SURVEY OF CURRENT BUSINESS

CONTENTS

Explanations of Declining Productivity Growth
State Differences in Per Capita Personal Income Growth in the Seventies
State Personal Income, 1958-78
Seasonally Unadjusted NIPA Estimates
Summary National Income and Product Series, 1929-1978
Alternative Estimates of Capital Consumption and Profits of Nonfinancial Corporations, 1975-78

Durable Goods Owned by Consumers in the United States, 1975-78
Fixed Nonresidential Business and Residential
Capital in the United States, 1975-78

U.S. Department of Commerce
Juanita M. Kreps / Secretary
Courtenay M. Slater / Chief Economist for the Department of Commerce

Bureau of Economic Analysis
George Jaszi / Director
Allan H. Young / Deputy.Director
Carol S. Carson / Editor-in-Chief, Survey of Current Business

Manuscript Editor: Dannelet A. Grosvenor Managing Editor: Patti A. Trujillo

Staff Contributors to This Issue: Kenneth P. Berkman, Robert B. Bretzfelder, David W. Cartwright, Edward F. Denison, Howard L. Friedenberg, Jeanette Honsa, John C. Musgrave, Elizabeth H. Queen.

Survey of Current Business. Published monthly by the Bureau of Economic Analysis of the U.S. Department of Commerce, Editorial correspondence should be addressed to the Editor-in-Chief, Survey of Current Business, Bureau of Economic Analysis, U.S. Department of Commerce, Washington, D.C. 20230.

First-class mail.-Domestic only: Annual subscription $\$ 35.00$.

Second-class mail.-Annual subscription: $\$ 22.00$ domestic; $\$ 27.50$ foreign. Single copy: $\$ 1.90$ domestic; $\$ 2.40$ foreign.

Foreign air mail rates available upon request.
Mail subscription orders and address changes to the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402. Make checks payable to Superintendent of Documents.
Second-class postage paid at Washington, D.C. and at additional mailing offices.
 printing this periodlcal has been approved by the Director of the Oftice of Management and Budget through September 1, 1880 .

U.S. DEPARTMENT OF COMMERCE DISTRICT OFFICES

MICH., Detroit 48226 445 Federal Bldg. 226-3650	
MINN., Minneapolis 55401 218 Federal Bldg. 725-2133	
MO., St. Louis 63105 120 S. Central 425-3302	
NEBR., Omaha 68102 1815 Capitol Ave. 221-3665	
$\begin{array}{ll} \text { NEV. Reno } & 89503 \\ 777 \mathrm{~W} .2 \mathrm{~d} \text { St. } & 784-5203 \end{array}$	
N.J., Newark 07102 4th Floor Gateway Bldg. 645-6214	
N. MEX., Albuquerque $\mathbf{8 7 1 0 2}$ 505 Marquette Ave., N.W. 766-2386	
N.Y., Buffalo 14202	
111 W. Huron St. 846-4191	

N.C., Greensboro 27402 203 Federal Bldg. 378-5345	$\begin{aligned} & \text { TEX., Dallas } 75242 \\ & \text { 1100 Commerce St. } 749-1515 \end{aligned}$
OHIO, Cinclnnati 45202 550 Main St. 684-2944	TEX., Houston 77002 515 Rusk St. 226-4231
OHIO, Cleveland 44114 666 Euclid Ave. 522-4750	UTAH, Salt Lake City 84138 125 South State St. 524-5116
OREG., Portand 97204 1220 S.W. 3rd Ave. 221-3001	VA., Richmond 23240 B010 Federal Bldg. 782-2246
PA., Philadelphia 19106 600 Arch St. 597-2850	WASH., Seattle 98109
PA., Pittsburgh 15222 1000 Liberty Ave. 644-2850	Rm. 706 Lake Union BIdg. 442-5615
P.R., San Juan 00918 659 Federal Bldg. 753-4555	W. VA., Charleston 25301 500 Quarrier St. 343-6181
S.C., Columbia 29204 2611 Forest Dr. 765-5345	WIS., Milwaukee 53202 517 E. Wisconsin Ave. 291-3473
TENN., Memphis 38103 147 Jefferson Ave. 521-3213	WYO., Cheyenne 2120 Capitol Ave. $778-22201$

By EDWARD F. DENISON

Explanations of Declining Productivity Growth

GGROWTH of American productivity was rapid by historical standards during most of the postwar period. But in the last half of the 1960 's the rate began to slacken. Until 1974 this slackening was not particularly disturbing from the standpoint of long-term growth. It was partly the consequence of short-term fluctuations in determinants of output that typically display irregular movements, chiefly a drop in the intensity of use of employed labor and capital from a peak reached in 1965-66. The remainder resulted from developments that were inevitable or even welcome. Transfer of surplus workers from farming to nonfarm jobs, in which they produce output of greater value, diminished as the pool of such labor approached exhaustion. The proportion of inexperienced workers among the employed was boosted by great increases in the working-age population under 25 years of age, a rising ratio of employment to population in the young age groups, and entry of many adult women into the labor force. Costs of regulations that the Government presumably felt had benefits in excess of their costs began to impinge upon productivity. This comfortable characterization of the
productivity slowdown is not applicable to more recent years. Beginning in 1974 the situation became disturbing and also puzzling. The productivity trend turned far more adverse, and the influences responsible for the slowdown prior to 1974 were no longer sufficient to explain the shortfall from the earlier trend. The major productivity seriesoutput per person employed, output per hour, and output per unit of inputall show much the same pattern of retardation.

The discussion in this article is organized by reference to output per person employed and the decline in its growth rate since 1973. The estimates cited refer to the nonresidential business sector, which makes up more than three-fourths of the whole economy. Output is measured by national income in constant (1972) prices. Employment is defined as the number of persons employed, full-time or part-time, during an average week. Wage and salary workers, the self-employed, and unpaid family workers are included. The average level of the series is based on the Current Population Survey, but for maximum consistency with the national income series its movement is
based mainly on establishment reports
In nonresidential business, national income per person employed (NIPPE) increased by an average of 2.4 percent a year during the quarter century from 1948 to 1973-a total of 82 percent over the period. It then dropped by a total of 5.6 percent from 1973 to 1975. Even after a recovery in 1976, NIPPE remained lower than 3 years before; its 1973-76 growth rate was -0.5 percent a year. The analysis of growth sources upon which this article draws has been carried only to 1976, but it is evident that slow productivity growth has characterized the entire period after 1973, continuing to the present time. In 1977 and 1978 NIPPE increased only enough to regain its 1973 level, so over the whole 5 -year period from 1973 to 1978 its growth rate was zero. The first half of 1979 was below 1973 (and 1978). Let me observe here that when I use adjectives such as "slow" or "retarded" to describe growth in recent periods, and when I refer to a growth rate as having declined, I mean to include situations in which the recent growth rate has actually been negative.

I have previously studied economic

This article discusses a wide range of suggested causes of the decline in the rate of productivity growth in recent years. It is the second Survey of Current Business article that presents portions of Mr. Denison's comprehensive study of this subject, which will be published by The Brookings Institution as Accounting for Slower Growth: The United States in the 1970s. The first article, which appeared in the January 1978 Survey, dealt with effects on output per unit of input of new requirements to protect the physical environment against pollution, increased requirements to protect the safety and health of employed persons, and a rise in dishonesty and crime.

Mr. Denison, who is now an Associate Director of the Bureau of Economic Analysis, was a Senior Fellow of The Brookings Institution when he wrote the forthcoming book. Financial support for the study was provided in part by National Science Foundation Grant 75-23131 to The Brookings Institution. Views expressed are the author's and should not be ascribed to the trustees, officers, or other staff members of the Institution or the Foundation or to the U.S. Department of Commerce.
growth in advanced countries by techniques that have become known as "growth accounting" or "sources of growth" analysis. Estimates resulting from such analysis were published for this country in my Accounting for United States Economic Growth, 19291969 (hereinafter cited as Accounting for Growth). ${ }^{1}$ They are revised and updated in a forthcoming book titled Accounting for Slower Economic Growth: The United States in the 1970s (hereinafter cited as Accounting for Slower Growth). ${ }^{2}$ Growth accounting views growth as the result of changes in a large number of determinants that govern the size of a nation's output. The contributions, positive or negative, that were made to the growth rate by changes in these determinants are estimated directly for as many determinants as is feasible. The combined contribution of the remaining determinants is obtained as a residual.

The directly estimated determinants of nonresidential business output accounted for almost all of the variation in the rate of growth of NIPPE within the period from 1948 to 1973. But they explain only part of the subsequent decline in this growth rate. The final chapter of the forthcoming book examines possible explanations for the remainder of the decline. That chapter is presented, with minor adaptations, as part 2 of this article.

To understand the discussion in part 2 , the reader must know what output determinants have been estimated directly; these determinants are not discussed in part 2 because they do not contribute to the unexplained portion of the decline in the growth rate of NIPPE. Part 1, which should be regarded as an introduction, provides that information; it describes briefly these determinants and their contributions.

Part 1. Sources of Growth of National Income Per Person Employed

GROWTH of output may be obtained by using more labor and property resources in production or by increasing the output obtained from the same quantity of resources. In a table showing sources of growth of total output, the contributions made to the growth rate of output by changes in employment, working hours, and pertinent personal attributes of employed persons, by changes in the amount of capital, and by changes in the amount of land, would appear as contributions of total factor input, while the contributions of output per unit of input would include changes in the state of knowledge, the degree of misallocation of resources, the size of markets, and other conditions that alter the amount of output that is obtained from a given amount of input. In a table, such as table 1, that shows the sources of growth of output per person employed, employment disappears as a source of growth, and all other inputs-capital and land as well as labor characteristics-are measured on a per person-employed basis. Output per unit of input is the
same as for total output because the ratio of output to input is unchanged when both are divided by employment.

Growth from 1948 to 1973

To consider recent changes, it is first necessary to know what the various determinants of output contributed to growth of NIPPE in the past. From 1948 to 1973 the growth rate of NIPPE was 2.43 percent a year. ${ }^{3}$ The first column of table 1 summarizes my estimates of the sources of its growth in that period.

Changes in average hours at work subtracted an estimated 0.24 percentage points from the growth rate in 1948-73. This is not an estimate of the growth rate of average hours, which was -0.50 percent, but an estimate of the net effect of changes in average working hours upon the growth rate of output. It allows for the fact that labor is only one, though by far the largest, type of factor input. In addition, it takes into account the probability that shorter hours for full-time workers have increased the work done in an hour by
lessening fatigue and absenteeism, so that the percentage decline in labor input is less than that in hours. Also, otherwise similar individuals are counted as the same amount of labor input whether they are nonfarm wage and salary workers, nonfarm self-employed and unpaid family workers, or farm workers, provided that each works the average full-time hours of persons of his or her own sex in the category in which he or she is employed. Consequently, the contribution of hours changes is not affected by that part of the decline in average hours that resulted from reductions in the proportions of workers in farming or nonfarm self-employment, categories with very long hours.
Hours worked by persons in different age-sex groups do not represent the same amount of labor input. If average hourly earnings in one such group are double those in another, an hour's work is considered, on the average, to represent twice as much labor input in the former as in the latter. Changes in agesex composition make a positive contribution when the proportion of total hours that are worked by persons in the highly weighted groups-particularly males 35 to 64 years of age-rises, as was the case from 1948 to 1954 , and a negative contribution when that proportion falls, as has been the case since 1954. Over the whole 1948-73 period changes in age-sex composition subtracted 0.17 percentage points from the growth rate.

Persons with different amounts of education also are regarded as providing different amounts of labor input. Their work is weighted in accordance with average earnings differentials between persons who differ only with respect to amount of education. For example, in recent years a full-time worker with 4 years of college is counted as 1.84 times as much labor as one with 8 years of elementary education. The contribution of education measures the amount by which output per worker has been raised by the upswing in the educational background of employed persons. The educational distribution of employed persons rose greatly, so the contribution of education was

Table 1.-National Income Per Person Employed in Nonresidential Business: Growth Rate and Sources of Growth, 1948-73 and 1973-76

	1948-73	1973-76	Change
Growth Rate.	2.43	-0.54	-2.97
Contributions to growth rate in percentage points			
Total factor input:			
Changes in workers' hours and attributes:			
Hours.---	-. 24	-. 54	-. 30
Age-sex composition.	-. 17	-. 25	-. 08
Education.	. 52	. 88	. 36
Changes in capital and land per person employed:			
	. 10	. 02	-. 08
Nonresidential structures and equipment	.29 -.04	. 25	-. 04
Land.----------	-. 04	-. 03	. 01
Output per unit of input: ${ }^{1}$			
	. 37	-. 01	$-.38$
Changes in the legal and human environment ${ }^{3}$	-. 04	-. 44	-. 40
Economies of scale.	. 41	. 24	-. 17
Irregular factors.	$-.18$. 09	. 27
Advances in knowledge and miscellaneous determinants ${ }^{\text {- }}$	1.41	-. 75	-2.16

1. Contributions to the growth rate shown in subsequent lines are restricted to effects upon output per unit of input.
2. Includes only gains resulting from the reallocation of labor out of farming and out of self-employment and unpaid family labor in small nonfarm enterprises.
3. Includes only the effects on output per unit of input of costs incurred to protect the physical environment and the safety and health of workers, and of costs of dishonesty and crime.
4. Obtained as a residual.

Source: Edward F. Denison, Accounting for Slower Economic Growth: The United States in the 1970s, The Brookings Institution, 1979, Table 7-3. (To be published)
positive and large, 0.52 percentage points. ${ }^{4}$

The contributions of capital and land result from changes in the amounts of inventories, nonresidential structures and equipment, and land used in nonresidential business per person employed. The main points to note are that dwellings and governmental assets are excluded, and that capital input is so defined and measured that changes in output that result from advances in the design of capital goods are classified as contributions of advances in knowledge, not of capital.

The contributions of capital and land do not reflect changes in the intensity of their utilization. Instead, a single estimate is made of the effect upon output per unit of input of changes in the intensity with which capital, land, and labor (as measured by hours at work) are utilized. That series is a component of the "irregular factors" line in table 1.

Inventories and fixed capital both increased more than employment from 1948 to 1973, so that capital input per person employed rose. The increase in the quantity of inventories per person employed contributed an estimated 0.10 percentage points to the growth rate of NIPPE, and the increase in nonresidential structures and equipment per person employed contributed 0.29 percentage points. The land available
per worker declined as employment increased. This subtracted an estimated 0.04 percentage points from the 1948-73 growth rate.

Improved allocation of resources contributed an estimated 0.37 percentage points to the growth rate. This estimate refers to gains in output from bringing the allocation of resources within the nonresidential business sector nearer to the allocation that would maximize output per unit of input. Only two types of changes in resource allocation are covered by this estimate. One is the reduction in the percentage of the labor used in nonresidential business that consists of surplus labor in farming. The other is the reduction in the percentage of labor that is misallocated to nonfarm self-employment and unpaid family labor in enterprises too small for efficiency.

The institutional and human environment within which business must operate has changed in several ways that adversely affect output per unit of input. The effect of three such changes has been estimated. New or strengthened governmental controls required business to divert from ordinary production to pollution abatement a growing share of the labor and capital that it employs, so that these resources are no longer available to produce measured output. Other controls have
similarly diverted labor and capital to the protection of worker safety and health. In addition, rising crime has forced business to divert resources to crime prevention, and thefts of merchandise have directly reduced measured output. Important changes in these conditions began only towards the end of the 1948-73 period, and they are estimated to have subtracted only 0.04 percentage points from the growth rate over that whole period.

Gains from economies of scale refer to the rise in output per unit of input that is made possible by changes in the size of the markets that business serves. Economies of scale are not limited to those internal to firms; specialization of all sorts, including larger production runs and larger transactions, is covered by my use of the term. Economies of scale are estimated to have contributed 0.41 percentage points to the 1948-73 growth rate, and thus to be an important growth source. It should be noted that I have measured the contributions of all other sources as if the economy were operating under constant returns to scale, so that to the definition of their contributions must be added the stipulation that the size of markets is taken as given.

The estimate of the effects of irregular factors upon output per unit of input covers three determinants. Two-the effect of weather upon farm output, and the effect of work stoppages-are rather minor, but the third is often important. This is the effect of changes in the intensity with which employed labor, capital, and land are used that result from fluctuations in demand. These changes are related to the business cycle, but swings in productivity usually run substantially ahead of those in total output or unemployment. The position was much less favorable to high output per unit of input in 1973 than in 1948, and irregular factors subtracted 0.18 percentage points from the 1948-73 growth rate.

The contribution of advances in knowledge and miscellaneous determinants is obtained, statistically, as a residual. As its title indicates, it has two main parts.

The contribution of advances in
knowledge is, conceptually, a comprehensive measure of the gains in measured output that result from the incorporation into production of new knowledge of any type-managerial and organizational as well as technolog-ical-regardless of the source of that knowledge, the way it is transmitted to those who can make use of it, or the way it is incorporated into production. The reference to "measured" output is important because of quality change. The introduction of new final products provides the user with a greater range of choice or enables him to meet his needs better with the same use of resources, but it does not, in general, contribute to growth as measured; it results in "noneconomic" or "unmeasured" quality change. In general, as a consequence, only the advances in knowledge that reduce the unit costs of final products already in existence contribute to measured growth.

The "miscellaneous determinants" portion of the title of this series refers to a large number of determinants that can be specified but whose effects have either been estimated at zero or not quantified. ${ }^{5}$ The effects of the determinants included are believed small, and as a group as likely to be favorable as unfavorable, in the 1948-73 period. ${ }^{6}$

The advance in knowledge was the largest source of increase in NIPPE from 1948 to 1973 unless I am altogether wrong in my judgment that miscellaneous determinents were not important in that period. The contribution of advances in knowledge and miscellaneous determinants is estimated at 1.41 percentage points in 1948-73.

In summary, important contributions to the growth of NIPPE in 1948-73 were made by advances in knowledge, increased education of employed persons, increased capital per worker, improved resource allocation, and economies of scale. Reductions in average hours of work and shifts in age-sex composition were the main negative factors.

Change from 1948-73 to 1973-76

The growth rate of NIPPE fell from 2.43 percent in 1948-73 to -0.54 percent in 1973-76. This decline of nearly
3.0 percentage points occurred even though changes in three determinants were more favorable than in 1948-73. First, the contribution of education increased by 0.36 percentage points as the educational level of persons employed by business moved upward at an accelerated rate. Major factors were that government stopped absorbing a disproportionate part of the increase in
highly educated persons, and that the average age of adult workers declined. (Young adult workers have more education than older workers.) Second, the drag of a fixed quantity of land was a trifle less than in 1948-73 because employment increased less. Third, irregular factors were more favorable in 1976 than in 1973 and made a positive contribution to the 1973-76 growth rate,

Nonresidential Business: Constant-Dollar National Income, Total and Per Person Employed, 1948-78, and Residual Series, 1948-76

whereas they reduced the 1948-73 rate. These determinants would, in themselves, have raised the growth rate by more than 0.6 percentage points.

Other sources for which specific estimates are made would, in themselves, have taken nearly 1.5 percentage points off the previous growth rate of NIPPE, an amount that is equal to three-fifths of the earlier rate. Six groups of sources contributed to this amount. An accelerated reduction in average hours was responsible for 0.30 percentage points, a faster shift in age-sex composition for 0.08 points, and a slower increase in capital per worker for 0.12 points, with both inventories and structures and equipment contributing to the last amount. Gains from the reallocation out of farming and nonfarm self-employment both disappeared, and this reduced the growth rate by 0.38 points. The three specified types of changes in the legal and human environment in which business operates cut the earlier growth rate of NIPPE by 0.40 points. ${ }^{7}$ Finally, gains from economies of scale were down by 0.17 points as growth of the economy slackened; this is a very crude estimate but there is no doubt that there was an appreciable reduction.

Almost 2.2 percentage points of the drop in the growth rate of NIPPE remain in the residual series for advances in knowledge and miscellaneous determinants. The contribution of the residual fell from 1.41 percentage points in 1948-73 to -0.75 percentage points in 1973-76. After rising steadily until 1973, the series dropped sharply in 1974 and 1975 , then in 1976 made a normal gain from the lower level.

Chart 1 helps to make clear how extraordinary the period since 1973 has been. From 1948 to 1973 total national income originating in nonresidential business, shown in the top panel, grew irregularly, with actual declines experienced in 4 years. But by the second year the previous peak had been exceeded in every case. The 1973 peak, in contrast, was not exceeded until 3 years later, and then narrowly. NIPPE, plotted in the middle panel, is a smoother series. Although periods of slower and faster growth alternated, NIPPE increased annually until 1968
and, after a small cyclical dip in 1969 70, again rose strongly until 1973. Thereafter, it fell sharply in both 1974 and 1975 and showed no net increase from 1973 to 1978. At its 1948-73 growth rate, NIPPE would have risen 13 percent in these 5 years.

It is the change in the behavior of the residual series measuring the effects of advances in knowledge and miscellaneous determinants that is most remarkable, however. Because determinants whose effects are directly estimated account for most irregularities in the movement of NIPPE up to 1973, the residual is a rather smooth series with a nearly constant growth rate from 1948 to 1973 and an increase every year. Much of the variation in annual increases that does remain in the
residual appears to be due to the calendar. ${ }^{8}$ Up to 1973 there was no tendency for growth of the residual to slow down. Indeed, its growth rate from 1969 to 1973 was a little above that from 1948 to 1969. Thus the sharp drops in the series in 1974 and 1975 were abrupt departures from past experience. In 1976 the index was still 2.2 percent below 1973 whereas it would have been 4.3 percent above 1973 at its 1948-73 growth rate. The series (and hence the bottom panel of the chart) ends at 1976 but it seems safe to infer from the behavior of NIPPE that, if the residual index increased at all after 1976, the annual gain was far smaller than in the years up to 1973 and that the residual index was further below its 1948-73 trend line in 1978 than in 1976.

Part 2. The Unexplained Portion of the Decline in Productivity Growth

THE contribution of advances in knowledge and miscellaneous determinants to growth rates in nonresidential business, as measured by the residual series, fell from 1.4 percent a year in the 194873 period to -0.8 percent a year in the 1973-76 period, with the decline clearly beginning in 1974. The contribution over the whole 1973-78 period was also far below that in 1948-73, it can be inferred from the behavior of NIPPE and output per hour.
That I do not know why the record suddenly turned so bad after 1973 must be obvious, because the effects of all of the determinants of NIPPE that I could measure continuously are excluded from the residual. Perhaps it would be wisest to end with this statement, but I find that to do so leads to insistent questions about what might have been responsible and to requests for comments on specific suggestions. The rest of the article takes up these matters. From the almost limitless list of possible influences on the residual series, I have selected those that have been or may be seriously suggested as important causes of productivity slowdown. Inevitably there is some overlap-
ping among the suggestions examined.
One general point needs stressing. According to my estimates there is no unexplained retardation in the rate of growth of productivity change until 1974, and the drop in the rate that started at that time was abrupt and large. I consider this timing an important clue in any attempt to unravel the mystery surrounding the productivity slowdown. But nearly all the possible reasons advanced for the slowdown would be much more likely to take effect gradually than suddenly. This counts heavily against them. Nevertheless, I have included such suggestions in the following discussion. Most were proposed by observers who, if they had in mind any specific data at all, were trying to explain the slackening in growth that began about 1967 in the Bureau of Labor Statistics series for output per hour.

Of course, "coming events cast their shadows before," and the onset of fundamental changes that were to lead to decline may have been discernible in advance of the actual event. But the unexplained decline itself does not appear until 1974.

Suggestions Affecting Advances in Knowledge

This section is concerned with four suggested explanations that pertain to advances in knowledge. The two following sections are concerned with 13 suggested explanations relating to miscellaneous output determinants.

Curtailment of expenditures on research and development

Secretary of Commerce Juanita Kreps, formerly professor of economics at Duke University, has stated that a "Probable source of the slowdown in productivity is the dramatic reduction in expenditures for research and development." ${ }^{9}$ John W. Kendrick, of George Washington University, an expert in productivity analysis, has repeatedly called attention to the decline in research and development (R. \& D.). The conclusions of a 2-day meeting held by the American Association for the Advancement of Science were summarized in The Washington Post as follows: "The United States is losing its competitive edge in technology because American industry is spending less on research and because the Federal Government withdrew much of its support for industrial research at the ends of the Apollo space program and the Vietnam War." ${ }^{10}$
Expenditures for organized R. \& D. in the United States have been much larger in the postwar period than ever before, and within the period, expenditures rose rapidly until the mid-1960's. How one describes their subsequent behavior depends on the series he chooses to emphasize.
If expressed as a percentage of gross national product (GNP), total R. \& D. expenditures rose from 0.95 percent in 1955 to a peak of 2.97 percent in 1964, then slipped gradually to 2.27 percent in 1976 and 1977. The drop was mainly in expenditures financed by the Federal Government, largely for defense and space programs, whose connections with productivity advance is slight. Expenditures financed by other sources (mostly industry but including universities and nonprofit organizations) con-
tinued to climb throughout the 1960's, rising from 0.99 percent of GNP in 1963 and 1964 to 1.15 percent in 1969 and 1970. They then slipped, but only to 1.07 percent, in 1972 and 1973 before recovering to $1.11-1.13$ percent every year from 1974 through 1977. ${ }^{11}$ I have quoted percentages of GNP because this practice is widespread, but its rationale is not clear. Just because the size of the economy is, say, twice as big, does it take twice as much R. \& D. to obtain the same annual productivity gain? Doubtless it would take twice as much R. \& D. if an economy doubled its size by producing twice as many products, each with a unique technology, and no more of any one product. But why should more R. \& D. be needed if growth occurs by expanding the average output of products rather than their number? An invention that cuts 1 percent from the production cost of 5 million automobiles should do as much for 10 million.

Total R. \& D. expenditures themselves, when expressed in constant (1972) dollars, rose rapidly until 1966, when they reached $\$ 28.5$ billion, then less rapidly until 1968, when they peaked at $\$ 29.8$ billion. ${ }^{12}$ Expenditures in all years from 1969 through 1976 were in the range of $\$ 27.7$ billion to $\$ 29.6$ billion, so that in the whole 1966-76 period they were essentially flat. In 1977, constant-dollar expenditures reached a record $\$ 30.2$ billion. Within the total, R. \& D. that was financed by industry increased rapidly until 1969, when it reached $\$ 11.5$ billion, then more slowly to $\$ 13.2$ billion in 1976 and $\$ 13.9$ billion in 1977 . Its annual growth rate was 6.5 percent in 1960-69 and 2.0 percent in 1969-76. ${ }^{13}$ R. \& D. financed by universities (including State and local governments) and nonprofit organizations increased steadily to $\$ 1.1$ billion in 1976 . R. \& D. financed by the Federal Government jumped rapidly to $\$ 17.3$ billion in 1964 , peaked at $\$ 18.2$ billion in 1967 , fell to $\$ 14.4$ billion in 1974 , and recovered to $\$ 14.6$ billion in 1976 and $\$ 15.2$ billion in 1977. ${ }^{14}$

The number of scientists and engineers employed in R. \& D., computed on a full-time equivalent basis, peaked at 558,000 in 1969 , fell 7 percent to

521,000 in 1973, and recovered to 550,000 in 1976 and a record 571,000 in 1977. The pattern in industry was similar: a drop from a peak of 386,000 in 1969 to 353,000 in 1972, then a recovery to 372,000 in 1976 and to 390,000 in 1977. The industry figure includes personnel employed in business who are engaged in federally funded research, including defense and space. ${ }^{15}$

Kendrick constructed a series for the "stock" of knowledge acquired from all components of domestic organized R. \& D. by cumulating past expenditures and applying an obsolescence rate. This series, measured in constant prices, increased at annual rates of 9.6 percent a year from 1948 to 1966 and 5.2 percent from 1966 to 1973 , when it ends. ${ }^{16}$

Like the United States, other advanced countries sharply increased R. \& D. spending, both in absolute terms and as a percentage of GNP, until about 1965. During the middle and late 1960's total R. \& D. spending began to increase less than GNP not only in the United States but also in the United Kingdom, France, and Canada, and after 1970 in West Germany. In Japan, R. \& D. spending continued to increase as a percentage of GNP but more slowly than before. ${ }^{17}$ The absolute amount of foreign R. \& D. spending measured in constant prices increased throughout the period.

To consider the impact of changes in R. \& D. on output per unit of input, it is first necessary to recall that only certain types of advances in knowledge raise output per unit of input as it is actually measured, namely, those that allow the same amount of measured output to be obtained with less input. Advances that do so are those that reduce the unit cost of final products that are already in existence.

Advances leading to the introduction of new products for final sale from the business sector (primarily to households and government) do not have this effect, no matter whether the new products are color television sets, space rockets, atomic-powered aircraft carriers, tastier biscuits, or microwave ovens for household use. After their introduction, total measured product will be the same as if the labor, capital, and land devoted to their production were
used instead to produce previously existing products. When products with new features-for example, refrigerators with automatic ice makers and stoves with self-cleaning ovens-are introduced, they qualify as new products in this formulation. Thus R. \& D. that is directed toward new final products for civilian or military use, even if highly successful in meeting its objectives, does not contribute to the growth of measured output per unit of input except insofar as it may have some incidental offshoots that cut the costs of existing final products. Nearly all federally-financed R. \& D. is in this category and so is the larger part of industry financed R. \& D. Only R. \& D. that is directed either toward new processes, which may be roughly identified with research to reduce a firm's own costs, or toward new intermediate products and capital goods has an objective that, if achieved, raises measured output per unit of input. ${ }^{18}$

Organized R. \& D. in the United States is only one of many points of origin for advances in knowledge that raise output per unit of input, but fortunately it is one (the only one) for which a separate estimate of the contribution to growth has been hazarded. In 1961 I compounded a series of plausible assumptions and guessed that one-sixth of the total contribution of advances in knowledge was the contribution of domestic R. \& D. ${ }^{19}$ A more recent and somewhat more solidly based attempt to estimate this contribution was made by Zvi Griliches of Harvard University. ${ }^{20}$ Griliches estimated that R. \& D. was contributing no more than 0.3 percentage points to the growth rate of private domestic GNP as of 1966 and probably considerably less; his maximum estimate equals less than onefourth of my estimate of the contribution being made by advances in knowledge at that time. ${ }^{21}$

The main elements in these and similar calculations are the value of R. \& D. expenditures for projects that, if successful, can be expected to raise output per unit of input; the social rate of return on such projects; and sometimes the rate of obsolescence on knowledge gained from previous R. \& D. ${ }^{22}$ R. \& D. expenditures are too small to yield

Griliches a contribution above 0.3 percentage points even though he deliberately made a generous estimate of their amount and even though the social rate of return is high.

The large gap between estimates of the contributions of advances in knowledge and of R. \& D. expenditures does not imply that the estimates are inconsistent. As already stressed, organized R. \& D. conducted in the United States is only one source of advances in knowledge. Managerial and organizational knowledge of how to produce at low cost stems from sources that are unrelated to expenditures measured in series for R. \& D. The observation and ingenuity of persons engaged in production and distribution contribute new technological knowledge. So do individual inventors. All types of knowledge originate in all countries, not only the United States.

If R. \& D. contributed no more than 0.3 percentage points to the growth rate in the mid-1960's, retardation of such expenditures could have contributed little, if anything, to the decline of productivity growth even if the percentage of GNP spent on R. \& D. of all types were the relevant series and the period from 1964 peak to 1976 trough were the relevant timespan. The drop in the percentage was about one-fourth, so if the 0.3 percentage point contribution of R. \& D. to the growth rate of output were reduced proportionally, it would decline by less than 0.1 percentage points. Expenditures financed from private sources, measured in constant prices, are a more pertinent series for R. \& D. Since this series did not decline at all, there is no assurance that R. \& D. spending contributed anything to the decline in productivity growth. Griliches, using a somewhat broader series for R. \& D. spending relevant to productivity growth, suggested that the change in R. \& D. spending from the 1966 rate to the 1970 rate might reduce its contribution by 0.1 percentage points, with the effect perhaps delayed until the mid-1970's. The range from 0.0 to -0.1 percentage points covers the probable change in the contribution.

Kendrick estimated higher contributions from organized R. \& D. than did Griliches or I: The percentage point contributions were 0.85 in 1948-66 and 0.71 in 1966-73. ${ }^{23}$ The high estimates stem from counting in the "stock" all R. \& D. performed in the business sector, including all that is devoted to new and improved products and all that is financed by the Federal Government. As justifications, Kendrick mentions spin-offs and the prevalence of learning curves for all new products, regardless of their buyers, but I do not believe the procedure is tenable. ${ }^{24}$ Even so, Kendrick obtains a reduction in the contribution only slightly in excess of 0.1 percentage points during the period he covered.

Roger E. Brinner of Data Resources, Inc., has, so far as I am aware, the only estimates that show a much larger decline. ${ }^{25}$ His estimate of the contribution of R. \& D. falls by 0.2 percentage points from the 1960-65 period to the 1965-70 period, and then an additional 0.2 percentage points from the 1965-70 period to the 1970-75 period, when he puts the contribution at only 0.05 percentage points. ${ }^{20}$ This unusual set of results apparently stems from the combination of two features of his estimates. First, like Kendrick (whose stock series is Brinner's starting point), Brinner counts government-financed R. \& D., so he has gross additions to knowledge from R. \& D. declining. Second, the amount of old knowledge that he eliminates from the stock, presumably because it is rendered obsolete by new knowledge, is related to the stock of knowledge rather than to the amount of new knowledge, so it rises even when new knowledge falls. This procedure would permit R. \& D. to contribute negatively to growth. ${ }^{27}$

To conclude, as I have, that R. \& D. probably is not responsible for much of the productivity retardation is not to deny that expansion of R. \& D. is a promising way of promoting future productivity growth. Available studies, though limited in scope, indicate that the social rate of return on R. \& D. is high. ${ }^{28}$ This, when combined with the inability of firms financing successful R. \& D. to capture more than a fraction of that return for themselves, provides
justification for policies either to raise that fraction or to increase governmental support.

Decline in opportunity for major new advances

In the postwar period, advances in knowledge and, in consequence, growth rates of productivity as well as total output have been exceptionally large by past standards. Many have regarded this period as beginning a new era, to be characterized by exponential growth at high rates for an indefinite time. But it is arguable that in the long sweep of history a slackening of the advance in knowledge might reasonably be anticipated quite apart from any reduction in research, and fast postwar growth may appear as a temporary bulge.

The postwar jump in productivity is attributed by some to the crest of a wave of new advances in knowledge made possible by science-based technology, the so-called "second industrial revolution." In their view this wave has passed. This opinion is often based on reasoning such as that of Orio Giarini, who stated that "we are more and more coming to the point where sciencebased technology, at least in certain sectors, has exploited all the major possibilities made available by the scientific advances of the last century," and that we may have to wait decades for the reservoir to be replenished. ${ }^{29}$ Other observers, also envisaging a drop in the contribution of new knowledge, rely on Schumpeter's idea that innovations typically come in waves as an idea spreads and is applied in many fields, and suppose that we have come to the end of such a wave.
F. M. Scherer of Northwestern University, a former Director of the Bureau of Economics of the Federal Trade Commission, suggests, though cautiously, that both explanations may be correct (and their effects exacerbated by the slowdown in R. \& D. expenditures and contracting career opportunities for scientists). To indicate a slackening rate of advance in technological knowledge, he points out that the number of patents issued to domestic corporations peaked in 1971 and declined 20 percent by 1976. Scherer notes that if patents lag 3 years behind inventions, this
would date the invention peak as $1968 .^{30}$
I have no trouble accepting the possibility of declining opportunities for technological advances, but the diversity of the economy should ensure that the resulting retardation of growth would be gradual. The residual shows no sign at all of retarded growth up to 1973. It is not plausible that declining opportunity for new advances could be responsible for much of the sudden drop in the residual after that year.

Decline of Yankee ingenuity and

 deterioration of American technology"There is today a pervasive perception that the dynamic vitality of the U.S. economy is faltering. This perception appears to be founded on two concerns: first, that America is not as productive as it used to be; and second, that we are somehow not as inventive either." So reads the box summarizing a 1978 Washington Post article, "Something's Happened to Yankee Ingenuity." ${ }^{31}$
Have Americans become less ingenious? To answer this question one would have to isolate possible deterioration in American ingenuity from the possibility, which Giarini regards as a fact, that the remaining problems that would need solving to expand output are more stubborn than those encountered in the recent past. ${ }^{32} \mathrm{He}$ would also have to disentangle changes in the speed with which Yankee ingenuity solves problems of production and distribution from possible lengthening of lags between solution and implementation as a result of new government regulations and other institutional changes. In fact, the main reason for suspecting a decline in Yankee ingenuity seems to be the retardation of productivity growth, a development for which there are many alternative suggestions. Irwin B. Margiloff, industrial executive and engineer, and Delbert Tesar of the University of Florida believe long-run deterioration of American technology is responsible for poor productivity performance, but the deterioration they have in mind set in much too early to explain the recent productivity slowdown. ${ }^{33}$

Increased lag in the application of knowledge due to the aging of capital

The "best" practice possible with the knowledge available at any given time may be distinguished from the average practice actually in use. Translating this distinction into a classification suitable for analysis of growth, one may distinguish in principle between the contribution made possible by advances in knowledge as such and the contribution (positive or negative) that may be made by a change in the lag of average practice behind the best known.

The residual series under discussion, insofar as it measures the contribution of advances in knowledge, is an estimate of the effects of incorporating new knowledge into the productive process. It therefore includes the effect of changes in the "lag." It is widely suggested that the lag has increased and that this is a reason for the poor performance of productivity.

The most common basis for this belief is that fixed capital formation has declined. This is thought to be germane because it affects the average age of structures and equipment, the carriers of much new technology. Many observers think this was a very important factor. But this is not so. Even the assumptions of an extreme vintage model would yield only 0.1 percentage points as the contribution of the reduction in average age to the growth rate from 1948 to 1973, -0.1 percentage points as the contribution of the increase in average age from 1973 to 1976, and therefore -0.2 percentage points as the contribution of this factor to the decline in the growth rate of the residual. ${ }^{34}$ This calculation assumes that reducing the average age of capital (when its mix is held constant) by 1 year raises output by 1.4 percent, the contribution of advances in knowledge and miscellaneous determinants to the 1948-73 growth rate. Such a model greatly overestimates the effect of a change in average age. One objection is the implausible assumption that all advances in knowledge are embodied in structures and equipment, but a little reflection will reveal a more fundamental objection. During any span of time, different types
of capital goods undergo very different amounts of quality improvement. Other things being equal, the return on replacement investment, and hence the incentive to invest, is highest for types of capital goods that have experienced the most obsolescence resulting from quality improvement in new vintages. Any substantial amount of total gross investment permits investment opportunities created by sizable quality improvements in new capital goods to be grasped. Additional gross investment involves less profitable investment, devoted to the replacement of capital goods of types in which quality change has been small. The gain in the average quality of capital that vintage models imagine to be derived from additional new investment is not realized because the effect on average age automatically is largely offset by a reduction in the average amount of quality improvement incorporated in new capital. ${ }^{35}$
The lag of average practice behind the best known may have lengthened for a different reason: government regulations may delay or prevent remunerative projects using new technology. I discuss this possibility in the context of government regulation.

Suggested Effects of Government Regulation and Taxation

A variety of explanations for the retardation of output per unit of input would affect miscellaneous determinants. These explanations are often overlapping, and they could be classified and grouped in alternative ways. In this section I consider suggested effects of government regulation and taxation. Government actions that may have reduced output per unit of input are examined here under seven headings. ${ }^{36}$

Diversion of input to comply with government regulation, except pollution and safety

The most direct way that government regulation affects measured output per unit of input is by requiring business to divert labor, capital, and land from production of measured output to tasks required to comply with regulations.

Under this heading I shall discuss diversions of input other than that imposed by programs for pollution abatement and worker safety and health. The effect of the latter programs, which deducted an estimated 0.3 percentage points from the 1973-76 growth rate, was eliminated before arrival at the residual series. There are, however, other programs that impose similar resource costs, and for which requirements are new or have become more stringent. In the field of consumer protection are regulation of food and drugs by various agencies and regulation by the Consumer Product Safety Commission, created in 1972 to protect the buyers of consumer goods from unnecessary hazards. ${ }^{37}$ Other regulations, such as the national speed limit, are designed to conserve energy or force utilities and manufacturers to substitute one fuel for another; these began only after 1973. Costs in these and other relatively new areas have not been estimated, but they surely increased relative to national income from 1973 to 1976 and contributed to the decline in the residual. However, Robert W. Crandall, Senior Fellow of The Brookings Institution, states that of the agencies entrusted with social regulation, the two having the largest impact on business costs are the Occupational Safety and Health Administration (OSHA) and the Environmental Protection Agency (EPA), both covered by my estimates for pollution abatement and worker safety and health. ${ }^{38}$ This statement tends to be supported by a study of the 1977 incremental costs imposed on 48 large companies by six programs. Incremental costs to these companies imposed by requirements of the Equal Employment Opportunity Commission (EEOC), the Department of Energy, the Employee Retirement Income Security Act, and consumer protection activities of the Federal Trade Commission, together, were 19 percent as large as the incremental costs imposed by EPA and OSHA. ${ }^{39}$

I should be surprised if the increase in the total resource costs, except paperwork costs, of all other regulatory programs together affected the change in output per unit of input as much from 1973 to 1976 as that attributable to the
two programs for which I made estimates. But it is also likely that these costs have been rising sharply.

Government-imposed paperwork

Filing reports, making and preserving records, and compiling data in order to meet government requirements also absorb resources that could otherwise be used to produce measured output. Most of these costs are associated with tax collection or with regulatory ac-tivities-for example, railroad rate or pension fund regulation-that do not otherwise require diversion of an appreciable amount of input from the production of measured output.

The Commission on Federal Paperwork estimated that paperwork necessary to meet the requirements of the Federal Government cost American business $\$ 25$ billion to $\$ 32$ billion in 1976. ${ }^{40}$ This is 2.4 to 3.1 percent of 1976 nonresidential business national income. The requirements of State and local governments may have raised the percentage by one-fourth to one-half, bringing it into the $3.0-4.6$ percent range. ${ }^{41}$
Estimates of the total hours required to meet Federal reporting requirements, assembled from agency reports by the Office of Management and Budget (OMB), suggest that business reports to the Federal Government required perhaps 530 million hours a year as of January 1977.22 This is only 0.2 percent of total hours worked in nonresidential business in 1976 and thus suggests a much smaller paperwork burden than do the dollar estimates; it seems, in fact, incredibly small. ${ }^{43}$
Whether the higher or lower percentages for the level of the paperwork burden are correct, the following considerations show that the burden cannot have increased enough to depress productivity significantly from 1973 to 1976 if the OMB's allocation of the man-hour estimates among programs is anywhere near correct. OMB analyses indicate that major changes in the burden are the result of changes in programs. ${ }^{44}$ Tax forms account for perhaps four-fifths of all the hours, and there were no major changes in the tax area; all of the principal tax forms go back to at least $1963 .{ }^{45}$

The number of public use reports subject to OMB review, which excludes tax forms, peaked in 1944, 1952, and 1973 because of economic controls (wage and price controls in all three periods and, in the first two, production and resource allocation regulations as well). Statistical series for the number of such reports were disrupted after 1973 as responsibility for reviewing reports for regulatory commissions and certain other agencies was transferred from the OMB to the General Accounting Office. But it is known that elimination of wage and price controls had eliminated much reporting by 1976. Although new types of Government regulation created new paperwork requirements, the OMB estimates that the total hours outside the tax area declined from 1973 to 1976.

Thus the evidence indicates that paperwork can be eliminated as a significant source of productivity decline from 1973 to 1976 , although it may have been a factor-but not a major one-if one goes back to 1966. The general impression of the burden of paperwork may be exaggerated because, in Herbert Kaufman's phrase, red tape is universally an "object of loathing." ${ }^{47}$

Regulation and taxation: diversion of executive attention

The profitability of a business is now greatly affected by the way it responds to rapid changes in government action, not only with respect to regulation but also to provisions in the tax laws that discriminate among different types of income and different business costs. Under these conditions it is not surprising that top management and other business people of great talent devote more and more of their time to the firm's interaction with government and correspondingly less time to its interaction with competitors, customers, and suppliers and to its internal operation. This can hardly fail to impair efficiency and productivity in the ordinary sense of these words.

A burgeoning of regulation during the past decade has affected practically all the domestic and foreign activities of businesses in every industry, so much so that Senator Lloyd Bentsen, Chairman of the Joint Economic Committee's

Subcommittee on Economic Growth and Stabilization, calls Federal regulation "America's number one growth industry." ${ }^{48}$ Failure to learn of and conform to regulations can have serious legal consequences, including criminal penalties. ${ }^{49}$ Failure to find the cheapest way to conform can be expensive. Failure to learn of proposals for new laws or regulations and to participate in hearings and use other channels to help shape their final form can bring permanently higher costs or loss of markets. So can failure to foresee changes in laws and regulations and to take timely action in advance to minimize losses or maximize gains from the change. ${ }^{50}$

Not only laws and regulations actually proposed or made effective are pertinent; one must guess at what may be proposed in the future. In the words of Irwin L. Kellner, vice president and economist of Manufacturers Hanover Trust, not only have laws, rules, regulations, and regulatory agencies leaped upward in number, but they "have become increasingly unpredictable of late. Unlike economic, technological, or other uncertainties indigenous to the private free enterprise system, political uncertainties tend to be sudden, swift, and unprecedented." ${ }^{51}$ Now that mandatory price and wage controls have been introduced once in peacetime, business must (and does) consider the possibility that such controls will be repeated and position itself appropriately. The spring and summer 1978 quarterly surveys of businessmen conducted by the U.S. Chamber of Commerce showed a majority anticipated mandatory wage and price controls within 2 years. In the same year, regulation displaced taxation as the greatest concern of respondents to the chamber's surveys.

Glen McLaughlin, vice president for finance of Four Phase Systems, Inc., of Cupertino, California, says:
"Corporations have been burdened with regulatory excess to the point of stifling normal improvement in efficiencies. Business leaders can and will continue to assume additional taxes and regulations; however, as each new tax and each new regulation is imposed, another layer of incentive to perform is
removed and otherwise creative efforts are diverted to nonproductive, but lucrative, jobs of avoiding taxes and doing battle with bureaucrats. This is a tremendous waste of national resources; however, it is occurring at an accelerating rate." ${ }^{52}$

George C. Eads of the Rand Corporation suggests that the change in emphasis among the activities that are required for a business to prosper must also affect the type of person who will emerge to manage firms. Presumably more emphasis will be placed on knowledge of the law, the legislative process, and public relations and less on production, sales, and internal management. ${ }^{53}$

Concern about government regulation is not confined to top management. Murray L. Weidenbaum of Washington University points out that:
"Virtually every major department of the typical industrial corporation . . . has one or more counterparts in a federal agency that controls or strongly influences its internal decision making: OSHA for 'production'; the Consumer Product Safety Commission for 'marketing'; several agencies concerned with safety and efficiency rather than sales promotion for 'advertising'; EEOC for 'personnel'; IRS, SEC (Securities and Exchange Commission), and the credit agencies for 'finance'; EPA for 'research and development'; and so on." ${ }^{54}$

Government regulation: delay of new projects

Government regulatory requirements for applications, permits, and reports give rise to delays between first consideration and completion of projects, and the spread of regulation has undoubtedly lengthened delays substantially in recent years. ${ }^{55}$ The difficulty of coordinating several permits from different agencies may result in long delays or even abandonment of projects. ${ }^{56}$ The timespan between administrative receipt of an application and a decision is often long, and delays are greatly extended by judicial appeals. Delays resulting from government regulation not only slow the introduction of new ideas and new technology, but also reduce the flexibility of firms in dealing
with recurrent changes in production and marketing conditions.

Increased delay stemming from increased regulation unquestionably contributed to the recent retardation of productivity growth. No estimate is available of the amount by which it did so.

Regulation and taxation: misallocation of resources ${ }^{57}$

Efficiency is greatest when individuals and jobs are properly matched (the round pegs are in the round holes) and when total input is allocated among uses in such a way as to maximize output. Government regulations and various provisions of the tax code affect resource allocation, and hence output, in many ways.

Because of privacy legislation, which denies confidentiality to appraisals of students, government employees, and other groups, prospective employers must find references of less value. Civil rights legislation has added new criteria for hiring, promotion, and release of workers that may affect resource allocation positively in the long run, yet in the short run be adverse to the selection of the best person for each job. It also adds to costs of personnel management. ${ }^{58}$

At the macro level the tax code is packed with provisions that discriminate among types of expenditures and kinds of activity. For example, the investment tax credit has discriminated against inventories and structures in favor of producers' durables, and among producers' durables against those with the longest and shortest service lives. Neither inventories nor structures were eligible for any investment tax credit in the period under review. The credit on producers' durables was proportional to gross investment rather than to capital stock, a formula that discriminates against longer lived assets, but also contained a provision for graduated rates that more than offset that difference among durables with a service life of less than 7 years. The President's Council of Economic Advisers calculated that if the rate of return was 10.0 percent before allowance for the investment tax credit, the credit raised the rate of return to 11.57 percent if the asset had a 4 -year service life, to 13.30 percent if it
had a 7 -year life, and to 11.31 percent if it had a 30 -year life. ${ }^{59}$ The 1978 tax amendments made structures eligible for the credit but their long service lives assure that the benefit will be small relative to producers' durables.

New government regulations, like old ones, contain provisions to protect regional, industrial, or other special interests. Other provisions serve only to appeal to uninformed prejudices; an example is the prohibition of the exportation of surplus Alaskan oil from the west coast to Japan and the offsetting importation of oil on the Atlantic and gulf coasts.
Perhaps the aspect of regulation most adverse to efficient resource allocation is increased uncertainty. I do not refer now to the effect this uncertainty is sometimes said to have on the amount of investment; rather, I am concerned here with its effect on composition. The enormous change in the scope of regulation is sometimes said to have placed nearly all business in the category of regulated industries. When an investment decision must be made, the way that regulations will be applied in the specific instance and the length of time that will be required to secure all necessary regulatory decisions so that a project may proceed are important, but the difficulties of deciding the characteristics of a project or of determining the future benefits from it are accentuated by the prospect that regulatory conditions may change once a facility is in use, altering the optimal combination of inputs and conceivably even banning the sale of products. It is a reasonable inference that the allocation of the capital stock among types and uses must depart further from the optimal allocation at any given time than it would if regulations were less pervasive, changing, and uncertain in application. The wedge introduced by regulation between costs and benefits that are anticipated and those that are realized probably is increasingly widened as the planned life of investment lengthens, so regulation probably moves the distribution of investment toward shorter lived assets, as is frequently asserted. But this is only a detail within the general picture.

Effects of high tax rates on incentives and efficiency
Beryl W. Sprinkel, economist and executive vice president of the Harris Trust and Savings Bank, believes that:
"The reason for the poor performance of our economy [that is, significantly deteriorating productivity trends in the past dozen years, accompanied by accelerating inflation] has been the growing burden of government. The tax burden at all levels of government in 1966 was 33 percent of national income. This past fiscal year the tax burden rose to a record 39.2 percent of national income. Although voters perceive taxes paid as the cost of government, the real economic cost is represented by the share of national income devoted to government outlays. This figure rose from 34 percent of national income in fiscal 1966 to 41 percent last year." ${ }^{60}$
One way a large government share might reduce productivity is by contributing to inflation, which (as explained in a later section) may impair efficiency. It was inflation that Colin Clark, the Australian author of The Conditions of Economic Progress, forecast as the disastrous result if government expenditures exceeded 25 percent of national income. ${ }^{61}$ Subsequently others have forecast various dire consequences, including impaired growth of both productivity and total output, at some higher percentage. The assertion that high taxes diminish incentives to work and to save is commonplace.

Herbert Stein, professor of economics at the University of Virginia and a former chairman of the President's Council of Economic Advisers, examined this view, which he described as follows:
"The argument that increased government spending, as a share of GNP, slows down the rate of growth of real output runs along familiar lines. The higher taxes needed to finance the higher spending would weaken incentives to work and to invest, and would absorb funds that otherwise would have been saved and invested. If the government borrows to finance its expenditures, that will crowd out private investment. A more recent version of this view is that the absorption of productive resources by the government cuts
the supply of resources available to produce investment goods and marketable consumption goods, which will reduce private investment especially, since workers will resist reducing their consumption of marketable goods. Another aspect to be considered is that increased government spending absorbs workers into public employment, where productivity is low and growing slowly if at all, and that this restrains the growth of total output." ${ }^{62}$

If the consequences of large budgets asserted in this argument were confined to a reduction of the labor and capital used in nonresidential business, they would not reduce output per unit of imput in the sector. ${ }^{63}$ They would do so only if the effect on labor took the form of people working less hard while at work or refusing promotions.
But Stein finds little support in the American experience for any of the processes he described. In particular, "no stagnation of growth was evident during the period of high and rising government expenditures." Nor is any effect on the private saving rate or much, if any, on employment to be observed. Stein finds that the evidence suggests that the effects of government spending and taxes on economic growth during the period from 1956 to 1973 were "at least uncertain and probably small." ${ }^{64}$

The period after 1973 was one of poor growth and productivity performance but not one in which the government share shot up abruptly. Federal, State, and local government expenditures, which rose from 24.8 percent of GNP in 1956 to 31.0 percent in 1973, went to 33.5 percent in 1976 and 32.5 percent in 1978. The increase from 1973 to 1976 was partly due to increased unemployment. Government receipts were 26.1 percent of GNP in 1956, 31.0 percent in $1973,31.6$ percent in 1976, and 32.4 percent in $1978 .{ }^{65}$

I agree with Stein that the general size of government budgets has not had a substantial adverse effect on growth and productivity. This does not necessarily mean, of course, that there would be no such effect from a further increase, such as has recently been experier in several European countries. In Netherlands, the three Scandinavian
countries, and the United Kingdom, general government expenditure reached 44 to 51 percent of gross domestic product in 1975, compared with 34 percent in the United States. ${ }^{60}$

Capital gains provisions of the Revenue Act of 1969

William F. Ballhaus, president of Beckman Instruments, Inc., ascribes the recent slowdown in growth and productivity to the provisions of the Revenue Act of 1969 that affected capital gains. Previously, only half of long-term capital gains (then gains on assests held 6 months or more) were subject to the Federal individual income tax, and the rate on this half was limited to 50 percent, so the top effective marginal rate was 25 percent. ${ }^{67}$ The Revenue Act of 1969 , effective January 1, 1970, deleted the 50 percent rate ceiling; this raised the effective rate for high-income individuals from 25 percent to 35 percent. For a small number whose income was largely from sources given preferential tax treatment, the effective marginal rate could be higher, as much as 49.1 percent, as the result of a new minimum tax provision of the law, or even 52.3 percent for a few individuals with large foreign tax credits. In addition, the period for which assets had to be held for gains on them to qualify as long-term rather than short-term gains (which are taxed like ordinary income) was to be increased, but this provision became effective only in $1977 .{ }^{68}$

Ballhaus sees the increased taxation of capital gains as the cause of reduced investment. ${ }^{69} \mathrm{He}$ also sees it as the cause of reduced spending for research and development. ${ }^{70}$ Even if these effects were sizable, they probably contributed little to the slowdown in the residual. ${ }^{71}$ Less investment reduces capital input, not the residual, although it does affect output per hour. Less R. \& D. would tend to reduce the residual, but R. \& D. has already been rejected as a probable cause of very much of the productivity slowdown.

