43.2	120.8	700.3	721.6	22.5	35.7	709.3
1983	700.3	50.4	55.6	166.9	862.0	709.3	26.6	34.6	702.8
1984	862.0	61.0	58.8	18.0	882.1	702.8	33.8	37.1	701.9
1985	882.1	56.9	53.8	-78.4	806.8	701.9	41.4	36.9	710.4
1986	806.8	38.2	44.3	-65.6	735.1	710.4	33.4	36.2	710.8
1987	735.1	38.4	36.6	-78.2	658.7	710.8	38.4	36.6	717.3
1988	658.7	19.9	26.5	-74.9	577.1	717.3	25.3	37.0	708.2
1989	577.1	30.0	26.4	21.3	602.0	708.2	38.7	36.3	711.3
1990	602.0	36.0	29.6	30.0	638.4	711.3	42.9	36.5	719.0
1991	638.4	25.6	30.6	-. 6	632.9	719.0	30.0	36.4	711.5

1. Because of the simpiliying assumptions used in the calculation of stocks for this method, closing stocks are

Table B.-Alternative Rates of Return, Averages for 1958-91

	NIPAbased	IEESA based			
		Current rent I	Current rent II	$\begin{aligned} & \text { PDV } \\ & 3 \% \\ & \text { rate } \end{aligned}$	$\begin{aligned} & \text { PDV } \\ & \text { 10\% } \\ & \text { rate } \end{aligned}$
Mining industries	23.1	5.2	3.5	4.0	5.0
Total private capital	16.1	14.9	14.1	14.4	14.8

NOTE.-In general, rates of return are some measure of income divided by some measure of capital stock. For the NIPA-based estimates, income is defined as property-type income (profits, rents, net interest plus indirect business taxes), and capital stock is defined as structures, equipment, and inventories. In the alternative IEESA methods, income is also defined as property-type income, but depletion is subtracted from profits, and the value of additions is added; IEESA capital stock is defined as structures, equipment, and inventories plus the value of mineral resources.
PDV Present discounted value
The replacement-cost estimates produced the lowest values among all the estimates for gas. The transactions-price estimates produced the lowest values for oil.
For some of the subsoil asset estimates, especially those employing the current rent method based on a normal return to invested capital, the resource stock values and stock changes are quite low. In certain industries, especially the metals industries, the estimates were negative (indicated with an asterisk in the tables). These negative values indicate that the gross rents in these industries are so low that any procedure that assumes a normal return to capital in that industry must attribute a negative residual rent to the resource if total factor returns are to add up to market output. One can imagine an alternative procedure that assumes a normal return plus a depletion allowance and derives a negative residual for the invested capital associated with the resource.

Appendix:
 Data Sources and Methods

Current-Dollar Estimates

Petroleum and natural gas

Prices and quantities.-The basic commodity prices used are the average wellhead prices for oil and gas from the American Petroleum Institute (api). The wellhead price for gas includes rents attributable to natural gas liquids (NGL) that, depending on market conditions, may be separated downstream. Oil production quantities are from api and the Department of Energy (doe) and include both crude production and lease condensate production, both in millions of barrels. Natural gas production is marketed production from API and Doe. Marketed production has not yet undergone the extraction of ngl. Total rev-
enue for oil and gas production is calculated as price times quantity produced.

Reserve estimates are from api and doe for crude oil and dry gas. The reserve volumes for oil and gas were augmented for reserves of NGL, which are reported separately. Additions were set equal to additions from doe and api plus any residual change in stocks not accounted for by reported flows. The residual arises out of discontinuities in the estimates caused by the different reserve estimation methods used over the last 40 years.

The basic commodity price data used are yearly average prices. The large fluctuation in commodity prices, however, makes them unstable and thus unsuitable for estimating the average or expected returns that investors presumably have in mind in determining the appropriate price for long-lived assets such as mineral reserves. In order to smooth the estimates, a 3 -year lagged average of the yearly average prices is used as the midyear market price.

Costs.-Data on current production expenditures and ad valorem and windfall profits taxes are from api's Survey of Oil and Gas Expenditures (soge) and, for 1972-81, the Census Bureau's Annual Survey of Oil and Gas (asog). "Finding costs" are obtained as a 3 -year moving average of development expenditures per unit of reserve added; the source data are from the soge and the asog. For years not covered by the soge, estimates of costs were interpolated using an indicator series.

Capital stock.-The capital stock, depreciation, and investment estimates are from bea. bea defines investment and capital for mining industries differently from standard industry practice. bea investment includes capital equipment, structures, and all exploration and development expenditures, even those expenditures that are treated as current expenses by operators. NIPA capital and investment estimates are available as an aggregate for oil and gas extraction (sic 13). The portion of capital for four-digit sic industry 1321, natural gas liquids, was removed from this series, as this capital is not used in the extraction of oil or gas. Rather, natural gas liquids, a small piece of sic 13, is a downstream process. The capital stock of the other four-digit components of SIC 13 is considered a part of the capital required for the extraction of oil and gas; for example, oil and gas field exploration services, sIC industry 1382, is used as inputs for oil and gas extraction.

The nipa investment series for oil and gas extraction from 1959-91 was disaggregated into oil extraction and gas extraction using the ratio of expenditures for successful oil wells drilled to expenditures for successful gas wells drilled. For 1947-58, expenditure ratios for oil wells and gas wells were estimated using the number of successful oil wells and gas wells drilled. These two investment series were then used to generate current- and constant-dollar capital stock and depreciation estimates for oil extraction and for gas extraction.

Other minerals

Inconsistencies in data and a paucity of data for nonbenchmark years present substantial difficulties in making estimates for other minerals. The data that do exist are often classified incongruently, or the definitions for series change over time. For example, Census Bureau data-which are the only comprehensive data available on production, costs, and revenues-are on an sic basis; bea data on capital stocks are on an sic basis but at a more aggregate level than the Census data; and Bureau of Mines and doe data on reserves, production quantities, and prices are on a commodity basis.

Prices and quantities.-For most minerals, the basic commodity prices used are 3 -year lagged averages of the value of production divided by the quantity produced for metals and other minerals from the Bureau of Mines or doe. For other minerals, a combination of available data on prices, quantities produced, or value of production is used to derive missing data on prices or value of production. Total revenue from current production is equal to the average price times the quantity produced.

Changing definitions for mineral reserve quantities present significant problems for the construction of consistent time series for mineral reserves. Prior to 1978, reserves were defined by the Bureau of Mines as economic reserves, both demonstrated and inferred; between 1979 and 1986, reserve base was the preferred definition, and this comprised demonstrated (but not inferred) economic reserves, marginal economic reserves, and part of subeconomic reserves; since 1987, only demonstrated economic reserves are included in the definition of reserves. Only the last definition is roughly consistent with proved reserves in oil and gas. The published estimates showed such large year-to-year changes-even within subperiods in which re-
serve definitions were unchanged-that bea has attempted to develop a consistent, or at least smoothed, time series for these minerals. The bea series use a weighted average that is based on a constant output-to-reserve ratio and on a judgmentally scaled moving average of published reserves. (Uranium reserves are based on a different method that splices doe's forward-cost categories to construct a consistent time series.)

Costs.-Consistent data on production expendi-tures-current variable costs of extraction, including purchased services-were derived from the Census Bureau's minerals industries data and from bea's benchmark input-output data.

Capital stock.-For census years between 1958 and 1991, data on investment in plant, equipment, and exploration and development were derived from the Census Bureau's Census of Mineral Industries. These investment data were then used to construct industry-specific capital stock estimates for mineral industries at a level of detail greater than that at which bea normally produces estimates.

Constant-Dollar Estimates

Constant-dollar estimates for petroleum, natural gas, and other minerals use 1987 as the base year. The base-year estimate for resource rent was used to calculate constant-dollar series for the following methods: Current rent, present discounted value, and, for a shorter period, transactions price. For each method, the 1987 per-unit resource rent for the value of depletion was multiplied by the physical volume of depletion and additions to derive the value of depletion and additions, respectively. The constant-dollar value of the resource stock is the product of the 1987 perunit resource rent and the end-of-year volume of reserves.

References

1. Adelman, M. A., Harindar De Silva, and Michael F. Koehn. "User Cost in Oil Production." Resources and Energy 13 (1991): 217-240.
2. Adelman, M. A., John C. Houghton, Gordon M. Kaufman, and Martin B. Zimmerman. Energy Resources in an Uncertain Future. Cambridge, ma: Ballinger, 1983.
3. Ahmad, Yusuf J., Salah El Serafy, and Ernst Lutz, editors. Environmental Accounting for

Sustainable Development. Washington, DC: The World Bank, 1989.
4. Boskin, Michael J., Marc S. Robinson, Terrance O'Reilly, and Praveen Kumar. "New Estimates of the Value of Federal Mineral Rights and Land." American Economic Review 75, no. 5 (December 1985): 923-936.
5. Gordon, Patrice L., and Raymond Prince. "Greening the National Accounts." Congressional Budget Office, March 1994.
6. El Serafy, Salah. "The Proper Calculation of Income From Depletable Natural Resources." In Environmental Accounting for Sustainable Development, edited by Yusuf J. Ahmad, Salah El Serafy, and Ernst Lutz, 10-18. Washington, DC: The World Bank, 1989.
7. El Serafy, Salah, and Ernst Lutz. "Environmental and Resource Accounting: An Overview." In Environmental Accounting for Sustainable Development, edited by Yusuf J. Ahmad, Salah El Serafy, and Ernst Lutz, 1-7. Washington, DC: The World Bank, 1989.
8. Ferran, Bernardo. "Corporate and Social Accounting for Petroleum." Review of Income and Wealth (March 1981): 104.
9. Grambsch, Anne E., and R. Gregory Michaels, with Henry M. Peskin. "Taking Stock of Nature: Environmental Accounting for Chesapeake Bay." In Toward Improved Accounting for the Environment, edited by Ernst Lutz, 184-197. Washington, dC: The World Bank, 1993.
10. Hartwick, John R. "Natural Resources, National Accounting and Economic Depreciation." Journal of Public Economics 43, no. 3 (December, 1990): 291-304.
11. Hartwick, John, and Anja Hageman. "Economic Depreciation of Mineral Stocks and the Contribution of El Serafy." In Toward Improved Accounting for the Environment, edited by Ernst Lutz, 211-235. Washington, dc: The World Bank, 1993.
12. Hotelling, Harold. "The Economics of Exhaustible Resources." Journal of Political Economy 39, no. 2 (1931): 137-175.
13. Jaszi, George. "Review: An Economic Accountant's Ledger," in "The Economic Accounts of the United States: Retrospect and Prospect." Survey of Current Business 51, no. 7, Part il, 50th anniversary issue (July 1971): 221-225.
14. Jaszi, George. "The Conceptual Basis of the Accounts: A Re-examination." In A Critique
of the United States Income and Product Accounts. Studies in Income and Wealth, vol. 22, 93-94. New York: University Press, 1958.
15. Landefeld, J. Steven, and James R. Hines. "Valuing Non-Renewable Natural Resources in the Mining Industries." Review of Income and Wealth 31, no. 1 (March 1985): 1-20.
16. Lutz, Ernst, editor. Toward Improved Accounting for the Environment. Washington, DC: The World Bank, 1993.
17. Lutz, Ernst, and Henry M. Peskin. "A Survey of Resource and Accounting Approaches in Industrialized Countries." In Toward Improved Accounting for the Environment, edited by Ernst Lutz, 144-176. Washington, dc: The World Bank, 1993.
18. Nordhaus, William D. "The Allocation of Energy Resources." Brookings Papers on Economic Activity 3 (1973): 529-570.
19. Nordhaus, William D., and James Tobin. "Is Growth Obsolete?" In The Measurement of Economic and Social Performance. Studies in Income and Wealth, vol. 38, edited by Milton Moss, 509-532. New York: Columbia University Press, 1973.
20. Organisation for Economic Co-operation and Development, Department of Economics and Statistics. "Extending National Accounting With Regard to Natural and Environmental Resources and to Expenditure on Pollution Abatement: An Overview of the Recent International Discussion." Paper distributed at the meeting of National Accounts Experts, Paris, June 14, 1991.
21. Paddock, James L., Daniel R. Siegel, and James L. Smith. "Option Valuation of Claims on Real Assets: The Case of Offshore Petroleum Leases." Quarterly Journal of Economics 98, no. 3 (August 1991): 479-508.
22. Peskin, Henry M. "A Proposed Environmental Accounts Framework." In Environmental Accounting for Sustainable Development, edited by Yusuf J. Ahmad, Salah El Serafy, and Ernst Lutz. Washington, dc: The World Bank, 1989.
23. Peskin, Henry M., with Ernst Lutz. "A Survey of Resource and Environmental Accounting Approaches in Industrialized Countries." In Toward Improved Accounting for the Environment, edited by Ernst Lutz, 144-176. Washington, DC: The World Bank, 1993.
24. Rasmussen, Jon A. "Finding Costs and the Make-or-Buy Decision for Oil and Gas Producers in 1982-1986." Petroleum Accounting
and Financial Management Journal 11, no. 2 (Summer 1992): 60-92.
25. Repetto, Robert, William Magrath, Michael Wells, Christine Beer, and Fabrizo Rossini. Wasting Assets: National Resources in the National Income Accounts. Washington, DC: World Resources Institute, June 1989.
26. Soladay, John J. "Measurement of Income and Product in the Oil and Gas Mining Industries." In The Measurement of Capital. Studies in Income and Wealth, vol. 45, 347376. Chicago: The University of Chicago Press, 1980.
27. Solow, Robert. "An Almost Practical Step Toward Sustainability." Print of an invited lecture on the occasion of the 4oth anniversary of Resources for the Future. October 8, 1992. Washington, DC: Resources for the Future.
28. Stauffer, Thomas S. "Accounting for 'Wasting Assets': Measurement of Income and Dependency in Oil-Renter States." Journal of Energy and Development 11, no. 1 (1986): 69-93.
29. United Nations. Agenda 21: Programme of Action for Sustainable Development. Department of Public Information. New York: United Nations, 1992, chapters 8 and 40.
30. United Nations. Integrated Environmental and Economic Accounting (interim version). Studies in Methods, Handbook of National Accounting, series F, no. 61. New York: United Nations, 1993.
31. System of National Accounts 1993. Brussels: Commission of the European Communities, International Monetary Fund, Organisation for Economic Co-operation and Development, United Nations, and World Bank, 1993.
32. United States Department of Commerce. Bureau of Economic Analysis. Fixed Reproducible Tangible Wealth in the United States, 1925-89. Washington, DC: U.S. Government Printing Office, January 1993.
33. United States Department of Commerce. Bureau of Economic Analysis. "Guidelines in Economic Accounting." Survey of Current Business 73, no. 2 (February 1993): 43-44.
34. World Commission on Environment and Development. Our Common Future. Oxford: Oxford University Press, 1987.
35. Wright, Gavin. "The Origins of American Industrial Success, 1879-1940." American Economic Review 80, no. 4 (September 1990): 651-668.

Tables 1.1 through 5.4 follow.

Table 1.1.-Value of the Resource, Additions, and Depletion of Oil, Current Rent Method I (Rate of Return)
[Billions of current dollars]

Year	Opening stock (1)	Additions (2)	Depletion (3)	Revaluation adjustment (4)	Closing stock $(1+2-3+4)$ (5)
1947		2.4	1.8		26.1
1948	26.1	5.7	3.0	6.1	34.9
1949	34.9	4.5	2.5	. 5	37.4
1950	37.4	4.1	3.0	. 3	38.8
1951	38.8	6.4	3.2	-2.5	39.6
1952	39.6	3.5	2.8	-3.9	36.3
1953	36.3	4.3	3.0	1.2	38.9
1954	38.9	4.0	3.2	3.6	43.2
1955	43.2	4.6	3.9	4.2	48.2
1956	48.2	4.6	3.9	-1.3	47.6
1957	47.6	3.5	3.8	-1.0	46.3
1958	46.3	4.1	3.6	. 4	47.2
1959	47.2	5.2	3.5	-5.6	43.3
1960	43.3	3.3	3.3	-1.1	42.1
1961	42.1	3.5	3.3	-. 6	41.8
1962	41.8	2.9	3.3	-. 5	40.8
1963	40.8	3.1	3.6	1.6	42.0
1964 ...	42.0	3.6	3.6	-. 7	41.3
1965 ...	41.3	4.0	3.5	-1.4	40.4
1966	40.4	3.9	3.7	-. 6	40.0
1967	40.0	4.1	4.1	2.5	42.5
1968	42.5	3.3	4.2	-. 1	41.6
1969	41.6	2.8	4.3	. 4	40.5
1970	40.5	16.7	4.6	3.1	55.7
1971	55.7	3.3	4.7	1.0	55.3
1972	55.3	2.1	4.4	-1.8	51.2
1973	51.2	3.6	5.4	28.5	77.9
1974	77.9	3.8	5.8	10.9	86.8
1975	86.8	3.5	7.3	21.7	104.7
1976	104.7	4.2	10.0	19.8	118.7
1977	118.7	13.4	10.7	2.7	124.1
1978	124.1	9.8	11.3	15.4	137.9
1979	137.9	7.1	12.9	60.4	192.5
1980	192.5	19.0	18.9	102.8	295.4
1981	295.4	20.6	22.8	5.2	298.3
1982	298.3	19.8	38.6	102.9	382.4
1983	382.4	54.9	54.7	99.0	481.6
1984	481.6	62.1	51.6	-38.0	454.1
1985	454.1	43.9	43.5	-122.4	332.1
1986	332.1	16.1	30.2	-91.9	226.1
1987	226.1	23.1	20.7	-83.9	144.7
1988	144.7	6.1	7.1	-63.4	80.2
1989	80.2	6.0	7.0	12.8	91.9
1990	91.9	9.2	10.3	32.5	123.3
1991	123.3	5.3	13.0	11.1	126.8

Table 1.2.-Value of the Resource, Additions, and Depletion of Oii, Current Rent Method II (Value of Capital)
[Bilitions of current dollars]

Year	Opening stock (1)	Additions (2)	Depletion (3)	Revaluation adjustment (4)	Closing stock ($1+2-3+4$) (5)
1947		3.0	2.2		31.3
1948	31.3	6.7	3.5	6.4	40.9
1949	40.9	5.5	3.1	2.3	45.6
1950	45.6	4.9	3.6	-. 2	46.8
1951	46.8	7.8	3.9	-2.3	48.5
1952	48.5	4.5	3.6	-3.2	46.1
1953	45.1	5.5	3.8	1.8	49.7
1954.	49.7	5.2	4.1	4.8	55.5
1955	55.5	5.8	4.8	3.8	60.3
1956	60.3	6.0	5.0	-. 2	61.0
1957	61.0	4.7	5.0	. 7	61.4
1958	61.4	5.7	5.0	3.3	65.4
1959	65.4	7.4	5.0	-5.3	62.6
1960	62.6	4.8	4.9	-. 3	62.2
1961	62.2	5.2	4.9	-1.0	61.5
1962	61.5	4.3	4.9	-. 6	60.4
1963	60.4	4.5	5.1	. 5	60.2
1964	60.2	5.2	5.1	-. 7	59.5
1965	59.5	5.9	5.1	-1.3	58.9
1966	58.9	5.6	5.3	-1.5	57.7
1967	57.7	5.7	5.7	1.1	58.8
1968	58.8	4.6	5.8	-. 8	56.8
1969	56.8	3.8	5.9	0	54.8
1970	54.8	23.7	6.5	8.7	80.7
1971	80.7	4.9	6.9	2.0	80.6
1972	80.6	3.3	7.0	1.5	78.4
1973	78.4	4.7	7.0	18.7	94.9
1974	94.9	6.0	9.0	30.1	121.9
1975	121.9	5.5	11.5	33.0	149.0
1976	149.0	6.1	14.4	24.1	164.8
1977	164.8	19.6	15.6	9.3	178.1
1978	178.1	14.7	17.1	19.2	194.9
1979	194.9	10.8	19.7	71.2	257.2
1980	257.2	26.2	26.1	105.2	362.5
1981	362.5	30.2	33.5	37.0	396.2
1982	396.2	26.3	51.4	125.7	496.9
1983	496.9	65.4	65.1	82.1	579.3
1984	579.3	74.2	61.7	-44.1	547.7
1985	547.7	55.4	54.8	-112.6	435.6
1986	435.6	21.9	41.3	-90.4	325.9
1987	325.9	34.2	30.6	-88.3	241.2
1988	241.2	15.9	18.5	-51.1	187.5
1989	187.5	16.4	19.3	30.8	215.4
1990	215.4	20.2	22.6	37.6	250.6
1991	250.6	10.3	25.0	5.8	241.7

Table 1.3.-Value of the Resource, Additions, and Depletion of Oil, Present Discounted Value Method Using 3\% Discount Rate [Billions of current dollars]

Year	Opening stock (1)	Additions (2)	Depletion (3)	Revaluation adjustment (4)	Closing stock $(1+2-3+4)$ (5)
1947			1.8		26.8
1948 ...	26.8	5.3	2.8	5.7	35.0
1949	35.0	4.4	2.5	2.1	39.0
1950	39.0	3.9	2.8	-. 1	40.0
1951	40.0	6.2	3.1	-1.7	41.4
1952	41.4	3.6	2.9	-2.7	39.5
1953	39.5	4.4	3.0	1.7	42.5
1954	42.5	4.1	3.3	4.2	47.5
1955	47.5	4.6	3.8	3.3	51.6
1956	51.6	4.8	4.0	-. 1	52.2
1957	52.2	3.7	4.0	. 6	52.5
1958	52.5	4.5	4.0	2.9	56.0
1959	56.0	5.9	4.0	-4.4	53.5
1960	53.5	3.8	3.9	-. 3	53.2
1961	53.2	4.2	3.9	-. 9	52.6
1962	52.6	3.5	3.9	-. 5	51.6
1963 ...	51.6	3.5	4.0	. 3	51.5
1964	51.5	4.1	4.1	-. 6	50.9
1965 ...	50.9	4.7	4.1	-1.1	50.4
1966	50.4	4.4	4.2	-1.3	49.3
1967	49.3	4.5	4.5	. 9	50.3
1968	50.3	3.7	4.6	-. 8	48.6
1969	48.6	3.1	4.7	-. 1	46.9
1970	46.9	18.9	5.2	8.4	69.0
1971	69.0	3.9	5.5	1.5	68.9
1972	68.9	2.6	5.5	1.1	67.1
1973	67.1	4.0	5.6	15.9	81.3
1974	81.3	5.1	7.2	25.6	104.8
1975	104.8	4.7	9.2	28.1	128.3
1976	128.3	5.2	11.6	20.4	142.3
1977	142.3	16.5	12.6	7.9	154.1
1978	154.1	12.4	13.9	16.4	169.0
1979	169.0	9.1	16.1	61.6	223.6
1980	223.6	22.1	21.4	91.6	315.9
1981	315.9	25.4	27.5	32.2	346.0
1982	346.0	22.2	42.3	109.1	435.0
1983	435.0	55.0	54.0	72.2	508.3
1984	508.3	62.5	51.0	-38.1	481.7
1985	481.7	46.6	45.7	-98.6	383.9
1986	383.9	18.5	34.4	-80.2	287.9
1987	287.9	28.8	25.5	-77.7	213.6
1988	213.6	13.4	15.6	-45.0	166.4
1989	166.4	13.8	16.2	27.2	191.1
1990	191.1	17.0	19.0	33.2	222.4
1991	222.4	8.7	21.0	4.4	214.5

Table 1.4.-Value of the Resource, Additions, and Depletion of Oil, Present Discounted Value Method Using 10\% Discount Rate [Billions of current dollars]

Year	Opening stock (1)	Additions (2)	Depletion (3)	Revaluation adjustment (4)	Closing stock $(1+2-3+4)$ (5)
1947.			1.1		19.8
1948	19.8	3.4	1.8	4.4	25.8
1949	25.8	2.8	1.6	1.7	28.8
1950 ...	28.8	2.5	1.8	. 1	29.5
1951	29.5	4.0	2.0	-1.0	30.6
1952 ...	30.6	2.3	1.8	-1.9	29.1
1953	29.1	2.8	2.0	1.4	31.3
1954	31.3	2.6	2.1	3.1	35.0
1955	35.0	3.0	2.5	2.5	38.0
1956	38.0	3.1	2.6	0	38.5
1957	38.5	2.4	2.6	4	38.7
1958	38.7	2.9	2.6	2.2	41.3
1959	41.3	3.8	2.6	-3.0	39.5
1960	39.5	2.5	2.5	-. 2	39.2
1961	39.2	2.7	2.5	-. 6	38.8
1962	38.8	2.2	2.5	-. 4	38.1
1963	38.1	2.3	2.6	. 2	37.9
1964 ..	37.9	2.7	2.6	-. 5	37.5
1965	37.5	3.0	2.6	-. 8	37.1
1966	37.1	2.9	2.7 2.9	-. 7	
1967	36.4	2.9	3.9	.7 -6	37.1 35.8
1969 ...	35.8	2.0	3.0	-. 2	34.5
1970	34.5	12.2	3.3	7.5	50.9
1971	50.9	2.5	3.6	1.0	50.8
1972	50.8	1.7	3.6	. 5	49.4
1973	49.4	2.8	3.6	11.6	60.2
1974	60.2	3.6	4.7	18.8	77.9
1975	77.9	3.3	6.0	20.7	95.8
	95.8	3.6	7.7	14.9	106.7
1977	106.7	11.7	8.4	6.0	116.0
1978	116.0	8.8	9.2	12.2	127.7
1979	127.7	6.4	10.8	46.2	169.7
1980	169.7	15.6	14.3	69.7	240.7
1981	240.7	18.0	18.8	24.9	264.7 334
1982	264.7	15.7	29.2	82.9	334.1
1983	334.1	38.9	37.2	56.1	391.9
1984	391.9	44.2	35.7	-27.6	372.8
1985	372.8	33.0	32.1	-75.4	298.3
1986	298.3	13.1	24.3	-62.6	224.6
1987	224.6	20.4	18.2	-59.5	167.2 130.8
1988	167.2	9.5	11.0	-34.9	130.8
1989	130.8	9.7	11.5	21.2	150.2
$1990 . .$.	150.2	12.1	13.5	26.0	174.8
1991	174.8	6.1	14.9	2.5	168.5

Table 1.5.-Value of the Resource, Additions, and Depletion of Oil, Replacement Cost Method
[Billions of current dollars]

Year	Opening stock (1)	Additions (2)	Depletion (3)	Revaluation adjustment (4)	Closing stock $(1+2-3+4)$ (5)
1947		1.3	1.0		14.2
1948	14.2	3.1	1.6	3.5	19.2
1949	19.2	2.1	1.2	-2.4	17.7
1950	17.7	1.9	1.4	. 1	18.3
1951	18.3	2.7	1.4	-2.5	17.2
1952	17.2	1.6	1.3	-. 8	16.7
1953	16.7	1.8	1.2	-. 8	16.4
1954	16.4	1.8	1.4	3.1	19.8
1955	19.8	2.2	1.9	3.4	23.6
1956	23.6	2.2	1.9	-. 4	23.6
1957	23.6	1.8	2.0	. 9	24.4
1958	24.4	2.3	2.0	1.6	26.3
1959	26.3	3.2	2.1	-. 5	26.7
1960	26.7	2.1	2.1	. 2	26.9
1961	26.9	2.1	1.9	-2.7	24.3
1962	24.3	1.7	1.9	-. 2	23.9
1963	23.9	1.8	2.1	. 6	24.2
1964	24.2	2.3	2.3	2.4	26.6
1965	26.6	2.8	2.4	1.3	28.2
1966	28.2	2.8	2.7	1.0	29.4
1967 ..	29.4	2.8	2.8	-. 1	29.2
1968	29.2	2.1	2.7	- 1.7	26.9
1969 ...	26.9	2.2	3.4	6.5	32.3
1970	32.3	11.9	3.3	-1.5	39.4
1971	39.4	2.2	3.2	-1.3	37.2
1972 ...	37.2	1.4	2.9	-1.7	34.0
1973	34.0	1.9	2.8	9.2	42.3
1974	42.3	2.0	3.1	7.7	49.0
1975	49.0	1.2	2.6	-4.3	43.4
1976	43.4	2.0	4.8	18.1	58.7
1977	58.7	7.9	6.3	14.1	74.4
1978	74.4	6.7	7.8	21.7	95.1
1979	95.1	4.8	8.7	37.2	128.4
1980	128.4	10.9	10.9	51.1	179.5
1981	179.5	11.9	13.2	4.5	182.6
1982	182.6	12.2	23.8	66.8	237.9
1983	237.9	33.5	33.4	53.8	291.8
1984	291.8	40.0	33.2	-5.4	293.2
1985	293.2	28.9	28.6	-73.9	219.5
1986	219.5	11.7	22.1	-42.4	166.8
1987	166.8	18.2	16.2	-49.0	119.8
1988	119.8	10.0	11.6	. 5	118.7
1989	118.7	9.5	11.2	8.4	125.4
1990	125.4	8.7	9.7	-14.2	110.2
1991	110.2	3.3	8.0	-27.6	77.8

Table 1.6.-Value of the Resource, Additions, and Depletion of Oil, Transaction Price Method
[Billions of current dollars]

Year	Opening stock (1)	Additions (2)	Depletion (3)	Revaluation adjustment (4)	Closing stock $(1+2-3+4)$ (5)
1977		10.8	8.6		93.7
	93.7	7.5	8.7	20.9	113.4
1979	113.4	7.2	13.2	42.7	150.2
1980	150.2	16.6	16.5	3.7	154.0
1981	154.0	12.4	13.8	-. 5	152.1
1982	152.1	9.4	18.4	-21.5	121.7
1983	121.7	8.8	8.8	-40.3	81.4
1984	81.4	10.4	8.6	-11.1	72.0
1985	72.0	7.0	7.0	-6.1	66.0
1986	66.0	4.1	7.7	-4.2	58.2
1987	58.2	5.8	5.1	-23.1	35.7
1988	35.7	1.4	1.6	-22.3	13.2
1989	13.2	1.2	1.5	4.3	17.2
1990	17.2	1.6	1.8	20.0	37.1
1991	37.1	2.2	5.3	11.1	45.1

Table 2.1.-Value of the Resource, Additions, and Depletion of Gas, Current Rent Method I (Rate of Return)
[Billions of current dollars]

Year	Opening stock (1)	Additions (2)	Depletion (3)	Revaluation adjustment (4)	Closing stock $(1+2-3+4)$ (5)
1947					
1948 ...	(*)	(*)	(*)	(*)	*
1949 ..	(*)	(*)	(*)	(*)	(*)
1950	(*)	(*)	(*)	(*)	(*)
1951	(*)	(*)	(*)	(*)	
1952	(*)	*	*	*	*
1953 ...	(*)	*)	(*)	(*)	(*)
1954 ..	(*)	(*)	(*)	(*)	1.1
1955 ...	1.1	. 3	. 1	1.8	3.1
1956	3.1	. 3	. 1	-. 5	2.7
1957	2.7	. 2	. 1	-. 3	2.6
1958	2.6	. 3	. 1	1.5	4.1
1959	4.1	. 3	. 2	. 5	4.8
1960	4.8	. 3	. 3	2.9	7.7
1961 ...	7.7	. 6	. 4	1.8	9.7
1962	9.7	. 8	. 5	1.3	11.2
1963	11.2	. 9	. 7	2.4	13.9
1964 ...	13.9	1.0	. 8	. 2	14.3
1965 ...	14.3	1.0	8	-. 7	13.9
1966	13.9	. 9	. 8	-. 7	13.3
1967	13.3	1.0	. 8	8	14.3
1968	14.3	. 6	. 9	2	14.2
1969	14.2	. 4	1.0	. 6	14.2
1970	14.2	1.9	1.1	. 8	15.8
1971	15.8	. 5	1.1	-. 2	15.0
1972	15.0	3	8	-2.9	11.6
1973	11.6	2	. 8	3.0	14.0
1974	14.0	. 2	. 6	2.3	15.8
1975	15.8	. 4	. 8	5.6	21.1
1976	21.1	. 7	2.1	18.4	38.2
1977	38.2	2.3	3.6	14.9	51.7
1978	51.7	2.3	4.1	9.2	59.1
1979	59.1	3.9	5.4	20.3	77.9
1980	77.9	6.3	5.2	7.8	86.7
1981	86.7	. 8	. 7	-45.6	41.3
1982	41.3	3.0	3.0	20.2	61.5
1983	61.5	10.1	11.0	100.9	161.6
1984	161.6	15.6	18.5	51.1	209.8
1985	209.8	10.6	14.1	-65.4	140.9
1986	140.9	10.0	11.3	-34.6	105.1
1987	105.1	6.9	9.3	-24.0	78.6
1988	78.6	-. 4	3.6	-44.3	30.3
1989 ...	30.3	2.1	2.2	-5.5	24.7
1990	24.7	4.1	3.7	10.1	35.3
1991	35.3	2.8	3.2	-3.8	31.1

* Indicates that the calculated value of the entry was negative, resulting from a negative resource rent. Because a negative resource rent is simply the mechanical result of treating resource rent as a residual after the deduction of other factor payments, the values have been replaced by asterisks. Where the resource rent was negative in the base year (1987) for individual mineral types, the average for the 3 year period, 1987-89, was substituted for the 1987 rent for the purpose of calculating constant-dollar estimates shown in tables B. 1 through B.4. Where the 1987-89 average was negative, a base year price of zero was used for the constant-dollar estimates.

Table 2.2.-Value of the Resource, Additions, and Depletion of Gas, Current Rent Method II (Value of Capital)
[Billions of current dollars]

Year	Opening stock (1)	Additions (2)	Depletion (3)	Revaluation adjustment (4)	Closing stock $(1+2-3+4)$ (5)
1947		0.3	0.1		6.1
1948	6.1	. 5	. 2	. 7	7.2
1949	7.2	. 4	. 2	. 1	7.5
1950	7.5	. 5	2	-. 1	7.7
1951	7.7	. 6	. 3	. 1	8.1
1952	8.1	. 5	. 3	. 3	8.6
1953	8.6	. 9	. 4	1.5	10.6
1954	10.6	. 5	. 5	2.2	12.8
1955	12.8	1.4	. 6	2.0	15.7
1956	15.7	1.7	. 7	. 5	17.1
1957	17.1	1.4	. 7	. 5	18.2
1958	18.2	1.4	. 8	1.8	20.7
1959	20.7	1.6	. 9	. 1	21.4
1960	21.4	1.2	1.1	2.4	23.9
1961	23.9	1.6	1.2	1.8	26.0
1962	26.0	1.9	1.3	1.5	28.1
1963	28.1	1.9	1.5	1.1	29.7
1964	29.7	2.1	1.6	-. 1	30.1
1965	30.1	2.2	1.6	-. 5	30.1
1966	30.1	2.0	1.7	-. 8	29.6
1967	29.6	2.2	1.8	. 7	30.7
1968	30.7	1.3	1.9	-. 2	29.9
1969	29.9	8	2.0	-. 4	28.2
1970	28.2	3.8	2.2	1.1	30.9
1971	30.9	1.0	2.3	-. 3	29.4
1972	29.4	. 9	2.2	-. 3	27.8
1973	27.8	. 6	2.2	3.0	29.2
1974	29.2	. 9	2.4	7.5	35.2
1975	35.2	1.7	3.2	15.1	48.9
1976	48.9	1.8	4.8	22.0	67.8
1977	67.8	4.3	6.9	19.9	85.1
1978	85.1	4.6	8.3	18.5	99.9
1979	99.9	7.7	10.6	29.1	126.1
1980	126.1	13.7	11.3	17.2	145.6
1981	145.6	12.1	10.6	-8.4	138.8
1982	138.8	16.7	16.9	78.8	217.3
1983	217.3	22.3	24.2	111.5	326.9
1984	326.9	25.7	30.5	22.0	344.1
1985	344.1	20.6	27.4	-42.0	295.3
1986	295.3	21.5	24.1	-33.3	259.3
1987	259.3	14.9	20.3	-51.8	202.2
1988	202.2	-1.8	14.7	-51.4	134.2
1989	134.2	12.4	13.1	-4.1	129.5
1990	129.5	16.1	14.3	5.7	136.9
1991	136.9	12.2	14.0	-2.3	132.8

Table 2.3.-Value of the Resource, Additions, and Depletion of Gas, Present Discounted Value Method Using 3\% Discount Rate
[Billions of current dollars]

Year	Opening stock (1)	Additions (2)	Depletion (3)	Revaluation adjustment (4)	Closing stock $(1+2-3+4)$ (5)
1947			0.1		5.2
1948 ...	5.2	4	. 2	. 6	6.1
1949	6.1	. 3	. 2	. 1	6.4
1950	6.4	4	. 2	-. 1	6.6
1951	6.6	. 5	. 2	. 1	6.9
1952	6.9	4	. 2	2	7.3
1953	7.3	. 7	. 3	1.3	9.1
1954	9.1	. 4	. 4	1.9	11.0
1955	11.0	1.1	. 5	1.8	13.4
1956	13.4	1.3	. 5	. 4	14.6
1957.	14.6	1.1	. 6	4	15.6
1958 ...	15.6	1.1	7	1.6	17.7
1959.	17.7	1.3	. 7	. 1	18.3
1960	18.3	. 9	. 8	2.1	20.4
1961	20.4	1.3	1.0	1.5	22.3
1962	22.3	1.6	1.1	1.3	24.1
1963	24.1	1.5	1.2	1.0	25.4
1964	25.4	1.7	1.3	-. 1	25.7
1965 ...	25.7	1.7	1.3	-. 4	25.8
1966	25.8	1.6	1.3	-. 7	25.3
1967	25.3	1.7	1.4	. 6	26.2
1968	26.2	1.1	1.5	-. 2	25.6
1969	25.6	. 6	1.6	-. 4	24.2
1970	24.2	3.0	1.7	1.0	26.5
1971	26.5	. 8	1.8	-. 4	25.1
1972	25.1	7	1.8	-. 3	23.8
1973	23.8	. 5	1.8	2.5	25.0
1974	25.0	, 8	1.9	6.4	30.3
1975	30.3	1.4	2.6	12.9	42.1
1976	42.1	1.5	3.9	18.8	58.5
1977	58.5	3.6	5.5	17.0	73.7
1978	73.7	3.9	6.8	15.9	86.6
1979	86.6	6.5	8.7	25.2	109.6
1980	109.6	11.7	9.4	15.0	126.9
1981	126.9	10.2	8.7	-7.2	121.2
1982	121.2	14.1	13.9	68.9	190.2
1983	190.2	18.7	20.0	97.9	286.9
1984	286.9	21.6	25.2	19.3	302.6
1985	302.6	17.3	22.8	-36.8	260.3
1986	260.3	18.1	20.1	-29.2	229.1
1987	229.1	12.6	16.9	-45.8	179.0
1988	179.0	-1.5	12.4	-46.0	119.1
1989	119.1	10.4	11.0	-3.7	114.9
1990	114.9	13.5	12.0	5.1	121.5
1991	121.5	10.3	11.8	-2.2	117.8

Table 2.4.-Value of the Resource, Additions, and Depletion of Gas, Present Discounted Value Method Using 10\% Discount Rate [Billions of current dollars]

Year	Opening stock	Additions (2)	Depletion (3)	Revaluation adjustment (4)	Closing stock $(1+2-3+4)$ (5)
1947		\ldots.	0.1		3.9
1948	3.9	. 3	. 1	. 5	4.5
1949	4.5	. 2	. 1	. 1	4.7
1950	4.7	. 2	. 1	0	4.8
1951	4.8	. 3	. 1	. 1	5.1
1952	5.1	. 3	. 2	. 2	5.4
1953	5.4	. 5	. 2	1.0	6.7
1954	6.7	. 3	. 2	1.4	8.1
1955	8.1	. 7	. 3	1.4	9.9
1956	9.9	. 9	. 4	. 4	10.8
1957	10.8	. 7	. 4	. 4	11.5
1958	11.5	. 7	. 4	1.2	13.0
1959	13.0	. 8	. 5	. 1	13.5
1960	13.5	. 6	. 5	1.5	15.1
1961	15.1	. 8	. 6	1.2	16.4
1962	16.4	1.0	. 7	1.0	17.7
1963	17.7	1.0	. 8	. 8	18.7
1964	18.7	1.1	. 8	0	19.0
1965	19.0	1.1	. 8	-. 3	19.0
1966	19.0	1.0	. 9	-. 5	18.7
1967	18.7	1.1	. 9	. 5	19.3
1968	19.3	. 7	1.0	-. 2	18.8
1969	18.8	4	1.0	-. 4	17.8
1970	17.8	1.9	1.1	. 9	19.5
1971	19.5	. 5	1.2	-. 4	18.5
1972	18.5	. 5	1.1	-. 3	17.5
1973	17.5	. 3	1.1	1.8	18.5
1974 ...	18.5	. 5	1.3	4.7	22.5
1975	22.5	1.0	1.7	9.6	31.4
1976	31.4	1.0	2.6	14.0	43.9
1977	43.9	2.6	3.7	12.7	55.5
1978	55.5	2.7	4.5	11.8	65.5
1979	65.5	4.6	5.8	18.9	83.2
1980	83.2	8.2	6.3	11.6	96.7
1981	96.7	7.2	6.0	-5.2	92.7
1982	92.7	9.9	9.6	53.1	146.1
1983	146.1	13.3	13.8	75.6	221.2
1984	221.2	15.3	17.6	15.4	234.2
1985	234.2	12.3	16.0	-28.2	202.2
1986	202.2	12.8	14.2	-22.2	178.7
1987	178.7	8.9	12.1	-35.4	140.1
1988	140.1	-1.0	8.8	-36.7	93.6
1989	93.6	7.4	7.8	-2.9	90.3
1990	90.3	9.6	8.5	4.1	95.5
1991	95.5	7.3	8.3	-1.8	92.6

Table 2.5.-Value of the Resource, Additions, and Depletion of Gas, Replacement Cost Method [Billions of current dollars]

Year	Opening stock (1)	Additions (2)	Depletion (3)	Revaluation adjustment (4)	Closing stock $(1+2-3+4)$ (5)
1947					
1948 ...	(*)	(*)	(\%)	()	
1949 ...	(*)	*	(*)	(*)	
1950 ...	(*)	(*)	(*)	(*)	
1951	(*)	(*)	*	(")	
1952	*	(*)	*	*)	
1953	(*)	(*)	*	(*)	
1954	(*)	(*)	*	${ }^{*}$)	
1955	(*)	(*)	*	(*)	
1956	*	. 2	. 1	(*)	1.8
1957	1.8	1	0	-. 5	1.3
1958	1.3	. 1	. 1	. 2	1.6
1959	1.6	0	0	-. 9	7
1960		1	0	8	1.5
1961	1.5	. 1	. 1	. 5	2.0
1962	2.0	. 3	. 2	2.6	4.7
1963	4.7	. 4	. 3	1.4	6.1
1964	6.1	. 5	. 4	. 9	7.2
1965	7.2	. 5	. 3	-1.0	6.4
1966	6.4	. 4	. 4	. 2	6.6
1967	6.6	(*)	. 3	-1.8	4.9
1968	4.9	(*)	(*)	(*)	(*)
1969	(*)	(*)	(*)	(*)	1.0
1970	1.0	(*)	(*)	* *	
1971	(*)	(*)	(*)	*	
1972	* *	(*)	*	*	
1974 ...	()	(*)	(*)	*	
1975	()	(*)	(*)	*	
1976	(*)	(*)	*)	(*)	
1977	(*)	(*)	(*)	(*)	
1978	*)	(*)	(*)	(*)	
1979		(*)	(*)	(*)	27.6
1980	27.6	3.4	2.8	25.7	53.9
1981	53.9	2.3	2.0	-5.8	48.3
1982	48.3	5.5	5.5	33.0	81.2
1983	81.2	7.5	8.2	31.9	112.5
1984	112.5	9.0	10.7	9.7	120.5
1985	120.5	7.1	9.4	-22.8	95.3
1986	95.3	8.0	9.0	-6.9	87.5
1987	87.5	6.8	9.2	. 6	85.6
1988	85.6	5.9	6.6	-23.1	61.8
1989	61.8	5.9	6.2	. 5	62.0
1990	62.0	7.7	6.8	2.3	65.1
	65.1	5.8	6.6	-2.2	62.1

* Indicates that the calculated value of the entry was negative, resulting from a negative resource rent. Because a negative resource rent is simply the mechanical result of treating resource rent as a residual after the deduction
of other factor payments, the values have been replaced by asterisks. Where the resource rent was negative in of other factor payments, the values have been replaced by asterisks. Where the resource rent was negative in the 1987 rent for the purpose of calculating constant-dollar estimates shown in tables B. 1 through B.4. Where the 1987-89 average was negative, a base year price of zero was used for the constant-dollar estimates.

Table 2.6.-Value of the Resource, Additions, and Depletion of Gas, Transaction Price Method
[Billions of current doliars]

Year	Opening stock (1)	Additions (2)	Depletion (3)	Revaluation adjustment (4)	Closing stock $(1+2-3+4)$ (5)
1977		7.7	12.2		129.5
1978	129.5	6.3	11.4	20.3	144.8
1979	144.8	12.2	16.8	46.7	186.8
1980	186.8	24.8	20.5	7.0	198.1
1981	198.1	20.4	17.9	10.0	210.6
1982	210.6	21.4	21.7	-25.7	184.6
1983	184.6	10.1	11.0	-42.7	141.0
1984	141.0	10.1	12.0	-12.3	126.8
1985	126.8	7.4	9.9	-5.6	118.7
1986	118.7	9.6	10.7	-1.7	115.9
1987	115.9	6.5	8.8	-32.3	81.2
1988	81.2	-. 6	4.9	-33.0	42.7
1989	42.7	4.2	4.4	1.5	44.0
1990	44.0	5.5	4.9	22.5	67.2
1991	67.2	8.1	9.3	16.3	82.3

Table 3.1.-Value of the Resource, Additions, and Depletion of Coal, Current Rent Method I (Rate of Return)
[Billions of current doflars]

Year	Opening stock (1)	Additions (2)	Depletion (3)	Revaluation adjustment (4)	Closing stock $(1+2-3+4)$ (5)
1958	9.8	0.2	0.2	-0.1	9.7
1959	9.7	. 2	. 3	1.8	11.5
1960	11.5	. 1	. 3	1.2	12.5
1961	12.5	4	. 3	. 4	13.0
1962	13.0	. 5	. 4	1.3	14.4
1963	14.4	. 7	. 4	1.7	16.3
1964	16.3	. 7	. 4	-. 5	16.2
1965	16.2	. 7	. 4	-. 4	16.0
1966	16.0	. 6	. 4	-.8	15.3
1967	15.3	. 5	. 4	-1.3	14.1
1968	14.1	. 5	. 4	-1.3	13.0
1969	13.0	4	. 3	0	13.1
1970	13.1	. 5	. 4	2.5	15.6
1971	15.6	. 5	. 4	-. 3	15.3
1972	15.3	. 5	. 5	1.4	16.8
1973	16.8	. 6	. 5	8.0	24.9
1974	24.9	1.5	1.0	16.5	41.9
1975	41.9	2.3	1.7	18.9	61.5
1976	61.5	3.0	2.4	13.0	75.1
1977	75.1	4.2	2.5	. 7	77.5
1978	77.5	. 6	2.1	-9.9	66.2
1979	66.2	11.8	2.6	7.9	83.3
1980	83.3	6.9	3.0	4.9	92.2
1981	92.2	2.4	3.0	. 4	91.9
1982	91.9	5.9	3.3	5.9	100.4
1983	100.4	. 1	3.4	6.1	103.2
1984	103.2	6.1	4.8	22.4	127.0
1985	127.0	7.7	4.9	4.6	134.4
1986	134.4	7.5	5.1	4.0	140.7
1987	140.7	4.4	5.4	3.2	143.0
1988	143.0	5.8	5.3	-5.2	138.3
1989	138.3	4.5	5.3	-2.5	134.9
1990	134.9	7.0	5.6	1.2	137.5
1991	137.5	4.6	5.3	-2.4	134.4

Table 3.2.-Value of the Resource, Additions, and Depletion of Coal, Current Rent Method II (Value of Capital)
[Billions of current dollars]

Year	Opening stock (1)	Additions (2)	Depletion (3)	Revaluation adjustment (4)	Closing stock $(1+2-3+4)$ (5)
1958	22.7	0.5	0.5	-0.2	22.4
1959	22.4	. 5	. 6	. 9	23.2
1960	23.2	. 3	. 6	. 7	23.6
1961	23.6	. 7	. 6	. 5	24.2
1962	24.2	. 9	. 6	. 5	25.0
1963	25.0	1.0	. 7	. 6	26.0
1964	26.0	1.2	. 7	-1.1	25.4
1965	25.4	1.1	. 7	-. 9	24.9
1966	24.9	1.0	. 7	-. 9	24.2
1967	24.2	. 9	. 7	-. 9	23.6
1968	23.6	. 9	. 7	-. 1	23.8
1969	23.8	. 7	. 7	1.1	24.9
1970	24.9	. 9	8	2.7	27.7
1971	27.7	1.0	. 8	3.2	31.1
1972	31.1	1.1	1.0	2.9	34.1
1973	34.1	1.3	1.1	10.9	45.2
1974	45.2	2.6	1.7	20.3	66.4
1975	66.4	3.6	2.6	24.4	91.8
1976	91.8	4.6	3.6	18.6	111.3
1977	11.3	6.8	4.1	10.4	124.5
1978	124.5	1.2	4.0	5.5	127.2
1979	127.2	22.3	5.0	10.1	154.6
1980	154.6	13.3	5.7	11.3	173.5
1981	173.5	4.8	6.0	9.7	181.9
1982	181.9	11.5	6.4	6.1	193.0
1983	193.0	. 2	6.3	7.3	194.2
1984	194.2	9.6	7.4	3.0	199.4
1985	199.4	11.5	7.4	. 7	204.3
1986	204.3	11.0	7.4	-. 2	207.7
1987	207.7	6.3	7.6	-2.1	204.2
1988	204.2	8.2	7.5	-7.7	197.2
1989	197.2	6.4	7.5	-4.7	191.3
1990	191.3	9.7	7.8	-2.4	190.8
1991	190.8	6.5	7.5	-1.3	188.6

Table 3.3.-Value of the Resource, Additions, and Depletion of Coal, Present Discounted Value Method Using 3\% Discount Rate [Billions of current dollars]

Year	Opening stock (1)	Additions (2)	Depletion (3)	Revaluation adjustment (4)	Closing stock $(1+2-3+4)$ (5)
1958.	19.4	0.4	0.4	-0.1	19.
	19.2	. 4	. 4	. 8	19.9
1960	19.9	. 2	. 5	. 6	20.2
1961	20.2	. 6	. 5	. 4	20.7
1962	20.7	. 7	. 5	. 4	21.4
1963	21.4	. 8	. 5	. 6	22.2
1964	22.2	. 9	. 6	-. 9	21.7
1965	21.7	. 9	. 6	-. 8	21.3
1966	21.3	8	. 6	-. 7	20.7
1967	20.7	. 7	. 5	-. 7	20.2
1968	20.2	8	. 5	-. 1	20.
1969	20.4	. 6	. 6	. 9	21.3
1970	21.3	7	. 6	2.3	23.7
1971	23.7	. 8	. 7	2.7	26.6
1972	26.6	.9	. 8	2.5	29.2
1973	29.2	1.1	. 9	9.4	38.7
	38.7	2.2	1.4	17.5	57.1
1975	57.1	3.0	2.1	21.0	79.1
1976	79.1	3.8	2.9	16.1	96.1
1977 ...	96.1	5.7	3.3	9.2	107.7
1978	107.7	1.0	3.3	4.8	110.3
1979	110.3	18.8	4.1	9.4	134.4
1980	134.4	11.2	4.7	10.2	
1981	151.2	4.0	5.0	8.6	158.9
1982	158.9	9.7	5.3	5.7	169.0
1983	169.0	. 2	5.2	6.5	170.4
1984	170.4	8.0	6.1	3.0	175.3
1985	175.3	9.7	6.1	1.1	180.0 183.4
1986	180.0	9.2	6.2	. 3	183.4
1987	183.4	5.3	6.4	-1.5	180.8
1988	180.8	6.9	6.3	-6.4	174.9 169
1989	174.9	5.4	6.3	-4.2	
1990	169.7	8.2	6.5	-2.0	
1991	169.3	5.5	6.3	-1.2	

Table 3.4.-Value of the Resource, Additions, and Depletion of Coal, Present Discounted Value Method Using 10\% Discount Rate
[Bilions of current dollars]

Year	Opening stock (1)	Additions (2)	Depletion (3)	Revaluation adjustment (4)	Closing stock $(1+2-3+4)$ (5)
1958	14.3	0.2	0.3	-0.1	14.1
1959 ...	14.1	. 2	. 3	. 5	14.6
1960	14.6	. 1	. 3	4	14.9
1961	14.9	. 4	. 3	. 3	15.3
1962	15.3	. 5	. 3	. 3	15.
1963	15.8	. 5	. 4	4	16.4
1964	16.4	. 6	. 4	-. 6	16.0
1965	16.0	. 6	. 4	-. 5	15.7
1966	15.7	. 5	. 4	-. 5	15.3
1967	15.3	. 5	. 4	-. 5	14.9
1988	14.9	. 5	. 3	0	15.0
1969	15.0	. 4	. 4	. 7	15.7
1970	15.7	. 5	. 4	1.7	17.5
1971	17.5	. 5	. 4	2.0	19.
1972	19.6	. 6	. 5	1.8	21.5
1973	21.5	8	. 6	7.0	28.7
1974	28.7	1.6	. 9	13.1	42.4
1975	42.4	2.2	1.4	15.8	59.0
1976	59.0	2.7	1.9	12.2	72.1
1977	72.1	4.0	2.2	7.2	81.1
1978	81.1	.7	2.2	3.7	83.
1979	83.4	13.3	2.7	8.1	102.0
1980	102.0	7.9	3.1	8.4	115.2
1981	115.2	2.8	3.4	6.9	121.6
1982	121.6	6.8	3.7	5.0	129.8
1983	129.8	. 1	3.6	5.1	
1984	131.4	5.7	4.3	2.9	135.7
1985 ..	135.7	6.9	4.3	1.6	139.9
1986	139.9	6.5	4.4	1.0	
	143.1	3.7	4.5	-.7	
1988 ..	141.6	4.9	4.5	-4.5	137.5 133.4
1990 ...	133.4	5.8	4.6	-1.5	133.1
1991	133.1	3.9	4.4	-1.0	131.5

Table 4.1.-Value of the Resource, Additions, and Depletion of All Metals, Current Rent Method I (Rate of Return)
[Billions of current dollars]

Year	Opening stock (1)	Additions (2)	Depletion (3)	Revaluation adjustment (4)	Closing stock ($1+2-3+4$) (5)
1958	28.9	-0.1	0.2	1.0	29.6
1959 ..	29.6	0	. 2	. 5	29.8
1960	29.8	-1.3	4	10.1	38.2
1961	38.2	1.3	. 4	-. 7	38.4
1962	38.4	2.4	. 4	. 5	40.9
1963	40.9	1.0	. 4	3.3	44.8
1964	44.8	2.3	. 5	4.1	50.7
1965	50.7	1.6	. 5	. 4	52.1
1966	52.1	1.5	. 6	1.2	54.3
1967	54.3	1.2	. 4	-5.8	49.3
1968	49.3	1.2	. 5	1.5	51.6
1969	51.6	-. 1	. 7	5.3	56.1
1970	56.1	1.3	. 8	2.2	58.8
1971	58.8	1.5	. 6	-5.3	54.3
1972	54.3	. 6	. 7	2.7	56.9
1973	56.9	-3	. 7	10.4	66.3
1974	66.3	1.8	. 7	4.7	72.1
1975	72.1	-1.4	. 6	. 2	70.2
1976	70.2	0	. 8	10.7	80.2
1977	80.2	. 5	. 5	-37.6	42.6
1978	42.6	. 3	. 4	7.2	49.7
1979	49.7	0	. 1	-34.4	15.2
1980	15.2	(*)	(*)	(*)	${ }^{*}$
1981	(*)	(*)	(*)	(*)	${ }^{*}$
1982	(*)	(*)	(*)	(*)	*)
1983	(*)	*	*	*	(*)
1984	(*)	(*)	*	*	*
1985	*)	(*)	*	(*)	*
1986	(*)	(*)	(*)	(*)	(")
1987	(*)	2.2	. 2	(*)	38.5
1988	38.5	4.8	1.0	47.9	90.1
1989	90.1	7.7	1.8	29.7	125.6
1990	125.6	8.6	2.3	10.1	141.9
1991	141.9	6.6	2.2	8.2	154.5

- Indicates that the calculated value of the entry was negative, resulting from a negative resource rent. Because a negative resource rent is simply the mechanical result of treating resource rent as a residual after the deduction of other factor payments, the values have been replaced by asterisks. Where the resource rent was negative in
the base year (1987) for individual mineral types, the average for the 3 year period, $1987-89$, was substiuted for the 1987 rent for the purpose of calculating constant-dollar estimates shown in tables B. through B.4. Where the 1987-89 average was negative, a base year price of zero was used for the constant-dollar estimates.

Table 4.2.-Value of the Resource, Additions, and Depletion of All Metals, Current Rent Method II (Value of Capital)
[Billions of current dollars]

Year	Opening stock (1)	Additions (2)	Depletion (3)	Revaluation adjustment (4)	Closing stock $(1+2-3+4)$ (5)
1958	60.8	-0.1	0.5	0.8	61.0
1959	61.0	-. 1	. 5	2.3	62.7
1960 ..	62.7	-2.1	. 7	1.9	61.9
1961	61.9	2.1	. 7	1.9	65.2
1962	65.2	4.1	. 7	1.8	70.4
1963	70.4	1.6	. 7	2.7	74.0
1964	74.0	3.5	. 8	2.0	78.7
1965	78.7	2.5	. 8	1.9	82.2
1966	82.2	2.4	. 9	1.4	85.0
1967	85.0	2.3	. 8	1.8	88.4
1968	88.4	2.3	. 9	2.3	92.1
1969	92.1	. 2	1.1	3.6	94.8
1970	94.8	2.4	1.2	4.3	100.3
1971	100.3	3.8	1.1	4.2	107.2
1972	107.2	1.3	1.2	4.2	111.5
1973	111.5	-. 1	1.3	7.8	118.0
1974	118.0	2.2	1.4	16.5	135.3
1975	135.3	-1.9	1.5	21.6	153.6
1976	153.6	. 7	1.7	18.8	171.3
1977	171.3	2.9	1.6	13.1	185.7
1978	185.7	1.4	1.7	-9.3	176.1
1979	176.1	1.6	1.6	-9.1	167.0
1980	167.0	-2.2	1.4	-15.4	148.0
1981	148.0	-4.8	1.2	-28.2	113.8
1982	113.8	-3.3	. 4	-33.9	76.1
1983	76.1	-2.3	. 7	42.2	115.2
1984	115.2	-6.2	1.1	39.3	147.2
1985	147.2	7.3	1.4	31.4	184.5
1986	184.5	9.2	1.6	23.2	215.3
1987	215.3	9.2	2.2	22.5	244.8
1988	244.8	10.9	2.9	-. 8	251.9
1989	251.9	14.6	3.6	7.2	270.1
1990	270.1	14.1	4.1	0	280.1
1991	280.1	13.6	3.9	-1.8	288.0

Table 4.3.-Value of the Resource, Additions, and Depletion of All Metals, Present Discounted Value Method Using 3\% Discount Rate
[Billions of current dollars]

Year	Opening stock (1)	Additions (2)	Depletion (3)	Revaiuation adjustment (4)	Closing stock $(1+2-3+4)$ (5)
1958 ...	52.0	-0.1	0.4	0.7	52.2
1959	52.2	-. 1	. 4	1.9	53.6
1960	53.6	-1.7	. 5	1.5	52.9
1961	52.9	1.7	. 5	1.7	55.8
1962	55.8	3.3	. 5	1.7	60.2
1963	60.2	1.3	. 6	2.3	63.3
1964	63.3	2.8	. 6	1.9	67.3
1965	67.3	2.0	7	1.7	70.3
1966	70.3	1.9	. 7	1.3	72.7
1967	72.7	1.9	. 6	1.6	75.6
1968	75.6	1.8	. 7	2.1	78.8
1969	78.8	. 2	. 9	3.0	81.1
1970	81.1	1.9	1.0	3.7	85.8
1971	85.8	3.1	. 9	3.8	91.7
1972	91.7	1.1	1.0	3.6	95.4
1973	95.4	-. 1	1.1	6.9	101.2
1974	101.2	1.8	1.1	14.4	116.2
1975	116.2	-1.6	1.2	18.8	132.3
1976	132.3	. 6	1.4	16.4	147.9
1977	147.9	2.4	1.3	11.7	160.7
1978	160.7	1.1	1.4	-7.8	152.7
1979	152.7	1.4	1.3	-7.6	145.2
1980	145.2	-1.8	1.1	-13.2	129.0
1981	129.0	-4.1	1.0	-24.6	99.4
1982	99.4	-2.8	. 4	-29.6	66.7
1983	66.7	-2.0	. 6	37.0	101.1
1984	101.1	-5.2	. 9	34.5	129.5
1985	129.5	6.1	1.2	28.2	162.6
1986	162.6	7.8	1.3	21.1	190.2
1987	190.2	7.7	1.8	20.6	216.7
1988	216.7	9.2	2.4	. 1	223.6
1989 ...	223.6	12.3	3.1	6.9	239.7
1990	239.7	11.8	3.4	. 5	248.6
1991	248.6	11.5	3.3	-1.2	255.6

Table 4.4.-Value of the Resource, Additions, and Depletion of All Metals, Present Discounted Value Method Using 10\% Discount Rate

Table 5.1.-Value of the Resource, Additions, and Depletion of Other Minerals, Current Rent Method I (Rate of Return) [Billions of current dollars]

Year	Opening stock (1)	Additions (2)	Depletion (3)	Revaluation adjustment (4)	Closing stock $(1+2-3+4)$ (5)
1958	15.0	0.2	0.1	0	15.0
1959	15.0	. 2	. 2	. 8	15.8
1960	15.8	1	. 2	. 8	16.6
1961	16.6	3	. 2	7	17.3
1962	17.3	3	2	6	18.1
1963	18.1	. 3	2	. 6	18.8
1964	18.8	. 5	. 2	. 1	19.1
1965	19.1	. 5	. 3	-. 1	19.3
1966	19.3	. 5	. 3	. 3	19.8
1967	19.8	. 4	. 3	-. 1	19.7
1968	19.7	. 2	. 3	-1.6	18.0
1969	18.0	0	. 2	-2.1	15.7
1970	15.7	. 1	. 2	-1.8	13.8
1971	13.8	. 2	. 2	-1.7	12.1
1972	12.1	. 2	. 1	-. 8	11.4
1973	11.4	. 1	. 2	1.3	12.6
1974	12.6	. 2	. 2	3.8	16.5
1975	16.5	. 3	. 3	4.0	20.4
1976	20.4	. 4	. 5	4.6	24.9
1977	24.9	. 7	. 6	1.7	26.8
1978	26.8	. 9	. 5	-. 5	26.6
1979	26.6	. 6	. 6	2.5	29.2
1980	29.2	-. 1	. 6	3.0	31.4
1981	31.4	0	. 6	. 9	31.7
1982	31.7	-. 2	. 4	-5.2	25.9
1983	25.9	-. 1	. 5	2.7	28.0
1984	28.0	-. 1	. 6	4.1	31.4
1985	31.4	. 8	. 6	-1.4	30.3
1986	30.3	. 6	. 4	-2.1	28.4
1987	28.4	. 1	. 4	4.6	32.8
1988	32.8	2	. 5	-. 3	32.2
1989	32.2	4	. 5	. 7	32.8
1990	32.8	. 2	. 5	. 7	33.2
1991	33.2	. 3	5	. 9	33.9

Table 5.2.-Value of the Resource, Additions, and Depletion of Other Minerals, Current Rent Method II (Value of Capital)
[Billions of current dollars]

Year	Opening stock (1)	Additions (2)	Depletion (3)	Revaluation adjustment (4)	Closing stock $(1+2-3+4)$ (5)
1958	18.8	0.2	0.2	0	18.8
1959	18.8	. 2	. 2	. 5	19.3
1960	19.3	. 2	. 2	. 7	20.0
1961	20.0	3	. 2	. 9	21.0
1962	21.0	. 4	2	. 7	21.8
1963	21.8	. 4	. 2	. 5	22.5
1964	22.5	. 6	. 3	-. 1	22.8
1965	22.8	. 6	. 3	. 2	23.3
1966	23.3	. 5	4	. 4	23.9
1967	23.9	. 4	. 4	. 4	24.3
1968	24.3	2	. 4	-1.0	23.2
1969	23.2	0	. 3	-1.5	21.4
1970	21.4	. 2	. 3	-1.4	19.9
1971	19.9	. 2	. 2	-1.0	18.9
1972	18.9	. 3	. 2	-. 5	18.4
1973	18.4	. 1	. 3	1.7	19.9
1974	19.9	. 3	. 3	5.0	24.9
1975	24.9	. 4	. 5	6.9	31.8
1976	31.8	. 5	. 6	5.4	37.1
1977	37.1	. 9	8	2.5	39.7
1978	39.7	1.2	. 7	1.2	41.3
1979	41.3	. 8	. 8	4.4	45.6
1980	45.6	-. 4	. 9	7.1	51.3
1981	51.3	-. 5	1.0	6.6	56.4
1982	56.4	-. 9	. 8	3.5	58.2
1983	58.2	-. 9	. 9	2.1	58.5
1984	58.5	-. 8	1.0	. 9	57.5
1985	57.5	. 7	1.0	1.1	58.4
1986	58.4	. 5	. 9	. 7	58.7
1987	58.7	0	. 9	. 1	57.9
1988	57.9	. 2	. 9	-. 4	56.7
1989	56.7	. 7	. 9	. 4	56.9
1990	56.9	. 4	. 9	. 5	57.0
1991	57.0	. 4	. 9	. 1	56.6

Table 5.3.-Value of the Resource, Additions, and Depletion of Other Minerals, Present Discounted Value Method Using 3\% Discount Rate
[Bilions of current dollars]

Year	Opening stock (1)	Additions (2)	Depletion (3)	Revaluation adjusiment (4)	Closing stock $(1+2-3+4)$ (5)
1958.	16.1	0.2	0.1	0	16.1
1959	16.1	. 2	. 2	. 4	16.5
1960	16.5	1	. 2	6	17.1
1961	17.1	2	. 2	7	18.0
1962	18.0	3	. 2	. 6	18.7
1963	18.7	. 3	. 2	. 4	19.2
1964	19.2	. 5	. 2	0	19.5
1965	19.5	. 5	. 2	.2	19.9
1966	19.9	. 4	. 3	. 3	20.4
1967	20.4	. 3	. 3	. 4	20.8
1968	20.8	. 2	. 3	-. 9	19.9
1969	19.9	0	. 3	-1.3	18.3
1970	18.3	1	. 2	-1.2	17.0
1971	17.0	. 2	. 2	-. 8	16.2
1972	16.2	. 2	. 2	-. 5	15.7
1973	15.7	. 1	. 2	1.5	17.1
1974	17.1	. 3	. 3	4.3	21.4
1975	21.4	. 3	. 4	6.0	27.4
1976 ...	27.4	. 4	. 5	4.7	32.0
1977	32.0	. 7	6	2.2	34.3
1978	34.3	1.0	. 6	1.1	35.8
1979	35.8	. 6	. 7	3.8	39.7
1980	39.7	-. 3	8	6.2	44.7
1981	44.7	-. 4	8	5.8	49.3
1982	49.3	-. 7	. 7	3.1	51.0
1983	51.0	-. 8	. 8	1.9	51.3
1984	51.3	-. 7	. 9	. 9	50.6
1985	50.6	. 6	8	1.1	51.5
1986	51.5	. 4	7	. 7	51.9
1987	51.9	0	7	. 2	51.3
1988	51.3	. 1	. 8	-. 3	50.4
1989	50.4	. 6	. 8	. 4	50.5
1990	50.5	.3	. 8	. 5	50.6
1991	50.6	. 4	. 8	0	50.2

Table 5.4.-Value of the Resource, Additions, and Depletion of Other Minerals, Present Discounted Value Method Using 10\% Discount Rate
[Billions of current dollars]

Year	Opening stock (1)	Additions (2)	Depletion (3)	Revaluation adjustment (4)	Closing stock $(1+2-3+4)$ (5)
1958	11.9	0.1	0.1	0	11.9
1959 ...	11.9	. 1	. 1	. 3	12.
1960 ..	12.2	. 1	. 1	. 5	12.6
1961	12.6	2	. 1	. 6	13.2
1962	13.2	2	. 1	. 5	13.8
1963	13.8	. 2	. 1	. 3	14.2
1964	14.2	3	. 1	0	14.
1965 ..	14.4	3	. 2	. 2	14.7
1966	14.7	. 3	. 2	. 3	15.1
1967	15.1	. 2	. 2	. 3	15.3
1968	15.3	. 1	. 2	-. 6	14.6
1969	14.6	0	2	-1.0	13.5
1970	13.5	.1	. 1	$-.9$	12.5
1971	12.5	.1	. 1	-. 6	11.9
1972	11.9	. 1	. 1	-. 3	11.6
1973	11.6	. 1	. 1	1.1	12.6
1974	12.6	. 2	. 2	3.2	15.5
1975	15.9	. 2	. 2	4.5	
1976	20.4	. 3	. 3	3.6	
	24.0	. 5	. 4	1.7	
1979 ...	27.1	. 5	. 5	3.0	30.1
1980 ...	30.1	-. 2	. 5	4.8	34.1
1981	34.1	-. 3	. 6	4.5	37
1982	37.7	-. 5	. 5	2.4	39
1983	39.1	-. 6	. 5	1.5	39.
1984	39.6	-. 5	. 6	. 7	34.2
1985	39.2	4	. 6	1.0	40.1
1986	40.0	. 3	. 5	. 7	40.4
1987	40.4	0	. 5	. 2	40.1
1988	40.1	. 1	. 5	-. 1	39
1989	39.6	4	. 5	. 3	39
1990	39.7	2	. 5	. 3	
1991	39.7	. 3	. 5	0	

Benchmark Input-Output Accounts for the U.S. Economy, 1987

τhis article presents the 1987 benchmark input-output ($\mathrm{I}-\mathrm{O}$) accounts for the U.S. economy. ${ }^{1}$ The first part of the article addresses the 1987 benchmark; it discusses the steps taken to speed up the benchmark's completion and then describes some improvements that have been made in the tables. The second part describes the concepts and methods underlying the U.S. i-O accounts and illustrates how the $\mathrm{I}-\mathrm{O}$ tables are used.
The 1987 I-O estimates presented here are in summary form; that is, they are aggregated to $95 \mathrm{I}-\mathrm{O}$ industries from 480 -industry detail. The make (production) of commodities by industries is shown in table 1, the use (consumption) of commodities by industries in table 2.1, and the components of value added by industries in table 2.2. The following summary i-o tables will be presented in the May Survey of Current Business: Commodity-by-industry direct requirements per dollar of industry output; commodity-by-commodity total requirements, direct and indirect, per dollar of delivery to final use; and industry-by-commodity total requirements, direct and indirect, per dollar of delivery to final use. All of the summary tables, as well as the detailed tables, are available on diskette (see the box on page 90).
This article includes supplementary tables that relate the I -o accounts to the national income and product accounts (nipa's); these tables permit more extensive analyses of the I -o estimates. The article also contains two appendixes: Appendix A provides a list of selected Survey articles about the I-O accounts; appendix B provides a concordance between the industry codes used in the I-O accounts and the 1987 Standard Industrial Classification (sic) codes.
The 1987 benchmark i-O estimates will be incorporated into the nIPA's during the next comprehensive NIPA revision, which is tentatively scheduled for release in late 1995.

[^22]The 1987 Benchmark Accounts

In recognition of user needs-expressed, for example, by the interagency Working Group on the Quality of Economic Statistics-the Bureau of Economic Analysis (bea) has developed a program to speed up the availability of I-O accounts. ${ }^{2}$ For I-o benchmarks, which are prepared primarily from the Census Bureau's quinquennial economic censuses, the long-term goal is to make the I-o tables available within 5 years of a census year and within 1 year after release of all economic census data.
For the 1987 benchmark, bea devised a set of procedures that captured the most important parts of the 1987 economic census data, but that abbreviated the normal time-consuming process of assembling a wide variety of other data for constructing components not based on economic census data. These procedures enabled bea to complete the 1987 tables faster than otherwise would have been the case and to turn its re-

[^23]Ann M. Lawson, Chief of the Interindustry Economics Division, directed the preparation of the 1987 benchmark input-output study and coauthored the article with D.A. Teske. Mark A. Planting, Acting Assistant Division Chief, planned and coordinated division efforts to produce the estimates. Belinda L. Bonds, Chief of the Goods Branch, and Karen Horowitz, Chief of the Services Branch, assisted in the planning and implementation of the study and in the estimation, review, and finalization of the data. Brian D. Kajutti designed the data processing system and coordinated the computer programming and processing efforts.
Staff contributors were William A. Allen, Timothy D. Aylor, Alvin D. Blake, Cheryl Carlson, Esther Carter, Jeffrey W. Crawford, Sergio Delgado, Gary T. Fee, Kara Gordon-Palley, Carole Henry, David Huether, Greg M. Key, Myles J. Levin, Fritz Mayhew, William McCarthy, Donna McComber, Clinton P. McCully, Rhonda E. Monroe, Ted Morgan, Diane E. Nisson, Robert S. Robinowitz, Brooks B. Robinson, Timothy F. Slaper, Patricia A. Washington, Raquel Watson, and Diane Young.
sources toward the 1992 benchmark at the earliest possible time.

Procedures for the 1987 benchmark

In preparing benchmark I-O accounts, BEA relies heavily on economic census data covering mining, construction, manufacturing, wholesale trade, retail trade, transportation, and selected services. The data are released by the Census Bureau as they are completed, over a period of
time that usually begins about 1 year after the end of the census year and continues for about 30 months. (For example, the planned release dates for the 1992 census year extend from early 1994 through late 1996.) To estimate outputs and inputs and to allocate commodities across industries and final users, bea must augment the economic census data with data from hundreds of other sources, such as the U.S. Department of Agriculture, U.S. Department of Transportation,

Table A.-Principal Data Sources for Industry or Commodity Outputs, 1987 Benchmark

Industry or Commodity	Source
Agriculture, forestry, and fisheries	U.S. Department of Agriculture farm statistics
Mining ..	Census Bureau 1987 Census of Mineral Industries
Construction	Census Bureau 1987 Census of Construction Industries, Census of Service Industries, and value of construction put-in-place series
Manufacturing	Census Bureau 1987 Census of Manufactures
Transportation	Interstate Commerce Commission Transportation Statistics Association of American Railroads Freight Commodity Statistics Census Bureau 1987 Census of Transportation, Motor Freight Transportation and Warehousing Survey, and Senvices Annual Survey U.S. Army Corps of Engineers 1987 Waterborne Commerce of the U.S. Department of Transportation Air Carrier Financial Statistics and National Transportation Statistics
Communications	Trade sources annual reports Federal Communications Commission Statistics of Communication Common Carriers
Utilities ...	Department of Energy-Energy Information Administration Natural Gas Annual, Electric Sales and Revenue, and Financial Statistics of Selected Electric Utilities American Gas Association Gas Facts Census Bureau 1987 Census of Mineral Industries Trade sources financial statements
Wholesale and retail trade	Census Bureau 1987 Census of Retail Trade and 1987 Census of Wholesale Trade
Finance ..	Federal Deposit Insurance Corporation Statistics on Banking Federal Reserve Board Annual Report Federal Home Loan Bank Board financial reports Office of Thritt Supervision Saving and Home Financing Source Book National Credit Union Administration Yearend Statistics for Federally Insured Credit Unions HSN Consultants, Inc. The Nilson Report Federally sponsored credit agencies annual reports State and Federal regulatory agencies annual reports
Insurance	Trade sources financial statements Health Care Financing Administration private health insurance data A. M. Best and Company Best's Aggregates and Averages Mortgage Insurance Companies of America Factbook
Real estate	National Association of Realtors 1987 Home Sales Yearbook Census Bureau 1987 Census of Housing, 1987 Census of Construction Industries, 1987 Census of Agriculture, and 1987 Enterprise Statistics Internal Revenue Service tabulations of tax returns
Services ...	Census Bureau 1987 Census of Service Industries Internal Revenue Service tabulations of tax returns Bureau of Labor Statistics tabulations of wages and salaries covered by State unemployment insurance U.S. Department of Education Digest of Educational Statistics
Government enterprises	Federal and State and local government agency reports Office of Management and Budget Federal budget data Census Bureau 1987 Census of Governments
Noncomparable imports	Census Bureau general imports and imports for consumption data Estimated as part of the balance of payments accounts
Scrap ..	Census Bureau 1987 Census of Manufactures
General government	Estimated as part of the national income and product accounts
Household	Estimated as part of the national income and product accounts
Inventory valuation adjustment	Estimated as part of the national income and product accounts

U.S. Department of Treasury, Office of Management and Budget, and other government agencies and private organizations.

In preparing the 1987 benchmark I-O accounts, bea used standard I-O procedures for the estimates of industry and commodity output, except for new construction (see table A). For previous benchmarks, approximately 50 construction industries were analyzed and estimated separately. For the 1987 benchmark, the economic census total for construction output was distributed among only five industries-four related to mining and one "all other" category, which covers the remaining industries within new construction and maintenance and repair construction.
bea also used standard i-o procedures for the estimates of industry intermediate inputs where hard data were readily available-primarily for material inputs from the economic censuses. In previous benchmarks, the standard procedure has been to supplement these economic census data with estimates of other intermediate inputs from hundreds of other information sources. For the 1987 benchmark, BEa estimated these intermediate inputs by first extrapolating 1982 benchmark estimates to 1987 based on the change in industry output, and then by adjusting the extrapolated estimates to be consistent with-or to balance-commodity and industry outputs (see table B).

Value added components were prepared using the same procedures as in the past. ${ }^{3}$ Data

[^24]for compensation of employees and for indirect business tax and nontax liability are from the U.S. Department of Treasury, Office of Management and Budget, Bureau of Labor Statistics, and Census Bureau; nipa estimates are also used.

For most final use components-personal consumption expenditures, gross private fixed investment, change in business inventories, exports of goods and services, and imports of goods and services-bea used the same data and procedures as in the past. ${ }^{4}$ Most estimates of personal consumption expenditures and gross private fixed investment were prepared with the commodityflow method. ${ }^{5}$ Inventories held by industries were based on economic census and Internal Revenue Service data. Exports and imports of goods and services were based on data from the Census Bureau and the U.S. balance of payments accounts.

For Federal Government and State and local government final use components, a combination of new and old procedures was used. Total expenditures by type of purchase, for Federal Government and for State and local governments, were obtained from the NIPA's, as in the past. Government purchases by I-O commodity were

[^25]
Table B.-Principal Data Sources and Methods for Estimating Intermediate Inputs and Components of Value Added, 1987 Benchmark

Component	Source or method
Intermediate inputs	For census-covered industries, selected purchased services; in addition, for manufacturing and mining, materials consumed from 1987 economic censuses. For gas and electric utility industries, selected inputs from trade sources; for agriculture industries, inputs from U.S. Department of Agriculture. For most remaining industries, 1982 estimate extrapolated by change in industry output and adjusted to balance commodity and industry outputs.
Compensation of employees	
For census-covered industries, payroll and benefits from Census Bureau 1987 economic censuses.	
For noncensus-covered industries, Bureau of Labor Statistics tabulations of wages and salaries covered by	
State unemployment insurance; other labor income estimated as part of the national income and product	
accounts.	

estimated using 1982 benchmark I-O estimates as weights, a new procedure for the 1987 estimates.
Some procedures used to prepare the 1987 benchmark I-O accounts suggest certain caveats. First, the technology represented by the relationships of commodity inputs to industry outputs in the use table (as well as in the commodity-by-commodity and industry-by-commodity total requirements tables) is a hybrid of that in 1987 and that represented in the 1982 benchmark I-O accounts. Second, other value added was derived as a residual for most industries after subtracting total intermediate inputs, compensation of employees, and indirect business tax and nontax liability from total industry output. ${ }^{6}$ (For a few industries, estimates of other value added were available from other data sources; for example, other value added estimates for agriculture are from the U.S. Department of Agriculture.) As a result, the other value added component includes estimating errors from other parts of the I-O accounts. For studies requiring comparisons of value added components, users may find bea's estimates of gross product originating by industry more useful.?

Improvements and other changes

The 1987 benchmark I-o tables differ from previous tables in several respects. The summary 1987 benchmark tables, which begin on page 98 , cover 95 I -O industries instead of the 85 I -o industries used previously. For the new summary tables, 14 I-O industries were aggregated into 7 , and $12 \mathrm{I}-\mathrm{O}$ industries were disaggregated into $30 .{ }^{8}$ With one exception, the aggregations involved small, declining industries; new construction and repair and maintenance construction were aggregated because of the abbreviated procedures used for the 1987 benchmark. The disaggregations involved large, growing industries. Appendix B shows the new aggregations and disaggregations of $\mathrm{I}-\mathrm{O}$ industries. (The disaggregated industries

[^26]are designated with an alphabetical suffix to the 1982 benchmark I-O industry number.)
The industry classification of the I-O accounts is now based on the 1987 SIC; the 1982 benchmark tables and subsequent annual tables were based on the 1972 sIc. In addition, the 1987 benchmark tables incorporate all of the 1991 comprehensive NIPA revisions, including the change from gross national product to gross domestic product (GDP). ${ }^{9}$

Introduction to the U.S. I-O Accounts

The I-O accounts for the U.S. economy show the production of commodities by each of nearly 500 industries, in the "make" table, and the consumption of commodities by these industries, in the "use" table. Chart 1 illustrates the make and use tables in matrix form in, respectively, the upper and lower panels. The commodity composition of GDP and the industry distribution of value added are also shown in the use table.
beA prepares benchmark I-O accounts primarily from data that the Census Bureau collects every 5 years in its economic censuses for mining, construction, manufacturing, wholesale trade, retail trade, transportation, and selected services, as well as in its census of governments. Data from the U.S. Department of Agriculture, U.S. Department of Transportation, U.S. Department of Treasury, and other government agencies and private sources are also used.

The I-O accounts show compactly the relationships between all industries in the economy and all the commodities they produce and use. Estimates for commodities are typically shown at producers' prices. ${ }^{10}$ When producers' prices are used, transportation costs and wholesale and retail trade margins are treated as commodities that are separately produced and used by industries (see the section "Definitions and conventions for valuation").
The i-o accounts consist of five basic sets of tables: (1) Make, (2) use, (3) commodity-byindustry direct requirements, (4) commodity-bycommodity total requirements, and (5) industry-

[^27]CHART 1
The U.S. Input-Output Accounts
MAKE TABLE: INDUSTRIES PRODUCING COMMODITIES

USE TABLE: COMMODITIES USED BY INDUSTRIES AND FINAL USES

		Industries										FINAL USES (GUP)							TOTAL COMMODITY OUTPUT	
		Agricul-	Mnirg	Constrac. tion	Manutac-	$\begin{aligned} & \text { Transpor- } \\ & \text { tation } \end{aligned}$	Trase	Finance	Seryces	Other*	$\begin{array}{\|c} \text { Total } \\ \text { moter } \\ \text { mediate } \\ \text { mese } \\ \hline \end{array}$	$\begin{gathered} \text { Personal } \\ \text { consımption } \\ \text { Experditures } \end{gathered}$	$\begin{gathered} \text { Gross } \\ \text { proate } \\ \text { fixesed } \\ \text { insestment } \end{gathered}$	$\left\|\begin{array}{c} \text { Change in } \\ \text { busiress } \\ \text { inventores } \end{array}\right\|$	$\begin{array}{\|c} \hline \text { Exports } \\ \text { of goods } \\ \text { avo } \\ \text { ser.ces } \\ \hline \end{array}$		Government purchases	GOP		
COMMODITIES	Agricultural products																			
	Minerals																			
	Construction																			
	Manufactured products																			
	Transportation																			
	Trade																			
	Finance																			
	Services																			
	Other ${ }^{\text {- }}$																			
	Noncomparable imports																			
	Total intermediate inputs																			
VALUE ADDED	Compensation of employees											TOTAL COMMODITY OUTPUTprimary product of the industrytotal industry output								
	$\begin{gathered} \text { Ingirect Dusiress } \\ \text { :ax ano } \\ \text { nontax lability } \end{gathered}$																			
	Other value added *																			
	Total																			
TOTAL INDUSTRY OUTPUT																				

* See text and appendix B.
** See text.
U.S. Department of Commerce, Bureau of Economic Analysis
by-commodity total requirements. ${ }^{11}$ For the 1987 benchmark, details for the value added components of the use table and of the commodity-byindustry direct requirements table are contained in separate tables. Only the make and use tables are presented in this article. The remaining three tables and their descriptions will be published in the May Survey.

The make table

The make table (table 1), in the upper panel of chart 1 , shows the dollar value, in producers' prices, of each commodity produced by each industry. In each row, there is one "diagonal" cell that shows the value of production of the commodity for which the corresponding industry has been designated the "primary" producer. Entries in the other cells in the row show the value of production of commodities for which the industry is a "secondary" producer. ${ }^{12}$ For example, the newspapers and periodicals industry (row 26A) is the primary producer of the newspapers and periodicals commodity (column 26A). It is also a secondary producer of the following commodities: Paper and allied products, except containers (column 24); other printing and publishing (column 26B); rubber and miscellaneous plastics products (column 32); miscellaneous manufacturing products (column 64); and advertising (column 73D). The sum of all entries in a row is the total output by the industry.

The entries in each column of the make table represent the production by both primary and secondary producers of the commodity named at the head of the column. For example, computer and data processing services (column 73A) includes the output by the primary producer-the computer and data processing services industry (row 73A)-and by the following secondary producers: Computer and office equipment (row 51); audio, video, and communication equipment (row 56); scientific and controlling instruments (row 62); finance (row 70a); and other business and professional services, except medical (row 73c). The sum of all entries in a column is the total output of the commodity.

An industry's share of the production of a commodity can be calculated from the values in

[^28]the make table by expressing the entries in a given column as a percentage of the column total. From the 1987 benchmark, for example, column 62 in table 1 shows that the production of scientific and controlling instruments (commodity I-o 62) totaled $\$ 86$ billion, of which the scientific and controlling instruments industry (industry I o 62) produced $\$ 80$ billion, or about 93 percent of the total.
The industry and commodity output totals for this table are estimated primarily from the quinquennial economic censuses, conducted by the Census Bureau (see table A). The economic census data, which are on an sic basis, cover most establishments with payrolls. Information from other government and private sources is used for I-O industries not covered by the economic census data, such as finance, insurance, real estate, utilities, and schools and religious organizations. Data from other government agencies are also used to supplement the economic census data for some industries.
bea makes two adjustments to the economic census data. First, it adds estimates of the output for establishments without payrolls that are not covered by the economic census data. Second, bea adjusts for misreported tax return information; this adjustment is necessary because in some cases, the Census Bureau data for expenses and receipts reflect tax return records rather than information collected directly from survey reports. ${ }^{13}$
bea also adjusts the economic census data based on the SIC to the I-O industry classification system to attain greater homogeneity in the input structures for commodities produced by an I-O industry. This type of adjustment is discussed in the section "Definitions and conventions for classification."

The use table

The use table (table 2) is presented in two parts: Table 2.1 shows the dollar value, in producers' prices, of each commodity used by each industry and by each final user; table 2.2 shows detail, in producers' prices, on the value added components used by each industry in table 2.1 to produce its output. In table 2.1, entries in a row show the use of the commodity named at the beginning of the row by each industry or final user named at the head of the column. For example, the commodity radio and Tv broadcasting services

[^29](row 67) is used by the industries radio and Tv broadcasting (column 67) and advertising (column 73D), as well as by persons-that is, as part of personal consumption expenditures (column 91).