But Ballhaus has a third effect: Taxation of capital gains biases the distribution of investment and R. \& D. away

- the more risky undertakings. This
nother cause of misallocation
of resources that would reduce the residual. It seems inescapable that capital gains taxation has such a tendency, and therefore that higher capital gains taxation increases the tendency. This statement does not rely on an assumption that investors are averse to risks. A $\$ 1$ million investment certain to repay $\$ 1.1$ million has the same expected return as a $\$ 1$ million investment that has nine chances of becoming a total loss and one of repaying $\$ 11$ million, and the two investments are equally advantageous to society. But if the government shares in gains but not in losses, the safer investment promises the higher return to the investor. Ballhaus assigns a particularly strategic role to individual investors in small companies, and states that equity investment in small companies declined after 1969 and almost vanished in 1973-75.

The argument that high capital gains taxation impedes growth became central in 1978 to the case for Congressman William A. Steiger's proposal to restore the situation that existed before the Revenue Act of 1969. The tax bill actually passed in 1978 was not much less favorable than his proposal for any taxpayer and even more favorable for most. Sixty percent of long-term gains, as against the previous 50 percent, was exempted from income tax and this, together with changes in the minimum tax and the enactment of a new "alternative minimum tax," reduced the highest effective marginal tax rate on capital gains to 28 percent. If the 1969 change in capital gains taxation was an obstacle to growth, that obstacle has been removed.

However, the increase in the tax yield from capital gains that resulted from the 1969 law was less than $\$ 1$ billion at 1978 income levels, according to Treasury Department estimates. The small size of the extra tax burden suggests that the misallocation resulting from it, though doubtless present, was not large.

Other Suggestions Affecting Miscellaneous Determinants

In this part of the article I consider six additional causes that have been suggested for retardation of the growth
rate of productivity and that would affect my residual series. Like suggestions considered in the preceding section, their effects, if any, would be on miscellaneous determinants of output, including aspects of labor input and resource allocation for which specific estimates were not prepared.

'cPeople don't want to work any more"

The press recently quoted me as stating-as I have here-that productivity had declined, in part for reasons that were mysterious. The result was long-distance calls informing me, usually with the patronizing air used in speaking to children and the simpleminded, that the trouble is obvious: "People don't want to work any more." Sometimes the comment was more pointed: "Young people don't work like we did at their age." This is without doubt the number one popular explanation of low productivity. It is also shared by some economists.

Thus Arthur F. Burns, then Chairman of the Board of Governors of the Federal Reserve System and previously president of the National Bureau of Economic Research and Chairman of the President's Council of Economic Advisers, devoted most of his 1977 commencement address at the University of South Carolina to this theme. ${ }^{72}$ "Careful study [of labor force composition and capital per worker] still leaves a substantial part of the recent productivity slowing unexplained," he stated. "Other adverse influences apparently have been at work as well. My own judgment is that we have been undergoing a change in our societal values and attitudes that has contributed significantly to poorer job performance in recent years. I advance that as a hypothesis only, not as an established fact. It is a hypothesis, however, for which there is regrettably a considerable body of supportive evidence." ${ }^{73}$

The attitudes and behavior that trouble Burns and so many others are highly visible. And the difficulty of finding reliable workers for jobs that are particularly hot, dirty, noisome, arduous, or regarded as menial can scarcely be denied, though this may be more the result of improved alterna-
tives than of changes in workers' preferences.

Yet I am skeptical that a sudden drop in willingness to work is responsible for the recent retardation of productivity, whether that is dated after 1966 or after 1973. My skepticism is largely attributable to having heard similar generalizations all my life and having read them in the works of observers who wrote long before my birth. It was well before 1967 that I wrote, "Like the supposed decline in the spirit of enterprise, there seems always to be a popular belief that people are less willing to 'put in a hard day's work' than they used to be, but this is scarcely evidence." ${ }^{74}$

These generalizations, moreover, are also common in other countries, including those with excellent records for raising productivity. And they are not new there either. Thus the Tokyo Mainichi Daily News editorialized on April 7, 1976:
"Opinions have been expressed at offices and factories that today's young people are not eager to work. The view is not anything new. Every generation seems to say the same thing about its youths. Still, young people must seriously ponder the allegation. . . . We . . . exhort the newly employed young people to tackle their work with due seriousness.
"A government survey shows that two thirds of today's youth want to live a carefree life to their personal taste outside concern about work. If they want to take a job, however, they are required to care more seriously about work. A switch is needed in their life style concept."
Testimony about a similar observation in Germany comes from Walter W. Heller, another former Chairman of the President's Council of Economic Advisers and an expert on the puritan ethic, who dissents from the Burns view about "this supposedly weakening work ethic." Heller noted:
"Ludwig Erhard used to tell me that 'the world-famous German diligence has disappeared.' He told me that in the fifties, and he told me that in the sixties, and now I am hearing it in the seventies." Burns' very interesting response to Heller was: "It has been true each time." ${ }^{75}$

It is indeed possible, as those quoted have suggested, that always and everywhere work effort has declined and has curtailed productivity growth. If so, my residual persistently understates the contribution of advances in knowledge. But even if this pattern were an accurate description, it would not explain a downturn in recent years in my residual. It is also possible, as Solomon Fabricant has suggested, that over long periods work effort has fluctuated and that the impressions reported all refer to the declining phases of these cycles. ${ }^{76}$

Is there any reason at all for a recent (post-1966 or post-1973) sudden sharp decline in work effort from its past trend, whatever that trend may be? One possibility, perhaps slight, was suggested in Accounting for Growth. "Programs to hire the 'hard core' unemployed that do not require them to meet as stringent performance standards as those applied to the ordinary work force pose a possible danger: acceptance of lower standards for a special group in an establishment may reduce performance standards for the rest of the work force in that establishment." ${ }^{77}$ Hiring to meet objectives of legislation to promote equal employment opportunities has a similar potential. "On the other hand," as I wrote, "such programs may help to remove irrelevant hiring tests or other forms of disguised discrimination." ${ }^{78}$

My series for average hours, which enters into the calculation of total input, measures time spent at the work place. The Survey Research Center at the University of Michigan reports that time records kept by a small sample of married men showed the ratio of time actually worked to time at the work place to have been 2 percent lower in 1974-76 than in 1965-66. ${ }^{79}$ Whether there was a change in trend, and if so, when it occurred, cannot be ascertained from these data. The concept of time actually worked is obviously a difficult one for many categories of workers.

I have no desire to minimize the importance of work effort. In Why Growth Rates Differ I suggested that higher intensity of work in the United States than in at least several of the European countries may well help to account for the higher level of productivity in the

United States. I also stated that an "inability to answer the simple questionhow hard do people work?-and to compare different places and dates, is probably the most serious gap in my measure of labor input." ${ }^{80} \mathrm{It}$ is quite possible that a decline in work effort contributed something to the retardation of productivity, although this has not been demonstrated. But it is unlikely to have been a major cause of the suddenly retarded growth of the residual after $1973 .{ }^{.81}$

Impairment of efficiency by inflation

Inflation is widely thought to impair growth of output per hour or per worker by reducing saving and investment. ${ }^{82}$ In my classification this effect would be captured by the contribution of capital and would not reduce output per unit of input or the residual series. A consequence of inflation that would do so is rendering rational calculations by businessmen more expensive and less accurate. When prices are changing rapidly, information about prices charged in different markets and outlets is quickly outdated. ${ }^{83}$ So is knowledge about wage rates and interest rates. The problem is intensified if, as stated by the Bank for International Settlements, "a high average rate of inflation almost certainly entails an increased variance of individual price changes." ${ }^{84}$ As Arthur M. Okun, Senior Fellow of the Brookings Institution and a former Chairman of the President's Council of Economic Advisers, says, inflation "disturbs a valuable set of institutions that economize on information, prediction, and transaction costs through continuing employer-worker and buyer-seller relationships." ${ }^{85}$ Many others have pointed out that inflation erratically affects the tax burden, especially that of firms, because the tax system is based on nominal incomes and book profits. ${ }^{86}$

In his Nobel lecture, Milton Friedman of the University of Chicago discussed limitations of indexing as a method of minimizing the impact of inflation on efficiency. Inflation that is high on the average tands to be highly variable in its rate, and "increased variability shortens the optimum length of unindexed commitments [which
would itself increase transaction costs] and renders indexing more advantageous. But it takes time for actual practice to adjust. In the meantime, prior arrangements introduce rigidities that reduce the effectiveness of markets. An additional element of uncertainty is, as it were, added to every market arrangement. In addition, indexing is, even at best, an imperfect substitute for stability of the inflation rate. Price indexes are imperfect; they are available only with a lag and generally are applied to contract terms only with a further lag.
"These developments clearly lower economic efficiency." ${ }^{87}$
Friedman also effectively states the general inefficiency argument." "A second related effect of increased volatility of inflation is to render market prices a less efficient system for coordinating economic activity. A fundamental function of a price system . . . is to transmit compactly, efficiently, and at low cost the information that economic agents need in order to decide what to produce and how to produce it, or how to employ owned resources. The relevant information is about relative prices-of one product relative to another, of the services of one factor of production relative to another, of products relative to factor services, of prices now relative to prices in the future. But the information in practice is transmitted in the form of absolute prices-prices in dollars or pounds or kronor. If the price level is on the average stable or changing at a steady rate, it is relatively easy to extract the signal about relative prices from the observed absolute prices. The more volatile the rate of general inflation, the harder it becomes to extract the signal about relative prices from the absolute prices: the broadcast about relative prices is, as it were, being jammed by the noise coming from the inflation broadcast. ... At the extreme, the system of absolute prices becomes nearly useless, and economic agents resort either to an alternative currency or to barter, with disastrous effects on productivity. . . .
"These effects of increased volatility of inflation would occur even if prices were legally free to adjust-if, in that sense, the inflation were open. In prac-
tice, the distorting effects of uncertainty, rigidity of long-term contracts, and the contamination of price signals will almost certainly be reinforced by legal restrictions on price change. In the modern world, governments are themselves producers of services sold on the market: from postal services to a wide range of other items. Other prices are regulated by government and require government approval for change: from air fares to taxicab fares to charges for electricity. In these cases, governments cannot avoid being involved in the price-fixing process. In addition, the social and political forces unleashed by volatile inflation rates will lead governments to try to repress inflation in still other areas: by explicit price and wage control, or by pressuring private businesses or unions 'voluntarily' to exercise 'restraint,' or by speculating in foreign exchange in order to alter the exchange rate." ${ }^{88}$

That inflation impairs productivity seems certain. But I have no idea how much it may have done so from 1973 to 1976.

Lessening of competitive pressure and changes in the quality of management

According to my calculations, output per unit of input in the United States surpassed that in Western Europe (in 1960) and Japan (in 1970) by a much wider margin than is explained by determinants whose effects I could calculate directly. ${ }^{89}$ In discussing the differential with Europe, I listed less intense competitive pressures in Europe among probable contributors to the differential, noting that "less competition means that inefficient firms and inefficient management are under less pressure to minimize costs and less likely to be displaced by those who can do better." I also wrote: "In the field of 'managerial knowledge' it is probably futile to distinguish between what management knows and what management does with the knowledge it has; but somewhere in this area, I suspect, lies an important part of the explanation for the productivity differential." ${ }^{30}$ Competitive pressure clearly affects management quality but is not the only influence on it. I have suggested
that increased competition and improved management probably contributed to the increase over time in efficiency in France. Eleanor M. Hadley of George Washington University and the General Accounting Office concluded that increased competition has done so in Japan. ${ }^{91}$

When I examined American economic growth in 1961, I quoted Edward S. Mason and Theodore J. Kreps to the effect that either there had not been a change in monopoly or the size of the competitive area in America or it was impossible to know whether there had been any change. ${ }^{92}$ This seems still to be the case.
The only broad quantitative measures available refer to concentration in manufacturing industries. The fourfirm concentration ratio for an industry is the percentage of the industry's shipments made by the four firms with the largest value of shipments. A summary measure can be obtained by computing weighted average concentration ratios for all manufacturing industry, letting each individual industry's four-firm ratio be weighted by the value added originating in that industry. F. M. Scherer has provided such ratios for several years: ${ }^{93}$

1947	35.3
1954	36.9
1958	37.0
1963	38.
1972	39

Although there is some increase in concentration, it is small from 1963 to 1972. The increase up to 1963 seems to result mainly from changes in industry composition and weights; with constant weights and constant industry definj-tions-but unavoidably, much less complete coverage-the percentages are those shown below:

1947	38.0
1954	38.1
1958	
1963.	37.9
1972	38.

I am aware, of course, that some observers believe the breadth and strength of competition has declined. Sometimes this belief is related to the argument of a previous section, which
described how the need to interact with the government has diverted executive attention from competition and other conventional concerns. Other alleged effects of regulation (including financial regulation) are the heightening of barriers against the entry of new firms and the elimination of small firms that are unable to afford compliance costs (although the latter seems to be more a forecast of things to come than a description of events up to 1976). Conglomerate mergers, which peaked in number and value in 1966-68, are sometimes suspected of having lessened competition, but Peter O. Steiner of the University of Michigan, who cites Jesse W. Markham of Harvard University and the Bureau of Economics of the Federal Trade Commission in addition to his own analysis, found no major effect of this type. ${ }^{94}$ On the other side, it is pointed out that foreign competition has become much more intense. Also, recurrent and persistent underutilization of resources since 1969 has cut into profits and made for a highly competitive situation.

Burton H. Klein of the California Institute of Technology places great emphasis on competition-or to use his term, "rivalry," which he particularly associates with battles for market shares-as the engine driving firms to improve technique and especially to lower costs. ${ }^{95} \mathrm{He}$ regards the early postwar "golden age" as "primarily the result of a highly competitive economy generating a wide diversity of ideas." As Klein sees it, the situation has changed, evidently, since about 1965. "The dynamism of the American economy is highly dependent upon new firms. . . ." Klein believes the entry of new firms has become rare, primarily because of the unavailability of risk capital for new firms. "Openness" of firms, which in Klein's terminology is the opposite of a closed hierarchical system that is resistant to new blood and radical new ideas, has diminished. "A decline in openness," he reports, "has caused large firms to become more structured and, as such, less able to deal with risk. Moreover, the change in internal incentives results in the selection of managers with quite different personality characteristics. And there
is a good deal of evidence that imaginative scientists and engineers are being replaced with business school graduates and lawyers, that is, by people who perform the same function in modern societies as did genetic inbreeding in feudalistic societies." ${ }^{96}$ It is evident that Klein blames loss of rivalry for alleged managerial changes that others ascribe to government regulation.

Managerial behavior is, of course, subject to many influences. For example, Alfred Rappaport of Northwestern University believes that executive compensation systems often instill a drive to produce short-term results, influencing management to forego investment in capital equipment and R. \& D. and to take other actions, such as corporate takeovers, that sacrifice longer term earnings to secure short-term accounting profits of less value to the firm. ${ }^{97}$

Rise in energy prices

The sharp drop in the growth of the residual series coincided with the sudden increase in OPEC oil prices at the end of 1973 and in early 1974. Explanations that ascribe the productivity drop to the oil price increase are therefore exceptional in that they account for the timing of the drop. ${ }^{98}$ One study described later in this section, that by Rasche and Tatom, even estimated the effect to be of a size about equal to the amount by which growth of the residual deteriorated. To be able to accept this estimate would be doubly satisfying because it would not only solve the productivity mystery but also would be somewhat reassuring for the future. For even if a one-time fuel price increase permanently lowers the level of productivity, it should not reduce the subsequent growth rate once the transition is completed. Unfortunately, the Rasche-Tatom estimate appears to be many times too big, for reasons explained below, and I do not think that much of the productivity slowdown can be ascribed to energy prices.

It is necessary to distinguish three effects of the oil price increase. First, the increase in the price of imported oil was the main component of a deterioration in the terms of trade that reduced the Nation's command over goods and
services by about 1 percent, but this did not directly change national income (or other output measures, such as GNP) or productivity. ${ }^{99}$ Hence the "terms of trade" effect can be ignored here. Second, the Government did intervene, with controls over fuel consumption and choice of fuels, to try to reduce present and future imports. These were among the many new controls discussed earlier. Third, the high price of energy resulting from the higher price of imported oil probably caused nonresidential business to use less energy per unit of labor, capital, and land. ${ }^{100}$ The questions that must be explored here are, How much? And what was the effect on output per unit of input? This section describes some studies.
The usual way to approach the subject is to treat energy as if it were a factor input. Energy gets about 5 percent of the total input weight in the business sector, according to Roger Brinner. ${ }^{101}$ Data from the Nuclear Energy Policy Study Group, when combined with estimates by Sam H. Schurr and Joel Darmstadter of Resources for the Future, yield about the same result, 4.6 percent. The calculation is as follows. The Study Group put the cost of primary energy in 1975 at $\$ 70$ billion. ${ }^{102}$ Schurr and Darmstadter state that "no more than 60 percent of yearly energy use goes to the (nonresidential) business sector." ${ }^{103}$ Hence the value of primary energy used by nonresidential business can be put at $\$ 42$ billion in 1975 , which was 4.6 percent of a $\$ 916$ billion nonresidential business national income. ${ }^{104}$ This percentage is based on energy prices after the 1973-74 oil price increase; before the increase it was smaller.

Given the weight of energy, the effect on output per unit of input of any given percentage decline in energy use by nonresidential business depends on the elasticity of substitution between energy, on the one hand, and labor and capital, on the other. If the elasticity of substitution is unity and the weight of energy is 5 percent, a 1-percent reduction in energy consumption with no change in labor and capital would reduce output by 0.05 percent and out-
put per unit of input by the same percentage.

To be sure, this approach has difficulties. The amount by which the price rise may have reduced fuel consumption in nonresidential business is hard to estimate. One reason is that it is not easy to say what would have happened to total energy consumption after 1973 in the absence of a price change, because earlier experience was not uniform. ${ }^{105}$ The ratio of total energy consumption to GNP has declined in the long run-say, since 1920-but not steadily; there was little net change from about 1953-54 to 1973. Short-run fluctuations in the ratio have been sizable, reflecting in part effects of the business cycle and war. Worse, a suitable time series for actual energy consumption by nonresidential business has not been compiled for either the historical or recent period. ${ }^{108}$ Much of the energy supply is used to heat, air condition, and illuminate dwellings and government buildings; for cooking and household appliances; and to operate consumer and government motor vehicles, planes and ships. The re-mainder-that is, nonresidential business use-may not have moved as the total did. Partly because of these difficulties, only rough impressions of the elasticity of substitution are available.

Moreover, energy is not really a factor input but is itself the product of labor, capital, and land (natural resources). At the point where it reaches the user. most of its value consists of the earnings of the labor and capital required to transform a natural resource into the form needed by energy users and move it to where it is needed. Additional energy can always be provided by adding labor and capital, although it may require the use of poorer natural resources requiring more labor and capital.

This suggests another approach to the question. Suppose 20 percent of energy were imported and higher import prices caused imports to be cut by one-fourth (5 percent of consumption). The loss could be made good without changing consumption by raising domestic energy production from 80 percent to 85 percent of consumption. Suppose the cost in labor and capital
per unit of energy were as much as twice as high for the additional energy as for existing domestic production. If 80 units of labor and capital were required to produce 80 percent of consumption, 90 units would be required to produce 85 percent of the same consumption. The labor and capital requirement for domestic energy production per unit of energy would be raised to 105.9 percent $(90 \div 85)$ of the original requirement. This would leave business with as much energy as ever. If domestically produced energy were initially 4 percent of nonresidential business output and input, output per unit of labor and capital in nonresidential business would be reduced by 4 percent of 5.9 percent, or 0.24 percent. This figure could be reduced by some substitution of labor and capital for energy. These import substitution numbers are only illustrative, but they suggest the dimensions of the effect.
I turn now to actual estimates that have been made of the effect of the energy price increase on the course of productivity after 1973. George L. Perry, a Senior Fellow of The Brookings Institution, has made what I regard as the most reasonable calculation. ${ }^{107}$ Perry prepared a time series for nonresidentia] business use of energy, measured in BTUs, that begins in 1949. It covered about three-fifths of the total; the main omissions were commercial uses of petroleum for heating and transportation. For the 1949-73 period (as well as for subperiods) he related this series for energy use to gross business product, the ratio of actual to potential gross business product, and the trend in the ratio of energy use to output (which is downward by 1.3 percent to 1.6 percent a year). He then used three alternative equations based on these data to predict the ratio of energy use to gross business product in 1976. They predicted declines from 1973 to 1976 of $7.3,7.0$, and 5.3 percent, respectively. The actual decline was 10.2 percent. The difference of 2.9 to 4.9 percent between actual and predicted reductions is an estimate of the reduction one can ascribe to higher energy prices or other unspecified factors, including Government controls. Perry considers this a maximum estimate because the equations assume a
constant downtrend through 1973 in energy per unit of gross business product, whereas the decline was actually accelerating. (If the estimated 1973-76 decline in the absence of the price rise is understated for this reason, the effect of the price rise on energy use is overestimated.) Perry next estimates that the value of the energy saved by the 2.9 - to 4.9 -percent reduction was $\$ 2.4$ billion to $\$ 4.1$ billion, based on the 1976 general price level but (appropriately) at the average of the 1973 and 1976 ratios of the price of energy to the general price leve]. ${ }^{108}$

Because Perry is interested in output per hour worked rather than output per unit of input (and also to avoid explicit estimates of elasticities of substitution), he uses a variant of the income share approach at this point. He reasons as follows:
"Even if business is assumed to have accomplished all this saving by substituting labor for energy, not much extra labor could have been used in this process. $\$ 4.1$ billion is 0.5 percent of employee compensation in the business sector. $\$ 2.4$ billion is 0.3 percent. Since an unknown amount of the substitution must involve capital as well as labor, the added labor input would be smaller still. . . . Finally, some part of the energy saving must have involved no substitution of other inputs at all: lowering thermostats to 68 degrees in winter and raising them to 75 degrees in summer or turning out every other light in hallways are obvious examples, but there must have been less obvious examples of 'waste' that were eliminated only after the OPEC crisis made firms more energy conscious . . . I know of no way to pin down the answer more accurately; but on the basis of the evidence here, it seems unlikely that higher energy prices have caused more than a 0.2 percent loss of labor productivity and potential output between 1973 and 1976." ${ }^{109}$

When Perry reduced the initial 0.3 or 0.5 percent to 0.2 percent in order to obtain the effect of the higher energy price on labor productivity (output per hour) he took into account both the substitution of capital for energy and the conservation of energy without loss of production. To estimate the effect on
output per unit of input (my objective here), only the second reduction should be made. A reduction from a midpoint 0.4 -percent estimate to 0.3 percent is reasonable for 1976 . This would mean that higher energy prices reduced the growth rate of the residual from 1973 to 1976 by 0.1 percentage points. This is a significant amount, but less than one-twentieth of the drop for which an explanation is needed.

The conclusion that output per unit of input would be cut 0.3 percent by a 3.9-percent reduction in energy use in nonresidential business (the midpoint of Perry's estimates) is broadly similar to-indeed, even above-two other estimates. Ronald G. Ridker, William D. Watson, Jr., and Adele Shapanka, all of Resources for the Future, wrote: ". . . we believe that the following rule will prove to be in the ball park. According to this rule, a 10 percent reduction in net industrial and commercial energy use per unit of output, over what would otherwise have occurred had the pre-1973 trend in the ratio prevailed, results in a 0.5 percent decline in GNP during a transition period of ten to fifteen years." ${ }^{110}$ William W. Hogan and Alan S. Manne of the Institute for Energy Studies at Stanford University estimated the decline in output would be 0.4 percent from a 10 percent reduction in energy. ${ }^{111}$ Moreover, the President's Council of Economic Advisers points out that the shortterm effect is less than the longer term effect. "Widespread declines in productivity growth rates would only occur as adjustment of production methods to economize on energy took place. Actually, adjustment to the new oil prices has been extremely slow." ${ }^{112}$

Before Perry's study, Robert H. Rasche and John A. Tatom of the Federal Reserve Bank of St. Louis estimated that the increase in the price of energy permanently reduced economic capacity, or potential output, by 4 to 5 percent. ${ }^{113}$ This would mean a reduction of 5 or 6 percent in potential nonresidential business national income and in my residual series. Their estimate flowed from what are, conceptually, two equations. One assumes that the elasticity of demand for energy used in production is unity, so that each 10 -percent increase
in the price of energy relative to the price of output reduces energy input by 9.1 percent. The other assumes a Cobb-Douglas-type of production function, in which energy is treated as an input along with labor and capital. Energy is given a weight of 12 percent, so each drop of 9.1 percent in energy consumption reduces GNP by 1.1 percent. Lacking data on energy consumption, Rasche and Tatom condensed the two equations, estimating that each 10 percent increase in the relative price of energy reduces output by 1.1 percent.

Although the condensation of the equations eliminates the calculation of energy input, it is easy to calculate that the assumption of unit elasticity of demand implies that the 57 -percent increase in the relative price of energy from 1973 to 1976 reduced energy use by 36 percent relative to what it would otherwise have been (since $100 \div 1.57$ $=64$) The Rasche-Tatom estimate of the productivity loss assumes that this actually happened. Although the size of the actual reduction is uncertain, it is obvious that it did not remotely approach such a magnitude. Rasche and Tatom radically overestimated the size of the quantity response to the price increase. A second reason the RascheTatom result is so high is their use of a 12-percent weight for energy, which they based on "a finding that the share of energy costs in total factor costs" was quite stable throughout the 1960 's at around 12 percent of total factor costs. The estimate cited refers only to manufacturing. ${ }^{114} \mathrm{It}$ is far above any of the estimates for nonresidential business or the whole economy that I have located.

If Perry's estimate that the use of energy was reduced by 2.9 to 4.9 percent were substituted for the implied Rasche-Tatom estimate of 36 percent, and if Brinner's 5 percent weight were substituted for their 12 percent, then the second Rasche-Tatom formula would yield 0.14 to 0.25 percent as the reduction in output per unit of input in 1976 that stemmed from the energy price increase. ${ }^{115}$

Another sizable estimate has recently appeared. Edward A. Hudson of Data Resources, Inc., and Dale W. Jorgenson of Harvard University analyzed the
impact of higher energy prices by using their "dynamic general equilibrium model of the U.S. economy." ${ }^{116}$ A feature of the model is its reliance on a close relationship between the quantity of capital and energy use-that is, energy and capital are considered complements with a low elasticity of substitution between them. But a high degree of substitution is thought to exist between energy and capital, on the one hand, and labor, on the other. The model "was used to simulate two economic growth paths over the 19721976 period. In the first simulation, actual values of the exogenous variables, including world oil prices, were employed as the basis for model solution. . . . In the second simulation, 1972 energy prices were employed over the whole 1972-1976 period." Since all other exogenous variables were the same, "the differences in simulated economic activity can be attributed solely to the impact of the oil price increase." ${ }^{117}$ These differences include the effects of the impact of the oil price increase on demand as well as on production relationships.

Their model results showed energy consumption 8.8 percent lower in 1976 with the energy price increase than without, real GNP 3.2 percent lower, and energy consumption per unit of GNP 5.8 percent lower. The energy estimates refer to all uses of energy, not just business use, so the 5.8 -percent reduction is not necessarily comparable to Perry's 2.4-4.9 percent; still, it is in the same ball park. The model showed labor input lower by 0.5 million jobs or just over 0.5 percent with the energy price increase than without it, and GNP per unit of labor 2.57 percent lower. Capital input evidently was 3.0 percent lower. ${ }^{118}$ The base to which the percentage reduction in capital refers is unclear. If it includes all nonresidential and residential business capital and land (that is, all nonlabor input) the reduction in total factor input is about 1.23 percent because the weights, gross of depreciation, in the economy as a whole, are about 0.72 for the drop of something over 0.5 percent in labor and 0.28 for the 3.0 percent drop in "capital." 119 With total energy use reduced 8.8 percent, energy per unit of
factor input is lowered by 7.7 percent. With GNP reduced 3.2 percent, GNP per unit of factor input is lowered by 2.0 percent. If as seems reasonable, 1973 GNP was unaffected, the rise in energy prices would than have reduced the growth of GNP per unit of input in the whole economy by almost 0.7 percentage points from 1973 to 1976.

The implied drop of 2.0 percent in GNP per unit of labor, capital, and land as the result of a mere 7.7-percent decline in total energy consumption per unit of labor, capital, and land is puzzling. The value of energy used in nonresidential business does not exceed 4 percent of total factor input in the whole economy. Suppose business use of energy fell by the same percentage (7.7) per unit of input as total use. The usual procedure would then yield a reduction in output per unit of labor, capital, and land of only 0.3 percent (7.7×0.04). Hudson and Jorgenson obtain a result seven times as large. The disparity is partly due to different estimates of elastioities of substitution, but it does not seem that this could be the whole explanation. Both the difference in elasticities and the cause of the remainder of the difference need more explanation than has been made available.

My citation of several studies may create the false impression that the scale of investigation of the effect of the energy price increase on past output has been substantial. In fact, study of the actual effect of the change in the energy situation on total output and productivity since 1973 is miniscule even in comparison with the resources devoted to trying to guess at its implications for the 21st century. More research specifically devoted to measuring the effects already experienced is needed. Pending such research, the estimate that the energy price increase reduced the growth rate of my residual by about 0.1 percent a year from 1973 to 1976 is reasonable.

The "shift to the services" and other structural changes

Whenever productivity is discussed at any length, someone will assert that opportunities to raise productivity are less for services than for commodities,
that the service share of the economy is rising rapidly, and that the overall rate of productivity advance most therefore decline. I examined this allegation in a long article in 1973 and concluded that within the nonfarm nonresidential business sector it simply has no substance. ${ }^{120}$ The most obvious, although not the only, reason is that within this sector there was no appreciable shift to the services. This is so whether one considers employment classified by industry or output classified by end product. The shift of employment from farming to other commodity and service industries did affect productivity. Because the shift reduced misallocation, its effect was favorable and its diminishment therefore unfavorable. But the amount was estimated in the present study and is excluded from my residual series.

In the same article I stressed that a classification based on commodities and services is in any case inappropriate because industries or products classified iu each group are completely lacking in homogeneity with respect to productivity change-or to almost anything else. Both groups contain industries of fast and slow productivity growth.

The Bureau of Labor Statistics has also explored the effect of the shift to the services. Jerome A. Mark, its Assistant Commissioner for Productivity and Technology, noted in testimony before the Joint Economic Committee that services can be defined very narrowly, to include only business or personal services, or (as I defined them) very broadly to include all noncommodity producing industries. In either case the effect of the shift was trivial. Under the narrow definition the effect of shifts in hours to the services was -0.01 percentage points in 1947-76, zero in 194766 , and -0.02 in 1966-76. By the broad definition it was slightly positive: 0.01 percentage points in 1947-76, zero in 1947-66, and 0.04 in 1966-76. ${ }^{121}$

Quite apart from such calculations and the inappropriateness of a com-modity-service dichotomy, in the article previously cited I raised "a fundamental objection to the procedure of analyzing the behavior of components in the past in order to judge future productivity
trends within nonfarm nonresidential business. The objection is to the implicit assumption that components which gain or lose share of employment or total input, and which have above average or below average productivity gains in one period, will have the same characteristics in the next period." ${ }^{122}$

I went on to say:
"Suppose we classify nonfarm nonresidential business or a major portion of it by detailed components, whether by industry or by end product. Available evidence suggests that over any time span that is long and terminated by years that are representative we are likely to find that employment and other input measures increased by an above average amount in components whose productivity increased by an above average amount. This is not really surprising. One reason is that components toward which demand shifts secure the greatest productivity gains from economies of scale. Another is that new components typically both increase their shares and have large productivity gains. A third is that demand appears typically to be so elastic that declining relative prices resulting from above average productivity gains raise volume more than enough to offset the saving in employment and other inputs that results from above average productivity gains." ${ }^{123}$

And finally:
"If this relationship holds, components with above average productivity gains during a period will be found to have bigger shares of employment or total input at the end of a period than at its beginning. Does this mean we should expect ever-rising rates of productivity growth in the sector as a whole? Of course not. Such a tendency would be present only if at every date the components which had high rates of productivity gain and increased their shares of input or employment in previous periods will again have high rates of productivity gain, and increase or at least not reduce their shares, in the period to come. There is no such continuity. Industries rise and fall.
"Suppose, instead, that in some period or by some classification the relationship is the opposite: that components with fast-rising productivity in a period
systematically lose their shares of inputs. Would this mean an ever-falling rate of productivity increase? No, for the same reason." ${ }^{124}$

Possible errors in the data

The change in the course of NIPPE was so sudden and sharp after 1973 that some observers have wondered whether it really happened. They ask whether some development might have introduced a sudden error into the output measure.

An error in real output could result from an incorrect series for output valued in current prices or from errors in price data used for deflation. Output (national income) in current prices is measured in two ways. In one, GNP is first estimated, as the sum of expenditures for final products (personal consumption expenditures, gross private domestic investment, net exports, and government purchases). To obtain national income, capital consumption, indirect business taxes, and business transfer payments are then subtracted from GNP and subsidies are added. The second way, on which my series is based, is to add the several types of earnings from current production (employee compensation, proprietors' earnings, rental income of persons, corporate earnings, and net interest). The two estimates agree rather well from 1973 to 1976.

There is, nevertheless, one reason to suspect that national income in current prices may be unusually subject to error in 1973-76. It pertains to the inventory valuation adjustment, which enters into the estimates obtained by both methods. ${ }^{125}$ Estimates of inventory valuation adjustment are needed to obtain the change in nonfarm business inventories (a component of gross private domestic investment, which enters into the first estimate) and nonfarm proprietors' earnings and corporate earnings (components of the second estimate). The inventory valuation adjustment is difficult to measure and it was unusually big from 1973 through 1976 as the result of large price movements. It the same time, difficulties in its estimation were increased by widespread changes in business accounting practices (shifting from first-in-first-out
to last-in-first-out accounting). As a result, output in current prices was more susceptible to measurement error, in either direction, than usual. Even so, an error in the current-dollar figures large enough to alter the productivity picture materially would surprise me greatly. With respect to the possibility of systematic downward bias in the current-dollar series after 1973, I am not aware of any development likely to lead to such a bias.
The price data used for deflation are ordinarily subject to greater error than the current-dollar measures. The period under discussion was one of unusually large price change, and this may have made the data unusually prone to error. I do not know that price indexes are subject to greater error when prices are changing sharply than when they are relatively stable, but such a relationship seems plausible. For some components of fixed investment and government purchases from business there may be timing discrepancies between a price index and the current-dollar figure it is used to deflate; the former, for example, may refer to new contracts, the latter to deliveries or work done. Error from timing mismatches becomes more difficult to avoid if prices fluctuate widely.
In the period under review there is also a special consideration: Price data may have been affected by price controls. Price controls tend to cause understatement of reported prices, which would cause measures of real output to be overstated. Controls of fluctuating severity were in effect from August 15, 1971, through April 1974. Consequently output in this period may be overstated relative to earlier and later years. This would make the 1969-73 growth rate too high and the 1973-76 rate too low. If 1973 prices were understated by onehalf percent, for example, the growth rates of output and the residual would be 0.13 percentage points too high in 1969-73 and 0.17 points too low in 1973-76. Unless the price bias were bigger ihan this, the retardation in the growth rate of the residual would still be confined to the 1973-76 period. ${ }^{126}$

The Federal Reserve Board Index of Industrial Production is sometimes compared with components of real GNP that roughly correspond to its cover-
age. ${ }^{127}$ With respect to changes from 1973 to either 1976 or 1977, and based on the data available at the end of 1978, the series happen to be in close agreement; the Industrial Production Index actually yields growth rates slightly (about 0.1 percent a year) lower than the GNP series. ${ }^{128}$

There is no way to determine the accuracy of the output data conclusively; only impressions can be offered. Mine is that statistical errors in output measurement may have contributed something to the observed productivity slowdown, but it is improbable that they contributed very much.

The growth rate of NIPPE would be affected by errors in employment data as well as in the output series, except to the extent that inconsistencies are eliminated by measuring current-dollar output by adding the several types of earnings from current production. ${ }^{129}$ The growth rate of the residual would also be affected by noncompensating errors in the series measuring effects of other determinants. Random errors in these series, if not offsetting, consequently could cause the amount of retardation in the residual to be overstated-or understated. ${ }^{130}$

It is sometimes suggested that growth of an illegal economy, or a barter economy, has caused a large amount of production to disappear from the scope of the output measure. I have not been able to visualize how this might have occurred in such a way as to instill a sudden sharp downward bias in output per unit of input when output is measured by adding the several types of earnings from current production.

Summary and Clues

Seventeen suggested reasons for the slowdown in my residual series have been explored. I rejected a few suggestions, expressed skepticism about some, had no opinion about others, and characterized the rest as probably correct but individually able to explain only a small part of the slowdown. No single hypothesis seems to provide a probable explanation of the sharp change after 1973.

It is possible, perhaps even probable, that everything went wrong at once

Table 2.-GNP in 1973 in Constant (1972) Prices and Growth Rates of GNP Per Hour Worked, 1948-73, 1973-76, and 1973-78, by Industry ${ }^{1}$

Industry ${ }^{2}$	$\begin{gathered} \text { aNP, } 1973 \\ \text { (Billions } \\ \text { of 1972 } \\ \text { dollars) } \end{gathered}$	Growth rates (percent)		
		1948-73	1973-76	1973-78
Agriculture, forestry, and fisheries.	35.9	4.5	1.1	2.0
Contract construction	19.2 58.3	3.6 1.6	$\begin{array}{r}\mathbf{6} .6 \\ \hline .9\end{array}$	
Manufacturing; nondurable goods.	124.1	3.3	2.0	2.3
Manufacturing; durable goods..	189.0	2.6	1.1	1.1
Transportation.	50.6	3.0	1	. 8
Communication - - -i.i.e..........	32.0	5.2	8.4	7.1
Wholesale trade ${ }^{3}$-..................	38.9	3. 3	-1.4	. 8
Retail trade ${ }^{3}$.	123.1	2.4	1.1	1.1
Services ${ }^{\text {- }}$	137.9	1.0	-. 2	. 1

1. Denominator of GNP per hour worked excludes hours worked by unpaid family workers.
2. Excludes finance, insurance, and real estate; private households; and government and government enterprises 3. Classification for 1948-73 growth rate differs slightly from classification used for 1973-76 and 1973-78 rates.
3. Excludes private households; includes nonprofit institutions.

Sources: Calculated from national income and product account tables 6.2, 6.11, and (to eliminate hours in private households) 8.10 .
among the determinants that affect the residual series. Many determinants whose effects were directly estimated contributed to the drop in the growth rate of NIPPE from 1948-73 to 197376 , and the rest of the drop may have resulted from a large number of the explanations explored here, with each subtracting one- or two-tenths of a point from the growth rate. Several developments may have combined to slow the advance in knowledge itself, and others to retard incorporation of new knowledge into production. Similarly, inflation, regulation, soaring energy prices, high taxes, and changing
attitudes may have conspired to exert a large adverse impact upon the miscellaneous determinants of output that forced the residual series into an actual decline.

The finding that the unexplained slowdown in productivity growth started only after 1973 not only is in itself an important clue to the causes of the slowdown but also permits one to arrive at another: The retardation was typical of the main industrial branches of the economy rather than focused in one or two areas for which one might seek special explanations. ${ }^{131}$ Table 2 compares the rates of real GNP per

Table 3.-Selected Growth Rates in Industrial Countries, Selected Periods

hour at work in 1948-73 with the rates from 1973 to both 1976 and 1978. In 10 of the 11 branches, including both nondurable and durable goods manufacturing, the growth rates of GNP per hour in both 1973-76 and 1973-78 were much below the 1948-73 rate. ${ }^{132}$ The only exception is communication (mainly the telephone industry). ${ }^{133}$ It seems safe to infer that the decline in the residual was also general.

International comparisons provide an opportunity to obtain still another clue. To do so, however, it would be necessary to develop up-to-date estimates of the sources of growth in other advanced countries comparable to mine for the United States. ${ }^{134}$ If the residual series for other countries showed no retardation, it would suggest a localized cause for the decline in the United States. But if most other countries experienced a similar setback, this would strengthen the case for causes (such as inflation) that have been widespread.

The top panel of table 3 compares growth rates of output per employed civilian in the whole economy in the

United States and six other large industrial countries. In the United States the growth rate per employed civilian dropped by about 2 percentage points from either 1950-73 or 1960-73 to either 1973-76 or 1973-77. The rate also dropped in all six other countries shown. The drop was smaller than in the United States only in Germany. It was about the same in Canada, France, and the United Kingdom. In Japan and Italy it was much larger. It should be called, however, that all these countries shared in the world recession after 1973.

The bottom of table 3 compares output per hour in manufacturing in 197376, 1973-77, and 1973-78 with rates in 1950-73 and 1960-73 for 10 countries besides the United States. Among the six large foreign countries, all except Germany experienced an unambiguous drop in the rate. The drop was less than in the United States in France and larger in Canada, Japan, Italy, and the United Kingdom. Among the four smaller countries, the rate dropped sharply in Sweden. If the recent years are compared with $1960-73$, the rate
also dropped appreciably (though much less than in Sweden) in Denmark and the Netherlands, but not very much in Belgium.

These data show that sharp declines in the growth rates of NIPPE and of output per hour in manufacturing were widespread. They do not prove that this pattern carries over to the residual, but it may. It would be worthwhile to find out. ${ }^{135}$

Another way to learn more about the causes of the slowdown in the residual is to investigate intensively the suggestions I have reviewed in this chapter. Although some are not readily amenable to research, many are, and properly focused investigations on each of them would be valuable.

Finally, the mere accumulation of experience as time elapses will be helpful. The residual series may regain its lost ground, resume its old growth rate at the new lower level, or assume a lower growth rate from this lower level. Knowledge of the actual path over the next few years should assist in the identification of causes.

Footnotes

[^0]11. National Science Board, National Science Foundation, Science Indicators, 1976 (GPO, 1977), p. 207, and unpublished current and revised data. In this terminology, the whole business sector is covered by the word "industry."
12. The conversion of R. \& D. expenditures to a constant price basis is subject to considerable possible error. The National Science Foundation, whose data I cite, uses the GNP implicit deflator.
13. Private R. \& D. expenditures for pollution abatement, which appear mainly in the industry total, were an unchanging $\$ 0.5$ billion a year from 1972, the first year for which estimates are available, through 1976. Current-dollar data are from SURVEy, vol. 58 (February 1978), p. 12. They were deflated by the GNP implicit deflator.
14. Science 1ndicators, 1976, p. 207, and unpublished current and revised data. Values in 1972 prices are current-dollar values divided by the GNP implicit deflator.
15. Ibid., p. 206, and unpublished current and revised data.
16. John W. Kendrick, The Formation and Stocks of Total Capital (New York: National Bureau of Economic Research, 1976); and idem., "Total Investment and Productivity Developments," paper prepared for the Joint Session of the American Finance Association and the American Economic Association, New York, December 30, 1977.
17. Science Indicators, 1976, pp. 5, 184.
18. I have discussed this important aspect of output measurement more extensively in earlier books. See especially The Sources of Economic Growth in the United States and the Alternatives Before Us (New York: Committee for Economic Development, 1962), pp. 155-57 and 231-46. Hereinafter cited as The Sources of Economic Growth.
19. Ibid, pp. 239-46.
20. "Research Expenditures and Growth Accounting," in B. R. Williams, ed., Science and Technology in Economic Growth (New York: Halsted Press for the International Economic Association, 1973).
21. He also estimated that if R. \& D. were capitalized instead of expensed, the growth rate of output and the contribution of R. \& D. would both be 0.2 percentage points higher.
22. The largest sample of cases for rates of return has been built up by Edwin Mansfield of the University of Pennsylvania and his associates. See Edwin Mansfield and others, "Social and Private Rates of Return from Industrial Innovation," Quarterly Journal of Economics, vol. 91 (May 1977), pp. 221-40. See also Edwin Mansfield, "Research and Development, Productivity Change, and Public Policy," in Relationships between R and Dand Economic Growth/Productivity (National Science Foundation, November 9, 1977).
23. Kendrick, "Total Investment and Productivity Developments."
24. In "Research Expenditures and Growth Accounting," p. 80, Griliches says that "if one expands the boundaries of the relevant concept of R. \& D., one should probably adjust the
estimated rates of return downward accordingly. . ." (Kendrick does not do so.) If one adopted this alternative, he would need to use a higher rate of return in the 1970's than in the 1960's because the proportion of R. \& D. that is largely irrelevant declined. Kendrick actually uses a lower rate in 1966-73 than in 1948-66, and this contributes to the decline in his estimate of the contribution.
25. I disregard in this article attempts to ascertain the results of R. \& D. spending on the economy as a whole by correlation analysis because results are too tenuous. Problems are lescribed in Zvi Griliches, "Issues in Assessing the Contribution of Research and Developzent to Productivity Growth," Harvard Institute of Economic Research Discussion Paper 41 (August 1978). For a comprehensive discussion of efforts to arrive at results of \mathbf{R}. \& D., see all the papers (by Edwin Mansfield, M. Ishaq Nadiri, Nestor E. Terleckyj, George C. Eads, and John W. Kendrick) in Relationship Between R \& D and Economic Growth/Productivity. 26. Roger Brinner, Technology, Labor, and Economic Potential (Lexington, Mass.: Data Resources, Inc., 1978), p. 102.
27. Whether obsolescence should be deducted at all in calculating the contribution of R. \& D. to growth is a question that need not be resolved here, but I shall note that such a deduction seems questionable to me (except when obsolescence results from demand shifts rather than new knowledge). This is because the social rates of return used in such calculations are based on comparisons of the output obtained when the fruits of an R.\& D. project are available with the output obtainable from the same inputs when the fruits of that project are not available but all other existing knowledge, including any made obsolete by the new knowledge, is avail able. If R. \& D. expenditures are multiplied by such a net rate of return to obtain the increase in output that they permit, where is the overstatement that the obsolescence deduction is meant to eliminate?
28. See citations in note 22.
29. Orio Giarini, "Economics, Vulnerability and the Diminishing Returns of Technology," The Geneva Papers on Risk and Insurance, no. 6, (October 1977), p. 10. Dr. Giarini is secretary general of the International Association for Risk and Insurance Economics Research and formerly was a division head of the Battelle Institute of Geneva.
30. F. M. Scherer, "Technological Maturity and Waning Economic Growth," Arts and Sciences, (Northwestern University, Fall 1978), pp. 7-11. The accuracy of patents as an index of inventions, it should be noted, has been debated for many years.
31. Bradley Graham, The Washington Post. Sentember 3. 1978.
32. Giarini, "Economics, Vulnerability and the Diminishing Returns of Technology," p. 18. 33. Margiloff says that a decline in the public's expectation of technological innovation has led society to seek to moet problems by turning to financial solutions (pouring in money) and to improvements in management technique. Technology, he laments, has been left to set its own goals without guidance from the public, with adverse effects on productivity He argues that it is possible to identify desired rates of change of productivity, particularly in manufacturing and construction, and that a suitable structure of recognition for achievements in these directions would result in having professionals strive to meet these needs, rather than less socially important ones that often enjoy more public and professional acclaim. He contrasts the great advances in the art of construction during the 19th century with their absence in the 20th. He points to a lessened attraction of engineering for the brightest young people, relative to the sciences. He regrets the absence of awards for technology comparable to the Nobel prizes for science and reports that the American Institute of the City of New York "was founded to spur the development of what we now call civilian technology and did so for about a hundred years." About 50 years ago the institute dropped activities that related to technology and began to sponsor the high school science fairs, no longer participating "in spurring or rewarding in any way the development of technology, which was its original function." Other organizations acted in much the same way. But it seems clear that the developments Margiloff describas are very long run and would not have produced a sudden recent change in productivity. (Irwin B. Margiloff, "When Technology Falters," address to the 142nd Annual Meeting of the American Institute of the City of New York, February 4, 1970, and correspondence with the author.)
Tesar reports that companies had hired expert designers from central Europe to compensate for American inactivity in machine science during the first half of the 20th century but that they no longer do so. He states that machine science never enjoyed a significant portion of research funding even in periods of research expansion; the National Science Foundation supported little basic research in mechanical engineering and mechanics. According to Tesar, the weakness of U.S. mechanical technology is especially damaging currently in the field of high-quality consumer products and in light industry. (Delbert Tesar, "Mission Oriented Research for Light Machinery," Science, vol. 201 (September 8, 1978), pp. 880-87.)
34. Accounting for Slower Growth, chapter 6, provides details of the calculation.
35. See Edward F. Denison, assisted by Jean-Pierre Poullier, Why Growth Rates Differ: Postwar Experience in Nine Western Countries (The Brookings Institution, 1967; hereinafter cited as Why Growth Rates Differ), pp. 145-46, and citations provided there.
36. Both the Ford and Carter administrations have been well aware of these effects and tried to minimize them when legislation permitted. For a brief discussion of some of the steps taken or recommended, see Economic Report of the President, January 1979, pp. 85-91, 94, 130-31, and 162.
37. The costs of regulation of motor vehicles, aside from recalls, do not affect the residual. See citation in note 7.
38. Robert W. Crandall, "Federal Government Initiatives to Reduce the Price Level," in Arthur M. Okun and George L. Perry, eds., Curing Chronic Inflation (The Brookings Institution, 1978), p. 183.
39. Arthur Andersen and Company, Costs of Government Regulation Study for the Business Roundtable (Business Roundtable and Arthur Andersen and Co., 1979). The concept of incremental costs differs from mine in the case of capital costs; capital outlays are counted instead of the sum of depreciation and the net opportunity cost of invested capital.
40. Commission on Federal Paperwork, A Report of the Commission on Federal Paperwork, no. 6: Final Summary Report (GPO, 1977), pp. 5, 66. The estimate, the sum of estimates for small and large firms, is based on small samples. Though crude, it is apparently the best available. Inclusion of an additional $\$ 354$ million estimated to be spent by farms (p.64) would not change the rounded aggregate.
41. A report by Peat, Marwick, Mitchell and Co., commissioned by OMB, indicated that
one-third of the government paperwork burden on small buisinessmen comes from State and local governments. A survey of small Wisconsin foundries found that 21 percent of costs allocable by level of government were for State and local governments and 70 percent for the Federal Government; the amount allocated excludes 34 percent of cost that was for consultants to ensure compliance and not divided by level of government. Efforts to Reduce Federal Paperwork, Hearing before the Subcommittee on Oversight of the Senate Committee on Government Operati ons, 94th Congress, 1st Session [GPO, 1976], pp. 27, 53.
42. This is a rough estimate that I derived from Paperwork and Red Tape: New PerspectivesNew Directions, A Report to the President and the Congress from the Office of Management and Budget (GPO, 1978). The page references in the description that follows refer to that report.
An estimate of 465 million hours as of March 31, 1977, was obtained as the sum of the following components: one-fourth, including farms (p. 15), of 126 million hours (p. 34) to complete forms for departments and agencies subject to OMB review; 95 percent (assumed) of 237 million hours (p. 14) for Internal Revenue Service (IRS) forms W-2 (wage and tax statements for employees), 941 (employers' Federal tax return for employees) and 1099 (recipients of interest and dividends); one-tenth (assumed) of 149 million hours (p. 14) for IRS form 1040 (individual income tax long form); none of 33 million hours ($p .14$) for IRS form 1040A (individual income tax short form); three-fourths (assumed) of 184 million hours (pp. 14, 34) for other forms (including the corporate income tax) that are required by the IRS and other agencies that are exempt from review of forms; and all of 43 million hours (p. 34) for forms for independent regulatory commissions and agencies subject to General Accounting Office review.
Total hours per year required of all respondents fell from 870 million as of January 31, 1977, to 785 million as of March 31, 1978 (p. 34). If hours needed for business reports changed in the same proportion, their number was 530 million as of January 31. 1977,
43. In 1965 the Subcommittee on Census and Government Statistics of the Committee on Post Office and Civil Service of the House of Representatives stated that "the wide disparity between agency estimates for minimum time required to complete a report and respondents ${ }^{\prime}$ estimates for the same report for the most part casts serious doubt on the realism of the agency estimates." Continuing, the subcommittee said that "jt can only conclude that not only are some agencies completely unrealistic concerning the cost to the public of their paperwork undertakings but, also, that-ostrich like-they would prefer not to know such costs." (Committee on Post Office and Civil Service, The Federal Paperwork Jungle: A Report on the Paperwork Requirements Placed Upon Business, Industry, and the Public by the Federal Departments and Agencies, H. Rept. 52, 89th Congress, 1st Session (GPO, 1965), pp. 45-56.) Several instances of verified understatement are cited in Commission on Federal Paperwork, "Study of Federal Paperwork Impact on Small and Large Businesses" (July 1977), pp. 35, 36, 40.
44. Testimony of Robert H. Marik, Associate Director of OMB, in Hearing on HR 16424 to Establish a Commission on Federal Paperwork, Hearing before the House Committee on Government Operations, 93rd Congress, 2d Session (GPO, 1974), pp. 34-36. Marik gave a breakdown by source of the increase of 50 percent that occurred between December 1967 and June 1974 in the reporting burden on American business caused by required forms other than tax forms. Occupational safety and health programs, expanded social ecurity (especially medicare and medicaid), manpower programs, aircraft and airport regulations, and equal opportunity led the list.
45. This fraction is based on the OMB data cited in note 42. Estimates from the Commission on Federal Paperwork, "Study of Federal Paperwork Impact on Small and Large Businesses," imply a smaller fraction, since they show IRS forms to be responsible for 75 percent of the costs to small business (tables 6 and I-3) and apparently much less for large business (p. 46). (Small business costs are about three-fifths of the estimated total.)
46. Paperwork and Red Tape, p. 30.
47. Herbert Kaufman, Red Tape: Its Origins, Uses, and Abuses (The Brookings Institution, 1977), p. 4.
48. Notes from the Joint Economic Committee, vol. 4 (May 16, 1978).
49. Francis A. Allen of the University of Michigan School of Law states that "criminal provisions are routinely included in most pieces of regulatory legislation" and that "there are few, if any, regulatory areas of importance in which the possibility of criminal punishment is lacking.' Regulation by Indictment; The Criminal Law as an Instrument of Economic Control, William K. McInally Memorial Lecture, Graduate School of Business Administration, the University of Michigan (1978), p. 9.
50. The number of proposed and final actions that affected the iron and steel industry and that were published in the Federal Register in a 2-year period (1974 and 1975) came to 19,464. They consisted of 333 proposed new agency regulations, 581 final agency regulations, and 13,160 final amendments to existing regulations. Many of these also affected many or most other industries. The data are from Council on Wage and Price Stability, "Catalog of Federal Regulations Affecting the Iron and Steel Industry," in Commission on Federal Paperwork, "Study of Federal Paperwork Impact on Small and Large Businesses," p. 15.
51. Manufacturers Hanover Trust, Business Report, Autumn 1977, p. 2.
52. McLaughlin rates the regulatory burden second to the tax legislation of 1969 and subsequent years (relating to capital gains taxes and qualified stock options) as a source of productivity slowdown. The quotation is from a letter to the author, dated March 7, 1978.
53. George C. Eads, "Achieving 'Appropriate' Levels of Investment in Technological Change: What Have We Learned'? Relationships Between R. \& D. and Economic Growth/ Productivity.
54. Murray L. Weidenbaum, Government-Mandated Price Increases (American Enterprise Institute for Public Policy Ressarch, 1975), p. 100.
55. Weidenbaum believes there has been not only a spread of regulation but also a lengthening of "regulatory lag" for old types of ragulation. (Murray L. Weidenbaum, The Costs of Government Regulation of Business, A Study Prepared for the Use of the Subcommittee on Economic Growth and Stabilization of the Joint Economic Committee (GPO, 1978), p. 15.)
56. John K. Evans, president of the Hampton Roads Energy Company, planned to build a $\$ 500$ million oil refinery in Hampton Roads. He was unable to obtain any decision concerning a permit (the last he needed) from the Corps of Engineers for more than 3 years after filing an environmental impact statement, and his project was placed in jeopardy because his marine resources and air permits were both about to expire. (Statement submitted to the Energy and

Power Subcommittee of the House Committee on Interstate and Foreign Commerce; letter to the Department of Energy on June 14, 1978, and letter to the author dated June 21, 1978.)
57. See also the section headed "Capital Gains Provisions of the Revenue Act of 1969." 58. See Carol J. Loomis, "A.T.\&T. in the Throes of Equal Employment," Fortune, January 15, 1979, pp. 44-57, for an 6xamination of telephone industry experience under a consent decree.
59. The Annual Report of the Council of Economic Advisers, January 1977, pp. 163-65. Discrimination from the investment tax credit is discussed at greater length in Accounting for Slower Growth, chapter 4.
60. Tax Reductions, Economists Comments on H.R. 8589 and S. 1860, prepared for the House Committed on Ways and Means, 95th Congress, 2d Session (GPO, 1978), p. 85.
61. Colin Clark, "Public Finance and Changes in the Value of Money," Economic Journal, vol. 45 (December 1945), pp. 370-89.
62. Herbert Stein, "Spending and Getting," in William Fellner, ed., Contemporary Economic Problems, 1977 (American Entarprise Institute for Public Policy Research, 1977), p. 74.
The "more recent version" to which Stein refers is that developed by Robert Bacon and Walter Eltis with respect to Great Britain. Eltis applies it to the United States and Canada as well. See Walter Eltis, "Are Canada and the United States Following Great Britain?" New International Politics, vol. 2 (July 1977).
63. Output per hour would be reduced if investment were impaired.
64. Ibid., pp. 74, 77.
65. These are based on national income and product account definitions. Percentages for 1948 and 1973 are from Stein, "Spending and Getting," p. 65. Those for 1976 and 1978 were computed from the SURVEY, vol. 58 (July 1978) and vol. 59 (March 1979).
66. Organization for Economic Cooperation and Development, "Public Expenditure Trends" (February 2, 1978), p. 13.
67. A temporary surtax raised the percentage to 26.875 in 1968 and 27.5 in 1969.
68. Both the old and new laws permitted capital losses to be deducted from capital gains. But only a token amount of capital losses could be deducted against other income (and this small benefit was halved by the 1969 act). Losses exceeding gains in one year could be used to offset gains in a future year. The government paid no interest on a backlog of capital losses waiting to be deducted from the future gains. Since there was no negative income tax, the Government made no payment to a taxpayer whose cumulatad total income (including capital gains and loss3s) was negative. Consequently, the Government is said to share in gains but not in losses.
69. John Cobbs, "The Tax That is Killing Investment," Business Week, January 16, 1978.
70. William F. Ballhaus, "Personal Investment is Necessary for R. \& D. Growth," Industrial Research/Development, April 1978, pp. 84-87.
71. Despite claims during the 1978 tax debate that repeal of capital gains taxes would raise stock values, and hence cut the cost of equity financing, by enormous amounts it really is not clear that capital gains taxation curtails total investment by business in real assets more than other taxes. In a 1978 U.S. Chamber of Commerce survey of businessmen, 48 percent said they would increase investment if capital gains taxes were reduced; 82 percent said they would do so if the investment tax credit were increased, 78 percent if the corporate tax rate were reduced, 78 percent if faster depraciation write-offs were allowed, and 71 percent if the investment tax credit were extended to structures. ("Fear of Recession Grows Stronger," Nation's Business, October 1978, p. 45.)
72. "The Significance of Our Productivity Lag," May 14, 1977.
73. As evidence of "a lessened sense of industriousness on the part of our work force," the speech cited only high and rising absenteeism and an increase in time paid for but not worked. Neither bears directly on effort while at the work place, although they may be indicative of a change in attitudes.
74. Denison, The Sources of Economic Growth, Committee for Economic Development, December 1961, p. 166. For a history of the survival of the work ethic despite changes in the character of work as factories spread, and of the perceived need constantly to denounce laziness and profligacy, see David T. Rodgers, The Work Ethic in Industrial America, 1850-1920 (University of Chicago Press, 1978).
75. "Tax Revolt: The Lady or the Tiger," Public Opinion, vol. 1, (July-August 1978), p. 60. 76. Special Study on Economic Change, Hearings before the Joint Economic Committee, 95th Congress, 2d Session (GPO 1978), pt. 2, p. 535.
77. Accounting for Growth, p. 79.
78. Ibid.
79. F. Stafford and G. Duncan, "The Use of Time and Technology by Households in the United States," (July 1977), table 4. A much larger decline was reported for married women. 80. Why Growth Rates Differ, pp. 112-14.
81. I briefly discussed effort and incentives in the context of economic growth in The Sources of Economic Growth, pp. 166-69, and Why Growth Rates Differ, pp. 112-14. The literature on the general topic of influences affecting work effort is limitless. It has apparently burgeoned in the past decade as "quality of working life" has become a popular catch phrase and as the relationship between work satisfaction and productivity has received renewed interest. Two studies of interest, both of which summarize broad experience, are Raymond A. Katzell and Daniel Yankelovich, with others, Work, Productivity, and Job Satisfaction (Psychological Corporation, January 1975); and Swedish Employers' Confederation, Job Reform in Sweden (Stockholm: Grofisk Reproduktion, 1975). Whatever the relationship, work satisfaction seems not to have changed. Bernard J. White reported that "survey results over the last forty years have been remarkably consistent in finding that from 80% to 90% of working people report moderate to high satisfaction with their jobs. Only 10% to 20% report actual dissatisfaction." ("Does Bureaucracy Deserve Its Bad Reputation?" Dividend, the Magazine of the Graduate School of Business Administration, University of Michigan, Winter 1977, p. 8.)
82. For example, Robert C. Turner of Indiana University, a former member of the President's Council of Economic Advisers, considers inflation "the most serious economic threat to economic expansion in the United States" because it reduces investment incentives and may reduce the propensity of individuals to save. (Committee on Ways and Means, Tax Reductions-Economists Comments, p. 97.) George Terborgh, a leading expert on the investment process, stresses the adverse effect that inflation exerts on business earnings after tax because business, in his opinion, does not usually base prices on replacement costs and be-
cause of its effects on tax liabilities. (George Terborgh, Corporate Earning Power in the Seventies: A Disaster [Machinery and Allied Products Institute, August 1977]). Arthur M. Okun says "the gap (created by inflation) between actual, historical costs of old plant and equipment and current or predicted costs of new facilities creates agonies in capital budgeting and weakens investment." (Arthur M. Okun, "The Great Stagflation Swamp," address to the Economics Club of Chicago, October 6, 1977.)
83. Arthur M. Okun. "Inflation: Its Mechanics and Welfare Costs," Brookings Papers on Economic Activity, 1975:2, pp. 351-401.
84. Bank for International Settlements, 47 th Annual Report (Basle, Switzerland: June 13, 1977), p. 48.
85. Arthur M. Okun and George L. Perry, "Editors' Summary," Brookings Papers on Economic Activity', 1975:2, p. 252.
86. For an extended discussion, see Henry J. Aaron, ed., Inflation and the Income Tax (The Brookings Institution, 1976).
87. Milton Friedman, "Nobel Lecture: Inflation and Unemployment," Journal of Political Economy, vol. 85 (June 1977), p. 466.
88. Ibid, pp. 466-67.
89. Why Growth Rates Differ, pp. 289-95; and Edward F. Denison and William K. Chung. How Japan's Economy Grew So Fast: The Sources of Postwar Expansion (The Brookings Institution, 1976), pp. 110-11.
90. Why Growth Rates Differ, p. 292.
91. Eleanor M. Hadley, Anti-Trust in Japan (Princeton University Press, 1970), pp. 438, 442.
92. The Sources of Economic Growth, pp. 193-95.
93. Data are from the forthcoming revised edition of F. M. Scherer, Industrial Market Structure and Economic Performance, first published by the Rand Corporation in 1971. The first text table excludes newspapers and ordnance, and the second also excludes the numerous industries for which data conforming to constant definitions were not available.
94. Peter O. Steiner, Mergers, Motives, Effects, Policies (University of Michigan Press, 1975), pp, 320-22. Federal Trade Commission data for mergers are summarized in Bureau of the Census, Statistical Abstract of the United States 1978 (GPO, 1978), p. 580, and preceding issues of the Abstract. After an extended period of low activity, conglomerate mergers again increased in the last half of the 1970's.
95. Burton H. Klein, Dynamic Economics (Harvard University Press, 1977). The quotations that follow are from pp. 182-83.
96. I am reminded that Erik Lundberg, the Swedish economist, ascribed this role to engineers, though only those above 40 years of age. In recent years Lundberg, describing Sweden, has written about a tendency for business to select "managers that correspond to a soft type-not strong in maximizing profits and enforcing efficiency-but good at dealing with trade unions, caring for stable employment and not least in getting money (soft loans and subsidies) from Government." (Letter from Lundberg to author, February 26, 1979.)
97. Alfred Rappaport, "Executive Incentives vs Corporate Growth," Harvard Business Review, vol. 56 (July-August 1978), pp. 81-88.
98. This was observed in the Economic Report of the President, January 1977, p. 55.
99. As explained in Accounting for Slower Growth, chapter 2, this is because imports and exports are deflated separately.
100. The high price of energy and government controls presumably forced some existing capital out of use. In the absence of information about this, no reduction was made in the Bureau of Economic Analysis (BEA) capital stock series so, if this happened, the effect was to reduce growth of the residual rather than of capital input.
101. "Energy inputs represent only approximately 5 percent of total factor costs." Roger Brinner, Technology, Labor, and Economic Potential (Data Resources, Inc., 1978), p. 74.
102. It estimated primary energy use at 70 quads (a quad is 10^{15} British thermal units) and the average price of energy at $\$ 1.00$ per million BTU. (Nuclear Power Issues and Choices, Report of the Nuclear Energy Policy Study Group sponsored by the Ford Foundation [Ballinger, 1977], p. 49.) The Bureau of Mines and the Energy Information Administration put the average price of domestically produced mineral fuels at 85.4 cents per million BTU. (Department of Energy, Energy Information Administration, Annual Report to Congress, vol. 3: Statistics and Trends of Energy Supply, Demand, and Prices [GPO, 1978], p. 19.) Inclusion of imported fuel and hydro and nuclear power and exclusion of exports would probably bring this figure to $\$ 1.00$.
103. "The Energy Connection," Resources, no. 53 (Fall 1976), p. 5.
104. See also citations givẹn in notes 110 and 111 to articles by Ridker, Watson, and Shapanko of Resources for the Future and by Hogan and Manne of Stanford University, which give 4 or 5 percent as the energy share.
105. See Jack Alterman, The Energy/Real Gross Domestic Product Ratio: An Analysis of Changes During the 1966-1970 Period in Relation to Long-Run Trends, BEA. Staff Paper- 30 (BEA, October 1977). See also Sam H. Schurr, "Energy, Economic Growth, and Human Welfare," EPRI Journal, May 1978, pp. 14-18.
106. Noteworthy is the absence of any such series in Department of Energy, Energy Information Administration, Annual Report to Congress, 1978.
107. George L. Perry, "Potential Output: Recent Issues and Present Trends," in Center for the Study of American Business, U.S. Productive Capacity: Estimating the Utilization Gap, Working Paper 23 (1977), pp. 6-13 (Also, Reprint 336 of The Brookings Institution).
108. His reason for averaging relative prices before and after the increase is the same as mine for averaging share weights at the beginning and end of a period when I compute the percentage change in total factor output.
109. Perry, "Potential Output," pp. 11-12.
110. "Economic, Energy, and Environmental Consequences of Alternative Energy Regimes, An Application of the RFF/SEAS Modeling System," in Charles J. Hitch, ed., Modeling Energy-Economy Interactions: Five Approaches (Resources for the Future, 1977).
111. "Energy-Economy Interactions: The Fable of the Elephant and the Rabbit?" in Hitch, Modeling Energy-Economy Interactions, p. 248.
112. Economic Report of the President, January 1979, p. 71.
113. Robert H. Rasche and John A. Tatom, "The Effects of the New Energy Regime on Economic Capacity, Production, and Prices", Federal Reserve Bank of St. Louis Review,
vol. 59 (May 1977), pp. 2-12; and idem., "Energy Resources and Potential GNP," Federal Reserve Bank of St. Louis Review, vol. 59 (June 1977), pp. 10-24. The range cited is from the introduction to the first article. Slightly different results based on different periods and data are provided elsewhere in these articles.
In the same articles Rasche and Tatom present a potential output series. To avoid misunderstanding, I stress that my disagreement with them is not over their conclusion that growth of potential output was sharply curtailed after 1973, but with their attribution of the change to the higher price of oil.
114. The particular use made of the estimate by Rasche and Tatom is in an analysis of manufacturing, but the manufacturing results are applied to the whole economy.
115. An interesting feature of the Rasche-Tatom analytical framework is that the output reduction is the result of a change-not of an increase-in the relative price of oil. A decrease in the price of oil would have had the same effect. A change in the relative prices of labor and capital, in either direction, also reduces output in this framework, as the authors clearly realize, since they calculate the cost of such a change. All this is rather baffling because the authors do not have in mind temporary costs of adjustment. On the contrary, they insist that the impact of the oil price increase on the American economy is "profound and permanent." Given that any change in either direction reduces output, one might expect that productivity would drop again if the price of oil were now to fall, but in another puzzling sentence the authors state that the only way potential output could be restored is for the relative price of oil to return to its old level, a statement that in another context would seem entirely reasonable.
116. Edward A. Fudson and Dale W. Jorgenson, "Energy Prices and the U.S. Economy, 1972-1976," Data Resources U.S. Review (September 1978), pp. 1.24-1.37.
117. Quotations appear in ibid., p. 1.25 .
118. In the Hudson-Jorgenson calculations, the 3.2-percent drop in GNP would in itself cause a proportional 3.2-percent drop in the demand for and use of "capital services," and therefore a 3.2-percent drop in capital stock. The drop in capital services from this cause is valued at $\$ 15.5$ billion. However, the higher energy price induces changes in the composition of demand and substitutions among labor, capital, and energy that provide a small offiset, reducing the drop in capital services to $\$ 14.5$ billion. Hence the percentage drop in capital services and capital stock was 3.2 percent $\times 14.5 \div 15.5$, or 3.0 percent.
119. The calculation is $(0.72 \times 0.54) \div(0.28 \times 3)=1.23$. If the percentage reduction in capital refers only to fixed residential and nonresidential capital, which seems likely, the reduction in total factor input in the economy as a whole is less.
120. Edward F. Denison, "The Shift to Services and the Rate of Productivity Change," Survey, (vol. 53, October 1973), pp. 20-35.
121. Jerome A. Mark, "Productivity Trends and Prospects," Special Study on Economic Change, Hearings before the Joint Economic Committee, 95th Congress, 2d Session (GOP, 1978), pt. 2, p. 485.
122. Ibid., p. 34. The reasoning applies equally to a comparison of two past periods.
123. Ibid. "Both (W. E. G.) Salter and (John) Kendrick found that industries that reduced factor input per unit of output most also reduced materials input per unit of output most. This is important in explaining the finding, because factor inputs are only part of the total costs of an industry and a given percentage reduction in factor input costs alone would yield a much smaller percentage reduction in price."
124. Denison, "The Shift to Services," p. 34. In the same article I explain why it is a mistake to suppose that within nonresidential business the accuracy of series for commodity-producing industries is greater than that for service-producing industries.
125. The inventory valuation adjustment is the difference between (1) the change in the physical volume of inventories valued in prices of the current period and (2) the change in the value of inventories reported by business.
126. A discussion of other potential biases in prices series used in deflation that might have caused overstatement of the decline in real output in 1974-75 is found in the appendix to

Victor Zarnowitz and Geoffrey H. Moore, "The Recession and Recovery of 1973-1976," Explorations in Economic Research, Occasional Papers of the National Bureau of Economic Research, vol. 4 (Fall 1977), pp. 471-557. To affect the 1973-76 movement of the residual, such a bias would have to affect the output series differently than in previous cyclical swings (otherwise it would be picked up in the series for intensity of utilization) and, to have an appreciable effect, would also have to affect price movements in the downswing without being offset in the recovery. None of the suggestions offered seem likely to qualify.
127. The GNP series includes all "goods" components, personal consumption expenditures for electricity and gas, and 40 percent of structures, minus gross farm product and margins on the sale of used cars.
128. The relative position of the intervening years differs substantially, with industrial production showing 1974 higher and 1975 lower relative to 1973 and 1976 than does the GNP series. 129. See Accounting for Growth, pp. 164-65.
130. The depth of the 1974-75 recession dropped my index for intensity of utilization due to fluctuations in demand below the previons range of experience (in the period for which it has been calculated). If its drop was underestimated, this would cause the residual to be underestimated in those years. But if that were the cause of the 1974-75 drop, it should have been followed by an exceptually strong advance in the recovery period, which did not happen.
131. Edward F. Renshaw used the same body of data to reach a similar conclusion in "A Note on the Aggregate Learning Curve for the U.S. Economy and the Persistent Gap Between Actual and Potential GNP" (1978).
132. Government and government enterprises; finance, insurance, and real estate; and private households are excluded because the data have no independent meaning and are chiefly outside nonresidential business. Nonprofit institutions were not eliminated, and this accounts for the low 1948-73 growth rate in services.
133. By dividing the postwar period at 1967 instead of 1973 and comparing 1950-67 with 1967-77, the Council on Wage and Prlee Stability concluded from the same data source that a reduction in the growth rate of productivity did not occur in manufacturing, but was confined to construction and most of the service divisions. (Council on Wage and Price Stability, Executive Office of the President News, October 4, 1978.) Even if one were concerned with longer periods such as those the Council examined, the Council's conclusion would be questionable because the result was entirely dependent on the exact choice of periods. If the Councll had divided the period at 1965, 1966, or 1968 instead of 1967 , it would have obtained a decline in the growth rate of manufacturing productivity, and the declines would have been larger if the period had begun in 1948 instead of 1950. To illustrate with an extreme case, the growth rate of output per hour in manufacturing dropped by 0.74 percentage points from 1948-65 to 1965-77 according to the series the Council used.
Jerome Mark has shown that the decline in the rate of growth of output per hour from 194766 to 1966-76 was general among 62 detailed industries for which the Bureau of Labor Statistics published series. Forty-six had lower growth rates of output per hour in 1966-76 than in 194766, one had the same rate, and 15 had higher rates. (Mark, "Productivity Trends and Prospects," p. 484.) An unpublished compilation provided by Mark in February 1979 also shows that 53 of 74 industries had lower growth rates from 1973 to 1977 (or 1976 if 1977 was not available) than from 1947 (or the earliest subsequent date for which the series was available) to 1973. The proportion was the same, three-fourths, in manufacturing and nonmanufacturing industries.
134. My study for eight Western European countries ended with 1962 (Why Growth Rates Differ), that for Canada by Dorothy Walters with 1967 (Canadian Growth Revisited, 1950-67, Staff Study 28 [Economic Council of Canada, 1970]), and that for Japan by William Chung and me with 1971 (How Japan's Economy Grew So Fast).
135. The adjustment for intensity of utilization is likely to be very difficult in several countries because it has become increasingly difficult or expensive to lay off unneeded workers. A decline in demand is likely to be matched to a lesser extent by a drop in input and to a greater extent by a drop in output per unit of input than was formerly the case or is now the case in the United States.

State Dififerences in Per Capita Personal Income Growth in the Seventies

IN the seventies, State differences in per capita personal income narrowed, as they have in every decade since 1930. From 1969 to 1978, per capita personal income increased at a rate that was 15 percentage points slower in the highincome States than in the low-income States. ${ }^{1}$ In the high-income States (which include the District of Columbia), per capita personal income relative to the national average declined from 114 to 112 percent, while in the lowincome States, it increased from 86 to 91 percent. The sharply reduced disparity among States in per capita personal income during the seventies reflected the surge in industrial growth of the South and West relative to the Northeast-Great Lakes manufacturing belt. Charts 2 and 3 show State per capita personal incomes for 1969 and 1978, respectively.

Among the 14 high-income States, 11-including 9 States in the NortheastGreat Lakes manufacturing belt-had below-average increases in per capita income, or, as in Michigan, an average increase (table 1). In the nine manu-facturing-belt States, per capita income relative to the national average declined substantially-from 114 to 108 percent. The largest declines were in New York and Connecticut. Each of the nine had below-average increases in

1. The timespan is from the national cyclical peak year nearest 1970 to the most recent year for which State per capita personal income estimates are available. States are divided into high-income and low-income groups based on per capita personal income relative to the national average in 1969 (see table 1).

Table 1.-Per Capita Personal Income, 1969-78

both components of the per capita income quotient-personal income and population. Manufacturing employment declined, and employment growth in other industries with relatively high earnings per worker slowed.

Three high-income States and the District of Columbia had above-average increases in per capita income. Alaska, Nevada, and Washington had aboveaverage increases in both personal income and population; employment growth was strong in construction, services, and manufacturing. The District of Columbia had a below-average increase in total personal income but a more than offsetting decline in population.
Among the 36 low-income States, 31 -including all of the States in the Southeast, Southwest, Rocky Moun-
tain, and Plains regions-had aboveaverage increases in per capita income or, as in Indiana and Missouri, an average increase. All of the Southwest, Rocky Mountain, and Southeast States except West Virginia had above-average increases in both personal income and population. Employment increased rapidly in construction, coal mining, and manufacturing, where earnings per worker are relatively high. Moreover, rapid increases in property incomespecifically, in the imputed rental income on owner-occupied dwellingsreflected the large increases in both the number of housing units and their values in the fast-growing population centers of the South and West. All of the Plains States except Missouri had above-average increases in personal income and below-average increases in
population. Continued technological change in agriculture increased income per worker in the Plains and reduced agricultural employment; this reduction was only partially offset by an increase in nonagricultural employment, and net population outmigration ensued.

Five low-income States-including four in New England-had belowaverage increases in per capita income. Reflecting the migration of workers from central and southern New England to northern New England, New Hampshire, Vermont, and Maine had unusually large increases in population. Relative to the U.S., the growth of population outpaced the growth of personal income, thereby dampening the growth of per capita income in these three northern New England States.

Table 1.-Total Personal Income,

State Personal Income, 1958-78

AANNUAL estimates of State personal income are presented in this article on a consistent basis for the 21year period 1958-78. Revised 1978 estimates and estimates for 1958-70 that incorporate the 1976 national benchmark revisions are presented for the first time. Previously State estimates incorporating the benchmark revisions were available only back to 1971. Estimates for 1973-77 which had been presented previously, are revised. A discussion of the State benchmark revisions appears in the August 1977 Survey of Current Business, and discussion of the benchmark revisions of the national income and product accounts appears in Part I of the January 1976 Survey.

Personal income is the current income received by residents of an area from all sources. It is measured after deduction of personal contributions for social security, government retirement, and other social insurance programs but before deduction of income and other personal taxes. It includes income received from business, governments (Federal, State, local and foreign), private households, and institutions. It consists of wage and salary disbursements, various types of supplementary earnings termed "other labor income," proprietors' income, rental income of persons, dividends, personal interest income, and government and business transfer payments. Per capita personal income is the total personal income of residents divided by the resident population.

The definitions underlying the State series are, for the most part, the same as those underlying the personal income series in the national income and product accounts. The major difference is in the treatment of U.S. citizens temporarily working on assignment abroad. The national series includes not only Federal personnel-civilian and mili-tary-stationed abroad but also-since the 1976 benchmark revisions-U.S. residents employed by private U.S. firms on temporary foreign assignment. The State series includes only persons working and/or residing in the 50 States and the District of Columbia.

Tables 1 and 2 present the estimates of total and per capita personal income, respectively, for the United States, regions, States, and the District of Columbia on a consistent basis, for the entire period 1958-78. In these tables the income flows are assigned to the State in which the individual receiving the income resides.

Table 3 presents estimates of persnnal income by type and labor and proprietors' income by industry, for the United States, regions, States, and the District of Columbia, for the years 1958, 1963, 1968, 1973, 1976, 1977, and 1978. (Estimates for the years not shown are available from the Regional Economic Measurement Division, Bureau of Economic Analysis, Washington, D.C. 20230.) Table 3 also shows the derivation of personal income by place of residence. The estimates of labor and proprietors' income are reported by industry at the point of
[Millions

Line	State and region	1958	1959	1960
1	United States ${ }^{\text {. . - }}$	356, 939	380, 014	396,086
2	New England	22,927	24, 482	25,481
3	Connecticut.	6,493	6,945	7,219
4	Maine.-.	1,631	1,701	
5	Massachusetts --....-	11, 284	12, 071	12,563
7	New Hampshire.... Rhode Island.	1,148	1,246	1,315 1,869
8	Rhode island.....---	1,735	1,832	1,869
9	Mideast	88,735	93,998	97, 962
10	Delaware	1,124	1,173	1,228
11	District of Columbia-	2,017	2,081	2,159
12	Maryland.---	6,495	6,878	7,221
13	New Jersey-	14, 553	15,655	16,477
14	New York.	41, 130	43, 632	45, 515
15	Pennsylvania	23,416	24,579	25, 361
16	Great Lakes	77,632	82,811	85,891
17	Illinois..	24,077	25,592	26,387
18	Indiana.	8,989	9,570 1750	10,046
19	Michigan	16, 230	17,520	${ }^{18,2} 225$
20	Ohio.	20,346	21,770	22,602
21	Wisconsin	7,700	8,359	8, 631
22	Plains.	28,869	29,652	31, 182
23	Iowa-	5,098	5,233	5,403
$\stackrel{24}{ }$	Kansas.-	4,327	4,384	4,550
25 26	Missouri	6,410 8,300	6,653 8,776	9,045
27	Nebraska	2,637	2,664	2,846
28	North Dak	1,027	956	1,066
29	South Dako	1,070	986	1,200
30	Southeast.	56,863	60,862	63, 133
31	Alabama	4,502	4,741	4,945
32	Arkansas			${ }_{9}^{4,430}$
${ }_{34}^{33}$	Georgia	5,819	6,214	6,504
35	Kentucky	4,412	4,642	4,794
${ }^{36}$	Louisiana	5,044	5, 276	5,377
37	Mississippi	2,343	2,571	$\stackrel{2}{2}, 610$
38	North Carolina	6,367	$\stackrel{6,822}{3169}$, ${ }^{2} 2313$
$\begin{array}{r}39 \\ 40 \\ \hline\end{array}$	South Carol		5,477 169	5,634
41	Virginia--	6,804	7,254	7,509
42	West Virgin	2,813	2,906	2,949
43	Southwest	24,551	26,001	26,914
	Arizona	2,174		
45	New Mexic	1,567	1,684	1,731
46 47	Oklahoma	3,952 16,858	4,116 17,794	48,227
48	Rocky Mounta	8,105	8,541	9,027
	Colorado	3,464	3,721	3,974
50	Idaho.--	1,130	1,186	1,215
51	Montana	1, 1,535	1,645	1,347
53	W yoming	1, 535	1,695	732
54	Far West	47,606	51,845	54,441
	California	37, 325	40, 844	43, 020
56 57	Nevads	675 $\mathbf{3}, 488$	$\begin{array}{r}781 \\ 3 \\ \hline 771\end{array}$	$\begin{array}{r}812 \\ 3.888 \\ \hline\end{array}$
$\stackrel{58}{58}$	Washingtor	6,119	6,489	6,720
$\begin{aligned} & 59 \\ & 60 \end{aligned}$	Alaska			628
	Hawaii.	1,145	1,280	1,429
	Addenda			
61	New England	22,927	24,482	25,481
62	Middle Atlantic.	79, 099	${ }_{88}^{83} 886$	87,354
63	East North Central.--	77,632	${ }_{29,652}^{82,811}$	${ }_{31,182}$
64	West North Central.--	42,877	$\stackrel{45,893}{29}$	47,951
${ }_{6}^{66}$	East South Central...	16,374	17,431	17,983
	West South Central-	28, 518	29,580	130,357
	Mountain.	12,521	${ }_{5}^{13,373}$	-14, 204
69	Pacific.	48, 583	-2, 20	55,685

by States and Regions, Revised 1958-78

1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	Line
411, 301	436,894	459,075	491, 341	532, 022	579, 158	620,020	677,786	738, 233	793, 485	851, 952	935, 463	1, 045, 303	1, 147, 257	1,248, 631	1,374, 265	1,523,631	1,708,545	
26,620	28,169	29,404	31,381	33,725	36,790	39,768	43,255	46,870	50,419	53,079	57,478	62,806	68,453	73,477	80,067	87,613	96,820	
7,602	8,095	8,537	9,147	9,860	10,860	11,867	12,866	13,926	14,802	15,344	16, 496	18,088	19,716	21,066	22, 763	25,041	27,612	
1,803	1,872	1,931	2,080	2,251	2,419	2,541	2,729	2, 971	3,240	3,435	3,746	4, 216	4,717	5, ${ }^{\text {5, }} \mathbf{3 1 8}$	5,739 38	6,208	6,867	
13,138	13,865	14, 420	15,337	16, 403	17,750	19, 110	20,851	22,596	24,392	25, 778	27, 882	30, 204	32, 860	35, 319	38, 185	41,621	45,751	
1,379 1,948	1,472	1,530 2,174	1,639 $\mathbf{2 , 3 1 1}$	1,770 2,484	1,961 2,705	2,127 2,931	2,342 3,166	2,559 3,396	2,760 3,687	2,948 3,930	3,261 4,291	3,688 4,626	4,061 4,956	4,417 5,313	4,995 5,805	5,626 6,312	6,409 6,984	
750	785	813	867	, 957	1,095	1,192	1, 302	1,422	1,539	1,645	1,802	1,983	2,144	2,324	2,579	2,805	3,197	
101, 414	106,959	111,641	119, 260	127,708	137,704	147, 283	160,474	173,001	186,413	198,756	214, 103	231,771	252, 661	272,216	293, 056	316,503	347, 485	
1,260	1,332	1,428	1,542	1,706	1,818	1,932	2,113	2,305	2,459	2,652	2,899	3,239	3,507	3,808	4, 131	4,453	4,972	10
2,239	2,337	2,443	2,557	2,697	2,838	2,947	3,161	3,301	3,506	3,805	4,116	4,364	4,734	5,189	5, 628	6,140	6,684	11
7,652	8,259	8,841	9,640	10,560	11,651	12,650	13,993	15,420	16,805	18, 181	20,071	22, 239	24,307	26,383	29, 117	31, 536	34, 646	12
17, 250	18,502	19,415	20,782	22, 400	24, 269	26,107	28,536	30,930	33,680	36,181	39,029	42, 532	46, 225	49,762	53,625	58, 121	64, 231	13
47, 272	49,762	51, 741	55, 113	58,563	62,811	67, 027	73, 195	78, 353	84, 144	89,452	95, 097	101, 440	109, 982	117,904	124, 975	133, 714	145, 963	14
25, 741	26,768	27, 772	29,626	31, 782	34,317	36,619	39,476	42,692	45,819	48,485	52, 892	57, 958	63, 904	69, 171	75, 579	82, 540	90,939	15
87,523	92,742	97, 131	104,396	114,417	124,838	131,608	143, 120	155, 222	163, 276	175, 207	190,831	213,380	231, 050	247, 678	273,283	304, 189	339, 119	10
27, 283	28,787	29,951	32,006	34, 820	37,906	40, 256	43, 123	46,579	49,462	53, 030	56,928	63,562	69, 376	75,400	81,827	90, 340	100,091	17
10, 304	11, 024	11, 588	12,369	13, 717	14, 893	15, 665	16,981	18,572	19,299	20, 829	22, 784	26, 158	27, 776	29,816	33, 180	36, 949	41,412	18
18,169	19,450	20,770	22,768	25,386	27, 723	29,046	32, 097	34,803	35, 955	39, 191	43, 432	48,467	51,850	54,737	61,645	69,480	77,943	19
22,898	24, 115	25, 121	26,809	29, 126	31, 881	33, 503	36, 775	39,905	42,133	44,552	48,434	53,614	58, 380	61,955	68,527	75,959	84, 432	20
8,870	9,366	9, 702	10,444	11,368	12,435	13, 137	14, 142	15, 363	16,427	17,606	19,253	21, 579	23, 667	25,771	28, 104	31, 461	35, 241	21
32, 214	34,371	35,839	37,429	41,376	44,714	47,205	50,967	55, 504	59,788	63,877	70,817	83, 754	87,774	95,502	101, 937	114,288	130,194	2
5,663	5,924	6,295	6,615	7,441	8, 118	8,349	8, 822	9,653	10,306	10,774	12,059	14,839	15, 226	16, 898	17,597	19,859	23,170	23
4,747	4,964	5,112	5,395	5,805	6,282	6,630	7,152	7,758	8,374	9,044	10, 092	11,685	12,477	13,577	14,814	16,333	18,505	2
7,386	7,798	8,256	8,581	9, 494	10,319	11,085	12,150	13, 358	14,571	15, 415	16, 870	19,882	21, 178	22,686	24, 603	28, 214	31,703	2
9, 295	9, 791	10,293	10,877	11,870	12, 758	13,608	14,850	15,860	17,119	18, 363	19,873	22, 261	23, 905	26, 098	28, 363	31, 658	35,538	26
2,913	3,159	3,265	3,364	3,761	4,040	4,238	4,528	5,112	5,442	5, 864	6,638	7,834	8,009	9,087	9,396	10,374	11,868	27
995	1,353	1,280	1,277	1,508	1,553	1, 592	1,645	1,830	1,904	2, 158	2,676	3,875	3, 740	3,755	3, 728	3,828	4, 677	28
1,213	1,381	1,337	1,321	1,498	1,645	1,703	1,820	1,933	2,072	2,259	2,610	3,378	3,240	3,401	3,436	4,022	4,733	29
66, 220	70,623	75,329	81,410	88,826	97,924	106, 281	117,438	129,513	141, 055	154,489	174, 173	198, 045	220,801	239,863	267, 115	296,936	334,155	30
5,084	5,349	5,704	6,199	6,764	7,315	7,765	8,485	9, 272	9,978	10,891	12,081	13,596	15, 141	16, 753	18,837	20,906	23,540	31
2,628	2,810	2,989	3,250	3,470	3,886	4,137	4,525	4,914	5,387	5,879	6, 611	7,770	8,836	9, 552	10,468	11, 779	13,047	32
10, 333	11, 132	11, 937	13, 047	14, 340	15, 837	17,575	19,997	22, 824	25,317	28,340	32,964	38,661	43,256	46,632	50,903	56, 963	65, 084	33
6,760	7,256	7,874	8,531	9,429	10, 448	11,343	12,624	14, 092	15,198	16,617	18, 764	21, 218	23, 180	24,798	27, 492	30, 535	34, 087	34
5,075	5,375	5,646	5,918	6,428	7,042	7, 621	8,359	9, 170	9,937	10,744	11, 891	13, 396	15, 174	16,537	18,536	20,656	23,114	35
5,573	5,871	6,274	6,739	7,362	8, 198	8,957	9, 764	10,275	11,034	11,914	13, 040	14,515	16, 4.51	18, 297	20, 927	23,537	26,638	36
2,805	2,946	3,237	3,372	3, 679	4,033	4,360	4, 763	5,167	5,657	6,215	7,057	7,995	8,816	9, 460	10,716	11,994	13,290	37
7,603	8, 173	8,617	9,350	10, 151	11, 350	12, 277	13, 537	15,061	16,317	17, 709	19,965	22,633	24, 865	26, 899	29, 884	32, 691	36,671	38
3,489	3, 752	3,975	4,287	4,737	5,338	5,775	6,415	7,062	7,668	8,382	9,452	10,775	12, 229	13, 133	14, 732	16,267	18,346	39
5,940	6, 300	6,688	7,196	7,872	8,727	9,361	10,314	11, 210	12, 121	13, 283	14,968	16, 908	18,737	20, 124	22,626	25, 212	28,527 39,492	40
7,950	8,561	9, 152	10,070	10,897	11,822	12,902	14, 199	15, 689	17,135	18, 737	20,941	23, 514	26,212	28,738	31,954	35, 277	39, 4192	41
2,978	3,099	3,235	3,451	3,697	3,928	4,207	4,456	4,777	5,307	5,778	6,439	7,064	7,903	8,939	10,039	11, 120	12,318	
28,283	29,783	31, 125	33,375	36,020	39, 267	42,904	47,528	52,556	57,587	62, 209	69,610	79, 188	89,319	99,934	113,116	128, 187	146,478	
2, 842	3,074	3,237	3,459	3,693	4, 051	4,433	5,016	5,751	6, 488	7,389	8,546	9,863	11, 071	11,865	13, 220	14,871	17,352	
1,803	1,882	1,945	2,057	2,196	2,322	2, 410	2,611	2,851	3, 116	3,434	3,857	4,341	4,840	5, 532	6,233	7,014	$\begin{array}{r}7,969 \\ \hline 2056\end{array}$	
4,466	4,665	4,837	5, 188	5,612	6, 042	6,596	7,139	7.784	8,574	9,122	10, 113	11, 446	12,832	14, 206	15,902	18,0.56	20,556 100,601	4
19,172	20, 162	21, 106	22, 671	24,525	26,853	29,465	32, 762	36, 171	39,410	42,264	47,094	53,533	60,575	68,331	77, 760	88,247	100,601	
9,536	10,244	10,080	11,021	11,858	12,644	13,446	14,628	16, 124	17,832	19,591	22, 333	25,795	28,817	31,714	35, 189	39,421	45,343	
4, 268	4,482	4,702	4,956	5,307	5,733	6, 182	6, 884	7,648	8,537	9,522	10,829	12,448	13,832	15, 264	16,836	18,890	21,645	
1,282	1,369	1,397	1,437	1,634	1,673	1,775	1,888	2,115	2,326	2,526	2,929	3,459	4, 004	4, 233	4,797	5,305	6,156	5
1, 346	1,568	1,558	1,581	1, 704	1,840	1, 899	2,002	2,175	2,367	2,486	2,885	3,422	3,670	4, 418	4, 289	4,665	5,299	
1, 873	2,031	2,112	2,214	2,345	2,501	2,634	2,827	3,065	3, 377	3,747	4,185	4,710	5,262	5,897	6,620	7,487	8,585 3,658	
767	794	812	832	867	897	957	1,028	1,121	1,226	1,309	1,506	1,756	2,049	2,302	2,647	3,074	3,658	
57,335	61,724	65,596	70,417	75, 202	82, 112	88,068	96,549	105, 100	112,195	119,429	130, 310	143, 973	160,776	178,978	200, 104	225, 430	257, 072	
45,379	48,802	52, 111	56, 171	59,855	64,913	69,540	76,114	82, 828	88,554	94, 206	102, 539	112, 641	125,579	139, 472	155, 626	175, 155	199, 010	
896	1,077	1,211	1,309	1,409	1,492	1,581	1, 785	2, 041	2,261	2,476	2, 769	3,157	3,481	3,917	4,483	5,232	6, 229	
4,019	4, 265	4,499	4,831	5,207	5,723	6,045	6,587	7, 169	7,722	8,430	9, 467	10,689	11,977	13, 166	14,938	17,201	19,775	
7,041	7,581	7,776	8,107	8,731	9,984	10,902	12,063	13,062	13, 658	14,317	15,534	17,485	19,739	22, 422	25, 0.57	27,842	32,058	
623 1,532	651 1,626	708 1,723	794 1,857	857 2,033	926 2,237	1,016 2,441	1,110 2,717	1,245 3,099	1,412 3,509	1,557 3,758	1,698 4,110	2,002 4,590	2,437 5,170	3,528 5,742	4,195 6,203	4,315 6,749	4,415 7,465	
									y census	gions								
26, 620	28,169	29, 404	31,381	33, 725	36,790	39, 768	43, 255	46,870	50,419	53, 079	57,478	62,806	68, 453	73,477	80,067	87,613	96,820	
90, 262	95, 032	98,928	105,521	112, ${ }^{4} 45$	121,397	129,753	141, 208	151, 975	163, 643	174, 119	187, 018	201, 929	220, 111	236, 836	254, 180	274, 375	301, 183	
87,523	92, 742	97, 131	104,396	114, 417	124, 838	131, 608	143, 120	155, 222	163, 276	175, 207	190, 831	213, 380	231, 050	247, 678	273, 283	304, 189	339, 119	
32, 214	34,371	35, 839	37,429	41, 376	44, 714	47, 205	50,967	55, 504	59,788	63,877	70,817	83, 754	87, 774	95, 502	101, 937	114, 288	130. 194	
50,265	53,900	57, 03	62,476	68, 213	75, 030	81, 610	90, 494	100,530	109,712	120, 200	135, 611	153, 705	170, 195	184,520	203, 882	224, 981	252, 300	
18,905	19,969	21, 275	22, 685	24,743	27,117	29, 107	31, 920	34, 820	37, 692	41, 133	45, 997	51, 896	57, 868	62,875	70, 715	78, 768	88, 472	
31,840	33, 509	35, 206	37,848	40,970	44,979	49, 155	54, 192	59, 143	64,405	69,179	76, 858	87,265	98, 695	110,386	125,057	141, 618	160, 842	
15,077	16, 277	16,973	17,846	19,150	20,509	21,870	24, 040	26, 767	29, 696	32,889	37, 505	43, 161	48, 209	53, 027	59, 125	66,537	76, 893	
58,594	62,925	66, 816	71, 760	76,683	83,783	89, 944	98,591	107, 402	114,854	122, 268	133,349	147, 408	164, 902	184, 331	206, 019	231, 262	262, 723	

[^1] adjustments were required to insure appropriate subnational distributions of personal in

Table 2.-Per Capita Personal Income, by States and Regions, Revised 1958-78
[Dollars]

Line	State and Region	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973
1	United States.	2,050	2,145	2,201	2,248	2,353	2,436	2,572	2,750	2,963	3,142	3,401	3,667	3,893	4,132	4,493	4,931
2	New England.	2,244	2,346	2,419	2,496	2,608	2,677	2,805	2,977	3,219	3,440	3,717	3,994	4,245	4,416	4,747	5,167
3 4 4	Connecticut	2,654	$\begin{array}{r}2,753 \\ 1 \\ \hline\end{array}$	2,838	2,939	3,058	3,131 1	$\begin{array}{r}3,269 \\ \hline, 095 \\ \hline\end{array}$	3,451 2 2 2	3,741	${ }_{4}^{4,043}$	4,341 2 2	- ${ }^{4} \mathbf{4} \mathbf{6 9 5}$	${ }_{3,250}^{4,871}$	4,998 3	5,353 3 3	5,873 4,059
5	Massachusetts.	1, ${ }_{2}^{1,252}$	- 2	1,883 2,43	- 2,517	- 2,634	$\stackrel{\text { 2, }}{298}$	$\stackrel{2}{2,815}$	2,981	3,207	3,416	-3,711	3, ${ }^{2}, 999$	- 4,276	4,469	- 4,816	5, 5,203
6	New Hampshir	1,975	$\stackrel{2}{2,091}$	2, 160	2, 231	2,329	2, 358	$\stackrel{2}{272}$	$\stackrel{2}{2} \mathbf{6 1 9}$	2, 880	3,051	3, 303	3,535	3,720	3,876	4, 193	4,637
8	Vhode 1stand.	1,676	2, 1,138 1,774	2,186 1,864	2,271 1,924	2,389 $\mathbf{1}, 996$	- 2,481	$\stackrel{2}{2,174}$	$\begin{array}{r}\text { 2, } \\ \mathbf{2}, 382 \\ \hline\end{array}$	$\mathbf{3 , 0 0 9}$ $\mathbf{2}, 650$	3,224 2,818	3,433 3,028	3,643 3,254	3,878 3,447	4,105 3,630	4,433 3,906	4,766 4,264
9	Mideast	2,352	2,461	2,538	2,592	2,704	2,785	2,941	3,113	3,329	3,539	3,828	4,108	4,384	4,635	4.985	5,419
10	Delaware	2,596	2, 660	2,735	2,733	2,839	2,957	3, 102	3,364	3,523	3,681	3,957	${ }^{4}, 268$	4,468	4,732	5,085	5,648
11	District of Columbia	2,665	2,735	2,823	2,878		- ${ }_{\text {3, } 062} 611$	${ }^{3,205}$	$\stackrel{3}{3,384}$	3,587 3 3	-3,726	4,063 3 68	4,333	4,644 4.267 4	5,064 4 4 539	5,523 4,944	5,928 5 5
13	Maryland.-	2,178 2,471	- ${ }_{2}^{2,243}$	2,320 2,700	$\begin{array}{r}2,409 \\ 2 \\ 2 \\ \hline 753\end{array}$	$\stackrel{2,531}{2,902}$	2,611 2.973	2,761	2,933 $\mathbf{3 , 3 1 0}$	${ }_{3}^{3,153}$	$\mathbf{3}, 367$ $\mathbf{3}, 768$	3,668 4 4,074	3,987 4,359	4,267 4,684 , 68	4,539 4.967	+5,943	5,459 5,807 5
14	New York.	2,478	2,615	2,703	2,771	2,876	$\stackrel{2}{2,963}$	3,133	3, 302	$\stackrel{3}{3}, 520$	3,737	4,055	4, ${ }^{428}$	4,605	4, 859	5,178	5,570
15	Pennsylvania	2,118	2,188	2, 239	2,260	2,357	2,431	2,572	2,735	2,942	3, 135	3,362	3,636	3,879	4,086	4,451	4.890
16	Great Lakes	2,182	2,305	2,367	2,390	2,511	2,600	2,757	2,979	3,205	3,345	3,610	3,890	4,050	4,318	4,679	5,225
17	Illinois..	2,435	2,563	2,616	2,693	2,800	2,879	3, 025	3,256	3,498	3,677	3,922	4,219	4,446	4,744	5,075	5.697
18	Indiana	1,961	2,074	2,149	2, 179	2,328	$\stackrel{2}{2} 475$	2,547	2,787	2,979	3, 100	3,334	${ }^{3,611}$	3,709	3,974	4,314	4,93.7
19	Michigan		2, 25	- ${ }_{2}^{2,326}$	$\stackrel{2}{202}$	$\stackrel{3}{2} 452$	${ }_{2}^{2} \mathbf{2} 516$	${ }_{2}^{2,781}$	3,038 285 8	${ }_{3}^{3,257}$	-3,366	3,691 3 197	3,963 $\mathbf{3}, 78$	${ }_{3}^{4,041}$	-4,371	${ }_{4}^{4,804}$	3,341
21	Wisconsin	2,004	2, 148	2, 178	2,212	2,313	2,359	2,508	$\stackrel{2}{2,686}$	$\stackrel{3}{2,909}$	3,053 3,	3,497 3,255	3, 509	$\stackrel{3}{3,712}$	3,945	-4,293	4, 4,54
22	Plains.	1,925	1,951	2,022	2,069	2,195	2,281	2,371	2,6!6	2,814	2,961	3,176	3,426	3,657	3,878	4,274	5,037
23	Iowa	1,883	1,917	1,060	2,055	2,154	2,292	2,409	2,714	2,939	2,989	3,147	3,441	3,643	3,788	4,218	5,136
24	Kansas	2,020	2,029	2,084	${ }_{2}^{2,143}$	${ }^{2}, 225$	$\stackrel{\text { 2,306 }}{ }$	2. 242	2,631	${ }^{2,855}$	3,018	3,227	3, 470	3,725	4, 017	4, 470	5,154
${ }^{25}$	Minnesota	1,935	1,977	2,064	${ }_{2}^{2,129}$	${ }_{2}^{2,220}$	$\stackrel{\text { 2,338 }}{\substack{234 \\ 2}}$	$\xrightarrow{2,412}$	$\stackrel{2}{2,643}$	-2,853	- 3	3,281 3 3 251	$\begin{array}{r}3,555 \\ 3 \\ 3 \\ \hline\end{array}$	3,819	3,999 3,887	4, 35 4.183 4	5,113 4.672
27	Nebraska	1,988	1,907	- 2 2,009	$\xrightarrow{2,015}$	2, 158	-2,212	$\stackrel{2}{2} 270$		- 2,775	- 2,999	$\stackrel{3,087}{ }$	3,468	$\stackrel{3}{3,657}$	3, 304	4, 4 4, 364	5,113
28	North Dakota	1,695	1,547	1,681	1,553	2,125	1,988	1,968	2,323	2,401	2,543	2,650	2,947	3,077	3,448	4,235	6,117
29	South Dakota	1,631	1,478	1,758	1,750	1,959	1,889	1,885	2, 164	2,409	2,538	2,720	2,894	3,108	3,371	3,847	4,965
30	Southeast.	1,519	1,597	1,624	1,675	1,758	1,849	1,969	2,122	2,317	2,494	2,728	2,981	3,208	3,458	3,823	4,279
31	Alabama	1,423	1,480	1,510	1,533	1,610	1,698	1,826	1,965	2,112	2,245	2,462	$\stackrel{2}{2}, 695$	$\stackrel{2}{2,89}$	3, 131	3,439	3,840
32	Arkansa	1,277	1,363	1,358	1,455	1,516	1,594	1,713	1,832	2,046	2,176	2,379	2, 569	2,791	2,999	3,302	3,8:2
33	Florida	1,835	1,954	1,965	1,971	2,040	2,121	2,257	$\stackrel{3}{2}, 408$	2, 595	$\stackrel{2,816}{ }$	3, 109	3,437	${ }^{3,698}$	4, 007	4,461	${ }^{4,988}$
34	Georgia	1,530	1,606	1,644	1,684	1,776	1,887	2,004	2, 177	$\stackrel{\mathbf{3}}{\mathbf{2}} \mathbf{3} \mathbf{3 8}$	$\stackrel{2}{2,573}$	$\stackrel{2,817}{ }$	- 3,096	3,300 3 3 076	3, 35	3,953	4,403
35	Kentucky	1,490	1,548	1,576	1,662	1,746	1,824	1,891	2,047 $\stackrel{2}{106}$ 106	2,238 2 2	2,403 201	$\stackrel{2}{2,710}$	$\stackrel{2,867}{2,839}$	3,076 3,023	3,278 3 3	3,613 3 393	4,032 3,875
36 37 38	${ }_{\text {Lississipp }}$	1, 1293	-	-1,049	1,272	1, 113	1, 1 , 43	1,505	1,638	1,796	1,957	2,146	2,327	2,547	$\stackrel{\text { 2, }}{2,770}$	$\stackrel{3,094}{ }$	3,4.51
38	North Caroli	1, 455	1,530	1,577	1,631	1,736	1, 817	1,947	2,087	2,318	$\stackrel{\text { 2,479 }}{ }$	2,705	2,994	3,200	3,431	3,810	4,263
39	South Caroli	1,277	1,350	1,394	1,448	1,549	1,616	1,732	1,899	2,118	2,280	2,507	2,748	2,951	3,169	3, 519	3,957
40	Tennessee	1, 474	1,555	1,576	1,640	1,715	1,799	1,908	2,073	2,283	2,426	2,660	2,877	3, 079	3,333	${ }^{3.696}$	4, 131
41	Virginia	1,738	1,836	1,884	1,941	2,048	2,140	$\stackrel{2}{211}$	$\stackrel{3}{2} 471$	2,653	2,862	3,115	$\begin{array}{r}3,400 \\ \hline\end{array}$	${ }_{3}^{3,677}$	$\stackrel{3,973}{ }$	4,336	4, 348
42	West Virgin	1,525	1,566	1,592	1,629	1,713	1,801	1,920	2,070	2,213	2,378	2,527	$\stackrel{2}{2} 736$	3,038	3,287	3,612	3,962
43	Southwest.	1,805	1,874	1,891	1,941	1,995	2,060	2,185	2,337	2,522	2,727	2,971	3,219	3,465	3,669	4,023	4,482
44	Arizona	1,822	1,909	1,994	$\stackrel{2}{2}, 020$	2,090	2.128	2, 223	2,332	2, 510	$\stackrel{2}{2,693}$	$\stackrel{3}{2} 982$	3,311	3,614	3,928	4,319	4,745
45	New Mexi	1,769 1,743	1,832	-1,814	${ }_{1}^{1,878}$	1,922	1,966	$\stackrel{2,045}{2}$	2, ${ }_{2}^{2} \mathbf{1 6 4}$	2, 306	2,410 2 2	$\stackrel{3}{2} 827$	$\stackrel{2}{3,820}$	3, 045 $\mathbf{3}, 341$	3,265 $\mathbf{3 , 5 0 9}$ $\mathbf{3}$	3, ${ }^{3,896}$	3, 4 4.305 4
47	Texas...	1, 1,822	1,892	1,850 1,894	1,952	2,006	2,078	2,208	2,363	$\stackrel{2}{2}, 559$	2,650 2,780	3,028	${ }_{3,275}^{3,01}$	3,507	3,700	4, ${ }_{4}^{3,84}$	4, 4.5
48	Rocky Mount	1,958	2,021	2,075	2,121	2,237	2,284	2,358	2,523	2,670	2,811	3,005	3,262	3,540	3,794	4,189	4,701
49	Colorado	2,078	2,176	2, 247	2,314	2,360	$\stackrel{2}{2}, 488$	$\stackrel{2}{2,516}$	$\stackrel{2,673}{ }$	$\stackrel{2}{2,878}$	3,011	3,247	3,531	3,838	4,167	4,540	5,021
50	Idaho--	${ }^{1,749}$	1, 804	1,811	1, 878	-1,979	$\stackrel{2,045}{2}$			2, 428	-2,580	- ${ }^{2} 8176$	3,92 3,133	-3, 395	3,434 3	-3,872	4,476 4.699
$\stackrel{51}{52}$	Montana	1,987 1,817	1,936 1,891	1,983 1,954	1,934 2,002	$\begin{array}{r}1.246 \\ \stackrel{3}{\mathbf{2}} \mathbf{1 2 0} \\ \hline 2\end{array}$	2,216 2,168	2,239 2,264 2	2,414 2,366		2,709 2,585	$\begin{array}{r}\text { 2, } \\ \hline 260 \\ \hline 2.747\end{array}$	3,133 2,928	3,395 3,169	$\begin{array}{r}\text { 3, } \\ \mathbf{3} \mathbf{4} 27 \\ \hline\end{array}$	4,013 3,719	4.699 4,082
${ }_{53}^{52}$	W yoming	$\xrightarrow{1,872}$	2,171	2, ${ }^{1,951}$	2, 275	2,384	2, 216	2, 455	2, 612	2,778	2,971	3,172	3,407	3,672	3,847	4, 35 2	4,977
5	Far West	2,424	2,552	2,619	2,669	2,782	2,868	3,006	3,142	3,375	3,554	3,842	4,106	4,310	4,530	4,908	5,362
55	California	$\stackrel{2,508}{2,5}$			${ }^{2} 7515$												
56 57 5	Nevada	2,509 2,030	2,657 2,160	2,791 $\stackrel{2}{2}, 194$	2,845 $\stackrel{2}{2} 249$	3,059 2 2 246	3,050 2,428	3,072 2,599	3,174 $\stackrel{2}{2} 888$	3,346 $\mathbf{2}, 907$ 3	${ }_{3,054}^{3,521}$	3,848 3,287	4,252 3,477	4,583 3,677	4, ${ }^{4,95}$	4, 4,368	- 4,815
58	Washington	$\stackrel{2}{2,207}$	$\stackrel{2}{2}, 300$	2, 2,34	2, 443	$\stackrel{\text { 2, }}{277}$	$\stackrel{2}{2}, 631$	$\stackrel{2}{2,738}$	2,943	3,266	3,435	3,689	3,907	3,997	4,161	4,555	5,08
	Alaska.							3,020		3,419	3,655	3,895	4, 205	4,638	4,939	5,234	6,046
60	Hawaii.	1,925	2,099	2,289	2,382	2,491	2,568	2,739	2,912	3,210	3,448	3,779	4,170	4,599	4,785	5,078	3, 5.9
Addenda By census regions																	
61686364646666686869	New England-	2, 244	${ }^{2,346}$	2,419	$\stackrel{2}{296}$	2,608	$\stackrel{2}{2} 677$	28805	2,977	3, 219	3,440	3,717	3,994	4, 245	4,416	4, 747	5, 5167
	Middle Atlanti	$\stackrel{2}{2} \mathbf{3}$	-3,471	$\stackrel{3}{9}, 549$	2,600 2 290	2,713	2,793	$\stackrel{2}{2,950}$	$\begin{array}{r}\text { 3, } 121 \\ \hline 979\end{array}$	3,339	3,551	3,837 $\mathbf{3}, 610$ $\mathbf{3}$	4,114	4,390 4,050	+ 4,	4,679	
	East North Central	1,925	11,951	2,022	2,069	2, 195	2, 281	2,371	2, 616	3, 214	$\stackrel{3}{2,961}$	3,176	3,426	3,657	3,878	4, 274	5,037
	South Atlantic.	1, 712	1,796	1, 838	1,885	1,983	2,073	2,211	2, 373	2,576	2,768	3,024	3,315	3,562	3,834	4,239	4,712
	East South Central.	1,402	1,469	1,490	1,550	1,621	1,714	1,810	1,960	2,139	2,289	$\stackrel{2}{2} 506$	$\stackrel{3}{2} 30$	2,936	3,167	3,502	3,910
	West South Central	1,711	1,776	1,785	1,841	1,896	1,972	2,096	2,250	2,445	$\stackrel{3}{2} 647$	2,878	3,095	3, 323	3,516	3,845	4,305
	Mountain.	1,930	2,001	$\stackrel{2}{2}, 054$	$\stackrel{2}{299}$	$\stackrel{3}{2} 205$	$\stackrel{2}{2} 281$	$\stackrel{2}{239}$	$\stackrel{3}{294}$	- 2,629	$\begin{array}{r}2,776 \\ \hline\end{array}$	3,002 3 3		3,557 4 4	$\begin{array}{r}3,820 \\ 4 \\ \hline 156\end{array}$	4, 4	- $\begin{array}{r}4,683 \\ 5,368\end{array}$
	Pacific	2,406	2,536	2,608	2,658	2,768	2,855	2,997	3,135	3,371	3,553	3,840	4,106	4,317	4,536	4,912	5,368

1. State population used in the computation of per capital personal income in 1975 included Camp l'endleton, California (18,000). By the end of 1975 , these refugees were resettled throught 65,000 Vietnamese refugees located as follows: Indian Gap Military Reservation, Pennsyl- out the United States and the camps were closed.