In table 2.2, industries are shown in the rows, and total output, total intermediate inputs, and the components of value added are shown in the columns. For example, the total output for the radio and Tv broadcasting industry (row 67) was $\$ 29$ billion, of which $\$ 10$ billion was labor compensation, $\$ 1$ billion was indirect business tax and nontax liability, $\$ 3$ billion was other value added, and $\$ 16$ billion was intermediate inputs. The column totals for industries in table 2.1 equal the right-hand row totals in table 2.2. For example, the column total for the radio and Tv broadcasting industry in table 2.1 equals the row total for that industry in table 2.2, or $\$ 29$ billion. (The relationship between value added and other parts of the use table is depicted in the bottom panel of chart 1 .)
In table 2.1, industry uses sum to total intermediate use, shown in the right-hand column of the industries portion, and the final uses sum to GDP, shown in the right-hand column of the final uses portion. The total output of each commodity is the sum of all intermediate uses of the commodity by industries and all sales to final users. The total output of each industry is the sum of all intermediate inputs consumed by the industrythat is, the raw materials, semifinished products, and services that the industry purchases-and of the value added by the industry. For the economy as a whole, the total of all final uses of commodities equals the total value added by all industries, or GDP.

The rows in table 2.1 show the wide variation in the proportion of commodity output that is sold directly to final users. For example, the 1987 use table shows that some commodities, such as apparel (the primary product of industry i-O 18), were sold almost entirely to final users; therefore, the demand for these commodities is affected primarily by changes in the buying patterns of final users. Other commodities, such as industrial and other chemicals ($\mathrm{I}-\mathrm{O} 27 \mathrm{~A}$), were used almost entirely as intermediate inputs. For these commodities, the connection between production and final uses is primarily indirect and can be traced mainly through industrial users' sales of commodities to final users.

The rows also show the wide variation in the direct usage of commodities by industries. For example, the 1987 use table shows that paper and
allied products, except containers (I-O 24), with $\$ 81$ billion of commodity output, were used by nearly all industries. The largest user was other printing and publishing ($\mathrm{I}-\mathrm{O} 26 \mathrm{~B}$), which used $\$ 15$ billion, or 18 percent of total commodity output. In contrast, metal containers ($\mathrm{I}-\mathrm{O} 39$), with $\$ 12$ billion of commodity output, were used by only 20 industries. The largest user was food and kindred products ($\mathrm{I}-\mathrm{O} 14$), which used $\$ 9$ billion, or 74 percent of total commodity output.

The rows in table 2.2 show the wide variation in the use of value added inputs by industries to produce their outputs. For example, the real estate and royalties industry ($\mathrm{I}-\mathrm{O} 71 \mathrm{~B}$) required $\$ 280$ billion of value added inputs, or 74 percent of its total output; of this, $\$ 27$ billion was for labor compensation, $\$ 53$ billion was for indirect business tax and nontax liability, and $\$ 200$ billion was for other value added. In contrast, the livestock and livestock products industry ($\mathrm{I}-\mathrm{O} \quad 1$) required $\$ 15$ billion of value added inputs, or 17 percent of its total output; of this, $\$ 3$ billion was for labor compensation, $\$ 1$ billion was for indirect business tax and nontax liability, and $\$ 11$ billion was for other value added.
bea estimates intermediate inputs in the use table through a number of processes. The economic censuses are the primary source for data on intermediate inputs; however, bea must supplement these data to cover establishments without payrolls and industries not covered by the economic censuses. bea also separates information for some broader categories of purchases into I -o commodities; for example, bea separates data on purchases of office supplies into purchases of postal service, paper, envelopes, etc., using commodity-shipment proportions and other available information. bEA also uses related information that is available to make $\mathrm{I}-\mathrm{O}$ estimates of inputs for which there is little hard data. For example, fees paid by industries for accounting services are estimated on the basis of industry employment. (Table B shows the principal methods and sources used for the 1987 benchmark.)
bea estimates the final uses of commodities either by incorporating data into the $\mathrm{I}-\mathrm{O}$ accounts directly from other sources after minor adjustment, or-for personal consumption expenditures and producers' durable equipmentby employing the commodity-flow method. An example of source data incorporated directly with only minor adjustments is exports of goods, which is obtained from the balance of payments accounts.

In the commodity-flow method, an estimate is first developed for the total supply of a commodity for domestic use. Then either a fixed percentage of total supply is attributed to final users, or the total supply is adjusted for intermediate purchases and the residual is attributed to final users. ${ }^{14}$
An example of commodity flow using the fixed percentage method can be illustrated by examining its use in estimating personal consumption expenditures for polishes and sanitation goods; in this case, approximately 40 percent of total output is allocated to personal consumption expenditures. An example of commodity flow using the residual method can be illustrated by examining its use in estimating personal consumption expenditures for wheat flour. First, an estimate is made for the total domestic supply of wheat flour: Total wheat flour sales by domestic firms, minus wheat flour exports, plus wheat flour imports. Next, an estimate is made for total consumption of wheat flour by intermediate users, including food manufacturers-of bread, cookies, crackers, and frozen bakery productsand restaurants. The wheat flour consumed by all intermediate users is then subtracted from domestic supply; government purchases of wheat flour are also subtracted. The residual is then assumed to be the wheat flour purchased by persons and is included in personal consumption expenditures.
The components of value added (see footnotes 3 and 6) are estimated using different methods. Compensation of employees by industry is estimated directly from source data. Indirect business tax and nontax liability by industry is either estimated directly from source data or is extrapolated based on the 1982 benchmark. For most industries, other value added is derived as a residual after subtracting total intermediate inputs, compensation of employees, and indirect business tax and nontax liability from total industry output (that is, industry sales receipts). For a few industries, estimates of other value added were available from other data sources; for example, other value added estimates for agriculture are from the U.S. Department of Agriculture.

Uses of the I-O accounts

The i-o accounts have a variety of statistical and analytical uses. For example, they can provide an economic framework to assess data quality and completeness, and they can be used as an

[^30]analytical economic tool to study industry production. This section describes some uses of the I-O accounts in preparing economic statistics and in studying interindustry relationships within the economy, as well as some of the assumptions analysts must make when they use $\mathrm{I}-\mathrm{o}$ accounts as an economic tool.
The use of $\mathrm{I}-\mathrm{O}$ accounts requires certain simplifying assumptions. Among these is the assumption that interindustry relationships established in the $\mathrm{I}-\mathrm{o}$ accounts for a benchmark year will remain stable over time and through a range of output levels. Users of I-O tables generally must make the assumption that changes in interindustry relationships occur only graduallyfor example, that the interindustry relationships represented in the 1987 benchmark are applicable for a band of years surrounding 1987. Also, I-O accounts implicitly assume that all adjustments to a change in final demand are achieved instantly and without price changes. For analyses that require different assumptions, other economic tools may be more appropriate.

Statistical uses.-The i-o accounts are used in several ways to prepare economic statistics. For NIPA comprehensive revisions, they are the single most important regular source for estimating the expenditure components of GDP and for parts of several income components. Because the I-o accounts have an internally consistent framework that tracks the input and output flows in the economy, any estimating weaknesses in the national economic accounts become readily apparent when they are compared with the I-O accounts. For the nipa revision, the NIPA estimates of personal consumption expenditures and producers' durable equipment are based on the final use components of the I -o benchmark accounts, with additional adjustments to reflect the definitional, classificational, and statistical changes incorporated into the NIPA's since completion of the $\mathrm{I}-\mathrm{o}$ accounts. ${ }^{15}$
The i-o benchmark accounts are also used as a framework to weight and calculate index numbers for price, volume, and value. For example, bea uses the i-o-based detailed estimates of producers' durable equipment to weight producer price indexes for calculating the constant-dollar NIPA estimates of producers' durable equipment.

Analytical uses.-The i-o accounts are an important analytical tool because they show the interdependence among various producers and

[^31]consumers in the economy. Because of their industry detail, the I -O accounts can be used for analyzing a wide range of related empirical issues.

The main contribution of the I-O accounts to economic analysis is that they permit analysts to measure the repercussions that changes in final uses have on industries and commodities, both directly and indirectly. For example, an increase in consumer demand for motor vehicles will initially have a direct effect that will increase the production of cars, which in turn will have indirect effects, including increased steel production. Increased steel production will in turn require more chemicals, more iron ore, more limestone, and more coal. Increased car production will also require more upholstery fabrics, and the increased production of these fabrics will require more natural fibers, more synthetic fibers, and more plastics. Further, increased production of synthetic fibers will require more electricity and containers, and so on.

These repercussions are only a few in the continuing chain resulting from the initial increase in consumer demand for motor vehicles. Through 1-O analysis, it is possible to trace this chain throughout the economy, measuring the direct and indirect effects on the output of each industry and commodity. Within the I-O accounts, these effects are quantified in coefficient tables. These tables can be used, for example, to determine the impact of a disaster on the economy or, when supplemented with additional information, to compute the effect on employment of an increased demand for U.S. exports. The Federal Emergency Management Agency, the U.S. Department of Defense, and the Census Bureau, among others, have found the I-O accounts to be useful for such studies.
When the U.S. I-o accounts are augmented with regional data, they can show economic impacts by region. For example, a State Government agency has used regional i-o accounts to estimate the economic effects of a high-speed intercity rail project on the State's economy, and a private consulting group has used regional $\mathrm{I}-\mathrm{O}$ accounts to analyze the impact of a sports stadium on the local economy. bea's Regional Economic Analysis Division helps planners and analysts estimate the regional impacts of project and program expenditures by industries. ${ }^{16}$

[^32]
Definitions and conventions for classification

The $\mathrm{I}-\mathrm{o}$ accounts use two classification systems, one for industries and another for commodities, but both classification systems generally use the same i-o numbers and titles. In the I-O industry classification system, output typically represents the total output of all establishments in each industry, regardless of whether the commodities produced are primary to the industry (that is, make up the largest proportion of the establishment's output) or are secondary (that is, primary to another industry). In the i-o commodity classification system, output represents the total output of the product or service, regardless of the classification of the establishments that produce it. This section discusses first the I-O industry classification system and then the I-O commodity classification system.
The I-o industry classification system is based on the sIc system, which classifies establishments into industries based on their primary products or services. ${ }^{17}$ Establishments are defined as economic units that are generally at a single physical location where business is conducted or where services or industrial operations are performed. Establishments are classified into an sic industry on the basis of their primary products or services. ${ }^{18}$

The I-O industry classification system adjusts the sic system primarily to attain a greater degree of homogeneity in the structure of inputs to the commodities produced by an I-o industry. The adjustments, which affect I-o-defined primary and secondary production, are called, in I-O terminology, redefinitions and reclassifications. ${ }^{19}$ The I-o system also provides for other industries and "special" industries that the sic does not; these are discussed later in this section.

In a redefinition, the input purchases and the output sales receipts for a particular secondary product or service are moved from the sic-defined industry to the I-o-defined industry. The input structure of the redefined product or service is assumed to be the same as that for the I -o industry in which the product or serv-

[^33]ice is primary; this assumption is called, in i-o terminology, the commodity-based technology assumption. ${ }^{20}$

An example of a redefinition involves restaurants located in hotels. Both inputs and outputs of these restaurants are moved from the hotels and lodging places industry (the industry of the establishment where the product or service occurs) to the eating and drinking places industry (the industry where the product or service is primary). The input structure related to the output of restaurants located in hotels is assumed to be similar to that for the eating and drinking places industry.

Redefinitions are used in the following cases:

- Construction work (both new construction and maintenance and repair) performed by all industries is redefined to the construction industries. Construction work performed by and for nonconstruction industries is referred to as "force-account construction."
- Manufacturing in trade and service industries is redefined to the appropriate manufacturing industries.
- Retail trade in service industries is redefined to the retail trade industry. Services in the trade industries are redefined to service industries. Some services are also redefined within service industries.
- Manufacturers' wholesale sales of purchased goods (resales) are redefined to the wholesale trade industry.
- Rental activities of all industries are redefined to the real estate and rental industries.
- The preparation of meals and beverages in most industries is redefined to the eating and drinking industry.

Redefinitions affect a number of industries; however, for most industries, the total output involved is small. Examples of industries with large dollar amounts of redefinitions of secondary products or services out of or into the industry are automobile and repair services ($\mathrm{I}-\mathrm{O} 75$), with $\$ 131$ billion of total industry output, of which $\$ 40$ billion has been redefined out to a number of other industries and $\$ 1$ billion has been redefined

[^34]in from a number of other industries; eating and drinking places (I-O 74), with $\$ 209$ billion of total industry output, $\$ 34$ billion out and $\$ 1 / 2$ billion in; wholesale trade ($1-069 \mathrm{~A}$), with $\$ 424$ billion of total output, $\$ 7$ billion out and $\$ 69$ billion in; and retail trade ($\mathrm{I}-\mathrm{O} 69 \mathrm{~B}$), with $\$ 421$ billion of total output, $\$ 25$ billion out and $\$ 46$ billion in.
In a reclassification, the $1-0$ system creates a secondary product or service from an sic-defined primary product or service. For these reclassified products and services and for all other sIc-defined secondary products and services that are not redefinitions, the $\mathrm{I}-\mathrm{O}$ system moves the output receipts from the sic-defined product or service class to the 1 -o-defined primary product or service class within the same I-O industry. In this case, total output for the affected industry remains unchanged; however, output for each affected commodity group changes.
An example of a reclassification involves the newspaper industry. The sIc defines the primary product or service classes of this industry as newspaper subscriptions and sales and newspaper advertising. The I-O system considers the primary product or service of the newspaper industry to consist of newspaper subscriptions and sales. It considers the advertising component to be secondary and, therefore, moves advertising receipts or output to the advertising commodity group. Total output for the I-O newspaper industry remains unchanged, but output for the newspaper commodity is reduced, and output for the advertising commodity is increased.
Reclassifications affect about 70 commodities; however, for the most part, the dollar values involved are not very large. Examples of industries with large dollar amounts of reclassified sales receipts are the newspapers and periodicals industry ($\mathrm{I}-\mathrm{O} 26 \mathrm{~A}$), for which $\$ 20$ billion of its $\$ 36$ billion total commodity output is moved to the advertising commodity ($\mathrm{I}-\mathrm{O} 73 \mathrm{D}$); and the crude petroleum and natural gas industry ($\mathrm{I}-\mathrm{O} 8$), for which $\$ 12$ billion of its $\$ 80$ billion total commodity output is moved to the gas production and distribution (utilities) commodity ($\mathrm{I}-\mathrm{O} 68 \mathrm{~B}$).
When the total requirements tables are calculated, inputs and outputs of each I-o-defined secondary product or service are moved to their particular I-o-defined commodity groups. The input structures of secondary products or services are assumed to be similar to those for the industries in which the products or services are primary; this assumption, in I-o terminology, is called the industry-based technology assumption (see footnote 20).

As mentioned earlier, the $\mathrm{I}-\mathrm{o}$ system also provides for other industries and "special" industries that the sic does not. The I-O system replaces the sIc-defined government-owned establishments with two industries to cover government enterprises as defined in the NIPA'sFederal Government enterprises ($\mathrm{I}-\mathrm{O} 78$) and State and local government enterprises ($1-0$ 79). The i-o system also provides "special" industries, such as general government (I-O 82), in which output and value added are defined as general government compensation of employees, and the inventory valuation adjustment ($\mathrm{I}-\mathrm{O} 85$), which is a NIPA adjustment to derive GDP (see appendix B for a complete listing of I-O special industries).

The $I-O$ commodity classification system is closely related to that for industries. Each commodity receives the code of the industry in which the commodity is the primary product. This code is then used to group production of the commodity in the industry in which it is the primary product with its production in other industries in which it is a secondary product.

In several cases, the I-o commodity classification differs from that specified by the industry classification. If the same commodity is the primary product of more than one sic industry, all of the $\mathrm{I}-\mathrm{O}$ commodity is assigned the i-O commodity number that corresponds to the $1-0$ industry that is the largest producer of the commodity. This results in there being no commodity output for the following I-O commodity groups: Forest products (commodity 2.0701); knit outerwear mills (commodity 18.0201); knit underwear and nightwear mills (commodity 18.0202); knitting mills, not elsewhere classified (commodity 18.0203); fertilizers, mixing only (commodity 27.0202); cold-rolled steel sheet, strip, and bars (commodity 37.0104); steel pipe and tubes (commodity 37.0105); secondary nonferrous metals (commodity 38.0600); Federal electric utilities (78.0200); State and local government passenger transit (commodity 79.0100); and State and local government electric utilities (commodity 79.0200).

Definitions and conventions for valuation

Transactions in commodities are typically valued in I-O accounts at producers' prices, which exclude distribution costs (transportation costs and wholesale and retail trade margins), but include excise taxes collected and paid by producers. Transportation costs and trade margins are shown as separate purchases by the users of the commodities. The sum of the producers' value,
transportation costs, and trade margins equals the purchasers' value.

The 1-o tables do not trace actual flows of commodities to and from wholesale trade and retail trade. If trade were shown as buying and reselling commodities, industrial and final users would make most of their purchases from a single source-trade. To show the relationship between the production of commodities and their purchase by intermediate and final users, commodities are shown as if they move directly to users, bypassing trade. The margin associated with a commodity is shown as a separate purchase of the commodity from wholesale trade and retail trade by users. Transportation costs are the freight charges paid to bring the commodity from the producer to the user, either intermediate or final. All transportation costs are included in the transportation rows (rows $65 \mathrm{~A}-\mathrm{E}$) of the use table.

Wholesale trade has one primary productdistributive services for the sale of goods to final users other than for personal consumption expenditures. Examples of distributive services provided by wholesalers include merchandise handling, stocking, selling, and billing.

Wholesale trade output is measured one way for merchant wholesalers, agents, and brokers and another way for manufacturers' sales branches. For merchant wholesalers, agents, and brokers (on own account), wholesale margin is measured as wholesale sales receipts less the cost of goods sold plus taxes collected by the distributor. For manufacturers' sales branches, it is measured as expenses plus taxes collected by the sales branches.

Nonmargin output occurs when the wholesale trade service is purchased separately from the commodity. Nonmargin output includes, for example, a sales commission paid to a wholesaler acting as a broker. Nonmargin output is measured as the sum of expenses on goods sold by manufacturers' sales offices, commissions on goods sold by agents and brokers, and customs duties. Wholesale trade output-both margin and nonmargin-is included in the wholesale trade row (row 69A) of the use table.

Retail trade has one primary productdistributive services for the sale of goods to persons. Retail output is defined as the retail margin, which is measured as retail sales less the

Text continues on page 90.

Table C.-Input-Output Commodity Composition of Final Demand, in Producers'

Commodity number	Personal consumption expenditures				Gross private fixed investment				Change in business inventories				Exports of goods and services				Imports of goods and services			
	Producers' prices	Transportation costs	Wholesale and retail trade margins	Purchasers' prices	Producers' prices	Trans-portation costs	Wholesale and retail trade margins	Purchasers' prices	Producers' prices	Trans-portation costs	Wholesale and retail trade margins	Purchasers' prices	Producers' prices	Trans-portation costs	Wholesale and retail trade margins	Purchasers' prices	Producers' prices	Trans-portation costs	Wholesale and retail trade margins	Purchasers prices
1	3,090	96	1,034	4,219	0	0	0	0	-719	4	3	-71	485	17	14	515	-808	0	0	-808
$2 . .$.	15,682	3,215	13,806	32,703	0	0	0	0	-4,261	119	246	$-3,896$	12,747	1,129	2,069	15,946	-2,353	0	,	-2,353
3	3,763	52	1,652	5,466	0	0	0		101	1	10	113	544	6	37	587	$-3,747$	0	0	-3,747
4	647	0	0	647	0	0	0	,	0	0	0	0	122	0	0	122	-16	0	0	-16
5+6......	0	0	0	0	446	23	21	489	19	-1	()	18	559	63	14	636	-1,349	0	0	-1,349
7	138	41	62	241	0	0	0	0	1,100	342	27	1,468	2,663	780	61	3,503	-65	0	0	-65
8	0	0	0	,	84	0	0	84	-1,758	15	8	-1,735	1,494	8	56	1,558	$-28,965$	0	0	-28,965
$9+10$	36	33	21	89	0	0	0	0	-8	17	1		633	237	10	'880	-734	0	0	-734
11.	0	0	0	0	358,627	0	0	358,627		0	0	0	15	0	0	15	0	0	0	0
12 ...	0	0	0	0	17,300	0	0	17,300	0	0	1	0	81	0	0	81	0	0	0	0
13.	1,099	5	1,078	2,182	198	0	0	198	457	(*)	11	468	2,725	27	32	2,784	-467	0	-	-467
14.	201,153	5,019	100,843	307,016	0	0	0	0	1,771	43	239	2,053	12,111	585	1,388	14,084	-18,538	0	,	-18,538
15.	20,774	121	13,651	34,546	0	0	0	0	242	2	108	351	2,591	12	587	3,190	-880	0	,	-880
$16 . .$.	1,047	13	1,024	2,084	0	0	0	0	599	5	29	633	1,407	15	99	1.521	-3,601	0	0	-3,601
17.	4,992	113	4,173	9,278	2,369	53	963	3,385	412	6	25	443	782	24	58	863	-919	0	0	-919
18.	71,153	360	60,712	132,225	0	0	0	0	1,446	6	123	1,575	1,197	3	117	1,318	-25,395	0	-	-25,395
19.	10,088	49	9,245	19,381	0	0	0	-	333	48	33	367	362	A	69	433	-1,772	0	-	-1,772
$20+21$.	1,820	43	1,646	3,508	3,920	11	2.478	6,409	1,157	48	147	1,352	3.645	236	430	4,311	-6,399	0	-	-6,399
22+23	19,469	132	17,015	36,616	15,467	128	2,672	18,266	596	2	46	644	684	8	93	785	-5,287	0	,	-5,287
24.	11,902	357	7,712	19,972	0	0		0	916	39	66	1,021	5.922	313	313	6,548	-9,914	0	0	-9,914
25.	292	7	148	447	0	0	0	0	127	1	3	132	262	6	18	${ }^{286}$	-126	0	0	-126
$26 \mathrm{~A}$.	11,741	400	4,808	16,949	0	0	0	0	449	16	14	480	555	25	22	601	-226	0	0	-226
268	10,923	267	9,177	20,366	0	0	0	0	1,188	22	132	1,342	1,062	14	137	1,213	-1,335	0	0	-1,335
27A ...	978	134	929	2,040	795	0	0	795	515	50	56	622	14,630	910	1,027	16,567	-10,727	0	0	-10,727
27 B	784	31	691	1,506	0	0	0	0	138	10	124	272	542	20	255	816	-990,	0	0	-990
${ }^{28}$	0	0	0		0	0		0	502	37	14	553	5,364	525	205	6,094	-2,009	0	0	-2,009
29A	23,958	164	16,617	40,738	0	0	0	0	1,199	6	186	1,392	2,959	16	564	3,539	-7,590	0	0	-7.590
${ }^{298}$...	25,019	886	16,865	42.770	0	0	0	0	558	12	67	636	983	30	126	1,139	-1,281	0	0	-1,281
$30 . .$.	194	10	89	294	0	0	0	0	197	8	22	228	342	17	43	402	-214	0	0	-214
$31 . .$.	60.189	2,468	33,098	95,755	0	0	0	0	3,001	${ }_{7}^{86}$	501	3,588	6,128	278	1,258	7.664	-13,332	0	0	-13,332
$32 . .$.	11.669	2,072	12.647	26,388	155	4	36	196	1,292	73	136	1.500	3,233	209	434	3.876	-9,702	0	0	-9,702
33+34 ...	13,619	63	13,745	27,427	0	0	0	0	467	5	62	530	${ }_{777}^{666}$	7	46	719	-9,700	0		-9,700
35.	1,518	39	+,922	3,479	0	0	0	0	179	5	31	214	777	22	142	944	-1,837	0	0	-1.837
36	2,705	104	3,017	5,826	0	0	0	0	606	34	74	715	1,019	64	122	1,205	-4,513	0	0	$-4,513$
$37 .$.	11	2	11	25	13	0	0	13	1,204	56	150	1,410	1,407	77	178	1,663	-0, 0,824	0	0	-10,824
38.	72	2	57	131	36	1	,	42	864	13	43	921	3,303	63	298	3,665	-6,992	0	0	-6,992
39.	0	0	0	0	21	1	析	23	24	1	1	25	166	3	6	174	-155	0	0	-155
40.	525	14	404	942	2,811	20	296	3,127	557	4	53	614	869	10	113	992	-961	0	0	-961
$41 . .$.	1,464	15	1,551	3.030		0	0	0	237		8	247	2.123	26	56	2,206	-2,261	0	0	-2.261
42.	3,600	102	3,626	7,327	1,945	106	389	2.440	604	10	161	775	2,634	112	597	3,343	-6,573	0	0	-6,573
43	461	5	228	693	2,302	27	171	2.500	208	1	18	227	2,899	29	471	3,398	-2,102	0	0	-2,102
44+45..	248	2	247	497	16,909	513	6.700	24,122	333	17	133	483	6.063	270	1.205	7.538	-5,402	0	0	-5,402
46	0	0	0	0	5,032	97	1,033	6,162	42	1	13	56	540	10	122	671	-1,321	0	0	-1,321
47.	583	3	523	1,108	13,439	181	2,100	15,720	50	1	14	65	2,335	28	290	2,653	-4,911	0	0	-4,911
48 ...	176	2	113	291	15,053	185	2,551	17,789	198	()	6	204	2,696	30	430	3.156	-4,993	0	0	-4,993
49.	0				11,072	96	714	11,882	153		15	169	4,182	38	369	4,589	-6,947	0	0	-6,947
50.	117		98	220	747	8	123	878	101	4	8	113	1,660	58	123	1,840	-604	0	0	-604
51.	3,290	46	2.221	5,557	33,476	122	7,525	41.122	331	3	20	354	13,167	174	2.418	15,759	-17,329	0	0	-17,329
52.	883	8	822	1,713	7,186	75	2,543	9,804	306	1	34	340	1,217	10	364	1,591	-1,504	0	0	-1,504
53.	161	3	113	277	5,878	106	820	6,803	110		19	131	1,847	24	148	2,019	$-3,346$	0	0	$-3,346$
54.	11,997	319	7.770	20,086	2,657	72	1,448	4,177	3	-2	-6	-4	943	24	107	1.074	-2,950	0	0	-2,950
$55 . .$.	2,278	${ }^{46}$	2,233	4,556	4.435	4	+110	\% 549	608 446	7	106	721 508	1,358	14	268	1,641	-3,341	0	0	$-3,341$ $-20,190$
${ }_{56}^{56 ~}$	18,387	164	16,605	35,156	21,728	132	1,338	23.198	446	4	58	508	4,137	41	394	4,572	-20,190	8	0	$-20,190$ -13
57.	${ }_{5}^{263}$	2	144	409		27	53		787	5	47	${ }^{838}$	12,596	130	1,518	14,244	-13,704	0	0	-13,704
$59 \mathrm{~A} . . .$.	101,875	2,626	3,993 24,316	9,410 128,16	2,755 62,933	1,622	153 4,878	2,936 69,433	8,115	202	319	8.636	-2,404	325	515	+13,758	- $-61,5157$	0	0	-61,157
598.	3,133	, 108	2,107	5,348	6,591	55	323	6,969	1,745	55	145	1,945	10,874	362	938	12,174	-16,950	0	0	-16,950
60.	316	1		405	8,843	7	135	8.985	2,132	-2	-2	2,127	22,891	177	338	23,405	-6,875	0	0	-6,875
	11,043	82	5,067	16.191	3,183	72	376	3.632	1.070	6	92	1,167	1,278	17	63	1,358	-2,997	0	0	-2,937
62 ...	4.456	16	4,396	8.868	33,814	131	3.692	37.637	1.285	1	42	1,327	10,311	48	1,082	11,441	-9.990	0	0	-9,990
63.	4,625	21	7,956	12,602	5,653	24	2,093	7,770	398	2	171	570	2,224	9	748	2,981	-5.696	0	0	-5,696
64.	27,179	400	30,458	58,036	3,876	255	1,052	5,183	2,181	27	506	2,714	2,831	79	690	3,599	-15,769	0	0	-15.769
${ }^{65 A}$.............	9,990			9,990		0				0			731			731	-135		0	-135
${ }^{658}$.............	6,151	0	0	6,151	0	0	0		0	0	0		300	0	0	300	0	0	0	0
${ }_{650}$....	3,472		0	3.472		0	0		0	0			7.209	0	0	7,209	3,264	0	0	3,264
${ }_{6}^{655}$.............	29,349		0	29,349		0	0		0	0			10,186		0	10,186	-5,711	0	0	-5,711
65 E	1.596			1,596		0	0		0	0			1,958	0		1,958		0	0	0
${ }^{66}$................	61,963	0		61,963	4,389	0	0	4,389	0	0			2,496	0	0	2,496	0	0	0	0
67.	1,326	0		1,326	0	0	0		0	0	0			0	0		-90	0	0	-
688	25,544	0	0	25,544	0	0	0	0	0	0	0	0	161	0	0	161	-1,763	0	0	-1,763
68 C	14,864	0	0	14,864	0	0	0		0	0	0	0	37	0	0	37		0	0	0
$69 \mathrm{~A} . .$.		0	0		0	0	0		0	0	0	0	1,275	0	0	1,275	15,533	0	0	15,533
$698 .$.	262	,	0	262	0	0	0	0	0	0	0	0	85	0	0	885	${ }^{0}$	0	0	-161
$70 \mathrm{~A} . .$.	135,789		0	135,789	0	0	0		0	0		0	12,598	0	0	12,598	-161	0		-161
708.	81,638	0		81,638	0	0	0		0	0	0	0	2,906	0	0	2,906	-3.078	0	0	-3,078
714.	325,144	0		325,144	0	0	0	0	0	0				0	0	0		0	0	0
${ }_{718} 7$.	122,178	0	0	122,178	23,701	0	0	23,701	0	0	0	0	10,830	0	0	10,830	0	0	0	0
${ }_{72 \mathrm{~B}} \mathbf{7}$.	20,180	0	0	20,180 48,030	0	0	0	0	0	0	0	0	49	0	0	49 31	0	0	0^{0}	0
73A	855	0	322	1,177	10	0	0	10	39	0	13	52	928	0	0	928	-104	0		-104
73B	31,456	0	0	31,456	7,509	0	0	7,509	0	0	0	0	2,398	0		2,398	-391	0		-391
73 C	12,602	0	313	12,915	0	0	0		59	0	0	59	1,546		0	1,546	-740	0	0	-740
$73 \mathrm{D}$.	661	0	0	661	0	0	0		0	0	0	0	475	0	0	475	-253	0	0	-253
74.	169,638	0	0	169,638	0	0	0	0	0	0	0	0	271	0	0	271	0	0	0	0
${ }_{76} 76$.	67,684	0	202	67,886	0	0	0	0	7	0	0	7	31	0	0	31	0	0	0	-
76.....	47,411	0	0	47,411		0	0		0	0	0	0	1,222	0	0	1,222	-64	0	0	-64
77A	363,015	0	0	363,015	0	0	0		0	0	0	0	16		0	16	0	0	0	0
778	148,974	0	0	148,974	0	0	0	0	0	0	0	0	144	0	0	144	-9	0	0	-9
78.	6,430	0		6.430	0	0	0	0	0		0	0	169	0	0	169	0	0	0	0
$79 . .$.	14,152	0	0	14,152	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0
80	29,295	527	1,542	31,365	0	0			85	18	7	110	0	0	0	0	-78,696	0	0	-78,696
81.	13,705	0	20,253	33,959	-24,960	0	3,598	-21,361	1,969	39	156	2,164	4,267	457	992	5,716	-2,068	0	0	-2,068
82.						0			0	0	0			0	0			0	0	0
83.	-31,136		0	-31,136	0	0	0	0	0	0	0	0	31,653	0	0	31,653	0	0	0	0
84.	7,709	0	0	7,709	0	0	0			0	0			0	0		0	0	0	0
$8^{85} \ldots$.									-17,817	0		-17.817			0		0		0	0
T	2,566,099	20,949	485,204	3,072,252	678,397	4,155	50,339	732,891	21,616	1,492	4,929	28,037	315,267	8,286	25,019	348,572	-490,442	0	0	-490,442

and Purchasers' Prices, 1987 Benchmark ${ }^{1}$

Table D.—Input-Output Commodity Composition of Personal Consumption Expenditures, in Producers' and Purchasers' Prices, 1987 Benchmark
[Millions of dollars]

Table D.-Input-Output Commodity Composition of Personal Consumption Expenditures, in Producers' and Purchasers' Prices, 1987 BenchmarkContinued
[Mililions of dollars]

Table D.-Input-Output Commodity Composition of Personal Consumption Expenditures, in Producers' and Purchasers' Prices, 1987 BenchmarkContinued
[Millions of dollars]

Table E.-Input-Output Commodity Composition of Producers' Durable Equipment Expenditures, in Producers' and Purchasers' Prices, 1987 Benchmark [Millions of dollars]

NIPA code/ I-O number	Producers' prices	$\begin{aligned} & \text { Transpor- } \\ & \text { tation } \\ & \text { costs } \end{aligned}$	Wholesale and retail trade margins	Purchasers' prices	NIPA codel 1-O number	Producers' prices	$\begin{aligned} & \text { Transpor- } \\ & \text { tation } \\ & \text { costs } \end{aligned}$	Wholesale and retail trade margins	Purchasers' prices	NIPA codel 1-O number	Producers' prices	$\begin{aligned} & \text { Transpor- } \\ & \text { tation } \\ & \text { costs } \end{aligned}$	Wholesale and retail trade margins	Purchasers' prices								
5. Computers and peripheral equipment					$\begin{array}{ll} 52 & \ldots \\ 58 & \ldots \\ 738 & \\ 81 & \end{array}$	$\begin{array}{r} 2 \\ 10 \\ 640 \\ 2 \end{array}$	$\begin{gathered} 0 \\ \left(^{*}\right) \\ 0 \\ 0 \end{gathered}$	0	$\begin{array}{r} 2 \\ 11 \\ 640 \\ 162 \end{array}$	26. Agricultural machinery, except traciors												
$\begin{aligned} \text { Total } & \text {........... } \\ 51 & \ldots \\ 81 & \end{aligned}$	29,802 29,809 -7	74 74 0	6,652 5,878 774	$\begin{array}{r} 36,528 \\ 35,761 \\ 767 \end{array}$				- 160		Total \qquad $44+45$ \qquad 58 \qquad 73B \qquad 81 \qquad	$\begin{array}{r} 3,281 \\ 3,134 \\ 11 \\ 168 \\ -32 \end{array}$	$\begin{gathered} 92 \\ 92 \\ \left({ }^{*}\right) \\ 0 \\ 0 \end{gathered}$	$\begin{array}{r} 1,739 \\ 1,169 \\ 1 \\ 0 \\ 570 \end{array}$	$\begin{array}{r} 5,112 \\ 4,395 \\ 12 \\ 168 \\ 537 \end{array}$								
6. Office equipment except computers					15. General industrial, including materials handling, equipment																	
Total \ldots. 50	$\begin{array}{r}4,259 \\ 517 \\ \hline\end{array}$	52	1,820 105	6,131 628		$\begin{array}{r} 16,167 \\ 36 \\ 5,029 \\ 2 \\ 10,238 \\ 197 \\ 667 \\ -1 \end{array}$	$\begin{array}{r} 189 \\ 1 \\ 97 \\ 0 \\ 90 \\ 1 \\ 0 \\ 0 \end{array}$	5 18,211 7 44 03 6,159 $\left.0^{*}\right)$ 2 63 11,011 17 214 0 667 16 114		27. Construction machinery, except tractors												
51.	3,455	45	1,605	5,106							7,116		1,430	8,807								
738	232	0	0	232						Toial	6,116	261	1,430	8,807								
81	46	0	109	155						73B	313	0	0	313								
7. Communication equipment																						
Total \ldots. 13 \ldots. 38 \ldots. 51 \ldots. 56 \ldots. 58 \ldots. 62 \ldots. 738 $\ldots . . .$. 81 $\ldots . . .$.	$\begin{array}{r} 40,319 \\ 198 \\ 36 \\ 213 \\ 21,663 \\ 2,643 \\ 9,546 \\ 4,389 \\ 1,585 \\ 47 \end{array}$	$\begin{array}{r} 168 \\ 0 \\ 1 \\ 2 \\ 132 \\ 22 \\ 12 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{array}{r} 1,562 \\ 0 \\ 5 \\ 41 \\ 1,319 \\ 137 \\ 61 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{array}{r} 42,050 \\ 198 \\ 42 \\ 256 \\ 23,113 \\ 2,801 \\ 9,619 \\ 4,389 \\ 1,585 \\ 47 \end{array}$	16. Electrical transmission, distribution, and industrial apparatus					28. Mining and oilfield machinery												
										$\begin{array}{r} \text { Total } ~ \\ 8 \\ 44+45 \ldots . . . \\ 49 \\ 738 \ldots . . . \\ 81 \ldots \end{array}$	$\begin{array}{r} 924 \\ 84 \\ 801 \\ 14 \\ 45 \\ -20 \end{array}$	$\begin{array}{r} 29 \\ 0 \\ 29 \\ \left({ }^{*}\right) \\ 0 \\ 0 \end{array}$	$\begin{array}{r} 279 \\ 0 \\ 123 \\ 1 \\ 0 \\ 156 \end{array}$	1,232849521545136								
					$\begin{aligned} & \text { Total } \\ & 47 \ldots \\ & 53 \ldots \\ & 62 \ldots \\ & 738 \ldots\end{aligned}$	11,794	$\begin{array}{r} 147 \\ 16 \\ 106 \\ 25 \\ 0 \end{array}$	1,263	$\begin{array}{r} 13,203 \\ 927 \\ 6,803 \\ 5,064 \\ 410 \end{array}$													
						788		123														
						5,878		820														
						410		0														
					18. Trucks, buses, and truck trailers					29. Service industry machinery												
8. Instruments					$\begin{array}{r} \text { Total } \\ 59 \mathrm{~A} \\ 59 \mathrm{~B} \\ 81 \end{array}$	$\begin{array}{r} 26,585 \\ 21,685 \\ 6,591 \\ -1,690 \end{array}$	$\begin{array}{r} 614 \\ 559 \\ 55 \\ 0 \end{array}$	2,696	$\begin{array}{r} 29,895 \\ 24,347 \\ 6,969 \\ -1,421 \end{array}$	$\begin{array}{r} \text { Total } \ldots \\ 50 \\ 52 \ldots \\ 738 \\ 81 ~ \end{array}$	$\begin{array}{r} 7,581 \\ 34 \\ 7,184 \\ 346 \\ 18 \end{array}$	7617500	$\begin{array}{r} 2,544 \\ 1 \\ 2,543 \\ 0 \\ 0 \end{array}$	$\begin{array}{r} 10,201 \\ 35 \\ 9,802 \\ 346 \\ 18 \end{array}$								
Total	11,669	58	2,129	13,856				+ 323														
62	11,137	58	2,129	13,324				270														
81.	30	0			19. Autos																	
9. Photocopy and related equipment					$\begin{gathered} \text { Total } \\ 59 \mathrm{~A} \\ 81 \end{gathered}$	$\begin{array}{r} 24,652 \\ 41,248 \\ -16,596 \end{array}$	$\begin{array}{r} 1,063 \\ 1,063 \\ 0 \end{array}$	$\begin{array}{r} 3,121 \\ 2,775 \\ 346 \end{array}$	$\begin{array}{r} 28,836 \\ 45,086 \\ -16,250 \end{array}$	30. Electrical equipment, n.e.c.												
$\begin{array}{r} \text { Total } \\ 622 \\ 63 ~ \\ 738 \\ 81 ~ \end{array}$	8,635	$\begin{array}{r} 30 \\ 6 \\ 24 \\ 0 \\ 0 \end{array}$	2,520	$\begin{array}{r} 11,185 \\ 3,067 \\ 7,770 \\ 304 \\ 44 \end{array}$						Total \ldots. 48 \ldots. 54 \ldots. 55 \ldots. 58 \ldots. 62 \ldots. 738 $\ldots . . .$. 81 \ldots.	$\begin{array}{r} 6,294 \\ 208 \\ 391 \\ 435 \\ 91 \\ 4,901 \\ 270 \\ -2 \end{array}$	513114528	$\begin{array}{r} 958 \\ 42 \\ 40 \\ 110 \\ 16 \\ 750 \\ 0 \\ 0 \end{array}$	7,3022524415491135,679270-2								
	2,635		427																			
	5,653		2,093		20. Aircraft																	
					$\begin{array}{r} \text { Total } \ldots \\ 22+23 \\ 60 \text {........... } \\ 681 ~ \end{array}$	$\begin{array}{r} 9,144 \\ 179 \\ 8,843 \\ 876 \\ -754 \end{array}$	112720	564	$\begin{array}{r} 9,718 \\ 213 \\ 8,985 \\ 883 \\ -363 \end{array}$													
11. Fabricated metal products								r 32														
$\begin{array}{r}\text { Total } \\ 5+6 \\ \hline 1 .\end{array}$	6,285 440	148 23	696 21	7,129				391		31. Other nonresidential equipment												
37	795 13	0	0	795 13	21. Ships and boats					Total $\ldots \ldots . . .$. 17 $\ldots \ldots .$. $20+21$ \ldots. 32 $\ldots \ldots .$. $44+45$ \ldots. 61 $\ldots \ldots .$. 64 $\ldots . . .$. 738 $\ldots . .$. 81 \ldots.	$\begin{array}{r} 8,163 \\ 1,087 \\ 5 \\ 62 \\ 2,167 \\ 598 \\ 3,876 \\ 445 \\ -77 \end{array}$		$\begin{array}{r} 3,529 \\ 442 \\ 1 \\ 10 \\ 1,808 \\ 217 \\ 1,052 \\ 0 \\ 0 \end{array}$	$\begin{array}{r} 12,044 \\ 1,554 \\ 6 \\ 73 \\ 4,007 \\ 855 \\ 5,183 \\ 445 \\ -77 \end{array}$								
39.	21 2811	20	2961	23 3.127		1657	2	165	1824													
42	1,931	106	378	2,414	61	1,301	2	153	1,456													
$46 \text {.......... }$	4	0	0	4	81	356	0	13	369													
					22. Railroad equipment																	
12. Engines and turbines																						
$\begin{array}{r} \text { Total } \\ 43 \\ 73 \mathrm{~B} \\ 81 ~ \end{array}$	$\begin{array}{r} 1,811 \\ 2,302 \\ 64 \\ -556 \end{array}$		17117100	$\begin{array}{r} 2,009 \\ 2,500 \\ 64 \\ -556 \end{array}$	$\begin{array}{r} \text { Total } \\ 61 . \ldots \\ 738 \\ 81 \end{array}$	$\begin{array}{r} 1,311 \\ 1,285 \\ 33 \\ -7 \end{array}$	313100	207013	$\begin{array}{r} 1,361 \\ 1,322 \\ 33 \\ 6 \end{array}$													
		27								32. Sale of equipment scrap, excluding autos												
		13. Metalworking machinery 24. Furniture and fixtures										-2,520	0	0	-2,520							
$\begin{array}{r} \text { Total } 47 \text {........ } \\ 48 \\ 738 ~ \\ 81 ~ \end{array}$	$\begin{array}{r} 13,442 \\ 12,651 \\ 228 \\ 558 \\ 4 \end{array}$	$\begin{array}{r} 168 \\ 165 \\ 3 \\ 0 \\ 0 \end{array}$	2,137	$\begin{array}{r} 15,747 \\ 14,793 \\ 278 \\ 558 \\ 118 \end{array}$	Total \qquad 22+23 \qquad 73B \qquad 81 \qquad	$\begin{array}{r} 15,756 \\ 15,109 \\ 664 \\ -16 \end{array}$	12512500	$\begin{array}{r} 2,701 \\ 2,631 \\ 0 \\ 69 \end{array}$	$\begin{array}{r} 18,582 \\ 17,865 \\ 664 \\ 53 \end{array}$		33. Residential (landlord durables)											
			1,977								Total \ldots. 17 $22+23 \ldots \ldots$ $32 \ldots \ldots .$. 54 56 56.											
			46							3,807		92	1,966	5,864								
										1,282		29	521	1,832								
					25. Tractors					15		(*)	8	23								
14. Special industry machinery, n.e.c.					$\begin{gathered} \text { Total } \ldots . . . \\ 44+45 \\ 81 \ldots . . \end{gathered}$	$\begin{array}{r} 3,913 \\ 3,925 \\ -12 \end{array}$	$\begin{array}{r} 99 \\ 99 \\ 0 \end{array}$	$\begin{array}{r} 2,400 \\ 2,347 \\ 52 \end{array}$	$\begin{array}{r} 6,411 \\ 6,371 \\ 41 \end{array}$			(*)	19	+ 85								
Total 32 42	$\begin{array}{r} 16,182 \\ 78 \\ 14 \\ 14,615 \\ 821 \end{array}$	$\begin{array}{r} 187 \\ 3 \\ \left.x^{*}\right) \\ 179 \\ 6 \end{array}$	2,683 18 11	$\begin{array}{r} 19,052 \\ 99 \\ 26 \\ 17,257 \\ 856 \end{array}$						Producers' durable equipment												
42																						
48			2,463 30							Total	278,028	4,144	47,598	329,771								
'Less than \$ Note.-The	500,000. dentitying num	bers for the p	roducers' durab	equipment	categories are those used in table 5.8 in the National Income and Product Accounts of the United States, Volume 2, 1959-88.																	

cost of goods sold plus the taxes collected-if any-by retail trade establishments.

Retail trade margins also apply to some purchases of goods by other final users; for example, retail trade margins apply to some purchases of personal computers by business and are included in gross private fixed investment. All retail trade margins are included in the retail trade row (row 698) of the use table.

Imports of goods and services, a component of final uses, are treated in one of two ways, depending on whether or not they are comparable to U.S. commercially produced goods and services. Those that are comparable are included in the use table along with the distribution of the output of their domestic counterparts. The U.S. domestic port values of imported commodities are shown as negative entries in the imports of goods and services column of final use (column 95), so that the row total for a commodity equals the domestic output of that commodity. Other imported goods and services-those not comparable to U.S. commercially produced goods and services, and those purchased and used abroad by U.S. residents-are shown in the use table row for noncomparable imports (row 80).

Examples of noncomparable imports are coffee beans and parakeets; an example of goods purchased and used abroad by U.S. residents is food purchased by U.S. military personnel stationed abroad. The total value of all noncomparable imports is shown as a single negative entry in the imports of goods and services column (column 95).

Imports of goods by commodity (the entries in column 95) are valued at U.S. domestic port values plus duties. Imports of services are valued at producers' values. The entries for transportation imports and for trade imports include adjustments that convert the total of all commodity imports of goods and services to a foreign port value equivalent. This adjustment is made for conceptual consistency between the I-O accounts and the nIPA's and the balance of payments accounts.
Exports of goods and services-both by commodity and as a total-are valued in U.S. producers' prices, which are considered to be equivalent to U.S. domestic port values. Exports are also a component of final uses.
Inventory change, another component of final uses, represents the change in inventory of each commodity, wherever held, over the benchmark year. It is stated at book value-that is, at its

Data Availability

The estimates from the 1987 benchmark I-O accounts are available on diskette at two-digit (95 I -O industries) and six-digit (480 1-0 industries) levels. They can be ordered for "transactions," for "total requirements," or for "all." "Transactions" includes the six-digit make table, use table, direct requirements coefficients table, and estimates by commodity of transportation costs and of wholesale and retail trade margins. "Total requirements" includes six-digit industry-by-commodity or commodity-by-commodity coefficients. Products specifying "all" contain all above data, but for the twodigit I-O industry level only. Each product includes information on the mathematical derivation of the coefficients tables. The ben accession numbers and the prices for these products are listed below.
For further information about I-O products or when ordering by MasterCard or Visa, call the Interindustry Economics Division at (202) 606-5585. To order by mail, write to the Public Information Office, Order Desk, Be53, Bureau of Economic Analysis, U.S. Department of Commerce, Washington, dC 20230. Specify the item, accession number, and price of the product(s) being ordered. For foreign shipment, add 25 percent to the total amount of the order. A check or money order payable to "Bureau of Economic Analysis" must accompany all written orders. Be sure to include a return address.

Item	bea accession number	Price
Diskettes ($31 / 2$ inch HD)	51-94-40-001	\$40
1987 benchmark six-digit, transactions (two diskettes)		
1987 benchmark six-digit, industry-by-commodity total requirements (two diskettes)		40
1987 benchmark six-digit, commodity-by-commodity total requirements (two diskettes)	51-94-40-003	40
1987 benchmark two-digit, all...........	51-94-40-004	20
1987 benchmark commodity composition of NIPA final demand..	51-94-40-005	20
1987 benchmark personal consumption expenditures and producers' durable equipment by NIPA category	51-94-40-006	20

ben's 1987 benchmark I-O accounts, at both the twodigit and six-digit levels, will also be available on CD-ROM through the Commerce Department's National Economic, Social, and Environmental Data Bank (nese-db) CD-ROM. The nese-db is produced quarterly in February, May, August, and November. Call the Office of Business Analysis at (202) 482-1986 for more information or to place an order. The nese-de is also available for public use at over 900 Federal Depository Libraries.
original cost-in the use table. The inventory valuation adjustment, which converts inventory change from book value to replacement cost, is shown as a single entry for the total of all commodities (row 85, column 93).

Supplementary tables

Four supplementary tables, which can be used with the five basic sets of I-O tables, are provided with this article. Three tables (tables C-E) cover the i-O commodity composition of NIPA final demand, of NIPA personal consumption expenditures, and of NIPA producers' durable equipment; a fourth table (table F) reconciles i-O exports of goods and services and imports of goods and services with nipa estimates.
The commodity composition tables are necessary as bridges between the I-O accounts and the NIPA's because the two sets of accounts are based on different valuations and definitions. In the I-O accounts, final use categories are expressed in producers' prices; in the nipa's, final demand categories are expressed in purchasers' prices. Also, the definitions of I -o final use categories differ from those of the nIPA final demand categories. Before the i-o total requirements tables can be used to measure and analyze the changes in commodity or industry output requirements arising from changes in the level or composition of NIPA final demand, NIPA final demand categories must be converted to equivalent I -o final use categories. That is to say, the analysis should be consistent with I -o final use commodities that are valued at producers' prices for the I -o year, with separate entries for transportation costs and trade margins.
Table C shows the I-O commodity composition in 1987 of each NIPA category of final demand

Table F.-Relation of Exports and Imports in the InputOutput Accounts to the National Income and Product Accounts, 1987 Benchmark

[Milions of dollars]

	1987
Exports of goods and services, NIPA ..	363,952
Less: U.S. merchandise returned ...	6,781
Reexports	8,875
Plus: Statistical revisions, BPA ..	276
Equals: Exports of goods and services, 1-0	348,572
Imports of goods and services, NIPA	507,050
Less: U.S. merchandise returned	6,781
Reexports ...	8,875
Plus: Statistical revisions, BPA ..	-952
Equals: Imports of goods and services, 1-0	490,442

NIPA National income and product accounts
BPA Balance of payments accounts
1-O input-output accounts
in producers' and purchasers' prices. It provides a bridge between $\mathrm{I}-\mathrm{o}$ commodities in producers' prices and NIPA final demand categories in purchasers' prices. For each I-O commodity within a category of NIPA final demand, the table shows the transportation costs and trade margins included in the purchasers' prices.

Table D shows the I-O commodity composition in 1987 of each NIPA category of personal consumption expenditures (NIPA table 2.4) in producers' and purchasers' prices. It provides a bridge between I-O commodities in producers' prices and NIPA personal consumption categories in purchasers' prices. For each I-O commodity within a nipa category, the table shows the transportation costs and trade margins included in the purchasers' prices.
Table E shows the I-O commodity composition in 1987 of each NIPA category of producers' durable equipment purchases (NIPA table 5.8) in producers' and purchasers' prices. It provides a bridge between I-O commodities in producers' prices and NIPA producers' durable equipment categories in purchasers' prices. For each commodity, the table shows the transportation costs and trade margins included in the purchasers' prices. This table is useful for analyses relating the effects of changes in investment on industry and commodity output.

Table F reconciles the I-o estimates of exports and imports of goods and services with those in the nipa's. The same adjustments are made for both exports and imports; therefore, there is no net effect on total GDP. The adjustments are necessary because the NIPA's-unlike the I-O accounts-include in imports the U.S. merchandise that is returned to the United States from other countries and in exports the foreign merchandise that is reexported from the United States to other countries. ${ }^{21}$ The nipa's also exclude definitional and statistical revisions to the balance of payments accounts between NIPA comprehensive revisions.

Appendixes A and B and tables 1 and 2 follow.

[^35]
Appendix A.-Chronological List of Selected Survey of Current Business Input-Output Articles

1. Morris R. Goldman, Martin L. Marimont, and Beatrice N. Vaccara, "The Interindustry Structure of the United States: A Report on the 1958 Input-Output Study," November 1964.
2. "Industrial Impact of the 1966 Housing and Commercial Building Decline," November 1966.
3. "Input-Output Structure of the U.S. Economy: 1963," November 1969.
4. Allan H. Young and Claiborne M. Ball, "Industrial Impacts of Residential Construction and Mobile Home Production," October 1970.
5. Beatrice N. Vaccara, "An Input-Output Method for Long-Range Economic Projections," July 1971, Part I.
6. Philip M. Ritz and Eugene P. Roberts, "Industry Inventory Requirements: An Input-Output Analysis," November 1973.
7. "The Input-Output Structure of the U.S. Economy: 1967," February 1974.
8. Irving Stern, "Industry Effects of Government Expenditures: An Input-Output Analysis," May 1975.
9. Philip M. Ritz, "The Input-Output Structure of the U.S. Economy, 1972," February 1979.
10. Philip M. Ritz, Eugene P. Roberts, and Paula C. Young, "Dollar-Value Tables for the 1972 Input-Output Study," April 1979.
11. "The Input-Output Structure of the U.S. Economy, 1977," May 1984.
12. "Benchmark Input-Output Accounts for the U.S. Economy, 1982," July 1991.
13. "Annual Input-Output Accounts of the U.S. Economy, 1987," April 1992.

Appendix B.-Industry Classification of the 1987 Benchmark Input-Output Accounts

[The titles in boldface represent the industries used for the summary version of the 1987 tables. An asterisk preceding an sic code indicates that the sIC industry is included in more than one I-O industry. For a description of the systems used in the I-O accounts, see the section "Definitions and conventions for classification."]

	I-0 industry number and title	Related 1987 SIC Codes		1-0 industry number and title	$\begin{aligned} & \text { Related } 1987 \text { SIC } \\ & \text { codes } \end{aligned}$
1	AGRICULTURE, FORESTRY, AND FISHERIES	024, *019, "0259, *029 0251-3, "0259, *019, *0219, "029 0211-4, *0219, *019, "0259, "029 0271-3, "0279, "019, *0219, *0259, *029	14	Food and kindred products:	
				14.0101 Meat packing plants ...	2011
	Livestock and livestock products:			14.0102 Sausages and other prepared meat products	2013
	1.0100 Dairy farm products			14.0105 Poultry slaughtering and processing	2015
	1.0200 Poultry and eggs ...			14.0200 Creamery butter ..	2021
				14.0300 Natural, processed, and imitation cheese	2022
	1.0301 Meat animals ..			14.0400 Dry, condensed, and evaporated dairy products	2023
				14.0500 Ice cream and frozen desserts	2024
	1.0302 Miscellaneous livestock ..			14.0600 Fluid milk ..	2026
				14.0700 Canned and cured fish and seatoods	2091
2	Other agricultural products:			14.0800 Canned speciaties ..	2032
	2.0100 Cotton	$\begin{aligned} & 0131, * 019, * 0219, \\ & \\ & \end{aligned}$		14.0900 Canned fruits, vegetables, preserves, jams, and	2033
				14.1100 Pickles, sauces, and salad dressings	2034 2035
	2.0201 Food grains ..	*011, *019, *0219, *0259, "029		14.1200 Prepared fresh or frozen fish and seatoods	2092
				14.1301 Frozen fruits, fruit juices, and vegetables	2037
	2.0202 Feed grains ...	*011, "0139, "019, *0219, "0259, "029		14.1302 Frozen specialties, n.e.c. ..	2038
	2.0203 Grass seeds ...	*0139, *019, *0219, *0259, *029		14.1401 Flour and other grain mill products \qquad 14.1402 Cereal breaklast foods	2041
				14.1403 Prepared flour mixes and doughs	2045
	2.0300 Tobacco ..	0132, *019, "0219, *0259, "029		14.1501 Dog and cat food ...	2047
	2.0401 Fruits	0171-2, 0174-5, "0179, "019, *0219,		14.1502 Prepared feeds, n.e.c. ...	2048
				14.1600 Rice milling 14.1700 Wet corn milling	2046
	2.0402 Tr	0173, "0179, "019, *0219, "0259, "028		14.1801 Bread, cake, and related products	2051, *546
				14.1802 Cookies and crackers	2052
	2.0501 Vegetables	0134, "0139, 016, *019, *0219, *0259,		14.1803 Frozen bakery products, except bread	${ }_{2061-3}^{2053}$
				14.2001 Candy and other confectionery products	2064
		*029, "0119 0133, "019, "0219,		14.2002 Chocolate and cocoa products	2066
	2.0502	0133, "019, *0219,		14.2003 Chewing gum	2067
	2.0503 Miscellaneous crops	*0119, "0139, "019, *0219, "0259, "029		14.2004 Salied and roasted nuts and seeds	2068
				14.2102 Malt	2083
	2.0600 Oil bearing crops	0116, *0119, ${ }^{*} 0139$${ }^{* 0219, ~} 0259,{ }^{*} 029$		14.2103 Wines, brandy, and brandy spirits	2084
	2.0701 Forest products			14.2104 Distilled and blended liquors	2085
		*0219, "0259, ${ }^{\text {²0 }} 029$		14.2200 Bottled and canned soft drinks	2086
	2.0702 Greenhouse and nursery products	*018, "019, "0219, *0259, *029		14.2300 Flavoring extracts and flavoring syrups, n.e.c.	2087
				14.2400 Cottonseed oil mills ..	2074
3	Forestry and fishery products:	081, 083, 097		14.2500 Soybean oin mills	2075
3				14.2700 Animal and marine fats and oils	2077
				14.2800 Animasted coffee	2095
	3.0002 Commercial fishing ...			14.2800 Roaste cotiee fond........	2079
4	Agricultural, forestry, and fishery services: 4.0001 Agricultural, forestry, and fishery services	$\begin{aligned} & 0254, * 0279,071-2, \\ & 075-6,085,092 \\ & 078 \end{aligned}$		14.3000 Manufactured ice	2097
				14.3100 Macaroni, spaghetti, vermicelli, and noodles	2098
				14.3201 Potato chips and similar snacks	2096
	4.0002 Landscape and horticultural services			14.3202 Food preparations, n.e.c. ...	2099
	Mining		55	Tobacco products:	
$5+6$				15.0101 Cigarettes ..	211
	Metallic ores mining:	$\begin{aligned} & 101,106 \\ & 102, \\ & 103-4,109,{ }^{*} 108 \end{aligned}$		15.0102 Cigars ..	212
	5.0000 lron and terroalloy ores ...			15.0103 Chewing and smoking tobacco and snuff	213
	6.0100 Copper ore ..			15.0200 Tobacco stemming and redrying	214
	6.0200 Nonferrous metai ores, except copper		16	Broad and narrow tabrics, yarn and thread mills: 16.0100 Broadwoven fabric mills and fabric finishing plants \qquad	
7	Coal mining: 7.0000 Coal	122-3, *124			221-3, 2261-2
				16.0200 Narrow fabric mills ..	
				16.0300 Yarn mills and finishing of textiles, n.e.C.	2269, 2281-2
8	Crude petroleum and naturai gas: 8.0000 Crude petroleum and natural gas	131-2, *138		16.0400 Thread mills ...	2284
$9+10$	Nonmetallic minerals mining:		17	Miscellaneous textile goods and floor coverings: 17.0100 Carpets and rugs \qquad	
					227
	9.0001 Dimension, crushed and broken stone	141-2		17.06700 Coated fabrics, not rubberized	2295
	9.0002 Sand and gravel	144		17.0700 Tire cord and fabrics ..	2296
	9.0003 Clay, ceramic, and refractory minerals	145		17.0900 Cordage and twine ..	2298
	9.0004 Nonmetallic mineral services and miscellaneous minerals	*148, 149		17.1001 Nonwoven fabrics ..	2297
	10.0000 Chemical and fertilizer minerals	147		17.1100 Textile goods, n.e.c. ...	2299
11+12	CONSTRUCTION		18	Apparel:	
	Construction:			18.0101 Women's hosiery, except socks	2251
	11.0000 New and maintenance and repair	15-17,6552		18.0201 Knit outerwear milis	2253
	11.0601 Petroleum and natural gas well driling			18.0202 Knit underwear and nightwear mills ...	2254
	11.0602 Petroleum, natural gas, and solid mineral exploration	*138, *108, *124, *148		18.0203 Knitting mills, n.e.c. ...	2259
	11.0603 Access structures for solid mineral development	**108, *124, "148			2257-8
	12.0215 weils. Maintenance and repair of petroleum and natural gas	*138		18.0400 Apparel made from purchased materials	231-8, *3999
13			19	Miscellaneous fabricated textile products:	
	MANUFACTURING			19.0100 Curtains and draperies ..	2391
	Ordnance and accessories:			19.0200 Housefurnishings, n.e.c. ...	2392
				19.0301 Textile bags ..	2393
	13.0200 Ammunition, except for small arms, n.e.c.	3483		19.0302 19.0303 Pleanvas and related products	2394
	13.0300 Tanks and tank components ..	3795		19.0304 Automotive and apparel trimmings ...	2396
	13.0500 Small arms ...	3484		19.0305 Schiffli machine embroideries ...	2397
	13.0600 Small arms ammunition.	3482		19.0306 Fabricated textile products, n.e.c. ..	2399

Appendix B.-Industry Classification of the 1987 Benchmark Input-Output Accounts-Continued

	1-0 industry number and title	Related 1987 SIC codes		1-O industry number and tite	Related 1987 SIC codes
20+21	Lumber and wood products:	241	31	Petroleum refining and related products: 31.0101 Petroleum refining \qquad	291
	20.0200 Sawmills and planing mills, general	2421		31.0102 Lubricating oils and greases	2992
	20.0300 Hardwood dimension and fiooring mills	2426		31.0103 Products of petroleum and coal, n.e.c.	2999
	20.0400 Special product sawmills, n.e.c.	2429		31.0200 Asphalt paving mixtures and blocks	2951
	20.0501 Millwork ..	2431		31.0300 Asphalt felts and coatings ..	2952
	20.0502 Wood kitchen cabinets ...	2434			
	20.0600 Veneer and plywood	2435-6	32	Rubber and miscellaneous plastics products:	
	20.0701 Structural wood members, n.e.c.	2439		32.0100 Tires and inner tubes	301
	20.0702 Prefabricated wood buildings and components	2452		32.0200 Rubber and plastics footwear	302
	20.0703 Mobile homes	2451		32.0300 Fabricated rubber products, n.e.c.	306
	20.0800 Wood preserving	2491		32.0400 Miscellaneous plastics products, n.e.c.	308
	20.0901 Wood pallets and skids	2448		32.0500 Rubber and plastics hose and betting	3052
	20.0903 Wood products, n.e.c. ...	2499		32.0600 Gaskets, packing, and sealing devices	3053
	20.0904 Reconstituted wood products	2493			
	21.0000 Wood containers, n.e.c. ...	2441, 2449	33+34	Footwear, leather, and leather products: 33.0001 Leather tanning and finishing	311
22+23	Furniture and fixtures:			34.0100 Boot and shoe cut stock and findings	313
	22.0101 Wood household furniture, except upholstered	2511		34.0201 Shoes, except rubber ...	3143-4, 3149
	22.0102 Household furniture, n.e.c. ..	2519		34.0202 House slippers ..	3142 315
	22.0103 Wood television and radio cabinets	2517		34.0301 Leather gloves and mitens	316
	22.0200 Upholstered household furniture	2512		34.0303 Women's handbags and purses	3171
	22.0400 Mattresses and bedsprings ...	2515		34.0304 Personal leather goods, n.e.c.	3172
	23.0100 Wood office furniture	2521		34.0305 Leather goods, n.e.c. ...	319
	23.0200 Office furniture, except wood	2522			
	23.0300 Public building and related furniture	253	35	35.0100 Glass and glass products, except containers	321, 3229, 323
	23.0400 Wood partitions and fixtures \qquad 23.0500 Paritions and fixtures, except wood \qquad	2542		35.0200 Glass containers ...	3221
	23.0600 Drapery hardware and window blinds and shades	2591			
	23.0700 Furniture and fixtures, n.e.c.	2599	36	Stone and clay products:	
24	Paper and allied products, except containers:			36.0200 Brick and structural clay tile ..	3251
		261		36.0300 Ceramic wall and floor tile	3253
	24.0400 Envelopes ...	2677			3259
	24.0500 Sanitary paper products	2676		36.0600 Vitreous china plumbing fixtures	3261
	24.0701 Paper coating and glazing	2671-2		36.0701 Vitreous china table and kitchenware	3262
	24.0702 Bags, except texile ..	2673-4		36.0702 Fine earthenware table and kitchenware....	3263
	24.0703 Die-cut paper and paperboard and cardboard	2675		36.0800 Porcelain electrical supplies ...	3264
	24.0705 Stationery, lablets, and related products	2678		36.0900 Pottery products, n.e.c.	3269
	24.0706 Converted paper products, n.e.c. ...	262-3		36.1000 Concrete block and brick	3271
25	24.060 - Paper and paperboar				$\begin{aligned} & 3272 \\ & 3073 \end{aligned}$
	Paperboard containers and boxes:25.0000 Paperboard containers and boxes			36.1300 Lime	3274
		265		36.1400 Gypsum products	3275
26A	Newspapers and periodicals:			36.1500 Cut stone and stone products	328
				36.1600 Abrasive products ..	3291
	26.0100 Newspapers ..	271		36.1700 Asbestos products	3292
	26.0200 Periodicals ..	272		36.1900 Minerals, ground or treated	3295
26B	Other printing and publishing:			36.2000 Mineral wool	3296
	26.0301 Book publishing	2731		36.2100 Nonclay refractories	3297
	26.0302 Book printing ...	2732		36.2200 Nonmetalic mineral products, n.e.	3299
	26.0400 Miscellaneous publishing ...	274	37	Primary iron and steel manufacturing:	
	26.0501 Commercial printing	275		37.0101 Blast furnaces and steel mills	3312
	26.0601 Manifold business forms ...	276		37.0102 Electrometalurgical products, except steel ...	3313
	26.0602 Biankbooks, looseleat binders and devices	2782		37.0103 Steel wiredrawing and steel nais and spikes	3315
	${ }_{26}^{26.0700}$ Greeting cards Bookbinding and relate..	2789		37.0104 Cold-rolled steel sheet, strip, and bars	3316
	26.0803 Typesetting	2791		37.0105 Steel pipe and tubes,	3317
	26.0806 Platemaking and related services	2796		37.0300 Iron and steel foundries	3322
				37.0401 Melal heat treating ...	3398
27A	Industrial and other chemicals:			37.0402 Primary metal products, n.e.c. ...	3399
	27.0100 Industrial inorganic and organic chemicals	$\begin{aligned} & 281 \text { (excl. "2819), } \\ & 2865,2869 \end{aligned}$	38	Primary nonferrous metals manufacturing:	3ss
	27.0401 Gum and wood chemicals ...	2861		38.0100 Primary smelting and refining of copper	3331
	27.0402 Adhesives and sealants ...	2891		38.0400 Primary aluminum ..	3334, "2819
	27.0403 Explosives ..	2892		38.0501 Primary nonferrous metals, n.e.c.	3339
	27.0404 Printing ink ...	2893		38.0600 Secondary nonferrous metals	334
	27.0445 Carbon black ...	2895		38.0700 Rolling, drawing, and extruding of copper	3351
	27.0406 Chemicals and chemical preparations, n.e.c.	2899		38.0800 Aluminum rolling and drawing	3353-5
278	Agricultural fertilizers and chemicals:			38.0900 Nonferrous rolling and drawing, n.e.c.	3356
	27.0201 Nitrogenous and phosphatic fertilizers			38.1000 Nonferrous wiredrawing and insulating	3357
	27.0202 Fertilizers, mixing only ..	2875		38.1100 Aluminum castings	3363, 3365
	27.0300 Pesticides and agricutural chemicals, n.e.c.	2879		${ }_{38.1300}{ }^{38.1200}$ Copper foundries ..	${ }_{3364}^{3366} 3369$
	Plastics and synthetic materials:			38.1400 Nonferrous forgings ..	3463
28	28.0100 Plastics materials and resins				
		2822	39	Metal containers:	
	28.0300 Cellulosic manmade fibers	2823		39.0200 Metal shipping barrels, drums, kegs, and	3412
	28.0400 Manmade organic fibers, except cellulosic	2824		39.0200 Melal shipping barrels, drums, kegs, and pais	
			40	Heating, plumbing, and fabricated structural metal products:	
29 A	Drugs: 29.0100 Drugs	283		40.0100 Enameled iron and metal sanitary ware	3431
		283		 40.0300 Heating equipment, except electric and warm air	$\begin{aligned} & 3432 \\ & 3433 \end{aligned}$
298	Cleaning and toilet preparations:			furnaces.	
	29.0201 Soap and other detergents	2841		40.0400 Fabricated structural metal	3441
	29.0202 Polishes and sanitation goods	2842		40.0500 Metal doors, sash, frames, molding, and trim	3442
	29.0203 Surface active agents ...	2843		40.0600 Fabricated plate work (boiler shops)	3443
	29.0300 Toilet preparations ..	2844		40.0700 Sheet metal work ...	3444
				40.0800 Architectural and ornamental metal work	3446
30	Paints and allied products:30.0000 Paints and allied products			40.0901 Prefabricated metal buildings and components	3448
		285		40.0902 Miscellaneous structural metal work	3449

Appendix B.-Industry Classification of the 1987 Benchmark Input-Output Accounts-Continued

	1-O industry number and title	$\begin{aligned} & \text { Related } 1987 \text { SIC } \\ & \text { codes } \end{aligned}$		H-O industry number and tite	Related 1987 SIC codes
41	Screw machine products and stampings:	$\begin{aligned} & 3451-2 \\ & 3465 \\ & 3466 \\ & 3469 \end{aligned}$	55	54.0400 Electric housewares and fans	3634
	41.0100 Screw machine products, bolts, etc.			54.0500 Household vacuum cleaners ...	3635
	41.0201 Automotive stampings ...			54.0700 Household appliances, n.e.c. ...	3639
	41.0202 Crowns and closures				
	41.0203 Metal stampings, n.e.c. ..			Electric lighting and wiring equipment: 550100 Electric lamp bulbe and tubes	
42	Other fabricated metal products: 42.0100 Cutiery \qquad 42.0201 Hand and edge tools, except machine tools and handsaws.			55.0100 Electric lamp bulbs and tubes 55.0200 Lighting fixtures and equipment \qquad	$\begin{aligned} & 3641 \\ & 3645-8 \end{aligned}$
		$\begin{aligned} & 3421 \\ & 3423 \end{aligned}$		55.0300 Wring devices ..	3643-4
			56	Audio, video, and communication equipment:	
	42.0202 Saw blades and handsaws	3425		56.0100 Household audio and video equipment	3651
	42.0300 Hardware, n.e.c.	3429		56.0200 Prerecorded records and tapes	${ }_{3651}$
	42.0401 Plating and polishing	3471		56.0300 Telephone and telegraph apparatus	
	42.0402 Coating, engraving, and allied services, n.e.c.	3479		56.0500 Communication equipment	3663, 3669
	42.0500 42.0700 Miscellaneous fabricated wire products Steel springs except wire	$3495-6$ 3493	57	Electronic components and accessories:	
	42.0800 Pipe, valves, and pipe fittings ...	3491-2, 3494, 3498		57.0100 Electron tubes	3671
	42.1000 Melal foil and leaf ..	$3497{ }^{\text {a }}$		57.0200 Semiconductors and related devices	3674
	42.1100 Fabricated metal products, n..	3499		57.0300 Other electronic components	3672, 3675-9
43	Engines and turbines: 43.0100 Turbines and turbine generator sets \qquad 43.0200 Internal combustion engines, n.e.c. \qquad	$\begin{aligned} & 3511 \\ & 3519 \end{aligned}$	58	Miscellaneous electrical machinery and supplies:	
				58.0100 Storage batteries ..	3691
				58.0400 Electrical equipment for internal combustion engines	3694
44+45	Farm, construction, and mining machinery: 44.0001 Farm machinery and equipment \qquad 44.0002 Lawn and garden equipment \qquad 45.0100 Construction machinery and equipment 45.0300 Oil and gas field machinery and equipment \qquad			58.0600 Magnetic and optical recording media	3695
		3523		58.0700 Electrical machinery, equipment, and supplies, n.e.c.	3699
		3524	59A	Motor vehicles (passenger cars and trucks):	
		3531		59.0301 Motor vehicles and passenger car bodies	3711
		3533	598	Truck and bus bodies, trailers, and motor vehicles parts:	3713
46	Materials handling machinery and equipment:			59.0200 Truck trailers	3715
	46.0100 Elevators and moving staiways	3534		59.0302 Motor vehicle parts and accessories	3714
	46.0400 Industrial trucks and tractors..	3537		60.0100 Aircraft	3721
47	Metalworking machinery and equipment:			60.0200 Aircraft and missile engines and engine parts	3724, 3764
				60.0400 Aircraft and missile equipment, n.e.c.	3728, 3769
	47.0100 Machine tools, metal cutting types	3541			
	47.0200 Machine tools, metal forming types	3542	61	Other transportation equipment:	
	47.0300 Special dies and tools and machine tool accessories	3544-5		61.0100 Ship building and repairing	3731
	47.0401 Power-driven handtools ..	3546		61.0200 Boat building and repairing	3732
	47.0402 Rolling mill machinery and equipment	3547		61.0300 Railroad equipment	374
	47.0404 Electric and gas welding and soldering equipment	3548		61.0500 Motorcycles, bicycles, and parts	375
	47.0405 Industrial patterns	3543		61.0601 Travel traiers and campers	3792
	47.0500 Metalworking machinery, n.e.c.	3549		61.0603 Motor homes	$\begin{aligned} & 3716 \\ & 3799 \end{aligned}$
48	Special industry machinery and equipment:				
	48.0100 Food products machinery ..	3556	62	Scientitic and controliing instruments:	
	48.0200 Textile machinery ...	3552		62.0101 Search and navigation equipment	381
	48.0300 Woodworking machinery ...	3553		62.0102 Laboratory apparatus and furniture	
	48.0400 Paper industries machinery	3554		62.0200 Mechanical measuring devices	3823-4, 3829
	48.0500 Printing trades machinery and equipment	3555		62.0300 Environmental controls	3822
	48.0600 Special industry machinery, n.e.c.	3559		62.0400 Surgical and medical instruments and apparatus 62.0500 Surgical appliances and supplies	$\begin{aligned} & 3841 \\ & 3849 \end{aligned}$
49	General industrial machinery and equipment:			62.0600 Dental equipment and supplies ..	3843
		3561, 3563		62.0700 Watches, clocks, watchcases, and parts ...	387
	49.0200 Ball and roller bearings ...	3562		62.0800 X -ray apparatus and tubes	3844
	49.0300 Blowers and fans	3564		62.0900 Electromedical and electrotherapeutic apparatus ...	3845
	49.0500 Mechanical power transmission equipment	3566, 3568		62.1000 Laboratory and optical instruments	3826-7
	49.0600 Industrial process furnaces and ovens	3567		62.1100 Instruments to measure electricity	3825
	49.0700 General indusirial machinery and equipment, n.e.c. .	3569	63	Ophthalmic and photographic equipment:	
	49.0800 Packaging machinery ...	3565		63.0200 Ophthalmic goods ..	385
50	Miscellaneous machinery, except electrical:			63.0300 Photographic equipment and supplies	386
	50.0100 Carburetors, pistons, rings, and valves	3592			
	50.0200 Fluid power equipment ..	3593-4	64	Miscellaneous manufacturing:	
	50.0300 Scales and balances, except laboratory	3596		64.0101 Jewerry, precious metal	3911
	50.0400 Industrial and commercial machinery and equipment,	3599		64.0102 Jewelers' materials and lapidary work 64.0104 Silverware and plated ware \qquad	3915 3914
				64.0105 Costume jewerry ..	3961
51	Computer and office equipment:			64.0200 Musical instruments	393
	51.0102 Calculating and accounting machines	3578		64.0301 Games, toys, and children's vehicles	3944
	51.0103 Electronic computers ...	3571		64.0302 Dolls and stuffed toys	3942
	51.0104 Computer peripheral equipment	3572, 3575, 3577		64.0400 Sporting and athletic goods, n.e.c.	3949
	51.0400 Office machines, n.e.c. ...	3579		64.0501 Pens, mechanical pencils, and parts	3951
				64.0502 Lead pencils and art goods	3952
52	Service industry machinery:			64.0503 Marking devices	3953
	52.0100 Automatic vending machines	3581		64.0504 Carbon paper and inked ribbons	3955
	52.0200 Commercial laundry equipment	3582		64.0700 Fasteners, butions, needles, and pins	3965
	52.0300 Refrigeration and heating equipment	3585		64.0800 Brooms and brushes	3991
	52.0400 Measuring and dispensing pumps	3586		64.0900 Hard surface floor coverings, n.e.c.	3996
	52.0500 Service industry machinery, n.e.c.	3589		64.1000 Burial caskets	3995
	Electrical industrial equipment and apparatus:			64.1100 Signs and advertising specialties	3993
53		3612		64.1200 Manufacturing industries, n.e.c.	*3999
	53.0300 Switchgear and switchboard apparatus	3613		TRANSPORTATION, COMMUNICATIONS, AND UTILITIES	
	53.0400 Motors and generators ..	3621			
	53.0500 Relays and industrial controls	3625	65A	Railroads and related services; passenger ground	
	53.0700 Carbon and graphite products	3624		transportation:	
	53.0800 Electrical industrial apparatus, n.e.c.	3629		65.0100 Railroads and related services	40, 474, *4789
54	Household appliances:			65.0200 Local and suburban transit and interurban highway passenger transportation.	
	54.0100 Household cooking equipment	3631			
	54.0200 Household refrigerators and freezers	3632	65B	Motor freight transportation and warehousing:	
	54.0300 Household laundry equipment	3633		65.0300 Motor freight transportation and warehousing	42, *4789

Appendix B.-Industry Classification of the 1987 Benchmark Input-Output Accounts-Continued

	1-0 industry number and titte	Related 1987 SIC codes		1-0 industry number and title	Related 1987 SIC codes
65 C	Water transporiation: 65.0400 Water transportation	44	75	Automotive repair and services: 75.0001 Automotive rental and leasing, without drivers 75.0002 Automotive repair shops and services \qquad	$\begin{aligned} & 751 \\ & 753,7549 \end{aligned}$
65D	Air transportation: 65.0500 Air transportation	45		75.0003 Automobile parking and car washes	752, 7542
$65 E$	Pipelines, freight forwarders, and related services: 65.0600 Pipelines, except natural gas \qquad 65.0701 Freight forwarders and other transportation services 65.0702 Arrangement of passenger transportation \qquad	$\begin{aligned} & 46 \\ & 473,4783,4785, \\ & =4789 \end{aligned}$	76	Amusements: 76.0101 Mation picture sewices and theater	
				76.0102 Video tape rental	784
				76.0201 Theatrical producers (except motion picture), bands, orchestras and entertainers.	792
				76.0202 Bowling centers ..	793
66	Communications, except radio and TV: 66.0000 Communications, except radio and TV \qquad	481-2, 484, 489		76.0203 Professional sports clubs and promoters	7941
				76.0205 Physical fitness facilities and membership sports and	7991, 7997
67	Radio and TV broadcasting: 67.0000 Radio and TV broadcasting	483		76.0206 Other amusement and recreation services	$\begin{gathered} 791,7992-3,7996, \\ 7999 \end{gathered}$
68A	Electric services (utilities): 68.0100 Electric services (utilities) \qquad	491, *493	77A	Health services:	
68B	Gas production and distribution (utilities): 68.0200 Gas production and distribution (utilities) \qquad	492, *493		77.0100 77.0200 Hoctors and dentis	$801-3,8041$ 806
				77.0301 Nursing and personal care facilities	
68 C	Water and sanitary services: 68.0301 Water supply and sewerage systems \qquad 68.0302 Sanitary services, steam supply, and irrigation systems	$\begin{aligned} & 494,4952 \\ & 4953,4959,496-7, \\ & =493 \end{aligned}$		77.0302 Other medical and health services, including veterinarians.	$\begin{gathered} 000,8043,8049, \\ 007-9 \\ 807 \end{gathered}$
			77B	Educational and social services, and membership organizations:	
				77.0401 Elementary and secondary schools	821
	WHOLESALE AND RETAIL TRADE			${ }_{77}^{77.0402}$ Colleges, universities, and professional schools	$\begin{aligned} & 822 \\ & 823-4,829 \end{aligned}$
69A	Wholesale trade: 69.0100 Wholesale trade	50, 51		senvices, n.e.c. 77.0501 Business associations and professional membership	861-2
698	Retail trade: 69.0200 Retail trade, except eating and drinking	$\begin{aligned} & 52-7 \text { (excl. *546), 59, } \\ & 77389,8042 \end{aligned}$		associations.	
				77.0503 Religious organizations	
	FINANCE, INSURANCE, AND REAL ESTATE			77.0504 Other membership organizations	${ }_{64,} 865,869,8733,$
				77.0600 Job training and related services	
70A	Finance:			77.0700 Child day care sevvices	835
	70.0100 Banking	$\begin{aligned} & 61,67 \text { (excl. 6732) } \\ & 62 \end{aligned}$		77.0800 Residential care	
	70.0200 Credit agencies other than banks			77.0900 Social services, n.e.c. ...	832, 839
	70.0300 Security and commodity brokers			GOVERNMENT ENTERPRISES	
70B	Insurance: 70.0400 Insurance carriers	6364	78	Federal Government enterprises:	
	70.0500 Insurance agents, brokers, and services			78.0100 U.S. Postal Service ..	43
71A	Owner-occupied dwellings: 71.0100 Owner-occupied dwellings \qquad			78.0200 Federal electric utilities	(1)
				78.0500 Other Federal Government enterprises	(1)
71B	Real estate and royalties: 71.0201 Real estate agents, managers, operators, and lessors .. 71.0202 Royalties \qquad	65 (excl. 6552)	79		(1) (1) (1)
	SERVICES			SPECIAL INDUSTRIES	
72A	Hotets and lodging places: 72.0100 Hotels and lodging places \qquad	70	80	Noncomparable imports: 80.0000 Noncomparable imports \qquad	${ }^{(2)}$
72B	Personal and repair services (except auto): 72.0201 Laundry, cleaning, garment services, and shoe repair 72.0202 Funeral service and crematories 72.0203 Portrait photographic studios, and other miscellaneous personal services. 72.0204 Electrical repair shops 72.0205 Watch, clock, jewelry, and furniture repair 72.0300 Beauty and barber shops ..	$\begin{aligned} & 721,725 \\ & 726 \\ & 722,729 \end{aligned}$	81	Scrap, used and secondhand goods: 81.0001 Scrap \qquad	()
				81.0002 Used and secondhand goods ...	(3)
			82		
			82	General government industry: 82.0000 General government industry	(4)
		763-4	83		
		723-4	83	83.0001 Rest of the world adjustment to final uses ...	(5)
73A	Computer and data processing services: 73.0104 Computer and data processing services	737	84	Household Industry: 84.0000 Household industry \qquad	(${ }^{(6)}$
73B	Legal, engineering, accounting, and related services: 73.0301 Legat services \qquad	81$\begin{aligned} & 871 \\ & 872,89 \end{aligned}$	85	Inventory valuation adjustment:	
	73.0302 Engineering, architectural, and surveying services..			85.0000 Inventory valuation adjustment	(')
	73.0303 Accounting, auditing and bookkeeping, and miscellaneous services, n.e.c.			VALUE ADDED	
73C	Other business and professional services, except medical: 73.0101 Miscellaneous repair shops \qquad 73.0102 Services to dwellings and other buildings \qquad 73.0103 Personnel supply services. \qquad 73.0105 Management and consulting services, testing and research labs. 73.0106 Detective and protective services \qquad 73.0107 Miscellaneous equipment rental and leasing 73.0108 Photofinishing labs and commercial photography 73.0109 Other business services \qquad	769734736$874,8731-2,8734$		88.0000 Compensation of employees	(8)
				89.0000 Indirect business tax and nontax liability	(8)
				90.0000 Other value added ..	$\left.{ }^{8}\right)$
				FINAL USES	
		7381-2		91.0000 Personal consumption expenditures	${ }^{9}$)
		735		92.0000 Gross privale fixed investment	(9)
		7384, 7335-6		93.0000 Change in business inventories	(9)
		732, 7383, 7389,		94.0000 Exports of goods and services	(9)
		7331, 7334, 7338		95.0000 Imports of goods and services	(9)
73D	Advertising: 73.0200 Advertising \qquad	73158		97.0000 Federal Government purchases, nondefense	(9)
				98.0001 State and local government purchases, elementary and	(9)
74	Eating and drinking places: 74.0000 Eating and drinking places			98condary public school systems.	(9)
				98.0002 state and local govermment purchases, pubic educational facilities beyond high school.	()

Appendix B.-Industry Classification of the 1987 Benchmark Input-Output Accounts-Continued

1. Although the SIC assigns the same codes to activities of both private firms and government agencies, SIC codes in the $1-0$ accounts are used only for classifying private activities.
2. Noncomparable imports include imported goods and services that are not commercially produced in the United States, and goods and services that are produced abroad and used abroad by U.S. residents-for example, defense spending abroad.
3. Industry output is zero because there is no primary producing industry. Scrap is a secondary product of many industries, and used goods are sales and purchases typically between final uses. The sales are shown as negative alues in the use table.
4. Industry output is defined as the compensation of general government employees except for those engaged
in construction work; their compensation is included in the construction industry. It also excludes the compensation of employees of government enterprises.
5. The commodity entries include adjustments to personal consumption expenditures and government purchases that eliminate items that are actually exports.
6. Industry output is defined as the compensation of domestic household workers
7. The inventory valuation adjustment converts the inventory changes based on withdrawals valued primarily at historical cost as reported by most businesses to replacement cost, the valuation used in the 1-0 accounts. 8. There are no related SIC codes since these categories are not industries, but are categories of income.
8. There are no related SIC codes since these categories are not industries, but are categories of final uses.