1974	1975	1976	1977	1978	Line
5,428	5,861	6,402	7,042	7,836	1
5,635	6,027	6, 560	7,159	7,900	2
6,389	6,795	7,338	8,059	8,911	3
${ }^{4,495}$	4,762	5, 357	-5,724	6,292	
5,666 5,024	6,071 5,441	6,593 6,040	7,204 $\mathbf{6 , 6 1 8}$	$\stackrel{7,924}{7,357}$	5 6
5,283	5,705	6,204	6,734	7,472	7
4,584	4,923	5,403	5,819	6,560	8
5,924	6,378	6,876	7,452	8,230	9
6,074	${ }^{6,573}$	7,100	7,649	8, 334	10
6, ${ }^{6,944}$	6,401	8,039 7,058	8,965 7,623	9,924 8836	112
6,313	6,786	7,288	7,921	$\stackrel{8,773}{8}$	13
6,076	6,523	6,922	7,457	8 8,224	14
5,397	5,832	6,404	6,997	7,740	15
5,649	6,049	6,679	7,407	8, 224	16
6, ${ }^{6} 216$	6,734	7,310	8,046	8,903	17
5, ${ }^{587}$	6, 612	6,245		\%,706	18
5,433	5,771	6,410	7,102	7, 7 , 85	20
5,183	5, 616	6,097	6,775	7,732	21
5,270	5,722	6,069	6,761	7,650	22
5,330	5,907	6,123	6,877	8,002	23
5,506	5,955	6,444	7,040	7,882	24
5,424	5,785	6, 22]	7,088	7,910	25
5,010	5,475	5,925	6,565	7,313	26
5,198	5,887	6,054	6,672	7,582	$\stackrel{27}{8}$
5,883 4,755	5,896 4,095	5,781	5,887 5,850	7, 174	$\stackrel{28}{28}$
4, 692	5,031	5,541	6,089	6,773	30
4, 236	4, 634	5,156	5,664	6, 291	31
4, 274	4, 527	4,945	5,473	5,969	32
5,341	5,634	6,094	6,728	7,573	33
- 4,753	5,029 4,882	5,517	6,058 5	6,705	${ }^{34}$
4,524 4,373	4, 4 4,882	5,395 5,401	5,957 5 , 989	6,607 6,716	$\stackrel{35}{36}$
3,777	4, 4,042	4,530	5,028	$\stackrel{8,529}{5,56}$	${ }_{37}^{36}$
4,626	4,943	5,471	5,928	6,575	38
4,407	4,665	5,180	5,653	6,288	39
¢, 5,316 4,49	4,823 5,770	5,344 6,325	5, 874 6,924 0		${ }_{41}^{40}$
4, 4 4	4,770 4,988	6,325 5,480	6,924 6,000	-7,6.1	42
4,968	5,458	6,020	6,703	7,527	43
5,126	5,364	5,878	6,453	7,372	44
4,325	${ }^{4}, 836$	5, 318	5, 864	6, 374	45
${ }^{4,786}$	5,233 5,58	5, 741	6,409 6891	$\begin{array}{r}7,137 \\ 7 \\ \hline 18\end{array}$	46
5,041	5,583	6,172	6,891	7,730	47
5,157	5,584	6,082	6,656	7,478	48
5,500	6,006	${ }^{6,537}$	7, 196	8,105	49
5,032 4,982	5,205 5,387	5,759 5 5,679	6,197	${ }_{6} \mathbf{7 , 0 1 5}$	50 51
4,465	4,903	5,373	6,092 5,895	$\underset{\substack{\text { c, } \\ 6,565 \\ 6,565}}{ }$	51 52
5, 662	6, 127	6,775	7,571	8,636	53
5,911	6,477	7,128	7,885	8,812	54
6,015	6, 580	7,231	8,003	8,927	
${ }_{5}^{6,065}$	${ }_{5}^{6,636}$	7,318	8, 213	9,439	56
5,311 5,649	5,764 6,300	6,422 6,939	7,214 7,564	8,092 8,495	$\stackrel{57}{58}$
$\begin{aligned} & 7,138 \\ & \mathbf{6}, 130 \end{aligned}$	9,673 6,711	10,275 7127	10,458 7 7	10,963	59

5,635	6,027	6,560	7,159	7,900	
5,907	6,355	6,830	7,402	8.179	62
5,649	6,049	6,679	7,407	${ }_{8}^{8,224}$	${ }_{64}^{63}$
5,125	5,482	6,008	- 6,569	7, 7 , 296	65
4,315	4,652	5,166	5,693	6,319	66
4,808	5,290	5,855	6,525	7. 296	67
5,107	5,509	6,021	6,614	- 873	68
5, 929	6,522	7, 169	7,908	8, 816	69

disbursement (establishment location). Industry definitions are not entirely consistent throughout the 1958-78 period. Estimates for 1975-78 are based on the 1972 Standard Industrial Classification (SIC). Estimates for the years preceding 1975 are based on the 1967 SIC. A consistent set of reliable estimates on the 1972 SIC basis is not possible because of problems in recon-
ciling differences in the underlying data from the unemployment insurance system for the overlap year 1975. A review of the industrial coding for employers (refiling) coincided in many States with the change in the SIC classification system. It is not possible for BEA to distinguish between the code changes due to refiling and those mandated by the change in the classification system.

[^2]Table 3.-Personal Income by Major
[Millions

[^3]Sources, Selected Years 1958-78 of dollars]

\begin{tabular}{|c|}
\hline \multicolumn{7}{|c|}{Connecticut} \& \multicolumn{7}{|c|}{Maine} \& \multicolumn{8}{|c|}{Massachusetts} \\
\hline 1958 \& 1963 \& 1968 \& 1973 \& 1976 \& 1977 \& \({ }^{7} 1978\) \& 1958 \& 1963 \& 1968 \& 1973 \& 1976 \& 1977 \& \({ }^{7} 1978\) \& 1958 \& 1963 \& 1968 \& 1973 \& 1976 \& 1977 \& \({ }^{7} 1978\) \& Line \\
\hline 5,006 \& 6,531 \& 9,658 \& 13,578 \& 16,375 \& 18,128 \& 20,139 \& 1,329 \& 1,571 \& 2,197 \& 3,255 \& 4,256 \& 4,575 \& 5,075 \& 9,138 \& 11,605 \& 16,542 \& 23,700 \& 28,382 \& 31,264 \& 34, 447 \& 1 \\
\hline 4,192 \& 5,536 \& 8,204 \& 11,630 \& 13,990 \& 15,414 \& 17,103 \& 1,095 \& 1,334 \& 1,859 \& 2,653 \& 3,481 \& 3,757 \& 4,176 \& 7,906 \& 10,082 \& 14, 321 \& 20,618 \& 24,499 \& 26,742 \& 29,348 \& 2 \\
\hline \& , 279 \& 487 \& \& 1,316 \& 1,525 \& 1,744 \& 30 \& 47 \& 90 \& 184 \& 308 \& 353 \& 406 \& 317 \& \({ }^{468}\) \& \({ }^{792}\) \& 1,447 \& 2, 142 \& 2,465 \& 2,822 \& 3 \\
\hline 629
46 \& 716
35 \& 967
38 \& 1,070
40 \& 1,068
10 \& 1,189 \& 1, \({ }_{16} 1\) \& 204
59 \& \(\begin{array}{r}190 \\ 34 \\ \hline\end{array}\) \& 248
31 \& 418 \& 467
117 \& 465
73
7 \& \(\begin{array}{r}493 \\ 59 \\ \hline\end{array}\) \& 916
39 \& 1,055
12 \& 1,429 \& 1,635
1,69 \& 1,741
1
12 \& 2,056 \& \(\begin{array}{r}2,277 \\ \hline 38\end{array}\) \& 4 \\
\hline 583 \& 681 \& 928 \& 1,029 \& 1,045 \& 1,152 \& 1,277 \& 145 \& 155 \& 216 \& 294 \& 350 \& 392 \& 434 \& 877 \& 1,022 \& 1,396 \& 1,606 \& 1,709 \& 2,028 \& 2,239 \& \({ }_{6}\) \\
\hline \[
\begin{array}{r}
72 \\
4,934
\end{array}
\] \& \[
\begin{array}{r}
66 \\
6,465
\end{array}
\] \& 9,587 \& \[
\begin{array}{r}
85 \\
13,493
\end{array}
\] \& \[
\begin{array}{r}
76 \\
16,300
\end{array}
\] \& \[
\begin{array}{r}
96 \\
18,031
\end{array}
\] \& \[
\begin{array}{r}
79 \\
20,060
\end{array}
\] \& \[
\begin{array}{r}
101 \\
1,229
\end{array}
\] \& \[
\begin{array}{r}
61 \\
1,510
\end{array}
\] \& \({ }_{2,141}^{55}\) \& \[
\begin{array}{r}
148 \\
3,107
\end{array}
\] \& \[
\begin{array}{r}
149 \\
4,108
\end{array}
\] \& \[
\begin{array}{r}
109 \\
4,466
\end{array}
\] \& 97
4,978 \& \[
\begin{array}{r}
72 \\
9,066
\end{array}
\] \& \[
\begin{array}{r}
64 \\
11,540
\end{array}
\] \& \[
\begin{array}{r}
66 \\
16,476
\end{array}
\] \& \[
\begin{array}{r}
72 \\
23,628
\end{array}
\] \& \[
\begin{array}{r}
78 \\
28,304
\end{array}
\] \& \[
\begin{array}{r}
80 \\
31,184
\end{array}
\] \& \[
\begin{array}{r}
94 \\
34,353
\end{array}
\] \& \({ }^{7}\) \\
\hline 4,483
18 \& 5,844
19 \& 8,521
29 \& 11,759
47 \& 14, 244 \& 15,827 \& 17,652
68 \& 988
15 \& 1,182
13 \& 1,707
16 \& \(\begin{array}{r}2,461 \\ 28 \\ \hline\end{array}\) \& 3,291
39 \& 3,5888 \& 4,022
61 \& 7,855
40 \& 9,953
43 \& 14, 202 \& 19,917 \& \[
\begin{array}{|r}
23,855 \\
116
\end{array}
\] \& 26, 329 \& \[
\begin{array}{|r}
29,208 \\
162
\end{array}
\] \& 9
10 \\
\hline 17
1 \& 17 \& 28 \& 46
1
1 \& \begin{tabular}{|}
48 \\
3 \\
\hline
\end{tabular} \& \({ }_{3}^{56}\) \& \({ }_{64}^{64}\) \& \({ }_{11}^{4}\) \& \(\stackrel{4}{9}\) \& 10 \& 10
17 \& 12
27 \& 14
40 \& 15
46 \& 18
23 \& 22
20 \& 35
19 \& 59
27 \& 67
49 \& 77
57 \& 84
78 \& 11 \\
\hline (*) \({ }^{6}\) \& \& \(\left({ }^{*}{ }^{8}\right.\) \& \(\left.*^{*}\right)^{13}\) \& (D) \({ }^{17}\) \& (D) \({ }^{45}\) \& (D) \({ }^{45}\) \& (*) 1 \& (*) \({ }^{1}\) \& (*) \({ }^{2}\) \& (D) \({ }^{2}\) \& (D) \({ }^{3}\) \& (D) \({ }^{3}\) \& (D) \({ }^{2}\) \& (D) \({ }^{8}\) \& (D) \({ }^{8}\) \& \((\mathrm{D})^{10}\) \& \({ }_{(*)}{ }^{12}\) \& (D) \({ }^{15}\) \& (D) \({ }^{16}\) \& \({ }_{(0)}{ }^{17}\) \& 13 \\
\hline (*) \& (*) \& (D) \& (*) \& \[
2
\] \& \({ }^{(D)}\) \& \[
8
\] \& (D) \& (D) \& (D) \& (*) \& (D) \& (D) \& (D) \& (D) \& (D) \& (D) \& \({ }^{*}{ }^{*}\)) \& \({ }^{(D)} 2\) \& \({ }^{(D)} 1\) \& \({ }^{\left({ }^{\text {(})} 1\right.} 1\) \& 14
15 \\
\hline \({ }^{(*)} 5\) \& (*) \& (D) \& \({ }^{(*)} 12\) \& \({ }^{(D)}{ }_{14}\) \& \({ }^{(D)} 18\) \& \({ }^{(D)}{ }_{16}\) \& (D) \& (D) \& \({ }^{(D)} 1\) \& \({ }^{(D)} 1\) \& \& (D) \({ }^{2}\) \& (b) \& \({ }^{(D)} 7\) \& \({ }^{(D)} 8\) \& \({ }^{(*)} 10\) \& \({ }^{(*)} 12\) \& \({ }^{(D)}{ }_{13}\) \& \({ }^{(D)}{ }_{15}\) \& \({ }^{(D)}{ }_{16}\) \& 16
17 \\
\hline 341 \& 424 \& 607 \& 903 \& 742 \& 820 \& 937 \& 73 \& 85 \& 126 \& 216 \& 334 \& 299 \& 314 \& 502 \& 656 \& 985 \& 1,519 \& 1,239 \& 1,328 \& 1,399 \& 18 \\
\hline 2,136 \& 2,821 \& 4,034 \& 4,925 \& 5,986 \& 6,614 \& 7,245 \& 397 \& 487 \& 705 \& 871 \& 1,111 \& 1,246 \& 1,422 \& 3,239 \& 3,890 \& 5,212 \& 6,565 \& 7,935 \& 8,906 \& 9,895 \& 19 \\
\hline 486
68 \& \(\begin{array}{r}597 \\ 82 \\ \hline\end{array}\) \& 786
107 \& 1,076 \& 1,299 \& 1,414 \& \(\begin{array}{r}1,523 \\ \hline 184\end{array}\) \& 277
40 \& 349
47
4 \& 492
68 \& \(\begin{array}{r}564 \\ 78 \\ \hline\end{array}\) \& \({ }_{\text {(D) }} 722\) \& 806
107 \& 892
119 \& 1,516 \& \(\begin{array}{r}1,677 \\ \hline 232\end{array}\) \& 2,085
271 \& 2,486 \& 2,832

366 \& 8,022
378 \& 3,226
402 \& ${ }_{21}^{20}$

\hline 66 \& 67 \& 88 \& 111 \& 114 \& 119 \& 120 \& 46 \& 52 \& 65 \& 66 \& (D) \& 89 \& 93 \& 206 \& 208 \& 229 \& 271 \& 300 \& 316 \& 332 \& 22

\hline 64 \& 67 \& 75 \& 86 \& 93 \& ${ }^{96}$ \& 107 \& 7 \& 8 \& 12 \& 20 \& 26 \& 29 \& 37 \& 188 \& 213 \& 263 \& 294 \& 340 \& 356 \& 373 \& 23

\hline 42 \& 50 \& 74 \& 105 \& 134 \& 150 \& 172 \& 95 \& 118 \& 154 \& 208 \& 279 \& 321 \& 345 \& 179 \& 220 \& 285 \& 362 \& 408 \& 449 \& 493 \& 24

\hline 82 \& 111 \& 151 \& ${ }_{217}^{207}$ \& 229 \& 294 \& 325 \& 11 \& 13 \& 17 \& ${ }^{26}$ \& 33 \& 36 \& 42 \& 192 \& 243 \& 329 \& ${ }^{431}$ \& 519 \& 561 \& 601 \& 25

\hline 65 \& 97 \& 133 \& 217 \& 270 \& 298 \& 350 \& 3 \& ${ }_{1}^{4}$ \& 10 \& (D) \& 14 \& ${ }_{3}^{16}$ \& 20 \& 114 \& 132 \& 171 \& 235 \& 297 \& 316 \& 331 \& 26

\hline 4 \& 1 \& | 8 |
| :--- |
| 2 | \& ${ }^{\text {(D) }} 5$ \& (D) ${ }^{23}$ \& 22 \& 23

10 \& (*) \& (*) ${ }^{1}$ \& (*) ${ }^{1}$ \& ${ }_{(0)}^{(8)}$ \& (*) ${ }^{3}$ \& (*) ${ }^{3}$ \& (*) ${ }^{3}$ \& 11
3 \& $\stackrel{10}{2}$ \& $\begin{array}{r}9 \\ 2 \\ \hline\end{array}$ \& 14 \& (D) \& $(*) 3$ \& $\left({ }^{* 35}\right.$ \& 27
28

\hline 85 \& 106 \& 133 \& 186 \& 210 \& 241 \& 219 \& ${ }^{4}$ \& 9 \& 13 \& 28 \& 39 \& ${ }^{40}$ \& 46 \& 166 \& 197 \& 271 \& 343 \& 361 \& 398 \& 429 \& 29

\hline 9 \& 12 \& 14 \& (D) \& (D) \& 13 \& 12 \& 71 \& 98 \& 152 \& 125 \& 153 \& 165 \& 187 \& 230 \& 219 \& 256 \& 203 \& 218 \& 218 \& 228 \& 30

\hline 1,650 \& 2,224 \& (D) ${ }_{\text {(D) }}$ \& (D) ${ }^{\text {(D) }}$ \& 4,686
23 \& 5,200
25 \& 5,723 \& 120
54 \& 138
60 \& ${ }_{2}^{213}$ \& 306
118 \& 389
140 \& 440 \& 530
183 \& 1,723 \& 2,213 \& 3,126 \& 4, 079 \& 5,103 \& 5,884 \& 6,670 \& 31

\hline (D) \& (D) \& $\begin{array}{r}33 \\ \hline\end{array}$ \& ${ }_{5} 5$ \& ${ }_{60}^{23}$ \& 64 \& 64 \& (0) ${ }^{\text {(}}$ \& (b) \& (D) \& ${ }^{(0)}$ \& 140
9 \& 11 \& 183
12 \& 52 \& ${ }_{60} 6$ \& 70 \& ${ }_{88}^{52}$ \& 86 \& ${ }_{90}^{62}$ \& 103 \& $\stackrel{32}{32}$

\hline 174 \& 190 \& 245 \& 309 \& 357 \& 368 \& 418 \& (D) \& (D) \& 6 \& 7 \& 5 \& 6 \& 6 \& 126 \& 144 \& 195 \& 210 \& 203 \& 238 \& 295 \& 34

\hline 245 \& 304 \& 465 \& 675 \& 913 \& ${ }_{985} 98$ \& 1,090 \& 10 \& 10 \& 18 \& 25 \& 47 \& 50 \& 55 \& 197 \& 238 \& 337 \& 498 \& 708 \& 772 \& 853 \& 35

\hline 337 \& $\stackrel{459}{ }$ \& $\begin{array}{r}616 \\ 372 \\ \hline\end{array}$ \& 728 \& 873 \& 1,036 \& | 1,085 |
| :--- |
| 74 | \& 16 \& 10 \& 18 \& ${ }_{47}^{26}$ \& | 34 |
| :--- |
| 56 | \& 43 \& 85 \& 356 \& 480 \& ${ }^{684}$ \& ${ }^{886}$ \& 1,147 \& 1,356 \& 1,540 \& 36

\hline 452 \& 662 \& 1,003 \& 1,037 \& 1,315 \& 1,437 \& 1,561 \& 25 \& 25 \& 35 \& 41 \& 57 \& 70 \& 90 \& 131 \& 125 \& 201 \& +180 \& ${ }^{1} 244$ \& 1,409 \& 1,582 \& ${ }_{38}^{37}$

\hline 8
48
48 \& 15 \& ${ }^{(\mathrm{D})}{ }_{119}$ \& ${ }^{(\mathrm{D})} 8$ \& 28 \& 30 \& 28 \& (*) \& $\frac{1}{5}$ \& ${ }^{(D)}{ }_{6}$ \& (D) \& 11 \& 9 \& 12 \& 30
56 \& 40
150 \& $\begin{array}{r}64 \\ 206 \\ \hline\end{array}$ \& 95
192 \& 83 \& 124 \& 144 \& 39
40

\hline $\stackrel{49}{29}$ \& 44 \& 72 \& 110 \& ${ }_{310}{ }^{-}$ \& 124 \& 146 \& (\& 6 \& 9
9 \& 13 \& 17 \& 18 \& 20 \& 60 \& 75 \& 109 \& 153 \& 165 \& 182 \& $22 i^{-}$ \& 41

\hline 88
78 \& $\begin{array}{r}119 \\ 84 \\ \hline\end{array}$ \& 181 \& 211
130 \& 302
145 \& 333
163 \& 378

177 \& $\stackrel{1}{3}$ \& $\frac{1}{3}$ \& 1 \& ${ }^{(D)} 6$ \& 5 \& 5 \& | 9 |
| :---: |
| 8 | \& 126

121 \& 165
131 \& 265
185 \& 433
226 \& 687
260 \& 832
285 \& 950
319 \& 42
43

\hline 256 \& 306 \& 439 \& 714 \& 862 \& 985 \& 1,098 \& ${ }_{96}^{96}$ \& 105 \& 132 \& 216 \& 275 \& 296 \& 320 \& 562 \& 677 \& 931 \& 1,568 \& 1,863 \& 2,095 \& 2,274 \&

\hline $\begin{array}{r}46 \\ 57 \\ \hline\end{array}$ \& ${ }^{42}$ \& 448 \& 49
179 \& 60
186 \& +66 \& $\begin{array}{r}70 \\ 246 \\ \hline\end{array}$ \& 33
19 \& 29
24 \& 31
34 \& 40
58 \& 46
69 \& 44
78 \& 47
89 \& 74
126 \& 66
168 \& $\begin{array}{r}66 \\ 244 \\ \hline\end{array}$ \& 78
378 \& 89
396 \& 98
450 \& 105
492 \& 45
46

\hline (D) \& (D) \& (1) \& (D) \& (D) \& (D) \& (D) \& 2 \& 3
3 \& 3 \& -68 \& 10 \& 8 \& 8 \& (D) \& ${ }^{(\mathrm{D})}$ \& (D) \& (D) \& (D) \& (D) \& (D) \& 47

\hline ${ }^{(D)} 64$ \& ${ }^{(D)} 83$ \& ${ }_{127}$ \& ${ }^{(\mathrm{D})} \mathbf{2 2 5}$ \& ${ }^{(\mathrm{D})} \mathrm{298}$ \& ${ }_{3}^{(\text {() }}$ \& ${ }_{368}$ \& 6
19 \& ${ }^{7}$ \& $\begin{array}{r}9 \\ 31 \\ \hline\end{array}$ \& 12 \& 17
86 \& ${ }_{96}^{21}$ \& ${ }_{98}^{23}$ \& (D) \& (D) \& \& (D) \& (D) \& \& \& 48

\hline 60 \& 74 \& 106 \& 164 \& 194 \& ${ }_{215}^{334}$ \& ${ }_{233}^{368}$ \& 17 \& 19 \& 24 \& ${ }_{39} 6$ \& 86
46 \& 96
50 \& 98
55 \& 112 \& 140 \& 192 \& 542

286 \& ${ }_{343}^{687}$ \& | 768 |
| :--- |
| 375 | \& 837

396 \& 5

\hline \& 283 \& ${ }_{9}^{428}$ \& 727
1.315 \& \& 1,086 \& 1,238 \& 74 \& 86 \& 109 \& 160 \& 229 \& 247 \& 273 \& 593 \& 718 \& 1,014 \& 1,554 \& 1,833 \& 1,981 \& 2,117 \& 51

\hline 560
326 \& ${ }_{411}^{683}$ \& 960
595 \& 1,315
920 \& 1, 1,220 \& 1,663
1,388 \& 1,852
1,589 \& 148
4
4 \& 170
61 \& $\begin{array}{r}249 \\ 88 \\ \hline\end{array}$ \& 377
129 \& 467
171 \& 507
192 \& 571
215 \& $\begin{array}{r}1,059 \\ \hline 54 \\ \hline\end{array}$ \& 1,328 \& 1,843 \& 2, 537

1,417 \& 2, 1,793 \& 3,197 \& | 3,463 |
| :--- |
| 2,187 | \& ${ }_{53}^{52}$

\hline 62 \& 69 \& 104 \& 176 \& 237 \& ${ }^{258}$ \& 290 \& 12 \& 16 \& 24 \& 42 \& 56 \& 61 \& 69 \& 121 \& 164 \& 242 \& ${ }^{1} 403$ \& ${ }^{1} 523$ \& ${ }^{1} 557$ \& ${ }^{2} 561$ \& 54

\hline 264 \& 342 \& 491 \& 744 \& \& 1,130 \& 1,299 \& 35 \& 45 \& 65 \& 87 \& 115 \& 131 \& 146 \& 423 \& 542 \& 798 \& 1,014 \& 1,271 \& 1,412 \& 1,626 \& 55

\hline 619 \& 892 \& 1,420 \& 2, 196 \& 2,838 \& 3,167 \& 3,579 \& 137 \& 175 \& 280 \& 464 \& 662 \& 744 \& 845 \& \& 1,927 \& 3,113 \& 4,659 \& 6, 102 \& 6,702 \& 7, 692 \& 56
57

\hline ${ }_{63}^{15}$ \& 18
78 \& ${ }_{107}^{29}$ \& $\begin{array}{r}37 \\ 109 \\ \hline\end{array}$ \& ${ }_{118}^{41}$ \& 45
129 \& $\begin{array}{r}50 \\ 143 \\ \hline\end{array}$ \& 12 \& 14 \& 19 \& ${ }_{36}^{30}$ \& 36
30 \& ${ }_{34}^{43}$ \& 45
37 \& $\begin{array}{r}45 \\ \hline 130 \\ \hline\end{array}$ \& $\begin{array}{r}53 \\ 158 \\ \hline\end{array}$ \& $\begin{array}{r}79 \\ 207 \\ \hline\end{array}$ \& 99
198 \& 127
217 \& 142
241 \& 161
260 \& 57
58

\hline ${ }_{61}^{63}$ \& 66 \& 83 \& 91 \& 108 \& 115 \& 127 \& 19 \& ${ }_{20}^{16}$ \& 25 \& 27 \& 32 \& 34 \& ${ }_{38}^{37}$ \& 80 \& 85 \& 101 \& 106 \& 126 \& 135 \& 148 \& 59

\hline 83 \& 139 \& 221 \& 384 \& 498 \& 609 \& 729 \& 13 \& 19 \& 27 \& 50 \& 68 \& 78 \& 89 \& 190 \& 370 \& 617 \& 850 \& 1,044 \& 1,149 \& 1,379 \& 60

\hline 21 \& 27 \& 41 \& 58 \& 77 \& 91 \& 99 \& 4 \& 5 \& 7 \& 9 \& 12 \& 16 \& 18 \& 47 \& 58 \& 82 \& 131 \& 132 \& 159 \& 167 \& 61

\hline 377 \& 564 \& 941 \& 1,518 \& 1,996 \& 2,178 \& 2,432 \& 75 \& 101 \& 179 \& 322 \& 484 \& 539 \& 615 \& 816 \& 1,202 \& 2,027 \& 3,274 \& 4,455 \& 4,876 \& 5,577 \& 62

\hline 450 \& 621 \& 1,066 \& 1,734 \& 2,055 \& 2, 205 \& 2,408 \& 240 \& 328 \& 434 \& 646 \& 816 \& 878 \& 956 \& 1,212 \& 1,587 \& 2,273 \& 3,711 \& 4,449 \& 4, 855 \& 5,145 \&

\hline $\begin{array}{r}78 \\ 57 \\ \hline\end{array}$ \& 104 \& $\begin{array}{r}167 \\ 83 \\ \hline\end{array}$ \& ${ }_{129}^{256}$ \& 1308 \& ${ }_{160}^{351}$ \& 1402 \& 81
70 \& 111
83 \& 139
80 \& 169
101 \& 247
110 \& 266
110 \& 292 \& 330
212 \& 425
193 \& ${ }_{230}^{544}$ \& 759
246 \& 921
189 \& 982
194 \& $\begin{array}{r}1,049 \\ \hline 215\end{array}$ \& ${ }_{64}^{64}$

\hline 316 \& 454 \& 817 \& 1,349 \& 1,601 \& 1,694 \& 1,827 \& 89 \& 134 \& 215 \& 376 \& 459 \& 502 \& 544 \& 670 \& 970 \& 1,500 \& 2,705 \& 3,339 \& 3,678 \& 3,881 \& ${ }_{66}$

\hline 5,008
101 \& 6, 5831 \& $\begin{array}{r}9,658 \\ 365 \\ \hline\end{array}$ \& 13,578 \& 16,375 \& 18, 128 \& 20,139
1,003 \& 1,329 \& 1,571 \& 2,197 \& 3, ${ }^{163}$ \& 4, 236 \& 4, ${ }^{245}$ \& 5,075

277 \& ${ }^{9,138}$ \& 11,605
349 \& 16, 8442 \& 23,700 \& 28,382 \& 31,264 \& 34,447
1,648 \& 67
68

\hline 4,905 \& 6,345 \& 9, 293 \& 12,963 \& 15,561 \& 17, 232 \& 19, 136 \& 1,297 \& 1,521 \& 2,102 \& 3,092 \& 4,020 \& 4,329 \& ${ }^{4,798}$ \& 8 8,935 \& 11, 256 \& 15, 898 \& 22,580 \& 26,999 \& 29,779 \& 32,798 \& 69
70

\hline 5,179 \& 6,717 \& 9,858 \& 13,691 \& 16,361 \& 18,072 \& 20,045 \& 1,281 \& 1,489 \& 2,067 \& | 3,073 |
| :---: |
| -19 | \& -33

3,988 \& 4,38
4,308 \& ${ }_{4,773}$ \& 8,919 \& $\xrightarrow[11,219]{-37}$ \& 15, ${ }^{-608}$ \& 22,473 \& - ${ }_{26,834}^{-165}$ \& 29,593 \& 32,604 \& 70

\hline 898 \& 1,322 \& 2,134 \& 2,708 \& 3,633 \& 4,022 \& 4, 529 \& 196 \& 243 \& 352 \& 527 \& 725 \& 795 \& 897 \& 1,427 \& 2,008 \& 3, 055 \& 3,966 \& 5,316 \& 5,804 \& 6,533 \& 72

\hline 416 \& 498 \& 874 \& 1,689 \& 2,770 \& 2,947 \& 3,046 \& 154 \& 199 \& 311 \& 617 \& 1,027 \& 1,112 \& 1,199 \& 938 \& 1,193 \& 1,958 \& 3,765 \& 6,036 \& 6,224 \& 6,625 \& 73

\hline 6,493 \& 8,537 \& 12,866 \& 18,088 \& 22,763 \& 25, 041 \& 27,612 \& 1,631 \& 1,931 \& 2,729 \& 4, 216 \& 5,739 \& 6, 208 \& 6,867 \& 11,284 \& 14, 420 \& 20, 851 \& 30,204 \& 38, 185 \& 41,621 \& 45,751 \& 74

\hline 2,
2,446
2,46 \& 3,
2,727 \& 4,341
2,964 \& 5,873
3,080 \& 7,338
3,102 \& 8,019
3,107 \& 8,911
3,099 \& 1,728
944 \& 1,945
993 \& $\begin{array}{r}2,745 \\ \hline 994\end{array}$ \& 4,059
1,039 \& 5,357
1,071 \& 5,724
1,084 \& 6,292 \& 2,252
5,010 \& $\xrightarrow{2,698} 5$ \& $\xrightarrow{3,711} 5$ \& 5,203

5,805 \& | 6, |
| :--- |
| 5,793 |
| 1 | \& 7, 204

5,777 \& 7,924
5,774 \& 75
76

\hline
\end{tabular}

4. Under the 1972 SIC code ordnance was reclassified to four 2-digit industries: fabricated metal products, electric and electronic equipment, transportation equipment and in5 .
5. Adjustment for border workers: income of U.S. residents working across U.S. borders

Includes the capital consumption adjust U.S.
7. Because of an error in nonfarm proprietors' income which could not be corrected in time
for publication, the 1978 derivation of personal income by place of residence will not add to total personal income. A corrected table will be available upon request to the Regional Economic Measurement Division.
Nore.-Estimates for years prior to 1975 are based on the 1967 Standard Industrial Classification (SIC). Estimates for 1975-78 are based on the 1972 SIC.

Table 3.-Personal Income by Major Sources,
[Millions

See footnotes on pp. 32-33.

Selected Years 1958-78-Continued of dollars]

\begin{tabular}{|c|}
\hline \multicolumn{7}{|c|}{Vermont} \& \multicolumn{7}{|c|}{Mideast} \& \multicolumn{7}{|c|}{Delaware} \& \multirow{2}{*}{Line} \\
\hline 1958 \& 1963 \& 1968 \& 1973 \& 176 \& 1977 \& \({ }^{7} 1978\) \& 1958 \& 1983 \& \({ }^{968}\) \& 1973 \& \({ }^{976}\) \& 1977 \& 1978 \& 1958 \& \({ }^{963}\) \& 1968 \& 1973 \& 1976 \& 1977 \& \({ }^{7} 1978\) \& \\
\hline 527 \& 658 \& 1,047 \& 1,555 \& 1,923 \& 2,096 \& 2,427 \& 73,561 \& 91, 168 \& 130,559 \& 185, 371 \& 223,300 \& 240, 825 \& 264,966 \& 925 \& 1,155 \& 1,725 \& 2,713 \& 3,305 \& 3,536 \& 3,979 \& \\
\hline 399 \& 516 \& 851 \& 1,267 \& 1,553 \& 1,691 \& 1,941 \& 62, 622 \& 78, 451 \& 112,502 \& 161, 466 \& 193, 172 \& 207, 745 \& 227,434 \& 782 \& 994 \& 1,496 \& 2,311 \& 2,808 \& 3,024 \& 源 \& \\
\hline 114 \& \({ }_{122}^{22}\) \& \(\begin{array}{r}45 \\ 150 \\ \hline\end{array}\) \& \({ }_{198}^{88}\) \& \({ }_{235}^{133}\) \& \({ }_{246}^{159}\) \& \({ }_{297}^{189}\) \& \({ }_{8,374}^{2,365}\) \& \(\stackrel{3}{3,108}\) \& 12,045 \& \({ }_{13,}^{10} 82\) \& 12, 818 \& 14, 188 \& 16, \& 40
103 \& \begin{tabular}{r}
54 \\
\hline 107 \\
108
\end{tabular} \& \({ }_{136}^{93}\) \& \({ }_{226}^{177}\) \& \({ }_{234}^{263}\) \& 206 \& \({ }_{273}^{350}\) \& \\
\hline \({ }_{73}^{41}\) \& \({ }^{32}\) \& \({ }^{42}\) \& 59 \& \({ }_{168}^{66}\) \& 54
192
19 \& \(\stackrel{85}{812}\) \& \& \({ }_{8,516}^{591}\) \& 11, \({ }^{676}\) \& 12,006 \& \& 13,883 \& 1, 1.100 \& \({ }_{76}^{27}\) \& 198888 \& 21 \& \({ }^{90}\) \& 85 \& 61 \& 112 \& \\
\hline \({ }^{73}\) \& 88 \& 108 \& 141 \& 168 \& 192 \& 212 \& 7,554 \& 8,516 \& 11,370 \& 12,006 \& 13, 238 \& 13,883 \& 15,344 \& \({ }^{76}\) \& 88 \& 115 \& 136 \& 149 \& 145 \& 161 \& 6 \\
\hline 57
470 \& \({ }_{6} 64\) \& 54
993 \& 1, 781 \& 1,889 \& 2, \({ }^{74}\) \& 106
2,321 \& 72, \({ }_{\text {1, } 109}\) \& 90,281 \& 129,593 \({ }^{965}\) \& 183, 881 \& \({ }_{221,892}^{1,488}\) \& \({ }_{239,610}^{1,215}\) \& 263, \(\begin{array}{r}1,704 \\ \hline\end{array}\) \& \begin{tabular}{|c}
37 \\
888
\end{tabular} \& 1, \({ }^{28}\) \& 1, \({ }^{29}\) \& \begin{tabular}{|c}
100 \\
2,613
\end{tabular} \& 36
3
209 \& 73
3,463 \& - \({ }_{3}^{125}\) \& 8 \\
\hline 398 \& 525 \& 850
3 \& 1,222 \& 1,520 \& 1,690
10 \& 1,965 \& \({ }_{\text {c }} \mathbf{6 2 , 9 0 0}\) \& \& \({ }^{109}\) (0) 001 \& 150, 285 \& \({ }^{180,639} 6\) \& 196, 210 \& 216,787 7 \& \(\left.{ }_{(0)} \mathbf{7}\right)^{\text {P }}\) \& \({ }^{(1)}{ }^{979}\) \& \({ }_{\text {(}}\) \& 2, 227 \& 2, \({ }^{2} 18\) \& \({ }_{\text {(}{ }_{\text {2, }} \text {, } 936}\) \& 3, \({ }_{\text {(}{ }^{283} \text {) }}\) \& 9
10 \\
\hline ()\(^{2}\) \& (*) \({ }^{2}\) \& (*) \({ }^{2}\) \& 5 \& \(\left({ }^{\circ}\right)^{8}\) \& \& \({ }_{1}^{11}\) \& \({ }^{(D)} 40\) \& \({ }_{(0)}^{(P)}\) \& \({ }^{\left.()_{65}\right)^{6}}\) \& 403
109 \& \begin{tabular}{|c}
459 \\
154 \\
\hline 124
\end{tabular} \& \({ }_{177}^{513}\) \& 565 \& (1) \& (D) \& (1) \& (9) \({ }^{7}\) \& (*) \({ }^{9}\) \& (8) \& (\%) \& 11
12 \\
\hline \& (*) \& (*) \& * \& \& \& (*) \({ }^{11}\) \& \({ }_{358}^{\text {(D) }}\) \& \({ }_{265}^{(1)}\) \& \({ }_{\left({ }^{(1)}\right.}^{279}\) \& \({ }^{800}\) \& 1, \({ }_{779}\) \& 1,381 \& \({ }^{1,447}\) \& (0) \& (0) \& (8) \& (*) \({ }^{3}\) \& \& \& (*) \({ }^{7}\) \& -13 \\
\hline 8 \& (\%) \& (\%) \& (0) \& (\%) \& (\%) \& (\%) \& 388 \& 265
37
37 \& \({ }^{\left(D^{2}\right)}\) \& \& \begin{tabular}{l}
189 \\
\hline 65 \\
\hline 17
\end{tabular} \& - 166 \& 198
198
48 \& (0) \& (0) \& (0) \& (0) \& \({ }^{\text {c }}{ }^{5}\) \& \({ }_{(\cdot)}{ }^{6}\) \& \(\stackrel{(0)}{7}^{7}\) \& \(\stackrel{14}{15}\) \\
\hline \({ }^{(0)}{ }_{6}\) \& \(\stackrel{\circ}{6}^{6}\) \& \& \({ }^{(0)}{ }_{8}\) \& (*) \& \({ }^{(\cdot)} 10\) \& \({ }^{(11}\) \& (1) \({ }^{37}\) \& (0) \({ }^{37}\) \& 133 \& \({ }_{191}\) \& \& \({ }_{196}{ }^{66}\) \& \({ }_{219}^{47}\) \& (0) \& (8) \& (8) \& (0) \& \({ }^{(0)}{ }_{1}\) \& \({ }^{(*)}{ }_{1}\) \& \({ }^{(*)}\) \& 16
17 \\
\hline 34 \& 6 \& \({ }_{92}\) \& 122 \& 115 \& 130 \& 162 \& 3,975 \& 5,113 \& 7,171 \& 10,839 \& 10,022 \& 10,694 \& 11,992 \& \({ }_{64}\) \& 8 \& 118 \& 198 \& 208 \& \({ }^{11}\) \& 243 \& 18 \\
\hline 143
51
51 \& 184
59
59 \& \begin{tabular}{l}
307 \\
83 \\
\hline 8
\end{tabular} \& 409
109 \& \begin{tabular}{l}
517 \\
133 \\
\hline 15
\end{tabular} \& \begin{tabular}{l}
582 \\
145 \\
\hline
\end{tabular} \& \({ }_{6}^{695}\) \& 24,026
10,636 \& \({ }^{28,657} 12.436\) \& 38,841 \& 48,683 \& 23,586 \& \({ }_{25,598}^{62,563}\) \& 68, 87
27,875 \& 3394 \& 491
386 \& \begin{tabular}{l}
724 \\
545 \\
\hline 8
\end{tabular} \& \({ }^{1,016}\) \& 1, \({ }_{935}^{249}\) \& , \begin{tabular}{l}
1,376 \\
1,023 \\
\hline
\end{tabular} \& 1, 1.102 \& 19 \\
\hline 16 \& 16 \& 17
17 \& 21 \& \(\begin{array}{r}26 \\ \hline 5 \\ \hline\end{array}\) \& \({ }^{28}\) \& 31 \& 2,013 \& - \& \({ }_{2}{ }^{2}, 768\) \& \({ }^{2,315}\) \& cose \& - \& 4, 416 \& \({ }^{26}\) \& \begin{tabular}{l}
29 \\
29 \\
\hline 10
\end{tabular} \& \(\begin{array}{r}548 \\ 48 \\ \hline 10\end{array}\) \& 63 \& \({ }^{935}\) \& \& \& \({ }_{21}^{20}\) \\
\hline \({ }_{6}^{4}\) \& 3 \& 3
6 \& \(\frac{5}{7}\) \& \({ }_{9}^{5}\) \& 6
10 \& 12 \& 2,207 \& 2,434 \& \({ }_{3,153}^{1,067}\) \& \({ }_{3,357}^{1,363}\) \& \({ }_{3,516}^{1,303}\) \& \({ }_{3}^{1,659}\) \& 1,437 \& \(1{ }_{14}^{10}\) \& \({ }_{15}^{10}\) \& 10
19 \& \(11{ }^{9}\) \& \({ }_{()_{36}}^{36}\) \& (D) \& (D) \& \({ }_{23}^{22}\) \\
\hline 10 \& 2 \& 16 \& \({ }_{32}^{22}\) \& \({ }_{28}^{29}\) \& 33 \& \({ }_{46}\) \& , 774 \& \& \& \& \({ }_{2}^{2,018}\) \& \({ }_{\substack{2,265 \\ 4 \\ 4 \\ 1614}}\) \& \({ }^{2}, 501\) \& (\({ }^{\text {(})}\) \& (1) \& (1) \& \({ }^{10}\) \& \({ }^{16}\) \& 48 \& \({ }_{52}\) \& 24 \\
\hline \& \({ }^{2}\) \& \& \({ }^{31}\) \& \& \({ }_{8}^{41}\) \& \({ }_{10}^{46}\) \& 1,789 \& 2, 2 2, 260 \& \({ }_{\substack{2,193}}^{2,855}\) \& 3, \({ }_{4}^{\text {4, } 260}\) \& 5, \({ }_{5}^{4,42}\) \& (0) \({ }^{\text {c }}\) (\({ }^{6}\) \& (8) \& 28 \& \& \& \& \& \& \(\begin{array}{r}26 \\ 823 \\ \hline\end{array}\) \& 25 \\
\hline (*) \& (*) \& (*) \& (*) \& (*) \& (*) \& \(\stackrel{(0)}{\text { (\%) }}\) \& \(\begin{array}{r}482 \\ 76 \\ \hline 8\end{array}\) \& \({ }_{77}^{470}\) \& \& \({ }^{715}\) \& \({ }_{\text {(1) }} 1.013\) \& 1,137 \& \({ }_{\text {1, }}^{\text {1, }}\) (1) \& \(\stackrel{(0)}{(0)}\) \& (0) \& (4) \({ }^{10}\) \& (*) \({ }^{20}\) \& (8) \& (*) \({ }^{31}\) \& (0) \({ }^{30}\) \& 28 28 \\
\hline \(\begin{array}{r}5 \\ 2 \\ \\ \hline\end{array}\) \& 6
3 \& \(\begin{array}{r}11 \\ 3 \\ \hline\end{array}\) \& \({ }_{3}^{13}\) \& \({ }^{14}\) \& +16 \& \begin{tabular}{|c}
20 \\
4
\end{tabular} \& 393
390 \& 556
429 \& 872
529 \& 1,227 \& \({ }_{\text {1,4 }}^{1,421}\) \& \({ }_{\text {1, }{ }_{542} \text {, } 62}\) \& \({ }_{\text {1, } 1829}{ }_{572}\) \& \[
\begin{aligned}
\& (0) \\
\& (0) \\
\& (0)
\end{aligned}
\] \& \[
\begin{aligned}
\& (8) \\
\& (0) \\
\& (D)
\end{aligned}
\] \& \[
\begin{aligned}
\& (0) \\
\& (0) \\
\& (\mathbb{D})
\end{aligned}
\] \& 48 \& \({ }^{(8)}{ }_{6}\) \& 48
4
4 \& 5 \({ }_{5}\) \& 28
29
30 \\
\hline 91 \& 125 \& \({ }^{224}\) \& 300 \& \({ }^{384}\) \& \({ }_{4}^{437}\) \& 529 \& 13,390 \& 16,221 \& 22,523 \& 28, 519 \& \({ }^{33,425}\) \& 36, 969 \& 41, 012 \& \({ }^{95}\) \& \({ }^{0} 5\) \& \& \& \& \& 422 \& \\
\hline (1) \({ }^{13}\) \& (D) \({ }^{16}\) \& \({ }_{13}^{19}\) \& 20 \& 边 \& \& \({ }_{28}^{46}\) \& \({ }_{346}^{206}\) \& 397 \& \({ }_{534}^{293}\) \& \& \({ }_{586}\) \& \& \({ }^{731}\) \& (*) \& (*) \({ }^{3}\) \& \& \& (D) \& \& 3 \& \({ }_{33}{ }^{32}\) \\
\hline \({ }_{(D)}\) \& \(\mathrm{CD}_{3}\) \& \& \begin{tabular}{|r}
4 \\
8 \\
8 \\
\hline
\end{tabular} \& 4
10 \& 6 6 \& \& \(\xrightarrow{2,610} 1\) \& 2,988 \& - \({ }_{\text {4, }, 432}\) \& \& \(\underset{\substack{6,108 \\ 4,017}}{\text { coin }}\) \& \({ }_{\text {6,760 }}^{4} \mathbf{4} 298\) \& 7, \begin{tabular}{l}
7,396 \\
4,687 \\
\hline
\end{tabular} \& \({ }^{(D)} 13\) \& \({ }_{(0)}^{(D)}\) \& \({ }_{(0)}^{(8)}\) \& (D) \& \({ }_{(0)}^{(D)}\) \& \(\begin{array}{r}38 \\ 29 \\ \hline\end{array}\) \& \begin{tabular}{|c}
46 \\
29
\end{tabular} \& \begin{tabular}{l}
34 \\
35 \\
\hline
\end{tabular} \\
\hline \({ }^{32}\) \& \& \(\stackrel{5}{59}\) \& 110 \& 158 \& \(\begin{array}{r}11 \\ \hline 184 \\ \hline 18\end{array}\) \& \({ }_{102}^{102}\) \& , \& \({ }_{2}^{2,608}\) \& 3, \& \& \({ }_{6}^{4,096}\) \& \({ }_{6} \mathbf{4}, 723\) \& \({ }_{7}^{4,736}\) \& (D) \& (0) \& \({ }^{88}\) \& \({ }_{25}\) \& \({ }_{23}^{23}\) \& (D) \& (D) \& - 36 \\
\hline 7 \& \({ }_{5}^{23}\) \& \({ }_{12} 7\) \& \({ }_{20}^{110}\) \& 158
25 \& \({ }_{27}^{184}\) \& 36 \& \({ }_{1}^{1,093}\) \& 1,091 \& 1, 499 \& \({ }^{\mathbf{3}, 506}\) \& 1,759 \& 2, \({ }^{6,244}\) \& 2, 275 \& \& \({ }^{(0)} 1\) \& \({ }^{(8)} 1\) \& \({ }_{4}^{8}\) \& \({ }_{4}^{11}\) \& \({ }_{4}^{14}\) \& \({ }_{4}^{12}\) \& \({ }_{38}\) \\
\hline (8) \& \({ }^{*}\) *) \& (\%) \& \(\stackrel{*}{*}\) \& \({ }^{*}\) \& 1 \& 1 \& 479 \& \({ }^{729}\) \& \({ }^{1,099}\) \& \({ }_{(252}^{\left(\mathrm{P}_{25}\right.}\) \& \({ }^{(D)}\) \& 2,33 \& 2,535 \& \({ }^{\left.()^{1}\right)}\) \& (\%) \& (0) \& (1) \& (D) \& (D) \& (\({ }^{\text {P }}\) \& \\
\hline \({ }_{15}\) \& 18
5 \& \({ }_{9}^{23}\) \& () \& \& \& \& \& \& , 1,362 \& \({ }_{\substack{1,932}}^{1,505}\) \& \({ }_{\text {2 }}^{2} 118\) \& - \& \& \& \& \& \& \& \& \& \({ }_{4}^{40}\) \\
\hline \({ }_{2}^{4}\) \& 5
2 \& \(\stackrel{9}{3}\) \& \({ }_{5}^{12}\) \& \({ }_{8}^{15}\) \& \({ }_{9}^{18}\) \& \[
\begin{aligned}
\& 20 \\
\& 12
\end{aligned}
\] \& 1,009 688 \& \({ }^{\text {1. }} 7807\) \& 1, 1,023 \& 2, \({ }_{\text {223 }}\), 205 \& 3, \begin{tabular}{l}
1,380 \\
1,380 \\
\hline
\end{tabular} \& \({ }_{\text {3, }}^{1,491}\) \& \({ }_{\text {3, }}^{\mathbf{3}, 568}\) \& \({ }_{(0)}{ }_{2}\) \& \({ }^{(D)}{ }_{1}\) \& \[
{ }^{(D)}{ }_{1}
\] \& \({ }_{1}^{17}\) \& 25
1 \& 32
1 \& \({ }_{2}^{39}\) \& \({ }_{43}^{42}\) \\
\hline \& \& \({ }_{9}^{60}\) \& 102 \& 124
12
12 \& 139
14
14 \& 158
15 \& ¢, \(\begin{aligned} \& \text { 6, } 151 \\ \& 1 \\ \& 1\end{aligned}\) \& 7, \({ }_{\substack{137}}^{1}\) \& \({ }_{1}^{\text {9,797 }}\) \& \({ }_{1}^{14,588} 1\) \& \(\underset{\substack{17,748 \\ 1,682}}{1}\) \& 19,683 \& \({ }_{\substack{21,874 \\ 1,972}}\) \& \& \& \& \& \begin{tabular}{|}
192 \\
33
\end{tabular} \& 208
36 \& \(\begin{array}{r}230 \\ 39 \\ \hline\end{array}\) \& \\
\hline \& \& 18 \& 31 \& 35 \& 40 \& 45 \& 1,044 \& 1,415 \& 2,045 \& 3,211 \& 3,498 \& 3,943 \& 4,427 \& \& 16 \& \({ }_{24}\) \& \({ }_{37}^{25}\) \& \begin{tabular}{|c}
33 \\
48 \\
\hline
\end{tabular} \& \({ }_{50} 5\) \& \({ }_{56}\) \& \({ }_{46}^{45}\) \\
\hline (*) \& \(\mathrm{CH}_{3}\) \& \& \(\frac{1}{7}\) \& 9 \& \({ }_{11}^{11}\) \& 13 \& +1,035 \& \({ }_{1}^{1,249}\) \& \({ }_{1,896}^{1932}\) \& \({ }_{2}{ }^{94645}\) \& \({ }_{3,212}^{1,087}\) \& \({ }_{3}^{1,163}\) \& \({ }_{3,962}^{1,34}\) \& (D) \& (D) \& (D) \& \(1{ }^{7}\) \& -8888888 \& \({ }^{()^{20}}\) \& \({ }_{(0)}^{(0)}\) \& \({ }_{48}^{47}\) \\
\hline \({ }^{7}\) \& \({ }_{8}\) \& 15
11
11 \& 31
19 \& \({ }_{24}^{42}\) \& \({ }_{27}^{46}\) \& \begin{tabular}{l}
54 \\
29 \\
\hline 18
\end{tabular} \& 1, 2634 \& \({ }_{\text {c }}{ }_{1}^{1,531}\) \& \({ }_{2}^{2}, 260\) \& \({ }_{4}^{4,1,361}\) \& 5, \({ }_{\text {5, }}^{185}\) \& \({ }^{5} 51949\) \& \({ }^{6,678}\) \& 10 \& \({ }^{11}\) \& \({ }_{18}^{17}\) \& \({ }_{31}^{11}\) \& 18
42
42 \& \({ }^{46}\) \& \({ }^{50}\) \& 49
50 \\
\hline \& \\
\hline \& \& \& \& \& \& \& 5,089 \& 6,173 \& 8, 8133 \& 12,022 \& 15,086 \& 16,037 \& 17,698 \& \& \& \& \& \& (D) \& (8) \& \\
\hline \[
\begin{gathered}
65 \\
2_{2}^{65} \\
6
\end{gathered}
\] \& 80
30 \& \(\begin{array}{r}121 \\ 47 \\ \hline 12\end{array}\) \& \({ }_{6}^{174}\) \& \& \& \(\stackrel{255}{107}\) \& ¢, \& 5,727 \& 13,886 \& \& 20, 51282 \& ces \& \& \({ }^{33}\) \& \(\stackrel{117}{44}\) \& \& \({ }^{230} 116\) \& \({ }_{13}^{327}\) \& \({ }_{\text {c }}{ }^{331}\) \& \({ }_{17}^{368}\) \& \(\stackrel{52}{53}\) \\
\hline \[
\begin{aligned}
\& 6 \\
\& 17
\end{aligned}
\] \& 23 \& 35 \& 45 \& 54 \& \& 71 \& \({ }_{\text {3,524 }}\) \& \(\xrightarrow{1,287}\) \& \({ }_{6}^{1,852}\) \& \({ }_{\text {8,648 }}\) \& - \& 4, 11.881 \& \({ }_{\text {c }}^{5,341}\) \& \(\stackrel{10}{23}\) \& \begin{tabular}{|c}
13 \\
30
\end{tabular} \& \({ }_{47}^{21}\) \& \& (D) \& (1) \& (D) \& \(\stackrel{54}{55}\) \\
\hline 685 \& 107
9 \& 178

18 \& $\stackrel{273}{27}$ \& $\stackrel{368}{4}$ \& 407
46
46 \& 45 \& 10, 415 \& ${ }_{\text {14, } 248}^{\text {4, }}$ \& 22, ${ }^{\text {230 }}$, \& \& 42, \& \& coiche \& ${ }_{\text {(1) }}^{10}$ \& ${ }^{138}$ \& - 216 \& ${ }^{368}$ \& ${ }_{4}^{453}$ \& ${ }_{\text {(1) }}^{488}$ \& (5) \& 56
57
5

\hline 5 \& 7 \& 10 \& ${ }^{11}$ \& ${ }^{13}$ \& $\stackrel{15}{15}$ \& 17 \& 1,037 \& 1,231 \& 1,520 \& 1,584 \& 1, 1,048 \& ${ }^{1,7} 1.79$ \& $\xrightarrow{1,289}$ \& ${ }^{\text {(D) }} 10$ \& ${ }^{\text {(D) }} 12$ \& $\begin{array}{r}17 \\ \hline\end{array}$ \& (D) \& (D) ${ }^{10}$ \& \& \& 58

\hline ${ }_{4}^{4}$ \& \& \& \& \& ${ }_{36}^{20}$ \& $\stackrel{22}{4}$ \& 1,928 \& \& ${ }_{4}^{1,630}$ \& 1, ${ }_{6}, 204$ \& -1,632 \& ${ }_{9}^{1,528}$ \& ci, 11.81 \& (1) ${ }^{13}$ \& (D) ${ }^{15}$ \& $\stackrel{22}{34}$ \& ${ }_{69}^{26}$ \& \& ${ }_{82}^{33}$ \& 36
100 \& 60

\hline \& 5 \& 10 \& 6 \& \& 9 \& 10 \& ${ }_{582}$ \& ${ }^{2} 733$ \& 1,010 \& ${ }^{1,260}$ \& i,514 \& 1,693 \& 1,882 \& 5 \& 7 \& 10 \& 14 \& 15 \& 17 \& 17 \& 61

\hline ${ }^{39}$ \& 64 \& 109 \& 186 \& 256 \& 280 \& 313 \& 5,572 \& 8,061 \& 12,981 \& 21, 120 \& 28, 446 \& 566 \& 33,656 \& 52 \& 8 \& 127 \& 222 \& (D) \& (1) \& (D) \& 62

\hline 12 \& 5 \& \& \& \& \& 356
71

71 \& \& $$
\begin{gathered}
12,949 \\
4,563 \\
\hline 503
\end{gathered}
$$ \& \[

\underset{\substack{20,593
 6,561}}{2}
\] \& \& 41,253 \& 43,400 \& \& \& \& \& \& \& \& \& -63

\hline 41 \& 60 \& 106 \& \& ${ }_{243}^{13}$ \& ${ }_{256}^{11}$ \& ${ }_{273}^{12}$ \& 5,091 \& 7 7,414 \& - \& 22,283 \& $\xrightarrow{1,776}$ \& 28,597 \& 3, ${ }^{1,752}$ \& \& 40

81 \& $$
\begin{gathered}
56 \\
138
\end{gathered}
$$ \& \[

$$
\begin{array}{r}
588 \\
266
\end{array}
$$
\] \& - $\begin{array}{r}65 \\ 344\end{array}$ \& $\stackrel{64}{ } 3$ \& 688

409 \&

\hline ${ }_{527} 12$ \& ${ }_{20}^{658}$ \& ${ }_{1047}^{1,047}$ \& ${ }^{1,555}$ \& 1,923 \& \[
$$
\begin{array}{r}
2,096 \\
110
\end{array}
$$

\] \& ${ }^{2,427}$ \& $\xrightarrow{73,561} 1$ \& $\xrightarrow{91,168} \mathbf{2 , 9 1 4}$ \& 130,559 \& ${ }_{\text {18, }}^{1878}$ \& \[

\left\lvert\, $$
\begin{gathered}
223,300 \\
11,727
\end{gathered}
$$\right.

\] \& \[

{ }_{12,613}^{240,825}

\] \& \[

\underset{\substack{264,966
 14,008}}{ }

\] \& ${ }^{925}$ \& 1,155 \& 1,725 \& \[

$$
\begin{array}{r}
2,713 \\
130
\end{array}
$$
\] \& 3, ${ }^{159}$ \& 3,536 \& ${ }^{3} 979$ \& ${ }_{68}^{67}$

\hline 515 \& -138 \& ${ }^{1,006}$ \& ${ }_{-1,43}^{1,48}$ \& ${ }_{1}^{1,822}$ \& 1,9 \& 2,299 \& 71,781 \& 88, 254 \& 125, 177 \& 175,847 \& ${ }^{211,573}$ \& 228,21 \& \& \& 1,124 \& 1,662 \& 2, ${ }_{\text {2 }}^{283}$ \& 3,146 \& \& $\xrightarrow{3,786}$ \& 69

\hline 506 \& ${ }_{62}$ \& ${ }_{983}$ \& 1,443 \& 1,789 \& 1,950 \& 2,255 \& 71,053 \& -17, 180 \& 123,482 \& ${ }^{-173,373}$ \& 208, 349 \& 224, 59 \& -247, 218 \& ${ }_{842} 6$ \& 1,058 \& 1,592 \& 2,480 \& 3,023 \& - ${ }^{-1328}$ \& 3,632 \& 71

\hline 73
57 \& 108

80 \& $$
\begin{aligned}
& 190 \\
& 129
\end{aligned}
$$ \& 288

288 \& 369 \& 416

438 \& 473 \& $$
\underset{\substack{11,264 \\ 6,418}}{1}
$$ \& \[

$$
\begin{gathered}
15,911 \\
8,570
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
22,668 \\
14,324
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 30,702 \\
& 27,695
\end{aligned}
$$

\] \& 40,639 \& \[

$$
\begin{aligned}
& 44,604 \\
& 47,141
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 50,194 \\
& 50,0159
\end{aligned}
$$
\] \& 226

57 \& $$
\begin{gathered}
292 \\
78
\end{gathered}
$$ \& \[

$$
\begin{aligned}
& 385 \\
& 135
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 489 \\
& 270
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 630 \\
& 478
\end{aligned}
$$

\] \& \& | 783 |
| :--- |
| 588 |
| 58 | \& 72

73

\hline $$
\begin{gathered}
677 \\
1,676 \\
380
\end{gathered}
$$ \& \[

$$
\begin{array}{r}
813 \\
2,047 \\
397
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 1,302 \\
& 3,028 \\
& \hline \\
& 430
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1,983 \\
& 4,264 \\
& 465
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
2,579 \\
5,403 \\
\hline 477
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 2,805 \\
& 5,489 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 3,197 \\
& 6,566 \\
& \hline 87
\end{aligned}
$$

\] \& \[

$$
\begin{array}{|c}
8,735 \\
2,752 \\
37,722 \\
3
\end{array}
$$
\] \& 11,641

2,785

40,083 \& $$
\begin{gathered}
160,474 \\
3,888 \\
3,88
\end{gathered}
$$ \& 231,71

5, 719

42784 \& 29, 4 , 876 \& - $\begin{gathered}36,503 \\ 4,452 \\ 4,470\end{gathered}$ \& 347, 485 \& $\underset{\substack{1,124 \\ 296 \\ 433}}{ }$ \& \begin{tabular}{l}
1,488

2,457

\hline 283

 \& 2,

2, 113

3,53

534

\hline

 \& - \&

4,131

7,100

\hline 88

\hline
\end{tabular} \& $\xrightarrow{4,453} \mathbf{7} 5$ \& ${ }_{4}^{4,972} 8$ \& 74

75
76

\hline
\end{tabular}

Table 3.-Personal Income by Major
[Millions

[^4]Sources, Selected Years 1958-78-Continued
of dollars)

Table 3.-Personal Inoome by Major
[Mulions of

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& \multirow{2}{*}{Item} \& \multicolumn{7}{|c|}{Great Lakes} \& \multicolumn{7}{|c|}{Illinois}

\hline \& \& 1958 \& 1963 \& 1968 \& 1973 \& 1976 \& 1977 \& ${ }^{7} 1978$ \& 1958 \& 1963 \& 1968 \& 1973 \& 1975 \& 1977 \& ${ }^{7} 1978$

\hline 1 \& \& 64,863 \& 80,291 \& 118, 583 \& 174,199 \& 214, 244 \& 240,210 \& 269,236 \& 20,204 \& 24,512 \& 35, 231 \& 51,108 \& 63,330 7 \& 70,2)8 \& 78,371

\hline 2 \& Wage and salary disbursements \& \& \& 100, 256 \& \& \& \& \multirow[t]{2}{*}{224,609
24,544} \& \multirow[t]{2}{*}{16,633 69} \& \multirow[t]{2}{*}{20,519
966} \& \multirow[t]{2}{*}{29,988} \& 43, 041 \& 53, 619 \& 58, 838 \& \multirow[t]{2}{*}{$$
65,323
$$}

\hline 3
4 \& Other labor income \& 2, 503 \& - 3,423 \& 6,124 \& $$
11,736
$$ \& 17,974 \& 21,339 \& \& \& \& \& 3,054 \& 4,846 \& 5,724 \&

\hline 4 \& Proprietors income ${ }^{2}$ \& 9,107
$\mathbf{2 , 1 8 1}$ \& 9,617

1,966 \& 12,203
2,098 \& 15,918
4,715 \& 15,857
3,441 \& 18,265
4,131 \& 20,082
4,449 \& 2,881
730 \& 3,028
658 \& 3, 591
578 \& $\mathbf{5 , 0 1 3}$
1,643 \& 4,865
1,024 \& 5,736
1,305 \& 6,453
1,536
4

\hline ${ }_{6}^{5}$ \& Nonfarm ${ }^{2}$ \& | 2, 181 |
| :--- |
| 182 | \& 1,966

7,651 \& 10,104 \& 11, 204 \& 13,416
12,416 \& -14,134 \& 4,449
15,633 \& $\begin{array}{r}\text { 2,150 } \\ \hline\end{array}$ \& 2,370 \& 3,014 \& 1, 370 \& 3,841 \& 4,431 \& 4,917

\hline \& \multicolumn{15}{|l|}{By industry}

\hline 7 \& Farm---- \& \multirow[t]{2}{*}{$$
\begin{array}{r}
2,490 \\
62,373
\end{array}
$$} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r|}
2,373 \\
77,919
\end{array}
$$

\]} \& \multirow[t]{2}{*}{\[

\left|$$
\begin{array}{r}
2,491 \\
116,092
\end{array}
$$\right|

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
5,289 \\
168,911
\end{array}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
4,316 \\
209,928
\end{array}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
5,056 \\
235,154
\end{array}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
5,475 \\
263,761
\end{array}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
817 \\
19,386
\end{array}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
765 \\
23,747
\end{array}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
672 \\
34,559
\end{array}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
1,779 \\
49,330
\end{array}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{gathered}
1,264 \\
62,066
\end{gathered}
$$
\]} \& \multirow[t]{2}{*}{1,585

68,713} \& \multirow[t]{2}{*}{$$
\begin{array}{r}
1,813 \\
76,558
\end{array}
$$}

\hline 8 \& Nonfarm \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline 10 \& \multirow[b]{2}{*}{| Agricultural services, forestry, fisheries, and other. ${ }^{3}$ |
| :--- |
| Agricultural services |} \& \multirow[t]{2}{*}{55,912} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r|}
69,063 \\
163
\end{array}
$$

\]} \& \multirow[t]{2}{*}{\[

\left|$$
\begin{array}{r}
102,074 \\
246
\end{array}
$$\right| 14

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
146,215 \\
358
\end{array}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
181,117 \\
439
\end{array}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
204,636 \\
523
\end{array}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
230,543 \\
610
\end{array}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
17,440 \\
42
\end{array}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
21,076 \\
49
\end{array}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
30,351 \\
75
\end{array}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
42,498 \\
105
\end{array}
$$

\]} \& \multirow[t]{2}{*}{\[

53,411

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
59,614 \\
150
\end{array}
$$
\]} \& \multirow[t]{2}{*}{$\begin{array}{r}66,807 \\ \hline 174\end{array}$}

\hline 10 \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline 11 \& Agricultural services.---...----...-- \& \multirow[t]{2}{*}{135} \& 58 \& \multirow[t]{2}{*}{240} \& \multirow[t]{2}{*}{$\begin{array}{r}346 \\ 12 \\ \\ \hline\end{array}$} \& \multirow[t]{2}{*}{\[
$$
\begin{array}{r}
425 \\
14
\end{array}
$$

\]} \& \multirow[t]{2}{*}{| 504 |
| :---: |
| 19 |} \& \multirow[t]{2}{*}{587

24} \& \multirow[t]{2}{*}{41
1

203} \& \multirow[t]{2}{*}{$$
\begin{array}{r}
47 \\
1
\end{array}
$$} \& \multirow[t]{2}{*}{$\begin{array}{r}73 \\ 2 \\ 236 \\ \hline 10\end{array}$} \& \multirow[t]{2}{*}{$\begin{array}{r}102 \\ 3 \\ 340 \\ \hline 105\end{array}$} \& \multirow[t]{2}{*}{120

4} \& \multirow[t]{2}{*}{146
5
5} \& \multirow[t]{2}{*}{169
5
7}

\hline 12 \& Forestry, fisheries, and o \& \& \multirow[t]{2}{*}{5
508} \& \& \& \& \& \& \& \& \& \& \& \&

\hline 14 \& Mining-......- \& 486
167 \& \& 88 \& 952 \& 1,676 \& 1,810

899 \& 1,983 \& 203 \& 200 \& $$
\begin{aligned}
& 236 \\
& 102
\end{aligned}
$$ \& 340

195 \& $\begin{array}{r}619 \\ 344 \\ \hline\end{array}$ \& 488 \& 719
412

\hline 15 \& Oil and gas extracti \& 111 \& 113 \& 213
126 \& 414
14 \& ${ }^{\text {(D) }} 433$ \& 899
399

140 \& | 985 |
| :---: |
| 462 |
| 175 | \& 79

66 \& 59 \& \multirow[t]{2}{*}{60} \& \multirow[t]{2}{*}{51
1} \& \multirow[t]{2}{*}{${ }_{(4)}{ }^{153}$} \& \multirow[t]{2}{*}{${ }^{136}$} \& \multirow[t]{2}{*}{${ }_{\text {(*) }}{ }^{151}$}

\hline 16 \& Metal mining-........-.-.- \& 60 \& 59 \& 77 \& 102 \& (D) \& 140 \& 175 \& 3 \& \& \& \& \& \&

\hline 17 \& Nonmetallic minerals, excep \& $\begin{array}{r}149 \\ \hline 858\end{array}$ \& 168 \& \multirow[t]{2}{*}{212

$\mathbf{7}, 470$} \& - 2901 \& \multirow[t]{2}{*}{\[
$$
\begin{array}{r}
337 \\
11,055
\end{array}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
372 \\
12,720
\end{array}
$$
\]} \& \multirow[t]{2}{*}{420

14,745} \& \multirow[t]{2}{*}{56

1,283} \& \multirow[t]{2}{*}{$$
\begin{array}{r}
61 \\
1,432
\end{array}
$$} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
74 \\
2,324
\end{array}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
94 \\
3,101
\end{array}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
121 \\
3,527
\end{array}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
140 \\
3,943
\end{array}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
156 \\
4,471
\end{array}
$$
\]}

\hline 18 \& Construction \& 3,859 \& 4,442 \& \& 9,944 \& \& \& \& \& \& \& \& \& \&

\hline 19 \& Manufacturing \& 25,394 \& 31,963 \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 46,631 \\
& 11,953
\end{aligned}
$$} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{l|l}
65,688 \\
16,041
\end{array}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 78,780 \\
& 19,863
\end{aligned}
$$

\]} \& 89,989 \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
101,152 \\
24,292
\end{array}
$$
\]} \& 6,772 \& 8,200 \& 11, 701 \& 15,936 \& 18,993 \& 21, 180 \& 23662

\hline 20 \& Nondurable goods.- \& 7,310 \& \multirow[t]{2}{*}{} \& \& \& \& \multirow[t]{2}{*}{$$
\begin{gathered}
22,050 \\
5,414
\end{gathered}
$$} \& \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
2,434 \\
806
\end{array}
$$

\]} \& \multirow[t]{2}{*}{2,879} \& \& \& \multirow[t]{2}{*}{(1,822} \& 6.890 \& \[

7,577
\]

\hline $\stackrel{21}{22}$ \& Food and kindred produ \& \& \& \[
$$
\begin{array}{r}
11,953 \\
2,939
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
16,041 \\
3,841
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
19,863 \\
5,009
\end{array}
$$

\] \& \& \[

$$
\begin{array}{r}
24,292 \\
5,901
\end{array}
$$

\] \& \& \& $\xrightarrow[(D)]{1,107}$ \& 1, 445 \& \& 1,962 \& \multirow[t]{2}{*}{\[

\underset{(D)}{2,151}
\]}

\hline $\stackrel{22}{23}$ \& Textile mill products.-... \& -133 \& 2,363 \& \[
$$
\begin{array}{r}
172 \\
607
\end{array}
$$

\] \& \[

\left|$$
\begin{array}{r}
208 \\
757 \\
1070
\end{array}
$$\right|

\] \& \[

$$
\begin{aligned}
& 219 \\
& 872
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 246 \\
& 979
\end{aligned}
$$
\] \& $\begin{array}{r}247 \\ 1,060 \\ \hline\end{array}$ \& (D) ${ }^{166}$ \& ${ }_{178}$ \& ${ }^{(\mathrm{D})} \mathbf{2 1 9}$ \& ${ }^{(\mathrm{d})} \mathbf{2 3 4}$ \& (D) ${ }_{231}$ \& (D) 248 \&

\hline 24 \& Paper and allied products. \& 818 \& 1,070 \& 1,440 \& 1,970 \& 2,446 \& 2,706 \& 3,010 \& 177 \& 242 \& 328 \& 443 \& 562 \& 602 \& 67, 167

\hline 25 \& Printing and publishing- \& 1,350 \& 1,640 \& 2,254 \& $\stackrel{2,981}{2,795}$ \& 3,492 \& 3,779 \& 4, 163 \& 617 \& 741 \& 1,022 \& 1,306 \& 1,498 \& 1,624 \& 1,792

\hline 26 \& Chemicals and allied products \& 1,084 \& 1,348 \& 2,069 \& 2,795 \& 3,702 \& 4,077 \& 4,534 \& 310 \& 393 \& ${ }_{167}^{631}$ \& $\stackrel{810}{276}$ \& 1,091 \& 1, 202 \& 1,339
470

\hline | 27 |
| :--- |
| 28 | \& Petroleum and coal products \& 1334

13 \& 1,340
3
12 \& 202
402 \& 576
10 \& 801
11 \& $\begin{array}{r}893 \\ 11 \\ \hline\end{array}$ \& $\begin{array}{r}961 \\ 13 \\ \hline\end{array}$ \& ${ }_{\text {(D) }} 121$ \& (D) 125 \& (D) 167 \& (0) ${ }^{276}$ \& ${ }^{411}$ \& ${ }_{\text {(D) }} 448$ \& ${ }^{470}$

\hline 29 \& Rubber and misc. plastics prod \& 833 \& 1,117 \& 1,777 \& 2, 590 \& 2,997 \& 3,623 \& 4,068 \& (D) 121 \& (D) 170 \& ${ }^{(\mathrm{D}} 13$ \& ${ }^{486}$ \& ${ }^{\text {(D) }}$ \& 673 \& ${ }_{762}$

\hline 30 \& Leather and leather proeducts \& 209 \& ${ }^{1} 235$ \& 1282 \& 314 \& ${ }^{2} 15$ \& 320 \& ${ }^{1} 337$ \& 73 \& 81 \& 90 \& 102 \& 80 \& 83 \& 79

\hline 31 \& Durable goods. \& 18,084 \& 23, 265 \& 34, 678 \& 49,647 \& 58,917 \& 67,939 \& 76,859 \& 4,338 \& 5,350 \& 7,788 \& 10,797 \& 12, 671 \& 14, 290 \& 16,085

\hline 32 \& Lumber and wood produ \& 18, 277 \& 23, 329 \& 34, 448 \& 659 \& 5818 \& 1,059 \& 1,228 \& + 67 \& 72 \& 94 \& 120 \& 143 \& 166 \& 185

\hline 33 \& Furniture and fixtures. \& 483 \& 538 \& 746 \& 1,034 \& 1,679 \& 1,193 \& 1, 338 \& 139 \& 161 \& 221 \& 288 \& 295 \& 322 \& 346

\hline 34 \& Primary metal industries \& 2,832 \& 3,718 \& 5,271 \& 7,790 \& 9,115 \& 10,413 \& 11,815 \& 596 \& 776 \& 1,071 \& 1,538 \& 1,759 \& 1,972 \& 2,355

\hline | 35 |
| :--- |
| 36 | \& Fabricated metal products. \& 2,439 \& 3, 108 \& 4,740 \& ${ }_{6}^{6,646}$ \& 8,359 \& 9,664 \& 10,791 \& 750 \& -865 \& 1,285 \& 1,756 \& ${ }^{2}, 120$ \& 2, 404 \& 2,688

\hline 36
37 \& Machinery, except electrical....-. \& 3,645
2,394 \& 4,896
3,115 \& 7,517
4,565 \& 10,325
6,171 \& 12,448
6,610 \& 14,143
7,591 \& 16,104
8,673 \& $\begin{array}{r}1,033 \\ 884 \\ \hline\end{array}$ \& 1, 420 \& 2,149 \& 3,

2, 106 \& \begin{tabular}{l}
3,733

2,

\hline 171

 \&

4,218

\hline
\end{tabular} \& 4, 726

2,691

\hline 38 \& Transportation equipment exc. motor vehicles. \& -900 \& ${ }^{3} 846$ \& 1,366 \& 1,644 \& 1,959 \& 2,253 \& 2, 673 \& 145 \& +130 \& 215 \& 326 \& 421 \& 491 \& 560

\hline 39
40 \& Motor vehicles and equipment............. \& 3, 325 \& 4,598 \& 7,042 \& 11,463 \& 13,893 \& 16,545 \& 18,604 \& 133 \& 143 \& 241 \& 363 \& 443 \& 534 \& 652

\hline 40 \& Ordnance ${ }^{4}$-...-.............. \& -158 \& 4, 181 \& + 359 \& 11,228 \& \& \& \& 15 \& 23 \& 37 \& 36 \& \& \&

\hline 41 \& Stone, clay, and glass products. \& 859 \& 1,004 \& 1,319 \& 1,946 \& 2,359 \& 2.611 \& 2,916 \& 213 \& 250 \& 317 \& 448 \& 562 \& 601 \& ${ }_{7}^{659}$

\hline 42
43 \& Instruments and related products .-..... \& 358 \& 449 \& 678 \& 923 \& 1,253 \& 1,447 \& 1,592 \& 193 \& ${ }_{201}^{242}$ \& 342
264 \& 458
353 \& 612
413 \& 699
451 \& 737
486

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline 44 \& Transportation and public utilit \& 4,764 \& 5,543 \& 7,619 \& 11,790 \& 14, 475 \& 16, 276 \& 18,393 \& 1,723 \& 1,983 \& 2,637 \& 4, 056 \& 4,994 \& 5,567 \& 6,266

\hline 45
46 \& Railroad transportation-.. \& 1,366 \& 1,310 \& 1,465 \& 1,968 \& 2,253 \& 2,439 \& 2,624 \& 583 \& 562 \& 585 \& 779 \& 864 \& $\begin{array}{r}938 \\ 1.506 \\ \hline\end{array}$ \& +999

\hline 46
47 \& Trucking and warehousing \& 1,188 \& 1,588 \& 2,328 \& 3, 755 \& 4,272 \& 4,992 \& 5,749 \& 392 \& 508 \& $\begin{array}{r}732 \\ 34 \\ \hline\end{array}$ \& 1, 134 \& 1,312 \& 1,506

57 \& $\begin{array}{r}1,709 \\ \hline 63\end{array}$

\hline 48 \& Water transportation. \& 100

415 \& | 108 |
| :--- |
| 524 | \& 138

819 \& $\begin{array}{r}151 \\ 1.156 \\ \hline\end{array}$ \& 181
1.468 \& 200
1,728 \& 238
1.993 \& $\begin{array}{r}22 \\ 178 \\ \hline\end{array}$ \& 252 \& $\begin{array}{r}34 \\ 422 \\ \hline\end{array}$ \& 39
646 \& 836 \& 953 \& 1,693

\hline 49 \& Communication.- \& 834 \& 979 \& 1,469 \& 2, 622 \& 1, 368 \& 3,908 \& 4,415 \& 291 \& 328 \& 465 \& 838 \& 1,150 \& 1,263 \& 1,454

\hline 50 \& Electric, gas, and sanitary \& 862 \& 1,035 \& 1,400 \& 2,138 \& 2,754 \& 3,009 \& 3,375 \& 258 \& 308 \& 400 \& 620 \& 783 \& 8.58 \& 947

\hline 51 \& Wholesale trade \& 3,830 \& 4,690 \& 6,800 \& 10, 016 \& 13,423 \& 14,787 \& 16,525 \& 1,505 \& 1,833 \& 2,614 \& 3,658 \& 5,015 \& 5,569 \& 6, 138

\hline 52 \& Retail trade... \& 7,352 \& 8,557 \& 12,401 \& 17,235 \& 20,830 \& 22,767 \& 25, 234 \& 2,271 \& 2,671 \& 3,776 \& 5, 075 \& 6,176 \& 6,727
4 \& 7,477

\hline 53
54 \& Finance, insurance, and real est \& 2,913 \& 3,705 \& 12,450 \& 7,545 \& - 9,971 \& 11,388 \& 12,938 \& 1,098 \& 1,384 \& 2, 015 \& 2,827 \& 3,843 \& 4,347
1,059 \& 4,942
1,182

\hline | 54 |
| :--- |
| 55 | \& Banking-....--.-..............-- \& 559

2,354
2, \& 735
2,971 \& 1,120
4,330 \& 1,832 \& 2,551

7,420 \& \begin{tabular}{l}
2,799

8,589

\hline 8

 \&

3,136

9,803

\hline 8,86

 \&

203

894

\hline
\end{tabular} \& 1, ${ }^{271}$ \& 400

1,614 \& 673
2,154

2 \& $\begin{array}{r}\text {, } 9856 \\ \mathbf{2 , 8 8 7} \\ \hline\end{array}$ \& | 1,059 |
| :--- |
| 3,288 | \& 1,182

3,760

\hline 56 \& Services. \& 7,175 \& 9,492 \& 14,828 \& 22,687 \& 30,468 \& 34,377 \& 38,962 \& 2,543 \& 3,324 \& 4,973 \& 7,400 \& 10, 120 \& 11, 443 \& 12,958

\hline 57 \& Hotels and other lodging places \& ${ }^{+} \mathbf{2 7 7}$ \& ${ }^{3}, 415$ \& $\begin{array}{r}14,888 \\ \hline 170\end{array}$ \& 22,648 \& - 750 \& ${ }^{34,542}$ \& ${ }^{3} 943$ \& - 114 \& $\begin{array}{r}130 \\ \hline 1\end{array}$ \& -181 \& - 243 \& ${ }^{1}, 261$ \& 306 \& 335

\hline 58 \& Personal services, \& 890 \& 1,027 \& 1,404 \& 1,446 \& 1,598 \& 1,769 \& 1,932 \& 316 \& 355 \& 458 \& 438 \& 463 \& 515 \& 561

\hline 59
60 \& Private households.....-... \& 492 \& 524 \& 629 \& 671 \& 798 \& 851 \& 936 \& 141 \& 150 \& 179 \& 190
1,485 \& 227
2,071 \& 242
2,397 \& 268
2,707

\hline 60
61 \& Business and repair services-...-.............- \& 1,208 335 \& 1,642
377 \& 2, ${ }_{566}$ \& 4, 7627 \& 1,389
5,957 \& 6,231
1,102 \& 7,270
1,185 \& 490
118 \& 644
129 \& 973
194 \& 1,485
252 \& 2,071
319 \& 2,397
368 \& $\begin{array}{r}2,707 \\ \hline 884\end{array}$

\hline \& pictures. \& \& 37 \& 566 \& . 61 \& 957 \& 1,102 \& 1,185 \& \& \& \& \& \& \&

\hline 62 \& Professional, social, and related services....- \& 3,973 \& 5,607 \& 9,172 \& 15, 134 \& 20,976 \& 23,582 \& 26, 695 \& 1,365 \& 1,915 \& 2,988 \& 4,793 \& 6,778 \& 7,616 \& 8,705

\hline 63 \& Government and government enter \& 6,461 \& 8,856 \& 14,018 \& 22,696 \& 28,811 \& 30, 518 \& 33, 218 \& 1,946 \& 2,671 \& 4,209 \& 6,832 \& 8, 655 \& 9,099 \& 9,751

\hline 64 \& Federal, civilian. \& 1,477 \& 1,934 \& 2, 790 \& 3,972 \& 28,81
4,934 \& 5,200 \& 5,612 \& , 505 \& , 637 \& - 917 \& 1,288 \& 1,508 \& 1,657 \& 1,744

\hline 65 \& Federal, military \& 1,556 \& - 572 \& , 815 \& 983 \& 1, 107 \& 1,125 \& 1,144 \& 212 \& 221 \& ${ }^{353}$ \& ${ }_{5} 393$ \& ¢ 477 \& 6, 496 \& 498
7,509

\hline 68 \& State and local. \& 4,428 \& 6, 350 \& 10, 414 \& 17,740 \& 22, 769 \& 24,192 \& 26,462 \& 1,229 \& 1,813 \& 2,938 \& 5,151 \& 6, 670 \& 6,947 \& 7,509

\hline \& Derivation of personal income by place of residence \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline 67 \& Total labor and proprietors income by place of work. \& 64,863 \& 80, 291 \& 118, 583 \& 174, 199 \& 214, 244 \& 240, 210 \& 269, 236 \& 20,204 \& 24,512 \& 35, 231 \& 51, 108 \& 63,330 \& 70,298 \& 78,371

\hline 68 \& Less: Personal contributions for social insurance by place of work. \& 1,394 \& 2,358 \& 4,651 \& 8, 327 \& 10,827 \& 12,003 \& 13,566 \& 438 \& 734 \& 1,393 \& 2,440 \& 3,246 \& 3,553 \& 3,983

\hline 69 \& Net labor and proprietors income by place of work.. \& 63, 469 \& 77, 033 \& 113, 932 \& 165, 872 \& 203,417 \& 228, 207 \& 255, 670 \& 19,766 \& 23, 779 \& 33,838 \& 48,669 \& 60,084 \& \&

\hline 70 \& Plus: Residence adjustment......................- \& -8,469 \& $\begin{array}{r}7106 \\ \hline 18\end{array}$ \& ${ }^{11208}$ \& -185,872 \& 203, 642 \& \& ${ }^{203}$ \& 19, 87 \& 126 \& -172 \& ${ }_{48}^{214}$ \&	
60,372	
189	\& \[

$$
\begin{array}{r}
300 \\
67,046
\end{array}
$$

\] \& | 350 |
| ---: | ---: | ---: |
| 74,737 |

\hline 71 \& Net labor and proprietors income by place of residence. \& 63,515 \& 78,039 \& 9 114, 140 \& 0 166,318 \& 204, 059 \& 228,923 \& 256, 473 \& 3 19,852 \& 2 23,904 \& 4 34,010 \& - 48,883 \& 60,372 \& $2 \begin{gathered}\text { 67,046 } \\ 12,571\end{gathered}$ \&	4,737
14,160	

\hline 72 \& Plus: Dividends, interest, and rent 6............... \& 8, 716 \& 12,242 \& 18,070 \& 25,698 \& 34,551 \& 38,356 \& 43, 190 \& 2, 769 \& 4,070 \& 5,942 \& 8,397 \& 11,362 \& 12,571 \& (14, 160

\hline 73 \& Plus: Transfer payments. \& 5,401 \& 6,849 \& 10,910 \& 21, 364 \& 34,674 \& 36,910 \& 39, 545 \& 1,456 \& 1,977 \& 3,172 \& 6,282 \& 10,092 \& 10,723 \& 11,222

\hline 74 \& Personal income by place of residence \& \& \& \& \& \& \& \& \& 29,951 \& 43, 123 \& 63, 562 \& 81, 827 \& 90,340 \& 100,091

\hline 75 \& Per capita income (dollars). \& 2, 182 \& 2, 600 \& \& 213,380 \& 273,283
6,679 \& 304,189
7,407 \& 839, 824 \& 2, 2 2,435 \& 2,879 \& 3, ${ }^{\text {3, }}$, 22 \& 5, 687 \& 7, 71810 \& 8,046 \& 8,903
11,243

\hline 76 \& Total population (thousands) \& 35, 578 \& 37, 357 \& 79,645 \& 40,837 \& 40,918 \& 41,066 \& 41,233 \& 9,886 \& 10,402 \& 10,995 \& 11,177 \& 11,193 \& 11,228 \& 11,243

\hline
\end{tabular}

[^5]
Sources, Selected Years 1958-78-Continued

Indiana							Michigan							Ohio							Line
1958	1963	1968	1973	1976	1977	${ }^{7} 1978$	1958	1963	1968	1973	1976	1977	${ }^{7} 1978$	1958	1963	1968	1973	1976	1977	${ }^{7} 1978$	
7,652	9,782	14,317	21,683	26,409	29,4.57	33, 157	13,717	17,320	26,886	40,230	48,610	55,532	62,832	16,972	20,788	30,684	44,049	54,232	60,397	67,332	1
6, 152	8,061	11, 957	17,540	21,643	24, 248	27, 299	11, 280	14, 578	22,778	34, 184	41,076	46, 543	52,552	14, 310	17,783	26, 266	37, 800	46, 148	51,148	57,052	2
${ }^{6} 111$	${ }^{8} 427$	11, 776	1,478	2,235	2,644	3,051	674	862	1,631	3,245	4, 834	5, 849	6, 735	609	858	1,528	2,896	4,382	5,142	5, 871	3
1, 189	1,294	1,583	2,665	2,532	2,565	2,807	1,764	1,880	2,476	2,801 469	2,701 344 2	3, 1440	3,544	2, 052	2, 148	2, 890	3,352 590	3,703	4, 107	4,409	4
404 785	405 890	1,216	1,161 1,505	1,643	1,940	2,145	1,478	1,628	2, 239	2,332	2,357	2,695	2,979	1,689	1,864	2, 527	2,762	3,092	3,501	3,865	5
448	470	424	1,254	1,044	783	836	344	332	325	585	482	588	716	428	369	444	713	813	792	782	7
7,204	9,312	13,892	20,429	25, 365	28,674	32,321	13,373	16,988	26,561	39, 644	48, 128	54, 945	62, 115	16,544	20,420	30, 240	43,336	53, 419	59,605	66,550	8
6,475	8,278 18	12, 232	17,956 40	22, 209	25, 258	28,566 67	11,916 25	15,005 29	23, 315	$\begin{array}{r} .34,237 \\ 77 \end{array}$	41, 212	47, 581	54, 040	14,849 43	18,138 46	26,785	37,779 91	46,453 109	52,205 133	58,497 153	10
${ }^{*}{ }^{15}$	$\left({ }^{18}{ }^{18}\right.$	(*) ${ }^{26}$	39 1	48 1	57 1	66 2	23 2	28 1	48 2	74 3	${ }_{4}^{91}$	107 5	127	42 1 1	46 1	64	89	106 3	128 4	148	11
	63	70	95	179	195	213	87	91	116	173	266	263	314	117	136	185	312	572	620	688	13
28	25	(D)	53	99	123	132	(*)	(*)	(D)	(*)	(*)	(D)	(D)	60	64	81	166	321	364	380	14
12	12	(D)	5	(D)	(D)	(D)	11	11	(D)	25	80	78	87	22	32	45	63	164	158	196	15
1	2	(*)	(*)	(*)	(*)	(*)	48	51	68	90	(D)	120	153	2	2	7	8	11	12	14	16
18	24	29	37	(D)	(D)	(D)	28	29	37	58 2	(D)	(D)	(D)	33	39	52	74	76	85	98	17
452	523	901	1,236	1,430	1,705	1,980	708	865	1,489	2,107	2,088	2,522	3, 050	1,042	1, 151	2,006	2,489	2,800	3, 126	3,626	18
3,145	4, 162	6,081	8,927	10,664	12, 187	13, 877	6,032	7,827	11,965	17, 298	20,686	24,375	27,413	7, 041	8, 738	12,703	17, 481	20,768	23,681	26,398	19
809	996	1,314	1,784	2,175	2, 430	2,680	1,148	1,395	1,929	2, 633	3, 273	3,707	4,071	2, 054	2,444	3,413	4, 545	5, 555	6, 217	6, 824	20
${ }_{\text {(D) }} 246$	${ }_{\text {(D) }}^{283}$	(D) 322	${ }_{\text {(D) }} 402$	${ }_{(D)}^{515}$	${ }_{\text {(D) }}^{557}$	${ }_{(\mathrm{D})}^{604}$	331 11	$\begin{array}{r}346 \\ 17 \\ \hline\end{array}$	$\begin{array}{r}434 \\ 23 \\ \hline\end{array}$	573 22	$\begin{array}{r}757 \\ 47 \\ \hline\end{array}$	828 60	$\begin{array}{r}896 \\ 47 \\ \hline\end{array}$	463 50	496 58 5	625 76	$\begin{array}{r}795 \\ 93 \\ \hline 1\end{array}$	1,026 71	1,111	1,208 81	21
${ }^{(\mathrm{D})}{ }_{38}$	${ }^{(D)} 47$	${ }^{(D)} 6$	(D) 81	(D) 95	(D) 101	(D) 109	11 49	17 95	$\begin{array}{r}23 \\ 179 \\ \hline\end{array}$	22 260 217	$\begin{array}{r}47 \\ 325 \\ \hline\end{array}$	$\begin{array}{r}60 \\ 394 \\ \hline\end{array}$	47 431 4	50 75	58 77	76 107	$\begin{array}{r}93 \\ 135 \\ \hline\end{array}$	71 163	$\begin{array}{r}74 \\ 174 \\ \hline\end{array}$	$\begin{array}{r}81 \\ 189 \\ \hline\end{array}$	$\stackrel{22}{23}$
58	85	117	162	202	222	249	165	205	246	317	381	426	454	210	257	367	492	584	647	716	24
109	147	209	285	357	387	427	173	198	272	396	435	473	522	331	412	558	715	846	911	989	25
148	188	269	404	496	546	599	281	347	495	647	859	938	1,017	309	369	571	806	1,101	1,220	1,381	26
${ }^{99}$	90	89	96	${ }^{97}$	109	120	25	29	32	${ }_{(*)}{ }^{47}$	${ }^{5}{ }^{59}$	${ }^{*}{ }^{66}$	${ }^{*}{ }^{71}$	85	91	109	151	226	262	291	27
(D)	(${ }_{140}$	(D) ${ }^{225}$	(D) ${ }_{330}$	(D) ${ }_{386}$	${ }_{479}$	${ }_{541}$	3 94 94	3 134	217	${ }^{(*)}$	${ }^{(*)}$	${ }^{(*)}$	${ }^{(*)}$	5 483	${ }_{6}^{5}$	4	4	3	3	3	28
95 9	140	225 13	330 17	$\begin{array}{r}386 \\ 18 \\ \hline\end{array}$	479 19	${ }_{21}^{541}$	94 15	$\begin{array}{r}134 \\ 22 \\ \hline\end{array}$	217 29	$\begin{array}{r}337 \\ 34 \\ \hline\end{array}$	370 39	481 42	590 43	483 44	632 46	939 57	1,297 58	$\begin{array}{r}1,477 \\ \hline 59\end{array}$	$\begin{array}{r} 1,760 \\ 56 \end{array}$	1,902	29 30
2,336	3,166	4,767	7, 142	8,490	9,757	11, 196	4,884	6, 431	10, 036	14, 666	17,413	20,668	23, 341	4,987	6,295	9,290	12, 936	15, 213	17,464	19, 574	31
	61	83	126	229	267	322	51	60	82	132	161	181	200	48	55	83	123	158	182	215	32
84	110	161	232	219	238	271	109	120	179	246	274	301	354	108	110	133	182	191	215	236	33
580	750	1, 101	1, 626	2,042	2,351	2,730	473	715	1,046	1,605	1, 838	2, 155	2,373	1,042	1,291	1,774	2,617	3,071	3,473	3,815	34
208	296	441	674	842	975	1,075	562	808	1, 304	1,764	2, 145	2,558	2,841	742	918	1,382	1,940	2,470	2,837	3,158	35
276	387	587	895	1,088	1,283	1,451	827	1,151	1,772	2,227	2, 458	2,946	3,448	986	1,286	2,015	2,827	3,360	3,687	4,140	36
406	${ }^{617}$	944	1,521	1,660	1, 819	2,011	246	249 84	404	550	593	717	1,026	624	822	1,231	1,399	1,545	1,869	2,064	37
213	233	387	517	582	693	845	90	84	122	120	204	240	306	423	371	596	585	643	709	810	38
320	453	638	1,068	1,268	1,504	1,764	2, 208	2,935	4,700	7,465	9, 142	10,875	12,015		737	1,144	2,010	2,339	2,894	3,360	
13	36	121	53				176	38 129	53 188	43				17	78	101	60				40
133 18	$\begin{array}{r}144 \\ \hline 29\end{array}$	186 42	272 67	333 112	371 136	425 161	102 65	129 65	188	301 103	344 143	401	447 193	374 55 5	$\begin{array}{r}435 \\ 82 \\ \hline\end{array}$	565 124	822 196	992 264	1,090 306	1,220 336	41
18	50	76	91	114	121	142	74	77	87	109	111	129	138	96	109	142	176	179	202	222	43
548	642	895	1,382	1,745	1,985	2,230	821	965	1,419	2,185	2,654	2,999	3,437	1,259	1,458	2,003	3,112	3,765	4,244	4,798	44
166	160	192	253	312	332	358	154	153	195	261	300	329	355	365	344	386	521	598	648	697	45
148	199	287	470	565	655	758	218	291	429	683	740	885	1,046	314	435	664	1,108	1,233	1,462	1,676	46
2	2	4	8	11	12	14	15	15	15	19	24	26	30	57	59	77	73	84	88	114	47
46	51	69	84	103	137	156	53	70	123	158	192	236	282	102	110	145	187	227	269	310	48
89	103	167	289	396	444	492	176	204	319	559	750	822	921	205	252	384	${ }_{6}^{686}$	933	1,030	1,160	49
98	127	174	278	359	405	451	204	233	338	505	649	701	803	216	258	348	527	690	746	841	50
364	456	646	984	1,432	1,568	1,726	691	850	1,360	2,121	2,468	2,708	3,149	918	1,129	1,580	2,368	3,216	3,535	3.953	51
871	1,044	1,499	2,112	2,538	2,810	3,130	1,518	1,747	2,645	3,821	4,523	4. 952	5,518	1,895	2,183	3,175	4,397	5,393	5,866	6,427	52
315	415	611	848	1,106	1,258	1,399	550	679	1,047	$\begin{array}{r}1,403 \\ \hline 377\end{array}$	1,812	2,095	2,401	697	894	1,291	1,755	2,213	2,532	2,872	53
60	83	131	210	294	322	1351	118	142	238	, 377	${ }_{5}^{518}$	-568	-648	126	159	1244	396	545	589	${ }^{6} 658$	54
255	332	480	${ }^{638}$	+811	$\begin{array}{r}935 \\ 3,494 \\ \hline\end{array}$	1,049 3,943	132 1,483	$\begin{array}{r}143 \\ 1,954 \\ \hline\end{array}$	$\begin{array}{r}809 \\ 3,225 \\ \hline\end{array}$	1,026 5,052	1,293 6,620	1,527 7,554	1,753 8,626	571 1,836	725 2,403	$\begin{array}{r}1,047 \\ 3 \\ \hline\end{array}$	1,358	$\begin{array}{r}1,668 \\ 7 \\ \hline 618\end{array}$	1,943 8,469	2,214 $\mathbf{9 , 5 8 2}$	55
706 25	$\begin{array}{r}954 \\ 32 \\ \hline\end{array}$	$\begin{array}{r}1,504 \\ 46 \\ \hline\end{array}$	2, 332	$\begin{array}{r}3,066 \\ 89 \\ \\ \hline 108\end{array}$	$\begin{array}{r}3,494 \\ \hline 100\end{array}$	- 3.943	$\begin{array}{r}1,483 \\ \hline\end{array}$	1,954 52	3,225 92	5,052	16,620 142	7,554	$\begin{array}{r}18626 \\ \hline 190\end{array}$	1,836	2,403 68	$\begin{array}{r}3,777 \\ \hline 97\end{array}$	$\begin{array}{r}1,776 \\ \hline 159 \\ \hline\end{array}$	$\begin{array}{r}7,618 \\ \hline 174\end{array}$	1,469 $\mathbf{1 7 3}$	9,582	56 57
99	116	164	178	194	219	237	175	207	309	316	346	385	423	222	254	345	377	426	464	509	58
59	64	81	90	107	114	126	110	117	137	143	170	181	199	139	147	175	186	221	236	260	59
89	132	206	348	462	558	660	250	352	576	878	1,153	1,362	1,616	297	396	647	1,013	1,270	1,415	1,701	60
30	35	49	61	78	94	101	68	76	120	166	205	241	264	92	103	154	214	265	292	319	61
404	576	958	1,586	2,136	2,408	2,709	831	1,150	1,991	3,437	4,605	5,218	5,934	1,025	1,436	2,358	3,827	5,262	5,888	6,595	62
729	1,034	1,661	2,474	3,156	3,416	3,755	1,458	1,983	3,246	5,407	6,916	7,364	8,076	1,695	2,282	3,455	5,556	6,966	7,399	8,053	63
160	215	343	494	617	654	715	220	299	455	672	870	899	978	490	643	877	1,228	1,543	1,592	1,726	64
56 513	55 764	78 1,239	114 1,866	114 2,425	119 2,643	122 2,917	91 $\mathbf{1 , 1 4 6}$	125 $\mathbf{1 , 5 5 9}$	139 2,652	193 4,542	207 5,839	201 6,264	194 6,903	147 1,058	133 1,505	208 2,370	231 4,097	255 5,169	256 $\mathbf{5 , 5 1}$	1272 6,055	65 66
513	764	1,239	1,866	2,425	2,643		1,146				5,839					2,380					60
7,652	9,782	14,317	21,683	26,409	29,457	33, 157	13,717	17,320	26,886	40,230	48,610	55,532	62,832	16,972	20,788	30,684	44, 049	54,232	60,397	67,332	67
160	275	546	970	1,309	1,462	1,665	279	486	1,027	1,929	2,387	2,669	3,051	379	622	1,217	2,116	2,748	3,082	3,456	68
7,492	9,507	13,771				31, 491	13,438	16,834	25,859	38, 301	46,223	52,863	59,780	16,592	20, 167	29,467	41,332	51,484	57,315	63,876	69
	, 9	${ }^{(*)}$	-72	, 106	131	139	13, 64	, 75	124	211	2295	5326	60 364	-159	-176	-245	-314	-373	-408	${ }_{-464}$	70
7,503	8,516	13,771	20,785	25, 205	28,126	31,630	13,502	16,908	25, 984	38,512	46,518	53.180	60, 144	16,433	19,991	29,222	41,618	51, 112	56,907	63,412	71
872	1,284	1,952	2,948	4, 203	4,795	5,372	1,765	2,450	3.767	5,175	7,022	7,800	8.800	2,375	3,182	4,627	6,443	8,377	9,332	10,501	72
614	1,787	1,259	2,424	3,772	4,028	4,422	1,254	1,411	2,346	4,780	8,104	8,491	9,017	1,537	1,948	2,927	5,552	9,039	9,720	10,541	73
8,989	11,588	16,981	26,158	33, 180	36,943	41,412	16,520	20,770	32,097	48, 467	61, 645	69,480	77,943	20,346	25, 121	36,775	53,614	68,527	75.959	84,432	74
1,961	2,415 4,799	3,334	4,935	6,245	6,906	7,706 5,374	2,155	2,578	3,691 8,696	5,341 9,075	6,765 9	7,595	8,483 9,189	$\stackrel{2,120}{9,599}$	2,516	3,497	4,990 10,745	6,410 10,690	7,102	70,855	75
4,583	4,799	5,093	5,301	5,313	5,350	5,374	7,667	8,058	8,696	9,075	9,113	9,148	9,189	9.599	9,986	10,516	10,745	10,690	10,696	10,749	76