$\begin{aligned} & \text { İ } \\ & E \\ & E \\ & \text { E } \end{aligned}$	For the distribution of industries producing a commodity, read the column for that commodity For the distribution of commodities produced by an industry, read the row for that industry	$\begin{aligned} & \text { Livestack } \\ & \text { livestock } \\ & \text { products } \end{aligned}$	Other agricultural products	Forestry and fishery products	Agnicultural, forestry. and fishery services	Meialic ores mining	$\begin{gathered} \text { Cool } \\ \text { mining } \end{gathered}$	Crude petroleum and natural gasg	Nonmetallic minerals mining	New construction	Maintenance and repair construction
홀	Commodity number	1	2	3	4	$5+6$	7	8	$9+10$	11	12
		83,609		243							
2	r agricultur		82,183	,788	974						
3	Forestry and fishery products ..			456							
5+6					22,201						
$5+6$ 7	Metallic ores mining					6,800					
	Crude petro eum and natural gas ..							67,947			
11	Nonmetalic minerals mining								11,32		
${ }_{1}^{11+12}$	Construction \qquad Ordnance and accessories								……........	445,347	173,466
14	Food and kindred products.										
15	Tobacco products										
17 17	mills										
18	Apparel										
19	Miscellaneous fabricated textile products										
${ }_{2}^{20+21}$	Lumber and wood products										
$22+23$ 24	Furniture and lixiures										
25	Papertoard containers and boxes										
26 A	Newspapers and periodicals										
268	Other printing and publishing										
278 28	Agricultural feriilizers and chemical Plastics and synthetic materials..										
29 A	Drugs										
298	Cleaning and toiet preparations										
	Paints and allied products										
32	Petroleum refining and related products Rubber and miscellaneous plastics prod										
33+34	Footwear, leather, and leather products				${ }^{\text {.1................... }}$					
	Glass and glass products			
	Stone and clay products										
$\begin{aligned} & 37 \\ & 38 \end{aligned}$	Primary iron and steel manu										
	Metal contain										
40	Heating, plumbing, and fabricated structural meta										
	Screw machine products and stampings										
43	Other fabricated metal products										
	Engines and lurbines										
	Materials handing machinery and equipment										
	Metalworking machinery and equipment										
$\begin{aligned} & 48 \\ & 49 \end{aligned}$	Special industry machinery and equipment										
	Miscllaneous machinery except electrical										
	Computer and office equipment										
	Service industry machinery										
	Electrical industrial equipment and apparaus										
	Audio, video, and communication equipment										
	Miscellaneous electrical machinery and supp										
594	Motor vehicles (passenger cars and trucks)										
598	Truck and bus bodes, trailers, and motor vehicles parts						
	Other transportation equipment										
	Scientific and controling instruments ...										
	Ophithalmic and photographic equipment \qquad										
65A	Railroads and related senvices; passenger gro										
B	Motor treight transportation and warehousing ...										
	Water transporation										
	Air transporation .e..										
	Radio and TV broadcasting ..										
688	Gas production and distribution (utilities) ..										
68 C	Water and sanitary serrices ..										
69A	Wholesale trade ...										
70A	Retail trade ..										
708	Insurance										
714	Owner-occupied dwellings ..										
718	Real estate and royalties ..										
A	Hotels and lodging places....	.-.				${ }^{\text {................ }}$					
8	Personal and repair services (except auto)						
$7{ }_{73 \mathrm{~B}} 7$	Computer and data processing senvices Legal, engineering, accounting, and related services \qquad \qquad										
73 C	Oiner business and protessional services, except medical.										
730	Advertising										
	Eating and drinking places.										
75			\ldots				${ }^{\text {a }}$				
77A	Health senvices.										
778	Educational and social services, and membership organizations ..										
78	Federal Government enterprises \qquad State and local government enterprises										
	Househoid industry \qquad										
85	Inventory valuation adjustment										
	modily output ...	83,6	82,183				1	68,		7	468

'Less than $\$ 500,000$.
by Industries, 1987 Benchmark
at producers' prices]

Table 1.-The Make of Commodities
[Millions of dollars

$\begin{aligned} & \text { \$. } \\ & E \\ & E \\ & E \end{aligned}$	For the distribution of industries producing a commodity, read the column for that commodity For the distribution of commodities produced by an industry, read the row for that industry	Plastics synthetic synthetic material	Drugs	Cleaning and toilet preparations	$\left\{\begin{array}{c} \text { Paints and } \\ \text { alilied } \\ \text { products } \end{array}\right.$	Petroleum refining and related products	Rubber and miscellaneous plastics products	Foowear, leather, and leather products	$\begin{gathered} \text { Glass and } \\ \text { glass } \\ \text { products } \end{gathered}$	$\begin{aligned} & \text { Stone and } \\ & \text { clay } \\ & \text { croducts } \end{aligned}$	Primary iron and steel manufacturing
흔	Commodity number	28	29A	298	30	31	32	33+34	35	36	37
	Lives										
2	Other agricultural products					…….........				
3	Foresty and fishery products..........									
$5+6$											
	mining										
8	Crude petroleum and natural gas					162					
$\xrightarrow{9+10}$	Nonmetallic minerals mining Construction									299	4
$11+12$ 13	Ordance and accessories										
14	Food and kindred products		36				37	84			
15	Tobacco products .-........										
${ }_{1}^{16}$	Broad and narrow tabrics, yarn and itread	633					15				
18	Miscellaneous textile goods and floor coverings Apparel \qquad							42			
19	Miscellaneous fabricated textile products......			2			17	10			
$20+21$	Lumber and wood products						76		43	29	2
22+23	Furniture and fixtures		76		87		4
24	Paper and allied products, except containers ..- Papertoard containers and boxes			123			850				
26 A	Newspapers and periodicals						1				
${ }^{268}$							31	24			
${ }_{27 \mathrm{~B}}^{27 \mathrm{~A}}$		4.851 213	489 181 1				297				26
28	Plastics and synthetic materials.	36,104	71	72	31	3	686				
29 A	Orugs		34,447	$\begin{array}{r} 719 \end{array}$			21				
298 30	Cleaning and toilet preparations Paints and allied products	39 115	286	$\begin{array}{r} 30,826 \\ 21 \end{array}$	$\begin{array}{r} 37 \\ 11,832 \end{array}$		60 7				
31	Petroleum refining and related products.					132,214				100	
		232					82,604		39		5
									893		
36	Stone and clay products	4	11	50		115				42,323	
	Primary iron and steel manufacturing ...									15 38	65,015 494
39	Primary nonierrous metas manuiacturing \qquad										
40	Heating, plumbing, and	-					229				
41	Screw machine products and stampings										10
42	Other tabricated metal products ...	3					237			42	109 14
44+45	Earm, construction, and minining machi.i.i.e.ery										104
	Materials handling machinery and equipme										
4	Metalworking machinery and equipment.									28
	Special industry machinery and equipment										
50	General industrial machinery and equipment Miscellaneous machinery, except electrical										27 49
	Mismputer and office equipm									- ${ }^{4}$	17
	Service industry machinery						68				7
53	Electrical industrial equipment									
	Housesiold applances Electric lighting and wir	…..........							25	 133
	Audio, video, and communication equipment										
57 58	Electronic components and accessories \qquad Misce:laneous electrical machinery and suopolies										2
59 A	Motor vehicles (passenger cars and trucks) ..										
598	Truck and bus bodies, trailers, and motor vehicles parts										
	Aircrath and parts										
	$\begin{aligned} & \text { Oheren transporation equipe } \\ & \text { Scientific and controling instr } \end{aligned}$										1
	Ophthalmic and photographic equipment ..						78				
64	Miscellaneous manufacturing										7
65 B	Motor treight transportation and warehousing										
65 C	Water tansportaio										
${ }_{655}^{655}$	Air transportation -....................................										
656	Pipelines, treight forwarders, and related services Communications, except radio and TV										
	Radio and TV broadcasting										
68	Electric services (utilities)										
	Gas production and distribution (utitities)										
69	Whoer and sanitary sevice										
698	Retail trade										
70	Finance							\cdots		.-..............	
708	Insurance ...-				-(.a.a........	
71 B	OWner-occupied dwelings			${ }^{\text {a }}$							
A	Hotels and lodging places.....										
72	Personal and repair services (except auto)										
${ }_{73 \mathrm{~B}}^{73 \mathrm{~A}}$	Computer and data processing services										
${ }_{73 \mathrm{C}}$	and										
730	Advertising ..										
74	Eating and drinking places									
76	Automotive repair and sevices ...										
776	Amusements		
77 A											
	Educational and social services, and membership organizations Federal Government enterprises										
79	State and local government enterprises									33	
	General povernment industry ...										
${ }_{85}^{84}$	Household industry \qquad										
	Total commodily output	43,407	35,862	32,872	12,183	137,599	86,851	8,7	16,335	43,340	66,2

'Less than $\$ 500,000$.
by Industries, 1987 Benchmark-Continued
at producers' prices

Primary honferrous metals manulacturing	Metal containers	Heating, plumbing, and fabricated structural metal products	Screw machine products and stampings	Other fabricated metal products	Engines and turbines	Farm, construction, and mining machinery	Materials handling machinery and equipment	Metalworking machinery and equipment	Special industry machinery and equipment	General industrial machinery and equipment	Miscellianeous machinery, except electrical	$\left\lvert\, \begin{gathered} \text { Computer and } \\ \text { office } \\ \text { equipment } \end{gathered}\right.$	Service industry machinery	
38	39	40	41	42	43	44+45	46	47	48	49	50	51	52	=
								5+6
7														7
									…..........................		1		-88
		,-..........................	\cdots	.-............................			11+12
 3	12				10				18			2	13 14
								${ }_{\text {.................... }}$			15
\cdots		\cdots	16
					…...............						17 18
				24		…….......... 1			7				18
				23				-................................		1	$20+21$
										3			14 2	$\begin{array}{r}22+23 \\ \hline 24\end{array}$
	\cdots	….................	1	3									25
+..................... 74	91	…..............				4		\cdots		\cdots	26A
78	29	12	3				10	24	4			3	27 A
....	3	…...............				28
				1									1	29A
							2					9	98
								1	..	.		30 31
62	14	108	83	164		17		329	23	26			33	32
1		……............	2		\ldots			
		2	10	14	...		1	62					5	35 36
		81	26	1,818		30		176		51	4	37	13	37
54,561	\ldots	76 5	55	173	180		10	2	${ }^{\text {an*.............. }}$	13	38
	5	42,018	169	410										40
11	30	111	30,298	162			2	616	23	41	36		4	41
94		229	159	41,845	1286		18	147	33	164	159	10	36	42
							\cdots	42		35	64			43
	\cdots					25,219		108		106	93			44+45
		40		23 131			6,839 23	19 19.849		$\begin{array}{r}55 \\ 138 \\ \hline\end{array}$	$\begin{array}{r}20 \\ 144 \\ \hline\end{array}$		13	46
	…............................	44	5	90					15,331	188	51		110	48
17		126	28	152	106	147	54	55	208	21,625	182		127	49
11		47	29	399		16	21	106	29		18,546		12	50
			24		47	30	29	51.717		51
		164		58						21		20,906	52
	\cdots		23 36	35										53
		10		109	….....................									55
			3	12									56
54			22	95						6	1,711		57
253		${ }^{8}$	10				15	81	3	58
44		$\begin{array}{r}8 \\ 54 \\ \hline\end{array}$	438 105						7					59A
		51	17	110	440		47			16	45	11		60
		52	2	9			3				14			61
9		27	12	180	35		26	14	70		32	260		
					.		.					303		63
5		14	18	104							4		2	64
														65 B
														65 C
														650
														65E
														66
			.											67
…....................													89
														8 C
			…...............										69 A
														698
...												70A
........................									70 B
........................									1 A
														72 B
													2A
										73 A
														73 B
														73 C
-.......................		730
........................		74
			75
														77
							-............................						778
														78
														79
							${ }^{\text {................... }}$					84
									85
55,746	11,739	43,686	31,826	47,022	14,394	28,005	7,376	22,051	16,411	23,221	19,855	54,431	21,746	

Table 1.-The Make of Commodities
[Millions of dollars

$\begin{aligned} & \text { Ì } \\ & E \\ & E \\ & \vdots \\ & \hline \end{aligned}$	For the distribution of industries producing a commodity, read the column for that commodity For the distribution of commodities produced by an industry, read the row for that industry	Electrical industrial equipment and apparatus	Household appliances	$\begin{aligned} & \text { Electric } \\ & \text { lighting } \\ & \text { and wiring } \\ & \text { equipment } \end{aligned}$	Audio, video, and communication equipment	Electronic and accessories	Miscellaneous electrical machinery and supplies	Motor vehicles (passenger cars and trucks)	Truck and bus bodies. trailers, and motor vehicles parts	Aircraft and parts	$\left.\begin{gathered} \text { Other } \\ \text { transpor- } \\ \text { tation } \\ \text { equipment } \end{gathered} \right\rvert\,$
흗	Commodity number	53	54	55	56	57	58	59A	598	60	61
	Lives										
2	Other agricutural products										
3	Forestry and fishery products									
4 $5+6$											
			${ }^{1 . ~}$	${ }^{\text {anc.............. }}$							
	Crude petroum and natural gas										
9+10	Nonnmelalic minerals mining ..										
$\begin{aligned} & 11+12 \\ & 13 \end{aligned}$	Construction \qquad Ordnance and accessories									3,802	
4	Food and kindred products										
5	Tobacco products.										
16	Broad and narrow fabrics, yarn and thread mills								
17 18	Miscellaneous textile goods and floor coverings Apparel										
19	Miscellaneous tabricated textile products										
20+21	Lumber and wood products										6
22+23	Furriture and fixtures.										3
24	Paper and allied products, except containers \qquad						331				
26 A	Newspapers and periodicals ...										
268	Other printing and publishing								1
27A	Industrial and other chemicals	2								(')
278 28	Agricultural fertiizers and chemicals \qquad Plastics and synthetic materials							...			
29 A	Drugs ..										
298	Cleaning and toilet preparations				13	${ }^{\text {a }}$ -				
30 31	Paints and allied products Petroieum refining and related products										
	Rubber and miscellaneous plastics products	29		63					285		5
$33+34$ 35	Footwear, leather, and leather products ...										
${ }_{36}^{35}$	Glass and glass products \qquad Stone and clay products						${ }_{14}^{2}$			16	
	Primany iron and steel man			83					44^{\prime}		
38 39	Primary nonterrous metals manufacturing				76		18			1
40	Meating, plumbing, and fabricated structural									11	
41	Screw machine products and stampings.					8					7
42	Other tabricated metal products										23
44 $44+45$				35					$\begin{array}{r} 489 \\ 4 \end{array}$	17
	Materials handing machinery and equipment ..								$\begin{aligned} & 00 \\ & 15 \end{aligned}$	()	
47	Metalworking machinery and equipment	27	11	4
	Special industry machinery and equipment ...								$\begin{aligned} & 5 \\ & 46 \end{aligned}$	23	1
	General industrial machinery and equipment Miscellaneous machinery except electrical \qquad						 1	$\begin{gathered} 46 \\ 188 \end{gathered}$	14 39	23
	Computer and office equipment ..				339	1,162	188			12	
	Service industry machinery ..			36		,			609		1
5		${ }_{5} 698$	$4,863$	151	11					46	1
5	Housenold appliances ...			16,384		43			192		
	Audio, video, and communication equipment ..	58	273		38,346	433	122				
	Electronic components and accessories ...	197 62		129	335	45,340 397	164 18.539				
	Miscellaneous electrical machinery and supplies \qquad				223	397	18.539				
59 B								3, 3.194	-3,346		
	Aircratt and parts ..				33					79,455	
	Other transportation equipment ..		\cdots						55		23,564
	Scientific and controlling instruments										
	Miscellaneous manutacturing ..										44
	Rairoads and related senvices; passenger ground transporation										
${ }_{65 C}$											
${ }_{6}^{650}$	Air ransportation	\cdots		
	Pipelines, freight fowarders, and related services \qquad Communications, except radio and TV										
A										
${ }_{688}^{68}$	Gas production and distribution (utilities)									
69A											
698	Retail trade ...										
708	Finance		
71A											
718	Real estale and royalties ...										
72 A	Hotels and lodging places ...										
${ }_{73 \text { P }}$.-...............		
738											
730	Other business and prolessional sevices, except meoical					
730			
74	Eating and drinking places				
76	Amusements										
77 A											
${ }^{778}$	Educational and social services, and membership organizations ..										
78 79	Federal Government enterprises	-.............									
7								
	Housenold industry										
	Inventory vauation adjustment ...										
	Total commodity output ...	23,27	15,0	17,421	41,037	48,203	20,987	133,509	68,327	84,421	24,074

*Less than $\$ 500,000$.
by Industries, 1987 Benchmark-Continued at producers' prices]

$\left\lvert\, \begin{aligned} & \text { Scientific and } \\ & \text { instroulling } \\ & \text { instris } \end{aligned}\right.$	Ophthalmic and photoequipment	$\begin{aligned} & \text { Miscell } \\ & \text { Maneous } \\ & \text { mantuc. } \\ & \text { turing } \end{aligned}$	Aairoads andices; sen passenger transportation	Motor freight transpontation and warehousing	Water $\begin{gathered}\text { Wransporation } \\ \text { tren }\end{gathered}$	${ }_{\text {chen }}^{\text {Air }}$	Pipelines forwarder and related services	$\begin{gathered} \text { Communi- } \\ \text { cations } \\ \text { except radio } \\ \text { and TV } \end{gathered}$	$\left\|\begin{array}{c\|} \text { Radio } \\ \text { andiv } \\ \text { broadcasting } \end{array}\right\|$	Electric services (utilities)		Water and sanitary services	$\underset{\substack{\text { Wholesale } \\ \text { trade }}}{\text { a }}$	年
62	63	64	65 A	658	$65 C$	650	655	66	67	68A	688	680	69A	훌
														${ }_{3}$
,								\ldots			11,968			${ }_{\text {¢ }}^{8}$
1,254														+12
														14
\square 74 74 6 5 6 55 224 1														15 16
														17
		${ }_{40}^{24}$					\cdots	\cdots			\cdots			19
		${ }_{28}^{13}$												${ }_{22}^{20+23}$
		${ }^{203}$						\cdots						
		${ }_{6}^{26}$												26 A
		146												${ }^{268}$
														${ }_{27} 2$
${ }_{53}^{281}$														298
		${ }_{10}^{36}$												${ }^{298}$
		1.												
79		126						\cdots	\cdots					
	$\cdots \times$													
		20												36 37
		1			\cdots									
					\cdots	\cdots		\cdots	\cdots					39 40
$\begin{array}{r}28 \\ 168 \\ 2 \\ \hline\end{array}$		${ }_{42}^{13}$		\cdots	\cdots	\cdots	\cdots	\cdots	\cdots					${ }_{4}^{41}$
														43
$\begin{array}{r} 2 \\ y_{3} \\ 3 \end{array}$	-								\cdots			\cdots		
$\begin{array}{r} 3 \\ 25 \\ 45 \end{array} .$				\cdots	\cdots						\cdots			$\begin{aligned} & 47 \\ & 48 \end{aligned}$
$\begin{aligned} & 45 \\ & 24 \\ & 57 \\ & 16 \end{aligned}$														$\begin{aligned} & 49 \\ & 50 \end{aligned}$
$\begin{aligned} & 24 \\ & 152 \end{aligned}$		$\left.\begin{aligned} & 11 \\ & 7 \end{aligned} \right\rvert\,$		\cdots	\cdots				\cdots					$\begin{aligned} & 51 \\ & 52 \\ & 52 \end{aligned}$
		2												$\begin{aligned} & { }_{5}^{56} \\ & 54 \end{aligned}$
$\begin{aligned} & 1,140 \\ & 343 \\ & 340 \end{aligned}$	32	$\left.\begin{aligned} & 35 \\ & 10 \\ & 10 \end{aligned} \right\rvert\,$							\cdots					$\begin{aligned} & 54 \\ & \hline 5 \\ & \hline \end{aligned}$
		$\begin{aligned} & 19 \\ & 16 \\ & 136 \end{aligned}$							\cdots					$\begin{aligned} & 56 \\ & 57 \\ & 58 \end{aligned}$
${ }^{307}$	\cdots		\cdots	\cdots	\cdots	\cdots			\cdots	\cdots	\cdots	\cdots		598
$\begin{aligned} & 1411 \\ & 671 \\ & 3 \end{aligned}$		${ }_{13}^{2}$			\cdots				\cdots					598 60
		${ }_{23}^{14}$			\cdots				\cdots	\cdots				$\begin{aligned} & 61 \\ & 62 \end{aligned}$
$\begin{array}{r} 80.003 \\ 239 \\ 96 \\ 96 \end{array}$	18,402													
			${ }^{43,271}$	$\left\|\begin{array}{r} 113,492 \\ \hline 102 \end{array}\right\|$										${ }_{6}^{658}$
					24,053						\cdots			${ }^{655}$
			302	733	108	1,465	23,301							${ }_{655}^{655}$
								${ }^{160,164}$						$\begin{aligned} & 66 \\ & 67 \end{aligned}$
										132,335				${ }_{668}^{688}$
								\cdots	-			10.971		${ }_{688}^{688}$
										\cdots	\cdots		423,751	${ }_{698}^{698}$
														70 A
														71 A
								\cdots		\cdots	\cdots	\cdots		${ }_{7718} 718$
										\cdots				${ }^{278}$
										\cdots				${ }_{738}$
														${ }_{730}^{736}$
														74
														76
														778
										${ }^{7} 7.216$				
			4,822								2,938	14,859		79 82
														${ }_{85}^{84}$
85,888	18,707	31,083	48,34	115,94	24,188	79,060	2,301	100,164	2,250	156,453	82,180	28,469	423,751	T

Table 1.-The Make of Commodities
Mililions of dollars

	For the distribution of industries producing a commodity, read the column for that commodity For the distribution of commodities produced by an industry, read the row for that industry	Retail trade	Finance	Insurance	Owneroccupied dwellings	Real estate and royalties	Hotels and lodging places	Personal and repair services (except auto)	Computer and data processing services	Legal, engineering, accounting, and related services
		69B	70A	708	71	71B	72A	728	73A	73 B
1	Livestock and livestock products	\qquad					
2	Forestry and fishery products									
3										
4 5	Agricultural, forestry, and fishery services									
5+6	Metallic ores mining Coal mining									
8	Crude petroleum and natural gas									
$9+10$	Nonmetallic minerals mining									
11+12										
13										
14	Food and kindred products									
15	Tobacco products 									
17										
18	Broad and narrow fabrics, yam and thread mills \qquad Miscellaneous textile goods and floor coverings \qquad									
19	Apparel									
0+21	Lumber and wood products \qquad Furniture and fixtures									
22+23										
24	Furniture and fixtures \qquad Paper and allied products, except containers \qquad									
26 A	Pewspapers and periodicals ..									
268	Other printing and publishing									
27 A	Industrial and other chemicals									
278	Agricultural fertilizers and chemicais \qquad Plastics and synthetic materials \qquad									
29A										
298	Drugs Drugs . \qquad \qquad Cleaning and toilet preparations									
30	Paints and allied products ...									
31	Pettoleum refining and related products ...									
	Rubber and misceilaneous plastics products ..									
$33+34$ 35	Footwear, leather, and leather products ...									
36	Glass and glass products ...									
37	Primary iron and steel manufacturing ..									
38										
39										
41	Heating, plumbing, and fabricated structural metal products ..									
42	Screw machine products and stampings ...									
	Other fabricated metal products Engines and turbines									
	Farm, construction, and mining mackininery ...									
47	Materials handing machinery and equipment									
48	Metalworking machinery and equipment \qquad Special industry machinery and equipment \qquad									
49	General industrial machinery and equipment ..									
50	Miscellaneous machinery, except electrical \qquad									
51									3	
53	Service industry machinery									
54	Electrical industrial equipment and apparatus \qquad Household appliances									
55 56	Electric lighting and wining equipment ..									
58	Miscellaneous electrical machinery and supplies ...									
59 A	Motor vehicles (passenger cars and trucks)									
598	Truck and bus bodies, trailers, and motor vehicles parts Aircratt and parts									
60										
62	Other transportation equipment									
63	Ophthalmic and photographic equipment									
	Miscellaneous manufacturing									
65 A										
${ }_{658}^{658}$										
650										
$65 E$	Air transportation \qquad Pipelines, treight forwarders, and related sevices									
	Communications, except radio and TV									
68A										
688										
68	Water and sanitary services									
698	Wholesale trade									
70	Retail trade	420,6	280,874						, 640	
708	Insurance \qquad			172,850						
71 A					325,144					
718	Owner-occupied dwelings \qquad Real estate and royalties					380,275				
72 7	Real estate and royalties \qquad Hotels and lodging places \qquad					934	40,06			
72 B	ersonal and repair services (except auto)							66,233		
73 A	Computer and data processing services								60,821	
73 B	Legal, engineering, accounting, and related services \qquad Other business and protessional sevices, except medical \qquad									177,931
73 C									$\begin{array}{r}79 \\ \hline ~\end{array}$	
73 D	Advertising \qquad	…..............		
	Eating and drinking places \qquad Automotive repair and services		\cdots							
									
774	Automotive repair and services \qquad Amusements								
	Health services \qquad									
778 78	Educational and social services, and membership organizations \qquad Federal Government enterprises									
79	State and local government enterprises					7,596				
85	Inventory valuation adj									
	cmmod	422,960	280,95	177,621	325	389,820	40,0	,27	64,687	882

'Less than $\$ 500,000$.
by Industries, 1987 Benchmark-Continued
at producers' prices]

Table 2.1.-The Use of Commodities
[Millions of dollars

*Less than $\$ 500,000$
by Industries， 1987 Benchmark at producers＇prices］

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Food and kindred product \& Tobacco
prouucts \& Broad and fabrics，yarn mils \& Miscellane－
ous textile goods and coverings \& Apparel \& Miscellane－
ous
tabricted
textle product \& \[
\begin{gathered}
\text { Lunber and } \\
\text { peooct } \\
\text { prouct }
\end{gathered}
\] \& Funtiture
and fixures \& Paper and allied
products， except containe \& \[
\begin{aligned}
\& \text { Papertboard } \\
\& \text { containers } \\
\& \text { and boxes }
\end{aligned}
\] \& Newspapers
periodicals \& \[
\begin{array}{|c|}
\text { Other } \\
\text { printing and } \\
\text { publishing }
\end{array}
\] \& Industrial and other \& Agricultural
leftizers
and
chemicals \& Plastics and syntheitic
materials \& 言 \\
\hline 14 \& 15 \& 16 \& 17 \& 18 \& 19 \& 20＋21 \& ＋23 \& 24 \& 25 \& 26 A \& 268 \& 27A \& 27 B \& 28 \& 8 \\
\hline 60 \& \& \& \& \& \& \(\cdots\) \& \& \& \& \& \& \& \& \& \\
\hline \({ }^{22,262}\) \& 1，707 \& 3，192 \& 34 \& 31 \& \& \(\cdots\) \& \& \& \& \& \& 86 \& \& \& \\
\hline \& \& \& \& 295 \& \& 5．884 \& \& \[
\left.\begin{array}{|c|}
\hline 108 \\
6
\end{array} \right\rvert\,
\] \& \& \& \& \& \& \& \\
\hline 105 \& 15 \& 28 \& 10 \& \& \& － 21 \& \& \({ }_{428}^{15}\) \& \& \& \& \[
\begin{gathered}
6363 \\
123 \\
10403
\end{gathered}
\] \& \& \({ }_{132}^{6}\) \& \\
\hline 8 \& \& \& \& \& \& ………．．．． \& \& 303 \& \(\cdots\) \& \(\cdots\) \& \(\cdots\) \& \({ }^{1}, 576\) \& \({ }_{926}\) \& \& \(9+10^{8}\) \\
\hline 810 \& \& \({ }^{17 \times 170}\) \& \(\cdots\) \& 9 \& \& 423 \& 289 \& 397 \& 88 \& \& 238 \& 575 \& 55 \& 158 \& \\
\hline 54，695 \& \(\cdots\) \& \& \(\cdots\) \& \& \& \[
71
\] \& 15 \& 344 \& \& \& \& 348 \& 92 \& 53 \& \\
\hline \& 3，664 \& 9,897 \& 3.621 \& 13，040 \& \& \& 1236 \& \& \& \& \& \& \& 123 \& \\
\hline \& \(\cdots\) \& －346 \& \begin{tabular}{|}
3683 \\
11 \\
17
\end{tabular} \& \[
\begin{aligned}
\& 3,4949 \\
\& 12,117
\end{aligned}
\] \& －1．264 \& \& \& \[
\begin{aligned}
\& 356 \\
\& 351
\end{aligned}
\] \& \& \& \& \& \(\cdots\) \& \(\cdots\) \& \\
\hline 72
61 \& \& \& \& 1，506 \& 52
52 \& \[
\begin{gathered}
17 \\
00,956
\end{gathered}
\] \& － 3.2898 \& 4804 \& \& \& \& 23
48 \& \& 0 \& 21 \\
\hline \& \& \& \& \& \& \& 51 \& 13，139 \& \& \& \& \& \& \& \\
\hline 5，856 \& 952 \& ＋ 131 \& 99 \& 200 \& 200 \& 279 \& 555 \& \({ }^{1,1,089}\) \& 543 \& \& \& 409 \& 55 \& \({ }^{469}\) \& \({ }_{25}^{24}\) \\
\hline 1，880 \& \(37{ }^{2}\) \& 219 \& \& 544 \& \({ }^{30}\) \& \[
\begin{gathered}
38 \\
848 \\
88
\end{gathered}
\] \& \({ }^{3} 8\) \& \[
{ }^{1} 11^{4}
\] \& \& \& \& \& \& （155 \& 26A \\
\hline 1，585 \& \& \& \& \& \& 848
886 \& 215 \& 3．444 \& 491 \& \& \({ }_{2}\) \& 18，26266 \& 1,371
2,533 \& \({ }^{13,509}\) \& \({ }_{27} 7\) \\
\hline \({ }^{128}\) \& \& 5，251 \& 3，825 \& 1,526 \& 509 \& \({ }_{329}^{186}\) \& 114 \& 2,005 \& 557 \& \& 129 \& 757 \& \& 1，470 \& \\
\hline \& 18 \& \({ }^{88}\) \& 78 \& 294 \& \& \& \& \({ }^{36}\) \& \& \& \& 1964 \& 25 \& 㖪 \& \({ }^{98}\) \\
\hline \& \& 104 \& 1 \& \& 13 \& \({ }_{446}^{386}\) \& \({ }_{84}^{376}\) \& 19
565 \& \& \(\cdots\) \& \({ }^{39}\) \& 1．012 \& \(\cdots\) \& 89
103 \& \\
\hline 5.261 \& \& 198 \& 117 \& 302
313 \& 496
230 \& 690 \& 1，197 \& 1，999 \& \begin{tabular}{|c}
73 \\
\hline
\end{tabular} \& \& 1，6616 \& 994 \& 115 \& 1，685 \& \\
\hline 3,923 \& \& 207 \& \& \& \& 211 \& \({ }_{137}^{13}\) \& \& （i） \& \& \& 133 \& 39 \& \& \\
\hline \& 1 \& \begin{tabular}{l}
4 \\
2 \\
\hline
\end{tabular} \& \(\stackrel{2}{4}\) \& \(0^{1}\) \& \& \begin{tabular}{|c}
409 \\
31
\end{tabular} \& \(\begin{array}{r}131 \\ \hline 1528 \\ \hline\end{array}\) \& 901 \& 68 \& \& \& － 178 \& \({ }^{26}\) \& \({ }^{1}\) \& \\
\hline 8.683 \& 2 \& \& \& \& \& \& 69 \& 4 \& \& \& 178 \& ［59 \& \& \& \\
\hline \& \& \& \& \& \& ＋\({ }^{479}\) \& 372 \& \& \& \& \& \& \& \(\cdots\) \& \\
\hline 1，020 \& 185 \& \& \& \& \& 1，505 \& 1，378 \& 502 \& 123 \& \& 53 \& 650 \& 40 \& 13 \& \\
\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline （1）
38
98 \& \& \[
\begin{array}{r}
12 \\
14 \\
109
\end{array}
\] \& \begin{tabular}{|c}
\\
\(\cdots \cdots \cdots \cdots\) \\
\hline
\end{tabular} \& 160 \& \& \[
\begin{gathered}
39 \\
143 \\
88
\end{gathered}
\] \& \[
790
\] \& \({ }_{368} 4\) \& \& \& \& \begin{tabular}{|c|}
35 \\
40 \\
40
\end{tabular} \& \& \& \\
\hline 220
90 \& 17 \& \({ }_{31}\) \& \(\cdots\) \& 20 \& － \& 113
190 \& \& \begin{tabular}{l}
565 \\
595 \\
\hline 95
\end{tabular} \& \(\cdots\) \& \& \& \& \(\begin{array}{r}16 \\ \hline\end{array}\) \& 83
48
48 \& \\
\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline \& \& \& \& \& \& 44 \& 59 \& \& \& \& \& \& \& \& \\
\hline \& － \& \& （\％） \& \& \& \[
\left.\begin{array}{r}
147 \\
114 \\
14 \\
1
\end{array} \right\rvert\,
\] \& \& \& （i） \& \& \& \& \& － \& \\
\hline \& \(\cdots\) \& \& \& （i） \& \& 12 \& \& \& \& \({ }_{38}\) \& 29 \& \％ \& （i） \& \(\cdots\) \& \\
\hline 19 \& \({ }^{4}\) \& \& \& \& \& 191 \& \& 30 \& 8 \& \& \& \& \& \& 599 \\
\hline \& \& \& \& \& \& \& \& \& \& \& 172 \& 8 \& 6 \& \& \\
\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline \begin{tabular}{c}
198 \\
\hline 1.842 \\
\hline 188
\end{tabular} \& \& \& \& \& \& \& \(\begin{array}{r}162 \\ 160 \\ \hline 180\end{array}\) \& \& \& \& 142
143
430 \& \& \& \begin{tabular}{|c}
3 \\
47 \\
4
\end{tabular} \& \\
\hline \({ }_{5}^{5,1382}\) \& 110 \& 275 \& 238 \& \(\begin{array}{r}180 \\ \hline 80\end{array}\) \& ＋153 \& 1．026 \& － 369 \& －1，627 \& \& \(\stackrel{114}{327}\) \& 1．005 \& 1，944 \& \& 570 \& \\
\hline \({ }_{484}^{498}\) \& \& 29 \& 9 \& 114 \& 21 \& 11
81 \& \(\xrightarrow{15}\) \& 107
387 \& \begin{tabular}{l}
17 \\
48 \\
\hline 18
\end{tabular} \& 940 \& \({ }^{368}\) \& \begin{tabular}{l}
156 \\
232 \\
\hline
\end{tabular} \& 49
45 \& 39
59 \& \\
\hline \(\begin{array}{r}4 \\ 4 \\ 4 \\ \hline\end{array}\) \& \({ }_{28}\) \& \({ }_{48}^{48}\) \& 28 \& \({ }_{95}^{1}\) \& \& \({ }_{125}^{5}\) \& 89 \& 152 \& 72 \& 206 \& \(244^{4}\) \& \({ }^{42}\) \& \({ }_{39} 9\) \& \({ }_{91}^{12}\) \& \\
\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline 1， 1.342 \& 20 \& 11420 \& －126 \& \& 40
50 \& \({ }^{3} 84\) \& \& ， 1984 \& \& 21
21
21 \& \({ }_{95}^{95}\) \& \({ }_{2}^{2,39}\) \& \& 771 \& 688 \\
\hline 16，850 \& 536 \& \({ }^{1.807}\) \& 433 \& 2，171 \& 951 \& 3．886 \& 2，039 \& 3，667 \& \& \({ }_{782}^{22}\) \& 3.080 \& 3，141 \& \& 1，743 \& 69A \\
\hline \& \& \& \& 281 \& \& \(\begin{array}{r}73 \\ 446 \\ \hline\end{array}\) \& \({ }_{379}^{16}\) \& 80
303 \& \begin{tabular}{l}
16 \\
44 \\
\hline 1
\end{tabular} \& 27
250 \& 69
499 \& \begin{tabular}{|c}
274 \\
27
\end{tabular} \& 226 \& \(\begin{array}{r}10 \\ 104 \\ \hline 1\end{array}\) \& \\
\hline 355 \& \({ }^{37}\) \& 41 \& \& \& \& \& \& \& \& 70 \& 191 \& 159 \& \& 77 \& 108 \\
\hline \& \& \& \& \& \& \& \& \& 118 \& \& \& \& \& \& 7718 \\
\hline 10 \& \(\stackrel{8}{7}\) \& 19 \& 52 \& \(\begin{array}{r}16 \\ 144 \\ \hline\end{array}\) \& 16
69 \& \& \& \& \& \& \& \begin{tabular}{|}
41 \\
38
\end{tabular} \& \({ }_{4}^{3}\) \& － \(\begin{array}{r}30 \\ 81\end{array}\) \& \\
\hline 3 \& \& \& \& \& \& \& \& \& \& \& 266 \& \({ }_{66}\) \& \& 17 \& \\
\hline 866 \& 61 \& 91 \& \({ }^{36}\) \& 175 \& \& \({ }^{230}\) \& \({ }^{421}\) \& \& 69 \& 897 \& 616 \& 1，701 \& 83 \& 1038 \& 38 \\
\hline 1.802
8.657 \& 97
783 \& \({ }_{227}^{466}\) \& \(\begin{array}{r}99 \\ \hline 13\end{array}\) \& \begin{tabular}{l}
342 \\
992 \\
\hline
\end{tabular} \& \({ }_{202}^{136}\) \& \& \& \& \& \& 1，064 \& \({ }^{1}, 1,136\) \& \(\begin{array}{r}335 \\ 194 \\ \hline\end{array}\) \& \begin{tabular}{l}
358 \\
479 \\
\hline 17
\end{tabular} \& \begin{tabular}{l}
13 C \\
730 \\
\hline
\end{tabular} \\
\hline \({ }^{3} 38\) \& \& \({ }^{76}\) \& 32 \& － \(\begin{array}{r}192 \\ \\ \hline 192\end{array}\) \& 51 \& 析 \& \& \& \& 201 \& 533 \& 220 \& \& \& \\
\hline 477 \& 101
2 \& 113 \& \(\xrightarrow{20}\) \& 292
2 \& \& \& \& \& \& \({ }^{327}\) \& \& \& \({ }^{30} 8\) \& 1 \& \\
\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& 77 A
78 \\
\hline \begin{tabular}{l}
235 \\
288 \\
\hline 8
\end{tabular} \& 54 \& \& \& 149
12 \& \& \& \& \& \& \& 594 \& \({ }_{85}^{85}\) \& \& \& \\
\hline 5，056 \& 47 \& \& \& \& \({ }^{88}\) \& 13 \& 32 \& \& \& 55 \& 234 \& 636 \& 101 \& 147 \& \\
\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline 180.498

325，972 \& 16,795 \& 12,140 \& 4，354 \& 227,003 \& 6,915 \& 25.92 \& 17，259 \& 34，278 \& 3，806 \& 29.037 \& 45，145 \& 37，277 \& 3.354 \& ${ }^{24,365}$ \&

\hline 325，972 \& 28，383 \& 38,244 \& 15，982 \& 64，184 \& 16，987 \& 72，875 \& 36,77 \& 81，982 \& 25.511 \& 49，727 \& 87，378 \& 84,375 \& 13，512 \& 40，672 \&

\hline
\end{tabular}

Table 2.1.-The Use of Commodities
[Millions of dollars

	For the distribution of output of a commodity, read the row for that commodity For the composition of inputs to an industry, read the column for that industry	Drugs	Cleaning and toilet prepara- tions tions	$\begin{array}{\|} \text { Paints and } \\ \text { allied } \\ \text { products } \end{array}$	Petroleum refining and related products	Rubber and miscellaneous plastics products	Footwear, leather, and leather products	Glass and glass products	$\begin{gathered} \text { Stone and } \\ \text { clay } \\ \text { products } \end{gathered}$	Primary iron and stee! manufacturing	$\begin{gathered} \text { Primary } \\ \text { nonferrous } \\ \text { metals } \\ \text { manufacturing } \end{gathered}$
3	Industry number	29A	298	30	31	32	33+34	35	36	37	38
	Livestock and lives		15								
2	Other agricultural products	27			\cdots.	\cdots		….................	
3	Forestry and fishery products \qquad Agricultural, forestry, and fishery services \square										
$5+6$	Metalic ores mining			43			\cdots		33	1,969	3,933
7	Coal mining				21	25 75			399	1.449	34
	Crude petroleum and natural gas Nonmetallic minerals mining \qquad			13 17	75.971 490	$\begin{gathered} 75 \\ 35 \end{gathered}$		184	. 13	10 231	18
	New constuction										
12	Maintenance and repair construction	131	75	46	952	392	28	130	328	1,294	273
$\begin{aligned} & 13 \\ & 14 \\ & 14 \end{aligned}$	Ordnance and accessories Food and kindred products		558				893		57 25	20 6	6
15	Tobacco products										
16	Broad and narrow fabrics, yarn and thread mills					812	239		126		43
17 18 18	Miscellaneous textile goods and floor coverings Appare:		18	$\left.0^{\circ}\right)$		$\begin{array}{r}894 \\ 12 \\ \hline\end{array}$	$\begin{array}{r}197 \\ 4 \\ \hline\end{array}$		$\stackrel{2}{6}$		1
19	Miscellaneous fabicated textile products....	(\%)	2		(c)	24		(9)	2		(*)
$20+21$	Lumber and wood products		6		59	189	24	237	95	36	151
$22+23$ 24	Furniture and fixtures \qquad Paper and allied products, except containers	161							551	28 15	17
25	Paperboard containers and boxes	314	1,146		191	987	66	707	142	79	103
26 A	Newspapers and periodicals)	2	9			5		3
${ }_{27 \mathrm{~A}}^{268}$	Other printing and publishing	182	345	26	17	999		25	25	35	$\begin{array}{r}25 \\ \hline 15\end{array}$
27 A	Industrial and other chemicals	597	2,971	2,334	1,758	5	271	82	269	23	15
$\stackrel{28}{28}$	micals Plastics and synthetic materials		468	1,441	60	15,955	109		189		784
29A	Drugs .	3,758									
29 B	Cleaning and toilet preparations	21	1,535		417	29	33		98		1
30 30	Paints and allied products		$\begin{array}{r} 63 \\ 329 \end{array}$	${ }_{252}^{252}$	$\begin{array}{r} 6 \\ 633 \end{array}$	$\begin{array}{r} 65 \\ 295 \end{array}$		20 45	70	${ }^{23}$	31
32	Petroleum reining and related products	749	1,713	80	9,920	4,074	250	735	125	132 139	647
33+34	Footwear, leather, and leather products.....						1,601		1		
35	Glass and glass products	233	231		277			1,309	71		48
36	Stopie and clay products	1		132	51	247		320	5.111	996	263
37	Primary iron and steel manutacturing ...-		2	${ }_{1}^{16}$	42	300 115			277	10,233	515
${ }_{39} 3$	Primary nonterrous metals manutacturing \qquad	138	433	534	167				${ }^{23}$	1,470	17,261
40	Heating, plumbing, and fabricated structural								7		
41	Screw machine products and stampings	64	196			439			100	275	90
42	Other fabricated metal products	65	390	21	397	880	43	2	219	${ }_{11} 7$	528
$44+45$	Engines and turtines								13		
46	Materials handling machinery and equipment	).........							17	
47	Metalworking machinery and equipment.				19	161		87	25	524	488
48						233					
$\left.\begin{aligned} & 49 \\ & 50 \end{aligned} \right\rvert\,$	General industrial machinery and equipment Miscellaneous machinery, except electrical \qquad	17 10		${ }^{2}$	1 41	255	(8)	4 49	32 48	868 207	556 114
51	Computer and oftice equipment										
52	Service industry mactinery								\cdots		
53	Electrical industrial equipment and apparatus ..									434	329
$\begin{aligned} & 54 \\ & 55 \end{aligned}$	Household appliances Electric lighting and wiring equipment						(i)			10	
56	Audio, video, and communication equipment	()						(*)	(c)	(*)	(*)
$\begin{aligned} & 57 \\ & 58 \end{aligned}$	Electronic components and accessories										
59 A	Motor vehicles (passenger cars and trucks)										
598 60	Truck and bus bodies, rrailers, and motor vehicles parts	5	i)	54	13	()		9	7	12
61											
62	Scientific and controlling instruments..	28			24	43					
63	Ophtralmic and photographic equipment	5	5			19	1		10	11	8
64	Miscellaneous manulacuring	3	45			19	83 18	2	40	11 119	36
65 A	Railroads and related services; passenger ground transportation ...	27	112	158	153	603	18	185	${ }^{644}$	1,149	336
${ }_{65 \mathrm{C}}^{65}$	Motor freight transportation and warehousing	119	369	280	563	2,331	${ }^{88}$	222	2,527	916	1,107
650		56	88	11	887	127	24	67	61	78	
65 E	Pipelines, freight forwarders, and related	1			5.485	6			3	5	2
67	Communications, except racio and TV...	126	79	40	187	249	22	122	295	150	11
687		288	189	74	1.653	1,829	68	478	1,159	2,813	2.501
68 B	Gas production and distribution (utitities)	167	167	43	1,260	511	19		789	1,898	807
68 C	Water and sanitary services	34			209	202	10	34	120	489	95
69 A	Wholesale trade	1,439	1,583	343	6,367	4,238	369	682	1,269	4,274	3,417
698	Retail trade	9		()	19	32		6	28	23	27
70 A	Finance	186			1,232	386		${ }_{29}^{69}$	${ }_{91}^{286}$	247	$\stackrel{267}{112}$
708	Insurance			6	361	181	10	26	91	138	112
71 A	Owner-cccupied dwellings ...	211									
72A	Hotels and lodging places	13	25	7	27	23	43	15	17		36
728	Personal and repair services (except auto).	48	21	1	54	118		12	55	76	85
73 A	Computer and data processing services			1	126			${ }_{5}^{23}$	89	108	35
73 B	Legal, engineering, accounting, and related services ...	1.568	169	54	376	580	30	53	168	191	140
73 C	Other business and protessional services, except medical.	1,071	395		1,156	685			408	1,246	561
774		366	853		$\begin{array}{r}321 \\ 51 \\ \hline\end{array}$		$\begin{array}{r}130 \\ 28 \\ \hline\end{array}$	375 37	864 122	2,010	537
74	Eating and drinking places Automotive repair and services \qquad	66 111	61 55	$\begin{array}{r}18 \\ 7 \\ \hline\end{array}$	51 128	246 318	28 11	37 88	122	119 103	91
76	Amusements								2	2	2
77 A											
778 78	Educational and social services, and membership organizations	172 26	38 51	8		297 86		889			37 46
79	State and local government enterpises.					31					
80	Noncomparable imports	777	187	65	392	1,155		87	130	84	789
$\begin{aligned} & 81 \\ & 82 \end{aligned}$	Scrap, used and secondhand goods							72		2,583	2,376
83	eral government industry \qquad					.-............					
84	Household industo										
85	Inventory valuation adjustment.....										
	Total intermediate inputs.	13,840	15,583	6,504	113,613	47,948	5,018	7,875	23,169	42,721	42,163
VA	Vaiue added	22,172	17,646	5,568	24,258	37,624	3,681	8,210	20,563	25,370	14,213
	Total industry output ..	36,012	33,229	12,072	137,871	85,572	8,700	16,085	43,732	68,081	56,376

"Less than $\$ 500,000$.
by Industries, 1987 Benchmark-Continued at producers' prices]

Mental contianers		$\begin{gathered} \text { Screw } \\ \text { sache } \\ \text { mpocinectis } \\ \text { stampings } \end{gathered}$	$\begin{aligned} & \text { Other } \\ & \text { fabricated } \\ & \text { metal } \\ & \text { products } \end{aligned}$	Engines and turbines	Fanstruction,and mining maxhinery machiner	$\begin{aligned} & \text { Mativilas } \\ & \text { Manding } \\ & \text { machinery } \\ & \text { equar } \\ & \text { equipment } \end{aligned}$	$\begin{gathered} \text { Metalworking } \\ \text { machinery } \\ \text { and } \\ \text { equipment } \end{gathered}$		General industial machininery and equipment	Miscellanes- mactinefy, exinefl. electical	Computer and office equipment	$\begin{aligned} & \text { Serrice } \\ & \text { industry } \\ & \text { machinery } \end{aligned}$	Electrical equipment apparatus	(lausenold	5
39	40	41	42	43	4445	46	47	48	49	50	51	52	53	54	
			\cdots		\cdots	\cdots		\qquad		\cdots		\cdots	\qquad	\cdots	1
		\bigcirc	\%							$\square^{\square} \times \quad 1$					
()				i	$\left.\right\|_{12}$		\cdots	-	- $\times 1$		1	-1.		0	
						(-9)		- ${ }^{7}$	\mid	${ }^{-1}$	\cdots				
				\cdots	-										
33	518	\cdots	\cdots	\cdots		\cdots		$\mid \cdots$	$\cdots \quad=\overline{156}$	-					
(i)		${ }^{-1}$	$\square^{-\cdots \times \cdots}$	1	$\square{ }^{\square}$	\cdots		${ }^{3}$	${ }^{-1}$	\cdots	\cdots			${ }^{3}$	
							$\left\|\begin{array}{l} 2 \\ 20 \\ 26 \\ 20 \end{array}\right\|$		$\begin{array}{r} 3 \\ c_{3}^{4} \\ 25 \\ 25 \end{array}$		\square	\cdots	${ }_{2}^{4}$	2	
11	138	32	-	\cdots								107		$\begin{aligned} & 38 \\ & \hline \end{aligned}$	($\begin{array}{r}18 \\ \text { 20+ } 91 \\ 22+23\end{array}$
				(1)		\square	-			-	(1818		\cdots		2425268
$\begin{gathered} 28 \\ \begin{array}{c} 28 \\ 226 \\ \hline 61 \end{array} \\ \hline \end{gathered}$	$\begin{array}{r} 27 \\ 119 \end{array}$											130	132	[$\begin{array}{r}308 \\ 1 \\ 10\end{array}$	
		$\begin{array}{r} 15 \\ 244 \\ 24 \end{array}$	$\begin{gathered} 29 \\ 749 \end{gathered}$									${ }^{2} 12$	19 43 48	12	26A 268 274 278
17	33	1	169		\cdots				\cdots		\mid			-	$\begin{aligned} & 288 \\ & 298 \\ & 298 \\ & 298 \end{aligned}$
196	$\begin{gathered} 15 \\ 243 \\ 104 \\ 425 \end{gathered}$	$\begin{aligned} & 15 \\ & 79 \\ & 40 \\ & 97 \end{aligned}$	$\begin{gathered} 41828 \\ 859 \\ 859 \end{gathered}$	$\left\lvert\, \begin{array}{r} 5 \\ 139 \\ 139 \end{array}\right.$	\cdots	$\left.\begin{array}{r} 7 \\ 18 \\ 101 \end{array} \right\rvert\,$		\cdots	$\begin{gathered} 4 \\ 44 \end{gathered}$	${ }_{34}^{3}$	21			\cdots	
17					$\begin{aligned} & 43 \\ & 7272 \\ & 7 \end{aligned}$		$\begin{array}{r} 66 \\ \hline 150 \\ \hline 150 \end{array}$	$\begin{array}{r}33 \\ 257 \\ \hline\end{array}$	${ }_{325}^{44}$		1.045	$\begin{array}{r}24 \\ 45 \\ \hline\end{array}$	${ }_{468}^{148}$	$\begin{aligned} & 154 \\ & 642 \end{aligned}$	
						\cdots				?		20	9		
	- $\begin{array}{r}125 \\ 8.294 \\ \hline\end{array}$	7,905	5.190			13 607 1	1,467	1.017	2,135	1.338	-135	988 1.229	${ }_{1}^{222}$		
3,008		7,905	2,049	1962	${ }_{2}^{295}$	${ }_{95}^{667}$	1.4627	${ }_{365}$	2,139	${ }^{1} 1.388$	709	1.140	1.214	-1, 112	
					997										
15 159	1,475	476 585	729 2,433	($\begin{gathered}233 \\ 213\end{gathered}$	394 440	134 260	179 70	103	189 215	189 253 28	194 302	4869	${ }_{200}^{400}$	243 567	
			256	91	${ }_{122}^{22}$	${ }_{37}^{383}$	847	${ }^{6}$	146	283		122	61	37	
	20	63						380							
20	115	370	187	451	682	165	612	$4{ }_{4}$	${ }^{382}$	+1076	42 4.591	242	127 3	23	
			\%	1			\cdots	2				-			
	10			- 476	117			979		80	1,398		843	592 80	
.		$\stackrel{18}{13}^{3}$			0_{0}^{7}						-		${ }^{64}$	${ }^{190}$	
(i)				$\cdots \square$	129				${ }_{16}^{44}$	9	63		[804	${ }^{37}$	
2	11	21		22	72					22			${ }_{27}^{4}$		-
		433	$\stackrel{107}{551}$		306		27 151			22 100	109	30 156	$\begin{array}{r}61 \\ 156 \\ \hline\end{array}$	$\begin{array}{r}31 \\ 166 \\ \hline\end{array}$	65A
			$\begin{array}{r}21 \\ 156 \\ \hline 15\end{array}$	3 30	5		5	$3{ }^{3}$	125 12	${ }_{4}^{4}$		${ }^{8}$	${ }^{5} 5$	+3 ${ }^{3}$	
							- 1		,	0	- 2	?			
														${ }^{6}$	
														35 69	888
-26	-34		- 54.									37		18 18	8 C
${ }_{7}^{796}$	2,479 30	1.639	2,302	${ }_{7}^{707}$	${ }^{1.742}$	$4{ }^{460}$	788 15	929	1,153	565	4.147	7,526	1,407	1,114	6998
38 20	84	205 57	$\begin{gathered} 306 \\ 85 \end{gathered}$	${ }_{22}$	104 58	32 14 14	$\begin{array}{r}108 \\ \hline 46 \\ \hline 10\end{array}$	${ }^{106}$	(110 ${ }_{40}$	166 88	361 76	59 31 1	246 41	$\begin{array}{r}110 \\ 23 \\ \hline 18\end{array}$	
														${ }_{33}^{41}$	
		8	104	[$\begin{array}{r}21 \\ 52\end{array}$	34 80 80	${ }^{9} 13$				(22 56 5	[22 52 5 4	[$\begin{aligned} & 14 \\ & 27 \\ & 17\end{aligned}$	20	270	年23
23		717	${ }_{231}$		${ }_{171} 8$	$4{ }_{44}^{13}$	${ }^{135}$	${ }_{12}^{212}$		${ }^{156}$	52 4 4 414	$\begin{array}{r}27 \\ 10 \\ \\ \hline\end{array}$	$\begin{array}{r}428 \\ 128 \\ \hline\end{array}$	${ }_{42}^{20}$	${ }_{738}$
47 24	(409 278	225 265	${ }_{821}^{481}$	r90	198 612 61	$\begin{array}{r}64 \\ 149 \\ \hline 1\end{array}$	205 355	150 272	222 291 1	485 318 18	473 4151 1	132 346 1	271 725	-118	730 730 10
24										318 84	199 199		775	${ }_{35}$	
(1) ${ }^{37}$		- ${ }_{1}^{93}$	227 2		$\stackrel{35}{1}$							$\stackrel{26}{18}$	101	16 4 4	
												\cdots			${ }_{778}^{7 / 8}$
										16		[$\begin{array}{r}8 \\ 5 \\ \hline\end{array}$	$\stackrel{26}{7}$	50	
										43	1,066	${ }^{8}$	142	52	
		17,787	22,155				756	7,659		164					
3.421	19,00	14,187	22,26	${ }_{6} \mathbf{2} 26$	${ }^{11,852}$	3,309	${ }_{12,470}$	${ }_{8.595}^{7.659}$	12,40	${ }_{11,839}$		(10,422	${ }^{11,1,609}$	6.594	
11,904	43,93	31,97	44,42	14,096	26,753	7,194	21,227	16,2	${ }_{23,236}$	20,003	55	22,40	22,665	15,361	

	For the distribution of output of a commodity, read the row for that commodity For the composition of inputs to an industry, read the column for that industry	Electric lighting and wiring equipment	Audio. video, and communication equipment	Electronic components and accessories	Miscellaneous electrical machinery and supplies	Motor vehicles (passenger cars and trucks)	Truck and bus bodies, trailers, and motor vehicles parts	Aircraft and parts parts	Other transportation equipment	Scientific and controling instruments	Ophthalmic and photographic equipment
8	Industry number	55	56	57	58	59A	598	60	61	62	63
	Livestock and livestock products										
2											
$\left.\begin{aligned} & 3 \\ & 4 \end{aligned} \right\rvert\,$	Forestry and fishery products Agricultural, forestry, and fishery services \qquad \qquad			- ${ }^{\text {an.............. }}$			3	(\%)		
$5+6$ 7	Metallic ores mining Coal mining								\cdots		
7	coal mining Crude petroleum and natural gas										20
$9+10$	Nonmetalic minerals mining						1		0	
112	New construction \qquad Maintenance and repair construction \qquad		153	493	111	431	469	495	471	407	91
13	Ordnance and accessories			38	(*)	(*)	
$\begin{aligned} & 14 \\ & 15 \end{aligned}$	Food and kindred products					()			2		1
16	Broad and narrow fabrics, yarn and thread	11				117		84	11	312	
17 18	Miscellaneous textile goods and floor coverin					328 14	12	${ }^{96}$	${ }_{3}^{22}$		8
19	Miscellaneous fabricated textie products...		$\begin{gathered} 10 \\ 0.8 \\ 07 \end{gathered}$		(1)	3,520	48	163	182	3	()
$20+21$	Lumber and wood procucts	29	27				199	31	471	173	
22+23	Furniture and fixtures		446	11 34	${ }_{2}^{2}$	1,678	4	25 13	60	62	
24	Paper and allied products, except containers		101	34	13	99	28	13	9	362	
268	Paperboard containers and boxes Newspapers and periodicals	2	$\begin{array}{r}137 \\ 3 \\ \hline\end{array}$	$\begin{gathered} 80 \\ 4 \end{gathered}$	140	57	$1{ }^{15}$	4		11 14	158 2
268	Other pinting and publishing.	15	102	32	25	43	32	53	9	145	18
27 A	Industrial and other chemicals	99	107	789	390	606	216	36	55	298	470
278 28	Agricultural fertilizers and chemicals Plastics and synthetic materials..	409	105	169	111	55	365	96	184	574	123
$\begin{aligned} & 29 A \\ & 29 B \end{aligned}$	Drugs										
30	Paints and allied products	30	26			1,615	222	140	144	45	1
31	Petroleum refining and related	30	24	42	47	236	145	114	47	126	31
32	Rubber and misceilaneous plastics products	372	1,418	2,539	898	8,393	2,158	703	289	1,444	402
33+34	Footwear, leather, and leather products				(*)				$1{ }^{4}$		${ }^{\circ} 9$
$\begin{aligned} & 35 \\ & 36 \end{aligned}$	Glass and glass products ...	$\left.\begin{array}{r} 641 \\ 24 \end{array} \right\rvert\,$	23 14	403 53	19	1,2917	${ }_{366}^{85}$	15	${ }_{58}$	194	99
37	Srimary iron and steel manu	747	117	130	244	717	4,421	1,349	934	1,291	29
38	Primary nonferrous metals manulacturing	806	420	1,956	1,205	85	3,046	3,539	437	1,357	125
39	Metal containers ..										
41	Heating, plumbing, and fabricated structural metal products \qquad Screw machine products and stampings	558	$\begin{array}{r}81 \\ 324 \\ \hline\end{array}$	187 443	86 213	9,934	1,278 2,280	183 957	181	1,032	72
42	Other fabricated metal products	278	411	1,743	475	1,645	1.384	928	478	1,312	235
43 $44+45$	Engines and turbines \qquad					2,371	58		1.057		
	Materials handling machinery and equipment					13					
47	Metalworking machinery and equipment	53	38	88	48	1,105	209	1,145	50	178	23
$\begin{aligned} & 48 \\ & 49 \end{aligned}$	Special industry machinery and equipment. General industrial machinery and equioment						1,411		503		
50	Miscellaneous machinery, except electrical	42	42	108		863	2,658	772	71	191	37
51	Computer and office equipment		108					41	80	757	10
53	Electrical industrial equipmen	413	237	155	203	212	90	93	402	1,295	66
55	Household appliances					495					
56	Audio, video, and communication equipment	()	1,472	36	13	1,347	14	962	13		c)
57	Electronic components and accessories		8,193	4,625	1,304	856	381	1,211	7	7.877	573
58	Miscellaneous electrical machinery and supplies....		156	26	1,025	3.740	874	77	129	17	28
598	Motor vehicles (passenger cars and trucks) Truck and bus bodies, trailers, and motor vehicles					$\begin{array}{r}1,548 \\ 40,005 \\ \hline\end{array}$	184 6.259		$\begin{gathered} 62 \\ 313 \end{gathered}$	16
6	Aircraft and parts							15,912			
$\begin{aligned} & 61 \\ & 62 \end{aligned}$	Other transportation equipment Scientific and control ing instruments					$\begin{array}{r} 21 \\ 1,234 \end{array}$		2,217	$\begin{array}{r} 626 \\ 70 \end{array}$		
63	Ophthalmic and photographic equipment	6	10	13	9	-17	14	2, 18		29	269
64	Miscellaneous manutacturing					59	11)	46	5
65 A	Rairrads and related services; passenger ground	31	21	46	36	572	173	39	50	85	37
658	Motor freight transportation and wareho	146	138	214	151	2,168	936	220	202	${ }_{16} 6$	115
65 C	Water transportation	2	${ }^{3}$	10		43	26	12		16	16
		148	220	297	241	685	194	1,182	6^{62}	338	101
${ }^{656}$	Pipelines, freight forwarders, and related services Communications, except radio and TV					159	310	359	92	432	1 42
67	Radio and TV broadcasting										
684	Electric services (utilities)	185	247	789	231		731	660		758	122
${ }_{68 \mathrm{C}}^{68}$	Gas production and distribution (utilities) Water and sanitary services		52 21	99 34	51 41	${ }_{113}^{342}$	261 59	144	${ }_{28}^{26}$	132 98	40 35
69 A	Wholesale trade	1,138	1,970	2,125	1,379	10,545	3,688	1,552	1,328	3,212	720
698	Retail trade					124	43	27		30	6
70 A	Finance	${ }^{163}$	163 59	450	222	493	159	883	50	452	208
70 A		27			45	345	142	113	29	158	50
718	Real estate and royaties	105	326	389	144	117	159	459	346	774	87
72 A	Hotels and lodging places	87	30	150	134	79		766	9	72	38
728	Personal and repair services (except auto) ...	18	178	39	20	103	80	46	14	90	9
73 A	Computer and data processing services ..	30			37	106	92	103	14	100	19
${ }^{738}$	Legal, engineering, accounting, and related services	109	235	317	189	220	212	508	90	803	117
$73 C$	Other business and protessional services, except medical	166	449	586	244	543	484	1,016	194	1.030	273
730	Advertising	268	782	464	602	2,434	1,807	1,929	183	2,115	489
74	Eating and drinking places........	66	93 50	157	118	193	1190	148	37	308	59
75 76	Automotive repair and services		$\begin{array}{r}50 \\ 4 \\ \hline\end{array}$	71 23	$\begin{array}{r}137 \\ \hline 24 \\ \hline\end{array}$	${ }_{23} 48$	2,196	101	100	487	72 12
771					24	23		21	12	28	12
778	Educational and social services, and membership organizations		49	123	16	254	81	122		155	111
78	Federal Government enterprises ...					148	172		15	175	
78	State and local government enterprises					64	42			24	
81	Noncomparable imports......................		233	195	74	291	918	99	16	340	306
81					108		155				
83	Rest of the world adjustment to final uses.									
84	Household industry										
85	Inventory valuation adjustment ...										
	Total intermediate inputs	8.532	20,363	21,758	11,371	109,111	42.721	42,620	12.687	36,349	8.462
VA	Value added	9.083	20,337	26,895	9,452	25,004	26,270	39,508	11,396	49,114	11,264
T	Total Industy output ..	17,615	40,700	48,654	20,823	134,115	68,991	82,128	24,082	85,463	19,725

'Less than $\$ 500,000$.
by Industries, 1987 Benchmark-Continued
at producers' prices]

Table 2.1.-The Use of Commodities
[Millions of dollars

$\begin{aligned} & \text { 产 } \\ & \text { E } \\ & \text { E } \\ & \text { 言 } \\ & \text { E } \\ & 8 \end{aligned}$	For the distribution of output of a commodity, read the row for that commodity For the composition of inputs to an industry, read the column for that industry
	Livestock and livestock products
2	Other agricultural products
3	Forestry and fishery procucts
	Agricultural, forestry, and fishery services
$5+6$	Metallic ores mining
$?$	Coal mining
8	Crude petroleum and natural gas
$9+10$	Nonmetallic minerals mining ...
11	New construction
12	Maintenance and repair construction
13	Ordnance and accessories
14	Food and kindred products
15	Tobacco products
16	Broad and narrow fabrics, yarn and thread mills
17	Miscellaneous textile goods and floor coverings
18	Apparel
19	Miscellaneous fabricated textile products.
$20+21$	Lumber and wood products
22+23	Furniture and fixtures
24	Paper and allied products, except containers ...
25	Paperboard containers and boxes
26 A	Newspapers and periodicals
26 B	Other printing and publishing.
27A	Industrial and other chemicals
278	Agricultural fertilizers and chemicals
28	Plastics and synthetic materials
29A	Drugs
298	Cleaning and toilet preparations ..
30	Paints and alied products
31	Petroleum refining and related products
32	Rubber and miscellaneous plastics products ...
33+34	Footwear, leather, and leather products
35	Glass and glass products
36	Stone and clay products
37	Primary iron and steel manutacturing
38	Primary nonferrous metals manufacturing ...
39	Metal containers
40	Heating, plumbing, and fabricated structural metal products
41	Screw machine products and stampings
42	Other fabricated metal products
43	Engines and turbines ..
44+45	Farm, constuction, and mining machinery
	Materials handling machinery and equipment
47	Metalworking machinery and equipment
	Special industry machinery and equipment
49	General industrial machinery and equipment
50	Miscellaneous machinery, except electrical ...
51	Computer and office equipment
52	Service industry machinery
53	Electrical industrial equipment and apparatus ...
54	Househoid appliances
55	Electric lighting and wring equipment
56	Audio, video, and communication equipment
57	Electronic components and accessories
	Miscellaneous electrical machinery and supplies
59 A	Motor vehicles (passenger cars and tucks) ..
598	Truck and bus bodies, trailers, and motor vehicles parts
60	Aircratt and parts
61	Other transportation equipment
62	Scientific and controling instruments
63	Ophthalmic and photographic equipment ...
64	Miscellaneous manuiacturing
65A	Railroads and related services; passenger ground transportation
658	Motor freight transportation and warehousing ..
65 C	Water transportation ...
650	Air transportation
$65 E$	Pipelines, freight forwarders, and related services ...
66	Communications, except radio and TV ..
67	Radio and TV broadcasting
69A	Electric sevices (utilities) ...
68	Gas production and distribution (utilities) ...
68 C	Water and sanitary services
69A	Wholesale trade ...
698	Retail trade
70A	Finance
708	Insurance
71 A	Owner-occupied dwellings
718	Real estate and royalties ..
72 A	Hotels and lodging places
${ }_{73 \mathrm{~A}}^{72 \mathrm{~B}}$	Personal and repair services (except auto)
73 A	Computer and data processing services
73 B	Legal, engineering, accounting, and related services
73 C	Other business and professional services, except medical
73 D	Adverisising .-.i..
74	Eating and drinking places
75	Automotive repair and services
76	Amusements
77 A	Health services
778	Educational and social services, and membership organizations
78	Federal Government enterprises ..
79	State and local government enterprises
80	Noncomparable imports
81	Scrap, used and secondhand goods
82	General government industry
83	Rest of the world adjustment to final uses
84	Household industry
85	Inventory valuation adjustment ..
	Total intermediate inputs ..
VA	Value added Total industry output

Personal and repair services (except auto	Computer and data processing services
$72 B$	$73 A$

| Legal, engi- |
| :---: | :---: |
| neering, |
| accounting, |
| and related |
| services |$|$

by Industries, 1987 Benchmark-Continued at producers' prices]

Table 2.1.-The Use of Commodities by Industries, 1987 Benchmark—Continued
[Millions of dollars at producers' prices]

[^36]
Digitized for FRASER

http://fraser.stlouisfed. org/

Table 2.2.-Input Components of Total Industry Output, 1987 Benchmark
[Millions of dollars at producers' prices]

Industry number		Value added				Total intermediateinputs inputs	Total industryoutput	Industry
		Total	Compensation of employees	Indirect business tax and nontiax liability	Other value			
	Livestock and livestock products	15,074	3,284	1,091	10,700	72,410	87,484	
2		46,721	5,619	2,536	38,566	40,021	86,742	
3		3,708	779	158	2,771	3,748	7.456	3
4	Agricultura, torestry, and fishery senvices ..	9,948	9.941			12,263	22,201	${ }_{5}^{4}$
$5+6$	Metallic ores mining ..	3,476	1,836	501	1,139	3,331	6,807	$5+6$
7		15,488	8,383	2.033	5,072	9,964	25,452	7
8	Cruce petroleum and natural gas ..	55,484	11,699	3,939	39,847	28,744	84,228	${ }^{8}$
$9+10$	Nonmetalic minerals mining ...	8,213	4,008	688	3,518	4,751	12,964	9+10
11+12	Construction	291,000	189,998	4,487	96,515	327,813	618,813	$1+12$
	Ordnance and accessories	18,928	12,370	235	6,323	12,510	31,438	13
14	Food and kindred products...	100,498	43,805	7,225	49.468	225,473	325,972	14 15
15	Tobacco products	16,795	2,853	4,701	9,242	9,589	26,383	15
16	Broad and narrow fabrics, yarn and thread mills ...	12,140	8,413	235	3,491	26,104	38,244	16
17	Miscellaneous textile goods and flloor coverings ..	4,354	2.729	102	1,523	11.628	15,982	17
18	Apparel	27,003	17.503	239	9,262	37,181	64,184	18
19	Miscellaneous fabricated textile products ..	6,915	4,048	83	2.784	10,072	16,987	19
$20+21$	Lumber and wood products ..	25,923	16,168	1,251	8,503	46,952	72,875	$20+21$
$22+23$	Furniture and fixtures ..	17,259	11,412	230	5.617	19,518	36,777	$22+23$
24	Paper and allied products, except contiainers ...	34,878 88	16,521 670	1,345	${ }_{2} 16.4212$	$\begin{array}{r}16705 \\ \hline\end{array}$	${ }^{25,517}$	2
26 A	Newspapers and periodicals ..	29,037	15,391	255	13,392	20,699	49,727	26 A
268	Other pritting and publishing	45,145	27,499	957	16,689	42,232	87,378	26B
27 A	Industrial and other chemicals.	37,277	15,582	1,824	19,871	47,098	84,375	27A
278	Agricultural tertilizers and chemicals ..	3,364	1,950	226	1,188	10,148	13,512	278
28		14,365	6.560	766	7.040	26,308	40,672	28
29 A	Drugs	22,172	8,292	152	13,728	${ }^{13,840}$	36,012	29 A
298	Cleaning and toilet preparations.	17.646	5,308	184	12,155	15.563	33,229	298
30	Paints and allied products ..	5.568	2,505	${ }^{32}$	3,031	6,504	12.072	30
31	Petroleum refining and related products ...	24,258 37,624	6,857	10,590	6,812	113.613	137.871	31
33+34	Rubber and miscellaneous plastics products ...	37,624 3,681	23,433	1,672	12,519	47,948	85,572 800	- 32
${ }_{3} 3$	Glass and glass products	8,210	4,875	218	3,117	7,875	16,085	35
36	Stone and clay products ...	20,563	11,952	803	7,807	23,169	43,732	36
37	Primary iron and steel manuiacturing :.........	25,370	17,894	1,183	6,293	42.721	68,091	37
38	Primary nonferrous metals manutacturing	14,213	10.442	590	3,182	42,163	56,376	38
39	Metal containers.	3,421	2,019	85	1,318	8.483	11,904	39
40	Heating, plumbing, and fabricated structural metal products	19,001	12,772	492	5.737	24,930	43,930	40
41	Screw machine products and stampings ..	${ }^{14,187}$	11,245	512	2,430	17787	31,973	41
42	Other fabricated metal products ..	22,269	14.716	501	$\begin{array}{r}7.053 \\ \hline\end{array}$	22.155	44,424	42
4435	Engines and turbines ..	$\begin{array}{r}6,226 \\ 11,852 \\ \hline\end{array}$	3,973 7	175 449	3,975	74,902	14,096 26753	43
46	Materials handling machinery and equipment ..	3,309	2,409	66	${ }_{835}$	3,884	7,194	46
47	Metalworking machinery and equipment ...	12,470	9.843	275	2,353	8.756	21,227	47
48	Special industry machinery and equipment	8.595	6,147	163	2,285	7.659	16,254	48
49	General industrial machinery and equipment	12,400	8,544	262	3,595	10,836	23,236	49
50	Miscellaneous machinery, except electrical	11,839	9,391	250	2,198	8,164	20,003	50
51	Computer and office equipment ...	24,195	13,585	440	10,170	31,625	55,819	51
52	Senvice industry machinery	10.422	6.580	151	3.691	11,987	22,409	5
53	Electrical industrial equipment and apparatus ...	11,609	7,919	243	3,447	11,056	22,665	5
54 55		${ }_{9}^{6,5984}$	3,660 5.249	127 158	2,807	${ }_{8}^{8,767}$	${ }^{17,3615}$	54
56	Aectric lighing and wiring equipment ..	20,337	11,383	358	8.596	${ }^{20,363}$	40,700	56
57	Electronic components and accessories	26,895	18,527	852	7,517	21,758	48,654	57
58	Miscellaneous electrical machinery and supplies	9,452	6,579	235	2.639	11,371	20,823	58
59 A	Motor vehicles (passenger cars and trucks) ...	25,004	15,227	2,108	7,669	109,111	134,115	59A
60		26,270 39.508	19,067	1,597 614	8.892	42.621	882,128	9
61	Other transportation equipment ...	11,396	8,713	117	2,566	12,687	24,082	61
62	Scientific and controlling instruments ..	49,114	33,494	955	14,665	36,349	85,463	62
63		11,264	4,376	220	${ }_{6}^{6,768}$	${ }^{8,462}$	19,725	${ }_{64}^{63}$
64	Miscellaneous manufacturing	15,742	8,637	309	6,796	17,347	33,089	-64
65 B	Rairoads and related services; passenger ground transporation	26,684 64722	18,648	1,581	6,456	16,774	-43,458	${ }_{658}^{654}$
${ }_{65 C}$	Mater transportation ...	7,647	50,732	${ }^{3}, 687$	1,229	16,406	24,053	65 C
650		35,205	23,231	5,749	6,225	41,048	76,253	$65 D$
65 E	Pipelines, freight forwarders, and related services ...	15,309	7.945	642	6,722	10,599	25.908	656
66	Communications, except radio and TV ...	94,949	36,761	11,910	46,278	66,178	161.127	66
67	Radio and TV broadcasting ..	13,460	9,886 19453	600	2,975	15,936	29,396	${ }_{68}^{67}$
688		${ }^{85,706}$	19,453	9,242	57,012	46,665	132,371	68 B
68 C	Water and sanitary services	${ }^{26,786}$	${ }_{3,510}$, 584	-	4,477	11,262	${ }_{68} 6$
69A	Wholesale trade	297,947	174,697	57,724	65,525	125,804	423,751	69A
698	Retaill trade.	293,322	187,889	53,073	52,360	127,371	420,694	698
70 A	Finance ..	144,596	109,452	8,317	${ }^{26,827}$	142,016	286,613	70 A
708	Insurance ..	86,422	62,328	12,429	11,666	86.428	172,850	70 B
71 A	Owner-occupied dwelings ..	2790033		50,971	228,062	46,111	325.144	718
718		280,436 22,211	27,230 10.663	53,227 3,698	$\begin{array}{r}199,979 \\ 7850 \\ \hline 189\end{array}$	1898789 18.789	380,275 40,997	72 A
728	Personal and repair services (except auto) ...	33,983	21,130	1,187	11,666	32,319	66,302	72 B
73 A	Computer and data processing serices ...	35,770	25,443	655	9.673	25,051	60,821	73A
738	Legal, engineering, accounting, and related senvices .-...	104,682	79.014	818	24,850	73,250	177,931	${ }_{738} 7$
${ }_{730}^{73 C}$	Other business and professional services, except medical	138,418	92,121	3,952	42,345	82,309	220,728	${ }_{730}$
730		10,942	7,404	126	3,412	4,941	15.884	730 74
74		108,791	81.909	9.606	17,276	100,603	209,394	74
76		37,552	24,710	2,857	$\stackrel{\text { a }}{ }$	40,640	78,192	76 76
77 A		218,801	178,143	1,901	38,757	119,710	338,511	77A
778	Educational and social servicess, and membership organizations	72,590	68,100	418	4.072	80.088	152,678	778
78	Federal Govemment enterprises ...	${ }^{33,760}$	31,077		2,683	14,636	45,396	78
79	State and local government enterprises ...	27,750	19,296	26	8.428	41,734	69,484	79
	General government industry Household industry					….................	$\begin{array}{r}466,785 \\ 7709 \\ \hline\end{array}$	88
884	Household industry	$\begin{array}{r} 7,709 \\ -17,817 \end{array}$	7,709	${ }^{\text {a }}$..............................	-17,817		7,709 -17.817	84 85
		4,572,829	2,688,657	364,986	1,509,186	3,602,186	8,175,016	

[^37]
Total and Per Capita Personal Income by State and Region

This article was written by Howard L. Friedenberg and Duke D. Tran. The estimates of State personal income, as well as the section on the revisions, were prepared by the Regional Economic Measurement Division.

This article presents preliminary fourthquarter and year 1993 estimates of total personal income for States, regions, and the United States and preliminary 1993 estimates of per capita personal income. In addition, the article includes revised annual State estimates for 1988-92 and revised quarterly estimates for 1990:I-1993:III.

The first section of this article looks at the preliminary estimates of total State personal income, and the second section discusses the preliminary estimates of per capita State personal income. The last section contains information about the revised estimates. Tables $1-4$, at the end of the article, present the preliminary and revised estimates: Tables 1 and 2 contain the quarterly estimates of total and nonfarm State personal income for 1990-93, and tables 3 and 4 contain the annual estimates of total and per capita State personal income for 1988-93. Table 5 presents percent changes in earnings for selected industries for 1993.

Total Personal Income

Total personal income in the Nation increased 1.8 percent in the fourth quarter of 1993 after increasing 0.8 percent in the third quarter. ${ }^{1}$ The

[^38]pickup was mainly in farm income, which increased substantially in the fourth quarter after having declined in the third quarter as a result of the floods in the Midwest, lower farm subsidy payments, and the drought in the Southeast.

In the fourth quarter, the five States with the fastest growth in personal income were North Dakota, Iowa, South Dakota, Nebraska, and Minnesota. In these States, personal income rebounded sharply after having declined in the third quarter as a result of the crop damage and uninsured losses to property due to the floods and of lower farm subsidy payments.

In 1993 as a whole, personal income in the Nation increased 4.7 percent after increasing 6.1 percent in 1992. The slowdown mainly reflected the effect on personal income of payments of bonuses in a number of industries in late 1992 that typically would have been paid in early 1993. If the timing of the bonus payments had been typical, personal income in the Nation would have increased 5.5 percent in 1993 and 5.7 percent in 1992.

Per Capita Personal Income

Per capita personal income in the Nation increased 3.5 percent in 1993 after increasing 4.9 percent in 1992. The slowdown mainly reflected the effect on personal income of the change in the

bea Estimates of Wages and Salaries for 1993

The annual change from 1992 to 1993 in the national totals of the preliminary State estimates of wages and salaries is the same as the change in the national income and product accounts (NIPA) estimates of wage and salary disbursements that appear in this issue. This year, the national totals for both the Nipa and the State estimates are based primarily on monthly national data on employment, hours, and earnings from the Bureau of Labor Statistics (bls) establishment survey; in some years, such as last year, the national totals for the preliminary State estimates presented in April have instead been based primarily on bls tabulations of wages and salaries of employees covered by unemployment insurance for the first three quarters and on a bea
estimate for the fourth quarter. ${ }^{1}$ The unemployment insurance data are used instead of the monthly establishment data when there are significant differences between the two series. In July, both the NIPA and the State estimates for 1993 will be revised to incorporate the unemployment insurance tabulations for all four quarters of 1993.

1. The monthly establishment survey covers total employment and the average weekly hours and average hourly earnings of production and nonsupervisory workers. The unemployment insurance tabulations are compiled from reports that are filed quarterly by all employers covered by State unemployment insurance laws and by the unemployment compensation program for Federal employees. (For a more detailed discussion of these two data series and their use by ben, see "State Estimates of Wages and Salaries: A Methodological Update" in the October 1989 Survey of Current Business.)
timing of bonus payments. If the timing had not changed, per capita income would have increased 4.3 percent in 1993 and 4.5 percent in 1992.

The increases in per capita personal income for the Nation have exceeded the increases in U.S. prices (as measured by the fixed-weighted price index for personal consumption expenditures) for 2 consecutive years. In 1993, prices increased 3.0 percent, and in 1992, they had increased 3.7 percent. By State, increases in per capita income in 1993 exceeded 3.0 percent in all except eight States.

Fastest growing States

In 1993, increases in per capita personal income in the 12 fastest growing States ranged from 6.7 percent in Montana to 4.5 percent in Oregon (table A and chart 1). All of these States had above-average growth in personal income, and all except Louisiana and Indiana had average
or above-average growth in population. All of these States except Florida, Hawaii, and Nevada had per capita income below the U.S. average of $\$ 20,817$ in 1993.

In Montana, Idaho, Mississippi, New Mexico, Nevada, Wyoming, North Carolina, and Oregon, personal income growth was boosted by aboveaverage increases in earnings in nondurables manufacturing, in retail trade, in the finance-insurance-real estate group, and in government (table B). ${ }^{2}$

In addition, most of these States had aboveaverage increases in earnings in the other major nonfarm industries. In Mississippi, large increases in earnings in construction and in services reflected the growth of gaming establishments. In Montana and Idaho, personal income growth was
2. Earnings is the sum of wage and salary disbursements, other labor income, and proprietors' income.

CHART 1

Per Capita Personal Income: Percent Change, 1992-93

[^39]boosted substantially by large increases in farm income.
In Florida and Hawaii, personal income growth rebounded from the effects in 1992 of Hurricanes Andrew in Florida and Iniki in Hawaii. Construction earnings rebounded substantially in Florida and moderately in Hawaii.
In Louisiana and Indiana, increases in earnings were above average in trade, in the finance-insurance-real estate group, and in government. In addition, Louisiana had above-average in-

Table A.-Per Capita Personal Income for Selected States and the United States, 1992-93

Rank		Percent change				
		Per capita personal income	Personal income			Population
			Total	Farm	Nonfarm	
	Fastest growing States:					
1	Montana	6.7	9.0	91.5	6.3	2.1
2	idaho	6.0	9.3	40.9	7.6	3.1
3	Florida	5.8	7.4	-. 2	7.4	1.5
4	Mississippi	5.8	6.9	3.9	6.9	1.1
5	New Mexico	5.4	7.7	25.4	7.4	2.2
6	Hawaii	5.2	6.6	13.9	6.6	1.4
7	Nevada	5.0	9.1	79.5	8.9	3.9
8	Wyoming	4.9	6.1	16.8	5.8	1.2
9	North Carolina	4.7	6.4	6.6	6.4	1.6
10	Louisiana	4.6	5.0	-18.0	5.2	4
11	Indiana	4.6	5.6	18.0	5.5	1.0
12	Oregon	4.5	6.6	31.8	6.3	2.0
	United States	3.5	4.7	-2.5	4.8	1.1
	Slowest growing States:					
43	Washington	2.8	5.1	31.1	4.7	2.2
44	Minnesota	2.7	3.9	-80.0	5.2	1.1
45	South Dakota	2.7	3.7	-22.0	6.7	1.0
46	Missouri	2.6	3.5	-61.0	4.0	. 8
47	North Dakota	2.6	2.7	-25.2	5.5	. 1
48	California	2.2	3.3	13.1	3.2	1.0
49	New York	2.2	2.7	-14.1	2.7	. 5
50	lowa	2	6	-86.2	4.7	4

creases in earnings in nondurables manufacturing and in mining, and Indiana had above-average increases in earnings in durables manufacturing, in construction, and in services.

Slowest growing States

In 1993, increases in per capita personal income in the eight slowest growing States ranged from 0.2 percent in Iowa to 2.8 percent in Washington. All of these States except Washington had belowaverage growth in personal income and average or below-average growth in population. California's population growth was below average for the first time since 1948.

In Iowa, North Dakota, Missouri, South Dakota, and Minnesota, personal income growth was slowed by large declines in farm income as a result of the Midwest floods in the third quarter. The slowdown occurred despite rebounds in the fourth quarter.
In New York, California, and Washington, earnings in durables manufacturing declined, and earnings in construction either increased at below-average rates or declined. The declines in earnings in durables manufacturing in California and Washington, which were larger than those in any of the other States, reflected job cutbacks in the aircraft industry. In addition, California and New York had either declines or increases in earnings in most of the other major nonfarm industries. In New York, a large decline in earnings in the finance-insurance-real estate group reflected the atypical timing of bonus payments in the securities industry.

Table B.-Percent Change in Earnings for Selected States and the United States, 1992-93

Rank		Durables manufacturing	Nondurables manufacturing	Construction	Mining	Transportation and public utilities	Wholesale trade	Retail trade	Finance, insurance, and real estate	Services	Government
	Fastest growing States:										
1	Montana	2.4	5.6	4.7	2.1	4.8	7.4	5.6	6.5	9.8	7.5
2	Idaho	10.1	3.8	12.8	-2.3	6.7	6.3	11.1	8.4	9.6	6.7
3	Florida	-1.1	. 2	12.5	-. 7	6.2	6.6	6.4	4.3	9.5	7.7
4	Mississippi	4.2	1.9	18.6	4.8	3.8	6.7	7.1	4.1	15.3	6.9
5	New Mexico	5.4	6.4	20.5	9.9	4.9	6.5	9.2	8.4	9.6	5.6
6	Hawaii	1.6	-5.1	6.9	2.4	-. 8	4.0	5.3	8.7	5.2	4.1
7	Nevada	0	8.4	27.4	4.5	8.2	2.7	6.8	11.5	10.2	7.3
8	Wyoming ..	-. 1	6.1	7.1	7.3	4.3	1.0	5.9	12.8	7.1	4.9
9	North Carolina	5.2	1.9	13.7	7.9	4.6	6.0	5.8	6.0	10.0	6.8
10	Lovisiana	-. 1	1.8	4.1	3.8	2.8	4.5	4.8	3.9	7.2	5.3
11	Indiana	4.9	1.0	8.1	-5.3	4.3	7.3	5.5	4.2	7.8	4.9
12	Oregon	2.2	1.9	11.0	12.4	4.8	5.7	7.1	9.7	8.7	6.5
	United States 7	1.0	7.4	1.4	4.4	4.0	4.6	1.6	7.3	4.7
	Slowest growing States:										
43	Washington	-5.8	3.2	2.6	-1.0	3.9	5.0	5.5	4.6	6.9	5.8
44	Minnesota	2.8	1.5	6.2	3.3	1.5	5.5	7.4	6.7	7.7	6.4
45	South Dakota	11.1	. 7	8.9	-5.7	5.2	5.1	7.6	5.6	11.8	7.0
46	Missouri	-1.8	1.2	7.8	8.5	4.3	2.5	3.6	3.8	7.9	5.0
47	North Dakota	7.6	4.7	12.7	5.6	4.1	4.2	6.5	5.3	6.7	4.3
48	California	-5.0	-. 9	-. 9	5.5	2.2	$-.7$	3.1	2.0	5.3	2.2
49	New York	-3.3	-2.6	4.1	7.4	1.6	2.9	1.8	-5.8	6.3	3.4
50	lowa	3.2	3.3	4.5	3.5	6.1	3.6	3.9	6.0	6.8	5.7

Revisions to the State Estimates

The State estimates of personal income for $1990-$ 92 have been revised to reflect the routine incorporation of more current State and county source data (see table C). In addition, the annual State estimates for 1981-92 have been revised to reflect the incorporation of new source data that were not available in time to be used in the last comprehensive revision, and the quarterly State estimates for these years have been adjusted to reflect the changes in the annual estimates. The incorporation of the new source data caused changes to the estimates of both farm and nonfarm proprietors' income and of the residence adjustment, which is the net inflow of the earnings of interstate commuters.

The newly available source data were also incorporated into the estimates of personal income for local areas. For a detailed description of the revisions for both States and local areas, see the

Availability of the State Estimates

Quarterly State estimates for 1969-93 are available, including tables presenting income by type of payment-for example, wages and salaries-and earnings by Standard Industrial Classification (sic) division. Annual State estimates of personal income and per capita personal income for 1929-93 are also available. The detailed tables of the State annual series have not yet been updated to reflect the revisions to the estimates for 1981-92; however, much of the information presented in that series, including earnings by sic twodigit industry, is available in the local area series. For more information, see the "Data Availability" box on page 129.
article "Local Area Personal Income: Estimates for 1990-92 and Revisions to the Estimates for 1981-91" beginning on page 127. Tables C and 1 through 5 follow.