Table 3.-Personal Income by Major
[Millions of

Lins	Item	Wisconsin							Plains						
		1958	1963	1968	1973	1976	1977	${ }^{7} 1978$	1958	1963	1968	1973	1976	1977	${ }^{7} 1978$
1	Income by place of work	6,318	7,889	11,466	17,129	21,663	24,524	27,544	23,932	29,073	41,039	67, 291	77,698	87, 963	101,404
2	Wage and salary disbursements	4,880	6,311	9,267	13,980	17,929	19,827	22,383	16, 893	21,809	31,991	47,746	62,972	69,437	78,054
3	Other labor income.-	${ }^{4} 218$, 310	537	1,063	1,677	1,981	2,292	618	21,842	1,704	3,342	5,522	6,513	7,570
4	Proprietors income ${ }^{2}$.	1,221	1,268	1,662	2,086	2,057	$\begin{array}{r}2,717 \\ \hline 150\end{array}$	2,869	6,422 3 3	$\stackrel{6,323}{ }$	$\begin{array}{r}7,344 \\ 3 \\ \hline 107\end{array}$	16, 203	9, 204	12,013	15,780
${ }_{6}$	Fonfarm ${ }^{\text {F }}$	${ }_{823}^{398}$	369 899	1,552 1,110	$\begin{array}{r}\text { 1,235 } \\ \hline 185\end{array}$	1,573 1,484	1,567	1, 1,727	3,286 $\mathbf{3}, 136$	2,874 3,448	3,007 4,338	10,940 5,263	-2,791	4, 7 7,073	7,975
	Farm.........................	$\begin{array}{r} 452 \\ 5,866 \end{array}$	$\begin{array}{r} 437 \\ 7,452 \end{array}$	$\begin{array}{r} 626 \\ 10,840 \end{array}$	$\begin{array}{r} 958 \\ 16,171 \end{array}$	$\begin{array}{r} 713 \\ 20,950 \end{array}$	$\begin{array}{r} 1,307 \\ 23,217 \end{array}$	$\begin{array}{r} 1,327 \\ 26,217 \end{array}$	-3,596	3,25925,814	$\begin{array}{r} 3,410 \\ 37,629 \end{array}$	11,56955,722			$\begin{array}{r} 8,973 \\ 92,581 \end{array}$
7													$\begin{array}{r} 3,677 \\ 74,021 \end{array}$	$\begin{array}{r} 5,848 \\ 82,115 \end{array}$	
${ }_{10}^{9}$	Private Agricuitural services, forestry, fisheries, and other. ${ }^{3}$	5,233 15	6,566 21	9,392 30	13,744 45	17,832 63	19,978	22,633 82 8	17,395	$\begin{array}{\|r} 21,780 \\ \\ 104 \end{array}$	31, 471	$\begin{array}{r} 45,906 \\ { }_{212} \end{array}$	$\begin{array}{r} 61,259 \\ 232 \end{array}$	$\begin{array}{r} 68,448 \\ 270 \end{array}$	$\begin{array}{r} 77,763 \\ 317 \end{array}$
112	Agricultural services. Forestry, fisheries, and other ${ }^{3}$	$\begin{array}{r} 14 \\ 1 \\ 20 \end{array}$	$\begin{array}{r} 20 \\ 1 \\ 18 \end{array}$	$\begin{aligned} & 29 \\ & 2 \\ & 22 \end{aligned}$	42 3 3	60 3 3	$\begin{array}{r}66 \\ 4 \\ 45 \\ \hline\end{array}$	$\begin{array}{r}77 \\ 5 \\ \hline\end{array}$	83 1 1	103	153	208	227	263	$\begin{array}{r}309 \\ 8 \\ \hline\end{array}$
13	Mining-----................				$\stackrel{*}{* *)}_{(*)}$	(D) ${ }^{40}$		(D) ${ }^{49}$	314 14	296	$\begin{array}{r} 382 \\ 17 \end{array}$	484 35	875 52 5	841	1,071
14 15	Coal mining--	${\stackrel{*}{*}{ }^{*}{ }^{20}}^{\text {a }}$	$()^{18}$	(D)		(D)	(D)		14 116			$\begin{aligned} & 35 \\ & 94 \end{aligned}$		292	92 359
16	Metal mining		16	20	429	${ }^{(D)}$		(D)	$\begin{aligned} & 116 \\ & 125 \end{aligned}$	$\begin{array}{r} 96 \\ 115 \end{array}$	$\begin{aligned} & 106 \\ & 169 \end{aligned}$	$\begin{array}{r}94 \\ 233 \\ \hline 18\end{array}$	346	316	437
17	Nonmetallic minerals, exce	374				31	34	39	60	70	91				6, $\begin{array}{r}183 \\ 6,61\end{array}$
18	Construction.		470	750	1,010	1,210	1,424	1,619	1,402	1,880	2,654	3,772	5,113	5,661	
19	Manufacturing	2,405	3,0361,013	4,180	6,046	7,670	8,566	9,803	5,06522	6,4842,995	$\xrightarrow{9,900}$	$\stackrel{13,933}{5,50}$	17, 871	20, 192	
20	Nondurable goods			1,383	1,940	2,539	2,806	3,140				$\stackrel{5}{2,217}$	2,896	3,108	22,895
21	Food and kindred pro	337	$\begin{array}{r}360 \\ 29 \\ 30 \\ \hline\end{array}$		626	2,859	${ }^{2} 8057$	1,040	1, 201	$\underset{\substack{1,381 \\(D)}}{\text { d }}$	1,732				3, 406
$\begin{aligned} & 22 \\ & 23 \end{aligned}$	Textile mill products---.--	26 24		$\begin{array}{r} 450 \\ 36 \end{array}$	$\begin{array}{r}54 \\ 47 \\ \hline 5\end{array}$	56 58 78	${ }_{62}^{63}$	68	${ }^{(\mathrm{D})}{ }_{164}$	${ }^{190}$	248	342	382	63 399	$\begin{array}{r}68 \\ 433 \\ \hline\end{array}$
24	Paper and allied products	208 120	$\begin{array}{r}281 \\ 142 \\ \hline 1\end{array}$	382	556	717	810	919	152	282	431		$\begin{array}{r}\text { 836 } \\ 1,238 \\ \hline\end{array}$	${ }_{9}^{938}$	1,057
25	Printing and publishing			193	280	356	384	433	377	468	652	950		1,359	1, 514
26	Chemicals and allied product	37	52	104	127	155	171	198	243	322	485	606	852	940	${ }^{1,039}$
27 28	Petroleum and coal products	3	(*) ${ }^{4}$	(*) 5	(*) 5	${ }^{*}{ }^{8} 8$			(D) ${ }^{67}$	(D) ${ }^{77}$	87 1	${ }_{(}^{(\mathrm{D})}$	${ }_{(*)}{ }^{158}$	${ }_{(*)}^{173}$	${ }_{(}{ }^{*}{ }^{202}$
29	Rubber and misc. plastics pr	40	74	${ }^{84}$	142	181	${ }_{229}$	${ }^{273}$	${ }^{68}$	${ }^{114}$	220	383	499	611	${ }_{685}$
30	Leather and leather products.	68		92	104	119	121	131	129	131	169	(D)	217	221	245
31	Durable goods...	1,539	2,023	2,797	4,105	5,131	5,760	6,663	2,643	3,489	5,836	8,413	10,710	12,380	14, 246
${ }_{33}^{32}$	Lumber and wood produ	${ }_{6}^{66}$	80	107	156	226	${ }^{262}$	306	105	112	${ }_{120}^{151}$	${ }_{203}^{256}$	${ }_{\text {(D) }} 382$	${ }_{242}^{443}$	519 276
33 34	Furniture and fistures...-	$\begin{array}{r}43 \\ 141 \\ \hline\end{array}$	$\begin{array}{r}36 \\ 186 \\ \hline\end{array}$	$\begin{array}{r}51 \\ 280 \\ \hline\end{array}$	$\begin{array}{r}88 \\ 404 \\ \hline\end{array}$	100 405	116 463	132	$\begin{array}{r}69 \\ 152 \\ \hline\end{array}$	78 197	120	203 434	${ }_{\text {(D) }}^{541}$	242	276 770
35	Fabricated metal products	177	220	328	512	783	890	1,029	318	389	618	956	1,440	1,629	1,848
${ }_{37}^{36}$	Machinery, except electrical	521	652	994	1,371	1,808	2,008	2,339	512	747	1,394	2,313	3,029	3,511	3,962
37 38	Electric and electronic equipment.........	234 29	359 28	$\begin{array}{r}434 \\ 45 \\ \hline\end{array}$	${ }_{96}^{593}$	640 109	${ }_{121}^{753}$	881 152	278 479	447 546	865 857	$\xrightarrow{1,230}$	1,442 1,278	1,649 1,323	1,908 1,649
38	Transportation equipment exc. motor vehicles.	29	28	45	96	109	121	152	479	546	857	1,025	1,278	1,323	1,649
39 40	Motor vehicles and equipment............- Ordnance	$\begin{array}{r}193 \\ 37 \\ \hline\end{array}$	330 5	318	558 36	702	738	814	178	301 153	522 320	834 167	1,044	1,423	1,548
41	Stone, clay, and glass products.	36	47	63	103	128	148	166	234	235	313	448	582	656	770
42	Instruments and related products.	27	31	69	98	122	142	166	124	169	247	317	(D)	558	655
43	Miscellaneous manufacturing industries	34	48	60	89	108	119	139	92	114	147	230	277	305	342
44	Transportation and public utilities.	414	496	666	1,055	1,317	1,481	1,662	2,120	2,431	3,241	5,151	${ }^{6,661}$	7,536	8,526
45	Railroad transportation-	117	92	107	154	180	199	214	736	709		1,141	1,334		
46 47	Trucking and warehousing	117 3	155 6	217	359 12	422 14	485 17	561 17	471 12	${ }_{14}^{602}$	856 23	$\begin{array}{r}1,442 \\ \hline 88\end{array}$	1,753 85	2,065 85	${ }^{2,393}$
48	Other transportation.	36	42	60	82	109	133	152	244	290	433	645	926	1,072	1,151
49	Communication.	73	92	134	239	319	349	387	334	402	573		1,478	1,641	1,973
50	Electric, gas, and sanitary servi	86	110	140	208	272	299	332	322	414	557	${ }^{1} 833$	1,085	1,229	1,353
51	Wholesale trad	351	423	600	886	1,292	1,407	1,559	1,632	2,011	2,669	4,011	6, 248	6,803	7,622
${ }_{53}^{52}$	Retail trade Finance insurance,	796 253	912	1,307	1,830	2, 1998	${ }_{2}^{1,411}$	1,682 1,324	1,990 1,171	3,496 1 1 539	4,937 2,182	7,043 3,039	8,484 4,175	4,210 4.902	10,246 5,612
54	Banking...	52	${ }_{70}$	108	175	237	${ }^{1} 261$	1,297	${ }^{\text {1 }} 2517$	${ }^{1}, 353$	${ }^{2}$	${ }^{7} 782$	1,090	1,192	1,333
55	Other finance, insurance, and r	201	263	379	536	760	896	1,027	914	1,186	1,682	2,257	3,085	3,710	4, 280
56	Services-.--	607	857	1,349	2,127	3,043	3,417	3,853	2, 617	3,538	5,352	8,260	11, 600	13, 036	14, 822
57 58	Hotels and other lodging	28	33	+53	$\begin{array}{r}64 \\ 138 \\ \hline 18\end{array}$	85 169	96 186	108 204	119 321	1482	$\stackrel{205}{507}$	288	660	${ }_{726}$	8810
59	Private households	78 43	${ }_{46}^{96}$	128	138	169 73	$\begin{array}{r}186 \\ 78 \\ \hline\end{array}$	${ }_{86}$	211	${ }_{227}^{382}$	282	310	368	393	432
60	Business and repair services..................	83	119	186	303	431	499	587	389	543	795	1,289	1,892	2,150	2,532
61	Amusement and recreational incl. motion	27	33	48	68	90	107	116	107	130	189	260	344	396	438
62	Professional, social, and related services.	348	529	877	1,492	2, 195	2, 452	2,753	1,472	2,115	3,374	5,566	7,936	8,903	10,084
	Government and government enterprises	633	886	1,448	2,427	3, 118	3,239								
64 65 65		$\begin{array}{r}102 \\ 50 \\ \hline\end{array}$	140 38	1,198 36	${ }^{2} 291$	396 55	399 54	+449	750 452	4,999 512	1,420	2,077	2,645	2,880 1,061	3,062 1,083 10
${ }_{66}^{65}$	State and local.	481	$\begin{array}{r}38 \\ \hline 09\end{array}$	1,214	2,084	2,667	2,787	3,077	1,740	2,523	4, 074	6,758	9,050	9, 727	10,523
	Derivation of personal income by place of residence														
67 68	Total labor and proprietors income by place of work- Less: Personal contributions for social insurance	6, ${ }_{137}$	7,889	11, 466	$17,189$			27,544 1,410	23,932	$\begin{gathered} 29,073 \\ 875 \end{gathered}$	41,039 1,711	$67,291$	$\begin{array}{r} 77,698 \\ 4,237 \end{array}$	$\begin{array}{r} 87,963 \\ 4,672 \end{array}$	$\begin{array}{r} 101,404 \\ 5,320 \end{array}$
68	Less: Personal contributions for social insurance by place of work.	137	242	468	872	$1,136$	$1,237$	1,410	517	875	1,711	3,096	$4,237$	$4,672$	$5,320$
69	Net labor and proprictors income by place of work...	6, 182	7,647	10,997	16, 257	20,526	23, 288	26, 134	23, 415	28, 198	39,328	64, 195	73, 461	83, 291	$\underset{-892}{96,084}$
70	Plus: Residence adjustment..................-							26,550	23, 290	${ }_{27}{ }^{-203}$	-38,966	63,631	72,754	82,502	95, 192
72	Net labor and proprietors income by place of residence. Plus: Dividends, interest, and rent	6,224 936	7,720 1,256	11,154 1,782	16, 520	20,851 3,586	23,656 3,857	26,550 4,357	23,290 3,491	27,995	38,960 $\mathbf{7 , 3 1 9}$	11,398	15,711		
73	Plus: Transfer payments.....	540	${ }^{1}, 226$	1,206	$\xrightarrow{2,324}$	${ }_{3,667}^{3,586}$	3,948	4, 4,343	2,087	2,862	4,682	8,725	13, 472	14,446	15,602
74	Personal income by place of residence Per capita income (dollars)	7,700 2,004	$\xrightarrow{9,702}$	14, 142	21,579 4,754	28,104 6,097	31,461 6,775	35,241 7,532	$\begin{array}{r} 28,869 \\ 1,925 \end{array}$	35,839 2,281	$\begin{array}{r} 50,967 \\ 3,176 \end{array}$	83,754	101, 937	$\begin{array}{r} 114,288 \\ 6,761 \end{array}$	$\begin{array}{r} 130,194 \\ 7,650 \end{array}$
76	Total population (thousands)	3,843	4,112	4, ${ }^{345}$	$\stackrel{4}{4,539}$	4,610	4,644	4,679	14,994	15,715	16,047	16,628	16,797	16,903	17,018

See footnotes on pp. 32-33.

Sources，Selected Years 1958－78－Continued
dollars］

\begin{tabular}{|c|}
\hline \multicolumn{7}{|c|}{Iowa} \& \multicolumn{7}{|c|}{Kansas} \& \multicolumn{7}{|c|}{Minnesota} \& \multirow{2}{*}{Lino} \\
\hline 1958 \& 1983 \& 1968 \& 1973 \& 1976 \& 197 \& 1978 \& 1958 \& 1963 \& 1988 \& 1973 \& 1976 \& 1977 \& 1978 \& 1958 \& 1963 \& 1968 \& 1973 \& 1976 \& 1977 \& \({ }^{1978}\) \& \\
\hline 4，216 \& 5，035 \& 6，966 \& 11，619 \& 12，981 \& 14，745 \& 17，588 \& 3，386 \& 3，888 \& 5，258 \& 669 \& 10，54 \& 11，726 \& 13， 884 \& 5，271 \& 6，734 \& 9，926 \& 16， 34 \& 19，216 \& 22，40 \& 25，418 \& \\
\hline \[
\begin{gathered}
\text { 2, } 610 \\
\hline
\end{gathered} .510
\] \& \& \& \& \& \& \[
\left.\begin{array}{|c|c|}
12,518 \\
2,274 \\
2,278 \\
1,246
\end{array} \right\rvert\,
\] \& \[
\begin{gathered}
2,374 \\
9.92 \\
9266 \\
466 \\
466
\end{gathered}
\] \& \[
\begin{aligned}
\& 2,888 \\
\& \hline 828 \\
\& \hline 825 \\
\& \hline 525 \\
\& 506 \\
\& 506
\end{aligned}
\] \& \& \& \& \& \& \& \& \& \& \[
\begin{gathered}
15,912 \\
1,1,85 \\
1,854 \\
1,291 \\
1,291
\end{gathered}
\] \& \& \& \\
\hline －\({ }_{\text {3，232 }}{ }^{382}\) \& 4，\({ }^{\text {，122 }}\) \& 6，0，060 \& 2，\({ }^{2,727}\) \& \({ }_{12,097}^{887}\) \& （1，271 \& \({ }_{\text {2，}}^{2,592}\) \& 2，8989 \& 3，4999 \& 4，887 \& \(\frac{1,463}{1,206}\) \& 10，013 \& \& \({ }^{12,784}\) \& 4，687 \& \({ }_{\text {6，128 }}^{608}\) \& 9，258 \& 2，\({ }_{\text {2，} 241}^{1,05}\) \& 5， 764 \& \({ }^{1,808} 20,61\) \& \& \\
\hline \({ }^{2} 8.866\) \& \({ }^{3,541}\) \& \({ }^{5,127} 40\) \& \({ }^{7,494}\) \& \(\xrightarrow{10,181} 4\) \& \({ }_{11,417}^{49}\) \& \({ }^{12,786}\) \& \(\xrightarrow{2,352}\) \& 2，770 \& 3，920 \& 5，744 \& \({ }^{8,126}\) \& 9，060 \& 10， 344 \& 4， 18 \& \({ }_{5}^{5}, 26\) \& ，\({ }^{\text {，} 223}\) \& \(\xrightarrow{11,794} 4\) \& 15， 996 \& 17，4981 \& \({ }^{20,120} 82\) \& \\
\hline \({ }_{(c)}^{\text {（1）}}\)（19 \({ }_{19}\) \& \({ }_{\left(r_{20}^{28}\right.}\) \& \({ }^{(48} 28\) \& \[
\left\langle(0)^{\frac{1}{3}}\right.
\] \& \[
\begin{array}{r}
37 \\
-27 \\
-2
\end{array}
\] \& \& \& \({ }_{(1005}^{90}\) \& \[
\left(0_{90}^{15}\right.
\] \& \({ }_{9}{ }_{96}{ }^{24}\) \& \[
(9.95
\] \& \& \[
\begin{gathered}
1, \\
249 \\
240
\end{gathered}
\] \& \[
\begin{gathered}
45 \\
\left.\begin{array}{c}
45 \\
299
\end{array} \right\rvert\,
\end{gathered}
\] \& \& \[
\left.\begin{array}{c}
19 \\
(19) \\
(1901
\end{array}\right)
\] \& \[
\begin{array}{r}
30 \\
137 \\
.137
\end{array}
\] \& \begin{tabular}{|c}
42 \\
188 \\
18
\end{tabular} \& 55
522
2920 \& \& \(\begin{array}{r}79 \\ 93 \\ \hline 9\end{array}\) \& \\
\hline （0）\({ }_{()^{19}}{ }^{19}\) \& \({ }^{\text {P10 }}\) \& （8）\({ }^{28}\) \& \[
\begin{aligned}
\& \left(0,0^{35}\right. \\
\& \left.{ }_{0}^{0}\right)^{2}
\end{aligned}
\] \& \[
\begin{aligned}
\& 37 \\
\& \hline 10)^{2}
\end{aligned}
\] \& （0） \& （id \& \& \[
\begin{gathered}
(0) \\
0_{0}^{0} 0_{0}^{0}
\end{gathered}
\] \& \& \[
\begin{gathered}
95 \\
\hline 9.9 \\
\hline 9.0
\end{gathered}
\] \& \& \& \& \[
\stackrel{c}{10}_{1010}^{97}
\] \& \[
\begin{gathered}
()_{101}^{101} \\
89
\end{gathered}
\] \& \& （10） \& \& \& \& \\
\hline \({ }_{(026}\) \& \({ }_{283}^{(0)}\) \& \({ }_{4}^{25}\) \& 33
598 \& 360 \& 1，006 \& 1，154 \& \({ }^{29}{ }^{9}\) \& 247 \& 335 \& \({ }_{476}^{12}\) \& \({ }_{698}\) \& 79 \& 告 81 \& －887 \& \({ }_{451} 1\) \& \({ }^{15}\) \& \({ }^{17}\) \& ， 2.25 \& 1， 385 \& ， 30 \& \\
\hline \(\xrightarrow{883}\) \& 1．144 \& \({ }^{1,7757}\) \& 2， 969 \& \({ }_{\text {3，4，}}^{1,23}\) \& \({ }_{\text {3 }}^{\substack{3,911 \\ 1,396}}\) \& \& \({ }_{266}^{673}\) \& \({ }_{374}^{777}\) \& \({ }^{1}, 168\) \& 1，680 \& 2，250 \& 2，\({ }^{523}\) \& \({ }_{\text {2，9，022 }}\) \& 1， 1977 \& 1， 790 \& \({ }_{\text {2，}}^{2,553}\) \& \({ }_{\text {3，}}^{\substack{1,592}}\) \& 4，705 \& 5， 5 \& 118 \& \\
\hline 282 \& \& \({ }_{4}^{434}\) \& \& \& \& 1，8 \& \({ }^{131}\) \& 132 \& \({ }^{139}\) \& \({ }^{211}\) \& \({ }^{298}\) \& \({ }^{329}\) \& \& \& 44， \& \({ }_{4}^{41}\) \& \& \& \& 退 \& \\
\hline \[
\begin{aligned}
\& 12 \\
\& 12 \\
\& 5
\end{aligned}
\] \& \& \& \[
{ }_{22}^{9}
\] \& \[
\begin{aligned}
\& 118 \\
\& 539 \\
\& 53
\end{aligned}
\] \& \& \& \& \& \& \[
\begin{aligned}
\& 27 \\
\& .35 \\
\& .35
\end{aligned}
\] \& \[
\begin{gathered}
682 \\
32 \\
32
\end{gathered}
\] \& \[
\begin{gathered}
930 \\
47 \\
47
\end{gathered}
\] \& \[
50
\] \& \[
\begin{aligned}
\& 108 \\
\& \substack{188 \\
188} \\
\& \hline 10
\end{aligned}
\] \& \[
\begin{aligned}
\& 129 \\
\& 1290 \\
\& 170
\end{aligned}
\] \& \& \& \& 管25 \& \& \\
\hline －\({ }_{\text {58 }}^{29}\) \& 70 \& \({ }_{2}^{95}\) \& \({ }^{138}\) \& \({ }_{172}^{175}\) \& \(\underset{184}{191}\) \& \({ }^{216}\) \& \& （ \& \& 125 \& 163 \& 81 \& （104 \& 103 \& \& \({ }^{175}\) \& 207 \& 360 \& （105 \& （148 \& \\
\hline \({ }^{\text {（42 }}\) \& \({ }^{(4)}\) \& \({ }^{(40}{ }^{2}\) \& （1）\({ }_{\text {（1）}}\) \& \({ }_{\text {c }}^{128}\) \& \({ }_{\substack{165 \\ 6}}\) \& \({ }_{\substack{183 \\ 7 \\ \hline}}\) \& \(\stackrel{(\cdot)}{13}\) \& \({ }_{(00}^{20}\) \& \({ }_{()_{31}}^{()_{1}}\) \& \({ }^{(4)}\) \& \({ }_{(0)}{ }_{2}\) \& \({ }_{1}^{\circ}\) \& \[
\begin{gathered}
(122) \\
128 \\
\hline 28
\end{gathered}
\] \& \({ }^{(*)}\) \& \[
\begin{array}{r}
19 \\
\hline 19 \\
80
\end{array}
\] \& \[
\underset{i c}{()_{40}^{2}} \underset{11}{10}
\] \& \(\stackrel{48}{78}\) \& \& \({ }_{\substack{186}}^{198}\) \& （129 \& \\
\hline \({ }_{424}^{46}\) \& \({ }^{627}\) \& 1，037 \& 1，635 \& 2， 145 \& 2，515 \& 2，826 \& 407 \& \({ }^{463}\) \& \({ }^{744}\) \& 1，030 \& 1，437 \& \& \& \& \& 1，490 \& 2，164 \& 2，728 \& 3，1607 \& 3，788 \& \\
\hline \begin{tabular}{l}
11 \\
32 \\
3 \\
\hline 1
\end{tabular} \& \({ }_{52}^{14}\) \& \[
\begin{aligned}
\& 28 \\
\& 74 \\
\& 84 \\
\& 84
\end{aligned}
\] \& \({ }^{115}\) \& \({ }^{134}\) \& \[
\begin{gathered}
68 \\
1.59 \\
1065
\end{gathered}
\] \& \[
\begin{gathered}
759 \\
1989 \\
198
\end{gathered}
\] \& \& \[
\left.\begin{gathered}
8 \\
9 \\
9
\end{gathered} \right\rvert\,
\] \& \[
\begin{aligned}
\& 14 \\
\& 17 \\
\& 6.7
\end{aligned}
\] \& \[
\left.\begin{array}{c}
19 \\
37 \\
\hline 0
\end{array}\right)
\] \& \({ }_{38}^{38}\) \& \[
\begin{aligned}
213 \\
45 \\
45
\end{aligned}
\] \& \& \[
34
\] \& \& \& \[
\begin{aligned}
\& 93 \\
\& 82 \\
\& 82 \\
\& 82
\end{aligned}
\] \& \& 107 \& 140 \& \\
\hline \& － \& \({ }_{212}^{427}\) \& \(\underset{\substack{741 \\ 255}}{\substack{250}}\) \& \[
\begin{aligned}
\& 998 \\
\& \hline 935
\end{aligned}
\] \& \& \& 9 \& \[
\begin{aligned}
\& 38 \\
\& 38 \\
\& 15
\end{aligned}
\] \& \[
\begin{gathered}
616 \\
{ }_{20}^{0103} \\
24
\end{gathered}
\] \& \[
\left.\begin{gathered}
109 \\
\\
201 \\
501
\end{gathered} \right\rvert\,
\] \& \[
\begin{aligned}
\& 1771 \\
\& 278 \\
\& 88
\end{aligned}
\] \& \[
\left.\begin{array}{l}
196 \\
\hline 106 \\
106
\end{array}\right)
\] \& \[
\begin{aligned}
\& 203 \\
\& 3,32 \\
\& 1230
\end{aligned}
\] \& \[
\begin{gathered}
.78 \\
\hline 154 \\
640
\end{gathered}
\] \& \& \& \[
\begin{aligned}
\& 280 \\
\& 82820 \\
\& 827
\end{aligned}
\] \& \& ，\({ }_{\text {1，} 1592}^{595}\) \& \& \\
\hline \({ }_{15}\) \& \({ }_{128}^{128}\) \& 19 \& \({ }^{235}\) \& 335 \& \& \& 247 \& \({ }_{228}\) \& \({ }_{35}{ }^{24}\) \& \({ }_{361}^{56}\) \& \({ }_{88}^{88}\) \& \({ }_{\substack{104 \\ 506}}\) \& \({ }^{122}\) \& \& 17 \& \& 13 \& \({ }_{5}\) \& 57 \& 27 \& \\
\hline \& \％\({ }^{8}\) \& \& 53

5 \& 70 \& \& 107 \& $$
\begin{aligned}
& 26 \\
& \substack{26 \\
n}
\end{aligned}
$$ \& \& － $\begin{gathered}61 \\ 23 \\ 23\end{gathered}$ \& 年发 \& 147 \& 177 \& 178 \& $\xrightarrow{19}$ \& 28 \& \& ${ }_{70}^{73}$ \& 103 \& 129 \& ${ }^{148}$ \&

\hline $$
\begin{aligned}
& 10 \\
& 17
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 3.32 \\
& 23 \\
& 23
\end{aligned}
$$

\] \& \& － \& \[

$$
\begin{aligned}
& 108 \\
& \hline 108 \\
& { }_{88}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 123 \\
& 38 \\
& 38
\end{aligned}
$$

\] \& 136 \& \& \& \& \[

$$
\begin{aligned}
& 921 \\
& 248 \\
& 24 \\
& 18
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 32122 \\
& 22 \\
& 22
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 330 \\
& 282 \\
& 262
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& i i_{23} \\
& 252
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 85 \\
& 889 \\
& 823
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
92 \\
.121 \\
30 \\
30
\end{gathered}
$$

\] \& \[

\left.$$
\begin{gathered}
450 \\
{ }_{150}^{505}
\end{gathered}
$$ \right\rvert\,

\] \& \％ $\begin{aligned} & 92 \\ & 77 \\ & 77\end{aligned}$ \& \[

$$
\begin{aligned}
& 2828 \\
& 82828 \\
& 88
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
i 39 \\
338 \\
389 \\
\hline 89
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 1688 \\
& \hline 808 \\
& 1000
\end{aligned}
$$
\] \&

\hline 303 ${ }_{98}$ \& ${ }_{36}^{34}$ \& ${ }_{95}^{42}$ \& ${ }^{699} 139$ \& ${ }_{\substack{390 \\ 163}}$ \& 1，014 \& 1， 1131 \& ${ }_{135}^{303}$ \& ${ }^{345}$ \& ${ }_{155}^{429}$ \& \& （14 \& 1， 2,57 \& （198 \& ${ }_{70}$ \& 541 \& ${ }_{78}^{72}$ \& 1，215 \& 1，544 \& \& － \& 5

\hline （0）${ }^{78}$ \& （9）${ }^{99}$ \& ${ }^{145}$ \& 241 \& \& \& \& ${ }_{()^{50}}$ \& （9） \& ${ }^{101}$ \& cis \& \[
$$
\begin{aligned}
& 253 \\
& 247 \\
& 27
\end{aligned}
$$

\] \& \& \& －${ }^{9}$ \& \[

$$
\begin{gathered}
125 \\
\hline 18 \\
8 \\
8
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 178 \\
& \hline 176 \\
& 186
\end{aligned}
$$
\] \& \& ${ }_{\substack{375 \\ 3 \\ 3 \\ \hline}}$ \& $\stackrel{435}{43}$ \& \&

\hline ${ }_{57}^{57}$ \& \[
\left.$$
\begin{array}{|c|}
18 \\
68 \\
70
\end{array}
$$ \right\rvert\,

\] \& \[

\left.$$
\begin{aligned}
& 24 \\
& { }_{89}^{87} \\
& 99
\end{aligned}
$$ \right\rvert\,

\] \& \[

$$
\begin{aligned}
& 31 \\
& 130 \\
& 137
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 4242 \\
& \text { and } \\
& 187
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 504 \\
& 2049 \\
& \hline 19
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 5.56 \\
& 240 \\
& 240
\end{aligned}
$$

\] \& \& \[

24

\] \& \[

$$
\begin{aligned}
& 27 \\
& \hline 68 \\
& 80 \\
& 80
\end{aligned}
$$

\] \& \[

\left.$$
\begin{gathered}
39 \\
\hline 129 \\
119
\end{gathered}
$$ \right\rvert\,

\] \& \[

$$
\begin{aligned}
& 751 \\
& \hline 185 \\
& 157
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 962 \\
& 202 \\
& 107
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 21020 \\
& 1098 \\
& 198
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 88 \\
& 69 \\
& 69 \\
& 69
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
8828 \\
93 \\
98
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 131 \\
& 128 \\
& 128
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 2111 \\
& 197 \\
& 192
\end{aligned}
$$

\] \& － | 301 |
| :--- |
| 305 |
| 205 |
| 24 | \& － \& （ \&

\hline ${ }_{\substack{258 \\ 535}}$ \& ${ }_{596}^{3026}$ \& ${ }_{858} 8$ \& ${ }_{\text {1，212 }}^{\substack{\text { 5 }}}$ \& 1，434 \& ${ }_{1}^{1,585}$ \& （1，695 \& $\xrightarrow{159}$ \& ${ }_{4}^{273}$ \& ${ }_{661}^{275}$ \& ${ }_{961}^{948}$ \& 1， 515 \& 1，2 \& 1，399 \& 46 \& 806 \& 1，158 \& \& ${ }_{\substack{\text { a }}}^{1,652}$ \& ${ }_{\substack{1,285 \\ 2,275}}^{1,2}$ \& 2，020 \& 告

\hline $$
\begin{gathered}
1987 \\
\hline 197 \\
\hline 156
\end{gathered}
$$ \& 2,29

${ }_{2}^{28}$

202 \& $$
\begin{aligned}
& 348 \\
& 2820 \\
& 2820
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 1,285 \\
& \hline 1825 \\
& \hline 1557
\end{aligned}
$$

\] \& \& \& \& \[

$$
\begin{gathered}
141 \\
106 \\
106
\end{gathered}
$$

\] \& \& \& （ | 362 |
| :---: |
| 1020 |
| 200 |
| 20 | \& ${ }^{148}$ \& \[

$$
\begin{aligned}
& 1646 \\
& \hline 869 \\
& \hline 89
\end{aligned}
$$

\] \& \& \& \& \& \& \& \& ， \& | 54 |
| :---: |
| 55 |
| 5 |

\hline $$
\begin{aligned}
& \text { anc } \\
& 4616
\end{aligned}
$$ \& \& \[

$$
\begin{aligned}
& 828 \\
& 828 \\
& 888 \\
& 88
\end{aligned}
$$

\] \& \& \& \& ${ }_{\text {2，}}^{235}$ \& \& \[

$$
\begin{aligned}
& 134 \\
& \begin{array}{l}
145 \\
145 \\
90
\end{array}
\end{aligned}
$$
\] \& \& ${ }_{1}^{10} 5$ \& － \& － 1.48 \& \& 边 \& \& \& \& \& － 3,785 \& $\substack { 1,115 \\ \begin{subarray}{c}{184 \\ 184 \\ 180{ 1 , 1 1 5 \\ \begin{subarray} { c } { 1 8 4 \\ 1 8 4 \\ 1 8 0 } } \end{subarray}$ \&

\hline $$
\begin{aligned}
& 525 \\
& 5.5 \\
& 5
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \mathbf{c}_{88}^{88} \\
& { }_{81}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
8181 \\
\hline 100 \\
100
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 90 \\
& .580 \\
& 180
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1136 \\
& 2595 \\
& 2595
\end{aligned}
$$

\] \& \& \[

$$
\begin{gathered}
139 \\
\hline
\end{gathered}
$$

\] \& \& \& \& \& \& \& \[

$$
\begin{aligned}
& 162 \\
& \hline 184 \\
& 347
\end{aligned}
$$
\] \& ¢ \& \& \& \& 147

47
47 \& \& \& （

\hline \& \& 25 \& \& \& \& \& \& \& \& \& \& \& ${ }_{43}$ \& \& \& \& \& \& \& ${ }_{122}$ \&

\hline 246 \& ${ }^{34}$ \& ${ }^{538}$ \& ${ }^{858}$ \& 1，239 \& 1.378 \& 1，562 \& ${ }^{190}$ \& ${ }^{268}$ \& ${ }^{431}$ \& ${ }^{704}$ \& 1，032 \& 1，158 \& 1，319 \& ${ }^{334}$ \& 522 \& ${ }^{837}$ \& 1，418 \& 2，015 \& 2，318 \& 2， 618 \&

\hline | 418 |
| :--- |
| 86 |
| 86 | \& \& $\underset{\substack{88 \\ 14 \\ 4 \\ \hline 2}}{ }$ \& \& ${ }_{34}$ \& \& \[

\left|$$
\begin{array}{c}
2,180 \\
290 \\
390
\end{array}
$$\right|
\] \& \& \& \& （1， 482 \& ， 1,886 \& \& \& \& cin \& \& cesm \& － 9 \& \& 3，4630 \& －${ }_{\text {ci }}^{65}$

\hline 308 \& ${ }_{451}^{19}$ \& ${ }_{710}^{24}$ \& ${ }_{1,133}^{132}$ \& 1，596 \& 1，725 \& 1．855 \& ${ }_{264}^{156}$ \& ${ }^{1386}$ \& 197 \& ${ }_{888}^{288}$ \& 1，293 \& 1，3162 \& 1， 1227 \& ${ }_{43}^{39}$ \& \％ \& 1，055 \& 1，881 \& 2，453 \& 2，625 \& 2，844 \& ${ }_{66}^{65}$

\hline ${ }_{4}^{4,216}$ \& ${ }_{5}^{5,035}$ \& 6，966 ${ }^{287}$ \& 11.617 \& ${ }_{\text {12，} 2106}^{701}$ \& ${ }_{4}^{4,745}$ \& 17，588 \& ${ }^{3,386}$ \& 3，${ }_{122}$ \& ${ }^{5}$ 5，228 28 \& ${ }_{8}^{8,669}$ \& 10， 575 \& ${ }_{\text {12，}}^{11} 828$ \& ${ }^{13,484}$ \& 5，2719 \& 6，724 \& 9，926 \& \& $\underset{\substack{19,266 \\ 1,066}}{1}$ \& 22，40 \& ${ }_{\text {25，}{ }_{\text {2 }}^{1,352}}$ \& ${ }_{68}^{67}$

\hline 4， 127 \& 4， 890 \& 6，679 \& 11， 1127 \& 12， 2108 \& 13， 929 \& 16， 656 \& 3， 1915 \& 3，7062 \& 5，032 \& 8， 5_{569} \& ${ }_{\text {9，}}^{9674}$ \& 11，088 \& ${ }^{12,780}$ \& 5， 153 \& 6，584 \& ${ }^{9,522}$ \& ${ }_{15,531}^{15,531}$ \& ${ }_{\text {che }}^{18,150}$ \& $\xrightarrow{21,285}$ \& 24， 0.65 \& 69
70
70

\hline 4，164 \& 4，942 \& 6，751 \& 11， 189 \& 12，382 \& 14，957 \& 16，759 \& \& \& \& 8，823 \& 10，650 \& 11，888 \& \& \& 6，533 \& 9，550 \& 518 \& 18，133 \& 21，244 \& 24，040 \&

\hline ${ }_{5}^{550}$ \& \& 1， 1.288 \& $\xrightarrow{2,188}$ \& 2， 2,380 \& ${ }_{\text {a }}^{3,304}$ \& \& － 46 \& ${ }_{392}^{752}$ \& 1，081 64 \& ${ }_{\substack{1,1874 \\ 1,189}}^{1,6}$ \& 2，382 \& ${ }_{2}^{2,512}$ \& ${ }_{2,155}^{2,888}$ \& － 69 \& ${ }_{1}^{1,072} 8$ \& ${ }^{1,077}$ \& 2， 2,388 \& \& 3， 3 ， 38 \& ${ }^{\text {4，095 }}$ \& ${ }_{73}^{72}$

\hline $$
\begin{gathered}
5,088 \\
2,989 \\
2,789
\end{gathered}
$$ \& \[

$$
\begin{gathered}
\substack{6,25 \\
2,292 \\
2,747}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 8,822 \\
& \substack{8,282 \\
2,803} \\
& 2
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
14,896 \\
5,8818 \\
2,866
\end{gathered}
$$

\] \& \& \& \& \& \[

$$
\begin{aligned}
& 5,1120 \\
& 2,262 \\
& 2,26
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
7,152 \\
3,220 \\
2,26
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 11,65 \\
& z_{1}^{2}, 267
\end{aligned}
$$

\] \& \[

\left.$$
\begin{aligned}
& 14,84 \\
& 6,849 \\
& 2,2999
\end{aligned}
$$ \right\rvert\,

\] \& \& \[

\left.$$
\begin{array}{|c|c|}
18,505 \\
2,788 \\
2,348
\end{array}
$$ \right\rvert\,

\] \& \[

$$
\begin{aligned}
& 6,495 \\
& 3,93125
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \substack{2,256 \\
3,531 \\
3,521}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 12,1201 \\
& 3,250 \\
& 3,20030
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
1,892 \\
5,182 \\
3188
\end{gathered}
$$

\] \& \& \[

$$
\begin{gathered}
28,248 \\
0,2088 \\
3,388
\end{gathered}
$$
\] \& $\xrightarrow[\substack{31,703 \\ \text { anc，008 }}]{\substack{\text { and }}}$ \& $\begin{array}{r}74 \\ 78 \\ 78 \\ \hline 7\end{array}$

\hline
\end{tabular}

Table 3.—Personal Income by Major
[Millions of

See footnotes on pp. 32-33

Sources, Selected Years 1958-78-Continued dollars]

North Dakota							South Dakota							Southeast							Line
1958	1963	1968	1973	1976	1977	${ }^{7} 1978$	1958	1963	1968	1973	1976	1977	${ }^{7} 1978$	1958	1963	1968	1973	1976	1977	${ }^{7} 1978$	
876	1,072	1,277	3,222	2,809	2,776	3,539	897	1,078	1,386	2,697	2,464	2,983	3,596	46,843	60,801	94,517	156, 676	200, 381	223, 262	253, 116	1
496	671	890	1,435	2,081	2,239	2,561	509	675	887	1,374	1,878	2,050	2,323	36,735	49,094	78, 569	129, 440	167, 321	186, 101	210,042	2
10	18	34	1, 75	2, 143	2, 162	2, 192	12	23	40	, 86	-150	, 178	${ }^{2} 209$	1, 265	2,025	4,119	8,910	14,555	17,219	20,043	3
370	383	354	1,712	585	375	786	376	379	459	1,237	435	755	1,064	8,842	9,681	11,829	18,326	18, 505	19,941	23, 032	4
255	259	206	1,496	335	121	508	258	248	298	1,008	167	481	763	2,953	3,009	2,821	6,260	4, 691	4, 366	5,765	5
115	123	148	216	249	254	278	118	131	161	228	268	274	302	5,889	6,672	9,008	12,065	13, 814	15,575	17, 267	6
286	292	${ }_{1}^{244}$	1,542	${ }_{2}^{403}$	$\underline{179}$	$\begin{array}{r}581 \\ \hline 958\end{array}$	280	273	${ }_{1} 325$	1,050	2210	$\begin{array}{r}528 \\ \hline 256\end{array}$	817	3,599	3,791	3,710	79,394	6,168	5,913	7,481	8
590	780	1,034	1,680	2,406	2,596	2,958	617	804	1,061	1,647	2,254	2, 456	2,779	43, 244	57,010	90,807	149, 281	194, 212	217, 349	245, 635	8
472 4	574 3	730 5	1,196 9	1,798	1,953 11	2,257 14	465 5	601	777 9	1,207 12	1,689 10	1,861 11	2,112 13	34,968 212	45,720 254	72,502 386	119,856 625	154,952 801	174,521 916	$\left\lvert\, \begin{array}{r\|} 198,554 \\ 1.128 \end{array}\right.$	9 10
(*) ${ }^{4}$	(*) ${ }^{3}$	(*) ${ }^{5}$	(*) ${ }^{9}$	(*) ${ }^{11}$	**) 11	$(*){ }^{13}$	(*) ${ }^{5}$	(*) ${ }^{6}$	(*) ${ }^{9}$	${ }_{(*)}{ }^{12}$	$(4)^{10}$	11 1	$\left(^{*}\right)^{13}$	127 85	174 80	295 91	502 123	623 178	707 209	884 244	11
15	11	${ }^{15}$	${ }^{17}$	${ }^{52}$	${ }^{61}$	${ }^{90}$	13	15	19	${ }^{28}$	41	44	50	1,210	1,186	1,601	2,557	4,741	5,379	6.028	13
2	2	3	5	13	17	23	${ }^{*}{ }^{*}$)	(*)	(*)	${ }^{*}$	${ }^{*}{ }^{*}$	${ }^{*}{ }^{\text {(}}$)	(*)	$\bigcirc 649$	- 572	-722	1,387	2,614	(D)	(D)	14
${ }^{12}$	${ }^{7}$	${ }^{11}$	${ }^{*} 10$	35	40	${ }^{*}{ }^{61}$	${ }^{(*)}$	(*)	${ }^{(*)}$	(*)	(D) 2	(D)	(D)	378	407	594	755	1,592	1.665	2,009	15
(D)	(D)	${ }^{(*)}$	${ }^{*}{ }^{\text {a }}$	-1	-1	${ }^{*}$)	10	12	15	20	(D)	(D)	(D)	34	25	(D)	34	- 37	(D)	(D)	16
${ }^{(D)} 58$	(D) 78	77	3 147	4 4	274	6 345	3 51	3 76	72	$\begin{array}{r}8 \\ 127 \\ \hline\end{array}$	${ }^{(D)}$	13 199	15 231	149 2,909	182 3,770	(D) 6,338	381 12,015	498 12,962	551 14,592	625 17,003	17 18
33	43	60	110	199	197	220	61	81	110	178	257	284	320	10,714	14, 822	24, 184	37,483	47,577	53,914	60,696	19
24	25	35	54	78	88	100	47	57	75	104	148	160	167	6,462	8, 561	13, 351	19,825	25, 727	28, 427	31,301	20
17	16	22	32	47	52	58	(88	46	59	${ }^{7} 7$	109	115	117	1,211	1,492	2,097	2,982	4, 014	4,399	4, 805	21
(D)	(${ }_{(}^{*}$)	(*)	${ }^{*}{ }^{*}$ ($)$	(D)	(D)	(D)	($\left.{ }^{(}\right)$	(${ }^{\text {(})}$	${ }^{(*)}$	(*)	(D)	(D)	(D)	(D)	(D)	3,622	(D)	6, 164	6,650	7,146	22
(${ }^{*}$)	(${ }_{\text {(})}$	(*)	(D)	(D)	(D)	(D)	(${ }^{(\mathrm{D})}$	(${ }^{(0)}$	$\stackrel{*}{*}$ (*)	(D)	(D)	(D)	(D)	616 603	1,014 817	1,782 1,203	2,565 1,887	3,259 $\mathbf{2 , 5 4 7}$ 1,	3,462 2,874	3,811 3,231 28	23 24
${ }^{(D)} 7$	${ }^{(D)} 8$	${ }^{*}{ }_{10}$	${ }^{(D)} 14$	${ }^{(D)} 19$	(D) 20	${ }^{(D)}{ }_{23}$	(D)	${ }^{(D)} 8$	${ }^{*}{ }^{*} 10$	${ }^{(D)} 13$	${ }^{(D)} 18$	(D) 19	${ }^{(D)} 2$	603 426	$\begin{array}{r}817 \\ 545 \\ \hline\end{array}$	$\begin{array}{r}1,203 \\ 844 \\ \hline\end{array}$	1, 1,387	2,547 1,754	2,874 1,960	3,231 2,216	24 25
(*)	${ }^{*}{ }^{*}{ }^{8}$	1	,	2	2		${ }^{*} 1$	${ }_{(*)} 1$	1	1	3	4	4	1,169	1,559	2,396	3,424	4,744	5,318	5,796	26
(*)							${ }^{*}{ }^{*}$	${ }^{*}{ }^{*}$)	(*)	2	3	3	(*)	187	182	216	308	465	529	624	27
(*)	${ }^{(*)}$	(*)	(*)	(*)	$\left.{ }^{*}\right)^{4}$	$\left.{ }^{*}\right)^{3}$	${ }^{(*)}$	(*)	${ }^{(*)} 5$	${ }^{(*)} 3$	${ }^{*}$)	${ }^{*}{ }^{*}{ }_{6}$	(*)	${ }_{(105}^{10}$	(D)	459 455	$\stackrel{(\mathrm{D})}{1,015}$	921 1,428	978 1,831	1,080 2,125	28 29
(*)	(*)	(*)	(*)	(*)	${ }^{*}$)	${ }^{(*)}$	(*)	(*)	(*)	(D)	1	1	1	104	159	279	1, 373	- 431	1,821 426	2,165 467	30
		25	56	121	109	120	14	23	35	74	108	124	153	4, 252	6,260	10,833	17,658	21, 850	25,488	29,395	31
(*)	(*)	${ }^{*} 1$	${ }^{*} 3$	${ }^{3}$	4	5	${ }^{*} 4$	${ }^{4}$	(*) 4	10	16	19	21	718	886	1,233	1,871	2, 358	2,680	3,114	32
(*)	(*)	${ }^{(*)}$	(*)	(D)			(*)	(*)	${ }^{*}{ }^{*}$	${ }^{*}$ *)	${ }^{*}$ *)	${ }^{*} 1$	1	379	561	, 955	1,531	1,621	1, 853	2,102	33
${ }^{(*)} 2$	${ }^{(*)}$	${ }^{*}{ }^{*}{ }_{3}$	${ }^{(*)}{ }_{5}$	${ }^{(D)} 7$	$\left.{ }^{*}\right)^{9}$	${ }^{*}{ }^{*} 11$	${ }^{(*)}{ }^{4}$	${ }^{(*)} 3$	(*)	${ }^{(*)}{ }_{10}$	${ }^{(D)} 14$	${ }^{(*)}{ }_{15}$	${ }^{(*)}{ }_{19}$	697 476	867 640	1,312	2,016 1,995	2,686 2,675	1,120 3,082	3,589 3 3	34 35
		3 9	27	57	56	62	3 2	3	6	10	14 25	15 31	19 39	476 321	640 558	1,097	1,995	2,675 2,985	3,082 3,484 3	3,534 4,024	35 36
(*)	(*)	(*)	3	7	6	-	${ }^{(*)}$	1	5	12	12	13	18	406	748	1,474	2,747	3,316	3,951	4,679	37
(*)	(*)	(*)	4	23	9	8	1	1	1	5	2	2	2	482	704	1,385	1,984	2,354	2,629	2,967	38
	(*)	1	(*) 2	4	3	4		(*)	(*)	6	10	10	13	136	206	417	763	1,041	1,417	1,632	39
${ }^{(*)} 3$		6 4	$\left.{ }^{*}\right)^{8}$				(*)	5	3 6	11	13		16	44 454 4	241	457 903	265 1.515				40
(*)	(*)	(*)	(*)	(D)	(*)	(*)	(*)	(*)	(*)	4	(D)	16	19	41	79	180	${ }^{1} 361$	${ }^{1} 532$	-672	-745	42
	1	2	3	4	4	5	(*)	1	1	2	3	4	5	99	145	266	432	499	558	639	43
72	81	102	161	216	244	280	52	66	85	141	188	213	243	3,555	4,347	6,546	11, 623	15, 149	17,321	19,802	44
33	32	33	45	56	61	65	12	12	13	17	24	26	28	1,036	996	1,150	1,686	2,007	2,187	2,355	45
${ }_{(*)} 12$	${ }^{14}$	${ }^{*}{ }^{19}$	(*) 34	${ }^{42}$	${ }^{48}$	${ }^{60}$	${ }_{(*)}$	${ }^{*}{ }^{20}$	${ }^{*} 26$	${ }^{52}$	${ }^{64}$	${ }^{76}$	${ }^{91}$	681	978	1,544	2, 863	3, 442	4, 066	4,710	46
(*)	(*)	${ }^{*}{ }^{\text {) }}$	${ }^{*}{ }^{*}$	(D)	(D)	(D)	(*)	${ }^{*}$)	(*)	(*)	(D)	(D)	(D)	193	243	402	550	790	878	1,086	47
					${ }^{(D)} 6$				${ }_{20}^{6}$	$\begin{array}{r}9 \\ 3 \\ \hline\end{array}$		(D) ${ }_{55}$		474	594 810	1,024 1,378	1,777	2,277	2, 660	2,982	48
12	16 16	23 21	39 35	58 49	64 58	72 68	11 10	15 15	20 21	33 31	49 39	55 42	63 46	609 563	810	1,378 1,048	2,895 1,852	4, ${ }_{2} \mathbf{4} \mathbf{4} 84$	4,717 2,812	5,432 3,237	49 50
61	74	90	161	250	269	306	52	62	77	118	206	217	243	2, 700	3,578	5,377	9,163	12,879	14, 154	16, 075	51
120	134	172	254	317	334	359	117	137	180	260	315	333	373	5,710	6,782	10,399	16,938	21, 335	23, 406	26, 393	52
30	42	55	79	118	142	163	30	42	61	80	118	140	160	2,071	2,872	4, 446	7, 466	9,707	11, 344	12,988	53
9	12	17	26	39	44	49	10	15	21	31	45	50	55	385	566	946	1,754	2,452	2,705	3, 049	54
22	30	37	54	79	98	115	20	27	41	50	73	90	105	1,686	2,306	3,500	5,712	7,255	8,639	9,939	55
79	107	156	257	376	420	480	83	115	163	263	379	419	479	5,889	8,109	13,226	21, 986	29,800	33, 494	38,442	56
5	${ }^{6}$	9	17	22	29	33	5	6	7	11	19	24	27	286	352	-669	1, 123	1,446	1,599	1,828	57
9	11	15 9	17 10	20 12	21 12	24 14	10 9	12	16	18 13	22 15	23 16	25 18	$\begin{array}{r}677 \\ 1,003 \\ \hline\end{array}$	$\begin{array}{r}824 \\ 1,101 \\ \hline 1\end{array}$	1,210	1,416	1,652 1,948	1,815	1,206 2,285	58 59
8	11	15	10 26	38	12 40	48	9 9	10	18	13 29	15 41	16 46	${ }_{56}^{18}$	$\begin{array}{r}1,003 \\ \hline 747\end{array}$	1,101 1,136	1,441	1,637	1,948 5,194	2,078	2,285 7,261	59 60
3		5	5	6	7	8	3	5	7	8	11	12	14	205	283	454	775	992	1,150	1,333	61
47	68	103	182	278	311	354	46	68	103	184	272	297	339	2,971	4,413	7,494	13, 328	18,568	20, 792	23, 729	62
118	206	304	484	608	643	701	152	203	284	440	565	595	666	8, 276	11, 290	18, 304	29, 426	39, 260	42, 828	47,081	63
34	49	68	104	135	142	150	45	63	79	116	157	172	190	2,429	3, 273	4, 941	7, 553	10, 155	10, 996	12,031	64
8	50	77	135	147	146	151	30	33	$\begin{array}{r}37 \\ \hline\end{array}$	69	77	80	90	2,373	${ }^{2}, 760$	$\stackrel{4}{4} 187$	5, 532	6, 311	6,603	7,015	65
76	108	159	244	326	356	400	77	108	168	254	331	344	387	3,474	5,256	9,176	16,342	22, 794	25, 229	28,036	66
876	1,072	1,277	3,222	2,809	2,776	3, 539	897	1,078	1,386	2,697	2,464	2,983	3,596	46, 843	60,801	94,517	156, 676	200, 381	223, 262	253, 116	67
20	32	56	110	164	180	207	18	33	54	108	155	171	194	1,061	1,874	3,862	7,959	10,673	11,812	13,449	68
856	1,040	1,221	3,112	2,645	2,596	3,332	879	1,045	1,332	2,589	2,309	2,812	3,402	45, 781	58, 927	90, 654	148, 717	189, 708	211, 450	239, 668	69
-20	-28	$1-34$	-58	-97	-102	-119	-1							468		1, 108	1,558	2, 168	2, 290	2, 488	70
836	1,012	1,188	3, 054	2,548	2,494	3,214	878	1,045	1,334	2,592	2,314	2,816	3,406	46, 249	59,625	91, 763	150, 275	191,876	213, 741	242, 136	71
114	168	293	506	712	817	907	114	181	305	451	609	656	734	6,097	9, 055	14, 297	23, 567	34,092	38, 474	43, 524	72
77	100	165	316	468	517	558	77	112	181	334	513	550	595	4,517	6,649	11, 378	24, 194	41, 148	44, 722	48,604	73
1,027	1,280	1,645	3,875	3,728	3,828	4,677	1,070	1,337	1,820	3,378	3,436	4, 022		56,863	75,329	117,438	198,045	267, 115	296, 936	334, 155	74
1,695	1,988	2,650	6,117	5,781	5,887	7,174	1,631	1,889	2,720	4,965	5,011	5,850	6,864	1,519	1, 849	2,728	4, 279	5,541	6,089	6,773	75
606	644	621	634	645	650	652	656	708	669	+680	${ }^{\text {, }} 686$	-688	-690	37, 435	40, 742	43, 042	46,287	48, 207	48, 766	49,334	76

Table 3.-Personal Income by Major
[Millions of

See footnotes on pp. 32-33.