Table C.-Revisions in Total Personal Income for States and Regions, 1990-93
[Milions of dollars, quarters seasonally adiusted at annual rates]

State and region	1990	1991	1992	1992				1993		
				1	II	III	IV	1	11	III
United States	-1,700	-1,851	-2,244	-1,669	-2,089	-2,479	-2,738	-6,572	-5,374	-4,284
New England	-1,387	-1,193	-1,185	$-1,007$	-1,106	-1,141	-1,486	-1,525	-1,623	1,665
Connecticut.		-14	-7	-20	66	20	-93	-292	-76	897
Maine	65	85	96	157	126	100		150	78	198
Massachusetts	-1,161	-909	-944	-841	-996	-932	-1,006	-1,052	-1,257	150
New Hampshire	-628	-621	-643	-560	-618	-651	-742	-672	-725	-406
Rhode Island ..	340	263	308	236	317	319	360	383	452	661
Vermont ...	-13	3	5	22	-1	3	-4	-42	-95	165
Mideast	-374	1,712	1,188	1,541	2,258	1,154	-201	-378	-297	-112
Delaware	-971	-949	-983	-952	-1,001	-982	-997	-940	-1,015	-1,159
District of Columbia ..	414	586	743	566	667	812	927	742	769	771
Maryland ..	486	354	299	339	274	380	205	384	77	-21
New Jersey	-6,526	-5,576	-6,021	-5,793	-5,872	-5,922	-6,498	-5,822	-6,332	-6,652
New York	4,037	4,722	4,352	4,014	5,217	4,382	3,796	2,755	4,146	4,252
Pennsylvania ...	2,186	2,575	2,797	3,367	2,973	2,484	2,365	2,502	2,056	2,697
Great Lakes	-2,282	-2,723	-2,830	-2,509	-2,401	-3,099	-3,312	-7,254	-4,825	-2,721
llinois	-2,230	-2,490	-2,793	-2,703	-2,649	$-2,876$	-2,945	-5,133	-3,280	-2,363
Indiana	-77	-265	-283	-111	-272	-356	-393	-564	-622	-851
Michigan	-746	-959	-949	-1,074	-838	-929	-953	-1,374	-1,266	-1,064
Ohio	1,340	1,881	2,082	2,318	2,255	1,914	1,841	1,042	1,638	2,115
Wisconsin	-569	-890	-887	-937	-897	-851	-863	-1,226	-1,294	-557
Plains	-1,135	-1,429	-1,474	-1,056	-1,291	-1,684	-1,867	-5,948	-3,767	-5,454
lowa.	-623	-902	-878	-867	-875	-926	-845	-3,500	-2,404	-2,808
Kansas	-358	27	-44	-92	-30	-27	-24	37	671	86
Minnesota	64	48	99	236	227	31	-100	-835	-551	-881
Missouri	-306	-486	-493	-294	-454	-501	-724	-594	-711	-878
Nebraska	27	-24	-70	-10	-77	-125	-68	-732	-614	-252
North Dakota	7	-133	-125	-94	-117	-144	-143	-60	-6	-402
South Dakota	54	42	36	65	35	8	36	-264	-152	-318
Southeast	365	422	500	248	-314	819	1,246	-787	-3,202	-1,654
Alabama	145	88	137	101	173	113	163	66	343	198
Arkansas	-241	-320	-383	-378	-396	-417	-340	-314	-1,009	-572
Florida	1,567	2,592	2,835	2,575	2,241	3,220	3,304	2,554	1,729	2,217
Georgia	628	700	840	850	760	784	966	676	705	59
Kentucky	-968	-1,068	-1,218	-1,231	-1,228	-1,178	-1,234	-1,524	-1,494	-1,403
Louisiana	147	124	111	-55	-7	393	115	-104	-280	-602
Mississippi ...	-60	-79	-108	-148	-74	-90	-121	-118	-316	122
North Carolina	-602	-827	-956	-939	-941	-996	-949	-890	-1,244	-164
South Carolina	110	20	47	73	-38	7	147	171	93	190
Tennessee	293	112	233	299	211	97	323	-89	-214	105
Virginia	-1,048	-1,315	-1,469	-1,389	-1,417	-1,516	-1,554	-1,609	-1,822	-1,975
West Virginia ...	395	393	430	491	403	402	425	396	307	171
Southwest	1,442	2,098	2,257	1,924	2,219	2,331	2,554	3,844	3,142	2,959
Arizona	362	337	301	251	298	307	348	214	281	794
New Mexico	2	-132	-157	-164	-176	-161	-126	-117	-216	-91
Okiahoma	-146	-175	-217	-265	-272	-219	-111	24	-100	-359
Texas	1,224	2,067	2,330	2,102	2,370	2,403	2,444	3,722	3,176	2,615
Rocky Mountain	313	221	-3	99	-24	-22	-64	1,472	1,512	469
Colorado	-25	48	-54	103	-36	-94	-188	526	364	69
Idaho	227	151	112	87	115	101	144	478	667	588
Montana .	-9	-37	-53	-46	-85	-26	-55	464	516	160
Utah	-24	-94	-122	-153	-129	-109	-94	-142	-157	-484
Wyoming ..	144	153	113	107	111	105	130	146	122	136
Far West	1,357	-959	-696	-912	-1,430	-834	390	4,004	3,687	563
Alaska	-173	-166	-187	-195	-185	-201	-167	-183	-159	-346
California ...	-1,767	-3,233	-3,220	-3,127	-3,986	-3,391	-2,376	452	-292	-1,694
Hawaii ...	509	423	403	344	358	383	525	495	496	215
Nevada ..	594	603	677	626	643	702	738	762	766	928
Oregon	454	414	446	367	470	437	510	749	802	594
Washington ..	1,739	1,000	1,184	1,072	1,271	1,235	1,159	1,728	2,074	866
Census Divisions:										
New England ...	-1,387	-1,193	-1,185	-1,007	-1,106	-1,141	-1,486	-1,525	-1,623	1,665
Middle Âtlantic	-304	1,722	1,128	1,588	2,318	944	-337	-565	-130	296
East North Central	-2,282	-2,723	-2,830	-2,509	-2,401	$-3,099$	-3,312	-7,254	-4,825	-2,721
West North Central ..	-1,135	-1,429	-1,474	-1,056	-1,291	$-1,684$	-1,867	-5,948	-3,767	-5,454
South Atlantic	980	1,555	1,786	1,614	948	2,109	2,475	1,483	-400	88
East South Central	-591	-947	-956	-980	-917	-1,058	-869	-1,666	-1,680	-978
West South Central ..	984	1,696	1,842	1,403	1,695	2,161	2,108	3,328	1,787	1,084
Mountain ..	1,272	1,030	819	813	739	826	896	2,332	2,345	2,098
Pacific ...	763	-1,562	-1,374	-1,538	-2,073	-1,536	-347	3,242	2,921	-364

Table 1.-Total Personal Income, States and Regions

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{State and region} \& \multicolumn{4}{|c|}{1990} \& \multicolumn{4}{|c|}{1991} \& \multicolumn{4}{|c|}{1992} \& \multicolumn{4}{|c|}{1993} \& \multicolumn{2}{|l|}{Percent change} \\
\hline \& \(1 \times\) \& \(1{ }^{\text {r }}\) \& \(1 I^{r}\) \& IV \({ }^{\text {r }}\) \& \(1{ }^{\text {r }}\) \& 11 \& II' \& IV \({ }^{\text {r }}\) \& \(1 r\) \& I' \& IIIr \& IV \({ }^{\text {r }}\) \& 1 \& \(11 r\) \& \(117{ }^{\text {r }}\) \& IV \({ }^{\text {P }}\) \& \[
\begin{aligned}
\& \text { 1993:III- } \\
\& \text { 1993:IV }
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { 1992:IV- } \\
\& \text { 1993:IV }
\end{aligned}
\] \\
\hline United States \({ }^{1}\) \& 4,571,269 \& 4,630,734 \& 4,680,939 \& 4,738,738 \& 4,761,845 \& 4,812,922 \& 4,840,899 \& 4,911,121 \& 5,001,184 \& 5,077,402 \& 5,122,205 \& 5,312,702 \& 5,234,736 \& 5,354,604 \& 5,395,210 \& 5,491,299 \& 1.8 \& 3.4 \\
\hline Now England \& 287,057 \& 288,375 \& 291,659 \& 291,752 \& 292,486 \& 294,301 \& 294,553 \& 298,215 \& 301,610 \& 305,648 \& 309,081 \& 319,128 \& 311,115 \& 318,979 \& 325,280
03,286 \& \(\begin{array}{r}328,724 \\ 94 \\ \hline\end{array}\) \& 1.1 \& 3.0 \\
\hline Connecticut \& 82,250
20,820 \& \begin{tabular}{l}
83,306 \\
21,025 \\
\hline
\end{tabular} \& 84,242
21,112 \& 84,734
20.966 \& 83,874
21,262 \& 84,598
21,244 \& 84,376
21,397 \& 85,477
21,607 \& 86,284
22001 \& 87,864
22,330 \& 89,385
22,588 \& 92,582
22906 \& 89,461 \& 91,612
23,267 \& 93,286
23,603 \& 94,139
23927 \& .9
1.4 \& 1.7
4.5 \\
\hline Maine \& 20,820
132825 \& 21,025
133,603 \& 21,112
134,653 \& 20,966
134,480 \& 21,262
135,189 \& 21,244
135,988 \& 21,397
135,986 \& 21,607
137679 \& 22,001
139,136 \& 22,330
140,532 \& 22,588
141,523 \& 22,906
146,346 \& 22,883
142,774 \& 23,267
146,716 \& 23,603
149.689 \& \(\begin{array}{r}23,927 \\ \hline 151,536\end{array}\) \& 1.4 \& 4.5
3.5 \\
\hline \begin{tabular}{l}
Massachusets \\
New Hampshire
\end{tabular} \& \(\begin{array}{r}132,825 \\ \hline 22,319\end{array}\) \& 133,603

22,472 \& $\begin{array}{r}134,63 \\ 22,616 \\ \hline\end{array}$ \& 134,480
$\mathbf{2 2 , 5 5 5}$ \& 135,189
$\mathbf{2 2 , 9 0}$ \& 135,988

$\mathbf{2 3 , 1 2 6}$ \& | 135,986 |
| ---: |
| $\mathbf{2 3 , 2 8 2}$ | \& $\begin{array}{r}137,679 \\ \mathbf{2 3 , 6 1 8} \\ \hline\end{array}$ \& 139,136

23,929 \& 140,532
24,152 \& 141,523
24,429 \& 146,346
25,319 \& 142,774
24,619 \& 146,716
25,276 \& 149,689
25,960 \& $\begin{array}{r}151,536 \\ 26,138 \\ \hline 1\end{array}$ \& 1.2
.7 \& 3.5
3.2

\hline Rhode island \& 19,019 \& 19,117 \& 19,180 \& 19,166 \& 19,318 \& 19,322 \& 19,393 \& 19,610 \& 19,808 \& 20,121 \& 20,357 \& 20,929 \& 20,464 \& 20,995 \& 21,383 \& 21,542 \& .7 \& 2.9

\hline Vermont \& 9,825 \& 9,853 \& 9,856 \& 9,851 \& 9,943 \& 10,023 \& 10,118 \& 10,225 \& 10,452 \& 10,648 \& 10,799 \& 11,047 \& 10,914 \& 11,113 \& 11,359 \& 11,442 \& . 7 \& 3.6

\hline Mideast \& 929,692 \& 944,206 \& 955,881 \& 960,957 \& 963,888 \& 975,020 \& 977,639 \& 989,606 \& 1,006,251 \& 1,020,286 \& 1,033,597 \& 1,072,138 \& 1,036,695 \& 1,068,888 \& 1,079,438 \& 1,091,975 \& 1.2 \& 1.9

\hline Delaware \& 12,838 \& 13,090 \& 13,382 \& 13,462 \& 13,711 \& 13,673 \& 13,717 \& 13,893 \& 13,949 \& 14,205 \& 14,352 \& 14,766 \& 14,573 \& 15,031 \& 15.113 \& 15,452 \& 2.2 \& 4.6

\hline District of Columbia \& 14,029 \& 14,573 \& 15,279 \& 15,631 \& 15,656 \& 15,593 \& 15,319 \& 15,397 \& 15,867 \& 16,151 \& 16,491 \& 16,822 \& 16,768 \& 16,944 \& 17,158 \& 17,244 \& . 5 \& 2.5

\hline Maryland \& 104,095 \& 105,468 \& 106,939 \& 107,439 \& 108,234 \& 109,262 \& 109,497 \& 110,606 \& 111,755 \& 113,353 \& 114,821 \& 117,727 \& 116,442 \& 119,217 \& 120,301 \& 121,541 \& 1.0 \& 3.2

\hline New Jersey \& 183,775 \& 186,556 \& 188,648 \& 189,687 \& 189,085 \& 191,132 \& 191,917 \& 194,104 \& 198,315 \& 201,323 \& 204,206 \& 212,308 \& 206,153 \& 212,472 \& 214,361 \& 216,927 \& 1.2 \& 2.2

\hline New York \& 394,875 \& 400,956 \& 405,101 \& 406,402 \& 406,790 \& 412,825 \& 413,058 \& 417,980 \& 424,568 \& 430,058 \& 435,585 \& 455,203 \& 432,357 \& 448,817 \& 453,070 \& 458,062 \& 1.1 \& . 6

\hline Pennsylvania \& 220,080 \& 223,563 \& 226,532 \& 228,336 \& 230,412 \& 232,535 \& 234,130 \& 237,626 \& 241,797 \& 245,196 \& 248,142 \& 255,311 \& 250,401 \& 256,406 \& 259,435 \& 262,749 \& 1.3 \& 2.9

\hline Grest Lakes. \& 756,918 \& 766,622 \& 774,135 \& 781,966 \& 783,428 \& 790,451 \& 798,054 \& 809,610 \& 824,641 \& 839,120 \& 846,395 \& 875,621 \& 863,688 \& 881,855 \& 889,384 \& 908,582 \& 2.2 \& 3.8

\hline Illinois \& 227,240 \& 229,465 \& 231,358 \& 235,096 \& 234,170 \& 236,731 \& 238,031 \& 240,774 \& 245,951 \& 250,142 \& 253,213 \& 262,126 \& 256,993 \& 263,209 \& 265,089 \& 271,317 \& 2.3 \& 3.5

\hline Indiana \& 92,213 \& 92,636 \& 93,986 \& 94,826 \& 95,262 \& 95,994 \& 96,941 \& 98,685 \& 101,068 \& 102,858 \& 104,252 \& 107,509 \& 107,351 \& 109,031 \& 110,097 \& 112,326 \& 2.0 \& 4.5

\hline Michigan \& 167,022 \& 169,239 \& 171,375 \& 171,597 \& 171,817 \& 174,139 \& 175,682 \& 178,367 \& 180,046 \& 183,900 \& 184,155 \& 190,957 \& 188,425 \& 192,893 \& 194,368 \& 199,708 \& 2.7 \& 4.6

\hline Ohio \& 186,751 \& 190,500 \& 191,670 \& 193,511 \& 194,829 \& 195,339 \& 198,276 \& 201,257 \& 205,214 \& 208,260 \& 209,545 \& 216,387 \& 213,437 \& 217,514 \& 219,638 \& 222,895 \& 1.5 \& 3.0

\hline Wisconsin \& 83,692 \& 84,782 \& 85,746 \& 86,934 \& 87,349 \& 88,249 \& 89,124 \& 90,527 \& 92,364 \& 93,960 \& 95,231 \& 98,642 \& 97,482 \& 99,208 \& 100,192 \& 102,337 \& 2.1 \& 3.7

\hline Plains \& 307,021 \& 307,732 \& 306,956 \& 317,863 \& 317,139 \& 321,173 \& 320,555 \& 329,304 \& 336,033 \& 339,392 \& 341,194 \& 356,298 \& 351,768 \& 356,820 \& 346,800 \& 364,499 \& 5.1 \& 2.3

\hline lowa. \& 47,027 \& 45,823 \& 45,537 \& 47,112 \& 47,601 \& 47,570 \& 47,196 \& 48,415 \& 50,803 \& 50,542 \& 50,727 \& 52,826 \& 52,281 \& 51,833 \& 49,108 \& 52,941 \& 7.8 \& . 2

\hline Kansas \& 42,922 \& 43,337 \& 43,312 \& 45,480 \& 44,543 \& 45,479 \& 45,122 \& 47,070 \& 47,409 \& 48,342 \& 48,268 \& 51,038 \& 49,932 \& 51,671 \& 50,032 \& 52,231 \& 4.4 \& 2.3

\hline Minnesota ... \& 81,331 \& 82,180 \& 82,271 \& 83,771 \& 84,029 \& 84,873 \& 85,403 \& 86,951 \& 89,502 \& 90,085 \& 91,531 \& 95,325 \& 94,046 \& 95,202 \& 93,551 \& 97,810 \& 4.6 \& 2.6

\hline Missouri \& 87,658 \& 88,714 \& 89,546 \& 91,064 \& 92,067 \& 92,820 \& 93,584 \& 95,299 \& 96,743 \& 97,692 \& 98,229 \& 101,215 \& 100,239 \& 102,348 \& 100,648 \& 104,235 \& 3.6 \& 3.0

\hline Nebraska ... \& 27,799 \& 27,368 \& 26,837 \& 27,875 \& 28,312 \& 29,021 \& 28,645 \& 28,902 \& 30,066 \& 30,099 \& 29,933 \& 31,374 \& 31,452 \& 31,498 \& 30,965 \& 32,897 \& 6.2 \& 4.9

\hline North Oakota \& 9,459 \& 9,516 \& 8,942 \& 11,143 \& 9,456 \& 9,838 \& 9,411 \& 10,858 \& 10,357 \& 10,616 \& 10,498 \& 11,767 \& 11,209 \& 11,550 \& 10,328 \& 11,327 \& 9.7 \& -3.7

\hline South Dakota \& 10,827 \& 10,794 \& 10,512 \& 11,418 \& 11,131 \& 11,572 \& 11,195 \& 11,810 \& 11,954 \& 12,017 \& 12,009 \& 12,752 \& 12,609 \& 12,718 \& 12,168 \& 13,059 \& 7.3 \& 2.4

\hline Southeast . \& 963,653 \& 975,579 \& 988,281 \& 997,618 \& 1,012,758 \& 1,023,089 \& 1,032,560 \& 1,046,506 \& 1,069,513 \& 1,086,481 \& 1,088,119 \& 1,137,196 \& 1,131,363 \& 1,154,972 \& 1,169,388 \& 1,189,918 \& 1.8 \& 4.6

\hline Alabama ... \& 58,999 \& 60,131 \& 60,595 \& 61,603 \& 62,896 \& 63,416 \& 64,110 \& 65,027 \& 66,604 \& 67,562 \& 68,601 \& 70,665 \& 70,534 \& 71,896 \& 72,498 \& 73,690 \& 1.6 \& 4.3

\hline Arkansas ... \& 32,300 \& 32,325 \& 32,334 \& 32,842 \& 33,924 \& 34,184 \& 34,242 \& 35,014 \& 36,597 \& 37,271 \& 37,157 \& 38,711 \& 39,013 \& 38,657 \& 38,853 \& 40,030 \& 3.0 \& 3.4

\hline Florida ${ }^{2}$.... \& 240,335 \& 243,366 \& 246,508 \& 248,209 \& 252,243 \& 253,922 \& 255,016 \& 257,158 \& 261,365 \& 264,855 \& 256,888 \& 279,946 \& 277,008 \& 283,608 \& 287,921 \& 292,665 \& 1.6 \& 4.5

\hline Georgia \& 109,132 \& 110,585 \& 112,529 \& 113.379 \& 114,792 \& 116,478 \& 117,694 \& 119,412 \& 122,194 \& 124,237 \& 125,862 \& 130,277 \& 128,836 \& 133,212 \& 134,306 \& 137,027 \& 2.0 \& 5.2

\hline Kentucky \& 53,349 \& 53,940 \& 54,720 \& 55,806 \& 55,970 \& 56,982 \& 58,028 \& 59,099 \& 60,460 \& 61,411 \& 62,177 \& 64,125 \& 63,229 \& 64,676 \& 65,625 \& 66,727 \& 1.7 \& 4.1

\hline Louisiana ${ }^{2}$.... \& 59,113 \& 59,748 \& 60,541 \& 61,510 \& 62,902 \& 63,640 \& 64,318 \& 65,472 \& 66,842 \& 68,004 \& 67,894 \& 69,927 \& 70,224 \& 71,143 \& 71,869 \& 73,137 \& 1.8 \& 4.6

\hline Mississippi \& 31,881 \& 32,204 \& 32,473 \& 33,033 \& 33,672 \& 34,065 \& 34,277 \& 35,044 \& 36,060 \& 36,589 \& 36,798 \& 37,862 \& 38,649 \& 38,814 \& 39,494 \& 40,492 \& 2.5 \& 6.9

\hline North Carolina .. \& 106,209 \& 108,085 \& 109,587 \& 109,475 \& 110,727 \& 112,388 \& 114,656 \& 115,796 \& 118,507 \& 120,771 \& 122,842 \& 126,350 \& 126,020 \& 128,828 \& 130,910 \& 133,798 \& 2.2 \& 5.9

\hline South Carolina \& 51,644 \& 52,665 \& 53,315 \& 53,794 \& 54,542 \& 54,808 \& 55,220 \& 55,952 \& 57,000 \& 57,821 \& 58,615 \& 60,202 \& 60,161 \& 61,447 \& 62,128 \& 62,845 \& 1.2 \& 4.4

\hline Tennessee \& 76,498 \& 77,123 \& 78,366 \& 79,156 \& 80,309 \& 81,179 \& 82,005 \& 83,833 \& 86,104 \& 87,812 \& 88,783 \& 92,566 \& 91,520 \& 93,369 \& 94,814 \& 96,270 \& 1.5 \& 4.0

\hline Virginia \& 119,565 \& 120,580 \& 122,160 \& 123,280 \& 124,727 \& 125,791 \& 126,497 \& 127,807 \& 130,152 \& 132,205 \& 134,176 \& 137,603 \& 137,206 \& 139,882 \& 141,459 \& 143,139 \& 1.2 \& 4.0

\hline West Virginia \& 24,626 \& 24,826 \& 25,153 \& 25,531 \& 26,055 \& 26,238 \& 26,498 \& 26,971 \& 27,627 \& 27,944 \& 28,326 \& 28,961 \& 28,964 \& 29,440 \& 29,519 \& 30,095 \& 2.0 \& 3.9

\hline Southwest \& 404,847 \& 411,506 \& 417,688 \& 424,008 \& 429,463 \& 435,704 \& 438,307 \& 446,818 \& 456,002 \& 464,806 \& 470,378 \& 487,957 \& 486,248 \& 496,681 \& 501,525 \& 510,223 \& 1.7 \& 4.6

\hline Arizona \& 58,800 \& 59,454 \& 60,277 \& 60,802 \& 61,796 \& 62,389 \& 62.544 \& 63,442 \& 64,772 \& 65,964 \& 66,900 \& 69,112 \& 68,903 \& 70,835 \& 72,385 \& 73,181 \& 1.1 \& 5.9

\hline New Mexico \& 21,089 \& 21,305 \& 21,734 \& 22,280 \& 22,503 \& 22,794 \& 22,913 \& 23,280 \& 23,844 \& 24,248 \& 24,601 \& 25,116 \& 25,587 \& 26,020 \& 26,632 \& 27,135 \& 1.9 \& 8.0

\hline Oklahoma \& 46,507 \& 47,064 \& 47,654 \& 49,093 \& 48,695 \& 49,403 \& 49,318 \& 50,707 \& 51,458 \& 52,264 \& 52,575 \& 54,225 \& 54,056 \& 54,972 \& 55,080 \& 55,884 \& 1.5 \& 3.1

\hline Texas \& 278,451 \& 283,683 \& 288,023 \& 291,832 \& 296,469 \& 301,117 \& 303,533 \& 309,389 \& 315,928 \& 322,330 \& 326,302 \& 339,505 \& 337,702 \& 344,854 \& 347,428 \& 354,024 \& 1.9 \& 4.3

\hline Rocky Mountain \& 118,230 \& 120,338 \& 121,447 \& 125,658 \& 126,285 \& 129,160 \& 130,028 \& 133,986 \& 135,296 \& 137,958 \& 139,777 \& 145,188 \& 146,439 \& 149,768 \& 150,354 \& 153,870 \& 2.3 \& 6.0

\hline Colorado \& 60,569 \& 61,658 \& 62,407 \& 64,016 \& 64,825 \& 66,168 \& 66,714 \& 68,369 \& 69,426 \& 70,818 \& 71,898 \& 74,257 \& 74,932 \& 76,581 \& 77,399 \& 78,667 \& 1.6 \& 5.9

\hline Idaho \& 15,140 \& 15,415 \& 15,370 \& 16,004 \& 15,837 \& 16,315 \& 16,349 \& 16,973 \& 17,124 \& 17,542 \& 17,721 \& 18,596 \& 18,798 \& 19,414 \& 19,280 \& 20,088 \& 4.2 \& 8.0

\hline Montana \& 11,502 \& 11,578 \& 11,440 \& 12,639 \& 12,130 \& 12,479 \& 12,416 \& 13,467 \& 12,891 \& 13,166 \& 13,177 \& 14,142 \& 14,356 \& 14,759 \& 14,248 \& 14,800 \& 3.9 \& 4.7

\hline Utah \& 23,585 \& 24,080 \& 24,546 \& 25,068 \& 25,405 \& 25,947 \& 26,238 \& 26,716 \& 27,383 \& 27,824 \& 28,352 \& 29,267 \& 29,313 \& 29,884 \& 30,235 \& 30,923 \& 2.3 \& 5.7

\hline Wyoming \& 7,434 \& 7,607 \& 7,685 \& 7,930 \& 8,089 \& 8,251 \& 8,311 \& 8,461 \& 8,47t \& 8,608 \& 8,629 \& 8,926 \& 9,041 \& 9.130 \& 9,192 \& 9,391 \& 2.2 \& 5.2

\hline Far West . \& 803,852 \& 815,376 \& 824,892 \& 838,916 \& 838,400 \& \& 849,201 \& \& \& 883,710 \& \& 919,175 \& \& 926,641 \& 933,040 \& 943,508 \& 1.1 \& 2.6

\hline Alaska \& 11,244 \& 11,532 \& 11,616 \& 11,807 \& 12,017 \& 12,148 \& 12,294 \& 12,446 \& 12,759 \& 12,891 \& 12,997 \& 13,233 \& 13,500 \& 13,690 \& 13,702 \& 13,862 \& 1.2 \& 4.7

\hline California \& 606,796 \& 614,023 \& 620,174 \& 629,722 \& 625,310 \& 629,828 \& 632,401 \& 636,065 \& 645,210 \& 653,838 \& 661,788 \& 677,430 \& 666,529 \& 680,188 \& 685,513 \& 692,016 \& . 9 \& 2.2

\hline Hawaii ${ }^{2}$............... \& 22,346 \& 22,995 \& 23,576 \& 24,149 \& 24,258 \& 24,330 \& 24,516 \& 24,846 \& 25,521 \& 25,887 \& 24,336 \& 26,885 \& 27,043 \& 27,459 \& 27,374 \& 27,568 \& . 7 \& 2.5

\hline Nevada .. \& 23,844 \& 24,364 \& 25,049 \& 25,472 \& 25,949 \& 26,397 \& 26,791 \& 27,192 \& 27,925 \& 28,375 \& 29,030 \& 30,394 \& 30,560 \& 31,248 \& 31,826 \& 32,641 \& 2.6 \& 7.4

\hline Oregon \& 47,931 \& 48,920 \& 49,421 \& 50,374 \& 50,698 \& 51,391 \& 51,836 \& 52,877 \& 53,703 \& 54,642 \& 55,657 \& 57,141 \& 57,796 \& 58,709 \& 59,131 \& 60,156 \& 1.7 \& 5.3

\hline Washington \& 91,691 \& 93,542 \& 95,056 \& 97,392 \& 98,168 \& 99,928 \& 101,363 \& 103,571 \& 105,918 \& 108,077 \& 109,856 \& 114,091 \& 111,991 \& 115,348 \& 115,495 \& 117,265 \& 1.5 \& 2.8

\hline \& \multicolumn{18}{|c|}{Census Divisions}

\hline New England \& 287,057 \& 289,375 \& 291,659 \& 291,752 \& 292,486 \& 294,301 \& 294,553 \& 298,215 \& 301,610 \& 305,648 \& 309,081 \& 319,128 \& 311,115 \& 318,979 \& 325,280 \& 328,724 \& 1.1 \& 3.0

\hline Middle Atlantic \& 798,730 \& 811,075 \& 820,281 \& 824,425 \& 826,286 \& 836,492 \& 839,105 \& 849,710 \& 864,680 \& 876,577 \& 887,933 \& 922,822 \& 888,911 \& 917,695 \& 926,865 \& 937,738 \& 1.2 \& 1.6

\hline East North Central \& 756,918 \& 766,622 \& 774,135 \& 781,966 \& 783,428 \& 790,451 \& 798,054 \& 809.610 \& 824,641 \& 839,120 \& 846,395 \& 875,621 \& 863,688 \& 881,855 \& 889,384 \& 908,582 \& 2.2 \& 3.8

\hline West North Central ... \& 307,021 \& 307,732 \& 306,956 \& 317,863 \& 317,139 \& 321,173 \& 320,555 \& 329,304 \& 336,833 \& 339,392 \& 341,194 \& 356,298 \& 351,768 \& 356,820 \& 346,800 \& 364,499 \& 5.1 \& 2.3

\hline South Attantic \& 782,474 \& 793,239 \& 804,852 \& 810,200 \& 820,685 \& 828,152 \& 834,114 \& 842,992 \& 858,417 \& 871,542 \& 872,372 \& 912,656 \& 905,978 \& 927,609 \& 938,807 \& 953,807 \& 1.6 \& 4.5

\hline East South Central \& 220,728 \& 223,398 \& 226,154 \& 229,598 \& 232,847 \& 235,641 \& 238,420 \& 243,003 \& 249,228 \& 253,374 \& 256,359 \& 265,218 \& 263,932 \& 268,755 \& 272,431 \& 277,180 \& 1.7 \& 4.5

\hline West South Central ... \& 416,371 \& 422,820 \& 428,553 \& 435,278 \& 441,990 \& 448,345 \& 451,411 \& 460,582 \& 470,824 \& 479,870 \& 483,928 \& 502,368 \& 500,994 \& 509,626 \& 513,231 \& 523,075 \& 1.9 \& 4.1

\hline Mountain \& 221,962 \& 225,461 \& 228,507 \& 234,212 \& 236,534 \& 240,740 \& 242,276 \& 247,899 \& 251,838 \& 256,544 \& 260,309 \& 269,810 \& 271,490 \& 277,872 \& 281,196 \& 286,826 \& 2.0 \& 6.3

\hline Pacific \& 780,009 \& 791,012 \& 799,843 \& 813,444 \& 810,451 \& 817,626 \& 822,410 \& 829,805 \& 843,112 \& 855,335 \& 864,635 \& 888,781 \& 876,860 \& 895,393 \& 901,214 \& 910,867 \& 1.1 \& 2.5

\hline
\end{tabular}

${ }^{r}$ Revised.

1. The personal income level shown for the United States is derived as the sum of the State estimates; it differs from the national income and product accounts (NIPA) estimate of personal income because, by definition, it omits the earnings of Federal civilian and military personnel stationed abroad and of U.S. residents employed abroad temporarily by private U.S. firms. It can also differ from the NIPA estimate because of different data sources and revision schedules.
2. The third quarter 1992 estimates of personal income reflect the losses resulting from damage caused by Hurricane Andrew in florida and Louisiana and by Hurricane Iniki in Hawail.
3. The third quarter 1993 estimates of personal income reflect the losses resulting from damage caused by floods in illinois, lowa, Kansas, Minnesota, Missouri, Nebraska, North Dakota, South Dakota, and Wisconsin and by drought NOTE.-The quarterly estimates of State personal income were prepared by Marian B. Sacks, James P. Stehle, Isabelle B. Whiston, and James M. Zavrel, under the supervision of Robert L. Brown.

Table 2.-Nonfarm Personal Income, States and Regions
[Millions of dollars, seasonally adjusted at annual rates]

r Revised.
p Preliminan
NOTE.-Nonfarm personal income is total personal income less farm earnings.

1. The third quarter 1992 estimates of personal income reflect the losses resulting from damage caused by Hurri-
cane Andrew in Florida and Louisiana and by Hurncane iniki in Hawaii.
2. The third quarter 1993 estimates of nonfarm personal income reflect the losses resulting from damage caused
by floods in Hlinois, lowa, Kansas, Minnesota, Missouri, Nebraska, North Dakota, South Dakota, and Wisconsin.

Table 3.-Total and Per Capita Personal Income for States and Regions, 1988-93

Area name	Total							Per capita ${ }^{3}$							
	Millions of Dollars						Percent change ${ }^{2}$ 1992-93	Dollars						Rank in U.S.	
	1988 ${ }^{\text {r }}$	1989r	1990'	$1991{ }^{\text {r }}$	1992'	1993 ${ }^{\text {P }}$		$1988{ }^{\text {r }}$	1989 r	1990 ${ }^{\text {r }}$	$1991{ }^{\text {r }}$	1992 ${ }^{\text {r }}$	1993 ${ }^{\text {p }}$	1988	1993
United States ${ }^{1}$.	4,061,806	4,366,135	4,655,420	4,831,697	5,128,373	5,368,962	4.7	16,610	17,690	18,667	19,163	20,105	20,817		
New England	265,334	231,095	289,961	294,889	308,867	321,025	3.9	20,278	21,325	21,935	22,338	23,406	24,265		
Connecticut	75.790	80,601	83,633	84,581	89,029	92, 124	3.5	23,160	24,548	25,426	25,705	27.150	28,110		
Maine	18.486	20,089	20,981	21,378	22,456	23,420	4.3	15,354	16,467	17,041	17,294	18,163	18,895	27	32
Massachusetts.	124.327	130,466	${ }^{133,890}$	136,210	141,884	147, 679	4.1	20,787	21,688	22.248	22,719	${ }^{23,676}$	24.563	3	4
New Hampshire	20,888	22,065	22,491	23,231	24,457	25,498	4.3	19,292	19,977	20,231	20,973	21,933	22,659	6	9
Rhode island	${ }^{17.261}$	18,454	19,121	19,411 10,077	20,304 10,737	21,096 11,207	3.9 4.4	17,321 15,607	18,441 16,891	19,035 17,444	19,340 17,750	20,276 18,792	21,096 19,467	14 23	17 26
Mideast	834,323	894,080	947,684	976,538	1,033,068	1,069,249	3.5	19,206	20,513	21,682	22,241	23,416	24,099		
Delaware	11,371	12,420	13,193	13,748	14,318	15,042	5.1	17,555	18,867	19,719	20,195	20,724	21,481	12	15
District of Columbia	13,420	14,227	14,878	15,491	16,333	17,028	4.3	21,284	22,794	24,643	26,069	27,909	29,438		
Maryland	91,790	99.769	105,985	109,400	114,414	119,375	4.3	19,703	21.105	22,088	22.494	23,268	24,044	5	5
New Jersey.	167,602	178,582	187,167	191.559	204,038	212,478	4.1	21,729	23.114	24,182	24,644	26,091	26.967	2	2
New York Pennsylvania \qquad	353,658 196,483	211,739	224,628	${ }_{233,676}^{412,63}$	247,611	${ }^{4578,248}$	2.7 3.9	19,709 16,584	20,983	22,322	12,.856	20,642	24,623 21,351	17	${ }_{16}$
Great Lakes	680,125	728,259	769,910	795,386	846,445	885,877	4.7	16,299	17,392	18,297	18,762	19,814	20,594		
Illinois	201,919	217,594	230,790	237,427	252,858	264,152	4.5	17,725	19,071	20,159	20,602	21,774	22,582	10	10
Indiana	81,901	88,227	93,415	96,720	103,922	109,701	5.6	14,911	15,972	16,815	17,251	18,366	19,203	31	30
Michigan.	152,142	162,359	169,808	175,001	184,765	193,849	4.9	16.502	17,546	18,239	18.667	19,586	20.453	20	20
Ohio	169,902	180,248	190,608	197,425	209,851	218,371	4.1	15,732	16,644	17.547	18,047	19,040	19,688	22	24
Wisconsin ...	74,260	79,831	85,288	88,812	95,049	99,805	5.0	15,397	16,438	17,399	17,954	19,038	19,811	26	22
Plains	269,192	289,663	309,893	322,043	343,429	354,972	3.4	15,351	16,462	17,519	18,104	19,164	19,662		
Iowa	39,681	43,352	46.375	47,695	51,225	51,541	. 6	14,332	15.647	${ }^{16,683}$	17,096	18.275	18,315	34	
Kansas	38,778	40,553	43,763	45.553	48,764	50,967	4.5	15,748	16,399	17,639	18,290	19,387	20,139	21	21
Minnesota	70.914	77.405	82,388	85,314	91.611	95,152	3.9 3.5	${ }^{16,504}$	17.843	18,784	19,276	20,503	21,063	19 24	18
Missouri	79,134	84,348	89,245	93,442	98.470	101,867	3.5	15.570	16.552	17.407	18,121	18,970	19,463	24	27
Nebraska ...	23,908	25,276	27.470	28.720	30,368	31,703	4.4	15,211	16,050 13735 13	17,379	18,059	17,974	$\begin{array}{r}19,726 \\ 17488 \\ \hline 17.4\end{array}$	28 49	23 39
North Dakota \qquad South Dakota \qquad	7,816 8,962	8,877 9,851	9,765 10,888	9,891 11,427	10,809 12,183	11,104 12,638	2.7 3.7	11,925 12,835	13,735 14,139	15,320 15,628	15,617 16,286	17,048 17,198 17,926	17,488 17,666	49 41	39 37
Southeast	849,116	916,226	981,283	1,028,748	1,095,327	1,161,410	6.0	14,607	15,600	16,501	17,071	17,926	18,753		
Alabama ...	52,521	56,291	60,332	63,863	68,358	72,154	5.6	13,051	${ }^{13,967}$	14,899	15,614	16,522	17,234	39	41
Arkansas.	28.793	30,702	32,450	34,341	37,434	39, 138	4.6	12,289	13,085	13,779	14,485	15,635	16,143	47	49
Florida ...	205,127	228,024	244,604	254,585	265,764	285,300	7.4	16,666	${ }^{18,043}$	18,785	19,180	19,711	20,857	16	19
Georgia ...	97,819	104,184	111.406 5	117,094	125,642	133,345	6.1	15.485	16.250	17,121	17,666	18,549	19,278	25	29
Kentucky Louisiana	46,930 53,911	56,586	54,454 60.228	57,520 64.083	62,043	65,064	4.9 5.0	12,751 12.568	13,756 13.254 11	14,751 14.279	15,483 15.100	16,528 15.931 1	17,173 16.667	43 44	42
Mississippi	28,854	30,672	32,398	34,265	36,827	39,362	6.9	11,181	11,915	12,578	13,218	14,082	14,894	50	50
North Carolina	93,560	100,010	108,339	113,392	122,117	129,889	6.4	14,435	15,233	16,284	16,802	17,863	18,702	33	33
South Caroina	45,018	47,995	52,855	55,130	58,410	61,645	5.5	13.192	13,884	15,101	15,484	16.212	16.923	${ }^{38}$	44
Ternessee	68,379	73,177	77,786	81,831	88,816	93,993	5.8	14,177	15,074	15,903	16,524	17,674	18,434	36	34
	106,011	114.864	121,397	126,206	${ }^{133,534}$	140,421	5.2	17,558	18,768 12,926	${ }_{13,543}$	20,071 14,695	20,883 15,598	21,634 16,209	11	13 47
West Virginia ..	22,193	23,352	25,034	26,440	28,215	29,503	4.6	12,124	12,926	13,964	14,695	15,598	16,209	48	47
Southwest	360,245	385,260	414,512	437,573	469,786	498,669	6.1	14,489	15,359	16,323	16,952	17,861	18,596		
Arizona,	53,251	56,646	59.833	62,543	66,687	71,326	7.0	${ }^{15,061}$	15.639	16,262	16,697	17,401	18,121		
New Mexico	18.713	20,134	21,602	22.872	24,452	26,343	7.7	${ }_{12}^{12,554}$	13,388	14,213	14,781 15636	15,458 16.420 18.4	16,297	45 37	46 43
Oklahoma	42,158	44,694 263,785	47,580 285,497	49,531 302,627	52,630 326,016	54,998 346,002	4.5 6.1	13,310 14,765	14,187 15,695	15,117 16,747	15,636 17,40	16,420 18,437	17.020 19,189	37 32	43 31
Rocky Mountain	104,451	113,279	121,418	129,865	139,555	150,108		14,500	15,659	16,639	17,456	18,293			
Coiorado	53,966	58,202	62,163	66,519	71,600	76,895	7.4	16.540	17.767	18,818	19,740	20.666	21,564	18	14
Idaho	12,668	14,241	15,482	16,368	17,746	19,395	9.3	12.850	14.321	15.304	15.773	16.649	17.646	40	38
Montana ...	10,269	11,317	11,790	12,623	13,344	14,541	9.0	12,832	14,152	14,743	15.632	16,227	17.322	42	40
Wyoming	20,633	22,920	24,664	$\stackrel{\text { cren }}{ }$	28,659	30,088 9,188	6.1	14,260	15,270	16,905	18,076	18,631	19,539 18	${ }_{35}^{46}$	25
Far West ...	699,019	758,274	820,759	846,656	891,897	927,652		18,134	19,180	20,242	20,483				
Alaska	9.720	10,741	11,550	12,226	12,970	13,688	5.5	17,931	19,631	20,887	21,498	22.067	22,846	8	
California	532.444	573,255	617,679	630,901	659.567	681.061	3.3	18,703	19,620	${ }^{20,656}$	20,748	21,348	21,821	7	12
Hawail	18.924	20,957	23.266	24,488	25,657	27.361	6.6	17,522	19,146	20,905	21,576	22.200	23,354	13	
Nevada.	19,253	22,031	24,682	${ }^{26,582}$	28.931	31.569	9.1	17.907	19.370	20.248	20,639	21.648	22.729	9	
	71,352	-45,838	-49,420	51,701 100,758	- 10,985	56,948 115,025	5.6	15,669	18,085	19,268 1	- 20,087	21,289	21,887	15	11
	Census Divisions														
New England ..	265,334	281,095	289,961	294,889	308,867	321,025	3.9	20,276	21,325	21,935	22,338	23,406	24,265		
Midede Atantic.	717,743	767,664	813,628	837,899	888,003	917,803	3.4	19,137	20.430	21,618	22,185	23,415	24,074	\ldots
East North Central ..	680,125	728,259	769,910	795,386	846,445	885,877	4.7	16,299	17,392	18,297	18,762	19,814	20.594		
West North Central ..	269,192	289,663	309,893	322,043	343,429	354,972	3.4	15,351	16,462	17.519	18,104	19,164	19,662		
South Allantic	686,308	744,846	797,691	831,486	878,746	931,550	6.0	16.215	17,319	18,230	18,712	19,488	20,367	
East South Central ...	196,685	210.725	224,970	237.478	256,045	270.574	5.7	13.018	13.922	14,793	15,471	16,485	17,215
West South Central ..	370,985	395,550	42.755	450,582	484,247	511,732	5.7	14.016	14,895	15,905	11,606	17,570	18,287	\cdots
Mountain ...	195,669	212,091	${ }_{7}^{227,536}$	${ }^{241,862}$	259,625	279,346	7.6	14,706	15,713	${ }^{16,590}$	17,250	18,055	18,906		
Pacific ..	679,766	736,242	796,077	820,073	862,965	896,084	3.8	18,140	19,175	20,242	20,478	21,175	21,713	.-...........	.-............

- Revised.

${ }^{p}$ Preliminary.

1. The personal income level shown for the United States is derived as the sum of the State estimates; it difters from the national income and product accounts (NPA) estimate of personal income because, by definition, it omits the earnings of Federal civilian and military personnel stationed abroad and of U.S. residents employed abroad tem-
porarily by private U.S. firms. It can also differ from the NIPA estimate because of different data sources and revision schedules.
2. Percent change was calculated from unrounded data.
3. Per capita personal income was computed using midyear population estimates of the Bureau of the Census Estimates for 1990-93 reflect State population estimates available as of February 1994.

Table 4.-Total and Per Capita Disposable Personal Income for States and Regions, 1988-93

Table 5.-Percent Change in Earnings for Selected Industries, 1992-93 ${ }^{1}$

Area name	Totalpersonalincome	Earnings ${ }^{2}$												
		Total	Nontarm	Mining	Construc-tion	Manufacturing	Transportation, publicutilities	Wholesale and retail trade	Finance. insurance, and real estate	Services	Other	Government		
												Federal civilian	Military	State and local
United States	4.7	4.4	4.5	1.4	7.4	. 8	4.4	4.4	1.6	7.3	5.6	4.1	. 2	5.4
New England	3.9	3.9	3.9	6.2	11.4	-1.6	4.3	3.0	. 4	7.6	2.7	2.6	-2.2	5.8
Connecticut	3.5	2.5	2.4	3.3	6.9	-2.4	6.6	. 3	-1.4	6.9	8.8	1.9	-2.2	5.4
Maine ..	4.3	4.1	3.8	21.9	5.7	. 1	3.7	5.2	4.9	8.1	1.9	-3.0	1.7	. 9
Massachusetts ..	4.1	4.6	4.6	7.6	16.9	-1.5	3.0	3.1	1.5	7.9	-. 3	3.6	-5.4	6.8
New Hampshire ...	4.3	4.4	4.5	5.9	10.8	-2.6	2.8	7.5	-1.8	7.7	5.8	5.9	-. 4	8.5
Rhode istand ..	3.9	4.2	4.2	4.7	6.5	${ }_{6}^{6}$	6.6	3.1	1.6	7.3	2.1	5.3	$-.3$	5.3
Vermont ...	4.4	4.1	5.2	17.4	9.4	. 5	6.0	5.6	3.0	9.2	2.8	2.3	-1.3	3.6
Mldeast ...	3.5	2.9	3.0	-2.1	5.0	-1.2	4.2	28	-3.2	6.4	11.4	5.2	. 7	3.8
Delaware ..	5.1	4.6	4.3	-. 8	8.8	. 3	3.4	4.2	7.4	5.5	8.0	6.9	2.2	7.7
District of Columbia ..	4.3	5.1	5.1	3.3	-4.7	1.1	0	-2.8	-3.1	5.3	62.9	7.7	2.6	. 3
Maryland ..	4.3	3.8	3.8	3.5	4.0	-. 7	3.5	1.7	3.0	6.9	9.7	4.9	2.0	2.3
New Jersey ...	4.1	4.2	4.2	6.2	8.3	-1.6	9.1	3.4	. 9	6.6	7.6	3.1	-3.1	5.8
New York ..	2.7	1.6	1.7 3.6	7.4 -5.5	4.1	-3.0	1.6	2.3	-5.8	6.3 6.4	6.0 4.1	2.9	-3.8	3.5
Pennsyvania ...	3.9	3.5	3.6	-5.5	4.6	. 8	4.7	3.6	. 6	6.4	4.1	4.3	-6.2	
Great Lakes ...	4.7	4.7	4.8	-3.7	7.9	3.1	4.6	4.3	2.8	6.9	5.3	3.7	-2.1	5.4
Ilinois ..	4.5	4.2	4.3	-11.3	5.2	1.7	5.5	3.2	1.2	${ }^{6.8}$	5.1	2.1 6.5	-2.7	8.0
Indiana ...	5.6 4.9	5.5 5.7	5.4 5.3	-5.3 6.4	8.1 9.6	3.8 6.0	4.3	4.5	4.2 2.5	7.8	4.7 6.2	6.5 4.0	1.2 -7.3	4.8 2.4
	4.1	3.7	4.2	6.4	${ }^{10.6}$	1.5	3.3	4.2	4.2	6.0	${ }_{3.1}$	3.0	-.7	5.3
Wisconsin ...	5.0	5.2	5.6	8.4	7.0	2.6	5.6	5.7	5.5	8.2	8.6	6.9	1.6	6.6
Plains ...	3.4	3.0	4.9	3.6	7.2	1.6	3.6	4.6	5.1	7.6	5.1	5.1	-1.9	6.2
lowa 6	-. 8	5.0	3.5	4.5	3.2	6.1	3.8	6.0	6.8	2.8	6.3		5.8
Kansas ..	4.5	4.2	4.2	${ }^{4}$	5.7	. 9	2.7	4.1	3.4	7.0	7.8	4.7	-9	6.1
Minnesota ...	3.9	3.6	5.4	3.3	6.2	2.3	1.5	6.5	6.7	7.7	5.5	5.5	-1.5	6.7
Missouri ...	3.5	3.5	4.3	8.5	7.8	-. 5	4.3	3.1	3.8	7.9	4.5	4.3	-2.9	6.0
Nebraska ..	4.4	4.3	5.2	7.8	13.7	2.4	3.9	4.2	4.3	6.9	5.5	6.5	-10.0	6.5
North Oakota ..	2.7	1.9	5.8	5.6	12.7	6.3	4.1	5.5	5.3	6.7	6.9	4.1	4.4	4.4
South Dakota ...	3.7	3.5	7.8	-5.7	8.9	7.2	5.2	6.7	5.6	11.8	4.1	6.7	3.5	7.8
Southeast ..	6.0	5.9	6.1	-1.6	10.9	2.3	5.2	6.2	5.1	9.0	7.2	3.8	. 1	7.5
Alabama ..	5.6	5.3	5.3	3.0	5.2	2.3	6.1	7.0	4.0	7.9	8.1	1.5	3.3	6.4
Arkansas ...	4.6	4.0	4.2	3.6	3.6	3.1	2.4	4.9	6.5	5.8	8.5	1.7	-13.7	5.4
Florida ..	7.4	7.0	7.1	-.7	12.5	-. 6	6.2	6.4	4.3	9.5	8.5	4.7	-2.6	10.1
Georgia ...	6.1	6.7	6.8	6.7	11.6	2.8	6.4	7.2	2.9	10.6	8.6	3.5	2.0	7.1
Kentucky ..	4.9	4.6	5.1	-2.4	9.9	3.6	5.1	5.6	9.9	7.4	2.9	2.6	-1.4	3.4
Louisiana ..	5.0	4.4	4.6	3.8	4.1	1.1	2.8	4.7	3.9	7.2	6.5	3.8	-11.0	7.9
Mississippi ...	6.9	7.7	7.8	4.8	18.6	3.3	3.8	7.0	4.1	15.3	5.7	3.6	12.0	7.1
North Carolina ...	6.4	6.5	6.5	719	13.7	3.3	4.6	5.8	6.0	10.0	5.8	6.8	1.7	8.1
South Carolina ..	5.5	5.4	5.6	11.6	9.6	3.6	4.8	8.3	4.6	8.8	6.4	. 1	-6.1	5.3
Tennessee ..	5.8	6.0	6.4	5.0	12.9	3.1	6.6	6.2	6.1	8.0	6.4	3.0	-2.0	8.6
Virginia M..	5.2	5.1	5.4	-2.2	10.7	-1	4.1	4.5	7.8	8.2	5.9	4.2	3.4	6.4
West Virginia ...	4.6	3.9	4.2	-13.8	16.8	9.1	3.7	4.6	4.7	9.5	4.9	7.3	-. 6	6.2
Southwest ..	6.1	6.2		2.8	8.0	2.6	5.2	6.2		8.1			3.2	
Arizona ...	7.0	7.5	7.0	0	14.4	3.9	6.3	7.5	6.8	9.1	5.8	4.3	-.6	4.8
New Mexico ..					20.5			8.4			10.9 6.3	5.7	${ }_{3.6}^{2.2}$	${ }_{3.0}^{6.1}$
	4.5	4.2 6.0	4.1 5.7	.4 2.9	9.9 5.9	2.7 2.3	3.7 5.3	3.0 6.2	3.0 3.9	7.6	6.3 5.3	$\stackrel{4}{4} 4$	3.6 3.9	7.0
Rocky Mountain ..	7.6	8.5	7.6	4.1	17.3	3.0	6.7	7.9	10.6	9.4	9.6	3.8	3.3	5.9
Colorado ...	7.4	8.3	7.7	3.4	22.1	1.0	6.5	8.3	10.9	9.3	11.0	5.7	3.2	5.1
Idaho ...	9.3	10.8	8.5	-2.3	12.8	7.8	6.7	9.5	8.4	9.6	9.0	6.3	8.3	6.6
Montana ..	9.0	10.9	6.8	2.1	4.7	3.5	4.8	6.2	6.5	9.8	7.1	3.6	8.4	8.9
Utah ...	6.7	7.2	7.5	2.3	17.5	3.6	8.9	7.6	11.5	9.7	11.5	-. 8	-2.9	6.4
Wyoming ...	6.1	6.4	6.0	7.3	7.1	3.3	4.3	4.6	12.8	7.1	4.2	8.0	4.0	4.3
Far West						-3.3		2.7	3.2					
Alaska ..	5.5	5.5	5.5	. 7	23.3	-6.2	4.5	6.4	10.4	7.3	3.8	8.1	2.3	4.0
Calitomia ..	3.3	2.1	1.9	5.5	-9	-3.7	2.2	1.6	2.0	5.3	3.7	2.8	-1.7	2.6
Hawaii ..	6.6	4.4	4.3	2.4	6.9	-3.3	-. 8	5.0	8.7	5.2	-. 2	2.8	1.3	6.7
Nevada ..	9.1	10.1	9.8	4.5	27.4	2.8	8.2	5.5	11.5	$\begin{array}{r}10.2 \\ \hline 8.7\end{array}$		8.2	-1.8	8.2
Oregon Washington \qquad	6.6 5.1	7.0 4.2	6.5 3.7	12.4	11.0 2.6	2.1 -3.7	4.8 3.9	6.6 5.3	9.7 4.6	8.7 6.9	7.2 -4.2	3.2 2.6	.6 3.1	7.5 7.2
	Census Divisions													
Now England ..	3.9	3.9	3.9	6.2	11.4	-1.6	4.3	3.0	4	7.6	2.7	2.6	-2.2	5.8
Middie Atantic ..	3.4	2.7	2.8	-2.3	5.2	-1.3	4.4	3.0	-3.8	6.4	5.7	3.4	-.7	4.0
East North Central ...	4.7	4.7	4.8	-3.7	7.9	3.1	4.6	4.3	2.8	6.9	5.3	3.7	-2.1	5.4
West North Central ...	3.4	3.0	4.9	3.6	7.2	1.6	3.6	4.6	5.1	7.6	5.1	5.1	-1.9	6.2
South Atantic -...	6.0	5.9	6.0	-6.6	10.7	1.6	5.0	5.6	4.4	8.8	11.5	5.4	. 8	7.1
East South Central ..	5.7	5.7	6.0	0	10.8	3.0	5.7	6.4	6.1	8.7	5.9	2.5	2.4	6.5
West South Central ..	5.7	5.5	5.3	2.7	5.7	2.3	4.6	5.6	4.0	7.6	5.8	3.6	. 6	6.8
	7.6 38	8.5 2.8	7.8 26	4.4 4.0	18.4 1.1	3.4 -3.3	6.6 2.5	7.6 2.6	9.4 3.0	9.5 5.7	8.3 2.4	4.5	$\begin{array}{r}1.9 \\ -3 \\ \hline\end{array}$	${ }_{3} 5$
Pacilic ..	3.8	2.8	2.6	4.0	1.1	-3.3	2.5	2.6	3.0	5.7	2.4	3.0	-. 3	3.7

1. Percent change was calculated from unrounded data.
2. Consists of wage and salay disbursements, other labor income, and proprietors' income.

Local Area Personal Income
 - Estimates for 1990-92
 - Revisions to the Estimates for 1981-91

τhis article presents new estimates of personal income and per capita personal income for local areas-that is, for counties and metropolitan areas-for 1992 and revised estimates for 1990-91. It also discusses the sources of the revisions to the local area estimates for 198191, and it describes the changes in the definitions of the county-based metropolitan areas that were issued by the Office of Management and Budget in June 1993.
Table 1 presents estimates for the metropolitan areas. Table 2 presents estimates for counties and county equivalents. For Virginia, estimates are presented for the larger independent cities as well as for most counties; estimates for the smaller independent cities are combined with estimates for adjacent counties.

Incorporation of new source data

The local area estimates for 1981-91 have been revised to incorporate new source data that were not available in time to be used in the comprehensive revision to the estimates that was released in May 1993. ${ }^{1}$ These data are available either irregularly or less frequently than biennially and cannot be incorporated into the estimates without revising more than the 2 years of estimates that are normally revised each year. In addition, the 1990-91 estimates reflect the routine incorporation of the revisions to the State estimates that were released in October 1993 and of more current State and county source data. ${ }^{2}$

The introduction of the source data changed both the State and the local area estimates of personal income. The changes to the estimates for 1981-89 resulted from revisions to nonfarm proprietors' income, to some components of farm proprietors' income, and to the estimates of the residence adjustment.

[^40]Nonfarm proprietors' income.-The State and local area estimates of nonfarm proprietors' income for 1984-92 now reflect the incorporation of tabulations of data from the 1987-89 Federal income tax returns of sole proprietors and partnerships; previously, the most current of these data available to bea were for 1983. The estimates for 1987-89 are based directly on the data for those years, and the estimates for $1984-86$ are based on interpolations between the data for 1983 and 1987. The 1990 estimates are extrapolations of the 1989 estimates for each Standard Industrial Classification two-digit industry by the change in the number of small firms reported in the Census Bureau's County Business Patterns. In the absence of pertinent county data after 1990, the 1991-92 State estimates are allocated to counties in proportion to the 1990 estimates.

Farm proprietors' income.-The local area estimates of farm proprietors' income for 1983-92 now reflect the full use of data from the 1987 Census of Agriculture; previously, the estimates of important categories of both gross receipts and production expenses were based on data from the 1982 census. The 1987 county estimates of gross receipts from "other" farm-related activities (that is, other than crop and livestock production) and of a miscellaneous category of production expenses that includes interest and property taxes are based on the 1987 census data, and the 198386 estimates are based on interpolations between the 1982 and 1987 census data. In the absence of pertinent county data after 1987, the 1988-92 State estimates of these categories are allocated to counties in proportion to the 1987 estimates.
For $1982-92$, both the State and the local area estimates of farm proprietors' income now reflect new State estimates of selected farm production expenses prepared by the Department of Agriculture.

Adjustment for residence.-The State and local area estimates of this adjustment-the net inflow of the earnings of interstate or intercounty
commuters-for 1981-92 now reflect the incorporation of journey-to-work data from the 1990 Census of Population; previously, the most current journey-to-work data used for the estimates were those from the 1980 Census. The estimates for 1990 reflect the incorporation of the journey-to-work data from the 1990 census, and the estimates for 1981-89 reflect interpolations between the data from the 1980 and 1990 censuses. The 1990 estimates are extrapolated to 1991-92 by (1) the bea estimates of wages and salaries by place of work, (2) Internal Revenue Service tabulations of wages and salaries by place of residence, which are only available through 1991, and (3) Census Bureau population estimates.

Changes in the definitions of metropolitan areas

The metropolitan area definitions used by bea for its personal income estimates are the countybased definitions issued by the Office of Management and Budget for Federal statistical purposes. These areas consist of 58 primary metropolitan statistical areas (PMSA's), 240 metropolitan statistical areas (msa's), and 12 New England county
metropolitan areas (necma's). ${ }^{3}$ The pmsa's and one NECMA are grouped into 17 consolidated metropolitan statistical areas (CMSA's).
The estimates presented here reflect the changes in the metropolitan area definitions issued in June 1993. The following changes were particularly significant: The division of the former New York-Newark, NY-NJ-PA PMSA into seven pmsa's and Pike County, Pennsylvania; the addition of Pike County to the former Orange County, NY PMSA, which is now called the Newburgh, NY-PA PMSA; the addition of a formerly nonmetropolitan county to each of five MSA's; and the recognition of the Jackson, TN msa. ${ }^{4}$
Tables 1 and 2 follow beginning on page 130 .

[^41]
Acknowledgments

The revised estimates of local area personal income were prepared by the Regional Economic Measurement Division under the direction of Linnea Hazen, Chief. The preparation of the estimates was a divisionwide effort.

Estimates of nonfarm labor earnings (wages and salaries and other labor income) were prepared by the Regional Wage Branch under the supervision of Sharon C. Carnevale, Chief. Major responsibilities were assigned to Elizabeth P. Cologer, Lisa C. Ninomiya, Michael G. Pilot, John A. Rusinko, and James M. Scott. Contributing staff members were E. Frances Bake, Christopher T. Berry, Susan P. Den Herder, Elizabeth A. Freeman, Lela S. Lester, Russell C. Lusher, Richard A. Lutyk, Paul K. Medzerian, Michael Phillips, Adrienne T. Pilot, William E. Reid, Jr., Dolores A. Rynn, Victor A. Sahadachny, Eugene L. Souder, Darleen K. Won, and Jaime Zenzano. Estimates of farm earnings (wages and salaries, other labor income, and proprietors' income) and the residence adjustments were prepared by the Quarterly Income Branch under the supervision of Robert L. Brown,

Assistant Division Chief. Major responsibilities were assigned to James M. Zavrel. Contributing staff members were Elaine M. Briccetti, Daniel R. Corrin, Richard H. Grayson, Michael S. Wagner, and Daniel Zabronsky.

Estimates of nonfarm proprietors' income, dividends, interest, rent, transfer payments, and personal contributions for social insurance were prepared by the Proprietors' Income Branch under the supervision of Bruce Levine, Chief. Major responsibilities were assigned to Charles A. Jolley. Contributing staff members were Sean P. Collier, Catherine A. Cumberland, Toan A. Ly, Ellen M. Wright, and Marianne A. Ziver.

The assembly of public use tabulations and data files and the preparation of the text and tables for this article were performed by the Regional Economic Information System Branch. Major responsibilities were assigned to Kathy A. Albetski, Wallace K. Bailey, and Gary V. Kennedy. Contributing staff members were H. Steven Dolan, Jeffrey L. Newman, Michael J. Paris, Albert Silverman, Callan S. Swenson, Hilda G. Tolson, Monique B. Tyes, and Mary C. Williams.

Data Availability

Personal income by type of payment and earnings by Standard Industrial Classification (sic) division, as shown in table A, are available for metropolitan areas and counties for 1969-92. A version of this table that includes earnings by sic two-digit industry is also available. In addition, there are supplemental tables for employment by sic division (the "one-digit" level), for transfer payments by program, and for major categories of farm income and expenses.

The entire set of these tables for all counties and metropolitan areas and for all years will be available on a CD-ROM by the end of May. This CD-rom will also contain quarterly State estimates of personal income for 1969-93, gross state product estimates for 197790 , projections of State and metropolitan area personal income and employment to 2040 that have been updated to reflect the June 1993 changes in the metropolitan area definitions, and a description of the sources and methods used to estimate local area personal income. The CD-ROM is designed for use with microcomputers equipped with the ms-dos operating system and will include a program to help users select, display, print, and copy the tables. The price is $\$ 35.00$.

These tables are also available on magnetic tapes, computer printouts, and microcomputer diskettes. Each table for all years of data for all the metropolitan areas or for all the counties is available on a single reel of magnetic tape, but the table that includes earnings by sic two-digit industry requires two reels at standard blocksize; the price of each reel of magnetic tape is $\$ 100$. The tables on computer printouts are priced by the number of pages; the minimum charge is $\$ 10$. The tables on diskette are priced at $\$ 20$ per diskette.
Materials available without charge include a sample packet of all available tables, a list of the State agencies and university research bureaus from which the bea State and local area estimates can be obtained, and the description of sources and methods used to prepare the local area estimates.
For information on ordering these products, write to the Regional Economic Information System, be-55, Bureaus of Economic Analysis, U.S. Department of Commerce, Washington, DC 20230, or call (202) $606-5360$. Visa or Mastercard are accepted for telephone orders.

Table A.-Example of Available Data for Local Areas: Personal Income by Major Source and Earnings by Major Industry, 1987-92 ${ }^{1}$
[Thousands of dollars]

	New London County, Connecticut					
	1987	1988	1989	1990	1991	1992
Income by Place of Residence						
Total personal income	4,432,832	4,696,727	5,001,642	5,129,498	5,286,014	5,567,535
Nonfarm personal incorme	4,391,411	4,649,645	4,953,590	5,071,027	5,227,635	5,505,135
Farm income ${ }^{2}$.................	41,421	47,082	48,052	58,471	58,379	62,400
Population (thousands) ${ }^{3}$	251.0	254.3	254.9	255.2	254.0	248.2
Per capita personal income (dollars) ...	17,664	18,472	19,625	20,102	20,809	22,427
Derivation of total personal income:						
Total earnings by place of work ..	3,352,266	3,557,432	3,742,284	3,797,899	3,908,352	4,093,050
Less: Personal cont. for social insur. ${ }^{4}$	203,584	221,909	238,690	246,894	259,895	269,416
Plus: Adjustment for residences	23,813	47,913	41,932	55,888	42,070	37,331
Equals: Net earn. by place of residence	3,172,495	3,383,436	3,545,526	3,606,893	3,690,527	3,860,965
Plus: Dividends, interest, and rent ${ }^{6}$...	728,088	753,194	836,872	821,127	813,831	805,160
Plus: Transter payments ...	532,249	560,097	619,244	701,478	781,656	901,410
Earnings by Place of Work						
Earnings by type:						
Wages and salaries	2,809,178	2,962,737	3,122,063	3,169,878	3,255,450	3,389,483
Other labor income	256,365	277,716	306,191	316,737	342,460	367,214
Proprietors' income ${ }^{7}$...	286,723	316,979	314,030	311,284	310,442	336,353
Farm	30,829	35,200	35,595	42,317	42,424	45,747
Nonfarm ..	255,894	281,779	278,435	268,967	268,018	290,606
Earnings by industry:						
Farm	41,421	47,082	48,052	58,471	58,379	62,400
Nonfarm	3,310,845	3,510,350	3,694,232	3,739,428	3,849,973	4,030,650
Private	2,563,059	2,717,472	2,851,514	2,831,824	2,902,963	3,092,469
Ag. serv., for, fish., and other ${ }^{8}$..	12,368	13,303	11,880	13,437	14,695	14,799
Mining	2,333	2,870	3,032	4,236	4,681	7,480
Construction	221,444	252,605	249,006	182,679	162,562	203,481
Manufacturing	1,080, 152	1,041,641	1,092,398	1,108,053	1,145,270	1,099,736
Nondurable goods ..	262,218	270,198	289,288	306,990	329,023	358,943
	817,934	771,443	803,110	801,063	816,247	740,793
Transportation and public utilities ...	169,799	177,038	194,913	194,389	207,956	205,725
Wholesale trade ...	80,133	87,800	94,770	87,259	88,988	95,278
Retail trade ..	339,406	372,678	377,057	360,025	348,428	358,137
Finance, insurance, and real estate ..	84,716	105,704	104,553	106,697	110,261	117,911
Services ..	572,708	663,833	723,905	775,049	820,122	989,912
Government and government enterprises ...	747,786	792,878	842,718	907,604	947,010	938,181
Federal, civilian ...	132,857	140,846	144,193	158,604	156,766	164,845
Military	298,028	296,219	298,470	322,619	325,580	292,876
State and local ..	316,901	355,813	400,055	426,381	464,664	480,460

[^42]residents commuting outside U.S. borders to work less income of toreign residents commuting insidee U.S. borders to work plus centain Carbobean seasonal workers.
6. Includes the capital consumption adiustment for rental income of persons.
7. Includes the inventory valuation ano capital consumption adjustments.
8. "Other" consists of wages and salaries of U.SS residents employed by international organiza-
lions and foreien embassies and consuluates in the U.S.
D Not shown to avoid disclosure of confidential information. Estimates are included in totals.
L Less than $\$ 50,000$. Estimates are included in totals.
${ }^{2}$ Less than $\$ 50,000$. Estimates are included in totals.

Table 1.-Total Personal Income and Per Capita Personal Income by Metropolitan Area, 1990-92

Area name	Total personal income				Per capita personal income ${ }^{3}$				Area name	Total personal income				Per capita personal income ${ }^{3}$			
	Millions of dollars			Percent change	Dollars			$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Rank in } \\ \text { U.S. } \end{array} \\ \hline 1992 \\ \hline \end{array}$		Millions of dollars			Percent change ${ }^{2}$	Dollars			$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Rank in } \\ \text { U.S. } \end{array} \\ \hline 1992 \end{array}$
	1990	1991	1992	1991-92	1990	1991	1992			1990	1991	1992	1991-92	1990	1991	1992	
United States ${ }^{1}$	4,6	4,831,697			18,667	19,	20,105			24,66	25,870	27,8	. 6	18,264	89	19,974	
Metropolitan portion	3,928,153	4,073,607	4,318,618	6.0	19,797	20,289	21,247		Corpus Christi	5,137	5,513	5,917	7.3	14,648	15.474	16,371	249
Nonmetropolitan portion	727,267	758,090	809,755	6.8	14,266	14,761	15,628		Cumberand, MD-W	1,468	1,521	. 580	3.9	14,456	14,963	15,566	284
									Dallas. TX	55,091	58,370	62,682	7.4	20,481	21.266	22,424	35
Consolidated Metropolitan Statistical Areas									Danville, VA	1,575	1,614	1,717	6.4	14,461	14,775	15.705	282
Statistical									Davenport-Mol	6,334	6,492	6,854	5.6	18,041	18,356	19,243	107
Chicago-Gary-Kenosha	178	184,5	196,	6.2	21,635	22,154	23,312		Dayton-Springield, OH	16,900	17,719	18,665	5.3	17,749	18,512	19,411	103
Cincinnati-Hamilton,	33	35,18	37,56	6.7	18,588	19,080	20,140		Daytona Beach, FL	6.313	6,536	6,895	5.5	15,650	15.805	16.348	251
Cleveland-Akron, OH	55,519	57,388	60,580	5.6	19,397	19,955	20,959		Decatur, AL ...	2,037	2,183	${ }_{2}^{2} .325$	6.5	${ }^{15,419}$	16,267	17.100	214
Dallas-Fort Worth, TX	80,619	85,095	91,422	7.4	19,868	20,543	21,692		Decatur, IL	2,110	2.147	2,252	4.9	${ }^{18,004}$	18,254	19.134	115
Denver-Boulder-Greeley, $\mathrm{CO}^{\text {a }}$	40.913	43,822	47,203	7.7	20.600	21,591	22,592		Denver, CO*	34,181	36,565	39,331	7.6	20,995	21,965	22,930	31
Detroit-Ann Aboor-Flint, M		106		5.5	20,175	20,460	21,484		Des Moines,	7,777	0,	8,798	7.5	19,715	20,457		15
Houston-Galveston-Brazoria, TX Los Angeles-Riverside-Orange	73,025	78,812	84,663	7.4	19,452	20.419	21,367		Detroit, MI Dothan, AL	$\begin{array}{r} 87,449 \\ 1,919 \end{array}$	88,794 2,033	93,890 2,180 1	7.7	20,463	20,705	21,796	$\begin{array}{r}45 \\ 250 \\ \hline\end{array}$
County, CA	301,614	306,3	318,	4.0	20,6	20,679	21,162		Dover, DE	1,626	1,738	1.846	6.2	14,567	15.182	15,909	275
Miami-Fort Lauderdale, FL ...	62,388	63,975	64,453	7	19,458	19,611	19,477		Dubuque, IA	1,427	1,471	1,585	7.7	16.509	16,953	18,172	161
Miwaukee-Racine, $\mathrm{WI}^{\text {I............. }}$	31,851	33,058	35,218	6.5	19,787	20,398	21.614		Dututh-Superior, MN-W	3,686	3,873	4,111	6.1	15,342	16,098	17,060	218
New Y	491	502,459	533,759	6.2	25,229	25,760	27,259		Dut	5.619	5,6	5,894	7.9	21,618	21,739 15.591	24	35
adelphia-Wilmington-A									El Paso. TX	6,863	7,124	7.854	10.2	11,508	11,615	12,497	307
City, PA-NJ-DE-MD	126,512	130,654	137,832	5.5	21,443	22.056	23,210		Elkhar-Goshe	2,651	2,714	2.955	8.9	16,949	17,237	18,547	140
Portland-Salem, OR-WA	33.612	${ }^{35,527}$	38,081	7.2	18,614	19,148	20,076		Elmira. NY	1,517	1,574	1,640	4.2	15,922	16,545	17,231	205
Sacramento-Yolo, CA	28,820	30,107	31,777	5.5	19,271	19,550	20,326		Enid, OK.	908	933	981	5.2	16,021	16,580	17,398	195
San Francisco-Oakland-San Jose,	155								Erie, PA	4,478	4,682	4,983	6.4	16,23	16,856	17.819	75
									Eugene-Spring	4,5	4,6	5.003	6. 8	15,906	-	7,202	208
Washing					21,16,				Evansville-Henders Fargo-Moorhead,	$\begin{aligned} & 4,900 \\ & 2,487 \end{aligned}$	$\begin{aligned} & 5,043 \\ & 2,579 \end{aligned}$	$\begin{aligned} & 5,435 \\ & 2,783 \end{aligned}$	$\begin{aligned} & 7.8 \\ & 7.9 \end{aligned}$	$\begin{aligned} & 17,542 \\ & 16,184 \end{aligned}$	$\begin{aligned} & 17,971 \\ & 16,606 \end{aligned}$	$\begin{aligned} & 9,215 \\ & 17,656 \end{aligned}$	181
WV	159,226	165,232	173,591	5.1	23,593	24,173	25,087		ayett	3.559	3,811	4.451	16.8	12,928	13,725	16,050	
Metropolitan Statistical Areas ${ }^{4}$									Fayettevilie-Sprin	3,293	3.510	3,914	11.5	15,500	16.10	17,339	200
									${ }^{\text {Finint, M1* }}$	7.245	7.698	7.893	2.5	16,809	17,798		
Abilene,	1,8	1,947	2,081	6.9	15,6	16,438	17,263	203	Florence,	1,915	2.011	2.141	6.5	14,5	15,09	15	273
Akron, OH Albany, GA	11,658 1,597 1,58	12,025 1,709	12,756 1,782	$\begin{aligned} & 6.1 \\ & 4.2 \end{aligned}$	17,702	18,106 15.063	19,056	118 286	Florence SC S..........	1,1,159 158	1,795 3,394	3,943	7.4	14,786 16,88	17,682	18,388	148
Albany-Schenect	16,829	17,378	18,297	5.3	19,501	20,017	20,976	60	Fort Lauderdale, FL	28,114	28,737	30,068	4.6	22,276	22,393	23,107	30
Albuquerque, NM	9.6	10,235	10,945	6.9	16,274	16,990	17,758	177	Fort Myers-Cape Coral, FL	6.563	6.801	7.151	5.1	19,396	19,603	20,312	78
Alexandria, LA	1,8,	1,900	1,983	4.4	13,969	14,420	15,186	288	Fort Pierce-Port St. Lucie, FL	5.177	5,383	5.635	4.7	20,361	20,64	21,2	54
Alientown-Bethle	11,236	11,669	12.460	6.8	18,839	19,387	20,545	71	Fort Smith, AR-OK	2,471	2,589	2,854	10.2	14,023	14,533	15,80	278
Altoona, PA	1.92	2,005	2.151	7.3	14,741	15.292	${ }^{16,384}$	247	Fort Walton Bea	2,333	2,520	2,7	7.5	16,139	16,9	17,6	181
${ }^{\text {Amarillo, TX }}$ AIK	3,049	5	${ }_{6}, 166$	8.4	${ }^{164,119}$		25,077	16	Fort Wayne, in	8,184	8,365	8,969	7.2	17,904	18,175	19,360	105
Anchorage, AK	5,489	5,824	6,166	5.9	24,119	24,791	25,077	16	Fort Worth-Aring	25,527	26,724	28,740	7.5	18,663	19,124	20,250	99
Ann Arbor, M1*	10,06	10,3	10,919	5.9	20,453	20.656	21,6	49	Fresno. CA	12,146	12,431	13,176	6.0	15,964	15,835	16,376	248
Anniston, AL		1,671	1.764	5.6	13,570	14,452	15,158	290	Gadsden	,	1,430	1,547	8.2	13,889	14,320	15,500	285
Appleton-Oshnkos	5,522	5,802	6,264	8.0	17,474	18.158	19,338	${ }^{106}$	Gaines	2.931	3,102	3,309	6.7	16,078	16,692	17,468	190
Asheville, NC	3,199	3,351	3,610	7.7	16,622	17,187	18,283	155	Galveston-Texas	3,787	4,023	4,317	7.3	17,344	18,032	18,928	124
Athens, GA	1,910	1.992	2,104	5.6	15.063	15,576	16.316	252	Gary, IN	10,373	10,723	11,278	5.2	17, 118	17,523	18,28	154
Atlanta, GA	60,88	63,623	68,668	7.9	20,439	20,806	21,849	43	Glens Fails, NY	1,898	1,938	2,063	6.4	15,954	16,142	17,05	219
Altantic-Cape May, NJ* Augusta-Aiken, GA-SC	7,229	7,265	7,739	6.5	22,556	22,440	23,720		Goldstbor, NC.	1,379	1,446	1,543	6.7	13,146	13,571	14,325	297
Augusia-Aiken, GA-SC Austin-San Marcos. TX	6,906 14.511	7,256 15470	7.725	6.5	16.528	117.865	17,774	194 +31 +3	Grand	1,525	1,54	1,67	8.3	14,804	15,121	16,2	258
Austin-San Marcos, TX	$\left.\begin{array}{r} 14,511 \\ 8,592 \end{array} \right\rvert\,$	$\begin{gathered} 15,470 \\ 8,918 \end{gathered}$	16,913 9,306	4.3	${ }_{15,682}^{17,059}$	17,651	$\left.\begin{array}{\|l\|} 18,770 \\ 15,836 \end{array} \right\rvert\,$	277	Grand Rapids-M								
Baltimore, MD*	50,7	52,3	54,545	4.2	21,253	21,678	22	37	MI	16,308 1.249 1	$\begin{array}{r}17,166 \\ 1,305 \\ \hline\end{array}$	$\left.\begin{array}{c} 18,249 \\ 1393 \end{array}\right]$	$\begin{gathered} 6.3 \\ 60 \end{gathered}$	17,320 1597 1	17,987 16.651		125
Bangor, ME (NECMA)	2,305	2,370	2,498	5.4	15,678	16.100	17,063	215	Greete	1,956	2,080	2,271	9.2	14,822	15,592	16,718	239
Barsstable-Yarmouth, MA (NECMA)	4,155	4,282	4,459	4.1	22,203	22,834	23,592	25	Green Bay, WI.	3,522	3,707	3,996	7.8	18,037	18,684	19,845	96
Baton Rouge, LA	8.438	8,986	9.742	8.4	15,938	16,733	17,831	174	Greenssoro-Winston-Salem-High								
Beaumont. Port Arthur	5.742	6,175	6.653	7.7	15,893	16,888	17,989	170	Point, NC	19,457	20,111	21,503	6.9	18,467	18,865	19,940	94
Bellingham, WA	2,157	2,335	2,508	7.4	16,724	17,518	18,184	160	Greenville, NC	1,671	1,759	1,890	7.4	15,417	15,854	16,809	233
Benton Harbor, MI	2.579	2,670	2,836	6.2	15,985	16,553	17,566	85	Greenvill-Spartanburg-Anderson,								
Bergen-Passaic, NJ*	36,035	36,291	38,360	5.7	28,181	28,307	29,710	${ }_{14}^{4}$	SC	13,202	13,673	14,453		15,836	16,216	16,945	225
Billings, MT \qquad Biloxi-Gultpor-Pascagou	1,907	2,043	2,185	8.0	16,803	17,730	18,506	141 294	Hagerstown, MD	1,954	5, ${ }^{2,174}$	2,114 5,555	7.0		16,281	16,846	${ }_{1} 232$
Binghamton, NY	4,639	4,787	4,946	3.3	17,533			138	Harisbura-Lebanon-Ca	11	117		5.8	18.976			
Birmingham, AL	14,814	15,561	16,679	7.2	17,594	18,303	19,428	102	Hartlord CT (NECO	27,0	27.4	28,55	4.2	24,090	24,35	25,461	
Bismarck, ND	1,337	1,399	1,512	8.9	15,935	16.409	17,575	184	Hickory-Morganton, NC	4,663	4,779	5,156	7.9	15,904	16,148	17,233	204
Bloomington, IN	1,589	1,678	1,804	7.5	14,541	15,265	16,239	259	Honolulu, Hi	18.448	19,336	20,597	6.5	22,009	2,744	23,864	23
Bloomington-Norm	2,306	2,450	2.675	9.2	17,20	17,	2,049	88	Houma, LA	2,276	2.421	2,497	3.2	12.445	13,994	13,389	301
Boise City, ID	5,128	5,504	6,067	10.2	17,204	17,801	18,982	123	Houston, TX•	65,995	71,324	76,742	7.6	19,741	20,749	21,737	
Boston-Worcester-Lawrence-LowellBrockton, MA-NH (NECMA)	128,494	130,808	136,695		22.589	23,094			Huntington-Ashland	${ }_{5}$	4,590	4,947	7.8	13,98	14,631	15,711	281
Boulder-Longmont, CO^{+}................	4,776	5,177	${ }_{5}^{5601}$	8.2	21,129	22,359	24,513	26		${ }^{5} 5$	-57694	\% ${ }_{\text {6, }}^{2,186}$	${ }_{73}^{8.6}$	-18,206	${ }^{\text {l }}$	${ }^{20,082}$	59
Brazoria, TX.	3,243	3,464	3,604	4.0	17,318	17,402	17,681	179	lowa City, $1 A$.	1,652	1,730	1,836	6.1	17,145	17,940	18,824	128
Bremerton, WA*	3,324	3,635	3,945	8.5	17,318	18,145	18,717	132	Jackson, M1					15,586	15,893	16,62	
Brownsville-Haringen									Jackson, MS ..	6,086	6,437	6,863	6.6	15,354	16,08	16,94	225
TX ...	2.512	2.680	2,968	10.8	9,590	9,923	10,649	308	Jackson, 7 N	1,206	1,267	1,391	9.8	15,418	16,032	17,340	199
Bryan-College Station, T	1,522	1,617	1,743	7.7	12,481	13,173	13,923	300	Jacksonville, FL	16,443	17,164	18,238	6.3	18,010	18,40	19,146	113
Butfalo-Niagra Fals, NY	21,277	22,194	23,242	4.7	17,881	18,614	19,467	100	Jacksonville, NC ...	1,529	1,601	1,847	15.4	10.201	10.638	12,782	306
Burrington, VT (NECMA)	3,359	3,448	3,652	5.9	18,907	19,207	20,150	83	Jamestown, NY	2,100	2,178	2,278	4.6	14,796	15.331	16,083	268
Canton-Massillon, OH	6,530	6.711	7.130	6.2	16,552	16,915	17.855	173	Janesville-Beloit, WI	2,365	2,404	2,637	9.7	16,906	17,036	18,474	142
Casper, WY .-...........	1,193	1,242	1,275	2.6	19.486	20,056	20,377	${ }_{73}^{76}$	Jersey City NJ.....	10,753	11,011	11,653	7.7	19,440	19,889	21,359	53
Cedar Rapids, IA Champaign-Urbana it	3,192 2,835	3,310 2,889	3,534 3,059	6.8 5.9	18,870 16,382	19,396 16,632	20.443	73 191	Johnson City-Kingsport-Bristol, TN -								
	7,844	${ }_{8,225}$	8.584	4.9	15,406	${ }^{15} 51703$	17,239	191	VA	6,421	6,744	7.217	7.0	14,699	15,313	16,232	261
Charleston, WV	4,310	4,529	4,840	6.9	17,214	18,009	19,119	116	Johnstown, PA.	3,56	3,712	3,923	5.7	14,76	15,3	16,29	253
Charlote-Gastonia-A	21			7.1					Jopin, MO --	1,950	2,078	2,223	7.0	14,435	15,283	16,165	263
Charlottesville, VA	2,535	2,654	2,796	5.4	19,248	19,906	20,796	64	Kalamazoo-Batie Creek, MI	7,57	7,15	1,72	5.7	1,107	1,9	8,793	130
Chattanooga, TN-GA.	7,039	7,237	7,710	6.5	16.572	16,906	17,895	172	Kansas City, MO-KS	30,369	31,854	33,871	6.3	19,133	19,876	20,948	61
Cheyenne, WY ...	1,292	1,360	1,441	5.9	17,66	18,432	19,093	117	Kenosha, Wi ${ }^{\text {- }}$	2,163	2,270	2,421	6.7	16,805	17,242	18,071	167
Chicago, IL.	164,535	169,936	180,636	6.3	22,157	22,692	23,891	22	Killeen-Temple, TX	3,298	3,319	3,792	14.2	12.897	13,225	14,878	293
Chico-Paradise, CA	2.757	2,831	3,002	6.0	15,024	15,169	15,935	274	Knoxville, TN	9,699	10,346	11,211	8.4	16,498	17,272	18,364	151
Cincinati, OH-KY-IN* .-...........	28,911	30,014	32,006 2		18,904				Kokomo, IN	1,711	1,766	1,887	6.9	17,618	18,026	19,141	114 145
Clarksville-Hopkinsville, TN-KY Cleveland-Lorain-Elyria, OH^{*}	2.060 43,861	2,212 45,363	2,547	15.1 5.4	12,091	13,066	14,295 21,533	299 51	La Crosse, WI-MN Lafayette, LA	1,959 4,704	2,037	2,173	6.7 5.7	16,793 13,630	17,41 14,300	18,417 14,954	145 292
Colorado Springs, CO	6,64	7,130	7,708	8.1	16,7	17,650	18,300	153									
Columbia, MO	1,834	1,969	2,105	6.9	16,269	17,165	18,004	169	Lake Charles,	2,494 2,409	2,626		5.6	15,428	15,438	17,137	264
Columbia, SC	7.898	8,224	8.716	6.0	17,339	17,699	18,472	143	Lakeland-Winter Haven, FL	6,229	6,472	6,816	5.3	15,292	15,67	16,268	256
Columbus, GA-AL	3,815	4,074	4,354	6.9	14,594	15,624	16,115	265									

See footnotes at end of table.

Table 1.-Total Personal Income and Per Capita Personal Income by Metropolitan Area, 1990-92-Continued

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Area name} \& \multicolumn{4}{|c|}{Total personal income} \& \multicolumn{4}{|l|}{Per capita personal income \({ }^{3}\)} \& \multirow{3}{*}{Area name} \& \multicolumn{4}{|c|}{Total personal income} \& \multicolumn{4}{|l|}{Per capita personal income \({ }^{3}\)} \\
\hline \& \multicolumn{3}{|c|}{Millions of dollars} \& Percent change \({ }^{2}\) \& \multicolumn{3}{|c|}{Dollars} \& Rank in U.S. \& \& \multicolumn{3}{|c|}{Milions of dollars} \& Percent change \({ }^{2}\) \& \multicolumn{3}{|c|}{Dollars} \& \multirow[t]{2}{*}{\[
\begin{array}{|c}
\begin{array}{c}
\text { Rank in } \\
\text { U.S. }
\end{array} \\
\hline 1992 \\
\hline
\end{array}
\]} \\
\hline \& 1990 \& 1991 \& 1992 \& 1991-92 \& 1990 \& 1991 \& 1992 \& 1992 \& \& 1990 \& 1991 \& 1992 \& 1991-92 \& 1990 \& 1991 \& 1992 \& \\
\hline Lancaster, PA \& 8,035 \& 8,178 \& 8,696 \& 6.3 \& 18,918 \& 19,002 \& 20,018 \& 90 \& Roanoke, VA \& 4,299 \& 4,394 \& 4,675 \& 6.4 \& 19,117 \& 19.400 \& 20,661 \& 6 \\
\hline Lansing-East Lansing, M1. \& 7,321 \& 7,656 \& 8,031 \& 4.9 \& 16,890 \& 17,576 \& 18,401 \& 146 \& Rochester, MN \& 2,131 \& 2,250 \& 2,386 \& 6.1 \& 19,923 \& 20,617 \& 21,595 \& 50 \\
\hline Laredo, TX \& 1,208 \& 1,356 \& 1,542 \& 13.7 \& 8,972 \& 9,624 \& 10,387 \& 309 \& Rochester, NY \& 21,245 \& 21,982 \& 22,941 \& 4.4 \& 19,960 \& 20,504 \& 21,217 \& 56 \\
\hline Las Cruces, NM \& 1.676 \& 1,762 \& 1,908 \& 8.3 \& 12,279 \& 12,493 \& 13,016 \& 305 \& Rocktord, IL \& 5,998 \& 6,098 \& 6,473 \& 6.2 \& 18,145 \& 18,169 \& 19,055 \& 119 \\
\hline Las Vegas, NV-AZ \& 16.433 \& 17,775 \& 19,417 \& 9.2 \& 18,928 \& 19,127 \& 19,994 \& 91 \& Rocky Mount, NC \& 2,018 \& 2,124 \& 2,224 \& 4.7 \& 15,100 \& 15,734 \& 16,262 \& 257 \\
\hline Lawrence, KS \& 1,175 \& 1,238 \& 1,326 \& 7.1 \& 14,302 \& 14,853 \& 15,682 \& 283 \& Sacramento, CA * \& 26,251 \& 27,436 \& 28,936 \& 5.5 \& 19,394 \& 19,654 \& 20,398 \& 74 \\
\hline Lawton, OK \& 1,468 \& 1,540 \& 1,724 \& 12.0 \& 13,183 \& 13,832 \& 14,310 \& 298 \& Saginaw-Bay City-Midland, MI \& 6,824 \& 7,075 \& 7,431 \& 5.0 \& 17,068 \& 17,642 \& 18,461 \& 144 \\
\hline Lewiston-Auburn, ME (NECMA) \& 1,729 \& 1,757 \& 1,836 \& 4.5 \& 16,412 \& 16,784 \& 17,677 \& 180 \& St. Cloud, MN \& 2,156 \& 2,263 \& 2.442 \& 7.9 \& 14,421 \& 14,963 \& 15,991 \& 272 \\
\hline Lexington, KY \& 7.070 \& 7,435 \& 7,937 \& 6.8 \& 17,351 \& 18,008 \& 18,893 \& 127 \& St. Joseph, MO \& 1,522 \& 1,589 \& 1,651 \& 3.9 \& 15,569 \& 16,273 \& 16,854 \& 231 \\
\hline Lima, OH \& 2,475 \& 2,551 \& 2,732 \& 7.1 \& 16,019 \& 16,442 \& 17,497 \& 188 \& St. Louis, MO-IL \& 50,212 \& 52,158 \& 54,652 \& 4.8 \& 20,112 \& 20,793 \& 21,700 \& 47 \\
\hline Lincoln, NE \& 3,696 \& 3,927 \& 4,771 \& 6.2 \& 17,237 \& 18,123 \& 18,995 \& 121 \& Salem, OR' \& 4,320 \& 4,578 \& 4,889 \& 6.8 \& 15,457 \& 16,026 \& 16,749 \& 235 \\
\hline Little Rock-North Little Rock, AR \& 8,475 \& 9,012 \& 9,805 \& 8.8 \& 16,481 \& 17,367 \& 18,650 \& 136 \& Salinas, CA . \& 6,970 \& 7,197 \& 7,485 \& 4.0 \& 19,515 \& 19,847 \& 20,322 \& 77 \\
\hline Longview-Marshall, TX \& 3,012 \& 3,166 \& 3,393 \& 7.2 \& 15,531 \& 16,147 \& 17.178 \& 210 \& Salt Lake City-Ogden, UT \& 16,429 \& 17,598 \& 19,025 \& 8.1 \& 15,262 \& 15,992 \& 16,865 \& 230 \\
\hline Los Angeles-Long Beach, CA* . \& 184,246 \& 187,096 \& 194,054 \& 3.7 \& 20,752 \& 20,907 \& 21,434 \& 52 \& San Angelo, TX \& 1,513 \& 1,582 \& 1,684 \& 6.5 \& 15,401 \& 16,151 \& 16,993 \& 223 \\
\hline Lourisville, KY-IN \& 17,294 \& 18,178 \& 19,556 \& 7.6 \& 18,197 \& 18,959 \& 20,211 \& 82 \& San Antonio, TX \& 20,691 \& 21,940 \& 23,825 \& 8.6 \& 15,583 \& 16,264 \& 17,282 \& 201 \\
\hline Lubbock, TX \& 3,521 \& 3,626 \& 3,860 \& 6.5 \& 15,801 \& 16,181 \& 17,185 \& 209 \& San Diego, CA \& 49,587 \& 50,820 \& 53,019 \& 4.3 \& 19,731 \& 19,875 \& 20,384 \& 75 \\
\hline Lynchburg, VA \& 3,178 \& 3,265 \& 3,428 \& 5.0 \& 16,341 \& 16,625 \& 17,276 \& 202 \& San Francisco, CA* \& 47,572 \& 48,594 \& 50,835 \& 4.6 \& 29,672 \& 30,115 \& 31,262 \& 1 \\
\hline Macon, GA \& 4,721 \& 4,957 \& 5,234 \& 5.6 \& 16,187 \& 16,800 \& 17,528 \& 187 \& San Jose, CA * \& 36.770 \& 37,830 \& 39,626 \& 4.7 \& 24,550 \& 25,038 \& 25,924 \& 12 \\
\hline Madison, WI \& 7,311 \& 7,756 \& 8,322 \& 7.3 \& 19,837 \& 20,698 \& 21,883 \& 42 \& San Luis Obispo-Atascadero-Paso \& \& \& \& \& \& \& \& \\
\hline Mansfield, OH \& 2,690 \& 2,711 \& 2,827 \& 4.3 \& 15,458 \& 15,500 \& 16,109 \& 266 \& Mobles, CA \& 3,716 \& 3,814 \& 3,993 \& 4.7 \& 17,036 \& 17,413 \& 18,105 \& 163 \\
\hline McAllen-Edinburg-Mission, TX .. \& 3,487 \& 3,771 \& 4.126 \& 9.4 \& 9,008 \& 9,386 \& 9,802 \& 310 \& Santa Barbara-Santa Maria-Lompoc, \& \& \& \& \& \& \& \& \\
\hline Medford-Ashland, OR \& 2,345 \& 2,472 \& 2,655 \& 7.4 \& 15,920 \& 16,410 \& 17,230 \& 206 \& CA .. \& 8,259 \& 8,485 \& 8,775 \& 3.4 \& 22,303 \& 22,717 \& 23,368 \& 28 \\
\hline Melbourne-Titusville-Palm Bay, FL \& 7,104 \& 7.484 \& 7,964 \& 6.4 \& 17.621 \& 18,019 \& 18,715 \& 133 \& Santa Cruz-Watsonvile, CA* \& 4,889 \& 5,011 \& 5,263 \& 5.0 \& 21,311 \& 21,883 \& 22,784 \& 33 \\
\hline Memphis, TN-AR-MS \& 18,001 \& 18,800 \& 20,177 \& 7.3 \& 17.821 \& 18.405 \& 19,517 \& 99 \& Santa Fe, NM \& 2,276 \& 2,405 \& 2,577 \& 7.2 \& 19,347 \& 20,059 \& 20,893 \& 62 \\
\hline Merced, CA \& 2,566 \& 2,612 \& 2.783 \& 6.5 \& 14,266 \& 14,057 \& 14,717 \& 295 \& Santa Rosa, CA* \& 8,435 \& 8,775 \& 9.188 \& 4.7 \& 21,624 \& 22,180 \& 22,913 \& 32 \\
\hline Miami, FL*.... \& 34,274 \& 35,238 \& 34,384 \& -2.4 \& 17,629 \& 17,807 \& 17,124 \& 211 \& Sarasota-Bradenton, \& 11,443 \& 11,825 \& 12,372 \& 4.6 \& 23,233 \& 23,726 \& 24,804 \& 18 \\
\hline Middlesex-Somerset-Hunterdon, NJ * \& 26,695 \& 27,483 \& 29,396 \& 7.0 \& 26,106 \& 26,617 \& 28,082 \& 6 \& Savannah, GA \& 4,404 \& 4,558 \& 4,872 \& 6.9 \& 16,992 \& 17,372 \& 18,222 \& 156 \\
\hline Milwaukee-Waukesha, WI * \& 28,581 \& 29,617 \& 31,604 \& 6.7 \& 19,927 \& 20,526 \& 21,797 \& 44 \& Scranton-Wilkes-Barre-Hazelton, PA \& 10,633 \& 11,040 \& 11,752 \& 6.5 \& 16,642 \& 17,270 \& 18.400 \& 147 \\
\hline Minneapolis-St. Paul, MN-WI . \& 54,579 \& 56,693 \& 60,958 \& 7.5 \& 21,421 \& 21,955 \& 23,284 \& 29 \& Seatte-Bellewe-Everett, WA * \& 47,025 \& 50,269 \& 54,743 \& 8.9 \& 22,966 \& 24,149 \& 25,769 \& 13 \\
\hline Motile, AL \& 6,759 \& 7,316 \& 7,833 \& 7.1 \& 14,135 \& 15,054 \& 15,806 \& 278 \& Sharon, PA . \& 1,827 \& 1,911 \& 2,029 \& 6.2 \& 15,087 \& 15,729 \& 16,618 \& 242 \\
\hline Modesto, CA \& 6,054 \& 6,250 \& 6,615 \& 5.8 \& 16,130 \& 16,179 \& 16,738 \& 236 \& Sheboygan, WI \& 1,806 \& 1,855 \& 1,987 \& 7.2 \& 17,345 \& 17,767 \& 18,921 \& 126 \\
\hline Monmouth-Ocean, NJ \& 22,892 \& 23,522 \& 25,040 \& 6.5 \& 23,154 \& 23,640 \& 24,935 \& 17 \& Sherman-Denison, \& 1,527 \& 1,582 \& 1,656 \& 4.7 \& 16,073 \& 16,578 \& 17,418 \& 193 \\
\hline Monroe, LA \& 1,941 \& 2,055 \& 2,200 \& 7.0 \& 13,655 \& 14,368 \& 15,181 \& 289 \& Shreveport-Bossier City, LA \& 5,620 \& 5,972 \& 6,385 \& 6.9 \& 14,975 \& 16,002 \& 17,061 \& 217 \\
\hline Montgomery, AL \& 4,829 \& 5.103 \& 5.444 \& 6.7 \& 16,465 \& 17,126 \& 17,931 \& 171 \& Sioux City, IA,NE \& 1,848 \& 1,940 \& 2,118 \& 9.2 \& 16,036 \& 16,687 \& 18,088 \& 164 \\
\hline Muncie, \(\mathbb{N N}^{\text {N }}\)....... \& 1,883 \& 1,974 \& 2,112 \& 7.0 \& 15,741 \& 16,485 \& 17,543 \& 186 \& Sioux Falls, SD ... \& 2,525 \& 2,695 \& 2,919 \& 8.3 \& 18,055 \& 18,906 \& 20,020 \& 89 \\
\hline Myrtle Beach, SC \& 2,200 \& 2,316 \& 2,443 \& 5.5 \& 15,182 \& 15,524 \& 16,040 \& 271 \& South Bend, \(1 \mathbb{N}\) \& 4,166 \& 4,303 \& 4,606 \& 7.1 \& 16,830 \& 17,297 \& 18,387 \& 149 \\
\hline Naples, FL \& 4,209 \& 4,377 \& 4,486 \& 2.5 \& 27,300 \& 27,327 \& 27,232 \& 9 \& Spokane, WA . \& 5,922 \& 6,354 \& 6,888 \& 8.4 \& 16,320 \& 17,091 \& 18,069 \& 168 \\
\hline Nashville, TN \& 18,127 \& 19,219 \& 21,049 \& 9.5 \& 18,333 \& 19,144 \& 20,569 \& 70 \& Springfield, IL \& 3,657 \& 3,764 \& 4.016 \& 6.7 \& 19,262 \& 19,689 \& 20,837 \& 63 \\
\hline Nassau-Sulfolk, NY: \& 69,738 \& 70.774 \& 73,825 \& 4.3 \& 26,736 \& 26,992 \& 27,961 \& 7 \& Springlield, MO \& 4,186 \& 4,469 \& 4,784 \& 7.0 \& 15,775 \& 16,553 \& 17,357 \& 197 \\
\hline New Haven-Bridgeport-Stamford-Danbury-Waterbury, CT* \& \& \& \& 5.9 \& 27790 \& \& \& 3 \& Springfield, MA (NECMA) \& 11,137 \& 11,223 \& 11,505 \& 2.5 \& 18,459 \& 18,656 \& 19,187 \& 111 \\
\hline New London-Norwich, CT (NECMA) \& \begin{tabular}{|r|}
45,370 \\
5,129
\end{tabular} \& 45,830
\(\mathbf{5 , 2 8 6}\) \& 48,531
5,588 \& 5.9
5.3 \& 20,102 \& 28,07
20,809 \& 22,427 \& 34 \& State College, PA \& 1,893 \& 2,001 \& 2,124 \& 6.2 \& 15,254 \& 15,954 \& 16,780 \& 234 \\
\hline New Orleans, LA \& 21,038 \& 22,256 \& 23,562 \& 5.9 \& 16,382 \& 17,227 \& 18,087 \& 165 \& Steubenville-Weiton, OH-WV \& 2,159 \& 2,202 \& 2,323 \& 5.5 \& 15,175 \& 15,490 \& 16,415 \& 246 \\
\hline New York, NY . \& 210,790 \& 216,605 \& 231,232 \& 6.8 \& 24,661 \& 25,362 \& 27,039 \& 10 \& Stockton-Lodi, CA \& 7,838 \& 8,097 \& 8,541 \& 5.5 \& 16,183 \& 16,374 \& 16,942 \& 227 \\
\hline Newark, \({ }^{\text {J }}\) + \& 48,727 \& 50,182 \& 53,526 \& 6.7 \& 25,434 \& 26,188 \& 27,830 \& 8 \& Sumter, SC \& 1,243 \& 1,309 \& 1,388 \& 6.0 \& 12,081 \& 12,523 \& 13,171 \& 303 \\
\hline Newburgh, NY-PA \({ }^{\text {a }}\) \& 6,174 \& 6,376 \& 6,779 \& 6.3 \& 18,300 \& 18,609 \& 19,463 \& 101 \& Syracuse, NY \& 13,187 \& 13,485 \& 14,159 \& 5.0 \& 17,730 \& 18,003 \& 18,818 \& 129 \\
\hline Norfolk-Virginia Beach-Newport \& \& 6,310 \& \& \& 18,300 \& 18,60 \& 19,463 \& 10 \& Tacoma, WA * \& 10,038 \& 10,505 \& 11,377 \& 8.3 \& 17,002 \& 17,363 \& 18,361 \& 152 \\
\hline News, VA-NC \& 24,258 \& 25,475 \& 27,056 \& 6.2 \& 16,735 \& 17,412 \& 18,077 \& 166 \& Tallanassee, FL \& 3,719 \& 3,936 \& 4,195 \& 6.6 \& 15,824 \& 16,365 \& 17,103 \& 213 \\
\hline Oakland, CA* ... \& 48,767 \& 49,501 \& 52,327 \& 5.7 \& 23,333 \& 23,387 \& 24,359 \& 20 \& Tampa-St. Petersburg-Clearwater, \& \& \& \& \& \& \& \& \\
\hline Ocala, FL \& 2,855 \& 3,003 \& 3,198 \& 6.5 \& 14,500 \& 14,799 \& 15,375 \& 287 \& \& 37,291
2,162 \& \(\begin{array}{r}38,570 \\ 2,283 \\ \hline 1,80\end{array}\) \& 40,882
2,462

1 \& 6.0
7.8 \& 17,964
14.650 \& 18,405
15 \& 19,400
16,551 \& 104
244

\hline Odessa-Midand, TX \& 3,887 \& 4.178 \& 4,370 \& 4.6 \& 17,235 \& 18,189 \& 18,692 \& 134 \& Texarkana, TX-Texarkana, AR \& 1,748 \& 1,801 \& 1,909 \& 6.0 \& 14,524 \& 14,945 \& 15,784 \& 280

\hline Oklanoma City, OK \& 15,701 \& 16,333 \& 17,356 \& 6.3 \& 16,355 \& 16,834 \& 17.645 \& 183 \& \& \& \& \& \& \& \& \&

\hline Olympia, WA \& 2,946 \& 3,207 \& 3,496 \& 9.0 \& 18,076 \& 18,925 \& 19,801 \& 97 \& Toledo, OH \& 10,802 \& 11,045 \& 11,793 \& 6.8 \& 17,581 \& 17,973 \& 19,166 \& 112

\hline Omaha, NE-IA \& 11,851 \& 12,533 \& 13,288 \& 6.0 \& 18,476 \& 19,297 \& 20,242 \& 80 \& Topeka, KS \& 88.440 \& 8,110 \& 9,281 \& 7.5 \& 25,877 \& 19,639 \& 20,076
28,443 \& 5

\hline Orange County, CA * \& 58,721 \& 58,993 \& 61,252 \& 3.8 \& 24,292 \& 24,113 \& 24,651 \& 19 \& Trenton, NJ \& 8,440 \& 8,712
10806 \& 9,321 \& 7.0 \& 25,877 \& 26,639 \& 28,443 \& 240

\hline Orlando, FL \& 21,645 \& 22,628 \& 24,262 \& 7.2 \& 17,465 \& 17,734 \& 18,596 \& 139 \& Tucson, AZ \& 10,213 \& 10,806 \& 11,493 \& 6.4 \& 15,285 \& 15.992 \& 16,651 \& 240

\hline Owensboro, KY \& 1,318 \& ${ }^{1,398}$ \& 1,486 \& 6.4 \& 15,103 \& 15,908 \& 16,736 \& 237 \& Tuscaloosa, AL \& 12,215 \& $\begin{array}{r}12,982 \\ 2 \\ \hline\end{array}$ \& 13,607 \& 6.5 \& 14.666 \& 17,145
15 \& 16.689
16.092 \& 1367

\hline Panama City, FL \& 1,909 \& 2,057 \& 2,204 \& 7.1 \& 14,988 \& 15,787 \& 16,445 \& 245 \& Juscaloosa, AL \& 2,560 \& 2,685 \& 2,480 \& 7.3 \& 16,906 \& 17,532 \& 18,648
18,68 \& ${ }_{1} 137$

\hline Parkersburg-Marietta, WV-OH \& 2,245 \& 2,355 \& 2,515 \& 6.8 \& 15,044 \& 15,761 \& 16,736 \& 237 \& Ulica-Rome \& 2,002 \& 2,685
5,119 \& 2,880

5,370 \& 4.9 \& | 16,906 |
| :--- |
| 15 |
| 1884 | \& 17,632

16,076 \& 18,688
16,870 \& 137
229

\hline Pensacola, FL \& 5,174 \& 5.458 \& 5,886 \& 7.8 \& 14,972 \& 15,481 \& 16,287 \& 254 \& Vailejo-Fairtield-Napa, CA. \& 8.686 \& 8,993 \& 9,542 \& 6.1 \& 19,063 \& 19,212 \& 20,084 \& 85

\hline Peoria-Pekin, IL \& 6,179 \& 6,263 \& 6,574 \& 5.0 \& 18,183 \& 18,317 \& 19,193 \& 110 \& Ventura, $C A^{*}$................... \& 14,162 \& 14,451 \& 15,088 \& 4.4 \& 21,131 \& 21,351 \& 21,977 \& 41

\hline Philadelphia, PA-NJ* \& 105,962 \& 109,572 \& 115,670 \& 5.6 \& 21,511 \& 22,188 \& 23,397 \& 27 \& \& \& \& \& \& \& \& \&

\hline Phoenix-Mesa, AZ \& 40,237 \& 41,676 \& 44,319 \& 6.3 \& 17,916 \& 18,244 \& 19,018 \& 120 \& Victoria, TX \& 1,223 \& 1,327 \& 1.415 \& 6.7 \& 16,399 \& 17,535 \& 18,371 \& 150

\hline Pine Bluft, AR \& 1,121 \& 1,150 \& 1,227 \& 6.6 \& 13,136 \& 13,476 \& 14,386 \& 296 \& Vineland-Milville-Eridgeton, NJ* \& 2,378 \& 2,482 \& 2,661 \& 7.2 \& 17,199 \& 17,911
14,084 \& 19,213
15,015 \& 109

\hline Pittsturgh, PA \& 45,437 \& 47,864 \& 50,956 \& 6.5 \& 18,969 \& 19,946 \& 21,175 \& 57 \& Visalia-Tulare-Poterville, CA \& 4,519 \& 4,552 \& 4,971 \& 9.2 \& 14,391 \& 14,084 \& 15,015 \& 291

\hline Pittsfieid, MA (NECMA) \& 2,693 \& 2,835 \& 2,904 \& 2.4 \& 19,335 \& 20,567 \& 21,226 \& 55 \& Waco, TX \& 2,776 \& 2,916
11089 \& 3,117 \& 6.9 \& 14,648 \& 15,289 \& 16,272 \& 255

\hline Portand, ME (NECMA) \& 5,115 \& 5,166 \& 5,420 \& 4.9 \& 20,993 \& 21,116 \& 22,178 \& 40 \& Washington, DG-MD-VA-WV* \& 106,495 \& 110,893 \& 116,932 \& 5.4 \& 25,129 \& 25,801 \& 26,817 \& 11

\hline Portand-Vancouver, OR-WA. \& 29,292 \& 30,949 \& 33,193 \& 7.3 \& 19,192 \& 19,716 \& 20,681 \& 66 \& Waterioo-Cedar Fails, |A ... \& $$
\begin{aligned}
& 1,972 \\
& 1,872
\end{aligned}
$$ \& 2,035

1,943 \& 2,175
2,093 \& 6.9
7.8 \& 15,909

16.180 \& $$
\begin{aligned}
& 16,252 \\
& 16,636
\end{aligned}
$$ \& 17,345 \& 198

\hline Providence-Warwick-Pawtucket, RI (NECMA) \qquad \& 17,372 \& 17,656 \& 18,488 \& 4.7 \& 18,942 \& 19,273 \& 20,214 \& 81 \& Wausau, WI
West Palm Beach-Boca Raton, \& 1,872
25,319 \& 1,943
26,866 \& 2,093
27,831 \& 7.8
3.6 \& 16,180
29,03 \& 16,636
30,347 \& 17,735
30,901 \& 178
2

\hline Provo-Orem, UT \& 3.015 \& 3,313 \& 3,590 \& 8.4 \& 11,399 \& 12,314 \& 13,052 \& 304 \& Wheeling, WV-OH
Wichita, KS \& 2.428 \& 2,559 \& 2,684
10,319 \& 4.9 \& 15,272 \& 16,191 \& 16,964 \& 224
69

\hline Pueblo, CO^{\prime} \& 1,728 \& 1,844 \& 1,963 \& 6.5 \& 14,045 \& 14,977 \& 15,863 \& 276 \& Wichita, KS \& 9,0 \& 9,5 \& 10,319 \& 7.7 \& 18,5 \& 19,450 \& 20,589 \& 69

\hline Punta Gorda, FL \& 1,945 \& 2,014 \& 2,118 \& 5.1 \& 17,265 \& 17,251 \& 17,761 \& 176 \& Wichita Falis, TX \& 2,107 \& 2,188 \& 2,331 \& 6.5 \& 16,183 \& 17,008 \& 18,197 \& 159

\hline Racine, WI* \& 3,270 \& 3,440 \& 3,614 \& 5.0 \& 18,641 \& 19,361 \& 20,131 \& 84 \& Wiliamsport, PA \& 1,876 \& 1,933 \& 2.061 \& 6.6 \& 15,794 \& 16,158 \& 17,107 \& 212

\hline Raieigh-Durham-Chapel Hill, NC \& 16,725 \& 17,672 \& 19,172 \& 8.5 \& 19,420 \& 19,986 \& 21,086 \& 58 \& Wilmington-Newark, DE-MD* \& 10,944 \& 11,335 \& 11,761 \& 3.8 \& 21,235 \& 21,671 \& 22,191 \& 39

\hline Rapid City, SD \& 1,248 \& 1,348 \& 1,436 \& 6.5 \& 15,279 \& 16,102 \& 16,896 \& 228 \& Wilmington, NC \& 2,688 \& 2,896 \& 3,098 \& 7.0 \& 15,603 \& 16,353 \& 16,997 \& 222

\hline Reading, PA \& 6,516 \& 6,673 \& 7,111 \& 6.6 \& 19,310 \& 19,581 \& 20,723 \& 65 \& Yakima, WA \& 2,935 \& 3,093 \& 3,379 \& 9.2 \& 15,496 \& 15,988 \& 17,062 \& 216

\hline Recding, CA \& 2,446 \& 2,550 \& 2,713 \& 6.4 \& 16,456 \& 16,539 \& 17,212 \& 207 \& Yolo, CA* \& 2,570 \& 2,671 \& 2,840 \& 6.4 \& 18,101 \& 18,536 \& 19,615 \& 98

\hline Reno, NV ... \& 5,925 \& 6,313 \& 6,856 \& 8.6 \& 23,113 \& 24,035 \& 25,529 \& 14 \& York, PA \& 6,427 \& 6,643 \& 6,988 \& 5.2 \& 18,863 \& 19,225 \& 19,970 \& 93

\hline Richland-Kennewick-Pasco, WA \& 2,538 \& 2,776 \& 3,055 \& 10.1 \& 16,786 \& 17,840 \& 18,989 \& 122 \& Youngstown-Warren, OH \& 9,654 \& 10,039 \& 10,531 \& 4.9 \& 16,059 \& 16,646 \& 17,381 \& 196

\hline Richmond-Petersburg, VA \& 18,535 \& 18,952 \& 19,985 \& 5.5 \& 21,314 \& 21,517 \& 22,303 \& 38 \& Yuba City, CA . \& 1,827
1,303 \& 1,971
1,490 \& 2,095
1,569 \& 6.3
5.2 \& 14,796
12,092 \& 15,537
13,377 \& 16,078
13,345 \& 269

\hline Riverside-San Bernardino, CA* \& 44,485 \& 45,760 \& 48.048 \& 5.0 \& 16.910 \& 16,703 \& 17,021 \& 220 \& Yoma, AZ \& , 3 \& 1,490 \& 1,569 \& 5.2 \& 12,092 \& 13,37 \& 13,345 \& 302

\hline
\end{tabular}

1. The personal income level shown for the United States is derived as the sum of the county estimates; it differs from the national income and prodiuct accounts (NIPA) estimate of personal income because, by definition. Tomits the earrings of Federal civilian and miltary personnel stationed abroad and of U.S. residents employed and revision schedules.
2. Percent change was calculated trom unrounded data.
3. Per capita personal income was computed using Bureau of the Census midyear population estimates. Estimates tor $1990-92$ reflect State and county population estimates available as of Februar 1994.
4. Includes Metropolitan Statistical Areas, Primary Metropolitan Statistical Areas (PMSA's designated by ${ }^{\circ}$) and
New
England
County Metropoditan Areas (NECMA's.). The New Haven-Bridgeport-Slamford-Danbury-Waterbury, CT NECMA is presented as a PMSA (part of the New York CMSA).

Table 2.-Total Personal Income and Per Capita Personal Income by County, 1990-92

Area name	Total personal income				Per capita personal income ${ }^{3}$				Area name	Total personal income				Per capita personal income ${ }^{3}$			
	Milions of dollars			Percent change ${ }^{2}$	Dollars			Rank in Slate 1992		Milions of collars			Percent change ${ }^{2}$	Dollars			Rank in State
	1990	1991	1992	1991-92	1990	1991	1992			1990	1991	1992	1991-92	1990	1991	1992	1992
United Statas ${ }^{1}$	4,655,420	4,881,697	5,128,373	6.1	18,667	19,163	20,105		Juneau Borou	639	678	720	6.2	23,666	24,304	25,390	5
Merropolitan portion .-.................	3,928,153	4,073,607	4,318,818	8.0	19,797	20,289	21,247		Kenai Peninsula Borough	55	907	38	3.5	20,803	21,271	21,571	13
Nonmetropolitan portion	727,267	758,090	809,755	6.8	14,266	14,761	15,628		Ketchikan Gateway Borough	366	371	391	5.4	26,236	26,333	27,761	
Metropolitan portion	43,416	45,952	49,243	7.2	15,979	16,705	17,860		Lake and Peninsula Borough ${ }^{4}$.....		28	30	6.7		16,537	17,275	19
Nonmetropolitan portion	16,916	17,911	19,115	6.7	12,696	13,774	14,189		Matanuska-Susitna Borough	615	${ }^{656}$	694	5.8	15,319	15.40	15,404	22
Autaua	482	519	552	6.4	14034	14.795	29	22	Nome Census Area	114	118	128	8.3	13,788	14,132	14,954	$\stackrel{23}{9}$
Raldwin	1,498	1,638	1,765	7.8	15,141	16,020	16,595	${ }_{8}^{22}$	North Slope Borough	140 89	$\begin{array}{r}150 \\ 94 \\ \hline\end{array}$	158 102 1	9.1	14,524	15,158	16,121	21
Barbour ...	332	366	393	7.5	13,049	14.449	15,563	20	Prince of Wales-Outer Ketchikan'	113	111	115	3.5	17,994	17,311	17,983	18
Bibb	200	210	229	9.1	11,982	12,363	13,309	51	Sitka Borough	192	200	210	4.9	22,235	22,981	23,697	10
Blount	519	558	599	7.3	13,164	13.975	14.850	25 66	Skagway-Yakutat-Angoon..............	95	101	107	6.6	21,579	23,267	24,973	7
Bullock	105	115	${ }_{266}^{120}$	4.8	9,534 10.825	10,339	10.961	66 59	Southeast Fairbanks Census								
Calhoun	1.577	1,671	1,764	5.6	13,570	14,452	15,158	23	Valder-Cordova Census Are..........	830	93	69	4.3	15,369	543		20
Chambers.	480	483	517	7.0	13,002	13,117	14,021	37	Wade Hampton Census Area.	59	59	61	4.1	10,173	9,866	9,993	26
Cherokee	242	261	279	7.0	12,330	13,237	14,052	36	Wrangell-Petersburg	167	173	190	9.4	23,662	24,549	26,963	3
									Yukon-Koyukuk Census Area	119	91	95	4.7	14,188	13,862	14,406	25
Chilton Choctaw \qquad	409 193	448	469 217	6.3 5.0	${ }_{12,055}^{12,52}$	13,943	14,4467	34 47	Arizona	59,833	62.543	66,687		16,262	16.697	17,401	
Clarke	345	364	385	5.6	12,621	13,233	13,869	40	Metropolitan portion .-..........................	53,084	55,395	58,909	6.6	17,030	17,462	18,159	
Clay	169	180	193	7.4	12.745	13,557	14,486	29	Nonmetropolitan portion...	6,749	7,148	7,778	8.8	12,005	12,467	13,222	
Cleourne	179	181	185	2.5	13,448	14,191	14,280	33									
Coffee	605	655	707	7.9	15,015	16,214	17,168	7	Apache	502	542	605	11.6	8,107	8.674	9,623	15
Colbert	735	769	817	6.2	14,194	14,703	15,584	18	Cochise	1,247	1,320.	1,437	8.8	12,738	13,334	14,172	8
Conecuh	157	174	184	5.9	11,157	12,206	${ }^{13,034}$	55 57	Coconino.	1,257	1,341	1,470,	9.7	12,938	13,440	14,302	7
Covingtion \qquad	159 459	487	515	5.8	12,573	13.323	13,996	38	Graham	5154	542 278	585 303	8.7	${ }^{12,612} 9$	13,153 10,268	13,95 10,978	13
									Greenlee	105	119	135	13.3	13,124	14,353	15,671	4
Crensh	159	${ }^{169}$		6.3	11,657	12,453	13,322	49	La Paz .	228	223	233	4.5	16,436	16,253	17,065	$\stackrel{2}{2}$
Culman	${ }_{638} 9$	681	1.087 731	7.4	12,862	13,672	14,637	19 28	Maricopa ..	38,868	40,184	42,793	6.5	18,253	18,55	19,367	
Dailas ..	581	617	649	5.2	12,099	12,868	13,511	46	Navajo.	1,340	1,422	\% 840	8.5	-13,979	14,098 9797	14,477 10,367	14
De Kalb	696	737	808	9.6	12,703	13,328	14,453	30									
Elmore	679	718	772	7.6	${ }^{13,708}$	14,152	14,705	26	Pima	10,213	10,806	11,493	6.4	15,285	15,992	16,651	3
Escambia	437	459	-479	4.3	${ }^{12,307}$	12,892	13,294	52 21	Pinal	1,369	1,493	1,526	2.2	11.750	12,631	12,634	11
Fayette ...		$\begin{array}{r}1,430 \\ 226 \\ \hline\end{array}$	1.544	${ }_{7} 8.1$	12,211	12.497	${ }_{13,422}$	48	Sania Cruz	${ }_{1} 1545$	${ }_{1} 16646$	17855	8.5	11,473	11,753	12,04	12
Franklin	354	385	426	10.7	12,749	13,738	14,969	24	Yuma	1,303	1,490	1,569	5.2	12,092	13,377	13,345	10
Geneva	326	349	375	7.5	13.760	14,493	15,619	16	Arkansas	32,450	34,341	37,434		13,779	14,485	15,635	
Greene	104	110	114	3.9	10,207	10,765	11,187	64	Metropolitan portion	16,084	17,006	18,599	9.4	15,422	16,126	17,367	
Hale	163	175	187	7.3	10,488	11.156	11,783	60 27	Nonmetropolitan portion ...	16,367	17,335	18,835	8.7	12,474	13,171	14,233	
Jackson	666	707	771	9.0	13,903	14,596	15,724	14	Ashley ...	322	352	374	6.1	13,232	14,397	15.209	17
Jefferson..	11,758	12,319	13,194	7.1	18.029	18,797	20,061	9	Baxter	448	475	511	7.5	14,333	15,002	15.788	9
Lamar	199	205	218	6.7	12.652	13,046	13,986	39	Benton ...	1,557	1,679	1,882	12.1	15,834	16,536	17.827	4
Lauderdale ...	1,180	1,241	1,324	6.6	14,769	15,355	16,182	10	Boone	386	407	435	7.0	13.623	14,209	14,897	
Lawrence	382	417	445	6.7	12,100	12,996	13,821	41	Bradley...	160	166	181	9.0	13.548	14,151	15.579	11
Lee.	1,168	1,203	1,290	7.3	13,344	13,583	14,358	31	Carroun		266	73					60 20
Limestone ...	779	842	942	11.8	14,334	15,180	16,570	9	Chicot	165	174	201	16.0	10,551	11,201	12,796	57
Lowndes	131	143	141	-1.4	10,378	11,301	11,115	65	Clark	258	273	299	9.5	12,075	12,867	14,028	39
Macon	251	264	279	5.9	10,092	10,828	11,452	62									
Macison ...	4,583	4.852	5,245	8.1	19.081	19,809	20,876	1	Clay	205	221	243	10.4	11.347	12,272	13.623	42
Marengo ...	284 345	305	319	4.6	12,307	13,214	13,732	43	Cleburne ...	250	266	288	8.1	12,823	13,368	14,160	35
Marshail	1,017	1,076	1,173	9.0	14,318	14,957	-5,957	12	Columbia ...	396	94 353	3986	6.2	${ }^{11,707} 1$	12.062 13,74	14,608	61 25
Mobile	5.261	5,678	6,068	6.9	13,873	14,796	15,591	17	Conway ...	243	259	279	8.1	12,698.	13,448	14,532	27
Monroe	298	333	338	1.5	12,332	13,932	14,067	35	Craighead	934	1,001	1,099	9.8	13,479	14,366	15,487	14
Montgomery	3,668								Crawtord	488	520	571	10.0	11.41	11,914	12.857	54
Morgan	1,655	1,766	1,880	6.5	16,462	17,296	18,119	5	cross	218	${ }_{239}$	271	${ }^{13.4}$	11,360	12,441	14,071	37
Perry	122	130	137	5.8	9,623	10.422	12, ${ }^{\text {a }}$	63	Dallas	123	131	140	7.4	12,822	13,699	14,783	22
Pickens	237	248	262	5.7	11,462	11,963	12,532	58									
Pike .a...	359	379	402	6.0	13.000	13.598	14,338	32	Desha	184	198	219	10.5	10.986	11.970	13,460	46
Rancolon	245	254	263	3.6	12.318	12,708	13,	${ }_{4}^{56}$	Drew	197	215	235	9.4	11,369	12,373	13,635	41
St. Clair ...	642	687	727	5.8	12,765	13,293	13,642	44	Faulkner Franklin	830	896	1.001	11.7	${ }^{13,727} 1$	14,436	15,552	12
Shelby	1,895	1.997	2,160	8.2	18,927	19,343	20,139	2	Fulton	${ }_{96}$	103	108	5.2	9,517	10,313	10,869	73
Sumter	166	178	189	5.8	10,287	11,029	11,651	61	Garland.	1,165	1,230	1,316	7.0	15,836	16.478	17,287	5
aladega	907	950	997	5.0	12.231	12730	13,268	53	Grant	190 369	197 396	212	7.5	13,582	13,972	14,693	24
Tallapoosa	548	571	621	8.6	14,086	14,588	15,806	13	Hemostead	347	260	296	${ }^{9} 9.2$	11.392	${ }^{12,2514}$	13,799	45
Tuscaloosa	2,215	2,323	2.473	6.5	14,666	15,145	16,092	11	Hot Spring	312	315	338	7.2	11,946	12,074	12,795	58
Walker	971	1.023	1,070	4.6	14,344	15,036	15,650	15									
Washington	206	215	223	3.6	12,359	12,791	13,208	54	Howard	192	200	220	10.0	14,138	14,714	16,207	7
Wilcox	129	138	141	1.9	9,578	10,036	10,291	67	Independence...	413	431	472	9.3	13,245	13.693	14,933	19
Winston	265	284	308	8.5	11,986	12,872	13,815	42	Izard	137	147	150	2.4	12.031	12,760	12.821	55
Alaska	11,550	12,228	12.970	6.1	20,887	21,498			Jackson ...	225	239	272	13.9	11,838	12,550	14,347	31
Metropoiltan portion	5,489	5,824	8,166	5.9	24,119	24,791	25,077		1,121 203	${ }^{1} 18$	1,243	11.2	11,130	11.765	12,996	
Nonmetropolitan portion	6,061	8,402	6,804	6.3	18,627	19,180	19,902	\ldots	Latayette	99	104	113	8.5	10,339	10,982	12,104	69
									Lawrence	183	200	217	8.7	10,524	11,409	12,535	63
Anchorage Borough	5,489	5,824	6,166	5.9	24,119	24,791	25,077	6	Lincoin	119	131	150	14.7	8,695	9,460	10,793	74
Bethel Census Area	178	190	207	8.6	12,956	13,594	14,416	24	Little River ...	197	200	200	-3	14,076	14,394	14,567	
Bristol Bay Borough	39	42	45	8.0	28,259	30,578	31,159	1	Logan	245	259	291	12.7	11,904	12,602	14,067	
Denali Borough ${ }^{4}$. ${ }^{\text {a }}$..................		35	${ }_{93}^{37}$	6.0		19.976	${ }^{21,026}$	14	Lonoke	540	576	634	10.0	13,677	14,449	15.490	13
Billingham Census Area Fairbanks North Star Borough ...		$\begin{array}{r}85 \\ 1.415 \\ \hline\end{array}$	[93	8.9 7	17,301 17195	20,703 17706	21,732 18,435	12 17	Madison	146	157	175	1.5	12,531	13,074	14,200	34
Farrbanks North Star Borough Haines Borough	1,343 52	1,415 52	1,522	- 2.2	17,185 24,006	24,466	18,445	17	Marion	144	152	163	7.8	11,978	12,479	13,126	49

See footnotes at end of table.

Table 2.-Total Personal Income and Per Capita Personal Income by County, 1990-92—Continued

Area name	Total personal income				Per capita personal income ${ }^{3}$				Area name	Total personal income				Per capita personal income ${ }^{3}$			
	Milions of collars			Percent change ${ }^{2}$ 1991-92	Dollars			Rank in State 1992		Milions of dollars			Percent change ${ }^{2}$ 1991-92	Dollars			$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Rank in } \\ \text { State } \end{array} \\ \hline 1992 \end{array}$
	1990	1991	1992		1990	1991	1992			1990	1991	1992		1990	1991	1992	
Miller	477	496	530	7.0	12,387	12,846	13,726	40	ventura	14,162	14,451	15,088	4.4	21,131	21,351	21,977	13
Mississippi	691	750	782	4.2	12,018	13,129	14,209	33	Yolo	2,570	2,671	2,840	6.4	18,101	18,536	19,615	19
Monroe	130	139	154	10.8	11,535	12,576	14,139	36	Yuba	733	790	836	5.8	12,514	13,268	13,730	56
Montgomery	90	93	97	4.9	11,527	11,813	12,218	${ }_{5}^{66}$									
Nevada	115	121	129	6.8	11,393	12,062	12,949	53	Colorado	$\begin{aligned} & 62,163 \\ & 52,444 \end{aligned}$	$\begin{aligned} & 66,519 \\ & 56,190 \end{aligned}$	$\begin{aligned} & 71,600 \\ & 60,517 \end{aligned}$	$\begin{aligned} & 7.6 \\ & 7.7 \end{aligned}$	$\left\|\begin{array}{l} 18,818 \\ 19,471 \end{array}\right\|$	$\begin{aligned} & 19,740 \\ & 20,442 \end{aligned}$	$\begin{aligned} & 20,666 \\ & 21,366 \end{aligned}$	
Newton...	695	74	80	6.8	$\begin{array}{r} 8,997 \\ 1 \end{array}$	$9,626$	10,406	$\begin{aligned} & 75 \\ & 30 \end{aligned}$	Nonmetropolitan portion	9,719	10,329	11,083	7.3	15,935	16,032	17,529
Ouachita	385 91	400 95	420 107	5.2 12.5	$\left\|\begin{array}{l} 12,653 \\ 11,474 \end{array}\right\|$	$\begin{aligned} & 13,401 \\ & 11,750 \end{aligned}$	$\begin{aligned} & 14,229 \\ & 12,793 \end{aligned}$	$\begin{aligned} & 32 \\ & 59 \end{aligned}$	Adams	202	4,336	1	8.9	15.115	15,899	16.761	38
Phillips	309	322	353	9.6	10.712	11,405	12,575	62	Alamosa.	186	184	193	4.9	13,687	13,337	13,942	55
Pike	129	136	147	8.6	12,814	13,597	14,743	${ }^{23}$	Arapahoe.	9,264	9,912	10,642	7.4	23,531	24,381	25,285	3
Poinsett	274	302	323	7.0	11,127	12.417	13,238	47	Archuleta.	69	74	79	7.7	12,767	13,186	13,672	56
Polk	209 635	217 680	${ }_{761}^{239}$	10.1 11.9	12,053	12,492	13,613 15,867 188	43	Baca	95	94	94	- 2	21,005	20,881	21,150	13
Prairie	108	112	120	7.1	11,360	11,992	12,997	51	Bent	76	82	83	1.6	15,121	16,673	16,691	40
Pulaski ...	6,218	6,601	7.134	8.1	17,767	18,788	20,188	1	Boulder	4,776	5,1777	5,601	8.2	21,129	22,359	23,513	${ }^{7}$
Randoloh			197						Cheyenne \ldots..................................	55	55	57	3.0	23,085	2,364	2,3,370	
St. Francis	307	184 312	347	11.2	10,548 10,76	111,049	${ }^{11,2,276}$	65	Clear Creek	132	141	150	6.8	17,345	17,936	18,713	23
Saline	888	939	1,036	10.3	13,793	14,305	15.447	15		66	70	74	5.9	8898	9383	10.043	63
Scoth ...	115	123	133	7.7	${ }^{11,282}$	12.039	12,806	56	Costilia	41	40	42	4.8	12,828	12,264	13,070	60
Searcy	76	80	84	5.4	9,681	10,505	${ }^{11,158}$	72	Crowley	43	43	50	16.1	10,972	10,964	12,780	61
Sebastian	$\begin{array}{r}1,598 \\ \hline 184\end{array}$	$\begin{array}{r}1,659 \\ \hline 197\end{array}$	1,836 215	10.7 8.9	16,052	16.520 14,157	18,109 15,066	${ }_{18}^{2}$	Custer ...	31	33	35	8.3	15,699	16,116	16,583	42
Sharp ..-	161	171	181	5.9	11,392	11,833	12,140	68	Delta	${ }_{10}^{266}$	\% 20.983	+11830	8.4	12,665	${ }^{13,567}$	14,395	54
Stone	105	114	124	8.8	10,722	11,353	12,779	67	Dolores	10,390	10,983	11,835 18	19.0	13,683	15,123	24,449	28
Union	732	765	829	8.4	15,641	16,448	17,832	3	Douglas	1,488	1,617	1,748	8.1	24,147	24,216	23,845	5
Van Buren	156	164	176	6.9	11,127	11,523	12,336	64	Eagle	477	518	576	11.3	21,503	22,087	23,419	7
Washington..	1,736	1,831	2,032	11.0	15,212	15,721	16,911	6	Elbett...	169	182	198	8.9	17,376	17,668	18,281	27
White Wocievi.	660 110	706 117	770 134	8.9 13.8	12,011	12.637	13,558 14.506	44 28	El Paso	6,644	7,130	7,708	8.1	16,724	17,650	18,300	
Yell	232	247	276	11.8	13,049	13,847	15,291	16	Fremont	388	408	446	9.3	12,039	12,699	13,634	58
									Garfield ...	506	528	551	4.3	16,671	16,927	17,640	31
Califormia	617,679	630,901	659,567	4.5	20,856	20,749	21,348		Gilpin	47	53	62	16.9	15.404	16.688	19,400	17
Metropolitan portion .-..	602,829	615,638	643,475	4.5	20,834	20,933	21,539	Grand					- 16.741	17.667	18.154 14.963	
Nonmetropolitan portion	14,850	15,263	16,092	5.4	15,336	15,314	15,765		Gunnison Hinsdale	137 8	150 9	162 9	8.0	13,259 17,273	14,321 18,701	$\begin{aligned} & 14,963 \\ & 18,806 \end{aligned}$	51 20
Alameda	28,164	28,434	30,058	5.7	21,986	21,981	22,988		Huerfano	69	75	80	6.4	11,522	12,772	13.636	57
Alpine	21	2	22	1.3	19,066	18,776	19,249	20	Jackson ...	23	26	27	3.9	14,669	16,240	16,415	43
Amador	473	501	524	4.4	15,619	16.029	16,433	43	Jefferson.	9,015	9,716	10,390	6.9	20,511	21,768	22,807	10
Butte	2,757	2,831	3,002	6.0	15,024	15,169	15,935	44									
Coliusa	301	554 314	320	6.9 1.9	18,423	16,254 18,928	16,609 18.987	39 21		135	134	147	10.3	18.892	18,653	20,452	14
Contra costa	20,603	21,067	22,268	5.7	25,465	25,588	26,491		Lake.	85	92	97	5.5	14,156	15,065	15,811	47
Del Norte	302	320	337	5.5	12,610	11,319	11,683	58	La Plata	508	553	602	8.9	15,638	16,501	17,399	32
El Dorado	2,480	2,588	2,726	5.3	19,357	19,340	19,729	18	Larimer	3.158	3,394	3.643	7.4	16,885	17,682	18,389	25
Fresno	10,864	11,113	11,754	5.8	16,171	16,110	16,658	38	Las Animas	163 83	177 93	185 97	4.6	11,881 18,466	13,069 20,570	13,593 21,298	59 12
Gienn.	354	342	375	9.7	14,224	13,551	14,694	50	Logan.	281	288	323	12.3	16,039	16,610	18,774	21
Humboidt	1,890	1,934	2,026	4.7	15,808	16,021	16,605	40	Mesa.	1,425	1.536	1,656	7.8	15,202	15,940	16,897	37
Imperial	1,694	1,684	1.783	5.9	15,244	14,208	13,827	55	Mineral	8	9	10	6.5	15,309	16,422	17,208	35
nyy Kern K	$\begin{array}{r}316 \\ 8.592 \\ \hline\end{array}$	$\begin{array}{r}319 \\ 8.918 \\ \hline 18\end{array}$	9,306	4.7	17,266	17,409 1565	18,158 15836 186	25 45	Motrat	181	188						
Kings	1,286	1,344	1,415	5.2	12,628	12,781	13,174	57	Montezum	252	266	291	9.3	13.490	13,993	14,885	52
Lake	827	880	924	5.0	${ }^{16,189}$	16,678	17,179	31	Montros	352	378	411	8.8	14,367	15,101	16,116	45
Lassen	343	369	400	8.5	12,420	${ }^{13,128}$	14,237	53	Morgan	386	411	431	4.7	17,616	18,405	18.968	19
Los Angeles	184,246	187,096	194,054	3.7	20,752	20,907	21,434	14	Otero ...	272	296	311	5.2	13,515	14,728	15,588	48
Madera	1,282	1,318	1,422	7.9	14,400	13,841	14,361	51	Ouray	38	41	43	6.4	16,347	16,697	17,253	34
Marin.	7,977	8,082	8,430	4.3	34,654	34,805	36,076	1	Park	117 73	127 78	137 79	8.6	16,173	16,460 18,873	17,004	36 18
Mariposa ...	235	236	254	7.9	16,299	15,823	16,587	41	Pitkin ...	403	426	469	9.9	31,695	3, 565	36,356	1
Mendocino	1,308	1.328	1,386	4.4	16,189	16,282	16,972	33	Prowers ...	202	207	215	3.9	15,178	15,582	16,350	44
Merced	2.566	2,612	2,783	6.5	14,266	14,057	14,717	49									
Mono ...	178	172	186	8.3	17,675	17,523	18,712	${ }_{23}$	Pio Blanco	88	938	102	9.4	14,877	15,401	16,646	41
Monterey	6,970	7,197	7.485	4.0	19,515	19,847	20,322	16	Rio Grande	171	162	162	-4	15,933	15,156	15,151	50
Napa ...	2,526	2,621	2,761	5.3	22,714	23,478	24,387	7	Routt	300	316	338	7.0	21,100	21,531	22,426	11
Nevada	1,427	1,474	1,551	5.3	18,028	18,101	18,653	24	Saguache ...	57	58	59	.	12,193	12,277	12,191	62
Orange	58,721	58,993	61,252	3.8	24,292	24,113	24,651	6	San Juan \qquad	12	11 73	80	$\stackrel{15.8}{9.7}$	17,432	14,979 18,166	15,176 18,714	49 22
Placer ...	3,747	3,945	4,158	5.4	21,364	21,728	22,218	12	Sedgwick	46	48	47	-1.6	17,158	18,013	17,950	32
Plumas		337		5.6	16,349	16,710	17,170	32	Summit.	283	318	347	9.2	21,691	23,198	23,824	6
Riverside.	21,348	21,815	22,783	4.4	17,886	17,489	17,682	28	Teller	205	227	259	14.1	16,376	17,586	18,678	24
Sacramento .-	20,023	20,904	22,052	5.5	19,070	19,345	20,171	17									
San Benito San Bema....	23, 137	6317 23.945	643 25,265	4.4 5	${ }_{16,100}^{16,8}$	${ }^{16,483}$	16,760	35 42	Washington.	96	93	95	1.4	20,194	19,578	20,418	15
San Diego	49.587	50,820	53,019	4.3	19,731	19,875	20,384	15	Yuma	1,986	2,188	2,271	-2.1	20,168	20,761	20,315	39 16
San Francisco	20,868	21,472	22,554	5.0	28,863	29,571	30,942	2									
San Joaquin	7.838	8.097	8,541	5.5	16,183	16,374	16,942	34	Connecticut	83,633	84,581	89,029	5.3	25,426	25,705	27,150	
San Luis Obispo	3,716	3,814	3.993	4.7	17,	17,4	18,105	27	Metropolitan portion.....	77,584	78,516	88,652	5.3 5.1	25,757	26,071	22,805	
San Mateo	18,727	19,040	19,852	4.3	28,806	29,056	29,918	3	Nonmetropolitan portion	6,049	6,065	6,377					
Santa Barbara	8,259	8,485	8,775	3.4	22,303	22,717	23,368	8	Fairield	27,470	27,620	29,356	6.3	33,177	33,305	35,423	
Santa Clara	36,770	37.830	39,626	4.7	24.550	25,038	25,924	5	Hartford	21,014	21,232	22,158	4.4	24,666	24,931	26,161	2
Santa Cruz	4,889	5.015	5,263	5.0	21,311	${ }_{16}^{21,883}$	22,784	11 30	Litchfield	4,162	4,149	4,350	4.8	23,855	23,628	24,645	${ }_{4}^{4}$
Shasta Sierra ...	2,446	2.550	2,713	3.8	15,8569	16.579	17,212 17,575	30 29	Middlesex	3.448	3.520	3.639	3.4	24,037	24,462	25,181	3
Siskiyou'	655	663	696	5.0	14,981	15,059	15,708	46	New London	5,129	18,209 5,286	19,175 5 5	5.3 5	22, 2102	22,667	${ }_{22,427}^{23,937}$	5 6
Solano	6.160	6,371	6,781	6.4	17,884	17,876	18,738	22	Tolland	2,623	2,648	2,757	4.1	20,344	20,459	21,213	7
Sonoma	8,435	8,775	9,188	4.7	21,624	22,180	22,913	10	Windham ...	1,887	1,917	2,027	5.8	18,377	18,572	19,657	8
Stanislaus	6,054	6,250	6,615	5.8	16,130	16,179	16,738	36									
Sutter	1,094	1,181	1,260	6.7	16,859	17,542	18,136	26	Metropolitan portion	13,193 11,319	13,748 11,781	14,318 12,265	4.1 4.1	19,719	20,195 20,885	20,724 21,47	
Tehama	646	679	729	7.3	12,951	13,309	14,037	54	Nonmetropolitan portion....	1,874	1,967	2,053	4.4	18,456	16,859	17,137	
Trinity	181		201	6.5	13,855	14.350	15,152	47									
Tulare	4,519	4,5592	4,971	6.2	14,391	14,084	15,015	48	Kent	1,626	1,738	1.846	6.2	14,567	15,182	15,909	3

[^43]Table 2.-Total Personal Income and Per Capita Personal Income by County, 1990-92-Continued

Area name	Total personal income				Per capita personal income ${ }^{3}$				Area name	Total personal income				Per capita personal income ${ }^{3}$			
	Milions of dollars			Percent change ${ }^{2}$	Dollars			Rank in State		Millions of dollars			Percent change ${ }^{2}$	Dollars			Rank in State
	1990	1991	1992	1991-92	1990	1991	1992	1992		1990	1991	1992	1991-92	1990	1991	1992	1992
New Castle	9,693	10,043	10,418	3.7	21,854	22,336	22,897	1	Bleckiey	142	157	164	4.5	13,538	14,834	15.424	49
Sussex	1,874	1,967	2,053	4.4	16,456	16,859	17,137	2	Brantley .	123	132	143	8.4	11,071	11,683	12,289	150
									Brooks	171	191	205	7.0	11,096	12,391	13,288	124
District Of Columbla	14,878	15,491	16,333	5.4	24,643	26,069	27,909	Bryan ..	204	218	237	8.3	12,999	13.256	13,351	122
									Bulloch ..	519	559	597	6.9	11,974	12,653	13,179	128
Florlda	244,604	254,585	265,764	4.4	18,785	19,180	19,711	\ldots	Burke	230	247	261	5.9	11,166	11,954	12,434	148
Metropolitan portion	230,987	240,170	250,601	4.3	19,087	19,468	19,998	Butts ...	192	203	221	8.6	12.455	13,081	14,082	102
Nonmetropolltan portion	13,617	14,414	15,162	5.2	14,810	15,390	15,956		Calhoun	65	72	73	1.7	12,999	14,456	15,120	62
Alachua	2,9	3,102	3,309	6.7	16,078	16,692	17,468	21	Camden ..	366	414	461	11.2	11,871	12,108	12,237	151
Baker	232	245	260	6.1	12.470	12,908	13,437	53	Candler..	106	116	124	6.4	13,659	14,638	15,398	50
Bay .-.	1,909	2,057	2,204	7.1	14,988	15,787	16,445	29	Carroll ...	996	1,035	1,101	6.4	13,858	14,195	14,910	70
Bradiord	7253	267	${ }_{7} 287$	7.7	11.188	11.620	12.440	61	Catoosa	534	555	597	7.4	12,511	12,818	13,476	118
Brevard	7,104	7,484	7,964	6.4	17,621	18.019	18,715	15	Charton	91	97	103	6.3	10,686	11,289	11,688	155
Croward ...	28,114	28,737	30,068 129	5.6	22,276	22,393 10,847	23,107	65	Chatham	3.839	3,972	4,245	6.9	17,650	18,109	19,108 14,782	7
Charlotte .'.	1,945	2,014	2,118	5.1	17,265	17,251	17,761	19	Chattahoochee	195	211	241	14.4	11,613	13,945	14,782	76
Citrus	1,367	1,429	1,508	5.5	14,447	14,685	+5,123	38	Chattooga	$\begin{array}{r}+276 \\ +1,507 \\ \hline\end{array}$	1,571	1,722	8.4 9.6	12,.497	13,123 16,227	14,202 16,875	${ }_{21}^{96}$
Clay	1,786	1,874	1,970	5.1	16,720	16,999	17,241	22	Clarke ...	1,306	1,362	1,434	5.3	14,876	15,484	16,263	31
Collier	4,209	4,377	4,486	2.5	27,300	27,327	27,232	4	Clay	35	41	43	5.0	10,451	12,163	12,629	142
Columbia ...	555	587	633	8.0	12.951	13.438	14,236	45	Clayton	2,881	3,029	3,258	7.6	15,738	16,288	17,198	18
Dace	34,274	35,238	34,384	-2.4	17.629	17.807	17,124	25	Cinch ...	66	72	79	10.4	10,716	11.489	12,697	140
De Soto	${ }_{114}^{326}$	${ }_{113} 36$	${ }_{123}^{368}$	8.0	13,622 10,635	14,898 10.265	15,148 10,790	37 66	cobb ..	9,890	10,280	11,188	8.8	21,933	22,148	23,368	2
Dixie	+12.038	$\begin{array}{r}113 \\ 12.528 \\ \hline\end{array}$	$\begin{array}{r}123 \\ 13.324 \\ \hline\end{array}$	8.1	10,635 17	18,265	10,790 19,019	66 14	Coffee	409	435	471	8.2	13,777	14,465	15,292	53
Escambia	3,952	4,149	4,463	7.6	15,007	15,540	16,474	28	Colquith	500	528	558	5.5	13,633	14.402	15,003	63
Flagler ...	420	445	480	7.8	14,257	14,122	14,285	43	Columbia ...	1,129	1,176	1,246	5.9	16,867	16,736	17,062	19
Frankin	115	123	132	6.9	12,843	13,512	14,272	44	Cook	159	163	17	6.9	11, 685	12,26	16,775	131
Gadsden	483	513	556	8.5	11,722	12,241	13,174	56	Crawtord	107	112	119	6.7	11,869	12,107	12,888	135
Gilchrist	111	121	131	8.2	11,416	12,029	12,538	60	Crisp	265	284	303	6.4	13,227	13,896	14,850	72
Glades	94	102	109	6.8	12,300	13.575	14,619	40	Dade	151	158	168	5.8	11,446	11,917	12,556	146
Gulf	142	150	162	7.7	12,324	12,979	13.814	49	Dawson.	140	149	160	7.0	14,687	15,058	15,473	47
Hamiton	123	126	136 320	8.3 2.6	11,227	11, 585	12,127	63 31	Decatur.	344	372	382	2.9	13,446	14,424	14,766	77
Hardee Hendry	403	463	475	2.6	15,610	17,071	17,128	24	De Kalb	11,406	11,880	12,703	6.9	20,816	21,364	22,542	3
Hernanco.	1,477	1,561	1,664	6.6	14,381	14,626	15,183	36	Dodge	206	222	235	5.5	11,694	12,449	13,237	126
Highlands	1,066	1,134	1,171	3.2	15,454	16,217	16,596	26	Dooly	123	145	149	3.0	12,455	14,606	14,924	69
Hilisborough	14,214	14,919	15.960	7.0	16,997	17,620	18,589	17	Dougherty	1,388	1,480 1,45	1,545 1,248	4.4	14,425	15,302 15,721	15,801 16,550	42 25
Hoimes	168	182	196	7.9	10,645	11,406	12,044	64	Douglas \qquad Early \qquad	1.112	1.156	1,248 175	8.0 3.9	12,893	15,21 14.150	14,517	82
Indian River	2,275	2,377	2,445	2.9	25,028	25,765	26,158	5	Echols ...	26	27	29	7.1	11,244	11,599	12,571	144
Jackson	520	563	607	8.0	12,542	13,481	14,335	42									
Jefferson	145	157	170	8.3	12,758	13,571	14,473	41	Effingham	361	368	390	6.2	13,897	13,840	14,202	75
Latayette	66	68	72	5.6	11,784	12,078	12,550	59	Elibert	254	268	280	4.7	13,388	14,108	14,783	75
Lake	2.500	2.603	2.776	6.6	16,274	16,529	17,217	23	Emanuel	241	255	265	3.8	11,730	12,392	12,836	136
Lee ..	6,563	6,801	7,151	5.1	19,396	19.603	20,312	11	Evans ..	116	124	131	6.0	13,297	14,117	1,731	79
Leon.	3,235	3,423	3,639	6.3	16,697	17,234	17,920	18	Rannin	1,348	1.439	1,570	8.1	21,312	21,696	22,534	4
Lery ...	306	328	351	6.9	11,710	12,337	12,920	58	Fayette	1,270	1.345		7.0	15,612	16, 16	17.515	
Liberty	${ }^{68}$	72	78	9.1	12,098	12,612	13,584	52	Floyd	${ }^{2} 82$	883	,968	9.7	18.597	18.763	19.420	6
Madison	183	195	208	6.6	11,053	11,681	12,430	62	Franklin ..	249	262	281	7.2	14,924	15,498	16,389	29
Manatee	4,066	4,273	4,552	6.5	19,078	19,806	21,009	10	Fulton	16,835	17,500	18,771	7.3	25,916	26,662	28,194	1
Marion	2,855	3.003	3,198	6.5	14,500	14,799	15,375	35									
Martin .	2,897	2,995	3,129	4.5	28,443	28,900	30,005	2	Gilmer ...	192	201	214	6.4	14,252	14,455	14,925	68
Monroe ..	1,673	1,732	1,767	2.0	21,389	21,853	22,056	8	Glascock	31	34	36	7.3	13,283	14,689	15.867	41
Nassau ..	771	823	880	6.9	17,413	18,054	18,676	16	Glynn ...	1,096	1,135	1,205	6.2	17,481	17,914	18,881	9
Okaloosa	2,333	2,520	2,709	7.5	16,139	16,987	17,656	20	Gordon	509	531	580	9.2	14,463	14,852	15,944	38
Okeechobee	383	400	417	4.2	12,867	13.105	13,617	50	Grady	233	249	267	7.1	11,469	12,222	13,021	132
Orange.	12,138	12,739	13,639	7.1	17,727	18,176	19,086	13	Greene	153	163	172	5.3	12,902	13,506	14,162	98
Osceola	1,585	1,670	1,795	7.5	14,404	14,405	15,054	39	Gwinnett	7,289	7,735	8,440	9.1	20,436	20,736	21,543	5
Palm Beach .	25,319	26,866	27,831	3.6	29,103	30,347	30,901	1	Habersham	405	431	464	7.6	14,608	15,321	16,193	35
									Hall ..	1,581	1,664	1,797	8.0	16,469	16,930	17,972	13
Pasco	4,074	4,178	4,401	5.3	14,456	14,726	15,489	34	Hancock	97	103	111	7.7	10,841	11,525	12,340	149
Pinellas ..	17,525 6,229	17,912 0.472	18,856 6,816	5.3 5.3	20,496	20,864 15,676	22,055 16,268	9 30									
Putnam	764	814	890	9.3	11,696	12,267	13,258	55	Harris ...	284	293	308	5.0	15,918	16,441	16,895	20
St. Johns ...	1,848	1,939	2,064	6.4	21,786	22,095	22,842	7	Hart ...	284	295	312	5.5	14,350	14,860	15,452	48
St. Lucie	2,280	2,387	2,506	5.0	14,959	15,203	15,553	33	Heard.	93	100	104	4.1	10,686	11,286	11,555	156
Santa Rosa	1,221	1,309	1,423	8.7	14,861	15,296	15,729	32	Henry	976	1,034	1,119	8.2	16,302	16,238	16.512	27
Sarasota	7,377	7,552	7,820	3.5	26,403	26,719	27,719	$\stackrel{3}{3}$	Houston	1,395	1,454	1,523	4.7	15,564	15,873	16,251	32
Seminole	5,423	5,615	6,052	7.8	18,632	18,616	19,544	12	Irwin	106	116	121	3.9	12,224	13,462	13,997	107
Sumter	371	399	432	8.1	11,694	12,424	13,306	54	Jackson	420	444	478	7.6	13,931	14,431	15,223	56
Suwannee	354	369	395	6.9	13,134	13,328	13,947	47	Jasper	117 162	119 165	129 174	5.0	13,761 13,484	13,867 13,660	14,876 14,375	71 92
Tayior	221	226	243	7.5	12,866	13,016	14,048	46				174	5.8	13,484	3,600	14,375	92
Union ...	93	99	105	5.7	9,055	9,527	9,922	67	Jefferson	206	226	242	6.9	11,856	12,909	13,843	108
Volusia ..	5,893	6,091	6,415	5.3	15.760	15,944	16,526	27	Jenkins	89	100	106	6.4	10,822	12,028	12,561	145
Wakulla	189	201	216	7.2	13.160	13.498	13,905	48	Johnson	91	98	105	7.4	10,926	11,663	12,693	141
Walton	334	368	402	9.3	12,002	12,817	13,592	51	Jones	320	335	356	6.3	15,393	16,007	16,751	24
Washington	193	209	225	7.9	11,361	12,101	12,955	57	Lamar	160	167	178	6.5	12,229	12,597	13,159	129
				73					Lanier	70	76	81	6.8	12,561	13,331	14,049	105
Metropolitan portion	82,762	86,608	-93,043	7.4	18,917	19,372	20,283	Laurens	552	591	635	7.5	13,793	14,640	15,524	45
Nonmetropolitan portion	28,644	30,465	32,599	6.9	13,434	14,132	14,912	Lee	209	229	236	3.2	12,805	13,683	13.557	116
									Lincoln...	96	102	108	5.4	12,797	13,598	14,129	$\begin{array}{r}158 \\ \\ \hline 9\end{array}$
Appling	182	198	205	3.3	11,546	12,446	12,801	139									
Atkinson	76	80	88	10.4	12,244	12,872	14,085	101	Long	59	64	70	9.5	9,283	10,300	10,148	159
Bacon	113	120	130	8.4	11,824	12,440	13,221	127	Lowndes	1,068	1,128	1,210	7.2	13,999	14,645	15,510	46
Baker	48	59	58	-1.8	13,303	16,070	15,983	37	Lumpkin	205	214	233	8.6	13,928	14,182	15,065	65
Baldwin	572	620	657	6.0	14,443	15,487 14007	16,225	34	McDutfie	280	298	318	6.5	13,875	14,586	15,185	58
Banks	139	147	157	6.9	13,477	14,007	14,676	81	Mcintosh	94	101	106	5.2	10,880	11,540	11,849	153
Barrow	425	444	484 904	9.0	14,132	14,264	15.076	64	Macon	157	169	162	7.7	11,973	12,914	14.092	100
Batow	814	832	904 244	8.6 4.4	14,432	14,322	15.170	${ }_{78}$	Madison	292	305	325	6.6	13,747	14,079	14,722	80
Ben Hill	215	${ }_{195} 23$	244	4.4	13,257	14,139	14,742 14.650	78	Marion	63	68	73	7.4	11,301	12,022	12,805	138
Berrien	185	195	210	7.3	13,095	13,678	14,550	86	Meriwether	245	258 95	272	5.1	10,887	11,407 15029	11,972 15782	152 59
Bibb	2,574	2,717	2,881	6.0	17,145	17,948	18,959	8	Miler	82	95	96	1.0	13,124	15,029	15,182	59

Table 2.-Total Personal Income and Per Capita Personal Income by County, 1990-92—Continued

Area name	Total personal income				Per capita personal income ${ }^{3}$				Area name	Total personal income				Per capita personal income ${ }^{3}$			
	Milions of follars			Percent change ${ }^{2}$ 1991-92	Dollars			Rank in State 1992		Millions of dollars			Percent change ${ }^{2}$ 1991-92	Dollars			$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Rank in } \\ \text { State } \end{array} \\ \hline 1992 \\ \hline \end{array}$
	1990	1991	1992		1990	1991	1992			1990	1991	1992		1990	1991	1992	
Mithell	242	267	280	4.8	11,931	13,130	13,620	114	Custe	60	54	55	1.0	14,527	12,938	13,548	34
Monroe .-....	243	249	265	6.2	14, 177	14,210	14,792	74	Elmore	324	339	358	5.6	15,242	16,382	17,390	,
Montgomery ...	+90	95 194	100 208	7.1	12,482	13,144 14.823	13,697 15701 1	$\begin{array}{r}113 \\ 43 \\ \hline 1\end{array}$	Fran	98	103	110	6.6	10,637	10.906	11.563	43
Murray	325	340	376	10.4	12,329	12,540	13,517	117	Freemont (ind. Yiwstn. Natil. PK.)	143	141	154	9.2	13,038	12,608	13,698	33
Muscogee	2,733	2,942	3,135	6.6	15,200	16,345	16,823	22	Gem	164	174	189	8.7	13,750	14,178	15,021	22
Newton .-.	590	623	670	7.5	14,031	14.305	14,973	66	Gooding	181	188	201	7.2	15,571	15,826	16,712	12
Oconee	312	325	345	6.0	17,555	17,796	18,447	12	ldaho	188	193	208	7.4	13.580	13,896	14,625	27
Ogiethorpe	130	135	143	6.3	13,211	13.539	14,053	104	Jefierson	204	212	226	7.0	12,297	12,471	12,939	36
Paulding	576	596	652	9.3	13,710	13,343	13,775	110	Jerome.	230	235	253	8.0	15,121	15,149	16, 153	13
Peach	330	343	360	5.0	15,529	16,009	16,3	30	Kootenai	1,097	1,197	${ }_{4}{ }^{3} 885$	10.8 7	15,586	16,203 14527	17,110	14
Pickens	222	230	248	8.2	15,307	15,505	16,526	26	Lemhi.	90	93	99	6.6	12,989	13,216	13,993	31
Pierce ...-	169	181	197	9.2	12,579	13,397	14,453	89	,			9	6.6	2,989	17,26	17,93	
Pike	142	151	162	7.1	13.740	14,332	15,380	51	Lewis	62	61	62	1.9	17,565	17,007	17,122	10
Poik	437	446	472	5.8	12.899	13,084	13,767	111	Lincoln	51	46	51	10.4	+5,193	13,797	14,981	23
Pulaski .	115	131 210	140 229	7.3 8.9		16,266	17,367	15 5	Macison .	230	235	245	4.4	9.692	9.965	10.228	44
Putnam ${ }_{\text {Qutitman }}$	25	210 28	22	8.9 5.9	111.529	14,305	12.243	+154	Minidoka	239 554	${ }_{578}^{251}$	258	3.0	${ }_{1} 12.354$	12.702	${ }^{12,807}$	38
Rabun	147	156	164	5.2	12,596	13,203	13,733	112	Oneida ...	40	42	43	3.4	11,505	12,067	12,460	40
Randolphi................................	91	101	105	4.8	11,396	12.409	13,128	130	Owyhee	105	107	109	1.5	12,428	12,604	12,712	39
Richmond	3172								Payette ...	209	220	239	8.8	12.702	12,996	13,700	32
Rockdale	966	1,018	1,100	8.1	17,677	17,851	18,648	10	Sower	198	195	200	3.1	14.165	13.802	14,694	25
Schley	46	47	50	7.3	12,767	13,094	14,073	103	Stostone								
Screven	175	189	200	5.9	12,679	13.763	14.520	87	Teton	40	43	47	8.6	11,667	11,978	12,050	42
Seminoie	110	120	127	6.2	12,232	13.207	14,046	106	Twin Falis ...	804	851	896	5.3	14,951	15,498	16,006	15
Spalding	761 322	803 338	861 361	7.2	13,909	14.459	15,327	52	Valley ,	106	115	124	8.4	17.268	17,446	17,913	5
Stephens Stewar	$\begin{array}{r}322 \\ 62 \\ \hline\end{array}$	$\begin{array}{r}338 \\ 65 \\ \hline\end{array}$	361 69	6.5 5.5	10,884	14,344	12,589 12.23	61 143	Washington	106	113	22	7.8	12.320	13.127	14,021	30
Sumter	411	446	470	5.4	13,584	14,610	15,283	54	Illinols	230,790	237,427	252,858	6.5	20,159	20,602	21,774	
Talbot	69	72	75	3.7	10,529	10,981	11,277	157	Metropolitan portion	202,665	208,866	221,965	6.3	21,129	21,599	22,749	
Taliaferro	24	24	26	6.2	12,450	13.	14.	88	Nonmetropoiltan portion	28,125	28,561	30,893	8.2	15,150	15,402	16,646	
Tathall	219	236	248	5.0	12,373	13,259	13,812	109	Adams	1,075	1,14	1,187	6.6	16,265	16.801	17,895	32
Taytor	99	104	110	6.2	12,875	13,605	14,400	91	Alexander	120	124	136	9.1	11,342	11,749	12,838	100
Telfair	135	143	152	6.4	12,309	13,029	13,246	125	Bond	214	216	232	7.6	14,226	14,357	15,417	82
Terreil	122	134	143	${ }_{5}^{6.3}$	11,434	12,699	13,588	${ }^{115}$	Boone	555	550	583	5.9	17,922	17,399	17,785	36
Thomas	572	${ }_{5}^{607}$	639 555	5.1	14,660	${ }^{145,509}$	16,141	${ }_{44}$	Brown	72	74	82	11.0	12,365	12,578	13,876	96
Toombs	326	346	366	5.6	14,522	14,305	15,603 14,941	44 67	Cureau	583 78	601 77	656 83	9.0	16,333 14,574	${ }^{16,588}$	18,427 15989	72
Towns	86	89	94	6.3	12,627	12,880	13,440	120	Carroll ...	267	267	292	9.1	15,893	16,078	17,542	38
Treutten.	65	71	74	4.3	10,864	11,884	12,527	147	Cass	213	214	233	9.0	15.813	15.925	17,506	40
									Champaign ..	2,835	2,889	3,059	5.9	16,382	16,632	17.459	43
\qquad	846 106	868 122	918 130	6.9	$\left.\begin{aligned} & 15,220 \\ & 12,221 \end{aligned} \right\rvert\,$	$\begin{aligned} & 15,375 \\ & 1,995 \\ & \hline \end{aligned}$	$\begin{gathered} 16,243 \\ 15,193 \end{gathered}$	57	Christian	586	2	16	7.6	17,004	16,680	17,986	31
Twiggs	102	109	115	5.7	10,331	11.148	11,825	154	Clark	227	232	254	9.4	14,252	14,670	16,039	71
Union	145	160	173	7.9	12,050	12,924	13,430	121	Clay	213	217	239	10.2	14,735	14,975	16,664	59
Upson	335	350	376	7.5	12.735	13,344	14,348	${ }_{85}^{94}$	Cinton ...	578	571	619	8.4	16,670	16,774	18,068	29
Waker .-.................................	712	809	865	8.9	- 11,223	13,739	15,977	${ }_{39}^{85}$	Coles.	776	797	861	7.9	15.042	15.460	16,615	61
Walton...	563	485	5649	8.8	12.504	15,047 13,672 1	15.923	${ }_{93}$	Cook....	108,616	111,876	118,479	5.9	21.273	21.863	23,053	35
Wareen	69	78	77	8.0	11,333	11,777	12,830	137	Crawtord ...	308 150	323 152	${ }_{166}^{346}$	7.5	14,027	16,653	15,386	${ }_{83}$
Washington	277	293	316	8.1	14,480	15,250	16,392	28	De Kalb	1,267	1,293	1,384	7.0	16,183	16,328	17.314	45
									De Wit	263		296	10.3	15,874	16,201	17,836	34
Wayne	295	321	339	5.5	13,14	3,808		95									
Webster	28	32	33	3.1	12,410	14,71	14,825		Douglas	302	307	324	5.4	15,528	15,791	16,663	60
Wheeler	57	60	64	6.1	11,544	12,334	13,306	123	Du Page.	21,726	22,549	24,146	7.1	27,656	28,133	29,587	68
White	206	222	240	8.4	15,741	16.532	17,293	17	Edgar ...	292	287	313	9.2	14,958	14,777	16,225	68
Whititild	1,215	1,259,	1,374	9.2	16,723	17,177	18,531	11	Edwards...	109	108	114	5.6	14,684	14,680	15,586	79
Wilcox Wil.	84	96	101	5.5	12,021	13,730	14,580	84	Effingham	529	527	562	6.6	16,643	16.517	17,514	39
Wikes	154	141	169 148	5.5	13,600	13,759	${ }_{14,415}$	40 90	Fayette	258 256	259 258	289 8	11.5 10.0	12,331	12,514 18,451	${ }_{20,420}^{13,935}$	95 10
Worth	239	263	274	4.3	12,997	13,168	13,465	119	Frankiin	555	555	602	8.5	13,780	13,843	15,091	86
									Fulton....	560	567	606	6.9	14,09	14,93	15.917	74
Hawall	23,268	24,488	25,657	4.8	20.905	21,576	22,200		Gallatin ...	104	98	112	13.6	15,052	14,489	16,444	63
Metropolitan portion Nonmetropolitan portion	18,448 4,818	19,336 5,152	20,597 5,060	-8.5	22,009	21,744	17,294		Greene			201	7.2				
									Grundy	624	628	698	11.1	19,195	18,871	20,629	8
Hawaii	1,948	2.087	2,196	5.2	16,032	16.520	16.846	3	Hamiton.	115	116	130	11.9	13,617	13,790	15,528	81
Honolutu.	18.448	19,336	20.597	6.5	22,009	22.744	23,864	1	Hancock ...	304	307	339	10.3	14,242	14,389	15,818	75
Kauai	929	1.008	636	37.0	17,996	18,928	11,721	4	Harcin	62	69	73	5.5	11,969	13,556	14,102	94
Maui + Kalawao	1,941	2,056	2,228	8.4	19,107	19,551	20,633	2	Henderson.	113	117	131	11.4 6.8 1	13.961	14.431	15,756	76 57
Idaho	15,482	16,368	17,746	8.4	15,304	15,773	16,649		Heny,	813 503	802 513	857 566	$\begin{array}{r}6.8 \\ 10.4 \\ \hline\end{array}$	15.913 16,336	16,624		${ }_{26} 5$
Metropolitan portion	5,128	5,504	6,067	10.2	17,204	17,801	18,982		Jackson......	773	795	844	6.1	12,670	13,109	13.848	97
Nonmetropolitan portion	10,355	10,865	11,679	7.5	14,511	14,912	15,649		157	159	179	12.3	14,837	15,073	16,970	52
	3,961	4,259	4,713	10.7	19,093	19,739	21,105		Jefterson....	541	566	600	6.1	14,594	15,295	16,212	69
Adams	48	-590180	1,018	8.9	14,840	15,048		24	Jersey	297	301	321	6.8	14,434	14,481	15,291	84
Bear Lake	67	70	77	10.2	11:054	11,530	12,374	41	Johnson...	119	122	130	6.6	10,457	10,627	11,147	102
Benewah	112	118	128	9.1	14,040	14,670	15,849	16	Kane	6,574	6,843	7.318	7.0	20,561	20.962	21,936	6
Bingham	514	534	566	5.9	13,667	13,900	14,278	28	Kankakee.	1,570	1,612	1,728	7.2	16,257	16,525	17,471	42
Braine ...	314	${ }_{54}$	${ }_{59} 5$	6.2	22,774	23,588	24,110	2	Kendal	767	792	846	6.9	19,394	19,577	20,515	9
Boise....	50	54	499	${ }^{9} .0$	13,999	14,483	14,639	26 19	Knox	871	888	959	8.0	15,450	15,778	17,071	51
Bonner Bonnevile........	- $\begin{array}{r}1,199\end{array}$	1,273	1,369	${ }^{10.1} 7$	13,992 16,403	16,344	15,238 17,686	19		14,281	14,936	15.899 1925		27,477	28,139 16.54	${ }^{29,386}$	33
Buute	97	36	$\begin{array}{r}14 \\ 38 \\ \hline\end{array}$	4.8	12,868	12,589	12.846	37	Lawrence..	257	271	295	8.7	16,130	17,048	18,713	22
Camas	12	11	12	9.6	15,808	14,664	16,114	14		548 682	579	738	8.6	17,332	17,271	${ }^{18,608}$	${ }_{23}$
Canyon	1,167	1,245	1,353	8.7	12,879	13,326	14,057	29	Logan ...	481	482	520	8.0	15,638	15,776	16,965	53
Carbou	96	99	107 352	7.9	${ }^{13.767}$	14.010	15,029	21	McDonough	433	451	492	9.0	12,280	12,919	14,117	93
	332	332	322 22	6.2	31,411	28,720	27,566	1	Mclean Me.............................	4,001 2,360	4,106 2,450	4,421 2,675	7.7	21,594	21,301	22.099	- 12
Clearwater	119	130	137	5.0	14,065	15,235	15,774	17									

See footnotes at end of table.