Sources, Selected Years 1958-78-Continued dollars]

Florida							Georgia							Kentucky							Line
1958	1963	1968	1973	1976	1977	${ }^{7} 1978$	1958	1963	1968	1973	1976	1977	${ }^{7} 1978$	1958	1963	1968	1973	1976	1977	${ }^{7} 1978$	
6,545	8,943	14,819	28, 106	33,747	37,761	43,673	4,972	6,661	10,663	17,744	21,843	24,422	27, 351	3,551	4,510	6,698	10,566	14,072	15,729	17,743	1
5,168	7,224	12,279	23,514	28,589	31,737	36,463	3,932	5,438	8,979	14,761	18,609	20,841	22,968	2,652	3,462	5,349	8,400	11, 179	12,479	14, 117	2
${ }^{1} 157$, 281	12, 605	1,547	2,346	2,793	3, 325	-117	, 198	$\stackrel{439}{ }$	-972	1,544	1,844	2,115	, 111	165	5,310	8, 689	1, 237	1,435	1,667	3
1,221	1,438	1,935	3, 044	2,812	3,232	3,885	923	1,025	1,246	2,012	1,690	1,736	2,268	788	883	1,039	1,478	1,656	1,815	1,959	4
250 970	1,302 1,135	1,347 1,588	595 2,449	559 2,254	2, 727	865 3,020	299 624	319 706	272 974	1, 725 1,287	1, ${ }^{4265}$	1,241 1,495	612 1,656	323 465	350 533	328 710	551 927	1 1,129	537 1,279	543 1,415	5 6
374	414	548	872	934	923	1,363	357	395	349	834	582	401	800	360	405	391	625	629	645	682	7
6, 171	8, 529	14, 272	27, 234	32,813	36,838	42,310	4,615	6,266	10,314	16,911	21,260	24, 022	26, 551	3, 191	4,105	6,307	9,941	13, 443	15,084	17,061	8
5,030 46	6,885 73	11, 488	22, 297	26,007 275	29,435	34,262 397	3,720 30	4,991 37	8,187 46	13,688 66	16,985 74	19,266 83	21,428 94	2,649 10	3, 345 11	5,072 16	8,131 27	11,053 37	12, 520	14,272 50	9 10
30 17	59	99	175	249	281	361	13	16	27 20	46 20	47	52	58	${ }_{(*)}^{10}$	(*) 11	(*) ${ }^{15}$	26	36	40	48	11
17 41	14	${ }_{63}^{18}$	18 110	$\begin{array}{r}26 \\ 137 \\ \hline\end{array}$	$\begin{array}{r}34 \\ 134 \\ \hline\end{array}$	37 162	17	27	20 44	${ }_{71}^{20}$	27 88	$\begin{array}{r}31 \\ 104 \\ \hline\end{array}$	35 114	${ }^{(*)}$	${ }^{(*)}$	${ }^{(*)}$	1 447	1 922	1, $\begin{array}{r}144 \\ \hline\end{array}$	1, ${ }^{2} 8$	12
(D)	(D)	(D)	(*)	-1	(*)	(*)	${ }^{*}$ *	(*)	(*)	(*)	(*)	2	2	153	139	181	402	815	1,051	1,181	14
			(D)	31	13	15	(*)	(*)	${ }^{*}$)		3	${ }^{*} 2$	(*) 2	(D)	(D)	(D)	18	70	55	${ }^{63}$	15
(D) ${ }_{35}$	(D)	(D) ${ }_{5}$	(D)	8	19	9 137	(*)	17	2	- 1	${ }^{*}{ }^{*}{ }^{3}$	${ }^{(*)}$	${ }^{*}{ }^{*}{ }^{2}$	${ }^{(D)} 10$	(D)	(D) 19	${ }^{*}{ }^{*}$	${ }^{*}$ * ${ }^{7}$	${ }^{*}{ }^{*}{ }^{58}$	${ }^{*}{ }^{*}$	16
35 628	40 700	- ${ }_{\text {1, }}^{52}$	86 3,205	98 2,305	112 2,589	137 3,117	$\stackrel{22}{263}$	27 352	42 620	68 1,200	85 1,123	99 1,305	109 1,458	104	15 307	19 487	28 717	37 868	38 979	41 1,223	17
628																					18
807	1,317	2,270	3,605	4,299	4,981	5,937	1,200	1,681	2,810	4, 201	5,238	5,902	6, 462	806	1,067	1,702	2,863	3,635	4, 161	4,664	19
420	- 589	, 914	1,495	1,985	2,199	2,480	-762	1,040	1,679	2,537	3,239	3,586	3,896	387	490	731	1,096	1,464	1,612	1,774	20
141	197	280	437	, 572	635	694	158	203	295	443	596	665	- 726	133	147	180	235	311	339	356	21
(D)	(D)	(D)	24	34	34	40	293	370	627	937	1,151	1,265	1,348	8	9	15	44	61	68	69	22
24	39	90	179	213	230	270	111	172	284	390	489	514	559	48	70	124	161	197	210	222	23
74	94	141	199	253	274	305	86	131	195	297	392	448	508	8	16	27	59	93	105	115	$\stackrel{24}{ }$
70	97	150	286	359	407	469	49	64	106	162	209	241	260	50	55	83	127	155	166	189	25
${ }^{74}$	120	164	226	367	410	451	44	68	101	164	224	248	272	69	95	135	189	258	295	324	26
(D)	(D) 19	(D)	14	18	22	30	5	6 3	8	16	(D)	(D)	(D)	8	10	13	25	68	83	91	$\stackrel{27}{ }$
22	19	25	27	26	25	25	2	3	3	3	(D)	(D)	(D)	52	67	95	151	190	199	220	28
		30	77	114	138	167	4	10	37	104	136	161	176	3	12	37	74	94	115	152	29
(D)	(D)	14	28	29	24	29	10	13	20	22	20	19	21	7	10	23	31	36	33	36	30
388	728	1,357	2, 111	2,315	2,782	3,457	438	641	1,131	1,664	1,998	2, 316	2,566	419	577	971	1,766	2, 171	2, 549	2,890	31
57	65	84	140	179	222	268	83	104	142	220	265	300	344	31	36	52	-88	111	117	136	32
29	33	55	98	76	86	114	26	32	(D)	77	74	86	98	22	28	39	57	58	67	71	33
9	13	24	50	48	61	67	21	29	(D)	128	193	227	265	57	78	121	227	312	355	411	34
66	82	139	285	323	390	473	28	53	107	176	201	243	272	71	84	136	211	256	305	335	35
24	51	126	221	292	343	419	37	54	97	167	207	250	260	69	113	204	391	531	589	673	36
31	126	258	386	519	585	800	20	35	69	139	182	210	256	105	145	253	450	472	571	634	37
71	148	308	409	505	613	749	105	155	310	268	252	243	274	4	5	(D)	(D)	19	24	26	38
3 31	${ }_{114}^{4}$	1909	15 158	17	23	28	${ }^{*}{ }^{61}$	93 1	159 13	257 6	344	431	427	$\left(^{25}\right)^{25}$	$\left(^{*}\right)^{38}$	$(*)^{74}$	${ }_{(D)}^{172}$	228	308	368	39 40
49	65	100	241	211	252	317	38	61	87	153	183	216	250	(24	- 34	49	81	109	131	149	41
9	13	35	64	91	140	141	4	6	14	25	37	45	47	3	7	(D)	34	36	40	42	42
10	14	29	45	54	66	81	16	20	32	49	60	65	73	7	9	20	36	39	43	46	43
510	659	1,130	2, 323	2,939	3,312	3,793	377	499	809	1,491	1,950	2, 254	2,539	297	348	474	782	1,026	1,184	1,330	44
105	88	115	172	209	231	249	116	113	133	202	222	243	261	122	128	143	204	272	293	315	45
72	106	169	361	398	484	587	79	118	190	356	418	483	539	51	70	107	201	252	305	349	46
20	28	50	87	106	116	149	5	8	13	20	26	31	37	6	6	11	16	26	31	34	47
144	190	376	670	797	922	1,027	52	88	180	351	488	576	660	27	31	44	56	62	74	81	48
99	149	267	705	980	1,095	1,263	72	101	179	366	506	582	668	41	50	81	152	232	267	306	49
69	98	154	327	449	464	518	53	72	115	196	290	339	373	49	62	89	154	182	214	244	50
454	595	925	1,848	2,337	2,527	2,849	386	526	797	1,383	1,911	2,160	2,421	162	206	300	482	780	829	959	51
977	1,242	2,022	3,755	4, 579	5,041	5,750	586	708	1,146	1,952	2,296	2,541	2,814	444	502	745	1,092	1,393	1,503	1,716	52
436	620	980	1,918	2, 318	2, 744	3, 234	240	340	546	984	1,225	1, 406	1,570	144	183	267	376	${ }_{5}^{531}$	${ }_{6}^{616}$	704	53
60	96	161	, 337	452	497	566	48	67	116	228	292	, 307	- 331	28	40	63	108	165	186	216	54
376	524	819	1,581	1,866	2,248	2,667	192	273	430	756	933	1,099	1,239	116	143	204	268	366	430	488	55
1, 130	1,631	2, 848	5,341	6,817	7,791	9,022	616	820	1,370	2,340	3, 080	3,512	3, 958	394	544	856	1,345	1,861	2, 062	2,341	56
122 117	1149	254 216	429	473	513	590	20	26	60	103	163	184	204	14	16	30	44	${ }^{60}$	${ }^{65}$	78	57
170	191	265	313	373	398	437	132	144	184	206	245	${ }_{261}$	287	42	47	62	70	184	127 89	140 98	58 59
159	222	428	936	1, 166	1,395	1, 702	78	116	201	434	591	703	832	47	67	105	183	238	287	347	60
59	87	146	326	395	456	535	17	26	51	71	87	101	118	17	22	33	41	54	63	70	61
503	849	1,538	3, 051	4,093	4,676	5,362	298	423	745	1,374	1,828	2,077	2,316	222	330	538	908	1,309	1,430	1,607	62
1,142	1,644	2,784	4,938	6, 806	7,403	8,047	896	1,275	2, 128	3,222	4,275	4, 756	5,123	541	759	1,236	1,810	2,391	2,564	2,790	63
259	363 409 8	${ }_{6}^{628}$	946	1,308	1,436	1,571	289	397	${ }_{562}^{628}$	${ }_{539} 92$	1,197	1,333	1,407	141	192	${ }_{235}^{323}$	430		597	629 481	$\stackrel{64}{65}$
379 504	409 872	583 1,573	824 3,167	4,965 4,534	1,023 4,944	$\stackrel{1}{\mathbf{5}, 370}$	282 324	379 499	562 937	539 1,762	1,598 2,480	1, 232 2,751	1,726 2,990	159 242	190 376	285 627	381 999	462 1,363	477 1,490	481 1,680	65 66
	872	1,573	3, 167	4, 534	4, 344	5, 370	324	493	937	1,762	2, 480	2,751	2,990	242	376		999	1,363	1,490	1,680	66
6,545	8,943	14, 819	28,106	33,747	37,761	43, 673	4,972	6,661	10,663	17,744	21, 843	24, 422	27,351	3,551	4,510	6,698	10,566	14, 072	15,729	17,743	67
150	279	620	1, 421	1, 666	1,845	2, 157	115	207	417	908	1,155	1,288	1,439	80	133	270	524	722	784	896	68
6,395	8,664	14, 199	26,685	32,081	35,916	41,516	4, 857	6,454	10,246	16, 836	20,688	23,134	25, 913	3,471	4,377	6, 428	10,042	13,350	14,944	16,847	69
-14	-16	, 13	-21			-37		-6	-36	-48	-75	-94	-89	89	4,91	131	, 118	- 89	15, 116	135	70
6,381	8,648	14, 186	26, 664	32, 052	35,885	41, 479	4,861	6,448	10,210	16,787	20,613	23,041	25,823	3,559	4,468	6, 559	10, 160	13,438	15,061	16,981	71
1,430	2,091	3, 516	6,684	9,649	10, 858	12, 405	534	826	1,377	2, 234	3,040	3,423	3,875	449	638	922	1,455	2, 207	2,509	2, 819	72
685	1,199	2,294	5,312	9, 202	10,220	11, 223	424	600	1,037	2, 196	3,839	4,071	4,400	403	540	877	1,781	2,890	3,087	3,322	73
8,497	11,937	19,997	38, 661	50,903	56, 963	65, 084	5,819	7,874	12,624	21, 218	27, 492	30,535	34, 087	4,412	5,646	8,359	13,396	18,536	20,656	23, 114	74
1,835	2,121	3,109	4,988	6,094	6, 728	7,573	1,530	1,887	2,817	4, 403	5,517	6,058	6,7c5	1,490	1,824	2, 616	4,032	5,395	5,957	6,607	75
4,630	5,628	6,433	7,751	8,353	8,466	8,594	3,804	4,172	4,482	4,819	4,984	5,041	5,084	2,961	3,096	3,195	3,322	3,436	3,468	3,498	76

Table 3.-Personal Income by Major Sources,
[Millions

Line	Item	Louisiana							Mississippi						
		1958	1963	1968	1973	1976	1977	${ }^{7} 1978$	1958	1963	1968	1973	1976	1977	${ }^{7} 1978$
	Income by place of work Total labor and proprietors income : \qquad By type	4,131	5,007	7,886	11,440	16,308	18,274	20,949	1,948	2, 644	3,885	6,422	8,109	9,109	10,121
23456	Wage and salary disbursements.	3,319154658152506	4,050	6,523	9,433	13,528	15,154	17,502	1,417	1,915	3,032	4,954	6,465 582	7,221	$\begin{array}{r}8,168 \\ 1,146 \\ \hline 18\end{array}$
	Other labor income..............		-208	390	, 708	1,271	1, 494	1,773	- 44						
	Proprietors income		$\begin{aligned} & 748 \\ & 207 \end{aligned}$	$\begin{aligned} & 972 \\ & 229 \end{aligned}$	$\begin{array}{r} 1,299 \\ \hline 437 \end{array}$	1,509	1,626	1,673	487	653	691	1, 107		$\begin{array}{r}1,190 \\ \hline 64\end{array}$	
	Farm....					284	312		223	360	298		1,062 372		1,146
	Nonfarm ${ }^{2}$		542	743	862	1,225	1,315	1,461	264	294	392	533	689	726	805
8	Nonfarm	194 3,937	${ }_{4,743}$	$\begin{array}{r} 296 \\ 7,590 \end{array}$	(10,933	$\begin{array}{r} 356 \\ 15,953 \end{array}$	380 17,894	${ }_{20,661}^{288}$	$\begin{array}{r} 275 \\ 1,673 \end{array}$	$\begin{aligned} & 429 \\ & 2,215 \end{aligned}$	$\begin{array}{r} 375 \\ 3,510 \end{array}$	$\begin{array}{r} 671 \\ 5,751 \end{array}$	$\begin{array}{r} 508 \\ 7,601 \end{array}$	$\begin{array}{r} 609 \\ 8,500 \end{array}$	- $\begin{array}{r}479 \\ 9,642\end{array}$
9 10	Private. Agricuitural services, forestry, fisheries, and other ${ }^{3}$	${ }_{22}$	3,907 22	6,272 29	8,954 50	13,345 69	15,028 80	17,533 100	1,341 12	1,738 14	$\begin{array}{r} 2,763 \\ 17 \end{array}$	$4,514$	$\begin{array}{r} 6,046 \\ 34 \end{array}$	$\begin{array}{r} 6,795 \\ 36 \end{array}$	7,746 50
11 12 12	Agricultural services	13	$\begin{aligned} & 10 \\ & 13 \end{aligned}$	$\begin{array}{r} 16 \\ 13 \end{array}$	2921648	$\begin{array}{r}34 \\ 34 \\ \hline 10\end{array}$	$\begin{array}{r} 40 \\ 41 \\ \hline \end{array}$		$\begin{array}{r}5 \\ 7 \\ \hline\end{array}$	$\begin{array}{r} 7 \\ 6 \end{array}$	12 5	17 6 6	20 14	24 12	38 12
13 14	Mining .-.....	${ }_{(*)}{ }^{298}$	${ }_{(*)} 325$	${ }_{(*)}$		(D) ${ }^{1,216}$		(1, ${ }^{\text {c }}$) 68	(*) ${ }^{32}$	(*) ${ }^{42}$	(D) ${ }^{50}$	(D) ${ }^{61}$	${ }_{(0)}^{136}$	${ }^{139}$	${ }^{171}$
14	Coal mining.	${ }^{(*)}$	${ }_{(*)}^{304}$	${ }^{(*)}$	${ }^{(\mathrm{D})}{ }^{6}$	(D) 154	${ }^{(\mathrm{D})}{ }^{\text {d }}$	(D) ${ }^{\text {(}} 563$	(*)	(*) ${ }^{\text {(}}$	(D)	(D) 50	(D)	${ }^{(*)}$	(*) ${ }^{(12)}$
15 16	Oil and gas extraction	${ }_{\left({ }^{*}\right)}^{278}$	${ }_{(*)}^{304}$	${ }_{(*)}^{467}$	${ }_{\text {(D) }}^{612}$	${ }_{\text {(D) }}$ (1, 154		${ }_{(\mathrm{D})}^{1,563}$	(*) ${ }^{29}$	$(*)$	(*) ${ }^{44}$	(*) ${ }^{50}$	${ }_{(124}$	${ }_{\left({ }^{*}\right)^{126}}$	${ }_{(*)}{ }^{155}$
17	Nonmetalic minerals, exc	330	${ }_{34}^{21}$	32779	925	1,633	1,764	2,126	108	143	${ }^{216}$	${ }_{383}$	(0)	554	651
18	Construction.												492		
19	Manufacturing.	738	955	1,394	1,953	2,815	1,788	$\stackrel{3}{3,630} 2$	407	560	1,005	1,689	2,217	2,521	2,827
20	Nondurable goods.	519 133		782	1,119	1,583				29867	45497	651 137	857	${ }_{203}^{932}$	1,035
${ }_{22}^{21}$	Food and kindred product	$\begin{array}{r}133 \\ 3 \\ \hline\end{array}$	$\begin{array}{r}152 \\ 2 \\ \hline\end{array}$	203 3	${ }_{\text {(D) }}$	(D) 316	(D) 338	(D) ${ }^{372}$					185 51 51		$\begin{array}{r}224 \\ 59 \\ \hline\end{array}$
23	Apparel and other textile	16	18	33	$\begin{array}{r}52 \\ 207 \\ \hline\end{array}$	69	${ }^{\text {a }} 7$	(D) 82	58	92 55	$\begin{array}{r}149 \\ 56 \\ \hline\end{array}$	207	$\begin{array}{r}264 \\ 99 \\ \hline\end{array}$	115	29713456
24	Paper and allied products.	90	102	135		253	287	322	44			80			
${ }^{25}$	Printing and publishing	${ }^{29} 116$	33131115	$\begin{array}{r}47 \\ 232 \\ \hline 26\end{array}$	$\begin{array}{r}68 \\ 364 \\ \hline\end{array}$	$\begin{gathered} 91 \\ 580 \end{gathered}$	$\begin{gathered} 98 \\ 682 \end{gathered}$	109	10	$\begin{aligned} & 12 \\ & 25 \end{aligned}$	39	2659	37	44	56
${ }_{27}^{26}$	Chemicals and allied products							${ }^{766}$	18				86	97	112
$\begin{aligned} & 27 \\ & 28 \end{aligned}$	Petroleum and coal products.	131	115 1	${\left({ }^{*}{ }^{126} \text {)}\right.}^{\text {a }}$	$\left({ }^{*}{ }^{165}\right.$	(*) ${ }^{237}$	(*) ${ }^{266}$	${ }_{(*)} 319$	(*) ${ }^{3}$	(*) ${ }^{7}$	(*) ${ }^{13}$	$\left(_{*}{ }^{19}\right.$	$(*){ }^{33}$	(*) ${ }^{34}$	$(*){ }^{39}$
29	Rubber and mise. plastics p	${ }^{*}$)	(*)	(D)	(D)	(D)	(D)	(D)	6	13	37	70	86	93	98
30	Leather and leather product	1	1	(D)	1	1	1	2	4	8	13	12	16	16	16
31	Durable goods.	219	349	612	834	1,232	1,411	1,608	200	262	551	1,039	1,360	1,590	1,792
32	Lumber and wood produc	59	62	89	131	170	199	217	60	${ }_{32}$	127	196	234	267	317
33	Furniture and fixtures.-.	24	30	7	9	10 113	111	12 160				122	$\begin{array}{r}142 \\ 34 \\ \hline\end{array}$	160 37	$\begin{array}{r}174 \\ 45 \\ \hline\end{array}$
34 35	Primary metal industries	$\stackrel{24}{32}$	30 48	43 79	77 119	113 219	132 241 1	160 280	${ }^{(D)} 10$	${ }^{(D)}{ }_{26}$	${ }^{(\mathrm{D})} 51$	${ }_{90}^{22}$	$\begin{array}{r}34 \\ 102 \\ \hline\end{array}$	$\begin{array}{r}37 \\ 118 \\ \hline\end{array}$	$\begin{array}{r}45 \\ 147 \\ \hline\end{array}$
36	Machinery, except electrical	20	27	42	71	120	140	170	11	${ }_{21}^{20}$	48	94	121	145	184
37	Electric and electronic equipment.	1	1	22	76	118	158	179	13	28	60	141	190	241	288
38	Transportation equipment exc. motor	36	60	132	215	336	368	411	60	41	106	257	381	420	428
	Motor vehicles and equipment.	1	2	4	6	6	9	5			(D)	12	22	47	42
40	Ordnance ${ }^{\text {c }}$-.................	33	66	118	41				${ }^{(D)}{ }^{17}$	(D)					
41	Stone, clay, and glass products-	33	40	$\begin{array}{r}63 \\ 3 \\ \hline\end{array}$	72	109	125	144	$\left({ }^{*}\right)^{17}$	24 1 1	$\begin{array}{r}34 \\ 7 \\ \hline\end{array}$	61 10	84 14 14	94 19	108
43	Miscellaneous manufacturing industries	5	$\stackrel{3}{5}$	3	11	14	15	15		11	19	34	${ }_{37}^{14}$	42	46
44	Transportation and public utilities	424	495	727	1,118	1,562	1,765	2, 100	125	154	223	391	524	606	${ }_{96}^{69}$
45	Railroad transportation.	78	74	78	120	142	${ }_{28}^{154}$	167	37	36	45	${ }^{61}$	81	89	$\begin{array}{r}96 \\ 169 \\ \hline\end{array}$
46 47	Trucking and warehousing	51 107	$\begin{array}{r}67 \\ 133 \\ \hline\end{array}$	107 220	184 277	238 427	282 470	340 591	24 3	33 6	46 13	${ }_{23}^{96}$	114 30	$\begin{array}{r}139 \\ 34 \\ \hline\end{array}$	$\begin{array}{r}169 \\ 40 \\ \hline\end{array}$
48	Other transportation.	56	62	89	134	183	221	258	6	7	9	17	25	32	36
49	Communication	56	67	111	222	336	381	454	24	33	54	109	161	183	208
50	Electric, gas, and sanitary services	76	92	122	180	237	258	291	30	39	55	86	113	129	145
51	Wholesale trade	261	319	504	772	1,136	1,278	1,510	90	122	175	280	461	500	568
52	Retail trade.-	506	568	865	1,245	1,717	1,930	2,197	247	285	${ }_{15}^{413}$	660	807	884	1,016
${ }_{5}^{53}$	Finance, insurance,	187	240	360	${ }^{527}$	744	865	1,005	${ }_{6}^{65}$	96	154	243	${ }^{337}$	389	${ }_{1}^{45}$
54	Banking	-35	$\stackrel{49}{191}$	79	${ }_{393}^{134}$	197	220	257	17 48	25 71	$\begin{array}{r}42 \\ 112 \\ \hline\end{array}$	172	${ }_{231}^{106}$	${ }_{271}^{18}$	135 315
56	Services..........	523	686	1,115	1,716	2,452	2,789	3,236	254	323	509	783	1,038	1,163	1,318
57	Hotels and other lodging p	22	24	45	70	95	103	118	9	12	21	31	47	50	57
58	Personal services	54	62	87	92	116	131	146	27	33	85	54	64	70	77
59 60	Private households. .-......-	68	106 99	183	${ }_{322}$	${ }_{542}$	629	759	${ }_{21}^{65}$	32	88	103	151	173	127 196 19
61	Amusement and recreation incl. motion	21	25	35	46	65	76	89	5	6	10		15	19	23
62		261	371	629	1,035	1,454	1,658	1,914	128	169	277	489	653	735	838
	Government and government enterprises	649	837	1,318	1,979	2,608	2,866	3,128	332	477	747	1,237	1,555	1,705	
64	Federal, civilian.	124	162	239	355	483	526	583		118	176	269	362	399	464
65	Federal, military	141	150	214	${ }^{271}$	274	294	335	80	118	160	245	248	254	265
66	State and local.	384	524	865	1,353	1,850	2, 047	2, 209	163	241	411	722	944	1,052	1,167
	Derivation of personal Income by place of residence														
67	Total labor and proprietors income by place of work..	4, 131	5,007	7,886	11,440	16,308	18, 274	20,949	1,948	2,644	3,885	6,422	8, 109	9, 109	10, 121
68	Less: Personal contributions for social insurance	86	141	296	530	817	911	1,055	42	73	158	312	453	503	574
69	Net labor and proprietors income by place of work.	4, 045	4,866	7,589	10,909	15,492	17,362	19,894	1,096	2,571	3,727	6, 110	7,655	8,606	9,547
70	Plus: Residence adjustment.......................	-10	-9		-5				12	18	25	50	. 58	$8{ }^{64}$	
71	Net labor and proprietors income by place of residence.	4,035	4,857	7,584	10,905	15,515	17,379	19,905	1,918	2,589	3,752	6,159	7,714	8,670	9,624
72	Plus: Dividends, interest, and rent ${ }^{0}$.	602	849	1,277	1,814	2,558	3,009	3,373	204	329	475	735	1,160	1,308	$\underset{\substack{1,495 \\ 2,196}}{ }$
73	Plus: Transfer payments................	407	568	904	1,797	2,854	3,149	3,369	221	319	536	1,101	1,842	2,016	2,196
	Personal income by place of residen	5,044	6, 274	9,764	14, 515	20,927	23,537		2,343	3,237	4,763	7,995	10,716	11,994	13,290
75	Per capita income (dollars)	1,599	1,858	2,710	3, 875	5,401	5,989	6, 716	1,123	1, 442	2, 1416	3, 451	${ }^{4,530}$	5, ${ }^{\text {, }} \mathbf{2 8 8}$	-5,529
76	Total population (thousands)..........................	3,155	3.377	3,603	3,746	3,875	3,930	3,966	2,086	2, 244	2,219	2,317	2,365	2,386	2, 404

[^6]Selected Years 1958－78－Continued
of dollars］

Vorth C							outh Carolin							Tennes							Line
1958	1983	1988	1973	1976	197	＇1978	1958	1963	1988	1973	1976	1977	1978	1958	1963	1988	1973	1976	1977	${ }^{1978}$	
5，437	7，264	11，475	19， 104	23，727	26，042	29，421	2，511	3，488	5，403	8，855	11，483	12，727	14，469	4，318	5，610	8，658	14，047	17， 988	20，065	22，93	
		$\begin{aligned} & 9,579 \\ & 1,467 \\ & 1,47 \\ & 1,010 \end{aligned}$			$\left.\begin{gathered} 12,789 \\ 2,484 \\ 2,477 \\ 1,687 \end{gathered} \right\rvert\,$					7,524 $\substack{465 \\ 865 \\ 6.65 \\ 600}$	9,861 $\substack{866 \\ 868 \\ 708 \\ 707}$	10,845 895 989 and 899								$\begin{aligned} & 19,068 \\ & \hline \end{aligned}$	
${ }_{4}^{4,826}$	6，6996	10， 5450	17， 1246	${ }_{22,485}^{1,24}$	25，029	27，869	2,385	3，153	5，289 ${ }^{164}$	8， 535	11，236	12， 529	${ }_{14,159}^{315}$	4，004	5，313	8，409	${ }_{13,565}^{488}$	17， 383	19， 723	${ }^{22,520}$	
4，003	5， 818	8，990	14，688	18， 259	， 16	${ }^{22,789}$	1，817	2，485 ${ }_{12}$	4， 124	6，716	8， 743	${ }^{58} 8$	${ }^{11,238}$	3， 30	${ }_{4}^{4} 482$	${ }^{7}$ 7，099		14， 19	${ }^{364} 4$	18，673	
15	1												$\begin{aligned} & 388 \\ & \\ & \hline 025 \end{aligned}$		$\begin{aligned} & 12 \\ & 37 \\ & 37 \end{aligned}$	$\begin{aligned} & 20 \\ & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 31 \\ & { }_{3}^{75} \\ & 7_{20} \end{aligned}$	37 120 120	42 155 158	－ $\begin{array}{r}49 \\ 198\end{array}$	
	（0）	（8）			（0）	（0）	（10）	（0）	$\begin{aligned} & \left(\mathbf{D O}_{0}^{(0)}\right. \\ & (0) \end{aligned}$	（\％）				13	（12）${ }_{9}$	$\begin{aligned} & 15 \\ & 15 \\ & 14 \\ & 14 \end{aligned}$	29 17 17	56 188 18	85 82 22	${ }_{17}^{10}$	
$\underset{266}{\frac{2}{261}}$	14 381	${ }_{6}^{24}$	1，232	1， 52	1，395	1，562	${ }_{\substack{0 \\ 142 \\ 142}}^{(1)}$	${ }_{184}^{(0)}$	10 347	－ 116	${ }_{734}$	22 888	$\stackrel{25}{967}$	－	${ }_{325}^{17}$	＋19	808	－	1，${ }_{\text {12 }}^{42}$	，${ }_{\substack{49 \\ 4.35}}$	
1，65	${ }_{\text {2，}}^{2,308}$	${ }^{3}, 2$	${ }_{6}^{6}$	${ }^{7} \mathbf{7}, 595$	${ }_{8}^{8} 5$	㐌，842	年685	1， 11	$\xrightarrow{1,901}$	${ }_{\text {2，}}^{2,955}$	${ }_{2}^{3.876}$	${ }_{3}^{4.372}$	${ }_{\substack{4,867 \\ 3,37}}$	1，${ }_{78}^{24}$	${ }_{\substack{1,708 \\ 1,040}}$	857	233	479	${ }^{213}$	998	19
							423													202	
674 78 67	822 85 88		${ }_{\substack{\text { 2，} \\ \text { and } \\ 209 \\ 209}}$		${ }^{2}$ 2．4788		423			cin		1，541					旡 383				－
－${ }_{6}^{6}$	$\begin{gathered} 561 \\ \hline 103 \end{gathered}$						38 16 79	（ $\begin{gathered}60 \\ 108 \\ 108\end{gathered}$	195	（149	（208	$\begin{aligned} & 231 \\ & \begin{array}{l} 231 \\ 519 \end{array} \end{aligned}$	$\begin{gathered} 2610 \\ 580 \\ 580 \end{gathered}$	－ $\begin{aligned} & 46 \\ & 277 \\ & 27\end{aligned}$	－ $\begin{gathered}62 \\ 342 \\ 34\end{gathered}$	$\begin{aligned} & 100 \\ & \hline 106 \\ & \hline 136 \end{aligned}$	（182	cois	－	291	25
${ }^{13}$	179	${ }^{299}$	${ }_{29}^{295}$	${ }_{420}$	${ }_{25}^{452}$	${ }_{484}^{484}$		${ }_{6}^{2}$	＋ 2		${ }_{4}^{4}$		${ }_{5}^{7}$	${ }_{4}^{4}$	$\stackrel{4}{5}$	7	10	（13	－${ }_{20}^{13}$	$\begin{array}{r}14 \\ 22 \\ \hline 1\end{array}$	
	－14		${ }_{25}^{147}$	${ }_{34}^{221}$	${ }_{37}^{273}$	${ }_{32}^{315}$	${ }^{4}$		$\begin{aligned} & 10 \\ & \hline 15 \\ & 10 \end{aligned}$	${ }_{1}^{19}$	${ }^{132}$	$\begin{aligned} 17_{2}^{4} \end{aligned}$	${ }_{2}^{21}$	${ }_{43}^{27}$	${ }_{70}^{49}$	－88	－ 193	－ 2178	${ }^{329}$	退383	
$\begin{array}{r}473 \\ 96 \\ \hline 18\end{array}$	701	1， 1,27	2， 272	2，${ }_{\text {ch3 }}^{13}$	3， 3 309				${ }^{473}$	${ }^{836}$		1，315			${ }_{74}^{667}$	1，230	$\substack{\text { 2030 } \\ 101}$	－${ }^{42}$	． 28.		
13	207						（1）${ }^{12}$	（0）${ }^{14}$	（0）${ }^{23}$					－	－		（1010			cest	
$\begin{aligned} & 32 \\ & \hline 120 \\ & 1020 \end{aligned}$	$\begin{gathered} 748 \\ 138 \\ 138 \end{gathered}$	$\begin{gathered} 200 \\ 2505 \\ 250 \end{gathered}$		$\begin{gathered} 2838 \\ 488 \\ 488 \end{gathered}$			16 18 6	¢19 26 26					$\begin{aligned} & 1929 \\ & \begin{array}{c} 1924 \\ 249 \end{array} \end{aligned}$	$\begin{aligned} & 87 \\ & 58 \\ & 540 \\ & 54 \end{aligned}$	$\begin{gathered} 102 \\ 102 \\ 988 \end{gathered}$			$\begin{aligned} & 381 \\ & \hline 885 \\ & 8856 \\ & 885 \end{aligned}$		（	
13	12										${ }_{38}^{180}$		${ }_{41}$		${ }_{22}^{32}$		析	${ }_{109} 109$	${ }_{128}^{128}$	\％	
${ }^{*}{ }^{7}$					${ }^{95}$		（8）				12	${ }^{14}$	19					151	184	240	${ }_{\substack{39 \\ 40 \\ 40 \\ \hline}}$
$\begin{array}{r} 32 \\ \frac{32}{} \\ 8 \end{array}$	$\begin{array}{r} 50 \\ 10 \\ 10 \end{array}$	$\begin{aligned} & 888 \\ & \begin{array}{c} 828 \\ 24 \end{array} \end{aligned}$	$\begin{gathered} 196 \\ \hline \\ \hline 64 \\ 44 \end{gathered}$	${ }^{184}$	$\begin{aligned} & 22023 \\ & 44 \\ & 44 \end{aligned}$				$\begin{aligned} & \mathbf{y}_{72}{ }_{215} \\ & 22 \end{aligned}$	（118	$\begin{gathered} i 299 \\ 36 \\ 36 \end{gathered}$	$\begin{aligned} & \text { in } 98 \\ & 39 \\ & 39 \end{aligned}$	$\begin{aligned} & 17 i r \\ & \hline 80 \\ & 45 \end{aligned}$	${ }_{\substack{54 \\ 10}}$	＋	$\begin{gathered} 48 \\ \hline 108 \\ 25 \end{gathered}$	（191	$\begin{gathered} 2(2020 \\ 100 \\ 100 \end{gathered}$	$\begin{gathered} 2601 \\ 1090 \\ 109 \end{gathered}$	－${ }^{98}$	${ }_{41}^{41}$
${ }_{6}^{30}$	${ }_{409}^{409}$	${ }_{72}^{689}$	1， 1103	${ }_{1}^{1,489}$	${ }^{1.712}$	1，915		${ }^{54}$	${ }^{249}$	${ }_{65}^{78}$	${ }_{75}{ }^{27}$	${ }_{85}^{34}$		500	－356	\％10	${ }_{\substack{594 \\ 156}}$	， 178	， 305	${ }_{\substack{522 \\ 222}}$	${ }_{45}^{44}$
$\begin{gathered} 60 \\ \\ \hline 109 \\ 27 \end{gathered}$	$\begin{gathered} \text { } \\ \begin{array}{c} 601 \\ 4 \\ 38 \end{array} \\ \hline \end{gathered}$	$\begin{gathered} 72 \\ \hline 15 \\ 66 \end{gathered}$		13				．${ }^{5}$	$\begin{gathered} 9.9 \\ \hline 9 \\ 16 \end{gathered}$	$\begin{aligned} & 161 \\ & \left.\begin{array}{c} 101 \\ \hline 14 \end{array}\right) \end{aligned}$	$\begin{aligned} & 1027 \\ & \hline 206 \\ & 38 \end{aligned}$	$\begin{gathered} 854 \\ \begin{array}{l} 194 \\ 34 \\ 37 \end{array} \end{gathered}$	${ }_{451}^{32}$	31	$\begin{aligned} & 1109 \\ & \hline 10 \\ & 36 \end{aligned}$	（10）	${ }^{364}$			＋34	
$\left.\begin{aligned} & 27 \\ & 57 \\ & 47 \end{aligned} \right\rvert\,$	$\begin{aligned} & 38 \\ & 86 \\ & 86 \end{aligned}$	${ }_{98}^{144} \mid$	$\begin{aligned} & 2287 \\ & 215 \end{aligned}$	$\begin{aligned} & 1 \begin{array}{c} 18799 \\ 299 \end{array} \\ & { }_{2}^{2} \end{aligned}$	$\begin{aligned} & 1505150 \\ & 341 \\ & 341 \end{aligned}$	$\begin{aligned} & \frac{1685}{505} \\ & 388 \end{aligned}$	$\begin{aligned} & 10 \\ & 27 \\ & 27 \end{aligned}$	$\begin{aligned} & 127 \\ & 31 \\ & 31 \end{aligned}$	$\begin{aligned} & 166 \\ & 65 \\ & 53 \end{aligned}$	105	${ }_{138}^{192}$	$\begin{aligned} & 320 \\ & 2720 \\ & 173 \end{aligned}$	$\underset{\substack{255 \\ 220}}{ }$	$\begin{aligned} & 31 \\ & 18 \\ & 18 \\ & 18 \end{aligned}$	－		${ }^{224} 5$	cis	（1514		48 48 50
		1，10	${ }_{1}^{1,8}$			2，							1，302		4920		－968	${ }_{\substack{1,349 \\ 1,661}}$	， 40	，， 305 305	
$\begin{gathered} 239 \\ 164 \\ 164 \end{gathered}$					1，12			$\begin{aligned} & 125 \\ & \hline 123 \\ & 102 \end{aligned}$		260			$\xrightarrow{\substack{\text { cin } \\ 1 \\ 198 \\ \hline}}$	$\begin{aligned} & 36 \\ & \hline 805 \end{aligned}$	$\begin{aligned} & 276 \\ & \begin{array}{c} 276 \\ 2426 \end{array} \end{aligned}$		${ }_{\substack{6,52 \\ 166}}^{168}$	cois	ciock		
164	$\begin{array}{\|c} 867 \\ \hline 807 \\ \hline \end{array}$	${ }_{\text {，}, \text { ，}}^{\substack{38}}$	${ }_{2}^{2,247}$		cistile	3，8，	${ }_{203}^{78}$	－		1，${ }_{52}^{200}$	，	（tay	${ }_{\text {che }}^{1,768}$				，				${ }_{6}^{56}$
${ }_{17}^{78}$	$\underset{\substack{201 \\ 102}}{122}$											cis		cis ${ }_{81}^{17}$	88		${ }^{90}$		（182	69	
180 16 16	$\begin{aligned} & 1025 \\ & { }_{24}^{25} \end{aligned}$		$\begin{aligned} & 380 \\ & 380 \\ & 57 \end{aligned}$		88		${ }_{6}^{23}$				退	$\begin{gathered} 1454 \\ \hline 285 \\ 45 \end{gathered}$	49	$\begin{gathered} 818 \\ 88 \\ 18 \end{gathered}$		$\begin{gathered} 180 \\ 384 \\ 34 \end{gathered}$	（128	（144	${ }^{54}$	¢	${ }_{6}^{66}$
333	490	${ }^{829}$	1，390	1，942				189	342	575	811	934	1．064	${ }^{293}$	23	704	1，238	1,727	1，876	2，185	
${ }_{148}^{83}$	1， 1														${ }^{35}$				${ }^{359}$	${ }_{\text {8291 }}^{89}$	
$\underset{\substack{278 \\ 397}}{\substack{28}}$	${ }_{\substack{345 \\ 631}}^{\substack{16 \\ \hline}}$	1，06	1，7896	2,989	2，889		cen	${ }_{263}^{242}$		${ }_{898}^{549}$	${ }_{1}^{1,254}$	${ }_{1,423}^{1680}$	1，654	${ }_{312}^{96}$	948	${ }_{821}^{133}$	134	（1820	${ }_{2}^{1,158}$	cinc	
5，437	$\stackrel{219}{264}$			23，		${ }_{1}^{29,}$		${ }^{3,348}$		8，855				4，${ }_{97} 18$	5，174	${ }^{8,655}$	${ }^{0} 87$	17，958	\％ 65	${ }^{22,943} 12 \times 8$	${ }_{\substack{67 \\ 68}}$
5， 319	7，045	11，010	${ }_{\substack{18,136 \\ 132}}^{\text {20 }}$	22，4	24，	${ }^{27,880}$	2，455	${ }^{3,244}$	5，18181	8，390	10，889	12， 1202	13，622	4，${ }_{12}^{4}$	${ }_{5}^{5,436}$	8，303		$\xrightarrow{16,950}$	${ }_{18,295}^{18,250}$	${ }_{\substack{21,675 \\-326}}^{\substack{\text { a }}}$	${ }^{69} 70$
5，383	7，057	11，011	18，104	22，408	24，53	27，798	468	3，273	5， 254	8，530	11，012	12， 212	13，83	4，208	5， 004	8,228	3． 127	743	8， 69	21，399	${ }_{71}$
						${ }_{4}^{4,267} 4$		${ }_{310}^{391}$	${ }_{531}^{629}$	l， 1,088	${ }^{1}, 1,605$	${ }^{1,720}$	${ }^{20}$	${ }_{\substack{506 \\ 403}}$			cis	， 5185	${ }^{2,911}$		${ }_{73}^{72}$
$\begin{gathered} 6,37 \\ 4,457 \\ 4,3757 \end{gathered}$				$\begin{gathered} 20,881 \\ 5,481 \\ 5,462 \end{gathered}$	$\begin{gathered} 32,691 \\ 5 ;, 928 \\ 5,515 \\ \hline \end{gathered}$	$\left\|\begin{array}{c} 36,671 \\ 6,5757 \\ 5,577 \end{array}\right\|$	$\begin{aligned} & 2,941 \\ & { }^{2}, 470 \end{aligned}$	$\begin{aligned} & 3,976 \\ & \hline, 46666 \\ & 2,460 \end{aligned}$		$\begin{gathered} 10,755 \\ 2, ~ \\ 2,525 \end{gathered}$	$\begin{gathered} 14,720 \\ 5,820 \\ 2,844 \end{gathered}$		$\begin{aligned} & 18,368 \\ & 6,288 \\ & 2,288 \end{aligned}$			$\begin{aligned} & 10,34 \\ & 2,60 \\ & 3,680 \end{aligned}$	$\begin{gathered} 16,968 \\ 4, \\ 4,1093 \end{gathered}$		2,212 $\substack{2,872 \\ 4,29}$ 10		$\begin{array}{r}74 \\ \begin{array}{c}75 \\ 76\end{array} \\ \hline\end{array}$

Table 3.-Personal Income by Major
imillions

[^7]Sources, Selected Years 1958-78-Continued
of dollars]

Table 3.-Personal Income by Major
[Millions

See footnotes on pp. 32-33.

Sources, Selected Years 1958-78-Continued
of dollars]

\begin{tabular}{|c|}
\hline \multicolumn{7}{|c|}{Rocky Mountain} \& \multicolumn{7}{|c|}{Colorado} \& \multicolumn{7}{|c|}{Idaho} \& \multirow{2}{*}{Line} \\
\hline 1958 \& 1983 \& 1968 \& 1973 \& 1976 \& 1977 \& \({ }^{7} 1978\) \& 1958 \& 1963 \& 1968 \& 1973 \& 1976 \& 1977 \& : 1978 \& 1958 \& 1983 \& 1968 \& 1973 \& 1976 \& 1977 \& \({ }^{1} 1978\) \& \\
\hline 6,676 \& 8,639 \& 11,742 \& 20,820 \& 27,347 \& 30,611 \& 35,646 \& 2,805 \& 3,783 \& 5,491 \& 10, 118 \& 13,096 \& 14,693 \& 17,025 \& 945 \& 1,143 \& 1,535 \& 2,775 \& 3,688 \& 4,019 \& 4,758 \& 1 \\
\hline 5,095 \& 6,917 \& 9, 557 \& 16,463 \& 22,705 \& 25,556 \& 29,478 \& 2, 197 \& 3,086 \& 4,546 \& 8, 364 \& 11,076 \& 12,410 \& 14,321 \& \({ }^{680}\) \& \({ }^{860}\) \& 1,180 \& 1,959 \& 2,923 \& 3,254 \& 3,720 \& 2 \\
\hline 1,423 \& 1,463 \& 1,746 \& \({ }_{3,156}^{1,01}\) \& \(\stackrel{1}{1,774}\) \& 2, \({ }_{232}^{2,123}\) \& \({ }^{2,560}\) \& \begin{tabular}{l}
65 \\
543 \\
\hline
\end{tabular} \& 113
584 \& \({ }_{744}^{202}\) \& \({ }_{1,270}^{484}\) \& 1,189 \& 1,294 \& \({ }_{\text {1, }}^{1,501}\) \& \({ }_{246}^{20}\) \& \(\begin{array}{r}31 \\ 252 \\ \hline\end{array}\) \& \({ }_{298}^{59}\) \& \begin{tabular}{l}
131 \\
684 \\
\hline
\end{tabular} \& \({ }_{521}^{239}\) \& \begin{tabular}{l}
281 \\
485 \\
\hline
\end{tabular} \& \({ }_{704}^{334}\) \& \({ }_{4}^{3}\) \\
\hline \& 1,444 \& 1,256 \& li, 1,723 \& 2,193 \& 2,541 \& \(\begin{array}{r}\text { 2, } \\ \text { 279 } \\ \hline 88\end{array}\) \& 131
412 \& 98
486 \& 160
583 \& +488 \& \({ }_{9}^{239}\) \& 1,123 \& 1,257 \& \({ }_{126}^{120}\) \& 112 \& \({ }_{180}^{118}\) \& \({ }_{252}^{432}\) \& \begin{tabular}{|l}
175 \\
346 \\
\hline
\end{tabular} \& \(\begin{array}{r}82 \\ 403 \\ \hline\end{array}\) \& \(\stackrel{255}{44}\) \& \({ }_{6}^{5}\) \\
\hline \[
\begin{gathered}
690 \\
5,986
\end{gathered}
\] \& \% \(\begin{array}{r}633 \\ 8,006\end{array}\) \& 703
11,040 \& 18,938 \& \(\stackrel{1,065}{26,282}\) \& 29,837 \& \({ }_{34,414}^{1,214}\) \& 2, \({ }^{178}\) \& \(\underset{3,639}{144}\) \& \({ }_{5}^{219}\) \& 9,571 \& 12,778 \& \[
\begin{array}{r}
275 \\
14,423
\end{array}
\] \& \[
\begin{array}{r}
362 \\
16,663
\end{array}
\] \& \[
{ }_{784}^{161}
\] \& \({ }_{969}^{175}\) \& \[
\begin{aligned}
\& 181 \\
\& 1,353
\end{aligned}
\] \& 2, \({ }^{517}\) \& \(\begin{array}{r}333 \\ 3,355 \\ \hline\end{array}\) \& 3,796 \& \({ }_{4,346}^{412}\) \& 8 \\
\hline \(\begin{array}{r}4,793 \\ \hline 18\end{array}\) \& 6, 28 \& 8,342
42 \& 14,479 75 \& 20, 349 \& 23, \({ }^{114}\) \& 27, \({ }^{137}\) \& 2,105
10 \& 2,854 \& 4,006
19 \& \({ }^{7}\) 7,396 \& 9,856 \({ }_{4}\) \& 11, 300 \& 13, 633 \& 641
3 \& 773
5 \& 1,032
10 \& 1,798 \& 2,679 \& 3,067 \& 3, \({ }_{34} \mathbf{3 4}\) \& \({ }_{10}{ }^{18}\) \\
\hline 16
11
311 \& 27
18
318 \& + \({ }^{40}\) \& \(\begin{array}{r}69 \\ 5 \\ \hline 63\end{array}\) \& [\(\begin{array}{r}92 \\ 5 \\ \hline\end{array}\) \& \(\begin{array}{r}107 \\ 1.58 \\ \hline\end{array}\) \& \(\begin{array}{r}129 \\ 1,98 \\ \hline\end{array}\) \& \(\left({ }^{(40}\right.\) \& (*) \({ }^{15}\) \& ()\(^{19}\) \& \& \({ }_{(437}^{42}\) \& \& \& \& \& \& \& \& \& 31
3
75
7 \& \\
\hline \(\begin{array}{r}311 \\ 34 \\ \hline\end{array}\) \& 318
25 \& \({ }^{401}\) \& \({ }_{67}^{632}\) \& \({ }_{\text {1, }}^{192}\) \& 1, \({ }_{261}\) \& 1,960 \& \& \& \& \({ }_{24}^{199}\) \& \& \({ }_{(0)}^{521}\) \& \& \(\left(*^{23}\right.\) \& (*) \(^{22}\) \& \& \& \& \& \& 13
14 \\
\hline 34
116
114 \& 25
107
161 \& 26
150
183 \& \({ }_{226}^{268}\) \& \begin{tabular}{l}
1092 \\
\hline 599 \\
\hline 89
\end{tabular} \& \({ }_{6}^{262}\) \& - \& 12 \& 37 \& 14
60
40 \& \(\begin{array}{r}24 \\ 102 \\ \hline 1\end{array}\) \& (250 \& \({ }_{2}^{279}\) \& \(\underset{3}{352}\) \& (*) \& \& (*) \& (*) \& \({ }^{1}\) \& \({ }_{41}^{2}\) \& 5
5
5 \& 14
16
16 \\
\hline \({ }_{20}^{141}\) \& 161
25 \& \begin{tabular}{|c}
183 \\
41
\end{tabular} \& \({ }_{71}^{268}\) \& 389
138 \& \({ }_{150}^{492}\) \& 629
179 \& \(\begin{array}{r}32 \\ \hline\end{array}\) \& \& \begin{tabular}{|}
49 \\
4 \\
4
\end{tabular} \& \& \({ }_{(0)}^{(113}\) \& \({ }_{\text {(1) }}(149\) \& \({ }_{\text {(1) }}^{\text {(196 }}\) \& \({ }_{2}^{21}\) \& 20 \& \({ }_{2}^{24}\) \& \& 34
12
12 \& \({ }_{13}^{41}\) \& -53 \& 16
17 \\
\hline 530 \& 663 \& 811 \& 1,777 \& 2, 198 \& 2,593 \& 3,022 \& 235 \& 290 \& 390 \& 935 \& 924 \& 1,077 \& 1,311 \& 78 \& 75 \& 102 \& 201 \& 325 \& 375 \& 417 \& 18 \\
\hline \({ }_{9}^{936}\) \& 1,381 \& 1,754 \& 2,954 \& 4,068 \& \({ }_{\substack{4 \\ 4 \\ 1,689}}\) \& \& \({ }_{195}^{427}\) \& -639 \& \begin{tabular}{l}
869 \\
340 \\
\hline
\end{tabular} \& 1,555 \& 2,067 \& 2,403 \& 2,832 \& \({ }^{141}\) \& \({ }_{93}^{187}\) \& \({ }_{113}^{265}\) \& \(\stackrel{448}{483}\) \& \({ }_{272}^{665}\) \& \begin{tabular}{l}
753 \\
302 \\
\hline
\end{tabular} \& \begin{tabular}{|c}
875 \\
337 \\
\hline 3 \\
\hline
\end{tabular} \& 19
20 \\
\hline 193 \& 247 \& 319 \& \({ }^{2} 484\) \& \({ }^{\text {r }}\), 667 \& \({ }_{7}{ }^{1} 27\) \& 1,800 \& \& \({ }_{\text {(D) }}{ }^{29}\) \& \({ }_{\text {(1) }}^{148}\) \& \(\begin{array}{r}545 \\ 245 \\ \hline 1\end{array}\) \& \({ }_{336}\) \& \({ }_{\text {cki }}^{\text {357 }}\) \& \& \({ }_{(45}{ }^{35}\) \& * \({ }^{\text {5 }}\) \& \& \({ }_{\text {c }}^{183}\) \& \(\begin{array}{r}178 \\ 17 \\ \hline\end{array}\) \& \(\begin{array}{r}302 \\ 198 \\ \hline\end{array}\) \& \begin{tabular}{|c}
319 \\
23 \\
3
\end{tabular} \& \({ }_{21}^{20}\) \\
\hline \({ }_{12}^{2}\) \& 15 \& \& 51 \& \(7_{5}^{6}\) \& 84 \& 94 \& \({ }^{(0)}{ }^{5}\) \& \[
{ }^{(\mathrm{D})} 7
\] \& \[
{ }^{(\mathrm{D})} 9
\] \& 21 \& \(\stackrel{38}{28}\) \& \& \& \& (*) \& (D) \& (D) \& \[
\begin{array}{r}
3 \\
20 \\
20
\end{array}
\] \& \({ }^{3}\) \& \(\begin{array}{r}18 \\ \hline\end{array}\) \& \({ }_{23}^{23}\) \\
\hline \[
\begin{aligned}
\& 10 \\
\& 65 \\
\& 65
\end{aligned}
\] \& \({ }_{89}\) \& 23
117 \& \begin{tabular}{|c}
45 \\
189 \\
189
\end{tabular} \& 61
256
256 \& 69
284
284 \& 79
330 \& \({ }^{()^{(D)}} 3\) \& \({ }^{(D)}{ }_{52}\) \& \({ }_{(08)}^{(D)}\) \& 15
114
11 \& 23
147
14 \& \& \& \& (D) \& 10 \& \& \({ }_{25}^{20}\) \& \({ }_{27}^{22}\) \& \({ }_{31}^{26}\) \& 24
25
25 \\
\hline \& \& \& \& 168 \& 193 \& 238 \& 13 \& 14 \& \& \({ }^{27}\) \& \& \& \& \& \& \& \& \& \& 47 \& \({ }_{27}^{26}\) \\
\hline (*) \({ }^{51}\) \& (*) \({ }^{53}\) \& (*) \({ }^{49}\) \& (*) \({ }^{64}\) \& (4) \({ }^{98}\) \& \({ }^{(01)}\) \& (\({ }^{115}\) \& (*) \({ }^{7}\) \& (*) \({ }^{7}\) \& \({ }^{(0)}\) \& (*) \({ }^{9}\) \& (*) \({ }^{13}\) \& (\%) \& \& (*) \& (*) \& (\({ }_{(0)}\) \& \({ }^{(*)}\) \& (*) \& \({ }^{(*)}\) \& \(\stackrel{*}{*}_{(*)}\) \& 27
28
28 \\
\hline \begin{tabular}{l}
32 \\
10 \\
\hline
\end{tabular} \& 38
15 \& \({ }_{26}^{60}\) \& \({ }_{35}^{99}\) \& \({ }_{42}^{123}\) \& 141
49 \& \(\begin{array}{r}158 \\ 52 \\ \hline\end{array}\) \& 30 \& 35 \& \({ }^{54}\) \& \begin{tabular}{l}
86 \\
34 \\
\hline
\end{tabular} \& \({ }_{41}^{101}\) \& \({ }_{48}^{116}\) \& \(\stackrel{129}{50}\) \& (8) \& (8) \& (*) \& \((*) 4\) \& \(\left({ }^{*}\right)^{8}\) \& (*) \({ }^{9}\) \& \(\left(*^{10}\right.\) \& 29
30 \\
\hline \begin{tabular}{l}
517 \\
110 \\
\hline 10
\end{tabular} \& 853 \& 1,085 \& 1,902 \& \({ }_{\text {2, }}^{2} 465\) \& \& \& \({ }^{232}\) \& 386
14
14 \& 529
19
19 \& 1,002 \& 1,291 \& 1,545 \& \& 㐌89 \& \& \({ }_{101}^{152}\) \& \({ }_{165}^{265}\) \& 353 \& \({ }_{290}^{451}\) \& \({ }_{336}^{538}\) \& \\
\hline \begin{tabular}{|c}
10 \\
9
\end{tabular} \& \(\stackrel{142}{11}\) \& 202
20 \& \({ }_{38} 17\) \& 466
40 \& \(\begin{array}{r}551 \\ 46 \\ \hline\end{array}\) \& 648
56
5 \& 10 \& 14 \& \begin{tabular}{|}
19 \\
14 \\
14
\end{tabular} \& \({ }_{23}^{33}\) \& \({ }_{22}^{41}\) \& \({ }_{26}^{50}\) \& \& (*) \({ }^{59}\) \& \& 101 \& \({ }_{(0)}^{165}\) \& \& \({ }^{290}\) \& \& \({ }_{33}^{32}\) \\
\hline 150 \& 156 \& 203 \& -286 \& -396 \& 453 \& 518 \& \({ }^{55}\) \& \({ }_{2}^{62}\) \& 77 \& \({ }^{108}\) \& \({ }^{52}\) \& \({ }_{181}^{180}\) \& \({ }^{204}\) \& \& \({ }^{(D)}\) \& 12 \& \& \({ }_{19}^{24}\) \& \& \({ }^{(\mathrm{D})}\) \& \({ }_{3}^{34}\) \\
\hline \(\begin{array}{r}36 \\ 46 \\ \hline 6\end{array}\) \& \({ }^{46}\) \& \(\begin{array}{r}75 \\ 161 \\ \\ \hline\end{array}\) \& \({ }_{297}^{150}\) \& 510 \& \({ }_{473}^{281}\) \& \(\begin{array}{r}329 \\ 620 \\ \hline\end{array}\) \& \({ }_{30}^{16}\) \& 229 \& \({ }^{42}\) \& \(\begin{array}{r}95 \\ 198 \\ \\ \hline 1\end{array}\) \& \begin{tabular}{l}
155 \\
327 \\
\hline
\end{tabular} \& \begin{tabular}{l}
171 \\
265 \\
\hline
\end{tabular} \& \(\stackrel{196}{369}\) \& 3 \& \({ }_{5}^{4}\) \& \({ }^{7}\) \& 110 \& \({ }_{46}^{19}\) \& \({ }_{54}^{24}\) \& \({ }_{70} 71\) \& \({ }_{36}\) \\
\hline 13
66 \& 31
123 \& 62
91 \& \({ }_{1}^{198}\) \& 179
225 \& \({ }_{262}^{213}\) \& 266
318 \& 9
59 \& \(\stackrel{22}{22}\) \& \({ }_{27}^{44}\) \& \(\begin{array}{r}165 \\ \hline 14 \\ \hline\end{array}\) \& 133
121
120 \& 155
143
15 \& 186
182
182 \& \({ }^{(*)}{ }_{1}\) \& \({ }^{(*)}{ }_{3}\) \& 1
11
11 \& 18
8
3 \& 10
11
10 \& 12
13 \& \begin{tabular}{|}
17 \\
13 \\
\hline
\end{tabular} \& 37
38 \\
\hline \& \& 13 \& 26 \& 40 \& 46 \& 60 \& \& \& \& \& 22 \& 25 \& 32 \& (*) \& *) \& (D) \& \& 3 \& 3 \& 3 \& 39 \\
\hline \({ }_{47}^{19}\) \& \({ }_{188}^{188}\) \& \({ }^{129}\) \& \(\stackrel{168}{178}\) \& 217 \& 283 \& 333 \& 24 \& \({ }^{44}\) \& \& \({ }_{107}^{148}\) \& \& \& \& \& \& \& [3 \& \& \& \& \\
\hline \({ }_{13}^{4}\) \& \({ }_{14}^{8}\) \& 25
22 \& 51
52 \& 182
65 \& 346
75 \& 390
86 \& , \& \({ }_{8}^{6}\) \& \({ }_{13}^{21}\) \& \({ }_{33}^{40}\) \& 158
40 \& \({ }_{315}^{315}\) \& \begin{tabular}{|c}
333 \\
50
\end{tabular} \& \({ }^{()^{()}} 1\) \& \({ }^{(0)}{ }_{1}\) \& \({ }^{(D)} 2\) \& \({ }^{(*)} 3\) \& 5 \& \({ }_{6}\) \& \({ }^{(*)}{ }_{6}\) \& \({ }_{43}^{42}\) \\
\hline 634
237 \& \({ }_{7}^{745}\) \& \({ }_{248}^{982}\) \& \({ }^{1,673}\) \& 2, 318 \& \({ }^{2}\) 2,6488 \& 3, 514 \& \({ }_{25}^{254}\) \& \& \begin{tabular}{l}
434 \\
464 \\
\hline
\end{tabular} \& \({ }_{90}^{784}\) \& -1,051 \& \({ }_{1,123}^{1208}\) \& 1,432 \& \& \& 114
35 \& \& \({ }_{65}^{268}\) \& 308
70 \& \({ }_{76}^{357}\) \& \\
\hline \({ }^{131}\) \& 233
169 \& \({ }_{226}^{248}\) \& \begin{tabular}{l}
350 \\
407 \\
\hline
\end{tabular} \& \(\stackrel{40}{532}\) \& 479
619 \& \({ }_{732}{ }^{14}\) \& \({ }^{655}\) \& \({ }_{61}^{65}\) \& \({ }^{64}\) \& \({ }^{175}\) \& \& \& \({ }_{289}^{132}\) \& \& \& \& \({ }^{51}\) \& \& \& \& \({ }_{46}^{45}\) \\
\hline \({ }^{(*)}{ }_{65}\) \& \& 137 \& 223 \& \(31{ }^{2}\) \& \({ }_{36}^{2}\) \& 43
454 \& (D) \& (D) \& (D) \& \({ }^{(*)}\) \& (D) \& (D) \& (D) \& (D) \& (D) \& (D) \& (0) \& (D) \& (0) \& \& 488 \\
\hline \[
\begin{gathered}
109 \\
\hline 92
\end{gathered}
\] \& 137
123
123 \& 201
169 \& \({ }_{284}^{407}\) \& 662
411 \& \[
\begin{aligned}
\& 707 \\
\& \hline 974 \\
\& 474
\end{aligned}
\] \& \[
\begin{gathered}
8494 \\
549 \\
549
\end{gathered}
\] \& 50
39 \& 67
53 \& \({ }_{75}^{101}\) \& \begin{tabular}{l}
226 \\
135 \\
\hline 1
\end{tabular} \& 330
183 \& 375