Table 2.-Total Personal Income and Per Capita Personal Income by County, 1990-92-Continued

Area name	Total personal income				Per capita personal income ${ }^{3}$				Area name	Total personal income				Per capita personal income ${ }^{3}$			
	Millions of collars			Percent change ${ }^{2}$	Dollars			Rank in State 1992		Milions of dollars			Percent change ${ }^{2}$	Dollars			Rank in State 1992
	1990	1991	1992	1991-92	1990	1991	1992			1990	1991	1992	1991-92	1990	1991	1992	
Macon	2,110	2,147	2,252	4.9	18,004	18,254	19,134	18	Johnson	1,618	1,699	1,834	7.9	18,257	18,564	19,648	7
Macoupin ...	759	759	818	7.7	15,924	15,864	17,119	50	Knox	574	598	661	10.7	14,431	15,020	16,623	46
Madison	4,433	4,528	4,795	5.9	17,747	17,985	18,931	19	Kosciusko.	1,117	1,142	1,228	7.5	17,085	17,464	18,625	14
									Lagrange ...	365	372	404	8.6	12,340	12,508	13,341	89
Marion	621	635	697	9.8	14,932	15,281	16,785	56	Lake	7.962	8.218	8,633	5.1	16,707	17.138	17,918	23
Marshall	212	214 241	223	8.2 9.0	16,498 14.582	16,754 14.678	18,095 15,936	28 73	La Porte	1,682	1,737	1.850	6.7	15,683	16,059	17,018	31 54
Massac.	195	201	217	8.1	13,201	13,618	14,604	91	Lawrence	$\begin{array}{r}619 \\ 2,048 \\ \hline\end{array}$	654 2,068	702 2,177	7.3 5.3	14,413	15,182 15,732	16,177 16,551	54 47
Menard.	192	194	213	9.9	17.238	17,248	18,749	21	Marion ...	15,625	16,352	17,521	7.1	19,554	20,269	21,555	4
Mercer	263	265	284	7.1	15,239	15,286	16,362	64	Marshall ...	649	666	721	8.3	15,360	15,538	16,708	43
Monroe	400	401 456	$\begin{array}{r}424 \\ 504 \\ \hline\end{array}$	5.7	17,718	17,436	18,040	30									
Montgomery Morgan	448 575	456 583	504	10.6 6.5	14,610 15,801	14,908 16,009	$\begin{aligned} & 16,522 \\ & 17,123 \end{aligned}$	$\begin{aligned} & 62 \\ & 49 \end{aligned}$	Martin	140	148	158	6.7	13,483	14,225	15,022	79
Mouttrie ..	207	207	229	10.5	14,811	14,915	16,347	66	Miami ...	510	518	540	4.4	13,829	13,948	14,612	79
									Montoe	557	575				5,265	18,206	53
Ogle	750	761	817	7.3	16,274	16,230	17,201	47	Montgomery	557	575	639	11.0	16,153	16,579	18,206	20
Peoria	3,375	3,457	3,606	4.3	18,436	18,801	19,647	15	Morgan ...	875	922	986	7.0	15,569	16,094	16,813	39
Perry	313	305	321	5.2	14.588	14,276	15,044	87	Newton.	$\begin{array}{r}197 \\ 555 \\ \hline\end{array}$	188 563	215 618	14.3 9.8	14,502	13,696	15,510	67 57
Piatt	288	287	315	9.6	18,484	18,348	19,983	13	Ohio ...	68	71	76	7.3	12,729	13,331	14,350	82
Pike	228 49	235 50	255 55	8.2	11, 1330	13,495	14,675	89 101	Orange	229	237	259	9.6	12,409	12,748	14,006	84
Pulaski.	90	91	101	11.1	12,002	12,308	13,739	98	Owen	217	232	253	9.1	12,511	13,118	13,864	87
Putnam	113	119	127	6.9	19,754	20,662	22,129	4	Parke		220	243	10.5	13789	14.190		
Randolph ..	503	505	526	4.2	14,580	14,607	15,282	85	Perry	240	248	264	6.4	12,556	13,015	13,956	85
Richland	238	245	271	10.3	14,398	14,814	16,351	65	Pike	190	193	205	6.0	15,196	15,596	16.442	50
Rock Island	2,798	2,872	3,020	5.1	18,827	19,245	20,151	11	Porter	2,411	2,505	2,645	5.6	18,632	18,916	19,593	9
St. Clair	4,113	4,234	4,517	6.7	15.653	16,133	17,166	48	Posey	416	431	478	10.9	16,022	16,607	18,316	19
Saline	400	417	441	5.7	15,102	15,851	16,715	58	Pulaski	196	183	204	11.4	15,517	14,381	15,843	60
Sangamon	3,465	3,570	3,803	6.5	19,389	19,841	20,968	7	Putnam.	413	434	474	9.1	13,558	13,955	14,953	76
Schuyler	100	100	110	9.4	13,288	13,308	14,651	90	Randolph	394 378	396	410	3.4	14,525 15,283	14,586	15,141	73 30
Scott She	75 321	73 317	$\begin{array}{r}82 \\ 350 \\ \hline 10\end{array}$	11.1 10.4	13,354	13,170 14,244	14,538 15732 17.8	92	Ruph ...	259	265	291	10.0	14,260	14,558	15,943	58
Shelby	104	19 99	350 111	10.4 12.5	15,812	15,244	17,499	41									
Stephenson	861	864	929	7.6	17,891	17,930	19,211	17	St. Joseph	4,166	4,303	4,606	7.1	16,830	17,297	18,387	17
Tazewell	2,245	2,243	2,365	5.5	18,116	17,979	18,820	20	Scoft	265	283	313	10.7	12,610	13,253	14,528	80
									Shelby .-	651	684	748	9.3	16,355	16,750	18,148	21
Union	235	247	266	7.8	13,337	14,001	14,966	88	Spencer	276	278	303	8.9	14,121	14,199	15,391	68
Vermilion	1,336	1,369	1,472	7.5	15,153	15,583	16,802	55	Starke	262	259	288	11.3	11,461	11,321	12,790	91
Wabash ..	207	204	220	7.6	15,812	15,501	16,879	54	Steuben	435	453	488	7.9	15,810	16,181	17,130	${ }_{55}$
Warren	274	268	300	11.8	14,278	14,008	15,691	78	Sullivan ...	269	278	307	10.1	14,168	14,692	16,173	55
Washington	243	238	260	9.1	16,244	16,058	17,592	37	Switzerland	89	97	105	7.7	11,445	12.468	13,740	90
Wayne ...	228	239	264	10.7	13,266	14,041	15.580	80	Tippecanoe	2,021	2,126	2,278	7.2	15,476	16,124	17,104	$\stackrel{29}{ }$
White	251	253	277	9.5	15,240	15,513	17,257	46	Tipton	273	280	298	6.4	16,920	17,368	18,492	16
Whiteside	975	976	1,052	7.9	16,214	16,138	17,377	44									
Will	6,679	6,913	7,444	7.7	18,587	18,823	19,824	14	Union	91	92	109	10.6	13,018	13,038	14,229	83
Williamson	849	888	955	7.5	14,717	15,364	16,339	67	Vanderburg	3,031	3,122	3,356	7.5	18,346	18,854	20,176	5
									Verm	241	256	273	6.7	14,371	15,433	16,487 1683	48
Woodiord \qquad	4,094 559	+4,863	5,074 602	7.0	17,018	16,907	18,100	27	Wabash	-533	${ }^{1} 541$	+568	5.1	15,175	15,482	16,298	52
									Warren	117	101	128	26.0	14,273	12,421	15,658	62
Indiana	93,415	96,720	103,922	7.4	16,815	17,251	18,366		Warrick	787	807	855	6.0	17.476	17,602	18,346	18
Metropolitan portion	69,910	72,650	77,819	7.1	17,606	18,107	19,203	Wastington	303	308	336	8.9	12,770	12,831	13,751	88
Nonmetropolitan portion	23,506	24,071	28, 103	8.4	14,833	15,098	16,254		Wayne ...	1,099	1,129	1,204	6.6	15,264	15,673	16,689	44
									Weils ...	432	436	69	7.4	16,646	16,786	17,985	22
Adams	$\begin{array}{r}\text { 5,725 } \\ \hline 1\end{array}$	471 5,865	491 6,279	$\begin{aligned} & 4.3 \\ & 7.1 \end{aligned}$	$\begin{aligned} & 14,969 \\ & 18,997 \end{aligned}$	15.029	$\begin{aligned} & 15,640 \\ & 20,583 \end{aligned}$	4	White	363	358	399	11.4	15,587	15,323	16.745	
Bartholomew	1,141	1,179	1,309	11.1	17,865	18,183	19,984	6	Whitley	440	449	481	7.0	15,869	16,021	16,895	35
Benton	152	138	162	17.3	16.097	14,668	16.836	36									
Blackiord.	200	201	215	6.6	14,234	14.453	15.352	70	towa	46,375	47,695	51,225	7.4	16,683	17,096	18,275
Boone	774	812	880	8.4	20,788	21,560	22,925			21,609	22,552	24,148	7.1	17,962	18,564	19,658
Brown ...	201	212	229	8.0	14,218	14,706	15.583	64	Nonmetropolitan portion	24,766	25,143	27,077	7.7	15,707	15,963	17,197	
Carroll	304 587	305 597	329 651	7.9	16.160 15.295	15,991 15,54	17,012	32 34									
Clark	1,367	1,440	1,560	8.4	15,581	16.225	17,403	26		127 70	125 69	136 74	8.2	15,140 14.426	14,940	16.453	71
									Aliamakee	199	191	211	${ }_{10} 10$	14,426	13,849	15,273	86 90
	336	351	386	9.8	13,580	14,181	15,377	69	Appanoose ...	183	190	203	6.7	13,356	13,868	14,788	93
Clinton	473	482	527	9.2	15.228	15.369	16,640	45	Audubon	116	120	127	6.1	15,780	16,559	17,925	24
Crawford	108	114	124	8.6	10,909	11,483	12,309	92	Benton ...	345	347	377	8.6	15,390	15,429	16.615	62
Daviess ...	378	390	422	8.2	13,698	14,084	15,175	72	Black Hawk	1,972	2,035	2,175	6.9	15,909	16,252	17,345	46
Dearborn.	600	629	674	7.1	15,374	15.716	16,333	51	Boone	425	442	477	8.0	16,879	17,468	18,929	11
Decatur	352		406 620	10.4 9	14,890 15486	15,384 15789	16,743 16,94	41 33	Bremer	353	359	390	8.5	15.440	15,780	17.086	52
De Kalb	${ }_{1}^{549}$	- 5674	2112	9.3	15,486 15741	15,789 16,485	16,941	33	Buchanan	312	318	339	6.7	14,958	15,199	16,193	79
Delaware ...	1,883 668 265	$\begin{array}{r}1,974 \\ \hline 688 \\ \hline 2.15\end{array}$	$\begin{array}{r}2,112 \\ \hline 735\end{array}$	7.0	15,741 18,208	16,485 18,469	17,543 19.637	$\stackrel{25}{8}$									
Eilkhart	2,651	2,714	2,955	8.9	16,949	17,237	18,547	15	Buena Vista	312	319	342	7.3	15,623	15,966	17,122	50
									Butler \qquad	175	176	201	14.4	15,244	15.029	17,647	72 3
Fayette.	389	391	431	10.1	14,968	15,056	16,482	49	Carroll ...	354	368	398	8.1	16,521	17,234	18,611	14
Floyd	1,098	1,156	1,252	8.3	16,932	17,443	18,628	13	Cass	237	242	260	7.8	15,682	16,109	17,426	40
Fountain..	251	240	278	15.5	14,102	13,475	15,511	66	Cedar	294	295	317	7.3	16,910	16,957	18,041	22
Franklin.	268	274	295	8.0	13,137	13,357	14,386	81	Cerro Gordo	782	800	838	4.7	16,734	17,041	17,898	26
Fulton	275	277	303	9.4	14,545	14,639	15,850	59	Cherokee	229	233	241	3.4	16,205	16,626	17,313	47
Gibson..	500	503	545	8.5	15,673	15,808	17,73	27	Chickasaw	207	209	225	7.6	15,599	15,833	17,056	54
Grant	1.147	1,186	1,241	4.6	15.463	15,987	16,730	42	Clarke	113	111	120	7.5	13,696	13,482	14,386	96
Greene	418 2839	441 3,007	479 3,273	8.5 8.9	13,688 25,748	14,220	15,238 26,985 1	71									
Hancock	${ }_{825}$	-865	+925	7.0	18,053	18,614	19,478	11	Clay	281	${ }_{274}^{287}$	311	8.5	16,537	16,281	17,536	
									Clayton	8807	274 828	302	10.2 7.6	14,940 15,806	14,537 16,254	16,128 17.409	
Harrison	427	444	483	8.8	14,269	14,565	15,718	61	Crawford ..	252	262	283	7.9	15,094	15,748	17,032	55
Hendricks ...	1,373	1.444	9,548	7.2	18,056	18,607	19,541	10	Dallas ...	528	556	602	8.2	17,668	18,336	19,491	5
Henry ${ }^{\text {Howard................................. }}$	737 1.437	759 +1486	+817	7.7	15,297 17	18,729 18,155	16,817 19,268 18	38	Davis ..	113	111	119	7.2	13,584	13,396	14,401	
Howard Huntington.....................$~$	$\begin{array}{r}1,437 \\ \hline 72\end{array}$	$\begin{array}{r}1,486 \\ \hline 77\end{array}$	$\begin{array}{r}1,589 \\ \hline 629\end{array}$	6.9 9.1	17,757 16,121	18,155 16,168	19,268 17,628	12 24	Decatur	101	101 280	107 300	7.1	12,173 16026	12,434 15407	13,225 16,376	99
Jackson ...	544	560	618	10.3	14,369	14,621	16,003	56	Des Moines	289	726	765	7.2	16,024	15,407	16,376	73
Jasper	364	360	393	9.1	14,529	14,123	15,111	74	Dickinson	273	276	299	8.2	18,251	18,971	17,846	28
Jay	282	286	304	6.0	13,102	13,252	13,933	86	Bickinson		276	299		18,251	18,71	19,610	${ }^{4}$
Jefferson	399 313	${ }_{3}^{416}$	454	9.1	13,352	13,858	14,936	77	Dubuque	1,427	1,471	1,585	7.7	16,509	16,953	18,172	19
Jennings	313	325	362	11.6	13,216	13,465	14,766	78									

Table 2.-Total Personal Income and Per Capita Personal Income by County, 1990-92-Continued

Area name	Total personal income				Per capita personal income ${ }^{3}$				Area name	Total personal income				Per capita personal income ${ }^{3}$				
	Millions of dollars				Dollars			Rank in State 1992		Millions of dollars			$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Percent } \\ \text { change }^{2} \end{array} \\ \hline 1991-92 \\ \hline \end{array}$	Dollars			$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Rank in } \\ \text { State } \end{array} \\ \hline 1992 \\ \hline \end{array}$	
	1990	1991	1992		1990	1991	1992			1990	1991	1992		1990	1991	1992		
Emmet	173	171	189	10.3	14,943	14,737	16,241	77	Crawford	520	549	588	7.2	14.641	15,554	16,599	73	
Fayette	316	316	337	6.5	14,458	14,467	15,490	89	Decatur	20	75	76	1.3	18,891	19,230	19,915	22	
Floyd Franklin \qquad	272 180	272 173	${ }_{198}^{288}$	6.0.6	15,965	16,174 15,313	17,077	$\begin{aligned} & 53 \\ & 29 \end{aligned}$	Dickinson	279	77	305	10.2	14.711	14.720	15,903	85	
Fremont.	121	124	137	10.2	14,728	15,277	16,856	60	Doniophan ...	118	131	140	6.9	14,602	16,160	17,406	53	
Greene	152	158	181	14.5	15,127	15,812	18,094	20	Douglas	1,175	1,238	1,326	7.1	14,302	14,853	15,682	91	
Grundy	206	211	230	9.3	17,120	17.673	19,164	9	Edwards ...	77	78	82	4.0	20,415	21,370	22,711	10	
	175	179 286	193 306	8.1	${ }_{16,832}^{15}$	16,117	17,364	43 10	Ek.........	44	44	48	9.1	13,359	13,916	15,281	97	
									Ellisworth	419	427 94	453 100	7.1	16,157 14,638	16,452 14,213	17,437 15,499	51 96	
Hancock.	192	178	201	12.9	15,204	14,320	16,360	74	Finney	525	570	624	9.3	15,839	17,030	18,302	37	
Hardin	307	308	335	8.8	16,104	16,286	17,877	${ }_{76} 27$	Ford	435	449	460	2.4	15,849	16,191	16,509	75	
Harrison	206	212	239	12.6	13,989	14,479	16,317	${ }^{76}$	Frankiin ...	305	316	347	10.1	13,847	14,252	15,567	93	
Henry Howard...$~$	146	307 146	330 156	7.3	14,512	15,882 14,806	16,929 15,802	58 87										
Humboldt	169	163	186	14.2	15,688	15,303	17,710	31	Geary	400	403	468	16.2	13,148	13,67	14,224	105	
Ida	133	131	146	11.3	15,963	15,884	17.658	32	Graham	79 56	70 53	79 59	9.4 12.6	15,824	$21,3,93$ 15	17,430		
lowa	242	254	282	11.3	16.562	17,247	19,222	7	Grant....	123	132	146	10.7	16,646	17,788	19,138	25	
Jackson	292	293 596	332	6.9	14,672	14,775 17,143	16,137	81 18	Gray	94	98	95	-2.8	17,508	18,205	17,647	46	
Jasper	589	596	638	6.9	16,910	17,143	\|8,255		18	Greeley ...	52	57	48	-16.2	29,276	32,719	28,210	2
Jefterson	249	247	265	7.1	15,252	15,096	16,086	83	Greenwood	117 59	118	125	6.1	14,859	${ }^{15,036}$	${ }^{15,986}$	84	
Johnson..	1,652	1,730	1.836	6.1	17,145	17,940	18,824	12	Hamition...	129	116	125	8.0	17,501	${ }_{16,583}$	${ }_{18,502}^{29,99}$	32	
Jones	${ }_{178}^{270}$	264 179	286	8.3	13,866	13,503 15408	14,495 16456 17	94 70	Harvey ...	506	541	572	5.7	16,301	17,440	18,430	34	
Keokuk	178 289	179 263	190	6.5 19.6	15,355	15,408 14,414	16,456 17,359	70 45	Havey									
Lee-*...........................	594	621	662	6.6	15,371	15,966	16,986	57	Haskell	84	88	91	3.6	21,740	22,363	22,958	8	
Linn	3,192	3,310	3,534	6.8	18.870	19,396	20,443	2	Hodgeman ...	$\begin{array}{r}39 \\ 178 \\ \hline\end{array}$	${ }^{37}$	- 39	10.9	18,053	15,395	17,346		
Louisa	180	179	198	10.5	15,533	15,430	17,361 16318	44	Jefterson	251	256	282	10.0	15,737	16,031	17,393	54	
Lucas	138 170	139 174	188	6.0	14, 151	14,629	15,527	${ }_{88}$	Jewell ..	75	63	71	11.8	17,823	15,444	17,546	49	
									Johnson	9,143	9,696	10,339	6.6	25,584	26,509	27,560	3	
Madison	198	200	217	8.8	15,841	15,958	17	51	Kearny	100	94	96	2.8	25,040	23,601	24,086	6	
Mahaska	328	331	354	7.2	15,221	15,429	16,564	66	Kingman	129	126	139	10.4	15,587	15,171	16.904	65	
Marion	498	510	540	6.0	16,608	16,931	17,910	25	Kiowa	65	${ }^{66}$	-66	-1.0	17,980	18,654	18,318 15554	36 95	
Marshall	${ }_{6}^{662}$	${ }_{6}^{682}$	709	4.1	17,280	17,894	18,814	13	Labette ...	333	350	363	3.8	14,102	14,890	15,554		
	192	${ }_{188}$	200	5.9	18,603	17,342	20,24	16	Lane	51	51	48.	-6.4	21,644	21,973	20,957	16	
Monona	148	145	164	13.6	14,746	14,563	16,583	64	Leavenworth	891	940	1,043	11.0	13,770	14,151	15,558	94	
Monroe	124	${ }^{129}$	137	5.7	15,257	15,863	16,694	61	Lincon	6	5		14.1	16,826	15,838	18,2993	38	
Montgomery	190	196	208	6.0	15,770	16,428	17,623	34	Linn.	115	114	127	11.5	13.940	13,598	15,083	101	
Muscatine	708	729	788	8.0	17,710	18,006	19,292	6	Logan	500	532	566	5.9	14,398	15,546	16,497	76	
O'Brien	254	258	269	4.1	16,448	16,783	17,485	38	McPherson	450	458	493	7.8	16,471	16,863	18,009	43	
Osceola .	109	111	116	4.7	14,937	15,356	16,189	80	Marion	181	181	201	11.4	14,082	14,156	15,872	86	
	270	277	299	8.2	15,996	16,478	18,093	21	Marshall	200	194	221	13.8	17,193	16,993	19,687	${ }^{23}$	
Palo Alto	162	153	173	13.0	15,190	14.531	16,554	67	Meade	83	86	86	3	19,690	20,172	20,341	18	
Plymouth	385	400	426	6.5	16,465	17,097	18,025	23										
Pocanontas	144	144	163	12.9	15,173	15.410	17,617	35	Miami	366	372	402	8.0	15,542	15,669	16,754	${ }^{68}$	
Poik	6.675	7.029	7.548	7.4	20,324	21,101	22,315	1	Mitchell	126	115	125	8.7	17.563	16,094	17,498	50	
Potawatlamie	1,250	1.307 315	$\begin{array}{r}1,389 \\ \hline 366\end{array}$	6.3	15,109 16,354	15,747 16,637	16.584 17,720	63 30	Montgomery ...	571 87	580 85	610 94	5.3 10.1	14,729 13,962	15,012 13,597 1	16,120 15,086	80 100	
Ringgold .	73	72	80	10.4	13,471	13,487	15,004	91	Morton	58	61	63	4.4	16,814	17,772	18,515	30	
									Nemaha	179	186	197	5.9	17.202	17,879	19,035	26	
Sac	187	187	207	10.9	15,212	15,407	17,174	49	Neosho	254	269	287	6.8	14,944	15,763	16,914	64	
SColt ...	2,723	2.817	2,978	5.7	17,988	18,364	19,184	8	Ness	79	72	79	9.2	19,670	18,154	20,320	19	
Shelby	206	212	224	5.5	15,599	16,017	16,988	56	Noton	96	94	106	12.9	16,174	16,067	18,508	31	
Sioux	436	462	492	6.6	14,566	15.292	16,219	78	Osage	221	226	246	9.1	14,505	14,660	15,850	87	
Sama ..	1,146 271	1,2069	+1,286	5.9	15,430	15,501	16,482	68	Osborne	82	75	84	11.4	16.35	15363	17651		
Taytor	88	90	98	7.9	12,372	12,862	14,006	98	Otawa ...	86	78	87	12.1	15,362	14,024	15,826	89	
Union	185	${ }^{186}$	200	7.4	14,501	14,745	16,060	85	Pawnee..	142	145	155	6.9	18,856	19,220	20,377	17	
Van Buren	${ }_{598}^{98}$	99	109	10.3	12,734	12.782	14,125	97	Philips	109	105	115	9.2	16,631	16,332	17,982	44	
Wapello	538	558	593	6.3	15,056	15,628	16,580	65	Pottawatomie	237	243	265	9.4	14,653	14.819	15,781	90	
Warren	574	599	648		15,878	16,353	17,372		Prat	${ }_{58}^{169}$	78	${ }_{5}^{85}$	3.9	52	18,571	64.	24	
Washington	329	335	350	4.6	16,771	16,894	17,464	39	Reno ...	1,000	1,038	1,092	5.2	16,027	${ }_{16,661}$	17,565	48	
Wayne	96	95	104	8.6	13,626	13,617	14,993	92	Repubic.	101	103	113	1.3	${ }_{15,653}$	16,208	18.442	33	
Webster	617	655	701	7.0	15,293	16,287	17,538	36	Rice	171	170	176	3.6	16,166	16,424	17,091	62	
Winnebago	${ }_{321}^{203}$	193 320	218 346	${ }_{8.2}^{13.2}$	${ }^{16,739} 1$	16,074 15.396	18,352 16.460 18	17 69			91							
Woodbury	1,615	1.699	1,853	9.1	16,396	17,105	18,539	15	Rooks ..	87	84	94	12.6	14,501	13,994	15,835	88	
Worth	125	117	126	8.0	15,627	14,861	16,071	84	Rush	61	56	60	8.6	15,897	14,606	16,082		
Wright	222	218	240	10.1	15,559	15,447	16,891	59	Russell	141	133	144	8.0	18,129	17,208	18,920	27	
Kansas	43,763	45,553	48,764	7.0	17,639	18,290	19,387		Saline Scott	939 116	${ }_{127} 965$	1,023 139	6.0 9.1	19,023	19,313 24,335	20,273 26.429	4	
Metropoltan portion	25,786	27,203	29,126	7.1	19,280	20,088	21,197		Sedgwick	7.680	8,142	8,772	7.7	18,979	19,867	21,053	15	
Nonmetropolitan portion	17,977	18,350	19,638	7.0	15,720	16,156	17,207	\ldots	Seward	303	352	${ }^{342}$	-2.7	16,206	18,86	18,267	39	
Alien...									Shawnee	995	3,110	3,281	5.5	:8.563	19,130	20,076	21	
Anderson	103	105	126	19.9	13,298	13,543	16,078	82	Sheridan	53	60	65	8.3	17,708	20,238	22,052	13	
Atchison	237	243	268	10.0	14,023	14,540	16,059	83	Sherman	124	124	126	1.4	17,883	18,254	18,638	29	
Barber	94	886	-94	7.4	16.014	${ }^{15,263}$	${ }_{16,138}$	71	Smith	77	77	85	9.7	16,025	16,329	18,329	35	
Barton	214	227	245	7.9	14.347	${ }_{15}^{15,32}$	${ }_{16,612}$	72	Stafford	92	94	95	1.9	17.181	18,100	18,819	${ }^{28}$	
Brown	165	168	180	7.2	14,805	15,168	16,395	78	Stanton	108	${ }_{114}^{65}$	${ }^{56}$	-1.0	21,289	22.480	22.366	${ }_{11}^{5}$	
Butter	845	900	975	8.4	16,661	i7,358	18,232	40	Sumner	416	416	450	8.2	16.102	16,015	17,246	57	
Chase	47	4	50	12.5	15.637	15,202	17,203	58	Thomas	143	149	140	-6.3	17,230	17,948	16,774	66	
Chautauqua	57	62	64	1.9	13,097	14,529	14,832	104	Trego Wabaunsee	605	$\begin{array}{r}56 \\ 104 \\ \hline\end{array}$	60 111	8.6	16,289 15,887	15,512 16,059	17,185 17,269	59 56	
Cherokee ...	279	290	321	10.6	13,090	13.559	14,874	103	Wallace	30	31	30	-2.2	16,742	16,619	16,426	77	
Cheyenne	59 57	59 59	558	-2.4	18,415 23,702	${ }^{18,3139}$	18.142 22.223	41 12										
Clay	149	142	157	10.6	16,343	15,710	17,075	63	Wichita ..	69	63	63	$\stackrel{1}{9} .8$	24,983	23,298	22,855	${ }_{9}$	
Cloud ..	178	166	176	6.5	16,248	15,378	16,702	69	Wilson	137	143	157	9.7	13.401	14,262	15.625	92	
Coftey	129 49	$\begin{array}{r}136 \\ 46 \\ \hline\end{array}$	151 47	10.7 2.6	15,309 21279	16,196 20.692	17,601 21.886	47 14	Woodson	59	61	67	10.0	14,377	15,140	16,771	67	
Cowley	552	564	599	6.1	14,957	15,442	16,338	79	Wyandotte	2,183	2,264	2,466	6.7	13,495	14,137	15,222	98	

See footnotes at end of table.

Table 2.-Total Personal Income and Per Capita Personal Income by County, 1990-92-Continued

See footnotes at end of table.

Table 2.-Total Personal Income and Per Capita Personal Income by County, 1990-92-Continued

See footnotes at end of table.

Table 2.-Total Personal Income and Per Capita Personal Income by County, 1990-92-Continued

Area name	Total personal income				Per capita personal income ${ }^{3}$				Area name	Total personal income				Per capita personal income ${ }^{3}$			
	Mililions of dollars			Percent change ${ }^{2}$ 1991-92	Dollars			Rank in State 1992		Militions of dollars			Percent change $1991-92$	Dollars			$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Rank in } \\ \text { State } \end{array} \\ \hline 1992 \\ \hline \end{array}$
	1990	1991	1992		1990	1991	1992			1990	1991	1992		1990	1991	1992	
Beltrami	437	467	496	6.3	12,674	13,251	13,824	79	Metropolitan portion	11,328	11,995	12,865	7.3	14,573	15,223	16,023	
Benton....	435	445	481	8.2	14,315	14,338	15,269	68	Nonmetropolitan portion	21,070	22,269	23,962	7.6	11,716	12,343	13,222	
Big Stone.	$\begin{array}{r}92 \\ 898 \\ \hline\end{array}$	-96	100	4.5	14.761	15.555 15.736	16,789 17.209	43 29	-	449	458	497	. 5	12.726	12.973	4,306	15
Brown	439	454	${ }_{485}$	6.8	16,261	16,904	18,026	20	Alcorn	411	434	476	8.7	12,939	13,494	14,622	11
Cartion	396	419	453	8.3	13,516	14,213	15,299	65	Amite ...	122	129	138	6.8	9,218	9,660	10,290	79
Carver	979	1,005	1,108	10.3	20,238	20,033	21,322	7	Attala	199	213	225	5.2	10.776	11,527	12.215	52
Cass		295				1328	14.058		Benton	74	78	85	8.8	9,230	9,820	10,617	74 43
Chipoewa	216	213	221	3.7	16,380	13,258	17,073	33	Bolvar	437 166	497	535	7.6	10,444	11,960	12,795	43
Chisago	469	485	518	6.8	15,267	15.441	16,012	54	Carroll ...	93	98	106	8.7	10,052	10,488	11,420	68
Clay	696	709	780	10.0	13,791	14,008	15,277	67	Chickasaw ..	210	223	241	8.1	11,600	12.320	13,367	30
Clearwater	92	98	104	5.7	11,109	11,979	12,726	87	Choctaw	90	92	98	7.4	9,906	10,096	10,879	72
cook	64	69	74	8.3	16.611	17,325	18,242	17									
Cotionwood	196	192	204	6.3	15,466	15,507	16,496	46	Claiborne	103	105	115	9.5	9.027	9,166	9.946	80
Crow Wing	6500	${ }^{688}$	739	7.4	14,625	15,170	15,913	57	Clarke	201	213	223	5.0	11,634	12,306	12,901	42
Dakota	5,833	$\begin{array}{r}6,098 \\ \hline 254\end{array}$	6,645 271	6.0	20,995	21,275	22,445 16,749	$\begin{array}{r}3 \\ 44 \\ \hline\end{array}$	Clay	256	269	286	6.2	12,097	12.614	13,364	31
Dodge	251	254	271	6.9	15,848	15,885	16,749	44	Coahoma Copiah	$\begin{gathered} 361 \\ 380 \\ 280 \end{gathered}$	$\begin{gathered} 401 \\ 291 \end{gathered}$	425 318	9.0	$\begin{aligned} & 11,432 \\ & 10,133 \end{aligned}$	$\begin{aligned} & 12,716 \\ & 10,520 \end{aligned}$	$\begin{aligned} & 13.426 \\ & 11,427 \end{aligned}$	29 67
Douglas	404	419	449	7.2	14,087	14,443	15,397	63	Covingion	173	183	201	10.0	10,447	11,097	12,190	54
Faribault	271	262	285	8.6	16,058	15,813	17,308	${ }^{28}$	De Soto ...	1,087	1,139	1,227	7.7	15,846	15,943	16,572	3
Fillmore ...	306	312	315	8	14,720	15,203	15,336	64	Forrest	883	920	977	6.1	12,916	13,372	13,981	17
Freeborn	508	508	542	6.8	15,381	15.549	16,723	45	Franklin ..	82	86	93	7.8	9,816	10,491	11.382	69
Grant ..	${ }^{67}$	100	770	${ }^{8} 8.8$	16,504	17,249	18,729 18,765	11 10	George ...	175	185	202	9.1	10,448	10,885	11,748	64
Hennepin	25,577	26,348	28,322	7.5	24,738	25,377	27,197	1	Greene	95	101	113	11.2	9,260	9,659	10,522	75
Houston	292	292	310	6.0	15,759	15,779	16.479	47	Grenada	264	285	303	6.6	12,243	13.059	13,835	18
Mubbard	187	198	211	6.4	12,537	13,028	13,648	81 5	Hancock .	397	423	459	6.7	12,456	13.025	13.549	25
Isanti	385	400	430	7.5	14,820	15,148	16,132	53	Harrison	2,192	2,299	2,474	7.6	13,258	13,821	14,584	12
litasca	550	581	609	4.9	13,424	14.119	14,690	72	Hinds.	3,994	4,200	4,4599	6.2	15,700	16,492	17.515	1
Jackson ...	187	177	184	3.6	16,022	15,247	15,871	59	Humphreys	148	156	156	\cdots	12,239	13,080	13,061	36
Kanabec	164	172	185	7.7	12,789	13,375	14,264	75	Issaquena ...	22	27	26	-5.9	11,676	14,430	13,731	21
Kandiyohi	605	632	663	4.9	15,597	16,175	16,824	41	Itawamba ...	236	248	274	10.6	11,765	12,363	13,609	23
Kitson	111	92	123	34.2	19,286	16.164	21,991	4	Jackson	1,566	1,698	1,851	9.0	13,597	14,427	15,298	8
Koochiching ...	230 139 189	228 139	240 146	5.2	${ }^{13,981}$	14,070	14,858 16,866	70 38									
Lake	137	147	156	6.1	13,141	14,096	14,781	71	Jefferson.	68	70	80	14.5	7.949	8.298	9,435	82
Lake of the Woods	59	62	66	6.1	14,484	14,683	15,292	66	Jefferson Davis	132	136	145	6.3	9,440	9,811	10,429	77
Le Sueur	364	370	400	8.3	15,678	15,815	17,018	36	Jones.	782	835	905	8.4	12,621	13,487	14,578	13
Lincoln.	98	101	101	8.2	14,292	15,023	14,956		Kemper	104	111	120	7.8				63 34
Hyon	396	422	455	7.7	15,999	17,178	18,547	14	Lamar.	377	397	425	7.1	12,362	12,864	13.645	22
McLeod ...	517	537	586	9.2	16,088	16,664	18,098	19	Lauderdale	1,087	1,146	1,219	6.4	14,400	15,126	15,980	6
Mahnomen	61	57	65	12.8	12,197	11,441	12,852	86	Lawrence	133	140	153	9.8	10,678	11,234	12,387	49
Marshall	164	139	184	32.0	14.998	12.884	17,188	31	Leake .-.............	201	219	241	9.6	10,850	11.889	13,027	37
Martin	390 310	374 317	409 330	9.3 3.9	14,852	15,430	18,121	18 58	Lee	1,007	1.061	1,164	9.7	15.286	15783	17.015	2
Mille Lacs	255	263	282	7.1	13,658	13,833	14,635	73	Leflore.	469	503	540	7.3	12,567	13,431	14,411	14
Morison	366	372	398	7.0	12,334	12,564	13,417	82	Lincoln	355	374	398	6.5	11,713	12,297	12.925	40
Mower	623	661	695	5.1	16,670	17,697	18,695	12	Lowndes..	836	844	891	5.6	14,034 14,704	14,053 15,325	14,757	7
Murray	150	152	162	6.6	15.604	15,820		40	Madison	798 271	855 281	919 302	7.5	14,704 10.598	15,325	15,880 11.886	59
Nicollet	432	445	487	9.4	15,363	15,721	17,038	35	Marshail	325	336	365	8.5	10,682	10,802	11,634	66
Nobles	342	349	357	2.1	17,029	17,438	17.726	22	Monroe	427	441	475	7.6	11,659	12.010	12,941	39
Norman.	137	121	144	18.7	17,281	15,485	18,662	$\stackrel{13}{5}$	Montgomery	129	137	149	8.1	10,371	11,201	12.150	55
Olmsted	2,131	2,250	2,386	6.1	19,923	20.617	21,595	d	Neshoba .	283	305	332	8.9	11,391	12,186	13,080	35
Otter Tail	724	746	795	6.6	14,271	14,600	15.477	${ }_{6}^{61}$									
${ }_{\text {Penne }}$ Peningo......	197 252	266	286	7.5	11,800	12,374	13,083	85	Newton ...	117	121	${ }_{138}$	14.5	12,201	12,647	11058	$7{ }_{71}$
Pipestone	157	166	166	2	15,006	15,962	16,004	55	Okitbeha	427	447	473	5.9	11,112	11,688	12,319	51
Poik	505	489	555	13.5	15,545	15,138	17,164	32	Panola	329	349	379	8.6	10,934	11,433	12,194	53
Pope	143	142	156	9.6	13.247	13.277	14.518	74	Pearl Riv	422	442	472	6.9	10,864	11,239	11,848	${ }_{78} 61$
Ramsey.	9,995	10,561	11,242	6.4	20.576	21,766	23,129	2	Pike...	400	428	460	7.6	10,861	11,631	12,436	46
Red Lake	57	54	62	15.0	12,614	12,215	14,245	76	Pontotoc	263	275	305	10.9	11,785	12,194	13.293	32
Redwood	283	28	300	6.6	16,493	16,519	17,698	23	Prentiss	246	260	28	8.6	10,572	11,110	12,085	56
Renvile ...	${ }_{749}$	780 80	${ }_{827}$	6.1	- 16,280	16,627 15	16,426	24 49	Quitman	104	108	125	15.6	9,989	10,477	12,431	47
Rock	175	176	181	3.0	17,899	18,023	18,464	15	Rankin	1,294	1,382	1,485	7.4	14,755	15.417	16,106	5
Roseau	241	232	263	13.5	15,997	15,063	16,930	37	Scott	285	310	357	15.1	11,763	12,845	14,630	10
St. Louis	3.094	3,257	3,459	6.2	15.590	16.409	17,426	27	Sharkey	77	83	82	-1.5	10,874	11,848	11,730	65
Scoth	1,059	1,116	1,224	9.7	18,182	18,536	19.657	9	Simpson.	273	292	327	11.8	11,365	12,144	13,531	27
Sherburne.	630	665	718	8.0	14,873	15,136	15,647		Smith ...	173	184 136 1	146	8.4	11.698.	${ }_{12,518}^{12.518}$	13,523	28 38
Sibley.	211	209	221	5.6	14,734	14,662	15,474	62	Suntower...	345	380	398	4.8	10,500	11,335	11,780	62
Steams	1.721	1,818	1,961	7.8	14.448	15,124	16,178	52	Tallanatchie ..	141	150	164	9.5	9,272	9,947	11,105	70
Steele	527	539	573	6.4	17,102	17,430	18,414	16	Tate	268	281	300	6.7	12.477	12,988	13,733	20
Stevens	${ }^{166}$	169	180	6.0	15,670	16.061	17,192	30	Tippah	222	233	250	7.6	11,327	11,953	12,686	44
Swifd	156 283	159 291	165 311	7.9	- 14.514	12,091 12.496	${ }^{13,361}$	83	Tishom	192	202	221	9.4	10.820	11.320	12337	50
Traverse ...	82	81	94	15.8	18,406	18,621	21,408	6	Tunica	82	84	96	14.2	10,069	10,399	11,885	60
Wabasha	322	328	350	6.9	16,285	16,482	17.541	25	Union	272	287	314	9.6	12,301	12,868	14,007	16
Wadena	55	159	170	7.0	11,831	12,284	13,278	84	Wathail ..	130	138	150	8.7	9,029	9,575	10,445	76
									Waren	698	732	784	7.1	14,594	15,32	16,346	4
Waseca	282	286	296	3.5	15,597	15,685	16,393	50	Washington ...	788	855	881	2.9	11,617	12,686	13,203	33
Washington ...	2,994	$\begin{array}{r}3.087 \\ \hline 175\end{array}$	3,288	6.5 12.9	20,357	20,253 15,020	20,758	8 34	Wayne	209	219	242	10.5	10,689	11,158	12,421	48
Wikin	109	110	129	18.0	14,548	14,772	17,513	26	Wikinson	87	92	101	10.2	${ }^{11,10} 8$	11,621 9.646	10,734	73
Winona	740	761	805	5.8	15,480	15,918	16,850		Winston ...	220	223	234	4.7	11,333	11,397	11,987	57
Wright Yelow Medicine \qquad	1,089 179	7,138	1,218 188	7.0	15,771 15,342	16,084 15756	$\left\|\begin{array}{c} 16,822 \\ 16318 \end{array}\right\|$										
相 Medine									Yalobusha	148 315	152 332	167 344	9.5	$\left.\begin{array}{l} 12,266 \\ 12,384 \end{array}\right]$	${ }_{1}^{12,646}$	$\left.\begin{array}{l} 13,788 \\ 13,539 \end{array}\right]$	19 26
Mississippl	32,398	34,265	36,827	7.5	12,578	13,218											

[^44]Table 2.-Total Personal Income and Per Capita Personal Income by County, 1990-92—Continued

Area name	Total personal income				Per capita personal income ${ }^{3}$				Area name	Total personal income				Per capita personal income ${ }^{3}$			
	Millions of dollars			Percent change ${ }^{2}$	Dollars			Rank in State 1992		Milions of dollars			Percent change ${ }^{2}$	Dollars			Rank in State 1992
	1990	1991	1992	1991-92	1990	1991	1992			1990	1991	1992	1991-92	1990	1991	1992	
Missourl	89,245	93,442	98,470	5.4	17,407	18,121	18,970		Putnam	61	64	67	5.2	12,056	12,746	13,483	83
Metropolitan portion ...	67,681	70,812	74,411	5.1	19,350	20,109	20,999	${ }^{\text {................ }}$	Ralls	125	131	143	8.9	14,731	15,445	16,737	16
Nonmetropolitan portion	21,564	22,631	24,058	6.3	13,236	13,841	14,605		Randolph ...	338	348	362	4.1	13,899	14,705	15,197	47
									Ray	297	305	329	7.8	13,486	13,927	15,105	50
Adarr	306	327	350	7.0	12.456	13,400	14,344	68	Reynolds ...	73	80	77	-2.9	10,974	11,861	11,740	106
Andrew	213	219	228	4.3	14,514	14,827	15,387	43									
Atchison	111	115	124	7.3	14,938	15,672	17,252	11	Ripley	122	133	141	5.9	9,892	10,656	11,148	113
Audrain	352 360	364 384	383 $40+$	5.3	14,912	15,469 13	16,394	21 71	St. Charles	3,909	4,034	4,268	5.8	18,212	18,340	18,869	1
Bary	360	384 157	401	4.3	13,015	13,732	13,989	71	St. Clair	103	108	116	7.4	12,142	12.810	13,579	81
Barton	152	157	176 226	12.0 12.3	13,438 13	13,754 13	15,313	45	Ste. Genevieve..	224	228	240	5.2	13,915	14,207	14,877	60
Bates	201	201	179	12.3	$\begin{aligned} & 13,394 \\ & 11,447 \end{aligned}$	13,406	15,032	${ }_{9} 54$	St. Francois	597	634	663	4.5	12,171	12,782	13,217	91
	160	170	179 129	5.5	11,447 10821	11,981	12,400	99	St. Louis	25,112	26,101	27,230	4.3	25,246	26,157	27,211	1
Bollinger	115	121	129	6.6	10,821	11,375	12,057	103	Saline	347	369	373	1.1	14,800	15,950	16,351	22
Boone	1,834	1,969	2,105	6.9	16,269	17,165	18,004	9	Schuyler	51	53	56	4.5	12,037	12.710	13,360	87
Buchanan	1,309	1,370	1,423	3.9	15,755	16,530	17,116	12	Scotland	$\begin{array}{r}64 \\ 551 \\ \hline\end{array}$	-67	76 608	11.7 6.5	13,353 13,964	14,189 14.557	15,921 15,394	29 42
Butter	506	549	+993	8.0	13,020	13,972	15,007	56				O	6.5	13,964			
Caldwell ...	102	105	115	9.3	12,219	12,610	13,731	79	Shannon	72	78	83	6.0	9,426	10,273	10,653	115
Callaway	480	503	528	4.9	14,607	15,086	15,658	37	Shelby	103	105	108	3.4	14,827	15,304	15,913	30
Camden	414	432	463	7.0	15,001	15,341	15,981	27	Stoddard...	391	407	436	7.0	13,530	14,138	15,055	53
Cape Girardeau	982	1,035	1,107	7.0	15,900	16,599	17,482	10	Stone	288	304	340	11.8	15,034	15,368	16.308	23
Carroll	152	153	171	11.4	14.160	14,495	16,149	26	Sulivan ...	74	80	82	2.2	11,740	12,860	13,218	90
Catter	618	${ }^{666}$	70	5.3	11,014	11,663	12,207	101	Taney	386	412	457	11.1	15,011	15,584	16,574	18
Cass	1,029	1,055	1.135	7.6	16,026	15,988	16,818	15	Texas ...	236	243	255	4.8	10,971	11,168	11,723	107
Cedar	147	151	158	4.6	12,157	12,563	13,148	93	Vernon..	265	282	280	-6	13,919	14,743	14,953	57
Chariton	131	137	144	4.9	14,246	15,100	16.169		Warren.	295	306	325	6.1	14,991	15,179	15,716	34
Christian	459	497	539	8.6	13,893	14,320	14,926	58	Washing	2	20	239	3.7	10,636	1,158	11,480	108
Clark	83	87	98	13.0	11,105	11,573	13,043	94	Wayne	121	131	135	3.3	10,478	11,027	11,138	114
Clay	2,853	2,936	3,132	6.7	18,502	18,716	19,691	5	Webster ..	283	292	315	7.9	11,916	12,169	12,913	98
Clinton	250	256	271	5.6	14,982	15,231	15,944	28	Worth .	30	32	33	4.4	12,482	12,961	13,949	73
Cole	1,081	1,129	1,198	6.1	16,959	17,440	18,314	7	Wright	183	182	195	7.2	10,873	10,770	11,462	109
Cooper	203	218	233	6.9	13.687	14,702	15,573	39	St. Louis City	6,930	7,362	7,615	3.4	17,524	18,834	19,844	4
Crawtord	245 94	254 97	275 107	8.0 9.8	12,728 12.650	12,947 13,080 1	$\begin{aligned} & 13,844 \\ & 14,272 \end{aligned}$	76 69									
Dallas	147	152	162	6.6	11,589	11,668	12,263	100	Metroponlitan portion	1,790 3,149	12,623 3,348	13,344 3,568	5.7 6.6	14,743	15,632 17,293	18,208	
									Nonmetropolltan portion	8,641	9,275	9,776	5.4	14,201	15,108	15,641
Daviess ..	94	97	104	7.7	11,944	12,236	13,447	85									
De Kalb	102	106	113	6.9	10,273	10,635	11,401	111	Beaverhead	119	126	128	1.0	14,099	14,971	14,847	36
Dent	169	179	189	5.7	12,356	13,025	13,841	77	Big Horn	123	123	128	4.1	10,904	10,732	10,949	56
Douglas	117	122	132	8.1	-9,841	10,288	11,152	112	Blaine	79	79	85	7.0	11,848	11,733	12,52.4	53
Dunkin	415	461	497	8.0	12,521	14,029	15,092	51	Broadwater	43	47	52	10.3	13,062	14,126	14,855	35
Franklin ...	1,273	1,321	1,386	4.9	15,705	16,038	16,595	17	Carbon	121	127	132	4.1	15,025	15,912	16,029	23
Gasconade	204	211	222	5.3	14,550	14,988	15,699	36	Carter	19	21	20	-5.0	12,608	14,510	13,328	48
Gentry	88	95 3680	-988	2.9	12.917	14,084	14,560	${ }_{8} 67$	Cascade	1,241	1,305	1,383	6.0	15,974	16,651	17.452	-
Greene	3,444	3,680	3,929	6.8	16,513	17.418	18,270	8	Chouteau	95	110	97	-11.9	17,417	20,331	17,796	6
Grundy	142	147	156	5.9	13,555	14,061	15,009	55	Custer	174	184	196	6.6	14,881	15,830	16,683	16
Harrison	113	120	124	3.2	13,387	14,366	14,924	59	Daniels	35	40	43	7.7	15,637	18,850	20,393	
Henry	269	273	296	8.3	13.394	13,544	14,627	66	Dawson	128	140	140	-4	13,646	15,140	15,443	30
Hickory	78	82	${ }_{96}^{87}$	6.5	10.701	10,837	11.432	110	Deer Lodge	125	129	138	7.0	12,232	12,766	13,759	44
Hoit	85	92	96	4.5	13,994	15,409	16,239	24	Fallon	42	47	48	1.8	13,643	15,062	15,754	26
Howard	130	139	146	5.0	13,463	14,512	15,150	48	Fergus	181	188	192	2.4	14,947	15,264	15,514	29
Howell	376	403	431	6.8	11,887	12,561	13,220	89	Flathead.	892	956	1,033	8.0	14,989	15,721	16,440	18
Iron	121	130	138	6.6	11,258	12.098	12,983	95	Gallatin ...	742	810	873	7.8	14,627	15,620	16,202	22
Jackson	11,685	12,297	${ }^{12,962}$	5.4	18,447	19,393	20,443	3 19	Garfield ...	23	24	22	-10.1	14,679	16,009	15,065	33
Jasper	1,322	1,417	1,516	7.0	14,600	15,586	16,499	19	Glacier	136	155	160	3.3	11,228	12,834	13,095	50
Jefferson ...	2,465	2,558	2,685	4.9	14,294	14,585	15,059	52	Golden Vailey	13	15	15	-1.2	14,374	16,963	16,783	14
Johnson	528	553	592	7.1	12,369	12,785	13,504	82	Granite	33	36	37	1.3	13,010	14,356	14,462	38
Knox ..	57	58	63	8.2	12.644	13,039	14,233	70	Hill	261	285	289	1.7	14,757	16,065	16,257	21
Laclede	352	361	385	6.9	12,935	13,195	13,932	74	jetterson	128	133	143	7.7	16,023	16,346	17,316	10
Lafayette	481	500	529	5.7	15,468	16,066	17,023	13	Judith Basin	32	35	35	1	13,931	15,546	15,679	27
Lawrence	376	398	421	5.8	12,46	13,078	13,745	78	Lake	271	287	306	6.8	12,902	13,306	13,897	42
Lewis	125	130	142	8.8	12,240	12,732	13,952	72	Lewis and Clark	755	806	871	8.1	15,880		17,534	7
Lincoln	421	442	468	5.9 3.2	14,501	14,804 14.695	15,444	41	Liberty	44	50	45	-10.7	19,343	22,139	19,851	2
Livington	220	227	244	7.6	15,129	15,777	16,857	14	Lincoln	210	217	234	7.9	12,029	12,356	13,231	49
McDonald	201	218	230	5.6	11,832	12,735	13,209	92	Macison ..	27 77	81	82	-2.8	12,186	13,831	13,960 13,506	41 47
Macon	215	225	231	2.8	14,029	14,854	15,365	44	Meagher	27	30	31	2.0	15,056	16,664	17,137	1
Madison	132	141	148	5.1	11,887	12,610	13,232	88	Mineral	37	38	40	5.1	11,111	11,514	11,672	55
Maries	97	103	106	2.8	12,223	12,627	12,963	96	Missoula ...	1,188	1,264	1,385	9.6	15,053	15,703	16,801	13
Marion	384	410	439	7.3	13,847	14,831	15.826	33	Musselshell ..	50	55	56	. 9	12,227	13,378	13,608	46
Mercer	39	41	44	8.0	10,355	10,982	11,855	105	Petroleum ..	6	9	8	-13.8	11,206	17,619	15,305	32
Miller	272	282	296	4.9	13,106	13,508	13,902	75	Phillips	75	74	71	-3.9	14,463	14,396	13,989	40
Mississippi Moniteau	187 170 1	192	213 184 1	10.8 2.8	12,972 13	13,411 14.513	15,133 14,874	49 61	Pondera	96	108	99	-8.4	15,038	17,328	15,985	24
Monroe ...	132	132	139	5.2	14,502	14,792	15,707	35	Powder River	26	31	30	-3.9	12,735	15,100	14,506	37
Montgomery	166	172	186	7.8	14,565	15,236	16,480	20	Prawirie	20	${ }_{23} 2$	24	2.7	14,366	17,698	16,402	43
									Ravali	326	348	377	8.3	13,007	13,373	13,744	45
Mew Madrid	272	275	307	11.9	12,990	13,216	14,550	64	Richland....	147	156	157	1.0	13.805	14.703	14.941	34
Newton	628	661	707	6.9	14,102	14,672	15,493	40	Roosevelt ...	118	126	137	9.1	10,718	11,673	12,654	52
Nodaway	287	302	314	4.1	13,215	14,144	14,805	63	Rosebud	150	175	173	-1.3	14,272	16,758	16,296	20
Oregon	101	108	113	4.6	10.615	11,349	11,903	104	Sanders	100	104	110	5.7	11,479	12,096	12,468	54
Osage	180	185	193	4.1	14,968	15,383	15,900	31	Sheridan ...	67	75	81	7.1	14,180	16,600	17,981	4
Ozark	2993	103	107	3.8	11,400 1155	11,897	12,165	102 86	Silver Bow	522	543	579	6.5	15,392	15,991	16,966	12
Pemiscot	253	268	288	7.2	11,555	12,365	13,384	86	Stilwater	95	98	104	5.2	14,417	14,669	15,375	31
Perry	234	244	263	7.7	14,007	14,559	15,619	38	Sweet Grass	45	48	49	3.7	14,204	15,153	15,798	25
Pettis	524	537	565	5.2	14,755	15,097	15,871	32	Teton \qquad	94	106 91	97 89	-8.6	15,056	17,121 18,444	15,623 17,893	
Phelps	485	511	537	5.0	13,723	14,371	14,853	62									
Pike	212	220	233	6.1	13,264	13,770	14,642	65	Treasure	14	14	15	1.3	15,579	16,479	16,536	17
Plate	1,191	1,232	1,314	6.6	20.448	20.626	21,321	2	Valley	118	133	137	2.9	14,446	16,323	16,724	15
	272 487	285 523	303 565	8.4	12,411 11.653	12,739	13,451	${ }_{97}^{84}$	Wheatland	33	38	39	4.1	14.457	16,592	17,328	9
Pulaski	487	523	565	8.0	11,653	12,478	12,932										

Table 2.-Total Personal Income and Per Capita Personal Income by County, 1990-92-Continued

See footnotes at end of table.

Table 2.-Total Personal Income and Per Capita Personal Income by County, 1990-92—Continued

Area name	Total personal income				Per capita personal income ${ }^{3}$				Area name	Total personal income				Per capita personal income ${ }^{3}$			
	Millions of dollars			Percent change ${ }^{2}$ 1991-92	Dollars			Rank in State 1992		Millons of dollars			$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Percent } \\ \text { Change } \end{array} \\ \hline 1991-92 \\ \hline \end{array}$	Dollars			Rank in State 1992
	1990	1991	1992		1990	1991	1992			1990	1991	1992		1990	1991	1992	
	728	767	807	5.2	13,114	13,818	14,244	12	metropolitan portion	76,585	79,968	86,372	8.0	17,426	17,886	19,045	
Lincoln ...	186	199	213	7.2	15,200	15,611	16,234	4	Nonmetropolitan portion..	31,753	33,424	35,745	6.9	14,060	14,675	15,534	
Los Alamos	473	473	511	8.0	26,078	26,189	28,087	1									
Luna	199	219	236	7.7	10,978	11,604	11,976	24	Alamance ...	1,790	1,865	1,977	6.0	16,496	16,989	17,801	18
Mckinley	540	578	619	7.1	8.8075	9,178	9,500	32	Alexander ...	408	421	454	7.9	14.766	15,048	16,099	39
Mora	35	37	40	8.3	8,275	${ }^{8,825}$	9,455	33	Alleghany	127	132	142	7.5	13,223	13,684	14,722	64
Otero ...	630	661	709	7.2	12,155	12,691	13,662	16	Anson	318	331	345	4.5	13,552	14,094	14,665	66
									Ashe	298	318	335	5.3	13,438	14,234	14,943	61
Quay	139 322	$\begin{aligned} & 144 \\ & 339 \end{aligned}$	152 360	$\begin{aligned} & 5.8 \\ & 6.3 \end{aligned}$	$\underset{\substack{12,903 \\ 9,322}}{ }$	$\begin{gathered} 13,625 \\ 9.842 \end{gathered}$	$\begin{aligned} & 14,537 \\ & 10,332 \end{aligned}$	11 30	Avery...	204 597	218	231	5.8 5.0	13,664 14.097	14,601	15,486 15,47	54
Roosevelt	217	218	249	14.2	12,950	12,666	14,237	13	Beautort.	597	631	674	5.0	14.097	14,763	15,417	54
Sandoval	855	925	1,001	8.2	13,348	13,983	14,560	10	${ }^{\text {Blarae }}$ Blaten.....	348	370	397	7.5	12,135	12,826	${ }_{13,663}$	90 89
San Juan.	1,114	1,188	1,273	7.1	12,176	12,694	13,381	18	Brunswick.	681	747	791	5.9	13,277	14,201	14,526	69
San Miguel	255	270	290	7.3	9,882	10,368	10,959	27	Swik	d							
Santa Fe	1,803	1,932	2.067	6.9	18,120	18,972	19,650	${ }^{2}$	Buncombe.	2,985	3,126	3.372	7.9	17,009	17,584	14	12
Socorro	159	167	177	5.5	10,780	11,387	11.783	26	Cubre ...	1,108 1,680 1	1,135 1,739 1	+1,218	7.2	14,600 1688 1	14,859		17
Taos	259	277	291	5.1	11,161	11,699	12,030	23	Caldwell	1,026	1,055	1.145	8.5	14,488	14,807	15,951	43
									Camden	77	82	88	7.7	12,904	13,611	14,350	73
Union	64	65	62	3.6	15.525	15,704	15,394	${ }_{5}$	Carteret..	752	795	846	6.4	14,238	14,805	15,405	55
Valencia	573	618	666	7.9	12,561	13,208	13,793	15	Caswel	2,121	- ${ }_{2}^{2668}$	${ }_{2}^{2834}$	76.4	12,181 17.844	12,810		88 10
									Chatham	685	715	770	7.7	17,583	18.051	19,136	11
New York	401,833	${ }^{412,663}$	436,354	5.7	22,322	${ }_{22,866}$	$24,005$		Cherokee.	233	239	254	6.3	11,551	11,785	12,465	96
Metropoiltan portion	379,525	389,558	412,129	5.8	22,969	23,527	$\begin{gathered} 24,908 \\ 18,192 \end{gathered}$										
Nonmetropoltan portion	22,308	23,106	24,225	4.8	15,090	15,519	16,183		Chowan	190	204	207	1.4	14,040	14,994	15,063	58
	6,383	6,565	, 00	5.1	21,814	22,384	559		Clay		析	95	6.5	11,988	12,267	13.011	93
Allegany	1	652	885	5.1	12,561	12,694	13,328	62	Cleveland	1,256 625	1,288	1,376 788	8.9	14,782 12,605	13,014	15,835 14,507	75
Bronx	17,714	18,381	19,569	6.5	14,714	15,328	16,381	40	Craven	1.164	1.231	1,348	9.5	14,217	14,914	16,059	40
Broome	3.811	3,924	4,064	3.6	17.966	18,486 14,161	19,127 14 1450	21 53		3,559	3,811	4,451	16.8	12,928	13,725	16,050	41
Cattaraugus	1,176 1,228	1,205 1,245	$1,1,281$	6.3 4.3	13,929	14,161 15.049	14,950 15,712	53 46		200	208	219	5.4	14,508	14,545	14,834	63
Chautauqua	2,100	2,178	2,278	4.6	14,796	15,331	16,083	44	Dare	366	${ }^{382}$	405	6.0	15,939	16,462	17,065	24
Chemung	1,517	1,574	1,640	4.2	15,922	16,545	17,231	30	Davidson	1,987	- 20.039	2,189 571	7.4	15,634 18,702	18,807	20,069	29 9
	152	1775	- 1.321	6.0	14,517	14,883	15,728	45									
Clinton	1,228	1,26	1,313	4.1	14,248	14,620	15,263		Duplin	551	594	653	9.9	13,783	848	103	38
Columbia .	1,104	1,117	1,178	5.5	17,523	17,788	18,695	23	Durham	3,431	3.5977	3,935	9.4	18,775	19,352	20,920	6
Cortland	698	725	768	5.9	14,225	14,750	15,531	49	Edgecomb	739	795	844	6.2	13,095	14,121	15,012	60
Delaware	659	674	703	4.3	13,944	14,215	14,801	55	Forsyn	5,565	5,446	6,113	6.4	20,882	21,402	12,559	
Dutchess	5,619	5.673	5,894	3.9	21,618	21,739	22,424	11	Frankiin	479	499	540	8.3	13,086	13,348	14,245	79
Erie	17,586	18,352	19,250	4.9	18,151	18,901	19,798	15	Gaston	2,742	2,820	, 13	2.6	13,034	14,446	14,973	${ }_{6} 9$
Essex ...	578	${ }_{635}^{592}$	679	5.3	15,501	15,763	16,595	37 57	Grates	124 71	75	${ }_{83}$	2.6	9,934	10,266	11,256	100
Fulton \qquad	810	${ }_{844}$	894	6.0	14,927	15,565	16,561	38	Granville	493	516	568	10.1	12,842	13,383	14,501	71
Genesee	1,000	1,024	1,072	4.7	16,626	16,932	17,617	27	Greene	230	250	251	. 6	14,897	15,939	15,939	44
Greene	706	720	759	5.4	15,724	15,868	16,360	41	Guiltord	6949		7722					
Hamiton ...	82	87	92	5.8	15.493	16,191	17,089	33	Haliax .	704	752	801	6.5	12,662	13,471	14,257	78
Herkimer	939	943	1,001	6.2	14,141	14,261	15,130	52	Harnett	851	904	988	9.4	12,527	13,184	14,235	
Jefflerson.	1,595	1,679	1,766	5.2	14,308	14,934	15,535	48	Haywood...	681	718	758	5.5	14,504	15,155	15,792	48
Kings ...	39,735	40,922	43,885	7.2	17,285	17,874	19,196	20	Henderson	1,204	1,255	1,333	6.3	17,274	17,756	18,577	13
Lewis	352	370	383	3.6	13,087	13,599	13,967	60	Hentiord	260	276	291	5.3	11,532	12,254	12,906	94
Macison	994	${ }^{1}, 028$	1.081	5.1 4.6	15,898	16,297	17,059	34 35	Hoke ...	$\begin{array}{r}247 \\ 74 \\ \hline\end{array}$	267	${ }_{87} 89$	2.4	10,755 13,738	11,512	12,436 16,260	97
Monroe	15,350	15,859	16,563	4.4	21,467	22.053	22,863	10	Hredell	1,497	1,556	1,678	7.8	16,030	16,304	17,324	21
Montgomery	819	855	894	4.5	15,737	16,456	17.165	31	Jackson ...	338	358	383	7.2	12,556	13,149	13,924	84
Nassau	,167	, 363	42,018	4.1	31,237	31,195	32,270	3									
New York.	66,077	68,033	73,257	7.7	44,426	45,811	49,197		Jones	${ }_{1}^{1,243}$	1,307	1,422 171	8.8 13.2	15,190	16,078	18,144	15
Niagara	3,691	3.842	3,992	3.9	16,698	17,353	18.013	26	Lee ..	683	718	793	10.4	16,422	17,049	18,387	14
Oneida	4,074	4,176	4,369	4.6	16,215	16,551	17,326	29	Lenoir ...	837	903	981	8.6	14,585	15,666	16,902	26
Onondaga	8.979	9,195	9.581	4.2	19,157	19.467	20,221	13	Lincoln	784	808	868	7.4	15,464	15,692	16,519	31
Ontario	1.774	1,846	1,896	2.7	18,606	19,137	19,424	17	McDowell	454	475	509	7.1	12,710	13,197	14,074	82
Orange Orieans	5,683	5,870 653	6,240 681	4.3	18,405	18,829	19,762	16 47	Macon	328	345	366	6.1 5.8	13,916	14,450	15.100	57 87
Oswego	1,843	1,895	2,076	9.6	15,065	15,326	16,625	36	Martin ..	339	364	395	8.4	13,529	14,436	15,647	51
Olsego	906	940		6.1	14,940	15.434	16.345	42	Mecklenburg	11,215	11,696	12,558	7.4	21,776	22.133	23,354	1
Putnam ...	2,013	2,038	2,131	4.6	23,892	23,785	24,439	5									
Queens	41,862	42,651	45,169	5.9	21,444	21,864	23,151		Mithell................................$~$	304	191 316	201	5.4	12, 12087	13,176 13,652	13,823 14,350	85
Rensselaer	2,709	2,809	2,951	5.1	17.518	18,037	18,877	22	Moore ...	1,129	1,187	1,258	6.0	19,027	19,696	20,534	8
Richmond	8,349	8.575	9,368	9.2	21.967	22,259	23,954	6	Nash	1,279	1,329	1,380	3.8	16,565	16,887	17,134	22
Rockiand	6.691	6.774	7.130	5.3	25,160	25.241	${ }^{26,323}$	4	New Hanover	2,007	2,149	2,307	7.3	16,588	17.262	18,050	16
St. Lawence	1,434	1,502	1,601	6.6	${ }^{12} 8787$	13,301	14,055	59	Northampton	255	277	286	3.2	12,255	13,33	13,800	86
Schenectady	3,043	3,113	3,271	5.1	20,371	20,746	21,791	12	Onslow	1,529	1,601	1,847	15.4	10,201	${ }^{10,638}$	12.782	9
Schoharie	456	473	500	5.8	14,268	14,723	15,396	50	Pamlico	156	1.965	2,171	3.3	13,699	14,391	14,625	
Schuyler	244	255	263	3.1	13,035	13,565	13,931	61	Pasquotank	434	448	471	5.2	13,817	14.135	14,587	68
Seneca	537	554	575	3.9	15,944	16,381	17,146	32									
Steuben	1,623	1,716	1,743	1.6	16,350	17,205	17,411		Pender -	382 129	406 141	148	${ }_{5} 9.4$	13,121 12,342	13,497	14,313 14.118	76
Suftolk	29,572	30,411	31,808	4.6	22,360	22,898	23,769	7	Person ...	445	458	496	8.2	14,699	14,921	16,028	42
Sullivan..	1,231	1,256	1,321	5.2	17,724	17,956	18,688	24	Pitt	1,671	1,759	1,890	7.4	15,417	15,854	16,809	30
Tioga .	828	863	882	2.3	15,781	16,305	16,531	39	Polk	293	306	322	5.2	20,209	21,102	21,653	4
Tompkins	1,443	1,490	1,5488	3.9	15,314	15,692	16,232	43	Randolph	1,624	1,659	1,812	9.2	15,173	15,240	16,413	33
Ulister	3.021	3.153	3,275	3.9	18,231	18,794	19,354	18	Richmond	578	593	628	5.9	12,967	13,176	13,936	83
Warren	1.074	1,096	1,164	6.2	18,057	18,278	19,251	19	Robeson	1,185	1,286	1,418	10.2	11,244	12,081	13,148	92
Washington		-842		6.7	13,852 16,827	14.010			Rockingham	1,283	1,346	1,405	4.4	14,879	15,510	16,160	36
Wayne	$1, .504$ 28,349	29,231	1,649 30.725	4.9	16,827	17,387	18,062 34,843	$\stackrel{25}{2}$	Rowan	1,676	1,715	1,831	6.8	15,109	15,284	16,138	37
Westhester	28,349	29,231	30,25	5.1	32,396	33,337	34,843		Rutherford	773	810	872	7.7	13,526	14,069	15,050	59
Wyoming ...	573	575	615	7.0	13,452	13,286	14,143	58	Sampson	709	764	842	10.1	14,979	15,996	17,349	20
Yates	316	331	343	3.7	13,809	14,322	14,763	56	Scotand	424	754	494 897	8.8	12,527	13,305 15,224	14,435 15820	72 46
North Carolina	108,339	113,392	122,117	7.7	18,284	16,802	17,863		Stanly	77	799	837	4.6	14,982	15,224	15,820	

See footnotes at end of table

Table 2.-Total Personal Income and Per Capita Personal Income by County, 1990-92-Continued

Area name	Total personal income				Per capita personal income ${ }^{3}$				Area name	Total personal income				Per capita personal income ${ }^{3}$			
	Millions of dollars			Percent change ${ }^{2}$	Dollars			Rank in State 1992		Millions of dollars			Percent change ${ }^{2}$	Dollars			Rank in State 1992
	1990	1991	1992	1991-92	1990	1991	1992			1990	1991	1992	1991-92	1990	1991	1992	
Stokes	550	567	606	6.9	14,729	15,001	15,714	50	Clermont ...	2,384	2,492	2,692	8.0	15,780	16,116	17,023	38
Surry	956	998	1,070	7.2	15,453	15,971	16,989	25	Clinton	536	564	614	8.9	15,057	15,640	16,748	43
Swain	115	125	132	6.1	10,188	10,892	11,509	99	Columbiana ...	1.520	1,567	1,651	5.4	14,014	14,327	14,948	63
Transylvania	399 53	418 58	440 59	5.3	15,630	16,239 15486	16,892 15343 17,15	28 56	Coshocton	485	499	530	6.2	13,679	14,011	14,829	65
Union	1,399	1,431	1,526	6.6	16,517	15,489	15,343 17,115	56 23		695 29.945	702 31.105	742 32.639	5.7 4.9	14,523 21,210	14,705 22,040	15.562 23,128	57
									Darke	827	849	892	5.1	15,410	15,816	16,618	45
Vance	538	555	595	7.1	13,784	14,106	14,943	62	Defiance ..	649	666	703	5.6	16,467	16,822	17,755	28
Wake ..	9,057	9,621	10.425	8.4	21,215	21,799	22,805	${ }^{2}$	Deliance								
Warren	180	189	201	6.3	10,425	10,915	11,522	98	Delaware	1,408	1,473	1,590	7.9	20,886	21,144	22.263	4
Washington	193	208 501	218 542	8.0	13,767 13259	14,739 13424	15,419 14,258	53 77	Erie ...	1,327	1,397	1,496	7.1	17,268	18,127	19,297	11
Watauga \qquad Wayne	1931 1,379	$\begin{array}{r}501 \\ 1.446 \\ \hline\end{array}$	1.543	8.1	13,259 13	13,524	14, 1425	75	Fairield	1,725	1.814	1,947	7.4	16,591	17,070	17.810	27
Wilkes ...	1,890	${ }^{1} 913$	+948	3.9	14,971	15,296	15,805	47	Fayette	${ }^{366}$	r 377	415 20.631	7.9	13,290	13,578	14,877	64
Wilson.	1,057	1,103	1,170	6.1	15,983	16,599	17,536	19	Funton	18,306	19,204	20,631 716	8.4	16,95 16,508	19.629	18,020	22
Yackin	467	475	514	8.2	15,302	15,333	16,368	34	Gallia	392	413	449	8.8	12,648	13,209	13,897	73
Yancey	190	195	207	5.8	12,313	12,504	13,184	91	Geauga ..	1,739	1,765	1,861	5.4	21,370	21,462	22,355	
North Dakota	9,765	9,891	10,809	9.3	15,320	15,617	17,048		Greene	2,370	2,491	2,624	5.3	17,279	17,971	18,728	16
Metropolitan portion	4,149	4,318	4,638	7.4	16,101	16,845	17,604		Guernsey	488	518	549	6.1	12,509	13,206	13,957	71
Nonmetropolitan portion	5,616	5,573	6,171	10.7	14,791	14,904	16,654	\cdots	Hamilton	18,295	18,807	19,930	6.0	21,113	21,622	22,855	2
Adams	44	44	50	13.6	14,011	14,126	16,497	34	Hancock ...	1,173	1,213	1,305	7.6	17,905	18,361	19,558	9
Barnes ...	193	180	199	10.8	15,436	14,530	16,300	38	Hardin	400	396	435	10.0	12,844	12,688	13,956	72
Benson	93	84	92	8.7	13,005	12.064	13,323	49	Harrison.	193	199	215	8.1	12,048	12.452	13,502	78
Billings	15	117	17	3.0	13,959	14,947	14,960	44	Henry	470	488	525	7.7	16,146	16,695	17.842 13.671	24
Botineau	132	115	137	19.3	15,67	-6,871	18,035	18	Hocking	327	341	365	6.9	12,774	13,140	13,693	75
Bowman	57 50	58 44	62 52	6.9 16.2	15,902	16,680 15,83	19,167	15 6	Hocking	368	383	417	8.9	11,174	11,487	12,348	85
Burliegh	1,018	1,058	1,150	8.7	16,894	17,297	18,404	14	Huron	903	921	974	5.7	16.010	16.095	16,887	40
Cass	1,791	1.869	2,003	7.1	17,355	17,863	18,797	11	Jackson ...	361	384	406	5.8	11,930	12,446	12,942	81
Cavalier	94	90	113	25.4	15,616	15,385	8	3	Jefterson	1,194	1,227	1,295	5.5	14,901	15,343	16,259	48
Dickey..	92	92	103	11.2	15,236	15,525	17,519	23	Knox	671	707	757	7.1	14,086	14,784	15,623	54
Divide	42	42	47	13.6	14,740	15,018	17,718	21	Lake	4.159	4,250	4,508	6.1	19,262	19.485	20,450	6
Dunn ...	43	44	50	13.7	10,693	11.161	12,830	50	Lawrence	764	804	864	7.4	12,327	12,879	13,688	76
Eddy	45 57	42	75	7.4 23	15,493 11853	14,478 12 1262	15,940 15,307	39	Lieking	2,056	2,162	2,326	7.6 8.5	15,955 15,532	16,539 16,178	17,627 17,322	29 35
	57 66	58 63	71 72	23.2 13.0	11,853 16,602	12,262	15,307 18,814	43 10		$\begin{array}{r}659 \\ 4,369 \\ \hline\end{array}$	697 4,494	757 4.824	8.5	15,532 16,080	16.178 16.400	17,322 17,436	35 31
Goiden Valley	30	28	32	12.9	14,195	14,306	16,712	28	Lucas	8,225	8,396	8,940	6.5	17,785	18,172	19,371	10
Grand Forks ...	1,020	1,059	1,123	6.0	14,463	15,113	15,844	40	Madison	518	539	593	9.9	13,951	14,232	15,211	61
Grant	34	35	42	20.0	9,534	10,266	12,669	51	Mahoring .	4,246	4,433	4,627	4.4	16,029	16,736	17,419	32
Griggs	54	50	54	8.7	16,555	15,648	17,300	24									
Hettinger.	45	42	53	26.2	13,155	12,789	16,732	27	Medina	2.237	2,300	2,452	6.6	14,205	18,321	19,080	12
Kidder	45	40	45	11.7	13,443	12,393	14,188	46	Meigs ...	266	274	293	6.9	11.539	11,823	12,506	82
La Moure	76	70	87	24.7	14,241	13,293	16,681	29	Mercer	649	650	688	5.9	16,400	16,365	17,221	36
Logan	42	38	44	16.0	14,756	13,813	16.419	36	Miami	1,590	1,643	1,754	6.8	17,040	17.464	18,488	19
Mchenry ...	89	81	88	8.3	13,625	12,820	14,184	47	Monroe	196	203	217	7.2	12,649	13,177	14,227	70
Melntosh ...	56	58	67	13.8	14,068	15.310	17,592	22	Montgomery	10,617	11.160	11,690	4.7	18,492	19,354	20,202	7
McKenzie	877	88	99	13.5	13,748	14,196	16,459 17097	35	Morgan ..	199	$\begin{array}{r}197 \\ \hline 159 \\ \hline\end{array}$	206	4.8	14,013	13,903	14,427	68
Mclean.	$\begin{array}{r}157 \\ 164 \\ \hline\end{array}$	148	170	15.1	15,125 16	14,564	17.097 19.200	25 5	Morrow	349	359	385	7.2	12.544	12,760	13.473 15795	79
Mercer	164	167	181	8.1	16,793	17,348	19,200 15379	5 42	Muskingum	1,181	1,209	1,305	7.9	14,373	14,671	15.795	52
Morton	319	331	363	9.5	13,487	14,098	15,379	42		130	137	144	5.2	11,512	11,853	12,410	84
Mountrail	100	97	113	16.9	14,390	14,208	16,737	26	Ottawa ...	721	731	763	4.4	18,010	18,247	19,027	13
Nelson	77	65	80	21.9	17,507	15,378	19,030	8	Paulding	287	290	314	8.4	14,012	14,255	15,604	55
Oliver	30 167	30	37	22.2	12,516	13,209	16,605	32	Perry	374	378	403	6.7	11,814	11,889	12,490	83
Pembina.	${ }^{167}$	168 83	193 89	15.1	18,195 17637	18,727 1688	21,681	12	Pickaway	651	${ }^{679}$	759	11.8	13,480	13,878	15,082	62
Pierce	${ }^{89}$	83	893	7.8	17,637	16,878	18,742	12 19	Pike.	282	304	333	9.5	11.560	12,298	13,160	80
Ramsey	${ }_{88}$	${ }_{92}$	29	4.4	14,910	15.732	17.567	33	Portage	2,170	2,239	2,364	6.5	15,195	15.511 14.713	16,304	47
Renville	51	42	54	27.8	16,250	13,899	18,23t	16	Putnam	540	535	577	7.8	15,952	15.657	16,737	44
Richland	256	271	279	2.6	14,153	15,192	15.619	41	Richland	1,995	2,009	2,085	3.8	15,813	15,798	16,313	46
Roiette	129	137	156	14.1	10,062	10,641	11,970	52									
Sargent	78	84	89	5.9	17,258	18,881			Ross	921	963	1,045	8.4	13,263	13,643	14,611	67 37
Sheridan	28	24	28	13.0	12,979	11,669	13,469	48	Scioto	992	1,035	1,115	7.8	12,336	12,898	13,750	74
Sioux ..	${ }_{11}^{28}$	30	33	12.2	7,440	7,813	8.606	53	Seneca. ..	922	945	1,009	6.7	15,411	15,811	16.830	42
Slope	11	12	16	39.2	12,733	12,846	18.116	17	Shelby	745	769	818	6.3	16,542	16,875	17,832	25
Stark	306	317	339	7.1	13,429	13,880	14,881	45	Stark	6,178	6,355	6,742	6.1	16,790	17.185	18.117	21
Steele .-.	${ }^{43} 5$	341	363	16.4	15,846	15.508	19,504	30	Summit	9.488	9,786	10,373	${ }_{5} 6$	18,395	18.826	19,825	8
Towner ...	51	53	64	21.8	14,285	15,258	19.113	7	Tuscarawas	1,221	1,240	4,253 1,346	8.5	14,509	17,648	18,507	18 53
Traill	138	142	153	7.1	15,795	16,434	17.831	20	Union	564	577	624	8.2	17,606	17,636	18,534	17
Walsh	216	224	248	10.8	15,650	16,787	18,819	9									
Ward ...	864	889	955	7.5	14.956	15.536			Van Wert	471	473	509	7.5	15,488	15,613	16,839	41
Wells ...	98	91	103	13.3	16,877	16,130	18,516	13	Vinton	125	131	140	6.2	11,283	11,696	12,202	87
Williams	316	322	341	6.0	15,049	15,391	16,393	37	Warren	1,993	2,106	2,268	6.7	17,408	17,989	18,926	14
									Wayne ...	1,598	1,640	1,761	7.4	15,703	15,968	16,948	39
Ohlo	190,608	197,425	209,851	6.3	17,547	18,047	19,040	Williams ..	${ }_{6} 600$	610	665	9.1	16,186	16.459	17,843	23
Metropolitan portion	161,182	167,120	177,328	6.1	18,236	18,775	19,778	Wood ...	1,940	1,988	2,137	7.5	17.112	17.516	18,734	15
Nonmetropolitan portion	29,427	30,305	32,528	7.3	14,540	14,885	15,823	Wyandot	336	333	358	7.2	15,107	14,984	16,089	49
Adams	271	283	311	9.8	10,657	10,922	11,782	88	Oklahoma	47,580	49,531	52,630	6.3	15,117	15,636	16,420	
Allen	1.730	1,788	1,912	6.9	15,751	16,293	17,358	34	Metropolitan portion	30,821	32,198	34,173	8.1	16,458	17,004	17,736	
Ashland ...	684	+703	, 755	7.5	14,386	14,605 14,421	15,531 15,259		Nonmetropolitan portion	16,759	17,333	18,457	6.5	13,147	13,603	14,437
Ashtabula	$\begin{array}{r}1,413 \\ \hline 665\end{array}$	1,448	1,540	6.4	14,137 11,170	14,421 11,662	15,259	$\begin{aligned} & 60 \\ & 86 \end{aligned}$									
	665 745	705	738 820	4.6	11,170	11,662 16,801	12,285 17,830	86 26	Adair \qquad Alfalifa \square	207 108	226 92	253 102	12.1 10.2	11,245 16.969	11,967 14,694	13,204 16,515	61 13
Beimont ..	996	1,049	1,093	4.2	14,055	14,852	15,463	59	Atoka ..	118	126	136	7.7	9,241	9,831	10,378	77
Brown	467	491	533	8.4	13,279	13,785	14,630	66	Beaver ...	97	91	102	11.8	16,199	15,370	17,582	9
Butler	4,962	5,174	5.555	7.4	16,937	17,291	18,211	20	Beckham ...	231	241	255	6.0	12,272	12,900	13,834	47
Carroll	352	356	389	9.1	13,259	13,210	14,284	69	Blaine	151	153	162	5.9	13,225	13,507	14,691	31
Champaign	571	583							Bryan	371	389	412	25	11.558	12,104	12,669	67
Clark ...	2,324	2,425	2,596	7.1	15,744	$16,399$	$\begin{aligned} & 17,555 \end{aligned}$	30	Caddo	381	373	403	7.9	12,946	12.810	13,744	49

[^45]Table 2.-Total Personal Income and Per Capita Personal Income by County, 1990-92—Continued

Area name	Total personal income				Per capita personal income ${ }^{3}$				Area name	Total personal income				Per capita personal income ${ }^{3}$			
	Millions of dollars			Percent Change ${ }^{2}$	Dollars			Rank in State 1992		Millions of dollars			Percent change ${ }^{2}$	Dollars			Rank in State
	1990	1991	1992	1991-92	1990	1991	1992			1990	1991	1992	1991-92	1990	1991	1992	1992
Canadian	1,128	1,189	1,272	7.0	15,112	15,647	16.452	15	Josephine	892	927	985	6.3	14,162	14,378	15,070	34
Carter	615	645	, 688	6.6	14,343	15,108	15,986	18	Klamath ..	812	840	923	9.8	14,020	14,396	15,690	28
									Lake ...	108	106	117	10.5	15,067	14,846	16,152	20
Cherokee ...	440	468	499	6.5	12,898	13,417	14,035	43	Lane.	4,519	4,692	5,003	6.6	15,908	16,313	17,202	10
Choctaw	179	188	202	7.3	11,676	12,320	13,138	62									
Cimarron...	-69	71	72	6.9	20,960	22,325	22,801	1	Lincoln	597	635	678	6.8	15,283	15,880	16,559	18
Cleveland	2,579	2,700	2,880	6.7	14,764	15,175	15,878	19	Linn ...	1.344	1,414	1,499	6.0	14,662	15,150	15,853	24
	${ }^{56}$	-59	63	6.2	9,731	10,414	10,966	75	Malheur	359	376	396	5.4	13,741	14,144	14,625	36
Comanche	1.468	1,540	1,724	12.0	13,183	13,832	14,310	38	Marion	3,586	3,805	4,061	6.7	15,616	16,232	16,969	14
Cotton	102	96	104	8.4	15,400 1222	14,911 12.989	${ }_{1}^{16,069}$	17 45	Morrow ..	124	114	120	5.1	16,244	14,253	14,731	35
Craig	172 799	182 848	196	7.7	12,223 13,138	12,989 13,759	13,916 14,606	45 32	Multhomah ..	11,532	12,232	13,054	6.7	19,677 14,722	20,558	21,727 15748	27
Custer	367	374	391	4.6	13,687	14,180	14,867	27	Poik Sherman	$\begin{array}{r}734 \\ 39 \\ \hline\end{array}$	774 36	$\begin{array}{r}828 \\ 38 \\ \hline\end{array}$	7.0	$\begin{aligned} & 14,722 \\ & 20,204 \end{aligned}$	15,083 18,529	15,748 19,633	27
									Tillamook.	300	314	337	7.1	13,859	14,272	15,101	33
Delaware \qquad Dewey	362	383	414 84	$\begin{aligned} & 8.1 \\ & 5.7 \end{aligned}$	$\begin{aligned} & 12,880 \\ & 15,279 \end{aligned}$	$\begin{aligned} & 13,438 \\ & 14,534 \end{aligned}$	$\begin{aligned} & 14,112 \\ & 15,613 \end{aligned}$	$\begin{aligned} & 41 \\ & 20 \end{aligned}$	Umatilla	841	886	939	6.0	14,174	14,745	15,361	30
Ellis ...	70	73	73	-. 3	15,604	16,691	16,982	12	Union	344	0	382	6.2	14,513	14,994	15,839	25
Garrield	908	933	981	5.2	16.021	16,580	17,398	11	Wallowa	114	123	129	5.1	16,362	17,203	17,782	7
Garvin	353	371	383	3.1	13,283	14,029	14,514	34	Wasco.	345	359	379	5.5	15,865	16,255	17,041	12
Grady	518	536	575	7.4	12,425	12,830	13,732	50	Washington	6,302	6,625	7,150	7.9	20,020	20,239	21,145	
Grant	105 85	95 79	102 86	7.3	18,397 12,969	17	18,837 13,630	$5{ }_{6}^{6}$	Wheeler ...	, 21	${ }_{1} 22$	23	4.5	14,763	15,112	15,780	26
Harmon	54	45	54	19.9	14,293	12,154	14,988	26	Yamhill ...	1,020	1,077	1,157	7.4	15,472	15,945	16,701	17
Harper	78	70	80	13.7	19,200	17,775	20,755	3	Pennsylva	224,628	233,676	247,611	6.0	18,884	19,557	20,642	
Haskell	120	124	131	6.0	10,988	11,381	11,972	72	Metropolitan portion	197,469	205,496	217,697	5.9	19,564	20,276	21,405
Hughes	145	149	159	6.9	11, 194	11,594	12,528	69	Nonmetropolitan portion ...	27,159	28,180	29,914	6.2	15,073	15,537	16,391
Jackson	380	366	392	7.0	13,269	12.889	13,677	52	Adams	1,314	1,369	1,444	5.5	16,685	17,085	17,777	26
Jefferson	85	93 99	98 109	5.8 9.5	12,122 9,255	13,371 10.001	14,174 10,759	40 76	Adaregheny	28,270	29,859	31,774	6.4	21,163	22,368	23,812	4
Kay	805	834	894	7.2	16,771	17,365	18,453	8	Armstrong	1,096	1,118	1,182	5.8	14,913	15,125	15,998	49
Kinglisher	194	201	213	6.2	14,734	15,417	16,464	14	Beaver	2,854	2,971	3,180	7.0	15,318	15,852	16,854	33
Kiowa	161	151	163	8.1	14,192	13.540	14,837	29	Bediord.	${ }_{6}^{600}$	621	${ }_{7111}^{683}$	9.9	12,491	12,863	14,042	64
Latimer	112	120	128	6.1	10,810	11.411	12,219	71	Berks	6,516 1,925	6,673 2,005	7,111 2,151	7.6	19,310 14,741	19,581	20,723 16,384	10 41
Le Flore	495	507	550	8.6	11,400	11.648	12,638	68	Blair \qquad Bradiord \qquad	$\left.\begin{array}{r} 1,925 \\ 892 \end{array} \right\rvert\,$	2,002	2,962	7.6	14,608 14	14,709	15,584	55
Lincoln	356	377	402	6.6	12	12,828	13,709	51	Bucks.	12.210	12.489	13,183	5.6	22,483	22,709	23,699	5
Logan	401	420	445	6.1	13,825	14,413	15,120	25	Butler	2,575	2,682	2,881	7.4	16,870	17,393	18,379	22
Love	103	110	117	6.0	12,678	13,377	13,971	44									
McClain	310	332	355	6.9	13,583	14,393	15,141	24	Cambria	2,40	2,522	2,645	7.9	-15,679		17, 23	29
MCCurtain	364	386	429	11.1	10,888	11,596	12.761	76	Carbon	876	905	969	7.0	${ }_{15,363}$	15	${ }_{16,691}$	35
Mcintosh Maior	193	110	214 120	7.1	14,065	11, 14.070	12,449 15,505	70 21	Centre.	1,893	2,001	2,124	6.2	15,254	15,954	16,780	34
Marshall	131	138	149	8.3	12,104	12,599	13,432	58	Chester	9,803	10,314	10,980	6.5	25,947	26,945	28,297	2
Mayes	428	442	463	4.7	12,787	13,043	13,492	55	Clarion	572	597	634	6.2	13,714	14,357	15,137	58
Murray	136	145	155	6.6	11,344	12,085	12.829	65	Clearrield	1,125	1,156	1,230	6.4	14,405	14,798	15,691	54
									Colum	4	51	561	9.0	13,356	13,821	4,998	60
Muskogee	868	896	947	5.8	12,722	13,089	13,787	48	Columbia	924	966	1.028	6.4	14,596	15,229	$\xrightarrow{16,202}$	45 52
Noble	157	159	168	5.4	14,240	14,382	15,177	23	Crawford...	1,253	1,290	1,370	6.2	14,536	14,906	15,792	52
Nowata Oktuskee	121	126 122	132 133	5.2	12,163 9,953	12,745	13,456 11,882	56 73	Cumberiand	3,951	4,130	4,356	5.5	20,171	20,783	21,662	
Oklahoma	10,524	10,891	11,552	6.1	17,541	17,995	18,854	5	Dauphin	4,709	4,958	5,239	5.7	19,751	20,633	21,645	9
Okmulgee ..	427	455	489	7.6	11,719	12.456	13,314	59	Delaware	12,343	12,774	13,470	5.5	22,527	23,276	24,513	3
Osage	501	532	550	3.3	12,057	12,761	13,050	63	Elk	571	597	642	7.6	16,387	17,062	18,274	24
Ottawa	401	420	444	5.8	13,117	13,747	14,570	33	Erie	4,478	4,682	4,983	6.4	16,235	16,856	17,819	25
Pawnee ...	203	207	216	4.3	13,060	13,348	13,865	46	Fayette	1.981	2.066	2,208	6.8	13,626	14,161	15,092	59
Payne	810	858	913	6.4	13,176	14,049	14,776	30	Forest	57 1,999	59 2,100	63 2,209	6.9 5.2	11,862 16,458	12,299	13,021 17,771	67 27
Pittsburg ...	497	529	567	7.1	12,232	12,855	13,545	54	Futton .	182	181	193	6.6	13,124	12,875	13,564	66
Pontotoc	435	454	475	4.6	12,758	13,381	14,091	42	Greene	506	526	564	7.2	12,806	13,270	14,204	63
Pottawatomie	758	801	851	6.3	12,888	13.595	14,369	36									
Pushmataha	103	111	121	9.0	9,424	10,110	10,996	74	Huntingdon	537	564	606	7.5	12,145	12,712	13,615	65
Roger Mills	56	57	61	6.1	13,605	14,099	15,360	22	Indiana	1,284	1,317	1,388	5.4	14,275	14,531	15,275	57
Rogers	812	879	936	6.5	14,671	15,529	16,164	16	Jefferson	681	703	753	7.0	14,772	15,221	16,296	43
Seminole	292	307 411	327	6.4	11,521	12,352	13,251	60	Juniata	295	305	324	6.4	14,240	14,617	15,385	56
Sequoyah ...	384 570	411	446	8.7	11,353	12,031	12,854	64	Lackawanna	3,744	3,896	4,133	6.1	17,098	17,835	19,003	15
Texas	260	292	303	3.8	15,806	17,977	18,763	${ }_{7} 7$	Lancaster	8,035	8,178	8,696	6.3	18,918	19,002	20,018	11
									Lebrance	1,424 1,926	1,473 1,995	2,122	6.4	14,790 16,887	17,326	16,165 18,321 1	${ }_{23}^{46}$
Tillman	138	124	144	16.0	13,371	12,164	14,389	35	Lehigh.	5,802	6 6,056	6,466	6.8	19,895	20,593	21,842	7
Tulsa ..	9,606	10,050	10,566	5.1	19,020	19,590	20,326	4	Luzerne.	5,536	5,732	6,115	6.7	16,851	17,421	18,589	19
Wagoner	641	673	706	4.9	13,342	13,815	14,259	39									
Washington	963	993	1,021	2.8	19,945	20,404	21,107	27	Lycoming	1,876	1,933	2,061	6.6	15,794	16,158	17,107	31
Washita	161	153	154	. 6	14,037	13,375	13.449	57	Mckean	673	712	755	6.0	14,229	15,049	15,949	51
Woods	144	141	156	10.9	15,861	15.750 13	17.571	10	Mercer ...	1,827	1,911	2,029	6.2	15,087	15,729	16,618	${ }^{36}$
Woodward ...	255	257	271	5.3	13,446	13,654	14,312	37	Miltlin ...	629	643	681	6.0	13,603	13,839	14,616	62
									Monroe	1,689	1,695	1,793	5.8	77,443	16,802	17,110	30
Metropolitan portion ..	49,161	51,701	55,286 40,831	6.9	17,201	18,7687	$\left.\begin{array}{l} 18,605 \\ 19,619 \end{array}\right]$	${ }^{\text {anc.i........... }}$	Montgomery	20,025	20,814	21,906	5.2	29,470	30,381	31,747	
Nonmetropolitan portion	12,991	13,548	14,455	6.7	15,075	15,448	16,236			4,558	4,708	$\begin{array}{r}1,025 \\ 5 \\ \hline\end{array}$	9.5 6.7	19,403 18,397	${ }_{18,815}^{20,96}$	22,742 19,911	6 13
									Northumberland	1,456	1,509	1,584	5.0	15,046	15,620	16,488	39
Baker	218	228	239	4.9	14,114	14,664	15,210	31	Perry ...	604	635	676	6.6	14,614	15,104	15,953	50
Benton	1,153	1,192	1,271	6.6	16,235	16,624	17,705	8									
Clackamas	5,541	5,842	6,255	7.1	19,732	20,203	21,068	3	Philadelphia	27,563	28,570	29,990	5.0	17,428	18,228	19,316	14
Clatsop.....	559	567	607	7.2	16,743	16,801	17,816	6	Pike ..	491	506	539	6.4	17,168	16,459	16,560	37
Columbia	591	636	668	5.0	15,614	16,427	17,009	13	Potter	229	244	265	9.0	13,687	14,447	15,742	53
Coos	895	920	986 244	6.1	14.812	15,262	15,934	23	Schuy\|kiil	2,378	2,453	2,600	6.0	15,578	16.070	17,013	32
Crook	205	221	244	10.3	14,413	15,028	16,129	21	Snyder	607	660	698	5.9	16,486	17,818	18,701	18
Curry	302	320	338	5.5		16,230	16,873	15	Somerset	1,150	1,190	1,278	7.4	14,699	15,133	16,232	44
Deschutes	1,339	1,430	1,542	7.8	17,609	17,775	18,305	9	Sullivan	89	91	98	7.2	14,549	14,984	16,018	48
Douglas	1,382	1,421	1,502	5.7	14,532	14,818	15,562	29	Susquehanna	596	618	659	6.6	14,713	15,092	16,065	47
Gilliam .	28		30	13.8	16,329				Tioga	542	580	617	$\stackrel{6.4}{6}$	13,147	14,101	14,833	61
Grant	116	122	129	6.4	14,760	15,243	16.474	19	Union	580	618	653	5.6	16,021	16,999	17,766	28
Harney.	106	106	111	4.5	14,988	15,158	15,939	22	Venango .	978	1,048	1,103	5.2	16,488	17,598	18,527	21
Hood River	262	279	290	4.0	15,475	16,511	16,814	16	Warren	756	797	838	5.2	16,795	17.687	18,558	20
	$\begin{array}{r}2,345 \\ \hline 187\end{array}$	$\begin{array}{r}2,472 \\ \hline 195\end{array}$	2.655	17.4	${ }_{13,548}^{15,920}$	16,410	17,230 15,190	${ }^{9} 2$	Washington	3,497	3.657	3.883	6.2	17.085	17,835	18,846	16
Jefferson				13.3	13,548	13,775	15,190	32									

Table 2.-Total Personal Income and Per Capita Personal Income by County, 1990-92-Continued

Area name	Total personal income				Per capita personal income ${ }^{3}$				Area name	Total personal income				Per capita personal income ${ }^{3}$			
	Millions of dollars			Percent change ${ }^{2}$	Doliars			Rank in State		Millions of dollars			Percent change ${ }^{2}$	Dollars			Rank in State 1992
	1990	1991	1992	1991-92	1990	1991	1992	1992		1990	1991	1992	1991-92	1990	1991	1992	
Wayne	636	651	691	6.1	15,831	15,856	16,475	40	Fall River	106	108	110	2.4	14,478	14,968	15.617	4
Westmoreland	6,260	6,630	7,030	6.0	16,896	17,835	18,783	17	Faulk	52	48	52	9.0	18,888	17,384	19,322	10
Wyoming	429	445	477	7.2	15,261	15,727	16,541	38	Grant.....	132	138	142	3.0	15,787	16,620	17,004	33
York	6,427	6,643	6,988	5.2	18,863	19,225	19,970	12	Gregory	83	83	88	6.1	15,471	15,799	16,871	36
Rhode Island	19,121	19,411	20,304	4.6			20.276		Haakon	51	51	48	-6.2	19,754	19,809	18,798	12
Metropolitan portion.......	17,372	17,656	18,488	4.7	18,942	19,273	20,214	Hamlin	84	78	79	-7.1	- 19,769	19,898	18,628	17
Nonmetropolitan portion	1,749	1,755	1,815	3.4	20,009	20,037	20,931	Hanson.	36	35	41	17.9	12,104	11,780	13,965	56
Bristol	1,097	1,086	1,134	4.4	22,453	22,228	23,220	1	Harding	26	26	26	-. 7	15,402	15,904	16,211	41
Kent ...	3.180	3,217	3,392	5.4	19,707	19,871	20,876	3	Hughes	236	253	270	7.0	15,931	16,948	17,768	23
Newport	1,749	1,755	1.815 11.636	3.4	20,009	20,037	20,931	2	Hutchinson...	127	125	140	12.5	15,407	15,399	17,529	25
Providence	10,918	11,137	11,636	4.5	18,303	18,753	19,702	5	Hyde	30	30	28	-4.4	17,807	18,062	17,291	30
Washington	2,177	2,216	2,326	5.0	19,721	19,882	20,641		Jackson........	30	30	31	3.7	10,708	10,672	10.823	62
South Carolina	52,85	55,130	58,410	5.9	15,101	15,484	16,212		Jerauid	49	49	49	9	20,426	20,497	20,763	3
Meropolitan portion....	38,636	40,304	42,606	5.7	15,878	16,240	16,947		Jones	27	26 97	24	-8.2 2	20,259	19,863 16,64	18,786	13
Nonmetropolitan portion	14,218	14,827	15,803	6.6	13,330	13,745	14,515			-92	$\begin{array}{r}97 \\ 174 \\ \hline\end{array}$	99 180	2.5 3.9	15,577	16,664 16,525	17,044 17,038	31 32
Abbeville	287	296	321	8.3	11,984	12,339	13,338	29	Lawrence	298	314	337	7.1	14,379	14,953	15,791	42
Aiken	2,091	2,207	2,397	8.3	17,160	17,522	18,595	2									
Allendale ...	112	120	128	6.2	9,522	10,193	10,890	46	Lincoln ..	259	273	296	8.5	16,760	17,588	18,710	14
Anderson.	2,170	2,227	2,382	6.9	14,906	15,210	16,063	11	Michan	82	82	92	-4.7	16,622	17.600	16.5297	38
Bamberg	178	185	203	9.4	10,575	10,933	11,939	$4{ }^{4}$	McPook	82 50	82 52	92 56	12.1	14,408 15.598	14,540	18,496	18 18
Barnwell .	273	285	312	9.6	13,382	13,765	14,796	20	Marshall	94	${ }_{92}$	966	3.8	19,489	19,406	20,165	6
Beaufort.	1,641	1,698	1,800	6.0	18,848	19,030	19,596	${ }^{1}$	Meade	306	319	341	6.7	13,987	14.198	14,636	53
Berkeley.	1.659	1,733	1,803	4.1	12,806 13,217	12.992 13 17.708	13,240 14,184	32 25	Mellette	25	23	22	-3.2	11,955	10,770	10,570	64
Cahoun Charleston.	4,958	5,210	5,466	4.9	16,759	17,149	17,947	6	Miner ...	52	54	56	3.8	15,792	16,798	18,022	22
									Minnehaha	2,266	2,422	2,623	8.3	18,216	19,067	20,179	5
Cherokee	579	589	632	7.3	12,978	13,052	13,861	27	Moody	115	124	116	-6.1	17,662	18,852	17,447	26
Chester .-...............................	385	396	428	8.2	11,942	12,162	13,177	34									
Chesterfield	484	502	557	11.0	12,536	12,849	14,290	24	Pennington ...	1,248	1,348	1,436	6.5	15,279	16,102	16,896	35
Clarendon	301	318	336	5.7	10,564	11,038	11,602	43	Perkins	73	75	76	1.9	18,828	19,695	20,304	4
Colleton	419	436	465	6.8	12,133	12,391	13,075	35	Potter	56	54	59	9.2	17,67	16,991	18,9	11
Darington	840	893	957	7.1	13,538	14,236	15,034	17	Roberts	128	125	137	9.9	12,942	12,825	14,214	54
Dillon	317	334	356	6.5	10,881	11,430	12,086	39	Sanborn	48	47	49	3.8	17,041	16,821	17,568	24
Dorchester	1,227	1,282	1,314	2.5	14,648	14,805	14,966	18	Shannon	60	65	72	9.6	6,001	6,366	6,826	66
Edgefield .	234	248	264	6.4	12,702	13,385	14,156	26	Spink ...	161	165	171	3.6	20,265	20,842	21,720	2
Fairfield	270	276	297	7.8	12,111	12,269	13,270	31	Stanley	40	40	41	9	16.443	16,419	16,536	37
									Sully	50	50	53	. 5	31,601	32,265	33,851	1
Florence	1,696	1,793	1,920	7.0	14,786	1,352		9	Todd	61	67	69	. 0	7,21	7,951	4	6
Georgetown.	673	702	746	6.3	14,427	14,681	15,260	16									
Greenville	5,625	5.831	6,084	4.3	17.492	17,980	18,574	3	Tripp	105	108	108	2	15,238	15,456	15,625	43
Greenwood ...	884	912	971	6.4	14,836	75,168	16.029	13	Turner	152	150	168	12.0	17,669	17,785	19,840	
Hampton	219	223	237	6.6	12,036	12,160	12,855	36	Union	166	182	195	7.3	16,291	17,624	18,704	15
Horry	2,200	2,316	2.443	5.5	15,182	15,524	16,040	12	Walworth	95	98	104	6.0	15,814	16,759	18,079	21
Jasper	179	185	201	8.7	11,563	11,810	12,772	37	Yankton	298	320	347	8.4	15,415	16,257	17,447	27
Kershaw ...	660	685	713	4.1	15,143	15,503	15,870	15	Ziebach	27	28.	27	4.8	12,042	13,210	12,580	58
Lancaster ...	753	777	819	6.2	13,775	13,969	14,817	19									
Laurens	826	877	941	7.3	14,181	14,947	15,906	14	Tennessee	77,786	81,831	88,816	8.5	15,903	16,524	17,674	
									Metropolitan portion	57,401	60,414	65,458	8.3	17,354	18,031	19,227	
Lee .-	187	202	211	4.6	10,124	10,884	11,286	44	Nonmetropolitan portion	20,384	21,418	23,359	9.1	12,873	13,371	14,411	
Lexington	2,950	3,091	3,261	5.5	17,463	17,830	18,338	5									
MCCormick	88	92	100	8.2	9,964	10,367	11,082	45	Anderson	1,111	1,203	1,311	8.9	16,244	17,366	18,587	
Marion	385	412	440	6.9	11,362	11,985	12,727	38	Bediord	442	458	495	8.1	14,461	14,738	15,589	28
Marlboro	305	343	353	3.1	10.373	11,577	11,924	42	Benton..	189	208	210	1.1	12,989	14,024	13,945	52
Newberry	436	456	483	5.9	13,127	13,641	14,447	22	Bledsoe.	103	105	113	8.0	10,587	10,791	11,588	91
Oconee	901	919	954	3.8	15,603	15,757	16,182	10	Blount..	1,308	1,416	1,546	9.2	15,156	16,015	17,098	15
Orangeburg	1.076	1.111	1,196	7.7	12,667	12.908	13,773	28	Bradiey	1,125	1,173	1,281	9.2	15,210	15,648	16,868	17
Pickens	1,314	1,357	1,423	4.9	13,913	14,009	14,425	23	Campbell	373	388	422	8.8	10,604	10,969	11,846	86
Richland	4,948	5,132	5,455	6.3	17,266	17,621	18,553	4	Cannon ...	137	146	161	10.0	13,001	13,746	14,944	38
			240	4.1	13,259	14,132	14,608	21	Carroll	350 600	370	405	9.4	12,685	13,370	14,643	44
Spartanburg	3,514	3.668	3,932	7.2	15,447	15,921	16,887	8	Caner	60	0	686	7.8	1,656	12,279	13,76	63
Sumter	1,243	1,309	1,388	6.0	12,081	12.523	13,171	33	Cheatham	370	388	425	9.3	13,541	13,863	14,743	43
Union	361	373	406	8.8	11,918	12,258	13,289	30	Chester	131	137	151	10.3	10,171	10.663	11,673	88
Wiliamsburg	391	415	445	7.1	10,632	11,232	12.004	40	Claborne	291	308	340	10.3	11,115	11,575	12,559	77
York	2,229	2,308	2,448	6.0	16,848	17,073	17,838	7	Clay	82	87	94	7.9	11,292	12,119	13,016	67
South Dakota									Cocke	329	354	396	11.7	11,261	12,095	13,412	59
South Dakora ...	10,888	11,427	12,183	6.6	15,628	17,286	17,198		Coffee ...	637	664	726	9.2	15,722	16,166	17,429	11
Metropolitan portion	3,772	4,043	4,355	7.7	17,032	17,868	18,869		Crockett ...	178	192	215	11.7	13,330	14,356	16,180	20
Nonmetropolitan portion	7,115	7,364	7,828	6.0	14,974	15,534	16,390	Cumberiand	431	446	486	9.1	12,324	12,363	13,234	61
Autora ...	42	42	46	9.7	13,603	13,752	15,257		Davidson	10,070	10,628	11,533	8.5	19,700	20,721	22.273	2
Beadle ..	293	297	313	5.2	16,032	16,484	17,427	28	Decatur	116	122	132	8.9	11,086	11,639	12,739	71
Bennett	39	38	38	-1.2	12,201	12,205	12,363	59	DeKald ...	192	205	224	9.4	13,294	14,138	15,320	
Bon Homme	100	105	118	12.6	14,165	14,934	16,978	34	Dickson	498	521	569	9.1	14,108	14,528	15,583	29
Brookings	337	367	398	8.5	13,342	14,470	15,491	46	Dyer	517	525	568	8.2	14,796	15,059	16,287	19
Brown	597	623	662	6.3	16,818	17,526	18,641	${ }_{5}^{16}$	Fayette ...	316	340	370	8.8	12,343	13.190	14,233	48
Brule	80	80	85	5.7	14,580	14,435	15,135	51	Fentress	151	167	184	10.1	10,297	11,322	12,345	80
Buftaio	19	21	21	. 7	10,713	11,682	11,698	60	Franklin	455	475	515	8.5	13,085	13,518	14,586	45
Butte	99	105	112	6.5	12,520	12,845	13,393	57	Gibson ...	641	672	742	10.3	13,816	14,511	15,986	23
Campbell	30	35	39	11.1	15,359	18,051	20,144	7	Giles	365	392	426	8.8	14,135	14,892	15,975	24
	126	131	143	9.5					Grainger	181	191	212	10.9	10,533	10,908	11,910	84
Clark	78	79	84	6.5	17,773	18,330	19,379	9	Greene	732	750	794	5.8	13,073	13,266	13,867	54
Clay	167	178	195	9.3	12,667	13,575	14,802	52		137	146	156	6.				
Codington	346	373	403	7.9	15,187	16,278	17,343	29	Hamblen ...	721	755	824	9.1	14.230	14,865	15,948	20
Corson	41	45	47	5.8	9,768	10,667	11,126	61	Hamilton ...	5,268	5,385	5,730	6.4	18,443	18,731	19,853	4
Custer	91	97	103	6.7	14.818	15.683	16.219	40	Hancock ...	56	61	68	12.5	8,344	9,147	10.150	94
Davison	281	295	321	8.8	16,033	16,912	18,369	19	Hardeman ...	271	290	312	7.4	11,579	12,339	13,111	65
Day	106	102	106	3.4	15,262	14.859	15,570	45 55	Hardin ..	260	277	303	9.3	11,466	11,929	12,891	69
Deuel	60 54	57	64	6.8 4.3	13,234 9	13,217 10218	14,185	55 63	Hawkins	590	627	679	8.3	13,230	13,834	14,767	41
Dewey	54	57	60	4.3	9,769	10,218	10,742	63	Haywood	238	263	294	11.7	12,278	13,527	15,080	35
									Henderson	270	280	307	9.4	12,318	12,810	13,861	55
Edmunds \qquad	74	54 71	56 78	9.9	$\begin{aligned} & 13,242 \\ & 17,096 \end{aligned}$	14,596 16,655	$\begin{aligned} & 15,468 \\ & 18,122 \end{aligned}$	$\begin{aligned} & 48 \\ & 20 \end{aligned}$	Henry	381	394	431	9.4	13,632	14,051	15,221	32

Table 2.-Total Personal Income and Per Capita Personal Income by County, 1990-92—Continued

Area name	Total personal income				Per capita personal income ${ }^{3}$				Area name	Total personal income				Per capita personal income ${ }^{3}$			
	Milions of dollars			Percent change ${ }^{2}$ 1991-92	Dollars			Rank in State 1992		Mililions of dollars			Percent change ${ }^{2}$ 1991-92	Dollars			Rank in State
	1990	1991	1992		1990	1991	1992			1990	1991	1992		1990	1991	1992	
Hickman.	197	208	224	7.4	11,667	12,057	12,728	72	Cameron	2,51	2,68	2,968	10.8	9,590	9,923	10,649	242
Houston.	75	80	84	4.3	10,672	11,369	11,640	89	Camp.	161	172	189	10.1	16,255	17,140	18,663	45
Humphreys	199	209	222	6.6	12,582	13,213	14,022	50	Carson.	106	109	123	12.8	16,193	16,833	19,039	38
Jackson	102	107	116	8.7	10,907	11,663	12,791	70	Cass.....	396	419	445	6.3	13,204	13,931	14,851	175
defferson	431	453	490	8.2	13,028	13,345	14,100	49	Castro....	160	163	166	1.9	17,796	18,495	19,008	40
Johnson	5132	142 6432	152 6813	6.5	9,582	-9,482	9,966	95	Chambers	302 505	326	338	3.5	15,015	16,032	16,433	100
Knox	5,937	6,323 74	6,813 8	7.8	17,634	18.491	${ }^{19,601}$	$\begin{array}{r}5 \\ 8 \\ \hline\end{array}$	Cherokee ...	555	581	627	7.9	13.552	14,355	15,558	144
Lakderdal	275	286	${ }^{87}$	17.4	10,642	10,498 12,181	11,6611	83 58	Childress	91 149	88 146	102	15.9	15,267 14.931	14,836 14941	16,535 16361	97 103
Lawrence	465	508	553	8.8	13,134	14,139	15,177	34	Clay Cochran \qquad	149 66	$\begin{array}{r}146 \\ 64 \\ \hline\end{array}$	${ }^{158} 7$	8.1 17.4	$\left.\begin{aligned} & 14,931 \\ & 14,991 \end{aligned} \right\rvert\,$	$\begin{aligned} & 14,941 \\ & 15,304 \end{aligned}$	$\begin{aligned} & 16,361 \\ & 17,873 \end{aligned}$	103 62
Lewis	109	110	124	12.2	10,918	11,475	12,592	75	Coke	44	47	50	6.2	12,987	13,97	15.023	167
Lincoln	386	389	425	9.4	13,689	13,727	14,951	37	Coleman	123	123	135	9.8	12,717	13,144	14,363	196
	457	${ }_{585}^{478}$	518	8.3	14,530	${ }^{14,818}$	15,569	30 47	collin ...	6,231	6,606	7,087	7.3	23,372	23,748	24,363	6
McMinn ...	$\stackrel{574}{283}$	295	627 316	8.2	${ }^{13,575}$	13,663	14,3949	47 51	Collingsworth....	57	52	61	18.6	15,957	14,846	17,662	66
Macon ...	189	201	223	10.6	11,864	12,492	13,630	57	Colorado	280	297	- 304	2.3	-15,271	${ }^{16,308}$	16,656	94 34
Madison	1,206	1,267	1,391	9.8	15,418	16,032	17,340	12	Comanche	203	195	211	8.4	15,152	14,755	16,008	124
Marion	315	330	351	6.4	12,640	13,126 1584	${ }^{13,878}$	53	Concho ...	41	37	46	22.9	+3,543	12,314	15,230	158
Marshall	331 802	356 887	398 987	111.7	15,239 14,496	15,844 15.257	17,315 16,517	13 18	Cooke ...	454	468	499	6.6	14,649	15,268	16,116	114
Maury	802	887	987	11.3	14,496	15,257	16,517		Coryell ..	622	604	705	16.7	9,670	9,808	10,971	238
Meigs	$\begin{gathered} 95 \\ 340 \end{gathered}$	$\begin{array}{r} 98 \\ 361 \end{array}$	$\begin{aligned} & 106 \\ & 395 \end{aligned}$	$\begin{aligned} & 8.3 \\ & 9.5 \end{aligned}$	$\left\|\begin{array}{l} 11,709 \\ 11,08 \end{array}\right\|$	$\begin{aligned} & 11,852 \\ & 11,685 \end{aligned}$	$\begin{aligned} & 12,611 \\ & 12,602 \end{aligned}$	$\begin{aligned} & 73 \\ & 74 \end{aligned}$	Cottle ...	34	33	37	10.6	15,300	15,630	17,793	63
Montgomery	1,318	1,413	1,635	15.7	12,976	13,704	${ }^{14,868}$	39	Crane	60	63	64	2.1	12,987	${ }^{13,305}$	13,823	209
Moore .	59	62	67	7.3	12,613	12,944	13,659	56	Crockett ...	59	63	66 108	6.1	14,486	15,159	16,289	105
Morgan	173	187	207	10.3	9,974	10,763	11,675	87	Culberson	32	30	32	6.5	9,394	9,244	9,981	245
Obion	486	482	533	10.6	15,309	15,199 1099	16,889	16 82	Dallam	107	123	129	5.1	19,596	22,201	23,190	10
Perry	186 75	78	24	9.6	11,270	11.612	12,579	${ }_{76}^{82}$	Dallas ...	39,390	41,802	44,812	7.2	21,172	22,097	23,420	8
Pickett	50	55	59	7.1	11,050	12,169	12,970	68	Dawson	224	180	225	24.5	15,658	12,737	15.967	124
Polk ..	160	169	183	8.0	11,694	12,291	13,152	64	$\begin{aligned} & \text { Deat Smith } \\ & \text { Delta } \end{aligned}$	312 67	${ }^{331} 70$	336 75	7.7	$\left.\begin{aligned} & 16,253 \\ & 13,936 \end{aligned} \right\rvert\,$	$\begin{aligned} & 17,587 \\ & 14,665 \end{aligned}$	$\begin{aligned} & 17,910 \\ & 16,072 \end{aligned}$	+617
Putnam	746	784	851	8.5	14,446	15,011	16,000	22									
Rhea	299	305	330	7.9	12,265	12,354	13,040	66	Denton	5,092	5,354	5.781	8.0	18,443	18.814	19,614	28
Roane	674	710	770	8.5	14,274	14,874	16,016	21	Dickens	,	35	38	8.2	14.615	14,466	15,720	135
Robertson	- 9929	-623	687 2301	10.4	${ }^{14,202}$	14,584 16.492	17,714	27 8	Dickens	86	92	97	5.8	8,291	8,593	9,213	249
Scott ..	1.97	$\begin{array}{r}2,048 \\ \hline 206\end{array}$	2,224	8.6	10,706	11,095	11,888	85	Donley ...	62	62	67	6.5	16,775	17,708	19,020	39
Sequatchie	105	113	122	7.3	11,784	12,575	13,245	60	Duval	119	123	139	12.7	9,272	9.643	10,902	239
Sevier ...	750	779	861	10.5	14,612	14,671	15,749	26	Eastland ...	${ }^{236}$	245	260	6.2	12,832	13,448	14,561	192
Shelby	15,460	16,118	17,274	7.2	18,671	19,281	20,447	3	Ector E.i...	1,664	1,761	1,820	3.3	14,007	14,600 12985	14,888	173
Smith	193	203	219	7.8	13,607	14,185	15,210	33	Edwards Ellis \qquad	$\begin{array}{r}1,322 \\ \hline\end{array}$	1,29 1,406	1.548	6.5 10.1	15,483	16,254	17,577	$\underline{68}$
Stewart	111	119	127	6.5	11,697	12,371	12,524	78									
Suilivan	2,348	2,458	2,610	6.2	16,321	16,956	17,794	10	El Paso	6,863	7,124	7,854	10.2	11,508	11.615	12.497	230
Sumner	1,688	1,766	1,922	8.9	16,270	16,737	17,807	9	Erath.	436	435	472	8.5	15,547	15,374	16,587	93
Tipton....	507	543 68	${ }_{74} 7$	8.7 9.3	13,393 10,95 1	14,090	15,044	36 79	$\stackrel{\text { Fals }}{\text { Fannin }}$	346	228 360	387	4.7	13,962	14,754	15.983	${ }_{122}$
Unicoi ..	220	230	249	7.9	13,313	13,926	14,808	40	Fayette	323	344	369	7.1	16,137	17,360	18,411	50
Union	136	146	163	11.4	9,915	10,473	11,579	92	Fisher ..	73	60	74	23.7	15,234	13,020	16,414	101
Van Buren	45	46	50	7.6	9,318	9,421	10,157	93	Floyd...	149	144	145	1.0	17,616	16,946	17,186	75
Warren	431	446	486	8.9	13,020	13,344	14,510	46	Foard.	34	888	33	14.7	18,874	16,701	19,831	${ }^{26}$
Washington	1,427	1,502	1,633	8.7	15,405	15,985	17,199	14	Fort Bend	4,386	4,778	5,188	8.6	19,204	19,765	20,283	23
Wayne	149	162	182	12.6	10.641	11,430	11,965	81	Frank	111	115	124	8.5	14,084	14,478	15,572	43
Weakley	414	427	471	10.4	12,931	13,341	14,753	42	Freestone	212	225	244	8.3	13,403	14,329	15,609	140
White	238	249	271	8.9	11,836	12,250	13,221	62	Frio	141	149	162	9.0	10,379	10,289	10,661	241
Williamson	1,900	2,089	2.318	11.0	23,221	24,524	26,149	1	Gaines	195	168	202	20.1	13.841	11,836	14,141	201
Wilson	1,100	1,158	1,294	11.7	16,174	16,618	18,181	7	Galveston	3,787	4,023	4,317	7.3	17,344	18,032	18,928	42
Texas	285,497	302,627	326,016	7.7	16,747	17,440	18,437		Garza	272	$\stackrel{60}{297}$	318	78.2	12,145		14,466	
Metropoiltan portion	246,922	262,586	283,066	7.8	17,353	18,075	19,074		Glasscock	27	24	30	27.4	18.492	16,369	21,129	19
Nonmetropolitan portion	38,575	40,041	42,951	7.3	13,690	14,178	15,110	,	Goliad	76	81	86	5.8	12,657	13,432	14,157	200
									Gonzales..	231	247	271	9.6	13,488	14,367	15,846	127
Anderson	558	580	${ }_{6}^{624}$		$\left.\begin{aligned} & 11,643 \\ & 18763 \end{aligned} \right\rvert\,$	12.124		$\begin{aligned} & 221 \\ & 170 \end{aligned}$	Gray	419	30	46	7.0	17,631	18,288	19,647	27
Andrews	r 197	r,096	$\begin{array}{r}1.155 \\ \hline 1.165\end{array}$	7.2 6.3	${ }^{13,763}$	13,790 15.499	14,747 16,181	179 110	Grayson	1,527	1,582	. 656	4.7	16.073	16.578	17,418	69
Aransas ...	257	276	293	6.2	14,409	14,975	15,323	154	Gregg	1,815	1,903	2,040	7.2	17,272	17.801	18,900	43
Archer	129	128	139	9.1	16,234	16,464	18,090	56	Grimes.	239	245	260	6.1	12.663	12.843	13,432	217
Armstrong	${ }^{32}$	372	${ }^{38}$	14.0	15.869	17.018	19,436	33	Guadalupe	910	965	1,051	9.0	13,994	14,671	15,783	129
${ }_{\text {Austin }}^{\text {Atascosa }}$	358 320	372 328	405 345	8.6	11,717 16.067	11,941 16.201	12,853 16.654 1	224	Hale	513	500	518	3.6	14,796	14,398	14,721	180
	116	120	119	$\stackrel{5}{-3}$	16,565	17,309	17.592	97	Hall	${ }^{61}$	+125	+139	15.0	${ }^{15,625}$	13,218 1056	15,437 18,10	148
Bandera ...	168	178	189	5.9	15,813	16,533	17,000	83	Hanstord	141	148	161	8.7	24,175	26,145	28,701	3
Bastrop	49	533	580	8.8	13.053	13		185	Hardeman.	81	7	82	8.5	15,45	15.27	16,535	98
Baylor	71	68	74	9.5	16,168	16.016	17,758	64		5	625	674	7.9	13,870	14,74	15,49	146
Bee ..	290	304	317	4.2	11,599	12,051	12,823	226	Harris	57,080	61,644	66,265	7.5	20,140	21,217	22,298	14
Bell ..	2,676	2,715	3.087	13.7	13,982	14,338	16,196	109	Harrison ..	789	822	877	6.7	13,731	14,405	15,346	153
Bexar	18,553	19,683	21,365	8.5	15,618	16,311	17,326	70	Hartley ...	99	105	112	6.8	27,303	28.987	30.630	-
Bosque	216	217	232	6.7	14,260	14,414	15,262	156	Hays	${ }_{63}$	949	1,043	4.4	${ }_{16,990}$	19.039	20.958	20
Bowie	1,271	1,305	1,378	5.6	15,529	15.935	16,751	88	Henderson ...	776	808	874	8.2	13,245	13,705	14,615	190
Brazoria	3,243	3,464	3,604	4.0	16,837	17.402	17,681	65		3,487	3,771	4.126 407	9.4	${ }^{9} \mathbf{9}, 008$	-9,386	9,802 14891	246
Brazos	1.522	1,617	1.743	7.7	12,481	13,173	13,923	208	Hockley .	310	326	${ }_{361}$	10.9	12,810	13,359	14,702	181
Brewster	114	114	119	4.4	13,191	13,431	13,777	210									
Briscoe	377	33	37	11.1	19,237	17,838	19,557	30	Hood........	517	556	606	8.9	17,884	18,448	19,485	32
Brooks	77	81	89	9.4	9,453	10,052	10,855	240	Hopkins	441	447	498	11.4	15,326	15,477	17,223	72
Brown	448	464	496	6.8	${ }^{13,068}$	13.465	14,510	193	Houston	304	316	335	6.0	14,243	14,828	15,724	134
Burleson	179	190	207	8.5	${ }^{13,122}$	13,929	14,831	${ }^{176}$	Howard	484	492	515	4.8	15,031	15,302	16,024	119
Burnet	${ }_{313}$	330	393 360	9.8	${ }^{15,518}$	16.501 12.44	17,040	$\begin{array}{r}81 \\ 218 \\ \hline 18\end{array}$	Hudspeth	28	22	26	18.6	9,559	7,438	8.684	251
	262	273	293	7.3	13,724	14,038	14,567	191		430	-1,009	+1,072	2.2	${ }_{6} 6,835$	178.854	18,507	48
Callahan	154	160	173	8.4	13,109	13,551	14,619	189	Tuanson								

See footnotes at end of table.

Table 2.-Total Personal Income and Per Capita Personal Income by County, 1990-92—Continued

Table 2.-Total Personal Income and Per Capita Personal Income by County, 1990-92-Continued

Area name	Total personal income				Per capita personal income ${ }^{3}$				Area name	Total personal income				Per capita personal income ${ }^{3}$			
	Milions of dollars			$\begin{array}{\|c\|} \hline \begin{array}{l} \text { Cercent } \\ \text { change } \end{array} \\ \hline 1991-92 \end{array}$	Dollars			Rank in State 1992		Milions of dollars			Percent Change ${ }^{2}$ 1991-92	Dollars			Rank in State 1992
	1990	1991	1992		1990	1991	1992			1990	1991	1992		1990	1991	1992	
Caledonia	409	421	459	9.0	14,615	14,958	16,236	10	Independent Cities:								
Chittenden	2,661	2.731	2.876	5.3	20,151	20.510	21,430	$1{ }^{1}$	Alexandria	3387		3706		42	, 95	61	
Essexk...	602	618	670	8.8	14,962	15,127	16,171	14 11	Chesanoeake	2,595	2,756	2,940	6.7	16,914	17,324	17,712	34
Grand isle	96	100	106	6.8	17,873	17,988	18,919	5	Hampton.	2,027	2,156	2,268	5.2	15,119	15,896	16,551	49
Lambille ...	335	347	374	7.8	16,890	17,093	18,227	7	Newport News.	2,648	2,769	2,949	6.5	15,50.	16,109	16,632	47
Orange	387	390	419	7.4	14,694	14,680	15,627	12	Noriolk	3,878	4,011	4,267	6.4	14,851	15,869	16,815	45
Oreans	336	346	373	7.6	13,919	14,232	15,226	13	Portsmouth	1,534	1,607	${ }^{1} .6895$	5.5	14,778	15,506	16,237	55
Rutland	1.027	1,060	1,125	6.1	16,502	16,990	18,009	8	Roanoke	1,759	1,804	1,937	7.4	18,200	18,563	20,024	20
Washington ...	明	980	1,038	6.0	17,592	17,770	18,729	6	Sutfolk	830	874	915	4.7	15,867	16,571	17,182	41
Windham	762	778	, 842	8.3	18.295	18.772	20.236	2	Virginia Beach	7,495	7,890	8.429	6.8	18,928	19,508	20,210	15
Windsor	1,013	1,025	1,086	5.9	18,717	18,890	19,977	4									
Virginia	121,397	126,206	133,534	5.8	19,543	20,071	20,883		reas: ${ }^{5}$								
Metropoitan portion.................	100,583	104,820	110,959	5.9	20,979	21,568	22,396		Albemarle + Charlotesville	2,189	2,293	2,411	5.1	20,124	21,015	22,128	11
Nonmetropolitan portion	20,813	21,386	22,575	5.6	14,685	14,976	+5,677		Alleghany, Cifton Frg. + Covington	65	78	98	5.3	14,735	15,327		53
Accomack	464	472	496	5.1	14,649	14,813	15.504	69	Augusta, Staunton + Waynesboro	1,676	1,690	1,764	4.4	17,096	17,096	17,707	35
Amelia	133	137	145	5.5	15,083	15,338	15,735	63	Bediord + Bediord Cily	887	929	982	5.7	17,052	17,442	17,991	31
Amherst	${ }_{178}^{382}$	391 185	408 195	4.4	13,326	13,562 14.797	14,050 15250 15	91 67	Campbell + Lynchburg	1,909	1,946	2,038	4.7	16,776	17,015	17,753	${ }^{33}$
Appomattox Arington	178 5.166	185 5,337	195 5,640	5.2 5.7	14,493	14,797	15,530 32,872	67 1	Carroll + Galax \qquad Dinwiddie, Col. Ats. + Petersburg	420 1,279	432 1,322	460 1,387	6.3 5.0	12,599 16,936	12,925	13,676 18,040	95 29
Bath	80	83	89	6.8	16,699	17.480	18,648	26	Faiffax, Fairfax City + Falls								
Bland	78	80	84	5.6	11,933	12,251	12,690	103	Church	24,591	26,105	27,674	6.0	28,895	30,088	31,204	3
Botetourt	398 188	415	442	${ }_{3.3}^{6.3}$	15,885	16,268	17,10	43 104	Frederick + Winchester	1, 199	1,226	1,290		17.504	17,592	18,205	28
Brunswick	458	466	491	5.4	14,655	14,717	15,509	68	Greensville + Emporia	199	217	229	5.6	14,062	13,825	13,607	97
									Halifax + South Boston ..	487	500	528	5.5	13,491	13,888	14,522	86
Buckingham	163	172	183	6.1	12,623	13,251	14,053	90	Henry + Martinsville	1,215	1,211	1,278	5.5	16,622	16,603	17,537	36
Caroline	284	${ }^{286}$	303	5.8	14,697	14,441	15,078	78	James City + Williamsturg	941	984	1,035	5.2	20,142	20,546	21,095	13
Charles City \qquad	$\begin{array}{r}93 \\ 145 \\ \hline\end{array}$	$\begin{array}{r}95 \\ 150 \\ \hline 1\end{array}$	101 159	6.1	14,717 12,364	15.117 12.687	${ }_{1}^{15,438} 8$	62 98	Montgomery + Radford	1,169	1,182	1,238	4.7	12,972	13,166	13.657	96
Chesterfield	4,543	4,635	4,878	5.3	21,493	21,239	21,660	12	Pitrsylvana + danvileelil	${ }^{1} 769$	1.614 798	${ }_{845}$	6.4	15,173	15,990	16,369	51
Clarke	224	232	242	4.1	10,516	19,374	20,170	17	Pr. William, Manassas +								
Craig ..	58	60	63	4.6	13,234	13,386	14,065	89	Manassas Park	4,855	5,053	5,365	6.2	19,239	19,534	20,100	18
Culpeper	498	506	523	3.5	17,708	17,640	17,963	32	Roanoke + Salem .-	2,142	2,175	2,296	5.6	20,761	20,954	22,139	10
Cumberland	117	124 227	129 245	4.0	14,925 12,138	15,853 12,811	16,393 13,788	50 94	Rockbridge, Buena Vista +								
Dickenson	213	227	245	7.7	12,138	12,811	13,788	94	Lexington \qquad Rockingham + Harrisonburg \qquad	451 1,423	469 1,498	1,5997	$\begin{aligned} & 4.4 \\ & 6.6 \end{aligned}$	14,180 16.057	$\left.\begin{array}{\|l\|} 14,673 \\ 16,737 \end{array} \right\rvert\,$	$\begin{aligned} & 15,230 \\ & 17,525 \end{aligned}$	73 37
Essex	+1933	138	+149	7.4	${ }^{15,260}$	15.762	16,701										
Fauquier	1,155	1,190 171	1,236 178 1	$\begin{aligned} & 3.9 \\ & 3.9 \end{aligned}$	23,581	23,961	24,389 14240	87	Southampton + Frankin	40	418	440	5.3	15,732	16.523	17,209	40
Fluvanna	198	207	222	7.0	15,721	15,590	15,853	80	Spotsyvania + Fredricksburg	1,419 ${ }_{948}$	1,452	1,543	6.3 5.4	18, 14.724	18,163 15,254	18,753	24 57
Frankin	568	577	618	7.2	14,298	14,228	15,107	77	Wise + Norton ...	635	663	,705	6.4	14,491	15,067	15,965	58
Giles	234	239	250	4.7	14,311	14,610	15,272	72	York + Poquoson	1,054	1,114	1,176	5.5	19,615	19,915	20,203	16
Gloucester	484	506	536	6.0	15,986	16,488	17,137	42									
Goochland	328	340	361	5.9	23,088	23,372	24,054	8	Washington	94,420	100,758	109,485	8.7	19,268	20,087	21,289	
Grayson	194 149	201 154	214 164	6.5 6.4	11,917 14,347	12,466 14,084	13,24 14,206	101 88	Metropolitan portion....... Nonmetropolitan portion	81,190 13,230	86,711	94,300 15186	8.8	19,987	20,831	22,084	
									Nonmetropolitan portio	13,230	4,046	4,186		15,807	17,450	17,400	
Hanover.	1,266	1,280	1,353	5.7	19,843	19,486	19,972	21	Adams	248	239	267	12.1	18,213	17,034	18,693	14
Henrico	5,155	5,305	5,564	4.9	23,604	24,073	24,933	4		267	291	315	8.2	15,069	16,132	17.010	${ }^{26}$
Highland.......	$\begin{array}{r}39 \\ 414 \\ \hline 9\end{array}$	40 437	41	2.8	14,629	15.509	15,926	59	Benton	2,000	2.192	2.423	10.5	17,621	18.821	20,122	5
isle of Wight King and Queen	414 97	400 100	455 110	10.1	15,448	17,806	17,405	39 38	Chelan	909	983	1,065	8.3	17,369	18,550	19,732	7
King George ...	249	261	270	3.4	18,245	18,699	18,851	22	Clark	4,305	4,537	4,909	8.6	17,288	${ }_{18,004}$	18,532	15
King William	197	204	217	6.3	17,901	18,208	18,756	23	Columbia.	69	67	74	11.0	17,268	17,191	18,757	12
Lancaster	${ }^{236}$	247	254	2.8	21,619	22.660	23,286	5	Cowlitz	1,374	1,485	1,541	3.7	16,663	17,659	18,102	18
Lee ...	267	${ }^{278}$	300	8.1	10,917	11,405	12,34	105	Douglas	396	429	480	12.0	15,001	15,513	16,823	28
Loudoun	2,141	2.198	2,332	6.1	24,587	24,403	24,743	6	Ferry ..	83	析	91	5.2	13,038	13,178	13,476	39
Louisa	309	313	331	5.8	15,084	14,960	15,424	70	Franklin.	538	584	633		14,272	14,920	15,620	
Lunenberg	146	147	154	4.7	12,807	12,772	13,477	100	Garield	42	41	43	4.8	18,921	18,378	19,236	8
Madison	163	170	178	4.2	13.585	14,059	14,763	83	Grant	788	853	957	12.2	14,328	14,983	16.289	31
Mathews....	158 415 18	162 429	171	5.5 5.2	18.932	19,393	$\underset{ }{20,402}$	14 75	Grays Hatbor	995	1,052	11.133	7.7	+5,457	16,263	17.295	23
Middiesex	150	157	165	5.3	17,269	17,748	18,542	27	Jeflerson..........	${ }_{359} 9$	1,0599	1,197	7.8	17.709	18.215	18,765	11
Nelson	181	186	196	4.9	14,154	14,295	14,940	81	King	37,272	39,802	43,251	8.7	24,593	25,947	27,769	
New Kent ..	182	189	198	5.0	17,273	17,425	17,994	30	Kitsap	3,324	3,635	3,945	8.5	17,318	18,145	18,717	13
Northampton	194	195	207	6.0	14,838	15,004	16,021	56	Kitititas	397	417	454	8.9	14,808	15,074	16,251	32
Northumberland	183	189	203	7.4	17,385	17,686	18,687	25	Klickitat.	251	257	274	6.4	15,072	15,356	15,974	33
Notoway ...	207	216	226	4.8	13,771	14,350	15,036		Lewis	921	962	1.038	7.8	15.451	15,850		27
Orange	345	350	${ }^{365}$	4.4	15,999	15,827	16,244	54	Lincoln	174	168	182	8.8	19,607	18,752	20,242	,
${ }^{\text {Page }}$ Patrick.	303 240	317 245	338 257	6.4	${ }^{13,912}$	14,434 14.005	15,733	76 85	Mason	551	650	651	8.6	14,236	14,679	15.231	35
Powhatan	241	246	261	6.0	15,599		14,662 15,560	85 66	Okanogan	481 280	520 298	323	15.3 8.4	14,409 14,748	15,471 15564	17,483 16.527	21 30
Prince Eoward	214	219	232	6.1	12,307	12,602	13,146	102	Pend Oreille	117	126	138	10.0	13,076	13,703	14,326	38
Pulaski	463	457	482	5.5	13,418	13,282	13,960	92	Pierce	10,038	10,505	11,377	8.3	17,002	17,363	18,361	16
Rappahannock	125	131	136 113		18,745 14.557	19,612 14.793		19 71	San Juan	245	${ }^{267}$	284	6.7	24,108	25,044	26,108	2
Richmond \qquad Russell	$\begin{array}{r}106 \\ 351 \\ \hline\end{array}$	107 368	113 388	5.4 5.4	14,557 12,246	14,793 12,769	15,417 13,422	71 99		1.4139	1,533	1,643 147	7.2 4.3	17,767 15,990	18, 3,38 16,574	19,057 17.133	9 9
Scoth		303															
Shenando	502	516	546	5.7	15,769	13, ${ }^{\circ}$	19,827	${ }_{44}^{93}$	Snohomish.	8,768	9.416	10,355	10.0	18,613	19,413	20.653	3
Smyth	433	454	484	6.7	13,367	13,948	14,747	84	Spokane	5.922	6,354	6.888	8.4	16,320	17,091	18,069	19
Staftord ...	1,057	1,112	1,174	5.6	16,963	16,742	16,557	48	Thurston ...	2,946	3,207	3,496	9.0	18,076	18,925	19,801	6
Surry	93	93	${ }^{97}$	3.7	15,027	15,039	15,224	74	Wahkiakum	55	57	62	8.4	16,603	17,042	17,976	20
Sussex	148	152	161	6.2	14,501	14,875	15,845 1506		Walla Walla	742	770	838	8.9	15,304	15,43	16,610	29
Tazewell	640 426	660 438	704 454	6.7 3.6	13,910 16,170	14,156	15,026 16,366	80 52	Whatcom	2.157	2,335	2,508	7.4	${ }^{16,724}$	17,518	18,184	17
Westmoreland	231	238	254	6.7	14,832	14,957	15.689	65		2.935	3,093	3,379	8.0	15,496	15,988	17,062	36 25
Wythe	347	360	380	5.8	13,626	14,023	14,782	82									

See footnotes at end of table.

Table 2.-Total Personal Income and Per Capita Personal Income by County, 1990-92-Continued

1. The personal income level shown for the United States is derived as the sum of the county estimates; it oifters from the national income and product accounts (NIPA) estimate of personal income because, by definition. it omits the eamings of Federal civilian and military personnel stationed abroad and of U.S. residents employed abroad temporarily by private U.S. firms. It can also differ trom the NIPA estimate because of difterent data sources and revision schedules.
2. Percent change was calculated from unrounded data.
3. Per capita personal income was computed using Bureau of the Census midyear population estimates. Estimates for 1990-92 reflect State and county population estimates available as of February 1994.
. Denal: and Lake + Peninsula Boroughs, AK Degin in 1991.
4. Virginia combination areas consist of one or two independent cilies with populations less than 100,000 combined with an adjacent county. The county name appears first, followed by the city name(s). Separate estimates
for the jurisdictions making up the combined areas are not available.

BUSINESS CYCLE INDICATORS

Series originating in Government agencies are not copyrighted and may be reprinted freely. Series from private sources are provided through the courtesy of the compilers and are subject to their copyrights.

Current and historical data for the series shown in the C-pages are available on diskettes, printouts, and the Commerce Department's Economic Bulletin Board. For more information, contact the Business Cycle Indicators Branch, Business Outlook Division (be-52), Bureau of Economic Analysis, U.S. Department of Commerce, Washington, dC 20230. (Telephone: (202) 606-5366; fax: (202) 606-5313.)

Note.-This section of the Survey is prepared by the Business Cycle Indicators Branch.

Series no.	Series title and timing classification	$\begin{gathered} \hline \text { Year } \\ \hline 1993 \end{gathered}$	1993											1994		
			Fob.	Mar.	Apr.	May	June	Juty	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.
1. COMPOSITE INDEXES																
910	The Leading Index Composite index of leading indicators, 1987=100 (L,L,L) Percent change from previous month \qquad Percent change over 3 -month span, AR \qquad	$\begin{array}{r} 98.7 \\ .1 \\ 1.4 \end{array}$	$\begin{array}{r} 99.1 \\ -3.2 \\ -3.2 \end{array}$	$\begin{array}{r} 98.4 \\ -7.7 \\ -2.0 \end{array}$	$\begin{array}{r} 98.4 \\ 0 \\ -4.0 \end{array}$	$\begin{array}{r} 98.1 \\ -.3 \\ -1.2 \end{array}$	$\left.\begin{array}{r} 98.1 \\ 0 \\ -2.0 \end{array} \right\rvert\,$	$\begin{array}{r} 97.9 \\ -.2 \\ 1.2 \end{array}$	$\begin{array}{r} 98.4 \\ .5 \\ 2.1 \end{array}$	$\begin{array}{r} 98.6 \\ .2 \\ 5.0 \end{array}$	$\begin{array}{r} 99.1 \\ .5 \\ 4.5 \end{array}$	$\begin{array}{r} 99.5 \\ .4 \\ \hline 6.7 \end{array}$	$\begin{array}{r} 100.2 \\ r .7 \\ 5.8 \end{array}$	$\begin{array}{r} 100.5 \\ r .3 \\ \hline 4.1 \end{array}$	$\begin{array}{r} 100.5 \\ r 0 \\ p 4.1 \end{array}$	$\begin{array}{r} p 101.2 \\ p .7 \end{array}$
	Leading index components:	$\begin{array}{r} 41.4 \\ 365 \end{array}$	$\begin{aligned} & 41.4 \\ & 349 \end{aligned}$	$\begin{aligned} & 41.2 \\ & 375 \end{aligned}$	$\begin{aligned} & 41.5 \\ & 374 \end{aligned}$	$\begin{array}{r} 41.4 \\ 387 \end{array}$	$\begin{aligned} & 41.2 \\ & 383 \end{aligned}$	$\begin{array}{r} 41.4 \\ 399 \end{array}$	$\begin{array}{r} 41.4 \\ 371 \end{array}$	$\begin{aligned} & 41.5 \\ & 370 \end{aligned}$	$\begin{gathered} 41.6 \\ 354 \end{gathered}$	$\begin{aligned} & 41.7 \\ & 336 \end{aligned}$	$\begin{gathered} 41.7 \\ 318 \end{gathered}$	$\begin{aligned} & 41.8 \\ & 360 \end{aligned}$	$\begin{array}{r} 41.2 \\ 338 \end{array}$	$\begin{array}{r} P 42.2 \\ 327 \end{array}$
$\begin{aligned} & 1 \\ & 5 \end{aligned}$	Average weekly hours, mfg. (L,L,L) \qquad Average weekly initial claims for unemployment															
8 *	Mrrs.' new orders, consumer goods and materials, bil. $1987 \$(\mathrm{~L}, \mathrm{~L}, \mathrm{~L})$.	1,304.70	109.79	107.23	106.72	105.54	106.58	105.35	106.55	109.08	111.43	'112.55	${ }^{\prime} 114.63$	r 116.20	${ }^{\prime} 115.30$	${ }^{p} 116.82$
32.	Vendor performance, slower deliveries diffusion index, percent (L,L,L)".	51.6	53.0	52.5	53.1	51.7	50.2	50.0	51.3	50.9	50.7	50.7	51.7	55.0	58.8	55.1
20 *	Contracts and orders for plant and equipment, bil. 1987\$ (L,L,L).	434.98	36.26	r 34.41	34.15	33.96	37.86	34.67	36.38	35.84	$\begin{aligned} & 37.71 \\ & 104.0 \end{aligned}$	${ }^{\prime} 40.53$	39.98	${ }^{2} 41.30$	${ }^{2} 41.39$	P42.74
29.	Index of new private housing units authorized by local building permits, 1967=100 (L,L,L).	96.4	91.0	82.5	87.8	89.4	88.9	92.7	99.0	101.4		109.6	117.7	108.3	99.7	105.1
92 *	Change in mits.' unfilled orders, durable goods, bil. 1987\$, smoothed (L,L,L) \dagger.	-2.87	-2.08	-2.18	-2.42	-2.97	-3.35	-3.30	-3.15	-3.23	-3.10	-2.92	-2.89	r-2.21	r-1.69	${ }^{P}-1.40$
99 -	Change in sensitive materials prices, percent, smoothed $(L, L, L) \dagger$.	-. 26	-. 15	-. 18	-. 30	-. 40	-. 43	-. 43	-. 48	r-. 50	463.90	$r-.05$. 29	.52472.99		1.06
19 *	Index of stock prices, 500 common stocks, 1941-43-10, NSA (L,L,L) ${ }^{4}$.	451.41	441.70	450.16	443.08	445.25	448.06	447.29	454.13	459.24		462.89	465.95		$\begin{array}{r} 471.58 \\ \hline 2,764.3 \\ 83.5 \end{array}$	
106 *	Money supply M2, bil. 1987\$ (L,L,L)	2,774.0	2,775.4	2,769.3	2,763.0	2,775.3	2,778.5	$\begin{array}{r} \text { r2,778.0 } \\ 64.7 \end{array}$	$\begin{array}{r} 2,773.1 \\ 65.8 \end{array}$	$\begin{array}{r} r 2,777.1 \\ 66.8 \end{array}$	$\begin{array}{r} 2,769.6 \\ 72.5 \end{array}$	$\begin{array}{r} 2,769.6 \\ 70.3 \end{array}$	$\begin{array}{r} 2,768.5 \\ 78.8 \end{array}$	$\begin{array}{r} r \\ 2,773.4 \\ 86.4 \end{array}$		
83 *	Index of consumer expectations, U. of Michigan, $1966:=100$, NSA (L,L,L) © ${ }^{2}$.	72.8	80.6	75.8	76.4	68.5	70.4									
950	Diffusion index of 11 leading indicator components: Percent rising over 1-month span \qquad Percent rising over 6 -month span	$\begin{aligned} & 56.1 \\ & 64.4 \end{aligned}$	$\begin{aligned} & 59.1 \\ & 45.5 \end{aligned}$	$\begin{array}{r} 9.1 \\ 22.7 \end{array}$	$\begin{aligned} & 54.5 \\ & 31.8 \end{aligned}$	$\begin{aligned} & 36.4 \\ & 36.4 \end{aligned}$	$\begin{aligned} & 54.5 \\ & 63.6 \end{aligned}$	$\begin{aligned} & 40.9 \\ & 63.6 \end{aligned}$	$\begin{aligned} & 77.3 \\ & 81.8 \end{aligned}$	$\begin{aligned} & 68.2 \\ & 90.9 \end{aligned}$	$\begin{aligned} & 81.8 \\ & 90.9 \end{aligned}$	$\begin{aligned} & 72.7 \\ & 81.8 \end{aligned}$	$\begin{array}{r} 81.8 \\ P 90.9 \end{array}$	81.8	45.5	-81.8
	The Coincident Index															
920	Composite index of coincident indicators, 1987=100 (C,C,C) Percent change trom previous month \qquad	109.1 .1	107.9 .3	108.1 .2	108.6	108.8 .2		108.8 -.9	109.4 .6	109.6	110.0 .4	110.5	111.1	$\begin{array}{r}r 110.8 \\ \hline-.3\end{array}$	$\begin{array}{r} 111.6 \\ r .7 \end{array}$	$\begin{array}{r} 3112.1 \\ 3.4 \end{array}$
-	Percent change over 3-month span, AR	2.5	-5.0	3.8	3.4	3.0	.7	2.2	2.6	4.5	4.1	5.6	${ }^{2} 2.9$	r 4.0	${ }^{3} 3.6$	
	Coincident index components:															
41.	Employees on nonagricultural payrolls, thous. ($C, C, C) \ldots$	110,178 3,5197	109,539	109,565	109,820	110,058	110,101	110,338	110,305	110,502	110,664	110,880	111,110	111,079	111,277	P 111,733
51 *	Personal income less transfer payments, bil. 1987\$, AR (C, C, C).	3,519.7	3,449.3	3,471.1	3,517.7	3,524.3	3,511.7	3,499.1	3.542 .3	3,544.2	3,559.7	3,578.2	3,597.4	r3,562.8	'3,618.8	${ }^{P} 3,632.6$
47 *	Index of industrial production, 1987=100 (C,C,C)	110.9	109.9	110.0	110.5	110.0	110.4	110.9	111.1	111.3	111.9	112.8	114.0	${ }^{\text {r }} 114.4$	1115.0	-115.6
57 *	Manufacturing and trade sales, mil. $1987 \$(\mathrm{C}, \mathrm{C}, \mathrm{C})$.	6,197,402	$\cdot 510,300$	${ }^{\text {r 509,203 }}$	507,439	510,535	514,723	510,834	518,086	520,538	523,160	528,675	534,561	- 532,478	P537,128
951	Diffusion index of 4 coincident indicator components: Percent rising over 1 -month span \qquad Percent rising over 6 -month span	80.2 97.9	100.0 100.0	62.5	75.0 100.0	75.0 1000	62.5	50.0 100.0	$\begin{array}{r}87.5 \\ \hline 00.0\end{array}$	100.0	100.0	100.0	100.0	37.5	100.0	${ }^{3} 100.0$
	The Lagging Index															
930 *	Composite index of lagging indicators, 1987=100 ($\mathrm{Lg}, \mathrm{Lg}, \mathrm{Lg}$) Percent change from previous month	96.4 .1	96.6	96.4 -2	96.4	96.3 -.1	96.3	96.7 .4	96.4 -3	96.6	96.4 -.2	96.2 -2	$\begin{array}{r} \\ \hline 96.2 \\ \hline 0\end{array}$	r96.5 $r .3$	r 96.1 $r-.4$	$\begin{array}{r}496.0 \\ 4 \\ \hline\end{array}$
+	Percent change over 3-month span, AR	3.4	-.8	-1.2	-. 4	1.3	. 4	1.3	-1.2	$-.8$	r-1.6	. 4	$r-.4$	4-. 8	
91.	Lagging index components: Average duration of unemployment, weeks (Lg Lolg$)^{5} \ddagger$	18.1	182	17.7	177	17.8	17.8	179	18.3	18.4	18.4	18.9	18.2	183	187	192
77 。	Ratio, mig. and trade inventories to sales in 1987\$ (Lg,Lg,Lo).	1.56	1.57	1.57	1.58	1.58	1.56	1.58	1.56	1.56	1.55	1.54	1.52	1.52	P1.52
62 *	Change in labor cost per unit of output, mig., percent, AR, smoothed (Lg,Lg, Lg) \dagger^{6}.	-2.5	-3.6	-3.9	-4.0	-3.3	-2.9	-2.5	-1.8	-. 8	-.9	-1.6	-2.5	'-2.4	${ }^{r}-1.9$	$p-1.9$
109 *	Average prime rate charged by banks, percent, NSA $(\mathrm{Lg}, \mathrm{Lg}, \mathrm{Lg})^{*}$.	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.06
101	Commercial and industrial loans outstanding, mil. 1987\$ ($\mathrm{Lg}, \mathrm{Lg}, \mathrm{Lg}$).	371,320	369,653	363.441	365,115	368,471	370,002	375,158	376,605	376,574	373,963	374,072	r 373,204	r377,946	'373,103	-370,667
95 *	Ratio, consumer installment credit outstanding to personal income, percent (Lg.Lg,Lg).	14.13	14.24	14.18	14.02	13.94	14.00	14.12	14.04	14.13	14.16	14.20	14.24	${ }^{\text {r }} 14.48$	P14.29
120 *	Change in Consumer Price Index for services, percent, AR, smoothed (Lg.Lg, Lg) \dagger.	3.8	3.8	3.9	4.0	4.1	4.1	4.0	3.9	3.7	3.6	3.5	3.5	3.1	3.2	3.6
952	Diffusion index of 7 lagging indicator components: Percent rising over 1 -month span \qquad Percent rising over 6 -month span \qquad	$\begin{array}{r} 49.4 \\ 43.3 \end{array}$	$\begin{array}{r} 71.4 \\ 35.7 \end{array}$	$\begin{aligned} & 35.7 \\ & 57.1 \end{aligned}$	$\begin{aligned} & 71.4 \\ & 50.0 \end{aligned}$	$\begin{aligned} & 50.0 \\ & 50.0 \end{aligned}$	$\begin{aligned} & 57.1 \\ & 35.7 \end{aligned}$	$\begin{aligned} & 64.3 \\ & 50.0 \end{aligned}$	$\begin{aligned} & 28.6 \\ & 50.0 \end{aligned}$	$\begin{aligned} & 50.0 \\ & 50.0 \end{aligned}$	28.6 r 50.0	$\begin{array}{r} 28.6 \\ r 21.4 \end{array}$	$\begin{aligned} & 542.9 \\ & 420.0 \end{aligned}$	「57.1	'42.9	${ }^{4} 50.0$
940 *	Ratio, coincident index to lagging index, $1887=100$ (L,L,L)	113.2	111.7	112.1	112.7	113.0	113.1	112.5	113.5	113.5	114.1	114.9	r 115.5	${ }^{\prime} 114.8$	'116.1	P 118.8

NOTE.-The following current high values were reached before February 1993: May 1991-BCl-106 (2,865.8); August 1991-BC1-92 smoothed (-0.83); December 1991-BC1-62 smoothed (3.0) and BCl-77 (1.65); January 1992$3 \mathrm{Cl}-120$ smoothed (4.2); and December 1992-BCl-51 $(3,689.9)$ and $\mathrm{BCl}-83$ (89.5)
See page $C-6$ for other footnotes.

	Series title and timing classification	Year	1993											1994		
		1993	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct	Nov.	Dec.	Jan.	Feb.	Mar.

2. LABOR FORCE, EMPLOYMENT, AND UNEMPLOYMENT

	Labor force:
441	Civilian labor force, thous. ${ }^{1}$
442	Civilian employment, thous. ${ }^{1}$
	Civilian labor force participation rates (percent):
451	Males 20 years and over ${ }^{1}$
452	Females 20 years and over ${ }^{1}$
453	Both sexes $16-19$ years of age ${ }^{1}$
	Marginal employment adjustments:
1.	Average weekly hours, mfg. (L,L,L)
21	Average weekly overtime hours, mig. (L,C,L)
5	Average weekly initial claims for unemployment insurance, thous. $(L, C, L)^{2} \ddagger$.
	Job vacancies:
$\begin{aligned} & 46 \\ & 60 \end{aligned}$	Index of help-wanted advertising, 1967=100 (L,Lg,U) Ratio, help-wanted advertising to unemployed (L,Lg,U) I
	Employment:
48	Employee hours in nonagricultural establishments, bil. hours, AR (U,C,C).
42	Persons engaged in nonagricultural activities, thous. $(U, C, C)^{1} .$
$\underset{963}{41}$	Employees on nonagricultural payrolls, thous. (C,C,C)
	Diffusion index of employees on private nonagricultural payrols, 356 industries: Percent rising over 1 -month span \qquad Percent rising over 6 -month span \qquad
$40 .$	Employees in goods-producing industries, thous. (L,C,U)
	Ratio, civilian employment to population of working age, percent (U,Lg, U).
	Unemployment:
$\begin{aligned} & 37 \\ & 43 \\ & 45 \end{aligned}$	Number of persons unemployed, thous. (L,L,L,U) ${ }^{1} \ddagger$
	Civilian unemployment rate, percent (L,Lg,U) ${ }^{\text {a }} \ddagger$.......
	Average weekly insured unemployment rate, percent $(\mathrm{L}, \mathrm{L}, \mathrm{U})^{3} \ddagger$.
$\frac{91}{44}$	Average duration of unemployment, weeks (Lg,Lg,Lg) ${ }^{1} \ddagger$
	Unemployment rate, 15 weeks and over, percent $(\mathrm{Lg}, \mathrm{Lg}, \mathrm{Lg})^{1} \ddagger$.

128.040	127.400	127,440	127,539	128,075	128.056	128,102	128,334	128,108	128,580	128,662	128,898	130,667	130,776	130,580
119,306	118,442	118,562	118,585	119,180	119,187	119,370	119,692	119,568	119,941	120,332	120,661	121,971	122,258	122,037
76.9	76.9	76.9	76.9	77.1	77.0	77.0	77.0	76.7	77.0	76.8	76.8	77.0	76.9	76.8
58.4	58.2	58.2	58.2	58.4	58.5	58.4	58.5	58.4	58.6	58.7	58.9	59.3	59.5	59.3
51.5	51.9	51.5	51.8	52.5	51.5	51.8	51.6	51.2	51.1	51.2	50.9	53.3	52.4	52.3
41.4	41.4	41.2	41.5	41.4	41.2	41.4	41.4	41.5	41.6	41.7	41.7	41.8	41.2	P42.2
4.1	4.2	4.0	4.2	4.1	4.0	4.0	4.1	4.1	4.3	4.3	4.4	4.4	4.6	P4.8
365	349	375	374	387	383	399	371	370	354	336	318	360	338	327
101	97	96	${ }^{96}$	100	978	101	103	101	106	107	110	105	115	P117
203.97	202.47	202.33	202.78	205.28	203.57	204.05	204.76	204.06	205.26	205.16	205.91	'207.65	'204.97	P207.23
116,232	115,326	115,463	115,514	116,106	116,156	116,327	116,687	116,475	116,920	117.218	117,565	118.639	118,867	118,611
110,178	109,539	109,565	109,820	110,058	110,101	110,338	110,305	110,502	110,664	110,880	111,110	111,079	111,277	p141,733
54.7 57.0	59.7 58.3	51.0 58.3	53.8 57.7	56.9 49.7	46.5 51.1	57.9 52.9	44.4 55.9	57.2 58.7	53.9	$\begin{array}{r}61.0 \\ \hline P 61.0\end{array}$	56.0 $P 63.9$	55.8	rP57.0	${ }^{P} 61.9$
22,975	23,069	23,016	22,980	23,006	22,941	22,948	22,903	22.886	22,934	22,994	23.008	23,024	23,018	P23,101
61.6	61.4	61.4	61.4	61.7	61.6	61.6	61.8	61.6	61.8	61.9	62.0	62.2	62.3	62.2
8,734	8,958	8,878	8,954	8,895	8,869	8,732	8,642	8.540	8,639	8,330	8,237	8.696	8,518	8,543
6.8	7.0	7.0	7.0	6.9	6.9	6.8	6.7	6.7	6.7	6.5	6.4	6.7	6.5	6.5
2.6	2.5	2.5	2.6	2.6	2.7	2.7	2.6	2.6	2.6	2.6	2.5	2.5	2.6	2.6
18.1	18.2	17.7	17.7	17.8	17.8	17.9	18.3	18.4	18.4	18.9	18.2	18.3	18.7	19.2
				2.4			2.3							2.4

3. OUTPUT, PRODUCTION, AND CAPACITY UTILIZATION

	Outreut:															
55.	Gross domestic product, bi. 1987\$, AR (C,C,C) Percent change trom previous quarter, $A R$ \qquad	$\begin{array}{r} 5,136.0 \\ 3.0 \end{array}$	5,078. 8		${ }^{\text {................ }}$	$5,102.1 \mid$		${ }^{\circ}$	$\begin{array}{r} 5,138.3 \\ 2.9 \end{array}$						${ }_{P} \mathbf{5 , 2 5 9 . 0}{ }_{P}$
50 49	Gross national product, bil. 1987\$, AR (C,C,C) Value of domestic goods output, bil. 1987S. AR (C,C,C)	$\begin{aligned} & 5,138.6 \\ & 2,083.8 \end{aligned}$	$\begin{aligned} & 5.080 .7 \\ & 2,060.2 \end{aligned}$	$\begin{aligned} & 5,104.1 \\ & 2,069.1 \end{aligned}$		$\begin{aligned} & 5,145.8 \\ & 2,0749 \end{aligned}$			$\begin{aligned} & 5,223.7 \\ & 2,130.9 \end{aligned}$			P2,161.0	
	Industial production indexes, 1987=100:															
47 .	Total (C,C,C)	110.9	109.9	110.0	110.5	110.0	110.4	10.9	111.1	111.3	111.9	112.8	14.0	${ }^{\text {r }} 114.4$	${ }^{1150}$	P115.6
73 *	Durable manuiactures ($C, C, C)$	114.3	112.1	112.5	113.5	113.2	113.0	113.7	113.9	115.0	116.2	118.0	120.1	- 120.4	'121.3	${ }^{\text {P }} 121.9$
$74 *$	Nondurable manulactures ($\mathrm{C}, \mathrm{L}, \mathrm{L}$)	108.6	108.2	108.2	108.7	109.5	108.9	109.1	109.2	100.5	108.8	109.1	-190.7	r109.6	1110.1 1118	P11100
75 *	Consumer goods (C.LC)	108.8	108.9	108.9	108.6	107.8	108.1	108.9	108.6	108.5	109.2	109.7	110.1	'110.6	'111.8	\$111.5
	Capacity utilization rates (percent):															
$\begin{aligned} & 124 \\ & 824 \end{aligned}$	Total industry (L, C, U) Manufacturing (L,C,U)	$\begin{aligned} & 81.5 \\ & 80.6 \end{aligned}$	$\begin{gathered} 81.2 \\ 80.2 \end{gathered}$	$\begin{gathered} 81.2 \\ 80.4 \end{gathered}$	$\begin{aligned} & 81.4 \\ & 80.6 \end{aligned}$	$\begin{gathered} 81.0 \\ 80.2 \end{gathered}$	$\begin{gathered} 81.1 \\ 80.1 \end{gathered}$	$\begin{gathered} 81.3 \\ 80.3 \end{gathered}$	$\begin{aligned} & 88.4 \\ & 80.3 \end{aligned}$	$\begin{aligned} & 81.4 \\ & 80.4 \end{aligned}$	$\begin{gathered} 81.7 \\ 80.8 \end{gathered}$	$\begin{gathered} 82.2 \\ 81.5 \end{gathered}$	$\begin{array}{r} 82.9 \\ 82.3 \end{array}$	$\begin{array}{r} r_{83.1}^{2} \end{array}$	$\begin{array}{r} 83.4 \\ -82.4 \end{array}$	$\begin{aligned} & p_{p_{82} 83.6} \end{aligned}$

4. SALES, ORDERS, AND DELIVERIES

$\begin{aligned} & 57 \\ & 59 \end{aligned}$	Sales:	$\left.\begin{array}{\|l\|} 6,197,402 \\ 1,757,913 \end{array} \right\rvert\,$	$\left\|\begin{array}{r} r \\ 5 \\ r \\ \hline \end{array} 142,30,834\right\|$	$\begin{aligned} & \mathbf{r} 509,203 \\ & \hline 141,543 \end{aligned}$	$\begin{aligned} & 507,439 \\ & 143,700 \end{aligned}$	$\begin{aligned} & 510,535 \\ & 144,933 \end{aligned}$	$\begin{aligned} & 514,723 \\ & 145,871 \end{aligned}$	$\begin{aligned} & 510,834 \\ & 146,477 \end{aligned}$	$\begin{aligned} & 518,086 \\ & 147,360 \end{aligned}$	$\begin{gathered} 520,538 \\ 147,695 \end{gathered}$	$\begin{aligned} & 523,160 \\ & 149,968 \end{aligned}$	$\begin{aligned} & 528,675 \\ & 150,802 \end{aligned}$	$\begin{aligned} & 534,561 \\ & 152,695 \end{aligned}$	$\begin{gathered} r \\ r \\ r \\ r \end{gathered} 52,62,626$	$\begin{array}{\|c\|} P \\ P \\ r \\ r \end{array} 52,786,128$	F 153,164
	Manutacturing and trade sales, mil. $1987 \$$ (C,C,C) Sales of retail stores, mii. 19875 (U,L,U)															
	Orders and deliveries:															
7.	Mfrs.' ${ }^{\text {new }}$ orders, durable goods, bill $1987 \$$ (LLL.L)	1,381.61	117.19	112.96	112.61	109.77	114.50	111.08	113.68	115.01	117.87	${ }^{1} 120.10$	122.20	126.96	${ }^{\text {r }} 124.51$	${ }^{\text {P }} 124.79$
8.	Mifs.' new orders, consumer goods and materials, bil. $1987 \$$ (L.L.L).	1,304.70	109.79	107.23	106.72	105.54	106.58	105.35	106.55	109.03	111.43	-112.55	'114.63	-116.20	-115.30	${ }^{\text {P } 116.82}$
	Mirs.' unfilled orders, durable goods, mil. 1987\$0	362,630	396,886	390,926	387,356	381,879	378,466	377.172	374,775	370,372	368,404	366,140	362,630	- 364,684	369,373	P361,553
	Change from previous month, bil. $1987 \$$	-2.88	-.35	-5.96	-3.57	-5.48	-3.41	-1.29	-2.40	-4.40	-1.97	-2.26	-3.51	'2.05	- -1.31	${ }^{P}-1.82$
92 *	Change from previous month, bil. 1987\$, smoothed (L,L,L) \dagger.	-2.87	-2.08	-2.18			-3.35	-3.30		-3.23	-3.10	-2.92	-2.89	$r-2.21$	'-1.69	P-1.40
32 *	Vendor performance, slower deliveries diffusion index, percent (L,L,L)**	51.6	53.0	52.5	53.1	51.7	50.2	50.0	51.3	50.9	50.7	50.7	51.7	55.0	58.8	55.1

5. FIXED CAPITAL INVESTMENT

12 12	Formation of business enterprises: Index of net business formation, $1967=100$ (L,L,L) \qquad Number of new business incorporations (L,L,L)	1212	$\begin{array}{r} 120.9 \\ 59,691 \end{array}$	$\begin{aligned} & 122.0 \\ & 61,002 \end{aligned}$	$\begin{gathered} 121.0 \\ 59,648 \end{gathered}$	$\begin{array}{r} 117,6 \\ 51,66 \end{array}$	$\begin{gathered} 120.8 \\ 60,422 \end{gathered}$	$\begin{array}{r} 120.7 \\ 58,387 \end{array}$	$\begin{gathered} 121.1 \\ 58,209 \end{gathered}$	$\begin{aligned} & 122.3 \\ & 63,758 \end{aligned}$	$\begin{array}{r} 119.2 \\ 55,294 \end{array}$	$\begin{aligned} r_{1223,5} 61,739 \end{aligned} .$	${ }^{126,1}$	'125.8	${ }^{\text {P }} 126.4$	
	Business investment commitments:															
10	Contracts and orders for plant and equipment, bil. $\$$ (L,LL).	427.36	36.36	'34.04	33.89	33.25	38.15	33.77	35.63	34.94	36.56	38.78	38.84	40.91	40.73	41.40
20.	Contracts and orders for plant and equipment, bil. 1987\$ (L,L,L).	434.98	36.26	-34.41	34.15	33.96	37.86	34.67	36.38	35.84	37.71	r 40.53	39.98	'41.30	-41.39	P 42.74
27 *	Mfrs.' new orders, nondefense capital goods, bil. 1987\$ (L,L,L).	394.44	33.09	30.13	31.18	31.08	34.11	31.47	33.24	32.44	34.49	-37.19	36.76	-37.68	- 37.73	P38.54
9 *	Construction contracts awarded for commercial and industrial buildings, mil. sq.ft. $(L, C, U) \mathcal{C}^{4}$.	535.60	40.20	43.22	43.80	42.80	43.43	47.58	44.44	45.34	46.74	47.15	52.36	52.76	49.34	61.83
61	Business investment expenditures: New plant and equipment expenditures by business, bii. $\$$, AR (C,Lg.Lg)'.	585.64	564.13			579.79			594.11			'604.51			a 621.28	
100.	New plant and equipment expenditures by business, bil. 1987\$, AR (C,Lg,Lg).											- 576.82			a 595.36	
69 -	Mrrs.' machinery and equipment sales and business construction expenditures, bil.\$, AR (C,Lg,Lg).	464.32	447.24	465.62	448.70	454.96	462.72	442.00	468.37	464.07	469.92	492.08	513.28	-484.00	r 491.97	P502.18

[^46]See page C-6 for other footnotes.

	Series title and timing classification	Year	1993											1994		
no.		1993	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept	Oct	Nov.	Doc.	Jan.	Feb.	Mar.

5. FIXED CAPITAL INVESTMENT-Continued

76	Busin
	Index of industrial procduction, business equipment, 1987=100 (C,Lg, U).
	Gross private nonresidential fixed investment, bil. 1987\$, AR:
$\begin{aligned} & 86 \\ & 87 \\ & 88 \end{aligned}$	Total (C,Lg, C)
	Structures ($\mathrm{Lg}, \mathrm{Lg}, \mathrm{Lg}$)
	Producers' durable equipment (C,Lg,C)
	Residential construction and investment:
28 *	New private housing units started, thous., AR ($\mathrm{L}, \mathrm{L}, \mathrm{L}$)
29 -	Index of new private housing units authorized by local building permits, 1967=100 (L,L,L).
89 *	Gross private residential fixed investment, bil. 1987\$, AR (L,L,L).

134.6	130.0	131.5	133.1
591.8	562.3	\ldots	
151.5	148.2
440.2	414.1
1,288	1,194	1,092	1,232
214.2	211.4	

133.5	133.9	134.6
584.3	\ldots
433.2
1,241	1,238	1,245
89.4	88.9	92.7
206.2

134.8	136.3	137.7
594.8	\ldots
151.2
443.6
1,319	1,359	1,409
99.0	101.4	104.0
212.1		

139.7	'141.8	'143.1	144.7	P145.7
625.7	\ldots	$p 634.1$	
155.6		${ }^{p} 148.9$	
470.0		P 485.1	
1,406	1,612	$\cdot 1,271$	r 1,314	${ }^{1} 1.473$
109.6	117.7	108.3	99.7	105.1
227.2			P 232.2	

6. INVENTORIES AND INVENTORY INVESTMENT

$\begin{aligned} & 70 \\ & 77 \end{aligned}$	Inventories on hand:
	Mig. and trade inventories, bil. 1987\$ (Lg, Lg, Li) 0
	Ratio, mfg. and trade inventories to sales in $1987 \$$ (Lg,Lg,Lg).
	Inventory investment:
30 *	Change in business inventories, bil. 1987\$, AR (L,L,L) ...
31.	Change in mfg. and trade inventories, bil. $\$$, AR (L,L,L) ..

810.80 1.56	799.49 1.57	801.86 1.57	$\begin{array}{r} 803.31 \\ 1.58 \end{array}$
14.3 23.9	$\begin{array}{r} 29.3 \\ \mathrm{r} 26.1 \end{array}$	'53.2	35.1

03.31	804.68	805.35	806.10	806.64	809.45	809.90
1.58	1.58	1.56	1.58	1.56	1.56	1.55
35.1	$\begin{aligned} & 13.0 \\ & 24.9 \end{aligned}$	6.8 1.9	$\begin{array}{r} 6.5 \\ 23.7 \end{array}$	22.9	14.7

812.33	810.80	'811.15
1.54	1.52	1.52
8.5 55.3	-13.6	r17.8

7. PRICES

	Sensitive commodity prices
	Index of sensitive materials prices, 1987=100.
	Percent change from previous month
99	Percent change from previous month, smoothed ($\mathrm{L}, \mathrm{L}, \mathrm{L}$) \dagger.
98	Index of producer prices for sensitive crude and
	intermediate materials, 1987*100 (L,L,L).
	Cattle hides
	Lumber and wood products
	Wastepaper, news Wastepaper mixed
	Wastepaper, corrugated
	Iron and steel scrap ...
	Copper base scrap \qquad Aluminum base scrap
	Aluminum base scrap \qquad Other nonierrous scrad, n.e.c., NSA
	Sand, gravel, ano crushed stone
	Raw cotton
	Domestic apparel wool
23 *	Index of spot market prices, raw industrial materials, $1967=100$, NSA (U,L,L) © ${ }^{1}$.
	Copper scrap, \$ per lb. (c)
	Lead scrap, \$ per lb. ©
	Steel scrap, \$ per ton ©
	Tin, \$ per lb., NSA ©
	Zinc, \$ per lb., NSA ©
	Burlap, \$ per yd., NSA
	Cotton, \$ per lb., © .
	Print cloth, \$ per yd., NSA ©
	Wool tops, $\$$ per lo., NSA©
	Hides, \$ per li, NSA@ .
	Rosin, \$ per 100 lb . (c)
	Rubber, \$ per lb. © ...
336	ducer Price Indexes:
	Finished goods, 1982=100.
	Percent change over 1-month span
337	Percent change over 6-month span, AR
	Finished goods less foods and energy, 1982=100
	Percent change over 1 -month span
	Percent change over 6 -month span, AR ...
334	Finished consumer goods, 1982=100...
	Percent change over 1 -month span
	Percent change over 6-month span, AR
333	Capital equipment, 1982=100
	Percent change over 1 -month span
332	Percent change over 6 -month span, AR ...
	Intermediate materials, supplies, and components,
	$1982=100$.
	Percent change over 1 -month span
	Percent change over 6-month span, AR
331	Crude materials for further processing, 1982=100
	Percent change over 1 -month span \qquad Percent change over 6 -month span, AR
311	
	$\text { product, } 1987=100 \text {. }$
	Percent change from previous quarter, AR
	Consumer Price Indexes for all urban consumers:
320	All items, 1982-84=100, NSA
	Percent change over 1 -month span
	Percent change over 6 -month span, AR
323	All items less food and energy, 1982-84=100
	Percent change over 1 -month span
-	Percent change over 6 -month span, AR
	Services, 1982-84=100
	Percent change from previous month, AR ...
120 *	Percent change from previous month, $A R$, smoothed ($\mathrm{Lg}, \mathrm{Lg}, \mathrm{Lg}) \dagger$.

NOTE.-The following current high values were reached before February 1993: July 1991-BCl-120 change (5.9);
December 1991-8Cl-77 (1
July 1992-BCl-23 (285.7)
See page $C-6$ for other footnotes.

Series no.	Series title and timing classification	Year	1993											1994		
		1993	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept	Oct	Nov.	Dec.	Jan.	Feb.	Mar.

	Profits and profit maroins:
16 18 18	Corporate profits ater Coporate
22 *	Ratio, corporate domestic profits after tax to corporate domestic income, percent (L,L,L).
81.	Ratio, corporate domestic profits after tax with IVA and CCAdj to corporate domestic income, percent(U,L,L).
26.	Ratio, implicit price deflator to unit labor cost, all persons, nonlarm business sector, $1982=100$ (L,L,L).
35	Corporate net cash fiow, bil. 1987\$, AR (L,L,L)

275.4	258.9	272.3	
233.9	219.2	.-	230.7
7.2	6.9	7.2	\cdots
7.8	7.3		7.6		
104.3	103.9			103.8		
496.2	477.8			490.2		

9. WAGES, LABOR COSTS, AND PRODUCTIVITY

	Wages and compensation:															
345	Index of average hourly compensation, all employees, nonfarm business sector, 1982=100.	158.7	157.2		157.9			159.4			160.5			\ldots	\ldots
346	Percent change from previous quarter, AR	3.6 106.0	106.0			105.6			$\begin{array}{r} 3.9 \\ 106.1 \end{array}$			106.1				
	employees, nontarm business sector, $1982=100$.															
53.	Wages and salaries in mining, mfg., and construction, bi. 1987\$, AR (C,C,C).	592.5	581.7	578.8	596.3	596.0	592.8	594.7	595.2	596.9	596.9	598.8	600.8	'602.1	'604.3	P604.2
	Unit labor costs:															
63	Index of unit labor cost, all persons, business sector, 1982=100 ($\mathrm{Lg}, \mathrm{Lg}, \mathrm{Lg}$).	136.8	136.4			137.3			137.4			136.1				
	Index of labor cost per unit of output, mig., 1987=100 ${ }^{1}$.	109.1	109.6	109.6	109.3	109.4	109.1	109.0	109.0	109.3	108.7	108.2	107.7	${ }^{1} 107.9$	${ }^{1} 108.0$	$p 107.6$
	Percent change from previous month, A^{1} 1.............	-3.6	-3.2		-3.2	1.1		-1.1				-5.4		'2.3		${ }^{P}-4.4$
62 *	Percent change from previous month, AR, smoothed (Lg, Lg, Lg) ${ }^{\mathrm{P}}$.	-2	. 6	-3.9	-4.0	-3.3	-2	-2.5	. 8	-.8	-. 9	. 6	-2.5	-2.4	${ }^{\text {r }} \mathbf{- 1 . 9}$	${ }^{P}-1.9$
	Productivity:															
370	Index of output per hour, all persons, business sector, 1982=100.								117.6							
	Percent change over 1-quarter span, AR	1.8	-1.6			3.3		6.9-...........	
358 *	Percent change over 4 -quarter span, AR		114.3	".	114.7
358	Index of output per hour, all persons, nonfarm business sector, 1982=100.								115.8			117.5				
			10.	ERSONAL	L INCO	AND	CONSU	MER ATT	DES							
	Personal income:															
		$4,236.9$ $3,519.7$	$4,156.1$ 3.449 .3	4,181.2	4,228.2	$4,236.5$ 3.524 .3	4,227.9	$4,217.8$ $3,499.1$	${ }_{3}^{4,5642.3}$	4,267.1	4,283.6	4,502.3	4,5927.7		r $4,354.6$ $r 3,618.8$	${ }_{p}{ }^{\text {P }}$ 3, 3636.7
51.	Personal income less transter payments, bil. 1987\$, AR (C,C,C).	3.519.7	3,449,3	3,471.1	3,517.7	3,524.3	3,511.7	3,499.1	3,542.3	3,544.2	3,559.7	3,518.2	3,597.4	-3,562.8	r3,648.8	P ${ }^{\text {, } 632.6}$
	Indexes of consumer attitudes:															
58	Consumer sentiment, U. of Michigan, 1966:1=100, NSA $(L L L L))^{2}$.	82.8				80.3	81.5	77.0		77.9	82.7	81.2	88.2	94.3	93.2	91.5
83 *	Consumer expectations, U. of Michigan, 1966: $\mathrm{l}=100$, NSA (LLLL) © ${ }^{2}$.	72.8	80.6	75.8	76.4	68.5	70.4	64.7	65.8	66.8	72.5	70.3	78.8	86.4	83.5	85.1
122	Consumer confidence, The Conlerence Board, 1985=100	65.9	68.5	63.2	67.6	61.9	58.6	59.2	59.3	63.8	60.5	71.9	79.8	82.6	79.9	86.7
123 *	Consumer expectations, The Conference Board,	77.4	84.7	77.3	81.1	73.1	69.6	66.8	66.8	72.8	66.7	80.3	91.8	92.6	84.	92.6

11. SAVING

290	Gross saving, bilis, AR	780.2	762.0			766.7			774.3			1817.8				
295	Business saving, bil.St, AR	794.9	766.9	779.6	809.0	…..........		r824.1	…….......	…..........		
292	Personal saving, bil.S, AR	189.9	177.9	208.7	179.7	193.4	${ }^{\text {P }} 182.0$	\ldots
293*	Goverrment surpius or deficict, bil.S, AR Personal saving rate, percent	-224.6	-262.8	\cdots	-221.5	-214.4	-199.7			
		4.0	. 9						. 0			4.0				

12. MONEY, CREDIT, INTEREST RATES, AND STOCK PRICES

	Money
102 .	Percent change in money supply M1
105	Money supply M1, bil. $1987 \$$ (L, L, L L) .-
106 *	Money supply M2, bil. $1987 \$$ (L,L,L)
	Velocity of money:
107	Ratio, gross domestic product to money suppy M1 (C,C,C).
108	Ratio, personal income to money supply M2 (C,Lg,C)
	Bank reserves:
$\begin{aligned} & 93 \\ & 94 \end{aligned}$	Free reserves, mil.S, NSA (L,U,U) \ddagger Member bank borrowings from the Feceral Reserve. mil.S. NSA (L.Lg. U) U .
	Credit flow
112 *	Net change in business loans, bii.\$, AR (L,L,L)
113.	Net change in consumer installment credit, bil.\$, AR (L, LLL).
111	Percent change in business and consumer credit outstanding, AR (L,L,L).
110.	Funds raised by private nonfinancial borrowers in credit markets, mil.\$, AR (L,L,L).
	Credit difficulties:
14	Current liabilities of business failures, mil.\$, NSA (LLLL) \ddagger.
39	Percent of consumer installment loans delinquent 30 days and over $(L, L L L) O^{3} \bigcirc \ddagger$.

NoTE.-The following current high values were reached betore February 1993: May 1991-BC1-106 (2.865.8); July

Series no.	Series title and timing classification	Year	1993											1994		
		1993	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept	Oct	Nov.	Dec.	Jan.	Feb.	Mar.

12. MONEY, CREDIT, INTEREST RATES, AND STOCK PRICES-Continued

	Outstanding debt:
66	Consumer installment credit outstanding, mil.\$ ($\mathrm{Lg}, \mathrm{Lg}, \mathrm{Lg}$) 0 .
72	Commercial and industrial loans outstanding, mil.\$, (Lg,Lg, Lg).
101	Commercial and industrial loans outstanding, mil. 1987\$ (Lg.Lg,Lg).
95.	Ratio, consumer instalment credit outstanding to personal income, percent (Lg,Lg,Lg).
	Interest rates (percent, NSA):
119 114	Federal funds rate (L, Lg, Lg)*
114. 116.	Discount rate on new 91 -day Treasury bills (C,Lg,Lg)* ... Yield on new high-grade corporate bonds (Lg,Lg.Lg)*
115	Yield on long-term Treasury bonds (C,Lg,Lg)'
117	Yield on municipal bonds, 20 -bond average (U,Lg,Lg)* ...
118	Secondary market yields on FHA mortgages (Lg,Lg,Lg) .
109 .	Average prime rate charged by banks (Lg, Lg, Lg)*
19 .	Index of stock prices, 500 common stocks, 1941-43=10, NSA (L,L,L)'.

790,082	747,228	750,131	752,193	750,293	752,428	757,465	762,503	768,673	775,620
429,399	425,840	419,774	423,533	428,900	429,942	434,808	434,979	434,943	433,049
371,320	369,653	363.441	365,115	368,471	370,002	375,158	376,605	376,574	373,963
14.13	14.24	14.18	14.02	13.94	14.00	14.12	14.04	14.13	14.16
3.02	3.03	3.07	2.96	3.00	3.04	3.06	3.03	3.09	2.99
3.02	2.95	2.97	2.89	2.96	3.10	3.05	3.05	2.96	3.04
7.35	7.73	7.39	7.48	7.62	7.48	7.35	7.04	6.88	6.88
6.46	6.89	6.65	6.64	6.68	6.55	6.34	6.18	5.94	5.90
5.60	5.87	5.64	5.76	5.73	5.63	5.57	5.45	5.29	5.25
7.46	7.55	7.57	7.56	7.59	7.52	7.51	7.02	7.03	7.08
6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00
451.41	441.70	450.16	443.08	445.25	448.06	447.29	454.13	459.24	463.90

782,561	790,082	-796,458	P800,000	
432,801	- 429,931	r 437,284	'432,426	P 431,456
374,072	-373,204	r377,946	'373,103	P370,667
14.20	14.24	14.48	${ }^{\text {P1 }} 14.29$	
3.02	2.96	3.05	3.25	3.34
3.12	3.08	3.02	3.27	3.52
7.22	7.28	7.16	7.27	7.64
6.25	6.27	6.24	6.44	6.90
5.47	5.35	5.31	5.40	5.9
7.51	7.52	7.05	7.59	8.57
6.00	6.00	6.00	6.00	6.06
462.89	465.95	472.99	471.58	463.8

13. NATIONAL DEFENSE

525	Defense Department prime contract awards, mil.s		9,579	11,628	10,231	9,317	10,169	9,656	11,785	11,359				10,2	P9,343	
548	Manuiacturers' new orders, defense products, mil. $\$$.	76,649	6.361	7.411	6.853	5,434	5,788	7,231	6.598	6.446	5,304	5,172	5,239	7,738	-6,133	P5,107
557	Index of industrial production, defense and space equipment, 1987 100 .	74.8	77.9	76.8	76.9	75.6	74.9	74.6	74.0	73.7	72.7	72.5	771.5	-70.9	r69.8	P69.1
570	Employment, detense products industries, thous.	950	992	982	975	964	954	943	933	929	922	912	899	890	P884	
564	Federal Government purchases, national defense, bil.s, AR	303.4	304.8			307.6			301.9			299.2			P292.8

14. EXPORTS AND IMPORTS

602		464,9	36,	38,894	38,479	38,930	37,6	37,10	38,0	38,885	40,0	40,2	42,234	39,306	37,899	
604	Exports of domestic agricultural products,	41,807	3,424	3,35	3,498	3,470	3,5	3.405	3,350	3,540	3,565	3,458	3,777	3,497	3,118	
606	Exports of nonelectrical machinery, mil.\$	99,711	8,090	8,371	8,119	8,231	8,094	8,169	8,513	8,32	8,288	8,655	8,935	8,435	8,363	
612	General imports, mil. .	580,511	44,832	49,347	48,660	47,306	49,698	47,534	48,097	49,506	50,990	49,914	49,601	49,475	50,262	
614	Imports of petroleum and petroieum products,	${ }^{49,926}$	4,387	4.813	4,958	4,342	4,651	4,149	3,745	3,759	3,888	3.613 6	3.406	2.951	${ }^{3,895}$	
616	Imports of automobiles and pats, mi. $\$$	80,672	6,811	7,048	6,945	6.619	6,819	6,090	6,691	6,861	6,966	6,880	6,943	6,212	6,801	
618 620	Merchandise exports, adjusted, excluding military Merchandise imports, adusted, excluding military,	456,766 589,244	$\begin{aligned} & 111,480 \\ & 140,805 \end{aligned}$			113,067 147,465			111,995 147907			p P 120,284 $p 153,067$				
622	Merchandise impors, ackusted, excluding military	-132,478	-29,325			-34,398			-35,972	.a.......		${ }_{P}{ }^{\text {P2,783 }}$				

15. INTERNATIONAL COMPARISONS

47 *	Industrial production indexes (1987=100):	110.9	109.9										114.0	r114.4	r115.0	P115.6
721*	OECD, European countries ${ }^{2}$	107	107	107	105	107	106	107	107	107	108	108	107			
728 *	Japan	111.7	113.5	116.5	113.4	110.6	112.5	111.9	110.9	113.3	107.4	109.8	108.0	109.1		
725	Federal Republic of Germany	107	106	'107	${ }^{\text {r } 106}$	107	107	106	108	108	107	r107	${ }^{\text {r }} 107$	'105	P107	
726	France	107	108	107	106	106	106	107	107	'107	106	107	106	${ }^{p} 106$		
722	United Kingdom	105	104	103	104	105	104	106	106	106	107	107	106	P 107		
727 *	Italy	104.4	106.8	105.2	100.7	105.1	102.8	105.1	103.4	103.1	105.3	106.9	102.5			
723 。	Canada	103.2	101.7	'103.2	102.2	102.0	103.7	102.7	103.5	104.4	104.4	${ }^{105.1}$	-104.6	'105.1	P104	
	Consumer price indexes (1982-84=100):															
320	United States, NSA \qquad Percent change over 6 -month span, AR \qquad	$\begin{array}{r} 144.5 \\ 2.6 \end{array}$	$\begin{array}{r} 143.1 \\ 3.1 \end{array}$	$\begin{array}{r} 143.6 \\ 2.8 \end{array}$	$\begin{array}{r} 144.0 \\ 2.7 \end{array}$	$\begin{array}{r} 144.2 \\ 2.5 \end{array}$	$\begin{array}{r} 144.4 \\ 2.2 \end{array}$	$\begin{array}{r} 144.4 \\ 2.2 \end{array}$	$\begin{array}{r} 144.8 \\ 2.4 \end{array}$	$\begin{array}{r} 145.1 \\ 2.6 \end{array}$	$\left.\begin{array}{r} 145.7 \\ 2.4 \end{array} \right\rvert\,$	$\begin{array}{r} 145.8 \\ 2.4 \end{array}$	$\begin{array}{r} 145.8 \\ 2.9 \end{array}$	146.2	146.7	47.2
738	Japan, NSA	118.5	117.4	117.7	118.5	188.6	118.5	118.8	119.2	119.3	119.2	118.5	118.6	18.	118.7	
	Percent change over 6 -month span, AR		1.0	1.0	2.6	2.7	2.0	1.0	1.0		2					
735	Federal Republic of Germany, NSA	125.6	124.3	124.7	125.1	125.5	125.7	126.0	126.0	126.1	126.4	126.7	26.9	28.0	128.5	28.7
	Percent change over 6 -month span, AR		4.5	4.6	3.8	3.2	2.9	2.7	2.9	2.7	2.9	3.4				
	France, NSA Percent change over 6-month span, AR \qquad	14.5	142.4 2.7	143.1 2.6	143.2	143.5	143.4	143.5	$\begin{array}{r}143.5 \\ 1.7 \\ \\ \\ \hline 1\end{array}$	44.0	144.3	144.4	4.3	144.5	144.9	145.2
732	United Kingdom, NSA	165.3	163.1	163.7	165.2	165.8	165.7	165.3	166.0	166.7	166.6	166.4	166.7	166.0	167.0	167.4
	Percent change over 6	1.9			2.7	2.3	2.3	2.3	2.0	2.6	2.4	2.4	2.2			
737	Italy, NSA	186.4	183.6	184.0	184.7	185.4	186.4	187.1	187.2	187.5	188.6	189.5	189.5	190.6	91.4	91.8
	Percent change over 6 -month span, AR	4.2	3.8	4.1	4.6	5.1	5.0	4.7	4.5	3.8	3.8	3.4	3.5			
733	Canada, NSA \qquad Percent change over 6 -month span, AR	147.9	147.4 1.1	147.3	147.3	147.6 1.4	147.6 2.1	148.0 1.9	148.1 2.2	148.2 2.6	148.4	149.1 -.9	148.8 -1.6	148.8	147.7	147.6
	Stock price indexe															
19 *	Urited States'	491.0	480.5	489.7	482.0	484.3	487.4	486.6	494.0	499.6	504.6	503.5	506.9	514.5	513.0	504.5
748 *	Japan	1.380 .4	1,171.5	1,233.8	1,409.7	1,471.1	1.462.1	1.468.4	1,509.9	1,504.5	1.489.2	1,380.9	1,306,9	1,374.5	1,444.0	1,467.7
746 \%	Federal Republic of Germany ${ }^{\text {a }}$.	312.2 9697	2908.6	${ }_{945.8}^{296.8}$	${ }^{29338.6}$	${ }_{902.3}^{286.1}$	${ }_{907.8}$	311.6 954	1 1,021.0	1,006.6	$\begin{array}{r}1,047.2 \\ \hline\end{array}$	13459 $1,023.6$	$\begin{array}{r}1,111.7 \\ \hline\end{array}$	P1,146.0	${ }_{\text {F } 1,141.6} 1$	p $1,096.0$
742 。	Unitied Kingdom*	1,373.6	1,324.5	1,351.0	1,324.5	1,324.5	1,339.0	1,323.9	1,404.6	1,412.4	1,438.9	1,429.9	1,507.5	1,582.8	1,582,2	P1,526.4
747 *	Italy ${ }^{\text {a }}$	575.2	528.2	534.4	544.0	575.4	559.7	579.9	634.6	633.2	617.1	575.1	622.9	646.5	${ }^{\text {P }} 699.6$	696.5
743 *	Canada*	441.1	390.0	407.1	428.2	437.4	448.2	448.3	467.5	450.9	480.9	472.3	488.3	514.7	499.9	489.2
750	Exchange rates: Exchange value of U.S. dollar, index: March 1973-100, NSA ${ }^{3 .}$. Foreign currency per U.S. dollar (NSA):	93.18	93.82	93.65	90.62	90.24	91.81	94.59	94.3	92.07	93.29	95.4	95.7	96.5	95.7	94.35
758 *	Japan (yen) ${ }^{\text {a }}$	111.08	120.76	117.02	112.41	110.34	107.41	107.69	103.77	105.57	107.02	107.88	109.91	111.44	106.30	105.10
755 *	Federal Republic of Germany (d. mark)*	1.6545	1.6414	1.6466	1.5964	1.6071	1.6547	1.7157	1.6944	1.6219	1.6405	1.7005	1.7105	1.7426	1.7355	1.6909
756 .	France (iranc)	5.6669	5.5594	5.5944	5.3984	5.4180	5.5700	5.8464	5.9298	5.6724	5.7541	5.9069	5.8477	5.9207	5.8955	5.7647
752*	United Kingoom (646	6630	6687	. 6705	. 6558	665	. 6753	. 6706	. 67	. 676	. 6703
757*	Italy (lira) ${ }^{\text {a }}$...	1,573.41	1,550,43	1,591.35	1,536.14	1,475.66	1,505.05	1,586.02	1,603.75	1,569.10	1,600.93	1,666.31	1,687.17	1,699.45	1,685.96	,666.63
753 .	Canada (dolar)* ..	1.2902	1.2602	1.2471	1.26	1.2698	1.2789	1.2820	1.3	+.3215	1.32	1.3174	1.3308	1.3173	1.34	1.3644

16. ALTERNATIVE COMPOSITE INDEXES

[^47]
FOOTNOTES FOR PAGES C-1 THROUGH C-5

a	Anticipated.
AR	Annual rate.
c	Corrected.
©	Copyrighted.
e	Estimated.
\cdot	Later data listed in notes.

NSA	Not seasonally adjusted.
p	Preliminary.
r	Revised.
$\$$	Graph included for this series.
$\$$	Major revision-see notes.
\diamond	End of period.

Abstract

$\mathrm{L}, \mathrm{C}, \mathrm{Lg}, \mathrm{U}$ Cyclical indicator series are classified as L (leading), C (coincident), Lg (lagging), or U (unciassified) at reference cycle peaks, troughs, and overall. Series classifications are shown in parentheses following the series titles. \ddagger Cyclical indicator series denoted by \ddagger are inverted (i.e., the sign is reversed) for cyclical analysis calculations, including classifications, contributions to composite indexes, and current high values. \dagger Cyclical indicator series denoted by \dagger are smoothed by an autoregressive-moving-average filter developed by Statistics Canada. For information on composite indexes and other concepts used in this section, see "Business Cycle Indicators: Upcoming Revision of the Composite Indexes" in the October 1993 Sufver of Cufrent Business and "The Composite Index of Coincident Indicators and Alternative Coincident Indexes" in the June 1992 Surver.

References to series in this section use the prefix "BCl-" followed by the series number. Unless otherwise noted, series are seasonally adjusted. Percent change data are centered within the spans: 1 -month changes are placed in the ending month, 3 -month changes are placed in the 3 d month, 6 -month changes are placed in the 4th month, 1 -quarter changes are placed in the ending quarter, and 4 -quarter changes are placed in the 3 d quarter.

Diffusion indexes are defined as the percent of components rising plus one-half of the percent of components unchanged. Diffusion index data are centered within the spans: 1-month indexes are placed in the ending month and 6-month indexes are placed in the 4th month.

High values reached by cyclical indicators in the expansion following the last reference cycle trough (March 1991) are shown in boldface type; high values reached prior to the period shown in the table are listed at the bottom of each page. For inverted series, low values are indicated as highs.

Sources for series in this section are shown on pages C-30 and C-31.

Page C-1

* Preliminary April 1994 values: $\mathrm{BCl}-32=57.6, \mathrm{BCl}-19=447.23$, and $\mathrm{BCl}-109=6.34$.

1. Data include initial claims made under the July 1992 Emergency Unemployment Compensation amendments. Data exclude Puerto Rico, which is included in figures published by the source agency.
2. Copyrighted. This series may not be reproduced without written permission from the University of Michigan, Survey Research Center, P.O. Box 1248, Ann Arbor, MI 48106-1248.
3. Excludes $-\mathrm{BCl}-57$, for which data are not available.
4. Excludes $\mathrm{BCl}-77$ and $\mathrm{BCl}-95$, for which data are not available.
5. Data beginning January 1994 are based on the revised Current Population Survey and are not directly comparable with data for earlier periods.
6. The wages and salaries portion of this series has been adjusted to smooth yearend 1992 bonus payments that are in the revised national income and product accounts data. The bonus payments were too large to be adequately dealt with by the autoregressive-moving-average filter used to smooth this series.

Page C-2

* Preliminary April 1994 values: $\mathrm{BCl}-32=57.6$; anticipated 2d quarter 1994 values: $\mathrm{BCI}-61=624.99$ and $\mathrm{BCl}-100=601.46$.

1. See footnote 5 for page C-1.
2. Data include initial claims made under the July 1992 Emergency Unemployment Compensation amendments. Data exclude Puerto Rico, which is included in figures published by the source agency.
3. Data exclude Puerto Rico, which is included in figures published by the source agency.
4. Copyrighted. This series may not be reproduced without written permission from McGraw-hill Information Systems Company, F.W. Dodge Division, Paramount Plaza, 13th Floor, 1633 Broadway, New York, NY 10019.

Page C-3

* Preliminary April 1994 value: $\mathrm{BCl}-23=280.9$.

1. Copyrighted. This series may not be reproduced without written permission from Knight-Ridder Financial Publishing, 30 South Wacker Drive, Suite 1820, Chicago, IL 60606.

Page C-4

* Preliminary April 1994 values: $\mathrm{BCl}-122=91.7, \mathrm{BCl}-123=95.6$, and $\mathrm{BCl}-85=0.12$.

1. See footnote 6 for page $C-1$.
2. Copyrighted. This series may not be reproduced without written permission from the University of Michigan, Survey Research Center, P.O. Box 1248, Ann Arbor, M1 48106-1248.
3. Copyrighted. This series may not be reproduced without written permission from the American Bankers Association, 1120 Connecticut Avenue, NW, Washington, DC 20036.

Page C-5

* Preliminary Aprif 1994 values: $\mathrm{BCl}-119=3.55, \mathrm{BCl}-114=3.70, \mathrm{BCl}-116=7.94, \mathrm{BCl}-115=7.28$, $\mathrm{BCl}-117=6.25, \mathrm{BCl}-109=6.34, \mathrm{BCl}-19(1941-43=10)=447.23, \mathrm{BCl}-19(1967=100)=486.5, \mathrm{BCl}-748$ $=1,452.0, \mathrm{BCl}-745=388.2, \mathrm{BCl}-746=1,071.4, \mathrm{BCl}-742=1,501.9, \mathrm{BCl}-747=802.5, \mathrm{BCl}-743=482.2$, $\mathrm{BCl}-750=94.77, \mathrm{BCl}-758=103.80, \mathrm{BCl}-755=1.7069, \mathrm{BCl}-756=5.8433, \mathrm{BCl}-752=0.6777, \mathrm{BCl}-757$ $=1,633.34$, and $\mathrm{BCI}-753=1.3844$.

1. Balance of payments basis: Excludes transfers under military grants and Department of Defense sales contracts (exports) and Department of Deiense purchases (imports).
2. Organisation for Economic Co-operation and Development.
3. This index is the weighted-average exchange value of the U.S. dollar against the currencies of the other G-10 countries plus Switzerland. Each country is weighted by its 1972-76 global trade. For a description of this index, see the August 1978 Federal Reserve Bulletin (p. 700).
4. This index is compiled by the Center for International Business Cycle Research (CIBCR), Graduate School of Business, Columbia University, New York, NY 10027.

Notes for Pages C-7 Through C-27

The following notes explain general features of the charts that appear in this section:

- Business cycle peaks (P) and troughs (T), as designated by the National Bureau of Economic Research, Inc., are indicated at the top of each chart. The shaded areas represent recessions.
- For each series classified as a cyclical indicator, the timing classifications at peaks, at troughs, and overall are shown in a box adjacent to the title. ($L=$ leading, $C=$ coincident, $L g=$ lagging, $U=$ unclassified.) A complete list of series titles and sources is shown on pages $C-30$ and C-31.
- Arithmetic scales are designated "Scale A." On the same arithmetic scale, equal vertical distances represent equal differences in data. (For example, the vertical distance from 10 to 15 is the same as the distance from 100 to 105.)
- Logarithmic (log) scales are designated L-1, L-2, or L-3 to indicate their relative size. On \log scales of the same size, equal vertical distances represent equal percentage changes. (For
example, the vertical distance from 10 to 15 is the same as the distance from 100 to 150.) Compared with an L-1 scale, the same percentage change covers half the distance on an L-2 scale and one-third the distance on an L-3 scale.
- Data are monthly unless otherwise indicated. Quarterly data are indicated by a "Q" following the series title.
- Some series include a centered moving average, which is shown as a heawy line superimposed on the actual monthly data.
- Paraliel lines across a plotted series indicate a missing data value, change in definition, or other significant break in continuity.
- The box near the end of each plotted series indicates the latest data month (Arabic numeral) or quarter (Roman numeral) shown or, for series computed over a span of time (diffusion indexes and rates of change), the latest data period used in computing the series.

CYCLICAL INDICATORS

Composite Indexes

CYCLICAL INDICATORS

Composite Indexes: Rates of Change

Composite Indexes: Diffusion

 Nore.-Current data for these series are shown on page C-1.

CYCLICAL INDICATORS

Composite Indexes: Leading Index Components

CYCLICAL INDICATORS

Composite Indexes: Leading Index Components-Continued

CYCLICAL INDICATORS

Composite Indexes: Coincident Index Components

 Note.-Current data for these series are shown on page C-1.

CYCLICAL INDICATORS

Composite Indexes: Lagging Index Components

CYCLICAL INDICATORS

Employment and Unemployment

CYCLICAL INDICATORS

Output, Production, and Capacity Utilization

CYCLICAL INDICATORS

Sales and Orders

Wages and Consumer Attitudes

CYCLICAL INDICATORS

Fixed Capital Investment

permission from McGraw-Hill Information Systems Company, F.W. Dodge Division.

CYCLICAL INDICATORS

Fixed Capital Investment-Continued

CYCLICAL INDICATORS

Fixed Capital Investment-Continued

CYCLICAL INDICATORS
Prices and Profits

CYCLICAL INDICATORS

Money, Credit, and Interest Rates

CYCLICAL INDICATORS

Money, Credit, and Interest Rates-Continued

OTHER IMPORTANT ECONOMIC MEASURES

Prices

OTHER IMPORTANT ECONOMIC MEASURES

Other Measures

OTHER IMPORTANT ECONOMIC MEASURES

International Industrial Production

OTHER IMPORTANT ECONOMIC MEASURES

International Consumer Prices

OTHER IMPORTANT ECONOMIC MEASURES

International Stock Prices

OTHER IMPORTANT ECONOMIC MEASURES
International Exchange Rates

Business Cycle Expansions and Contractions

Business cycle reference dates		Duration in months			
Trough	Peak	Contraction (trough from previous peak)	Expansion (trough to peak)	Cycle	
				Trough from previous trough	Peak from previous peak
December 1854	June 1857		30		
December 1858	October 1860 ...	18	22	48	40
June 1861 ..	April 1865 ...		46		54
December 1867	June 1869 ..	32	18	78	50
December 1870	October 1873	18	34	36	52
March 1879 ..	March 1882 ..	65	36	99	101
May 1885 ...	March 1887 ..	38	22	74	60
April 1888 ..	July 1890 ..	13	27	35	40
May 1891 ...	January 1893	10	20	37	30
June 1894 ..	December 1895	17	18	37	35
June 1897 ...	June 1899 ..	18	24	36	42
December 1900	September 1902	18	21	42	39
August 1904 ...	May 1907 ...	23	33	44	56
June 1908 ...	January 1910 ...	13	19	46	32
January 1912 ..	January 1913 ...	24	12	43	36
December 1914	August 1918 ..	23	44	35	67
March 1919 ..	January 1920 ..	7	10	51	17
July 1921 ..	May 1923 ...	18	22	28	40
July 1924 ..	October 1926 ...	14	27	36	41
November 1927 ..	August 1929 ...	13	21	40	34
March 1933 ..	May 1937 ...	43	50	64	93
June 1938 ..	February 1945 ...	13	80	63	93
October 1945 ..	November 1948	8	37	88	45
October 1949 ...	July 1953 ..	11	45	${ }^{48}$	56
May 1954 ..	August 1957 ..	10	39	55	
April 1958 ..	April 1960 ..	8	24	47	32
February 1961	December 1969	10	106	34	116
November 1970	November 1973	11	36	117	47
March 1975 ..	January 1980 ..	16	58	52	74
July 1980 ...	July 1981 ..	6	12	64	18
November 1982 March 1991	July 1990	16 8	92	$\begin{array}{r} 28 \\ 100 \end{array}$	108
Average, all cycles:					
1854-1991 (31 cycles).			35	53	${ }^{1} 53$
1854-1919 (16 cycles) ..		22	27	48	${ }^{2} 49$
1919-1945 (6 cycles)	18	35	53	53
1945-1991 (9 cycles)	11	50	61	61
Average, peacetime cycles:					
1854-1991 (26 cycles).		19	29	48	${ }^{3} 48$
1854-1919 (14 cycles)	22	24	46	44
1919-1945 (5 cycles)	20	26	46	45
1945-1991 (7 cycles)	11	43	53	53
		Figures printec	wari	War, W	and II, Korean
		war), the post	ans, and the full yydes	include the wartio	
4. 13 crydes.		eau	Inc..		

Cyclical Leads (-) and Lags (+) for Selected Indicators
[Length in months]

n.a. Not available. Data needed to determine a specific turning point are not available.

1. This series is inverted; i.e., low values are peaks and high values are troughs.
2. This series is smoothed by an autoregressive-moving-average filter developed by Statistics Canada.

NoTE,-Reference peaks and troughs are the cyclical turning points in overali business activity (see page C 28); specific peaks and troughs are the cyclical turning points in individual series. This table lists, for the composite

S AND SOURCES OF SERIES

Abstract

Series are listed below in numerical order within each of the two major groups. Series numbers are for identification only and do not reflect relationships or order among the series. " M " following a series title indicates monthly data; " Q " indicates quarterly data. Data apply to the whole period except when indicated by "EOM" (end of month) or "EOQ" (end of quarter)

To save space, the following commonly used sources are referred to by number: Source 1-U.S. Department of Commerce, Bureau of Economic Analysis; Source 2-U.S. Department of Commerce, Bureau of the Census; Source 3-U.S. Department of Labor, Bureau of Labor Statistics; Source 4-Board of Governors of the Federal Reserve System.

The numbers in parentheses following the sources indicate the C-pages on which the series appear: Numbers in plain type indicate data tables; numbers in bold type indicate charts.

1. Cyclical Indicators

1. Average weekly hours of production or nonsupervisory workers, manufacturing (M).-Source $3(1,2,9)$
2. Average weekly initial claims for unemployment insurance, State programs (M).-Source 1 and U.S. Department of Labor, Employment and Training Administration $(1,2,9)$
3. Manufacturers' new orders in 1987 dollars, durable goods industries (M).— Sources 1,2 , and $3(2,15)$
4. Manufacturers' new orders in 1987 dollars, consumer goods and materials industries (M).-Sources 1,2 , and $3(1,2,9)$
5. Construction contracts awarded for commercial and industrial buildings, floor space (M).-McGraw-Hill Information Systems Company; seasonal adjustment by Bureau of Economic Analysis (This is a copyrighted series used by permission; it may not be reproduced without written permission from the source.) $(2,16)$
6. Contracts and orders for plant and equipment in current dollars (M).Sources 1, 2, and McGraw-Hill Information Systems Company (2)
7. Index of net business formation (M).-Source 1 and Dun \& Bradstreet, Inc. $(2,16)$
8. Number of new business incorporations (M).-Dun \& Bradstreet, Inc. $(2,16)$
9. Current liabilities of business failures (M).-Dun \& Bradstreet, Inc. (4)
10. Corporate profits after tax in current dollars (Q).-Source $1(4,19)$
11. Corporate profits after tax in 1987 dollars (Q).-Source $1(4,19)$
12. Index of stock prices, 500 common stocks (M).-Standard \& Poor's Corporation (1,5, 10, 26)
13. Contracts and orders for plant and equipment in 1987 dollars (M).-Sources 1,2 , and McGraw-Hill Information Systems Company ($1,2,9$)
14. Average weekly overtime hours of production or nonsupervisory workers, manufacturing (M).-Source $3(2,13)$
15. Ratio, corporate domestic profits after tax to total corporate domestic income (Q).-Source $1(4,19)$
16. Index of spot market prices, raw industrial materials (M).-Sources 1, 3, and Knight-Ridder Financial Publishing. (From June 1981 forward, this is a copyrighted series used by permission; it may not be reproduced without written permission from Knight-Ridder Financial Publishing.) $(3,19)$
17. Ratio, implicit price deflator to unit labor cost, all persons, nonfarm business sector (Q).-Sources 1 and $3(4,19)$
18. Manufacturers' new orders in 1987 dollars, nondefense capital goods industries (M).-Sources 1,2 , and $3(2,16)$
19. New private housing units started (M).-Source $2(3,18)$
20. Index of new private housing units authorized by local building permits (M).-Sources 1 and $2(1,3,10)$
21. Change in business inventories in 1987 dollars (Q).-Source $1(3,18)$
22. Change in manufacturing and trade inventories (M).-Sources 1 and $2(3,18)$
23. Vendor performance, slower deliveries diffusion index (M).-National Association of Purchasing Management and Purchasing Management Association of

Chicago; seasonal adjustment by U.S. Department of Commerce, Office of the Chief Economist ($1,2,9$)
35. Corporate net cash flow in 1987 dollars (Q).-Source 1 (4)
37. Number of persons unemployed (M).-Source 3 (2)
39. Percent of consumer instaliment loans delinquent 30 days and over (EOM).-American Bankers Association (This is a copyrighted series used by permission; it may not be reproduced without written permission from the source.) (4)
40. Employees on nonagricultural payrolls, goods-producing industries (M).Source $3(2,13)$
41. Employees on nonagricultural payroils (M).-Source $3(1,2,11)$
42. Number of persons engaged in nonagricultural activities (M).-Source 3 (2)
43. Civilian unemployment rate (M).-Source $3(2,13)$
44. Unemployment rate, persons unemployed 15 weeks and over (M).-Source 3 (2)
45. Average weekly insured unemployment rate, State programs (M).-Source 1 and U.S. Department of Labor, Employment and Training Administration (2)
46. Index of help-wanted advertising in newspapers (M).-The Conference Board $(2,13)$
47. Index of industrial production (M).-Source $4(1,2,5,11,24)$
48. Employee hours in nonagricultural establishments (M).-Source $3(2,13)$
49. Value of domestic goods output in 1987 dollars (Q).-Source 1 (2)
50. Gross national product in 1987 dollars (Q).-Source 1 (2)
51. Personal income less transfer payments in 1987 dollars (M).-Source 1 ($1,4,11$)
52. Personal income in 1987 dollars (M).-Source 1 (4)
53. Wages and salaries in 1987 dollars, mining, manufacturing, and construction (M).-Sources 1 and $3(4,15)$
55. Gross domestic product in 1987 dollars (Q).-Source $1(2,14)$
57. Manufacturing and trade sales in 1987 dollars (M).-Sources 1 and $2(1,2,11)$
58. Index of consumer sentiment (Q, M).—University of Michigan, Survey Research Center (This is a copyrighted series used by permission; it may not be reproduced without written permission from the source.) (4)
59. Sales of retail stores in 1987 dollars (M).-Sources 1 and $2(2,15)$
60. Ratio, help-wanted advertising in newspapers to number of persons unemployed (M).-Sources 1,3, and The Conference Board (2)
61. New plant and equipment expenditures by business in current dollars (Q).Source 2 (2)
62. Change in index of labor cost per unit of output, manufacturing, smoothed (M).-Sources 1 and $4(1,4,12)$
63. Index of unit labor cost, all persons, business sector (Q).-Source 3 (4)
66. Consumer Installment credit outstanding (EOM).-Source 4 (5)
69. Manufacturers' machinery and equipment sales and business construction expenditures (M).-Sources 1 and $2(2,17)$
70. Manufacturing and trade inventories in 1987 dollars (EOM).-Sources 1 and 2 (3)
72. Commercial and Industrial loans outstanding in current dollars (M).Sources 1, 4, and The Federal Reserve Bank of New York (5)
73. Index of industrial production, durable manufactures (M).-Source $4(2,14)$
74. Index of industrial production, nondurable manufactures (M).-Source 4 $(2,14)$
75. Index of industrial production, consumer goods (M).-Source $4(2,14)$
76. Index of industrial production, business equipment (M).-Source $4(3,17)$
77. Ratio, manufacturing and trade inventories to sales in 1987 dollars (M).Sources 1 and $2(1,3,12)$
81. Ratio, corporate domestic profits after tax with inventory valuation and capital consumption adjustments to total corporate domestic income (Q).-Source $1(4,19)$
82. Capacity utilization rate, manufacturing (M).-Source $4(2,14)$
83. Index of consumer expectations (Q, M).-University of Michigan, Survey Research Center (This is a copyrighted series used by permission; it may not be reproduced without written permission from the source.) $(1,4,10)$
85. Change in money supply M1 (M).-Sources 1 and $4(4,20)$
86. Gross private nonresidential fixed investment in 1987 dollars (Q).-Source $1(3,17)$
87. Gross private nonresidential fixed investment in 1987 dollars, structures (Q).-Source $1(3,17)$
88. Gross private nonresidential fixed investment in 1987 dollars, producers' durable equipment (Q).-Source $1(3,17)$
89. Gross private residential fixed investment in 1987 dollars (Q).-Source 1 $(3,18)$
9C. Ratio, civilian employment to population of working age (M).-Source 3 $(2,13)$
91. Average duration of unemployment in weeks (M).-Source $3(1,2,12)$
92. Change in manufacturers' unfilled orders in 1987 dollars, durable goods industries, smoothed (M).-Sources 1,2 , and $3(1,2,10)$
93. Free reserves (M).-Sources 1 and 4 (4)
94. Member bank borrowings from the Federal Reserve (M).-Source 4 (4)
95. Ratio, consumer installment credit outstanding to personal income (M).Sources 1 and $4(1,5,12)$
98. Index of producer prices for sensitive crude and intermediate materials (M).-Sources 1 and 3 (3)
99. Change in sensitive materials prices, smoothed (M).-Sources 1, 3, and Knight-Ridder Financial Publishing. $(1,3,10)$
100. New plant and equipment expenditures by business in 1987 dollars (Q).Source $2(2,17)$
101. Commercial and industrial loans outstanding in 1987 dollars (M).-Sources 1, 3, 4, and The Federal Reserve Bank of New York $(1,5,12)$
102. Change in money supply M2 (M).-Sources 1 and $4(4,20)$
105. Money supply M1 in 1987 doilars (M).-Sources 1,3 , and 4 (4)
106. Money supply M2 in 1987 dollars (M).-Sources 1,3 , and $4(1,4,10)$
107. Ratio, gross domestic product to money supply M1 (Q).-Sources 1 and 4 (4)
108. Ratio, personal income to money supply M2 (M).-Sources 1 and 4 (4)
109. Average prime rate charged by banks (M).-Source $4(1,5,12)$
110. Funds raised by private nonfinancial borrowers in credit markets (Q).Source $4(4,20)$
111. Change in business and consumer credit outstanding (M).-Sources 1,4 , Federal Home Loan Bank Board, and The Federal Reserve Bank of New York (4)
112. Net change in business loans (M).-Sources 1,4 , and The Federal Reserve Bank of New York $(4,20)$
113. Net change in consumer installment credit (M).-Sources 1 and $4(4,20)$
114. Discount rate on new issues of 91-day Treasury bills (M).-Source $4(5,21)$
115. Yieid on long-term Treasury bonds (M).-U.S. Department of the Treasury $(5,21)$
116. Yield on new issues of high-grade corporate bonds (M).-Citibank and U.S. Department of the Treasury $(5,21)$
117. Yield on municipal bonds, 20-bond average (M).—The Bond Buyer (5)
118. Secondary market yields on FHA mortgages (M).-U.S. Department of Housing and Urban Development, Federal Housing Administration (5)
119. Federal funds rate (M).-Source $4(5,21)$
120. Change in Consumer Price Index for services, smoothed (M).-Sources 1 and $3(1,3,12)$
122. Index of consumer confidence (M).-The Conference Board (4)
123. Index of consumer expectations (M).-The Conference Board $(4,15)$
124. Capacity utilization rate, total industry (M).-Source 4 (2)
910. Composite index of 11 leading indicators (includes series $1,5,8,19,20,29$, $32,83,92,99,106)(\mathrm{M})$.-Source $1(1,7,8)$
920. Composite index of 4 coincident indicators (includes series 41, 47, 51, 57) (M).-Source $1(1,7,8)$
930. Composite index of 7 lagging indicators (includes series $62,77,91,95,101$, $109,120)(\mathrm{M})$.-Source $1(1,7,8)$
940. Ratio, coincident composite index (series 920) to lagging composite index (series 930) (M).-Source $1(1,7)$
950. Diffusion index of 11 leading indicator components (M).-Source $1(1,8)$
951. Diffusion index of 4 coincident indicator components (M).-Source $1(1,8)$
952. Diffusion index of 7 lagging indicator components (M).-Source $1(1,8)$
963. Diffusion index of employees on private nonagricultural payrolls, 356 industries (M).-Source 3 (2)
990. CIBCR long-leading composite index (M).-Columbia University, Center for International Business Cycle Research $(5,21)$
991. CIBCR short-leading composite index (M).-Columbia University, Center for International Business Cycle Research $(5,21)$

2. Other Important Economic Measures

290. Gross saving (Q).-Source 1 (4)
291. Personal saving (Q).-Source 1 (4)
292. Personal saving rate (Q).-Source $1(4,23)$
293. Business saving (Q).-Source 1 (4)
294. Government surplus or deficit (Q).-Source $1(4,23)$
295. Fixed-weighted price index, gross domestic business product (Q).-Source $1(3,22)$
296. Consumer Price Index for all urban consumers, all items (M).-Source 3 $(3,5,22,25)$
297. Consumer Price Index for all urban consumers, all tiems less food and energy (M).-Source $3(3,22)$
298. Producer Price Index, crude materials for further processing (M).-Sources 1 and $3(3,22)$
299. Producer Price index, intermediate materials, supplies, and components (M).-Sources 1 and $3(3,22)$
300. Producer Price Index, capital equipment (M).-Sources 1 and $3(3,22)$
301. Producer Price Index, finished consumer goods (M).-Sources 1 and 3 $(3,22)$
302. Producer Price Index, finished goods (M).-Sources 1 and $3(3,22)$
303. Producer Price Index, finished goods less foods and energy (M).-Sources 1 and $3(3,22)$
304. Index of average hourly compensation, all employees, nonfarm business sector (Q).-Source 3 (4)
305. Index of real average hourly compensation, all employees, nonfarm business sector (Q).-Source 3 (4)
306. Index of output per hour, all persons, nonfarm business sector (Q).-Source 3 (4)
307. Index of output per hour, all persons, business sector (Q).-Source $3(4,23)$
308. Civilian labor force (M).-Source 3 (2)
309. Civilian employment (M).-Source 3 (2)
310. Civilian labor force participation rate, males 20 years and over (M).-Source 3 (2)
311. Civilian labor force participation rate, females 20 years and over (M).Source 3 (2)
312. Civilian labor force participation rate, both sexes 16-19 years of age (M)Source 3 (2)
313. Defense Department prime contract awards for work performed in the United States (M).-U.S. Department of Defense, Office of the Assistant Secretary of Defense (Comptroller), Washington Headquarters Services, Directorate for Information Operations and Reports; seasonal adjustment by Bureau of Economic Analysis (5)
314. Manufacturers' new orders, defense products (M).-Source 2 (5)
315. Index of industrial production, defense and space equipment (M).-Source 4 (5)
316. Federal Government purchases, national defense (Q).-Source $1(5,23)$
317. Employment, defense products industries (M).--Sources 1 and 3 (5)
318. Exports, excluding military aid shipments (M).-Sources 1 and 2 (5)
319. Exports of domestic agricultural products (M).-Sources 1 and 2 (5)
320. Exports of nonelectrical machinery (M).-Sources 1 and 2 (5)
321. General imports (M).-Source $2(5)$
322. Imports of petroleum and petroleum products (M).-Sources 1 and 2 (5)
323. Imports of automobiles and parts (M).-Sources 1 and $2(5)$
324. Merchandise exports, adjusted, excluding military (Q).-Source $1(5,23)$
325. Merchandise imports, adjusted, excluding military (Q).-Source $1(5,23)$
326. Balance on merchandise trade (Q).-Source 1 (5)
327. Organisation for Economic Co-operation and Development, European countries, Index of Industrial production (M).-Organisation for Economic Co-operation and Development (Paris) $(5,24)$
328. United Kingdom, Index of Industrial production (M).-Central Statistical Office (London) $(5,24)$
329. Canada, index of industrial production (M).-Statistics Canada (Ottawa) $(5,24)$
330. Federal Republic of Germany, index of industrial production (M).Statistisches Bundesamt (Wiesbaden) $(5,24)$
331. France, index of Industrial production (M).—Institut National de la Statistique et des Etudes Economiques (Paris) $(5,24)$
332. Italy, index of industrial production (M).-Istituto Centrale di Statistica (Rome) $(5,24)$
333. Japan, index of industrial production (M).-Ministry of International Trade and Industry (Tokyo) $(5,24)$
334. United Kingdom, consumer price index (M).-Department of Employment (London); percent changes seasonally adjusted by Bureau of Economic Analysis $(5,25)$
335. Canada, consumer price index (M).-Statistics Canada (Ottawa); percent changes seasonally adjusted by Bureau of Economic Analysis $(5,25)$
336. Federal Republic of Germany, consumer price Index (M).-Statistisches Bundesamt (Wiesbaden); percent changes seasonally adjusted by Bureau of Economic Analysis $(5,25)$
337. France, consumer price index (M).-Institut National de la Statistique et des Etudes Economiques (Paris); percent changes seasonally adjusted by Bureau of Economic Analysis $(5,25)$
338. Italy, consumer price index (M).-Istituto Centrale di Statistica (Rome); percent changes seasonally adjusted by Bureau of Economic Analysis $(5,25)$
339. Japan, consumer price index (M).-Bureau of Statistics, Office of the Prime Minister (Tokyo); percent changes seasonally adjusted by Bureau of Economic Analysis $(5,25)$
340. United Kingdom, index of stock prices (M).-Central Statistical Office (London) $(5,26)$
341. Canada, index of stock prices (M).—Toronto Stock Exchange (Toronto) $(5,26)$
342. Federal Republic of Germany, index of stock prices (M).—Statistisches Bundesamt (Wiesbaden) $(5,26)$
343. France, index of stock prices (M).-Institut National de la Statistique et des Etudes Economiques (Paris) $(5,26)$
344. Italy, index of stock prices (M).-Banca d'italia (Rome) $(5,26)$
345. Japan, index of stock prices (M).-Bank of Japan (Tokyo) $(5,26)$
346. Index of weighted-average exchange value of U.S. dollar against currencies of 10 industrial countries (M).-Source $4(5,27)$
347. United Kingdom, exchange rate per U.S. dollar (M).-Sources 1 and $4(5,27)$
348. Canada, exchange rate per U.S. dollar (M).-Source $4(5,27)$
349. Federal Republic of Germany, exchange rate per U.S. dollar (M).-Source 4 $(5,27)$
350. France, exchange rate per U.S. doliar (M).-Source $4(5,27)$
351. Italy, exchange rate per U.S. dollar (M).-Source $4(5,27)$
352. Japan, exchange rate per U.S. dollar (M).-Source $4(5,27)$

Sources for Current Business Statistics

Abstract

This listing gives the address and phone number of sources for all series formerly published in the "Current Business Statistics" section, which has been discontinued. The source numbers shown in this list are printed in brackets after the series titles on pages S-1 through S-32 of the March 1994 Survey of Current Business.

1.1 Personal income by source and disposition of personal income
U.S. Department of Commerce, Bureau of Economic Analysis, National Income and Wealth Division, be-54, 1441 L Street NW, Washington, DC 20230 (202) 606-5304
1.2 Industrial production

Jerry Storch, Board of Governors of the Federal Reserve System, Division of Research and Statistics, Industrial Output Section, Eccles Building, Room 3212-D, 20 th \& Constitution Avenue NW, Washington, DC 20551 (202) 452-2932
1.3 Business sales, inventories, inventory-sales ratios, and retail trade
Ronald Piencykoski, U.S. Department of Commerce, Bureau of the Census, Business Division, Current Retail Sales and Inventories Branch, FOB 3, Room 2626, Washington, DC 20233 (301) 763-5294
1.4 Manufacturing and trade sales, inventories, and ratios in 1987 dollars
U.S. Department of Commerce, Bureau of Economic Analysis, National Income and Wealth Division, be-54, 1441 L Street NW, Washington, DC 20230 (202) 606-5304
1.5 Manufacturers' shipments, inventories, and orders

Steve Andrews or Kathy Menth, U.S. Department of Commerce, Bureau of the Census, Industry Division, M3 Branch, FOB 4, Room 2232, Washington, DC 20233 (301) 763-2502 or (301) 763-2575
1.6 Business incorporations and industrial and commercial failures
The Dun \& Bradstreet Corporation, Economic Communications Department, 299 Park Avenue, New York, NY 10171 (212) 593-4163
2.1 Prices received and paid by farmers

Herb Vanderberry, U.S. Department of Agriculture, National Agricultural Statistical Service, Commodity Prices Section, Economic Statistics Branch, South Building, Room 5912, 14th \& Independence Avenue sw, Washington, DC 20250-2000 (202) 720-5446
2.2 Consumer prices and purchasing power of the dollar U.S. Department of Labor, Bureau of Labor Statistics, Office of Consumer Prices and Price Indexes, Postal Square Building, Room 3615, 2 Massachusetts Avenue ne, Washington, DC 20212 (202) 606-7000
2.3 Producer prices and producer price indexes for all commodities
U.S. Department of Labor, Bureau of Labor Statistics, Division of Industrial Prices and Price Indexes, Postal Square Building, Room 3840, 2 Massachusetts Avenue NE, Washington, DC 20212 (202) 606-7705
3.1 Construction put in place and construction cost indexes

George A. Roff, U.S. Department of Commerce, Bureau of the Census, Construction Statistics Division, Progress Branch, Iverson Mall, Room 301-03, Washington, DC 20233 (301) 763-5717
3.2 Construction contracts

Laura Pelzer, McGraw-Hill Construction Information Group, F.W. Dodge Division, Paramount Plaza, 13th Floor, 1633 Broadway, New York, NY 10019 (212) 512-3523
3.3 Housing starts and permits
U.S. Department of Commerce, Bureau of the Census, Construction Statistics Division, Construction Starts Branch, Iverson Mall, Room 300-15, Washington, DC 20233 (301) 763-5731
3.4 Boeckh indexes

Janet Olson, воескн, Division of Mitchell International, P.O. Box 51291, New Berlin, wi 53151-0291 (1-800) 809-0016, ext. 2808
3.5 Engineering News-Record and construction hourly wages Rona Nadi, McGraw-Hill Construction Information Group, Engineering News-Record, 41st Floor, 1221 Avenue of the Americas, New York, NY 10020 (212) 512-3418
3.6 Federal Highway Adm.-highway construction

Claretta Duren, U.S. Department of Transportation, Federal Highway Administration, Interstate and Programs Support Branch, hng-13, Nassis Building, Room 3128, 400 7th Street sw, Washington, DC 20590 (202) 366-4636
3.7 Real estate

Zenora Hines, U.S. Housing and Urban Development, Federal Housing Administration, Information Systems Division, Room b133, 451 7th Street sw, Washington, DC 20410 (202) 755-7500, ext. 107
3.8 Federal Home Loan Banks, outstanding advances to member institutions
Phil Quinn, Federal Housing Finance Board, District Bank Directorate Division, Financial Report Branch, 4th Floor, 1777 F Street NW, Washington, DC 20006 (202) 408-2865
4.1 Newspaper advertising expenditures

Miles Groves, Newspaper Association of America, Newspaper Center, 11600 Sunrise Valley Drive, Reston, va 22091 (703) 648-1339

4.2 Wholesale trade

Nancy Piesto, U.S. Department of Commerce, Bureau of the Census, Business Division, Current Wholesale Branch, fOB 3, Room 2747, Washington, DC 20233 (301) 763-3916
5.1 Labor force and population
U.S. Department of Labor, Bureau of Labor Statistics, Office of Employment and Unemployment Statistics, Current Employment Analysis Section, Postal Square Building, Room 4675, 2 Massachusetts Avenue, NE, Washington, DC 20212 (202) 606-6378
5.2 Employment, average hours per week, indexes of employeehours, and hourly and weekly earnings
U.S. Department of Labor, Bureau of Labor Statistics, Office of Employment and Unemployment Statistics, Monthly Industry Employment Statistics, Postal Square Building, Room 4860, 2 Massachusetts Avenue, Ne, Washington, dC 20212 (202) 606-6555
5.3 Aggregate employee-hours
U.S. Department of Labor, Bureau of Labor Statistics, Division of Productivity Research, Postal Square Building, Room 2150, 2 Massachusetts Avenue NE, Washington, DC 20212 (202) 606-5606
5.4 Employment cost index

Wayne Shelly, U.S. Department of Labor, Bureau of Labor Statistics, Office of Compensation and Working Conditions, Division of Employment Cost Trends, Postal Square Building, Room 4170, 2 Massachusetts Avenue Ne, Washington, DC 20212 (202) 606-6199
5.5 Help-wanted advertising

Ken Goldstein, The Conference Board, Inc., 845 Third Avenue, New York, NY 10022 (212) 339-0331
5.6 Work stoppages
U.S. Department of Labor, Bureau of Labor Statistics, Division of Developments and Labor Management Relations, Postal Square Building, Room 4175, 2 Massachusetts Avenue NE, Washington, DC 20212 (202) 606-6288
5.7 Unemployment insurance

Cindy Ambler, U.S. Department of Labor, Employment and Training Administration, Unemployment Insurance Service, Suite s-4519, 200 Constitution Avenue nw, Washington, DC 20210 (202) 219-5922
6.1 Bankers' acceptances

Thomas Brady, Board of Governors of the Federal Reserve System, Division of Monetary Affairs, Stop 81, Eccles Building, 20th \& Constitution Avenue NW, Washington, DC 20551 (202) 452-3363
6.2 Commercial and financial company paper

Federal Reserve Bank of New York, 33 Liberty Street, New York, NY 10045 (212) 720-6143
6.3 Loans of the Farm Credit System

Federal Farm Credit Banks Funding Corporation, Suite 1401, 10 Exchange Place, Jersey City, NJ 07302 (201) 200-8000
6.4 Federal Reserve Banks condition

Kim Jefferson, Board of Governors of the Federal Reserve System, Information Resource Management, Stop 170, Martin Building, 2oth \& C Streets NW, Washington, DC 20551 (202) 452-2398
6.5 All member banks of Federal Reserve System, average daily figures
Board of Governors of the Federal Reserve System, Division of Monetary Affairs, Stop 72, Eccles Building, 20th \& Constitution Avenue Nw, Washington, DC 20551 (202) 452-3577
6.6 Large commercial banks reporting to Federal Reserve System
Dennis Farley, Board of Governors of the Federal Reserve System, Division of Monetary Affairs, Stop 81, Eccles Building, 20th \& Constitution Avenue NW, Washington, DC 20551 (202) 452-3021
6.7 Commercial bank credit

Virginia Lewis, Board of Governors of the Federal Reserve System, Division of Monetary Affairs, Stop 84, Eccles Building, 20th \& Constitution Avenue NW, Washington, DC 20551 (202) 452-3012
6.8 Money and interest rates and taxable U.S. Treasury bonds Deborah McMillian, Board of Governors of the Federal Reserve System, Division of Monetary Affairs, Stop 81, Eccles Building, 20th \& Constitution Avenue nw, Washington, DC 20551 (202) 452-2851

6.9 Home mortgage rates

Travis King, Federal Housing Finance Board, 1777 F Street nW, Washington, DC 20006 (202) 408-2967
6.10 Consumer installment credit

Mark Peirce, Board of Governors of the Federal Reserve System, Division of Research and Statistics, Stop 93, Eccles Building, 20th \& Constitution Avenue nw, Washington, DC 20551 (202) 452-3760

6.11 Federal Government finance

Sherry Sherrod, U.S. Department of the Treasury, Financial Management Service, Room 749, 941 North Capitol Street NE, Washington, DC 20227 (202) 208-2456
6.12 Gold, monetary stock

Donald Adams, Board of Governors of the Federal Reserve System, Division of International Finance, Stop 43, Eccles Building, 2oth \& Constitution Avenue nw, Washington, DC 20551 (202) 452-2364
6.13 Gold and silver prices at New York

Platt's Metals Week, McGraw-Hill Inc., 42nd Floor, 1221 Avenue of the Americas, New York, NY 10020 (212) 512-2823
6.14 Monetary statistics

Board of Governors of the Federal Reserve System, Division of Monetary Affairs, Stop 72, Eccles Building, 20th \& Constitution Avenue NW, Washington, DC 20551 (202) 452-3577

6.15 Currency in circulation

Bernadette Derr, U.S. Department of the Treasury, Financial Management Service, 401 14th Street sw, Washington, DC 20227 (202) 208-1374

6.16 Profits and dividends

Paul Zarrett, U.S. Department of Commerce, Bureau of the Census, Economic Census and Survey Division, fob 3, Room 2578, Washington, DC 20233 (301) 763-2718
6.17 State and municipal securities issues and domestic municipal bond yields
The Bond Buyer, Statistics Department, 31st Floor, 1 State Street Plaza, New York, NY 10004 (212) 943-8542
6.18 Bond prices, domestic municipal bond yields, and stock prices and yields
Standard \& Poor's Corporation, Central Inquiry, 25 Broadway, New York, NY 10004 (212) 208-1199
6.19 Bond sales

Mike Hyland, New York Stock Exchange, Inc., Fixed Income Markets, 20 Broad Street, New York, Ny 10005 (212) 6565868
6.20 Bond yields

Moody's Investors Service, Corporate Rating Desk, 99 Church Street, New York, NY 10007 (212) 553-0377
6.21 Stock prices, Dow Jones averages

Dow Jones \& Company, Inquiry Department, 200 Liberty Street, New York, NY 10281 (212) 416-2676
6.22 Stock prices, stock sales, and shares listed, New York Stock Exchange (NYSE)
Bethann Ashfield, New York Stock Exchange, Inc., Research Library, 17th Floor, 11 Wall Street, New York, NY 10005 (212) 656-2491
6.23 Scock prices and stock sales, NaSDaQ over-the-counter

Mike Shokouhi, National Association of Securities Dealers, Inc., Economic Research Department, 1735 K Street NW, Washington, DC 20006 (202) 728-8274
6.24 Stock sales on all registered exchanges (SEC)

William Atkinson, Securities and Exchange Commission, Office of Economic Analysis, Stop 9-1, 450 5th Street Nw, Washington, DC 20549 (202) 272-7360
7.1 Value of exports, value of imports, and merchandise trade balance
Richard Preuss, U.S. Department of Commerce, Bureau of the Census, Foreign Trade Division, Trade Data Services Branch, FOB 3, Room 2279, Washington, DC 20233 (301) 763-7754
7.2 Export and import price indexes

Michelle Vachris, U.S. Department of Labor, Bureau of Labor Statistics, Division of International Prices, Branch of Index Methods, Analysis, and Evaluation, Postal Square Building, Room 3955, 2 Massachusetts Avenue NE, Washington, DC 20212 (202) 606-7155
7.3 Shipping weight and value

Norman Tague, U.S. Department of Commerce, Bureau of the Census, Foreign Trade Division, Transportation Branch, fOB 3, Room 2266, Washington, DC 20233 (301) 763-7770
8.1 Air carriers

Paul Gavel, U.S. Department of Transportation, Research and Special Programs Administration, Office of Airline Statistics, DAI-20, Washington, DC 20590 (202) 366-4391
8.2 Urban transit industry

Terry Bronson, American Public Transit Association, Suite 400, 1201 New York Avenue Nw, Washington, DC 20005 (202) 898-4129

8.3 Motor carriers

Andrew Lee, Interstate Commerce Commission, Office of Economics, Section of Costing and Financial Information, Room 3310, 12th \& Constitution Avenue nw, Washington, DC 20423 (202) 927-6387
8.4 Freight carried-volume indexes, class I and II intercity truck tonnage
Mike Arendes, American Trucking Association, Trucking Information Services, 2200 Mill Road, Alexandria, va 22314-4677 (703) 838-1791
8.5 Class I railroads

David Miller, Association of American Railroads, Economics and Finance Department, Room 5404, 50 F Street NW, Washington, DC 20001 (202) 639-2304

8.6 Foreign travel

Pat Harrington, U.S. Department of Transportation, Volpe National Transportation Systems Center, Center for Transportation Information, Kendall Square, Cambridge, ma 02142 (617) 494-2450

8.7 Passports issued

David Brown, U.S. Department of State, Passport Services, Office of Program Support, Room 584, 1425 K Street nw, Washington, DC 20522-1705 (202) 326-6075
8.8 National parks, recreation visits

Tom Wade, U.S. Department of Interior, National Park Service, Socio-Economic Studies, 12795 West Alameda Parkway, Denver, co 80225-0287 (303) 969-6977
9.1 Inorganic chemicals

Lissene Hafenrichter, U.S. Department of Commerce, Bureau of the Census, Industry Division, Wood and Chemical Products Branch, FOB 4, Room 2212, Washington, DC 20233 (301) 763-2541
9.2 Sulfur

Pamela Shorter, U.S. Department of Interior, Bureau of Mines, Branch of Industrial Metals, Ms-9705, 810 7th Street NW, Washington, DC 20241 (202) 501-9506
9.3 Inorganic fertilizer materials Walter Hunter, U.S. Department of Commerce, Bureau of the Census, Industry Division, Wood and Chemical Products Branch, FOB 4, Room 2212, Washington, DC 20233 (301) 763-4490
9.4 Potash, sales

Connie Holcomb, Potash and Phosphate Institute, Inc., Suite 110, 655 Engineering Drive, Norcross, GA 30092 (404) 447-0335

9.5 Industrial gases

Suzanne Pasdar, U.S. Department of Commerce, Bureau of the Census, Industry Division, Wood and Chemical Products Branch, FOB 4, Room 2212, Washington, DC 20233 (301) 763-4485
9.6 Organic chemicals and plastics and resin materials Gwen Bennett, International Trade Commission, Energy, Chemicals, and Textiles Division, Suite 513B, 500 E Street sw, Washington, DC 20436 (202) 205-3357
9.7 Glycerin, production

David Gromos, U.S. Department of Commerce, Bureau of the Census, Industry Division, Food, Textiles, and Apparel Branch, FOB 4, Room 2132, Washington, DC 20233 (301) 763-7809
9.8 Alcohol and alcoholic beverages
U.S. Department of the Treasury, Bureau of Alcohol, Tobacco, and Firearms, Industry Compliance Division, Market Compliance Branch, 650 Massachusetts Avenue nw, Washington, DC 20226 (202) 927-8128
9.9 Paints, varnish, and lacquer

Kim Ciurca, U.S. Department of Commerce, Bureau of the Census, Industry Division, Wood and Chemical Products Branch, FOB 4, Room 2212, Washington, DC 20233 (301) 763-5602
10.1 Electric power production
U.S. Department of Energy, National Energy Information Center, Forrestal Building, Room 1F-048, 1000 Independence Avenue sw, Washington, DC 20585 (202) 586-8800
10.2 Electric power sales and revenue from sales

Edison Electric Institute, 701 Pennsylvania Avenue NW, Washington, DC 20004-2696 (202) 508-5000
10.3 Gas

American Gas Association, 1515 Wilson Boulevard, Arlington, va 22209-2470 (703) 841-8507
11.1 Dairy products

Daniel Buckner, U.S. Department of Agriculture, National Agricultural Statistical Service, Estimates Division, Livestock Branch, South Building, 14th \& Independence Avenue sw, Washington, DC 20250-2000 (202) 720-4448
11.2 Fluid milk, utilization in manufactured dairy products LaVerne T. Williams, U.S. Department of Agriculture, Economic Research Service, Livestock, Dairy, and Poultry Branch, Room 808D, 1301 New York Avenue NW, Washington, DC 20005 (202) 219-0769
11.3 Fluid milk wholesale prices

James Hand, U.S. Department of Agriculture, National Agricultural Statistical Service, Economic Statistics Branch, Commodity Prices Section, South Building, Room 5927, 14th \& Independence Avenue sw, Washington, DC 20250-2000 (202) 690-3236
11.4 Grain and grain products

Charles Van Lahr, U.S. Department of Agriculture, National Agricultural Statistical Service, Estimates Division, Crops Branch, South Building, Room 5175, 14th \& Independence
Avenue sw, Washington, DC 20250-2000 (202) 720-2127
11.5 Rice

Dan Kerestes, U.S. Department of Agriculture, National Agricultural Statistical Service, Estimates Division, Crops Branch, South Building, Room 5175, 14th \& Independence Avenue sw, Washington, DC 20250-2000 (202) 720-9526
11.6 Rye and wheat

Vaughn Siegenthaler, U.S. Department of Agriculture, National Agricultural Statistical Service, Estimates Division, Crops Branch, South Building, Room 5175, 14th \& Independence Avenue sw, Washington, DC 20250-2000 (202) 720-8068

11.7 Wheat flour

John Miller, U.S. Department of Commerce, Bureau of the Census, Industry Division, Food, Textiles, and Apparel Branch, fOB 4, Room 2132, Washington, dC 20233 (301) 763-7837

11.8 Poultry, slaughter

Joel Moore, U.S. Department of Agriculture, National Agricultural Statistical Service, Estimates Division, Livestock, Dairy, and Poultry Branch, South Building, Room 5906, 14th \& Independence Avenue sw, Washington, DC 20250-2000 (202) 720-3244
11.9 Cold storage stocks of poultry, eggs, total meats, beef and veal, lamb and mutton, and pork
John Lang, U.S. Department of Agriculture, National Agricultural Statistical Service, Estimates Division, Livestock, Dairy, and Poultry Branch, South Building, Room 5906, 14th \& Independence Avenue sw, Washington, DC 20250-2000 (202) 720-0585
11.10 Poultry and egg prices

Debra Kenerson, U.S. Department of Agriculture, National Agricultural Statistical Service, Estimates Division, Economic Statistics Branch, South Building, Room 5912, 14th \& Independence Avenue sw, Washington, DC 20250-2000 (202) 690-3234

11.11 Egg production

Robert Little, U.S. Department of Agriculture, National Agricultural Statistical Service, Estimates Division, Livestock, Dairy, and Poultry Branch, South Building, Room 5913, 14th \& Independence Avenue sw, Washington, DC 20250-2000 (202) 720-6147
11.12 Cattles and calves

Glenda Shepler, U.S. Department of Agriculture, National Agricultural Statistical Service, Estimates Division, Livestock, Dairy, and Poultry Branch, South Building, Room 5906, 14th \& Independence Avenue sw, Washington, DC 20250-2000 (202) 720-3040

11.13 Hogs

Tom Kurtz, U.S. Department of Agriculture, National Agricultural Statistical Service, Estimates Division, Livestock, Dairy, and Poultry Branch, South Building, Room 5901, 14th \& Independence Avenue sw, Washington, DC 20250-2000 (202) 720-3106
11.14 Sheep and lambs and meats

Linda Simpson, U.S. Department of Agriculture, National Agricultural Statistical Service, Estimates Division, Livestock, Dairy, and Poultry Branch, South Building, Room 5871, 14th \& Independence Avenue sw, Washington, DC 20250-2000 (202) 720-3578

11.15 Coffee, U.S. Import Price Index

Rob Frumkin, U.S. Department of Labor, Bureau of Labor Statistics, Division of International Prices, Branch of International Indexes, Postal Square Building, Room 3930, 2 Massachusetts Avenue NE, Washington, DC 20212 (202) 606-7106
11.16 Fish

Barbara O'Bannon, U.S. Department of Commerce, National Oceanic and Atomspheric Administration, National Marine Fisheries Service, Fisheries Statistics Division, 1315 East West Highway, Silver Spring, MD 20910 (301) 713-2328

11.17 Tobacco

Greg Preston, U.S. Department of Agriculture, National Agricultural Statistical Service, Estimates Division, Crops Branch, South Building, Room 5175, 14th \& Independence Avenue sw, Washington, DC 20250-2000 (202) 720-3843
11.18 Tobacco leaf stocks

Henry Martin, U.S. Department of Agriculture, Agricultural Marketing Service, Tobacco Division, Market Information and Program Analysis Branch, Annex Building, Room 502, 300 12th Street sw, Washington, DC 20250-2000 (202) 2050489

12.1 Leather manufactures

Nat Shelton, U.S. Department of Commerce, Bureau of the Census, Industry Division, Food, Textiles, and Apparel Branch, FOB 4, Room 2132, Washington, DC 20233 (301) 763-5809
13.1 Lumber-all types, southern pine, and western pine Kathy Shaffer, American Forest and Paper Association, Suite 800, 1111 19th Street NW, Washington, DC 20036 (202) 4632754
13.2 Softwoods

Western Wood Products Association, Yeon Building, 522 Southwest Fifth Avenue, Portland, OR 97204-2122 (503) 2243930
13.3 Hardwood flooring

Patsy Davenport, National Oak Flooring Manufactures Association, P.O. Box 3009, Memphis, TN 38173-0009 (901) 526-5016
14.1 Iron and steel; pig iron and iron products; steel, raw and semifinished; and steel mill products
Janet Nash, American Iron and Steel Institute, Suite 1300, 1101 17th Street NW, Washington, DC 20036-4700 (202) 4527203 or (202) 452-7201
14.2 Iron and steel scrap and pig iron consumption

David Kulha, U.S. Department of Interior, Bureau of Mines, Branch of Metals, ms-9703, 810 7th Street NW, Washington, DC 20241 (202) 501-9520
14.3 Ore

William S. Kirk, U.S. Department of Interior, Bureau of Mines, Branch of Metals, ms-5208, 810 7th Street NW, Washington, DC 20241 (202) 501-9430
14.4 U.S. and foreign ores: Receipts and consumption at iron and steel plants and stocks at furnace yards and U.S. docks Joy Earlywine, American Iron Ore Association, 915 Rockefeller Building, 614 Superior Avenue West, Cleveland, он 44113-1383 (216) 241-8261
14.5 Pig iron and iron products castings and steel castings

Renee Reda, U.S. Department of Commerce, Bureau of the Census, Industry Division, Metals and Industrial Machinery Branch, FOB 4, Room 2207, Washington, dC 20233 (301) 763-7865
14.6 Producing steel mills, inventory

Michele L. Chaney, U.S. Department of Commerce, Bureau of the Census, Industry Division, Metals and Industrial Machinery Branch, FOB 4, Room 2207, Washington, DC 20233 (301) 763-7863
14.7 Aluminum

Patricia Plunkert or Cindy Lui, U.S. Department of Interior, Bureau of Mines, Branch of Metals, ms-5208, 810 7th Street nw, Washington, DC 20241 (202) 501-9419
14.8 Aluminum products

Mary Ellickson, U.S. Department of Commerce, Bureau of the Census, Industry Division, Metals and Industrial Machinery Branch, FOB 4, Room 2207, Washington, DC 20233 (301) 763-7862
14.9 Copper

Dan Edelstein, U.S. Department of Interior, Bureau of Mines, Branch of Metals, ms-5208, 810 7th Street NW, Washington, DC 20241 (202) 501-9415
14.10 Lead

Jerry Smith, U.S. Department of Interior, Bureau of Mines, Branch of Metals, ms-5208, 810 7th Street nw, Washington, DC 20241 (202) 501-9444
14.11 Lead producers' stocks and slab zinc production and producers' stocks
Robert Clock, American Bureau of Metal Statistics, Inc., 400 Plaza Drive, P.O. Box 1405, Secaucus, NJ 07094-0405 (201) 863-6900
14.12 Tin

James Carlin, U.S. Department of Interior, Bureau of Mines, Branch of Metals, MS-5208, 810 7th Street NW, Washington, DC 20241 (202) 501-9426
14.13 Zinc

Bob Reese, U.S. Department of Interior, Bureau of Mines, Branch of Metals, ms-5208, 810 7th Street nw, Washington, DC 20241 (202) 501-9422
14.14 Industrial heating equipment

Data not available for public distribution.
14.15 Materials handling equipment

Elizabeth Baatz, Cahners Economics, Cahners Building, 275
Washington Street, Newton, MA 02158-1630 (617) 630-2114
14.16 Industrial supplies, machinery, and equipment

Chuck Moore, American Supply \& Machinery Manufacturers' Association, Inc., 1300 Sumner Avenue, Cleveland, OH 44115-2851 (216) 244-7333
14.17 Industrial suppliers distribution of machinery and equipment
Steve Hern, Industrial Distribution Association, Suite 201, 3 Corporate Square, Atlanta, GA 30329 (404) 325-2776
14.18 Fluid power products shipments indexes

Steven Latin-Kasper, National Fluid Power Association, Suite 311, 3333 North Mayfair Road, Milwaukee, WI 53222 (414) 778-3358
14.19 Machine tools

Steve Bell, The Association for Manufacturing Technology, 7901 West Park Drive, McLean, va 22102-4269 (703) 8275262
14.20 Tractors used in construction, shipments

Richard Wiesler, U.S. Department of Commerce, Bureau of the Census, Industry Division, Metals and Industrial Machinery Branch, FOB 4, Room 2207, Washington, DC 20233 (301) 763-7867
14.21 Battery shipments

Mary Warmowski, Smith Bucklin \& Associates Inc., 401 North Michigan Avenue, Chicago, Il 60611-4267 (312) 644-6610
14.22 Radio factory sales and television set production

Tom Godsman, Electronic Industries Association, 2001 Pennsylvania Avenue nw, Washington, DC 20006-1813 (202) 457-4958
14.23 Household major appliances and ranges

Alane Mackay, Association of Home Appliance Manufacturers, 20 North Wacker Drive, Chicago, il 60606 (312) 984-5800, ext. 315
14.24 Vacuum cleaners

Clifford J. Wood, Vacuum Cleaner Manufacturers Association, Box 2642, North Canton, of 44720 (216) 499-5998
14.25 Furnaces

Gary Thibeault, Gas Appliance Manufacturers Association, Inc., 1901 North Moore Street, Arlington, va 22209 (703) 525-9565
14.26 Water heaters

Frank Stanonik, Gas Appliance Manufacturers Association, Inc., 1901 North Moore Street, Arlington, vA 22209 (703) 525-9565
15.1 Coal and coke
U.S. Department of Energy, National Energy Information Center, Forrestal Building, ex-231, 1000 Independence Avenue sw, Washington, DC 20585 (202) 586-8800
15.2 Petroleum coke production and stocks and petroleum and products
Morris Rice, U.S. Department of Energy, Office of Oil and Gas, ei-424, Forrestal Building, Room 2E068, Washington, DC 20585 (202) 586-4634
16.1 Pulpwood, waste paper, woodpulp, and paper and paper products
American Forest and Paper Association, Paper Information Center, 1111 19th Street nw, Washington, DC 20036 (1-800) 878-8878
16.2 Newsprint

Jan Liddy, American Forest and Paper Association, 11th Floor, 260 Madison Avenue, New York, Ny 10016 (212) 340-0649
16.3 Paper products

Peggy Gilmore, Fibre Box Association, 2850 Golf Road, Rolling Meadows, IL 60008 (708) 364-9600

17.1 Tires and tubes

Dan Mustico, Rubber Manufacturers Association, 1400 K Street NW, Washington, DC 20005 (202) 682-4863

18.1 Portland cement

Cheryl Solomon, U.S. Department of Interior, Bureau of Mines, Branch of Industrial Minerals, ms-5209, 810 7th Street NW, Washington, DC 20241 (202) 501-9393
18.2 Clay construction products

Robert Miller, U.S. Department of Commerce, Bureau of the Census, Industry Division, Wood and Chemical Products Branch, FOB 4, Room 2212, Washington, DC 20233 (301) 763-4484

18.3 Flat glass shipments

Susan Sundermann, U.S. Department of Commerce, Bureau of the Census, Industry Division, Wood and Chemical Products Branch, FOB 4, Room 2203, Washington, DC 20233 (301) 763-2376

18.4 Glass containers

Sheila Proudfoot, U.S. Department of Commerce, Bureau of the Census, Industry Division, Wood and Chemical Products Branch, FOB 4, Room 2203, Washington, DC 20233 (301) 763-7574
18.5 Gypsum and products

Lawrence Davis, U.S. Department of Interior, Bureau of Mines, Branch of Industrial Minerals, ms-5209, 810 7th Street NW, Washington, DC 20241 (202) 501-9386
19.1 Cotton production

Roger Lathan, U.S. Department of Agriculture, National Agricultural Statistical Service, Crops Branch, Room 5175, 14th \& Independence Avenue sw, Washington, DC 202502000 (202) 720-5944
19.2 Cotton consumption and spindle activity

Karen Harshbarger, U.S. Department of Commerce, Bureau of the Census, Industry Division, Food, Textiles, and Apparel Branch, fob 4, Room 2132, Washington, DC 20233 (301) 763-4476
19.3 Cotton stocks in the United States

Tim Barry, New York Cotton Exchange, Market Surveillance Division, 8th Floor, 4 World Trade Center, New York, NY 10048 (212) 938-7909
19.4 Cotton farm prices, American upland

Debra Kenerson, U.S. Department of Agriculture, National Agricultural Statistical Service, Estimates Division, Economic Statistics Branch, Commodity Prices Section, 14th \& Independence Avenue sw, Washington, DC 20250-2000 (202) 690-3234
19.5 Cotton prices, strict low middling

Leslie Meyer, U.S. Department of Agriculture, Economic Research Service, Commodity Economics Division, Crops Branch, Room 1034, 1301 New York Avenue Nw, Washington, DC 20005-4788 (202) 219-0840
19.6 Cotton cloth broadwoven goods and production of wool broadwoven goods
Keith Featherstone, U.S. Department of Commerce, Bureau of the Census, Industry Division, Food, Textiles, and Apparel Branch, FOB 4, Room 2132, Washington, DC 20233 (301) 763-2553
19.7 Manmade fibers and manufactures

Kim Costa, Fiber Economics Bureau, Inc., 101 Eisenhower Parkway, Roseland, NJ 07068 (201) 228-1107
19.8 Wool consumption

Maria Dixon, U.S. Department of Commerce, Bureau of the Census, Industry Division, Food, Textiles, and Apparel Branch, FOB 4, Room 2132, Washington, DC 20233 (301) 763-5895
19.9 Wool imports and wool prices

John Lawler, U.S. Department of Agriculture, Economic Research Service, Commodity Economics Division, Crops Branch, Room 1034, 1301 New York Avenue NW, Washington, DC 20005-4788 (202) 219-0840
19.10 Floor coverings

Amelia Williams, American Textile Manufacturers Institute, Inc., Office of Chief Economist, Suite 900, 1801 K Street NW, Washington, DC 20006 (202) 862-0547
19.11 Apparel

Andrew Kraynak, U.S. Department of Commerce, Bureau of the Census, Industry Division, Food, Textiles, and Apparel Branch, FOB 4, Room 2132, Washington, DC 20233 (301) 763-7108
19.12 Hosiery shipments

Mary Ann Blansett, National Association of Hosiery Manufacturers, 200 North Sharon Amity Road, Charlotte, NC 28211-3004 (704) 365-0913
20.1 Aerospace vehicles, truck trailer and chassis shipments, and trailer chassis sold separately
Lynn Sizemore, U.S. Department of Commerce, Bureau of the Census, Industry Division, Electrical and Transportation Branch, fOB 4, Room 2231, Washington, DC 20233 (301) 763-5547
20.2 Passenger cars, trucks, and buses factory sales and retail inventories of trucks and buses
American Automobile Manufacturers Association, Suite 300, 7430 Second Avenue, Detroit, MI 48202 (313) 872-4311
20.3 Passenger car retail sales, inventories, and inventory-sales ratios
U.S. Department of Commerce, Bureau of Economic Analysis, National Income and Wealth Division, be-54, 1441 L Street NW, Washington, DC 20230 (202) 606-5304
20.4 Passenger car imports

Mike Hagey, U.S. International Trade Commission, Machinery and Transportation Division, 500 E Street sw, Washington, DC 20436 (202) 205-3392
20.5 Registrations of passenger cars, trucks, and buses
R.L. Polk \& Company, Statistical Services Division, 1155 Brewery Park Boulevard, Detroit, mi 48207-2697 (313) 393-0880
20.6 Retail sales of trucks and buses
U.S. Department of Commerce, Bureau of Economic Analysis, National Income and Wealth Division, be-54, 1441 L Street NW, Washington, DC 20230 (202) 606-5304
20.7 Railroad equipment

Association of American Railroads, Communications Department, 50 F Street NW, Washington, DC 20001-1564 (202) 639-2555

Schedule of Upcoming bea News Releases

Subject	Release Date
U.S. International Trade in Goods and Services, March 1994	May 19
Gross Domestic Product, ist quarter 1994 (preliminary)	May 27
Corporate Profits, 1 st quarter 1994 (preliminary)	May 27
Personal Income and Outlays, April 1994	May 31
Composite Indexes of Leading, Coincident, and Lagging Indicators, April 1994	June 2
Summary of International Transactions, ist quarter 1994	June 15
U.S. International Trade in Goods and Services, April 1994	* June 21
Gross Domestic Product, ist quarter 1994 (final)	June 29
Corporate Profits, 1st quarter 1994 (revised).	June 29
Personal Income and Outlays, May 1994	June 30
Composite Indexes of Leading, Coincident, and Lagging Indicators, May 1994	July 1
U.S. International Trade in Goods and Services, May 1994	* July 19
State Personal Income, 1st quarter 1994	July 20
Gross Domestic Product, 2nd quarter 1994 (advance)	July 29
Personal Income and Outlays, June 1994	Aug. 1
Composite Indexes of Leading, Coincident, and Lagging Indicators, June 1994	Aug. 3
Gross State Product by Industry, 1991.	Aug. 4
U.S. International Trade in Goods and Services, June 1994	* Aug. 18
State Per Capita Personal Income, 1993 (revised)	Aug. 23
Gross Domestic Product, 2nd quarter 1994 (preliminary)	Aug. 26
Corporate Profits, 2nd quarter 1994 (preliminary).	Aug. 26
Personal Income and Outlays, July 1994.	Aug. 29
Composite Indexes of Leading, Coincident, and Lagging Indicators, July 1994	Aug. 31
* Joint release by the Bureau of the Census and bea.	

[^0]: 2. In the NIPA's, an increase in the rate of Federal employee compensation is treated as an increase in the price of employee services purchased by the Federal Government.
[^1]: Note-Changes are from preceding quarter.

[^2]: 3. According to the revised estimates (released April 28, 1994), profits increased $\$ 39.4$ billion in the fourth quarter of 1993 ; the preliminary estimates, released March 31, had shown a $\$ 42.0$ billion increase.
[^3]: 5. It should be noted that this ratio is not appropriate for use in productivity analysis; for productivity analysis, the denominator should measure
[^4]: 1. Incluces utitites, communications, rental payments, maintenance and repair, and payments to contractors to
 operate installations.
 2. Includes depot maintenance and contractual services for weapons systems, other than research and evelopment.
 3. Includes compensation of foreign personnel, consulting, training, and education.
[^5]: and of nondurable consumer goods, except automotive.

[^6]: 1. Inventories are as of the end of the quarter
[^7]: 1. Inventories are as of the end of the quarter. Quarter-to-quarter changes calculated from this table are at quarterly rates, whereas the constant-dollar change in business inventories component of GDP is stated at annual rates.
 2. Quarterly totals at monthly rates. Final sales of domestic business equals final sales of domestic product less gross product of households and institutions and generai government and includes a small amount of final sales by farm.
[^8]: 1. Consists largely of receipts by U.S. residents of interest and dividends and reinvested earnings of foreign
[^9]: 2. Materials balance and energy accounting, developed in the late 1960's, is based on the first law of thermodynamics-that matter can neither be created nor destroyed. The accounts therefore describe a circular flow process: A raw material input is transformed by the processes of the economy, this transformation results in a new product and in residuals, and those residuals are transformed in the natural environment into raw materials.
[^10]: 3. See Salah El Serafy and Ernst Lutz [7].
 4. See, for example, Henry M. Peskin and Ernst Lutz [17].
[^11]: 5. For a summary of the SNA, the revision process, and the new features, see [30].
 6. The two main features that anticipated the needs of environmental accounting dealt with the coverage of assets and the recording of changes in them. First, the SNA 1993 includes within the boundary of economic assets all assets over which ownership rights can be established and enforced and that provide economic benefits to their owners. This boundary explicitly includes natural assets, both those whose growth is the result of human cultivation (for example, vineyards and livestock) and those that, although not cultivated, are under control of an owner (for example, land, subsoil assets, and water resources). Second, it records all changes in the value of assets from one balance sheet to another. As part of doing this, there is an account to record certain changes in assets not recorded as production or as costs of production; this account records, for example, the additions to, and depletion of, subsoil assets and the natural growth of uncultivated forests. Another account records changes in the value of assets due to price change. Further, the $S_{N A} 1993$ describes how to use these and other features as a point of departure for an environmental satellite account.
[^12]: 1. For air pA, the Clean Air Act classifies the sources of pollutants as mobile (for example, automobiles) or stationary (for example, factories). For water PA, the Federal Water Pollution Control Act classifies sources of pollutants as point (for example, factories) or nonpoint (for example, highway construction projects).
 2. The stock estimates in table A are part of a new establishment-based series for 1960 forward. ben is planning a Survey of Current Business article for later this year to present such PA P\&E stock estimates for selected industries and to present their related capital flows through 1992. The new stock series replaces a series prepared on a company (or enterprise) basis.
 3. Stocks other than for Pa P\&E also protect air and water. Examples include stocks of PA devices and systems on mobile (for example, motor vehicles) and nonindustrial pollutant sources (for example, public sewer systems and septic systems), as well as PA features of solid waste management systems. Estimates for these kinds of stocks are not available.
[^13]: 7. There are also conceptual limitations to using NDP as the indicator of sustainable growth. nDP shows only the level of product, which cannot reflect much information about sustainability. The rate of change of NDP over time is more useful, but even this is not a clear indicator, because changes in NDP reflect changes in the rates of consumption, government expenditure, and net exports as well as net capital formation.

 A measure that may be more useful as an indicator of sustainable growth is the net savings rate, which is affected only by changes in the rate of investment in, and the consumption of, fixed capital. If the savings rate-adjusted to reflect additions to, and subtractions from, natural as well as produced assets-is positive, then growth can be considered sustainable. (Because this assumes a high degree of substitutability between produced and natural assets, some refer to this concept as "weak sustainability.")

[^14]: 1. Business accounting has also long debated issues in accounting for minerals; further, there was a resurgence in interest after the "energy crisis" in the mid-1970's. Since then, the Financial Accounting Standards Board has issued five new standards to improve accounting for mineral resources.
[^15]: 2. See, for example, Gavin Wright [35] and Michael J. Boskin, Marc S. Robinson, Terrance O'Reilly, and Praveen Kumar [4].
[^16]: 3. Part of the debate over the treatment of minerals as inventories or as fixed capital may reflect the view that depletion should be counted as a reduction in the highly visible GDP measure, rather than in the less well known NDP. If natural resources are treated like fixed capital, the depletion of the resources in the production process would be treated like depreciation. Because NDP is defined as GDP less depreciation, with this treatment any depletion charge would affect NDP but not GDP (as noted earlier, conventional GDP implicitly includes depletion). On the other hand, the change in business inventories is a component of both GDP and NDP. Consequently, some have argued that if depletion were viewed as a net decline in inventories, it would result in a subtraction from both GDP and NDP.
[^17]: 4. Among the methods that have not been used is one suggested by Salah El Serafy. The approach essentially calculates the amount that must be invested in a "sinking fund" to create an income stream sufficient to replace that produced by the natural resource. The approach, although frequently mentioned in the resource accounting literature, is not included largely because it is inconsistent with the concepts embodied in traditional national accounts and the ieesn's. In traditional accounts, the value of an asset is determined by its market price, or proxy thereof. El Serafy's approach, a welfare-oriented measure, is not intended to estimate the market value of the mineral resource.
[^18]: 5. In other words, the real price of the resource should increase at the real rate of interest, and there is no need for discounting.
 6. As discussed later, it may be true that over long periods, the rent per unit for mineral resources-like most tangible assets held for investment purposes-will rise at a rate equal to the nominal discount rate; however, periods of disequilibrium may be quite long. Nevertheless, given the problems in forecasting volatile minerals prices, technology, etc., this simple assumption may yield results as good as or better than other methods.
[^19]: 7. Although these real rates-3 percent and to percent-are often used to discount future returns, both are probably high for an appreciating tangible asset for a number of reasons: (1) Mineral prices do rise, at least partly, if not fully offsetting the effect of discounting; (2) as many authors have argued, decisions with intergenerational effects should be valued at lower discount rates than other transactions; and (3) a real rate of 10 percent, which is often cited and has been used by the Office of Management and Budget as an estimate of the real rate of return to private capital, is biased upwards. The io-percent return is based on estimates of the before-tax return to reproducible capital, which is computed as all property-type income divided by the replacementcost value of reproducible assets. Some authors have attempted to adjust the return to reflect the fact that property-type income is a return to land and other factors as well as to reproducible capital; nevertheless, to the extent that these other factors are excluded from the denominator, the computed return to capital is too high.
 8. Because of the simplifying assumptions used, somewhat different discount-extraction factors are applied to stocks and flows; for most years, the differences are very small.
[^20]: 11. The transactions-price and replacement-cost methods are used for the period 1947-91 and only for oil and gas.
[^21]: 1. Based on the value of capitol stock.
 2. Based on the average reumn to invested capital.
[^22]: 1. Earlier benchmarks covered 1947, 1958, 1963, 1967, 1972, 1977, and 1982. bea also has produced annual 1-0 accounts based on less comprehensive source data. The most recent annual accounts, for 1987, were presented in the April 1992 Survey of Current Business.
[^23]: 2. See "Improving the Quality of Economic Statistics: The 1992 Economic Statistics Initiative," SURVEY 71 (March 1991): 4-5.
[^24]: 3. Value added equals gross output (sales or receipts and other operating income, plus inventory change) minus intermediate inputs (consumption of goods and services purchased from other industries or imported). It includes compensation of employees, indirect business tax and nontax liability, and other value added.
[^25]: 4. In the $\mathrm{I}-\mathrm{o}$ accounts, change in business inventories covers commodities wherever held; capital purchases-producers' durable equipment and structures-are included in gross private fixed investment; and imported commodities are included with domestically produced commodities in both final use and intermediate use.
 5. The commodity-flow method generally begins with an estimate of the total supply of a commodity available for domestic uses; it then either attributes a fixed percentage of supply to final users, or it adjusts for intermediate purchases and attributes the residual to final users. For more information, see U.S. Department of Commerce, Bureau of Economic Analysis, Personal Consumption Expenditures, Methodology Paper Series mp-6 (Washington, dc: U.S. Government Printing Office, June 1990): 31-34.
[^26]: 6. For most t-o industries, other value added includes consumption of fixed capital, proprietors' income, corporate profits, and business transfer payments. For banking and for credit agencies other than banks, other value added also includes net interest. For owner-occupied dwellings and for real estate agents, managers, operators, and lessors, it also includes rental income. For the six industries covering the Federal Government and State and local government enterprises, it also includes current surplus less government subsidy payments.
 7. See Robert P. Parker, "Gross Product by Industry, 1977-90," Survey 73 (May 1993): 33-54; and Robert E. Yuskavage, "Gross Product by Industry, 1988-91," Survey 73 (November 1993): 33-44.
 8. The net addition of industries resulting from the aggregations and disaggregations of 19821.0 industries is 11 . In addition, the rest of the world is no longer technically considered to be an industry because of the change from GNP to GDP as the primary measure of final demand. Thus, there is a net increase of 10 industries in the 1987 benchmark.
[^27]: 9. The 1991 nIPA revision was described in the following Survey articles: "A Preview of the Comprehensive Revision of the National Income and Product Accounts: Definitional and Classificational Changes," September 1991; "A Preview of the Comprehensive Revision of the National Income and Product Accounts: New and Redesigned Tables," October 1991; and "The Comprehensive Revision of the U.S. National Income and Product Accounts: A Review of Revisions and Major Statistical Changes," December 1991.
 10. Estimates for commodities in purchasers' prices can be derived by adjusting for transportation costs and for wholesale and retail trade margins; these costs and margins are included on the diskettes that can be ordered for the 1987 benchmark $1-0$ (see the box on page 90).
[^28]: 11. In the designation of $\mathrm{I}-\mathrm{o}$ tables, the row is referred to first and the column second. Thus, tables in which commodities appear in the rows and industries in the columns are designated "commodity-by-industry" tables, and tables in which industries appear in the rows and commodities in the columns are designated "industry-by-commodity" tables.
 12. Primary and secondary products and the classification of industries are discussed further in the section "Definitions and conventions for classification:"
[^29]: 13. See Robert P. Parker, "Improved Adjustments for Misreporting of Tax Return Information Used to Estimate the National Income and Product Accounts, 1977," Survey 64 (June 1984): 17-25.
[^30]: 14. See Personal Consumption Expenditures, pages 31-34.
[^31]: 15. For more information on the 1-0 accounts and their relationship to the NIPA's, see Personal Consumption Expenditures, pages 17 and 31-34.
[^32]: 16. A typical I-o table in the Regional Input-Output Modeling System is derived mainly from two data sources: (1) The U.S. benchmark 1-0 accounts and (2) bea's four-digit sic county wage-and-salary data. For more information, see U.S. Department of Commerce, Bureau of Economic Analysis, Regional Multipliers: A User Handbook for the Regional Input-Output Modeling System (rims II), Second Edition (Washington, DC: U.S. Government Printing Office, 1992).
[^33]: 17. The $\mathrm{I}-\mathrm{o}$ two-digit and six-digit industry categories and their composition in terms of the 1987 SIC codes are given in appendix B.
 18. For a discussion of the sIc system, see Office of Management and Budget, Executive Office of the President, Standard Industrial Classification Manual: 1987, (Springfield, Virginia: National Technical Information Service, 1987): 11-18.
 19. Fewer 1 -o adjustments to sic-defined industries may be necessary for the 1997 and subsequent benchmark $1-0$ accounts when the North American Industry Classification System (naics) is completed. The proposed naics is expected to be a common international system-covering the United States, Canada, and Mexico-for grouping establishments by similarity of production process. For a discussion, see Jack E. Triplett, "Economic Concepts for Economic Classifications," Survey 73 (November 1993): 45-56.
[^34]: 20. The I-O commodity-based and I-O industry-based technology assumptions are important when estimating the total-requirements tables. The significance of the assumptions is discussed elsewhere in the economic I-o literature. See, for example, United Nations, System of National Accounts, 1993, prepared under the auspices of the Inter-Secretariat Working Group on National Accounts (New York: United Nations, 1993): chapter 15, in particular pages 367-70; and Ronald E. Miller and Peter D. Blair, Input-Output Analysis: Foundations and Extensions (Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1985): 149-99.
[^35]: 21. U.S. merchandise returned consists of domestically produced goods that were previously exported to other countries for processing or assembly, or both, and then returned to the United States. An example would be articles of metal that are manufactured in the United States, then exported for further processing abroad, and then returned to the United States for more processing. Reexports consists of commodities of foreign origin that were previously imported into the United States and then exported from the United States in substantially the same condition as when imported. An example would be imported foreign-made monitors that are purchased by U.S. personal computer manufacturers, joined with U.S.-made consoles, and then exported to a third foreign country.
[^36]: Less than $\$ 500,000$

[^37]: Less than $\$ 500,000$.

[^38]: 1. In this article, these percent changes are not at annual rates.
[^39]: U.S. Deparment of Commerce, Bureau of Economic Analysis

[^40]: 1. See Wallace K. Bailey, "Comprehensive Revision of Local Area Personal Income Estimates, 1969-90," Survey of Current Business 73 (May 1993): 63-87.
 2. The State estimates are presented in "State Personal Income, Revised Estimates for 1990-92," SURVEY 73 (September 1993): 70-85.
[^41]: 3. For the New England region, bea uses a county-based definition rather than a definition in terms of cities and towns, because the available data for cities and towns are insufficient.

 A list of the metropolitan areas and their definitions (Accession Number PB 93-505-824) is available from the National Technical Information Service (Nris). The list in electronic form (Wordperfect 5.1, Accession Number Pb $93-505-816$) is also available through NTIS. Write to NTIS, Document Sales, 5205 Port Royal Road, Springfield, va 22161, or call (703) 487-4650.
 4. The pmsa's into which the former New York-Newark pmsa was divided are Bergen-Passaic, nj; Jersey City, nj; Middlesex-Somerset-Hunterdon, n; Monmouth-Ocean, nj; Nassau-Suffolk, ny; New York, Ny; and Newark, N.

 The msA's to which counties were added are Augusta-Aiken, $\mathrm{GA}-\mathrm{sc} ; \mathrm{Ba}$ ton Rouge, la; Chattanooga, tn-ga; Huntington-Ashland, wV-kY-oh; and Wilmington, NC .

[^42]: 1. 1987 based on 1972 SIC. 1988-92 based on 1987 SIC.
 2. Farm income consists of proprietors' net farm income, the wages of hired labor, the pay-in-kind of hired farm labor, and the salaries of officers of corporate farms.
 3. Census Bureau midyear population estimates. Estimates for 1990-92 reflect State and county estimates available as of February 1994.
 4. Personal contributions for social insurance are included in earnings by type and industry but excluded from personal income.
 5. U.S. adjustment for residence consists of adjustments for border workers: income of U.S.
[^43]: See footnotes at end of table.

[^44]: See footnotes at end of table.

[^45]: See footnotes at end of table.

[^46]: NOTE.-The following current high values were reached betore February 1993: July 1991-BCl-92 change (6.72) and August 1991-BCl-92 smoothed (-0.83).

[^47]: See footnotes on page $\mathrm{C}-6$.