207 \& \begin{tabular}{l}
453

\hline 238

 \&

13

13

\hline
\end{tabular} \& 15

16 \& ${ }_{23}^{24}$ \& $\stackrel{42}{45}$ \& \[
$$
\begin{array}{r}
69 \\
\hline 69
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 80 \\
& 56
\end{aligned}
$$
\] \& ${ }_{64}^{96}$ \& 49

50

\hline \& 504 \& 683 \& 1,154 \& 1,789 \& 1,947 \& \& 190 \& \& \& 609 \& 893 \& 952 \& 1,098 \& \& 59 \& 73 \& \& \& 268 \& \&

\hline | 881 |
| :--- |
| 306 | \& ${ }^{1,051}$ \& 1,418 \& 2, ${ }^{279}$ \& \& \& - \& 368 \& ${ }_{265}^{465}$ \& (657 \& 1,180 \& 1,504 \& 1,674 \& , 1,095 \& | 129 |
| :--- |
| 14 |
| 1 | \& 153

47
4 \& $\begin{array}{r}203 \\ 84 \\ \hline 8\end{array}$ \& 322
100

10 \& \begin{tabular}{l}
415

157

\hline 1

 \&

482

200

\hline

 \&

528

240

\hline 20
\end{tabular} \& ${ }_{53}^{52}$

\hline ${ }_{64} 6$ \& ${ }_{96}^{418}$ \& 141 \& 251 \& ${ }^{1,368}$ \& ${ }_{1}^{1,652}$ \& ${ }_{1}^{1.978}$ \& 160
27 \& ${ }_{42}$ \& ${ }_{35}^{37}$ \& ${ }_{123}^{578}$ \& 772 \& 188 \& ${ }^{1,093}$ \& ${ }_{9}^{34}$ \& ${ }_{12}^{47}$ \& 64
18
18 \& ${ }^{100}$ \& $\stackrel{53}{53}$ \& ${ }_{61} 6$ \& $\begin{array}{r}29 \\ 71 \\ \hline 1\end{array}$ \& 54

\hline ${ }_{806}^{243}$ \& 1,144 \& 1,657 \& 2,857 \& 4.160 \& 4, 1,786 \& ci, \& | 133 |
| :---: |
| 367 | \& | 182 |
| :--- |
| 564 | \& 262 \& ${ }_{1,525}^{456}$ \& - ${ }_{\text {270 }}^{198}$ \& ${ }_{2}^{729}$ \& - \& 26

108
108 \& - ${ }_{138}^{134}$ \& 45
221

22 \& | 67 |
| :---: |
| 353 | \& 105

529 \& 139
619 \& 169
721 \&

\hline 55 \& \& 107 \& ${ }^{154}$ \& ${ }^{226}$ \& ${ }^{256}$ \& ${ }^{310}$ \& 21 \& \& 48 \& \& \& ${ }_{1}{ }_{119}$ \& \& \[
$$
\begin{aligned}
& 108 \\
& 11^{6}
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
100 \\
7 \\
7
\end{array}
$$

\] \& ${ }^{13}$ \& \& \& 30 \& | 36 |
| :---: |
| 38 | \& 58

\hline | 89 |
| :--- |
| 54 | \& 109

57 \& ${ }^{67}$ \& 165

70 \& 4 \& ${ }_{89}^{231}$ \& \& 25 \& ${ }^{27}$ \& (0) ${ }^{69}$ \& \& ${ }_{43}^{104}$ \& ${ }_{46}^{119}$ \& \begin{tabular}{|c}
134

50

\hline

\end{tabular} \& ${ }_{9}^{11}$ \& \[

\left.$$
\begin{gathered}
13 \\
9 \\
0
\end{gathered}
$$ \right\rvert\,
\] \& (D) ${ }^{17}$ \& 10 \& 12 \& ${ }_{13} 13$ \& 14 \& ${ }_{59}^{58}$

\hline 130
35 \& 178
46 \& 287
62 \& 501

108 \& | 776 |
| :--- |
| 148 | \& ${ }_{167}^{935}$ \& ${ }^{1} 1.140$ \& (0) ${ }^{58}$ \& (D) ${ }^{87}$ \& \[

139

\] \& \[

$$
\begin{gathered}
309 \\
309 \\
62
\end{gathered}
$$
\] \& 399

88 \& ${ }_{(0)}^{481}$ \& ${ }_{\text {(})}^{\text {594 }}$ \& $\begin{array}{r}26 \\ 4 \\ \hline\end{array}$ \& ${ }^{28}$ \& $$
\text { (D) }{ }^{63}
$$ \& 88 \& ${ }_{\text {(D) }}{ }^{135}$ \& ${ }^{109}{ }^{169}$ \& ${ }_{\text {(D) }}^{200}$ \& ${ }_{60}^{60}$

\hline 444 \& 683 \& 996 \& 1,798 \& 2,726 \& 3,107 \& 3,582 \& (D) \& (D) \& 502 \& 961 \& 1,461 \& (0) \& (D) \& 52 \& 75 \& (D) \& 205 \& (D) \& (D) \& (D) \& 62

\hline 1,192 \& 1,753 \& \& \& \& \& \& \& \& 1,266 \& \& \& \& \& \& \& \& \& \& \& \&

\hline + ${ }_{\text {433 }}$ \& (603 \& ${ }_{432}^{912}$ \& 1, 7024 \& 1,721 \& 1,850 \& 1,930 \& 173
175
125 \& 245
249
159 \& 88 \& \& \& ${ }^{823}$ \& \& 42 \& ${ }^{55}$ \& ${ }^{76}$ \& 119 \& 179 \& 183 \& 192 \& 64

\hline 552 \& 888 \& 1,354 \& 2,377 \& 3,458 \& 3,784 \& 4,237 \& 225 \& 381 \& ${ }_{615}^{288}$ \& 1,127 \& 1,675 \& ${ }_{1,795}^{1509}$ \& 2,013 \& ${ }_{78}^{23}$ \& 110 \& 165 \& 280 \& ${ }_{425}$ \& 473 \& ${ }_{523}^{82}$ \& ${ }_{66}$

\hline ${ }^{6,676}$ \& ${ }_{8}^{8,639}$ \& ${ }^{11,742}$ \& \[
$$
\begin{gathered}
20,820 \\
1,011
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
27,347 \\
1,447
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
30,611 \\
1,652
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
335,646 \\
1,915
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 2,805 \\
& 64
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
3,783 \\
118
\end{gathered}
$$

\] \& \[

$$
\begin{array}{r}
5,491 \\
291
\end{array}
$$

\] \& \[

\left\lvert\, $$
\begin{array}{|l|l|}
\hline 10,118 \\
478
\end{array}
$$\right.

\] \& \[

13,095

\] \& \[

14,699

\] \& \[

\left\lvert\, $$
\begin{gathered}
17,025 \\
847
\end{gathered}
$$\right.

\] \& \[

$$
\begin{aligned}
& 945 \\
& 21
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
1,143 \\
36
\end{array}
$$

\] \& \[

1,535

\] \& \[

$$
\begin{gathered}
2,775 \\
{ }_{121}
\end{gathered}
$$

\] \& \[

\underset{200}{3,688}
\] \& 4, 223 \& 4, 7 258 \& ${ }_{68}^{67}$

\hline 6,518 \& 8,358 \& 11,233 \& 19,810 \& 25,900 \& 28,959 \& 33,730 \& 2,741 \& 3,6 \& 5, 270 \& 40 \& 12,458 \& 13,970 \& 16,178 \& 4 \& 1,108 \& , 168 \& 2, 653 \& 3,489 \& 3,793 \& 4,502 \& 69

\hline 6,516 \& 8,356 \& 11,241 \& 19,822 \& 25,926 \& 28,986 \& 33,763 \& 2,746 \& 3, 663 \& 5,269 \& 9, 636 \& 12,453 \& 13,965 \& 16, $\overline{172}$ \& ${ }_{923}$ \& 1,111 \& 1,475 \& 2,669 \& 3,522 \& 3,831 \& 4,543 \& 71

\hline ${ }^{1}, 003$ \& 1,381 \& $\underset{\substack{2,024 \\ 1,363}}{1}$ \& ci, | 3,249 |
| :---: |
| 2,725 | \& 4, $\begin{aligned} & 4,854 \\ & 4,409\end{aligned}$ \& 5,582 \& $\underset{5,251}{6,348}$ \& 472

246 \& 654
385 \& 982

632 \& 1, 1,272 \& 2, 2 24 \& $\underset{\substack{2,658 \\ 2,267}}{ }$ \& $$
\begin{aligned}
& 3,046 \\
& 2,437
\end{aligned}
$$ \& 120

87 \& $$
\begin{aligned}
& 168 \\
& 118
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 225 \\
& 188
\end{aligned}
$$

\] \& \[

{ }_{374}^{477}

\] \& \[

$$
\begin{aligned}
& 634 \\
& 641
\end{aligned}
$$
\] \& 777

697 \& ${ }_{744}^{872}$ \& 72
73

\hline | 8,105 |
| :--- |
| 1 |
| 1 | \& 10,580 \& 14,628 \& 25,795 \& 35, 189 \& 39, 421 \& 45.343 \& 3,454 \& 4,702 \& 6,884 \& 12,448 \& \& \& 21,645 \& 1,130 \& 1,397 \& 1,888 \& 3.459 \& 4,797 \& 5,305 \& 6,156 \& 74

\hline 4,139 \& 4, 432 \& 4,888 \& 5,487 \& 5,786 \& ${ }_{5}^{5,93}$ \& 6,064 \& 1,667 \& 1,936 \& $\underset{\substack{3,240}}{\substack{24 \\ 2}}$ \& $\underset{\substack{3,479 \\ 2,48}}{\substack{5 \\ \hline}}$ \& 2,575 \& 2,625 \& - \& ${ }^{1}$, \& ${ }_{683}^{1,67}$ \& ${ }^{2,165}$ \& ${ }^{4,773}$ \& ${ }^{\text {5 }}$ 839 \& 6, 856 \& 878 \& 76

\hline
\end{tabular}

Table 3.—Personal Income by Major
[Millions of

[^8]Sources, Selected Years 1958-78—Continued
dollars]

Table 3.-Personal Income by Major
[Millions

See footnotes on pp. 32-33.

Sources, Selected Years 1958-78-Continued
of dollars]

Washington							Alaska							Hawaii							Line
1958	1963	1968	1973	1976	1977	${ }^{7} 1978$	1958	1963	1968	1973	1976	1977	${ }^{7} 1978$	1958	1963	1968	1973	1976	1977	${ }^{7} 1978$	
4,972	6,281	9,808	13,534	18,738	21, 018	24,640	506	696	1,082	1,794	4,726	4,365	4, 207	980	1,459	2,284	3,783	4,842	5,293	5,876	1
4,022	5,162	8,215	11, 164	15,602	17,603	20,381	461	622	979	1,622	4,283	3,844	3, 626	847	1,284	2,033	3,375	4,292	4,633	5,124	2
105	176	348	634	1. 072	1, 282	1.538	7	19	33	74	244	285	320	27	1, 36	$\begin{array}{r}2,87 \\ \hline\end{array}$	- 173	, 231	+ 323	${ }^{5}, 371$	3
845	943	1,245	1,736	2,064	2,134	2,721	39	55	71	98	199	236	262	106	139	175	235	269	333	381	4
162	194	1,242	, 644	2,474	-372	, 767	1	(*)	1	1	3	3	3	12	17	13	26	33	32	48	5
683	749	1,003	1,091	1,590	1,762	1,954	38	55	69	97	196	233	259	95	123	161	209	236	301	333	6
232	281	335	787	735	595	1,001	2	1	2	-	4	${ }_{5}^{5}$	${ }^{6}$	63	86	98	134	152	158	181	7
4,740	6,000	9,473	12,748	18,003	20,423	23,639	505	695	1,080	1,792	4,722	4,360	4,201	918	1,373	2, 187	3,649	4,690	5,135	5,694	8
3,805 35	4,788 36	7,539 49	9,814 95	14,067 150	16,178 206	19,002 236	257 14	367 14	606 19	1,002 35	3,632 48	3,160 41	2,909 43	${ }_{(D)}^{560}$	${ }_{\text {(D) }}^{843}$	$\underset{\text { (D) }}{\text { 1,382 }}$	2,405 14	3,081 23	3,416 25	3,854 22	${ }_{10}^{9}$
10	13	26 22	44 51	62	$\begin{array}{r}71 \\ 135 \\ \hline\end{array}$	88 149	13	13	18	(D)	3 45	4		${ }^{(D)} 1$	${ }^{(D)} 1$	(D) ${ }_{2}$	(D)	19	21	17	11
26	23	22	51	88	135	149	13	13	18	(D)	45	38	39	1		2	(D)		5	5	12
11	15	15	25	40	45	59	10	15	41	41	138	182	${ }^{248}$	(D)	(D)	(D)	(*)	(*)	(*)	(*)	13
1	1	(*)	(*) 7	12	13	15	3	3	$\stackrel{2}{26}$	${ }^{(D)}$	4	(D) ${ }_{1}$	(D) ${ }^{\text {a }}$	(*)	(*)	${ }^{*}$ *)	(*)	${ }^{(*)}$	(*)	(*)	14
1	1	${ }^{(*)} 4$	${ }^{(*)} 3$	5 4 4	3 6	5 9	2 5	8 3	36 2	(D) ${ }^{35}$	128 4	(D) ${ }^{172}$	${ }_{\text {(D) }} 236$	${ }^{(*)}$	${ }^{(*)}$	(*)	${ }^{(*)}$	(*)	(*)	(*)	15 16
4 5 5	4	111	3 15	4 19	${ }^{6}$	9 30	(*) ${ }^{5}$	3 1	$\stackrel{2}{1}$	${ }^{(D)} 1$	4 3	${ }^{(D)} 3$	${ }^{(D)} 3$	(D)	(D)	(D)	(*)	(*)	(*)	(*)	16
337	406	680	830	1,317	1,588	2,009	72	63	118	177	1,585	955	538	68	112	197	378	379	376	420	18
1,283	1,638	2,610	2,990	4,054	4,586	5,405	33	49	70	121	197	226	261	98	130	167	225	235	300	322	19
394	487	605	810	1,151	1,300	1,383	26	36	45	74	126	149	180	84	106	130	168	219	226	243	20
140	163	219	288	1,404	455	512	19	20	25	42	74	86	110	65	78	90	100	134	140	153	21
(D)	(D)	(D)	5	(D)	9	10	(*)	(*)	${ }_{(*)}^{*}$	${ }^{*}$ *)	(D)	(*)	(*)	${ }^{(D)}$	(D)	(D)	(D)	1	1	1	22
14	17	26	42	61	66	73	(*)	${ }^{*}$)	${ }^{*}$)	(*)	(*)	(*)	(*)	${ }^{(\mathrm{D}}{ }^{6}$	(D) 8	13	20	23	23	25	23
96	130	178	233	318	359	313	4	12	12	19	29	33	33	${ }^{(D)}$	(D)	(D)	3	3	4	4	24
48 80	59 97	85 67	120 74	162 119	181	204		3 1		8	12	(D) ${ }^{14}$	(D) ${ }^{16}$	9 2		18 5	29 7	36 10	39 7	42 6	$\stackrel{25}{26}$
80 11	97 13	(D) ${ }^{67}$	74 26	(D) 119	141 49	$\begin{array}{r}163 \\ 55 \\ \hline\end{array}$	(*)	${ }_{(*)}{ }^{1}$	2 1	1	7 3	${ }^{(D)} 4$	${ }^{(\mathrm{D})} 7$	(*) ${ }^{2}$	(*) ${ }^{3}$	5 2	7	10 10	${ }_{11}^{7}$	6 9	26 27
	(*)	(*)	(*)	(*)	(*) ${ }^{37}$	(*) ${ }_{49}$	(*)	(*)	${ }_{(*)}{ }^{*}$		(*)	(*)	(*)	(*)	(*)	${ }^{(*)}$	(*)	(*)	(*)	(*)	$\stackrel{28}{28}$
$\text { (D) }^{2}$	(D) ${ }^{3}$	(D) ${ }^{9}$	20 3	(D) 32	37 3	49	${ }^{(*)}$	$\left({ }^{*}\right)$	${ }_{(}^{*}{ }^{*}$)	$\left(^{*}\right)^{1}$	(D) ${ }^{1}$	(D) ${ }^{1}$	(D) 1	${ }^{(*)}$	(*)	${ }^{(*)} 1$	(D) 1	1	1	1	29 30
889	1,151	2,005	2,180	2,903	3,286	4, 022		13	25	47	71	77	81		24	36	57	66	73	79	31
215	${ }^{1} 271$	2,375	2, 578	, 798	${ }^{3} 916$	1,037	4	9	20	37	51	59	55	2	3	4	10	(D)	6	6	32
17	16	(D)	34	(D)	39	42	(*)	(*)	(*)	1	(*)	(D)	(D)	3		3	5	(D)	(D)	(D)	33
71	84	133	208	287	318	391	(*)	(*)	(*)	(*)	(*)	${ }^{*}$)	(*)	${ }^{*}{ }^{3}$	1	2	(D)	5	(4	34
40	40	70	96	182	185	212	(*)	(*)	(*)	1	4	4	5	2	3	5	5	7	8	8	35
31 12	50 17	92 39	152	194	214	245	(*)	${ }_{(*)}^{*}$	${ }_{(*)}{ }^{1}$	${ }_{(*)}{ }^{1}$				${ }^{*} 1$	1 3	(*) ${ }^{1}$	(*) 2	(*) 2	(*) ${ }^{2}$	(*) ${ }^{2}$	36
12 452	17 605	39 1,180	71 899	84 1,116	104 1,265	127 1,676	${ }^{(*)}$	${ }^{*}$)	${ }^{(*)} 1$	${ }^{*}{ }^{*} 1$	${ }^{(*)} 1$	${ }^{*}{ }^{*}$	${ }^{(*)} 1$	$\left.{ }^{*}{ }^{*}\right)$	3	(*)	(*)	${ }^{(*)} 8$	(*) ${ }^{10}$	${ }^{*}{ }^{*} 10$	37 38
(D) ${ }^{10}$	(D) ${ }^{15}$	(D) ${ }^{18}$	(D)	(D)	42	50	(*)	(*)	${ }_{(}^{*}{ }^{*}$)	$\left.{ }^{*}{ }^{*}\right)$	(D)	(*)	(*)	(*)	(*)	(*)	(${ }^{(}{ }^{\text {a }}$)	(*)	(*)	(*)	39 40
(D) 31	(D)	54	72	100	115	137	1	${ }^{2}$	3	${ }^{*} 6$	10	9	8	5	(*) 7	15	25	27	30	32	41
(D) 10	(D)	(D)	(D) ${ }^{\text {d }}$	33	41	50 55	${ }^{*}{ }^{*}$)	(*)	${ }_{(*)}^{*}$	${ }_{(*)}^{*}$	(D)	${ }^{(D)}$	(D)	(*)	(*)	(*)	${ }^{(*)}$	1	(D)	(D)	42
10	12	16	30	42	47	55	(*)	(*)	(*)	(*)	1	1	1	((2	3	7	7	9	43
362	438	663	991	1,348	1,527	1,746	31	70	96	170	441	455	520	71	101		320		485		44
93	90	113	161	185	200	215	1	1	1	3	3	4	4	${ }^{(*)}$	1	${ }^{(*)}$	${ }^{(*)}$	(*)	${ }^{*}{ }^{*}$	(*)	45
68	90	134	218	293	348	407	7	8	13	23	122	97	85 33	-6	10	18 21	34 24	37 31	$\begin{array}{r}43 \\ 35 \\ \hline\end{array}$	49 38	46 47
47 50	66 63	103 114 11	115 175	145 262	146 302	169 338	${ }_{15}^{4}$	9 20	10	12 59	31 133	$\begin{array}{r}45 \\ 137 \\ \hline\end{array}$	$\begin{array}{r}33 \\ 193 \\ \hline\end{array}$	17 23	18 36	21 65	24 136	31 199	$\begin{array}{r}35 \\ 226 \\ \hline\end{array}$	$\begin{array}{r}38 \\ 258 \\ \hline\end{array}$	47
76	91	146	243	350	408	476	2	26	30	53	114	131	157	12	18	54	91	117	130	147	49
29	38	53	80	113	122	141	,	-	11	21	39	41	47	12	18	24	39	48	51	55	50
337	417	582	838	1,315	1,472	1,679	12	18	31	54	150	149	149	52	82	114	184	221	244	260	51
621	743	1,111	1,487	2,040	2,280	2,625	37	56	89	150	296	326	357	104	139	228	401	553	608	691	52
266	349	543	648	904	1,134	1,359	11	19	29	55	130	159	181	45	76	135	222	315	370	433	53
45	63	104	169	252	293	345	3	6	10	19	43	51	56	7	15	22	44	63	70	76	54
221	287	439	479	652	841	1,013	8	13	19	36	87	109	125	37	61	113	178	252	300	357	55
552	745	1,285	1,909	2,901	3,341	3,884	37	64	113	199	647	666	611	119	198	3.51	661	874	1,009	1,159	56
29	34 74	55 109	${ }^{67}$	$\begin{array}{r}2,94 \\ \hline 155\end{array}$	110 173	+131	3	5	10	15	35	37	38	13	21	61	134	191	215	243	57
64	74	109	114	155	173	192	4	5	7	9	14	16	18	10	16	23	29	35	40	45	58
44 86	46 120	$\begin{array}{r}55 \\ 242 \\ \hline\end{array}$	$\begin{array}{r}58 \\ \hline\end{array}$	69	$\begin{array}{r}74 \\ 753 \\ \hline\end{array}$	81	5	$\stackrel{2}{14}$	3	4	4	${ }_{5}^{5}$	5	12	13	15	15	18	20	$\stackrel{22}{ }$	59
(D) ${ }^{86}$	(D) ${ }^{120}$	(D)	$\stackrel{344}{61}$	630 89	108	128	5 2	14 2	28	32	286	255	151	15 7	10	18	102 32	140 41	158 47	182	60 61
(D)	(D)	(D)	1,266	1,865	2, 124	2,452	21	35	63	135	302	346	390	62	108	180	348	448	529	614	62
935	1,212	1,934	2,933	3,936	4,245	4,637	247	328	474	790	1,090	1,200	1,292	357	531	805	1,244	1,609	1,719	1,841	63
280	327	497	694	984	1,050	1,148	102	127	166	239	322	364	373	130	187	304	402	512	519	574	64
227	236	360	431		564	588	115	125	171	241	264	273	288	140	198	248	418	490	499	555	65
428	649	1,077	1,808	2,403	2,632	2,901	30	76	137	311	504	563	631	87	145	253	424	607	701	712	66
4, 972	6,281	9,808	13,534	18,738	21, 018	24,640	506	696	1,082	1,794	4, 726	4,365	4,207	980	1,459	2,284	3,783	4,842	5,293	5,876	67
119	200	409	718	1,066	1,178	1,372	14	22	42	100	204	232	224	29	, 52	102	206	281	304	340	68
4,853	6,081	9,399	12,817	17,672	19,840	23, 268	492	675	1,040	1,694	4,522	4,133	3,984	952	1,408	2,182	3,576	4,561	4,990	5,535	69
		102		463	384		-31	-34	-52	-80	-914	-472	-259								70
4,893	6,141	9,501	12,993	18,135	20,224	23, 630	461	640	988	1,615	3,608	3,660	3,725	952	1,408	2,182	3,576	4,561	4,990	5,535	71
705	963	1,476	2, 239	3,310	3, 743	4, 255	22	36	66	118	296	313	333	140	227	365	563	822	884	1,004	72
521	672	1,086	2,253	3,612	3,874	4,186	24	31	56	268	291	341	358	54	88	170	450	820	876	928	73
6,119	7,776	12,063	17,485	25, 057	27,842	32, 058	507	708	1,110	2,002	4,195	4,315	4,415	1,145	1,723	2,717	4,590	6, 203	6,749	7,465	74
2,207	2,631	3,689	5,087	6,939	7,564	8, ${ }^{\text {8, }} 495$	2,262	2,765	3,895	6,046	10,275	10,458	10,963	1,925	2,568	3,779	5,529	7,127	7,673	8,437	75
2,773	2,955	3,270	3,437	3,611	3,681	3,744	2,224	256	285	${ }^{3} 31$	+ 408	${ }^{4} 13$	${ }^{403}$	- 595	2, 671	${ }^{3} 719$	830	870	880	885	76

SEASONALLY UNADJUSTED NIPA ESTIMATES

Table 1.22.—Gross National Product: Quarterly Totals Not Seasonally Adjusted
[Billions of dollars]

Table 2.5.—Personal Consumption Expenditures by Major Type of Product: Quarterly Totals Not Seasonally Adjusted [Billions of dollars]

	1975	1976				1977				1978			
	IV	I	II	III	IV	I	II	III	IV	I	II	III	IV
Personal consumption expenditures	267.5	252.9	267.1	272.7	297.2	278.8	296.6	303.3	331.3	309.9	330.9	339.9	370.1
Durable goods.	39.0	34.5	39.0	38.4	45.4	39.3	44.4	43.5	51.7	42.8	50.4	49.1	58.1
Motor vehicles and parts............. Furniture and household equipment	14.6 17.9	16.3 13.4	18.0 15.3	17.2 15.6	18.5 19.7	19.7 14.5	21.2 16.9	19.7 17.4	20.9 22.2	21.4 15.4	24.4 18.5	22.4 19.0	23.0 24.7
Other....................................	6.5	4.8	5.7	5.6	7.2	5.1	6.3	6.4	8.6	6.0	7.4	7.7	10.4
Nondurable goods.	114.7	99.4	108.5	110.9	125.0	106.2	117.9	120.3	136, 9	116.2	129.0	133.5	151.9
Food-........	55.7 2.8 2.8	52.0 14 14	56.4 17.9	58.5 18.1	${ }_{6}^{60.1}$	55.1 15.7	61.9 18.9	63.8 19.6 19.6	65.9 28.2	${ }^{60.6}$	${ }_{27}^{67.5}$	70.6 21.9	72.9 31.0
Gasoline and oil...	10.3	14.8 9.8	10.8	11.3	11.1	10.7	12.0	12.2	11.7	11.4	12.6	13.4	13.5
Fuel oil and coal.	3.0	4.0	2.2	1.9	3.9	4.7	2.4	2.1	3.8	5.2	2.8	2.1	3.9
Other.-.-.................	22.8	18.9	21.3	21.0	24.9	20.0	22.6	22.6	27.3	21.9	25.0	25.4	30.6
Services...	113.8	118.9	119.5	123.3	126.8	133.2	134.3	139.5	142.8	150.9	151.5	157.3	160.1
Housing	39.1	40.0	40.9	42.2	43.1	44.6	46.1	47.7	48.9	50.5	52.3	54.0	55.4
Household operation.	16.4	19.3	16.9	17.4	19.2	22.7	18.7	19.8	20.9	25.4	21.1	21.9	23.0
Electricity and gas..	7.3	9.8	7.1	7.3	8.8		7.9	888	9.5	13.6	9.0	9.5	10.4
Transportation.	8. 7	9.5 9.0	9.8 9.3	10.1 9.7	10.4 9.9	10.5 10.0	10.8 10.8	11.0 11.2	11.4 11.6	11.8 11.9	12.0 12.2	${ }_{12.5}^{12.4}$	12.6 12.6
Other......	49.7	50.6	52.4	54.1	54.6	55.9	58.8	60.9	61.3	63.1	66.0	69.0	69.1

Table 8.4.-Corporate Profits With Inventory Valuation Adjustment and Without Capital Consumption Adjustment: Quarterly Totals Not Seasonally Adjusted
[Billions of dollars]

	1975	1976				1977				1978			
	IV	I	II	III	IV	I	II	III	IV	I	II	III	IV
Corporate profits with inventory valuation adjustment and without capital consumption adjustment	32.5	32.9	37.2	36.2	35.0	33.6	42.5	43.5	42.4	34.4	47.5	48.0	50.9
Profits before tax..	34.6	35.6	41.5	39.7	39.2	38.3	46.8	45.8	46.2	40.4	54.7	53.4	57.5
Profits tax liability. Profits after tax......	14.1 20.6	14.6 21.1	17.4 24.1	16.4 23.3	15.5 23.7	15.5 22.8	19.5 27.3	18.9 26.9	18.7 27.6	15.8 24.6	22.6	22.4 31.1	${ }^{23.7}$
Inventory valuation adjustment.	-2.2	-2.8	-4.3	-3.4	-4.2	-4.6	-4.4	-2.3	-3.9	-6.0	-7.2	-5.5	-6.5

SEASONALLY UNADJUSTED NIPA ESTIMATES-Continued

Table 3.3.-Federal Government Receipts and Expenditures: Quarterly Totals Not Seasonally Adjusted
[Billions of dollars]

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} \& 1975 \& \multicolumn{4}{|c|}{1976} \& \multicolumn{4}{|c|}{1977} \& \multicolumn{4}{|c|}{1978}

\hline \& IV \& I \& II \& III \& IV \& I \& II \& III \& IV \& I \& II \& III \& IV

\hline Receipts.. \& 71.1 \& 76.7 \& 89.5 \& 86.3 \& 78.9 \& 87.6 \& 103.6 \& 95.9 \& 88.2 \& 95.3 \& 119.6 \& 111.5 \& 105.6

\hline Personal tax and nontax receipts.....-.........-- \& 32.6 \& 29.6 \& 39.0 \& 41.0 \& 37.5 \& 36.2 \& 47.6 \& 44.7 \& 41.2 \& 37.8 \& 54.7 \& 52.7 \& 49.7

\hline Corporate profits tax accruals .-................--- \& 12.0
6.5 \& 12.5
5.5 \& 14.9
6.0 \& 14.0
6.0 \& 13.2
5.9 \& 13.1
5.8

r \& 16.6
6.2 \& ${ }_{6.6}^{16.1}$ \& 15.9
6.4 \& 13.4
6.4 \& 19.3
7.2 \& 17.1 \& 20.3
7.3

\hline Contributions for social insurance.................... \& 19.9 \& 29.1 \& 29.6 \& 25.3 \& 22.3 \& 32.5 \& 33.1 \& 28.5 \& 24.8 \& 67.8
37 \& 38.5 \& 32.4 \& 28.3

\hline Expenditures. \& 93.9 \& 94.4 \& 94.2 \& 95.8 \& 100.6 \& 101.2 \& 103.0 \& 106.6 \& 110.9 \& 111.8 \& 112.5 \& 114.8 \& 120.6

\hline Purchases of goods and services.................... \& 33.0 \& 31.1 \& 31.9 \& 32.1 \& 34.7 \& 33.8 \& 35.5 \& 36. 3 \& 38.8 \& 37.0 \& 36.8 \& 38.1 \& 40.6

\hline \& 22.1
10.9 \& 21.3
9.8 \& 21.7
10.1 \& 21.4
10.7 \& 22.0
12.7 \& 22.9
10.9 \& 23.6 \& ${ }_{12}^{23.5}$ \& 23.8
14.9 \& 24.4 \& 24.8 \& ${ }^{24.8}$ \& 25.0

\hline \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline Transfer payments. \& 38.5
37.8 \& \& \& \& 40.3 \& 43.4
42.7 \& 42.3 \& 42.9 \& 44.2 \& 46.1 \& 45.5 \& 46.2 \& 47.6

\hline To persons.-....-. \& 37.8
.7 \& 40.2
.8 \& 38.8
.8 \& 39.1
.9 \& 40.3
.8 \& 42.7
.7 \& 41.5
.8 \& 41.9
.9 \& 43.4
.8 \& 45.3
.8 \& 44.5
1.0 \& 45.3
.9 \& 46.5
1.0

\hline Grants-in-aid to State and local governments....- \& 14.6 \& 14.3 \& 14.7 \& 15.4 \& 16.7 \& 15.3 \& 16.4 \& 18.0 \& 17.9 \& 18.2 \& 19.2 \& 19.4 \& 20.6

\hline Net interest paid. \& 6.2 \& 6.6 \& 6.6 \& 6.6 \& 7.0 \& 7.1 \& 7.1 \& 7.2 \& 7.6 \& 8.3 \& 8.4 \& 8.8 \& 9.3

\hline Interest paid.............. \& 7.4 \& 7.7 \& 7.9 \& 8.0 \& 8.5 \& 8.5 \& 8.7 \& 8.8 \& 9.5 \& 10.1 \& 10.5 \& 11.0 \& 11.8

\hline To persons and business.. \& 6.3 \& 6.7 \& 6.8 \& 6.9 \& 7.3 \& 7.3 \& 7.4 \& 7.4 \& 7.8 \& 8.2 \& 8.5 \& 8.9 \& 9. 3

\hline Less: Interest received by government......- \& 1.2 \& 1.2 \& 1.3 \& 1.4 \& 1.2 \& 1.4 \& 1.3
1.6 \& 1.4
1.6 \& 1.7
1.8 \& 1.9 \& 2.1 \& 2.2 \& $\stackrel{2.5}{2.5}$

\hline Subsidies less current surplus of government enterprises. \& 1.5 \& 1.6 \& 1.4 \& 1.6 \& 1.2 \& 1.7 \& 1.7 \& 2.3 \& 2.4 \& 2.3 \& 2.6 \& 2.3 \& 2.5

\hline Subsidies Less Curent surplus of government enter- \& 1.3 \& 1.5 \& 1.2 \& 1.4 \& 1.5 \& 1.6 \& 1.5 \& 1.8 \& 2.6 \& 2.1 \& 2.1 \& 2.1 \& 2.9

\hline prises.. \& -. 3 \& - 1 \& - 2 \& -. 2 \& . 3 \& -. 1 \& -. 2 \& -. 5 \& 2 \& -. 2 \& -. 5 \& -. 2 \& . 4

\hline Less: Wage accruals less disbursements. \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

\hline Surplus or deficit (-), national income and produci accounts. \& -22.8 \& -17.7 \& -4.7 \& -9.4 \& -21.7 \& -13.6 \& . 6 \& -10.8 \& -22.7 \& -16.5 \& 7.1 \& -3.3 \& -15.0

\hline
\end{tabular}

Table 3.5.-State and Local Government Receipts and Expenditures: Quarterly Totals Not Seasonally Adjusted [Billions of dollars]

	1975	1976				1977				1978			
	IV	I	II	III	IV	I	II	III	IV	I	II	III	IV
	67.2	62.7	65.8	63.8	75.7	69.3	73.5	72.0	83.9	77.5	83.4	80.1	90.1
Personal tax and nontax receipts....	11.2	11.8	13.0	12.0	13.1	13.7	14.6	13.9	14.6	14.8	16.9	15. 8	16.6
	2.0 35.0	29.1 29	2.5 30.7	2.4 29.0	2.3 38.5		2.9 33.9	2.8 31.3	2.8 42.3 4	$\stackrel{2.4}{ }{ }^{25.6}$	3.3 37.2	$\begin{array}{r}3.3 \\ 34.7 \\ \hline\end{array}$	3.5 42.4
Contributions for social insurance......-.-.-.-...-	4.3	4.6	4.8	5.0	5.2	5.5	5.8	6.0	6.3	6.5	6.7	6.9	7.0
	14.6	14.3	14.7	15.4	16.7	15.3	16.4	18.0	17.9	18.2	19.2	19.4	20.6
Expenditures.------	60.3	59.2	62.4	64.6	63.9	63.5	67.8	70.1	70.5	69.9	75.5	79.0	79.1
Purchases of goods and services......-.---.---...-	56.2	54.9	57.8	59.9	59.1	58.5	62.7	65.2	65.4	64.7	70.5	74.0	73.7
Transfer payments to persons.............----------------------------	6.5 -1.2	6.6 -1.1	6.7 -1.0	6.9 -1.0	7.1 -1.0	7.3 -1.1	7.4 -1.1	7.6 -1.3	7.8 -1.5	8.1 -1.6	8.2 -1.8	8.4 -1.8	8.6 -1.9
Subsidies less current surplus of government enterprises Subsidies	-1.2	-1.2	-1.2	-1.2	-1.2	-1.2	-1.2	-1.5	-1.2	-1.3	-1.4	-1.5	-1.3
Less: Current surplus of government enterprises Less: Wages accruals less distursements	${ }_{0}^{1.2}$	${ }_{0}^{1.3}$	${ }_{0}^{1.2}$	${ }_{0}^{1.3}$	${ }_{0}^{1.3}$	${ }_{0}^{1.3}$	$\stackrel{1.3}{1.3}$	${ }_{0}^{1.5}$	${ }_{0}^{1.2}$	${ }_{0}^{1.3}$	1.5	.1 .6 .1	1.3 .1 .1
Surplus or deficit (-), national Income and product accounts..	6.8	3.5	3.4	-. 8	11.8	5.8	5.7	1.9	13.4	7.6	7.8	1.0	11.0

Table 4.2.-Foreign Transactions in the National Income and Product Accounts: Quarterly Totals Not Seasonally Adjusted
[Billions of dollars]

	1975	1976				1977				1978			
	IV	I	II	III	IV	I	II	III	IV	I	II	III	IV
	39.3	38.6	41.0	39.8	43.8	42,0	45.8	43.1	41.9	45.4	52.9	51.0	57.9
Exports of goods and services. \qquad Capital grants received by the United States (net)	${ }_{0}^{39.3}$	${ }_{0}^{38.6}$	$\underset{0}{41.0}$	$\underset{0}{39.8}$	43.8 0	${ }_{0}^{42.0}$	45.8 0	${ }_{4}^{43.1}$	${ }_{41.9}^{0}$	${ }_{0}^{45.4}$	52.9	${ }_{51.0}^{0}$	${ }_{57.9}^{0}$
	39.3	38.6	41.0	39.8	43.8	42.0	45.8	43.1	44.9	45.4	52.9	51.0	57.9
	32.9	35.1	38.3	40.6	41.4	44.0	46.9	47.1	47.7	50.6	54.2	55.7	57.0
	1.0	1.0 .2	1.0	1.1	1.0	1.0	1.0	1.1	1.0 .2	1.0 .2	1.2	1.1 .2	1.3 .2
From government (net)	.7	.8	.8	$\stackrel{.}{9}$. 8	. 7	. 8	.	.8	$\stackrel{.8}{8}$	1.0	$\stackrel{.9}{9}$	1.0
Interest paid by government to foreigners...-.....-	1.1	1.1	1.1	1.2	1.2	1.2	1.3	1.4	1.7	1.9	2.1	2.1	2.5
	4.4	1.5	. 7	-3.1	${ }^{1} .3$	-4.1	-3.5	-6.5	-5.5	-8.2	-4.6	-7.8	-2.9

Table A.—Gross National Product
[Billions of dollars]

Year	Current dollars							Constant (1972) dollars							Final sales		GNP implicit price deflator (Index numbers,$\mid 1972=100)^{\prime}$	Year-to-year percent change		
	GNP	PCE	Gross private domestic investment					GNP	PCE	Gross private domestic investment			$\left\|\begin{array}{c} \text { Net } \\ \text { ex- } \\ \text { ports } \end{array}\right\|$	Government purchases	Current dollars	Constant (1972) dollars		$\begin{aligned} & \text { Current } \\ & \text { dollar } \\ & \text { GNP } \end{aligned}$	Constant dollar GNP	GNP implicit price deflator
			Total	Fixed investment	CBI					Total	Fixed investment	CBI								
1929.	103.4	77.3	16.2	14.5	1.7	1.1	8.8	314.6	215.6	55.9	51.3	4.6	2.2	40.9	101.7	310.0	32.87	6.6	6.6	0.0
1930.	90.7	69.9	10.2	10.6	-. 4	1.0	9.5	285.2	200.0	38.6	39.1	-. 5	2.0	44.7	91.1	285.7	31.80	-12.3	-9.3	-3.3
1931	76.1	60.5	5.6	6.8	-1.1	. 5	9.5	263.3	192. 1	23.7	26.7	-3.0	1.3	46.2	77.2	266.3	28.89	-16.1	-7.7	-9.1
1932	58.3	48.6	1.0	3.4	-2.5	. 4	8.3	227.1	174.1	7.9	15.1	-7.2	. 9	44.2	60.8	234.2	25.67	-23.4	-13.8	-11.2
1933.	55.8	45.8	1.4	3.0	-1.6	. 4	8.2	222.1	170.7	8.4	13.3	-4.9	. 2	42.8	57.4	226.9	25.14	-4.2	-2.2	-2.1
1934.-	65.3	51.3	3.3	4.1	$-.7$. 6	10.0	239.0	177.2	13.1	16.4	-3.3	. 5	48.2	66.0	242.3	27.32	17.0	7.6	8.7
1935.	72.5	55.8	6.4	5.3	1.1	. 1	10.2	260.5	188.1	24.0	21.1	2.9	-1.1	49.5	71.4	257.5	27.83	11.0	9.0	1.9
1936	82.7	62.0	8.5	7.2	1.3	. 1	12.2	295.4	206.8	32.2	28.4	3.8	-1.3	57.8	81.5	291.6	28.01	14.1	13.4	. 6
1937	90.7	66.6	11.8	9.2	2.5	. 3	12.0	309.2	214.3	39.8	33.5	6.3	$-.7$	55.7	88.2	302.9	29.34	9.7	4.7	4.7
1938	85.0	64.0	6.5	7.4	-. 9	1.3	13.2	296.4	209.2	24.0	26.6	-2.6	2.6	60.6	85.9	299.0	28.66	-6.4	-4.2	-2.3
1939	90.8	67.0	9.3	8.8	. 4	1.1	13.5	318.8	220.3	33.6	32.0	1.6	2.0	62.9	90.4	317.2	28.48	6.9	7.6	-. 7
1940.	100.0	71.0	13.1	10.9	2.2	1.7	14.2	343.3	230.4	44.6	38.4	6.2	3.0	65.2	97.8	337.1	29.13	10.1	7.7	2.3
1941	124.9	80.8	17.9	13.4	4.5	1.3	24.9	398.5	244.1	55.8	43.8	12.0	. 8	97.7	120.4	386.4	31. 34	24.9	16.1	7.6
1942	158.3	88.6	9.9	8.1	1.8	. 0	59.8	460.3	241.7	29.6	24.4	5.2	-2.5	191.5	156.5	455.1	34. 39	26.8	15.5	9.7
1943	192.0	99.4	5.8	6.4	-. 6	-2.0	88.9	530.6	248.7	18.1	18.0	. 1	-7.3	271.2	192.6	530.5	36.18	21.3	15.3	5.2
1944.	210.5	108.2	7.2	8.1	-1.0	-1.8	97.0	568.6	255.7	19.8	22.1	-2.3	-7.2	300.3	211.5	570.9	37.03	9.6	7.1	2.3
1945	212.3	119.5	10.6	11.7	-1.0	$-.6$	82.8	560.0	271.4	27.8	31.4	-3.6	-4.5	265.3	213.4	563.6	37.92	. 9	-1.5	2.4
1946	209.6	143.8	30.7	24.3	6.4	7.6	27.5	476.9	301.4	71.0	58.8	12.2	11.6	93.0	203.2	464.7	43.95	-1.3	-14.8	15.9
1947	232.8	161.7	34.0	34.4	$-.5$	11.6	25.5	498.3	306.2	70.1	70.4	-. 2	16.6	75.4	233.2	468.5	49.70	11.1	-1.8	13.1
1948.	259.1	174.7	45.9	41.1	4.7	6.5	32.0	487.7	312.8	82.3	76.8	5.5	8.5	84.1	254.4	482.2	53.13	11.3	4.1	6.9
1949	258.0	178.1	35.3	38.4	-3.1	6.2	38.4	490.7	320.0	65.6	70.0	-4.4	8.8	96.2	261.1	495.1	52.59	-. 4	. 6	-1.0
1950.	286.2	192.0	53.8	47.0	6.8	1.9	38.5	533.5	338.1	93.7	83.2	10.6	4.0	97.7	279.4	522.9	53.64	10.9	8.7	2.0
1951	330.2	207.1	59.2	48.9	10.3	3.8	60.1	576.5	342.3	94.1	80.4	13.7	7.4	132.7	319.9	562.8	57.27	15. 4	8.1	6.8
1952	347.2	217.2	52.1	49.0	3.1	2.4	75.6	598.5	350.9	83.2	78.9	4.3	4.9	159.5	3440	594.2	59.00	5.1	3.8	1.3
1953.	366.1	229.1	53.3	52.9	. 4	. 6	82.5	621.8	364.2	85.6	84.1	1.5	2.0	170.0	365.7	620.3	58.88	5.5	3.9	1.5
1954.	366.3	235.8	52.7	54.3	-1.5	2.0	75.8	613.7	370.9	83.4	85.6	-2.2	4.5	154.9	367.8	615.8	59.69	. 0	-1.3	1.4
1955.	399.3	253.7	68.4	62.4	6.0	2.2	75.0	654.8	395.1	104. 1	96.3	7.7	4.7	150.9	393.3	647.1	60.98	9.0	6.7	2.2
1956	420.7	266.0	71.0	66.3	4.7	4.3	79.4	668.8	406.3	102.9	97.1	5.8	7.3	152.4	416.0	633.0	62.90	5.4	2.1	3.2
1957.	442.8	280.4	69.2	67.9	1.3	6.1	87.1	680.9	414.7	97.2	95.7	1.5	8.9	160.1	441.4	679.4	65.02	5.2	1.8	3.4
1958.	448.9	289.5	61.9	63.4	-1.5	2.5	95.0	679.5	419.0	87.7	89.6	-1.8	3.5	169.3	450.4	681.3	66.06	1.4	$-.2$	1.6
1959	486.5	310.8	77.6	72.3	5.2	. 6	97.6	720.4	441.5	107.4	101.0	6.5	. 9	170.7	481.2	714.0	67.52	8.4	6.0	2.2
1960.	506.0	324.9	76.4	72.7	3.8	4.4	100.3	736.8	453.0	105.4	101.0	4.4	5.5	172.9	502.2	732.4	68.67	4.0	2.3	1.7
1961	523.3	335.0	74.3	72.1	2.2	5.8	108.2	755.3	462.2	103.6	100.7	2.9	6.7	182.8	521.1	752.4	69.28	3.4	2.5	. 9
1962	563.8	355.2	85.2	78.7	6.5	5.4	118.0	799.1	482.9	117.4	109.3	8.1	5.8	193.1	557.3	791.0	70.55	7.7	5.8	1.8
1963.	594.7	374.6	90.2	84.2	6.0	6.3	123.7	830.7	501.4	124.5	116.9	7.8	7.3	197.6	588.8	823.0	71.59	5.5	4.0	1.5
1964.	635.7	400.4	96.6	90.8	5.8	8.9	129.8	874.4	528.7	132.1	124.8	7.3	10.9	202.7	629.9	867.1	72.71	6.9	5.3	1.6
1965	688.1	430.2	112.0	102.5	9.5	7.6	138.4	925.9	558.1	150.1	138.8	11.3	8.2	209.6	678.6	914.6	74.32	8.2	5.9	2.2
1966	753.0	464.8	124. 5	110.2	14.3	5.1	158.7	981.0	586.1	161.3	144.6	11.7	4.3	229.3	738.7	964.3	76.76	9.4	5.9	3.3
1967.	796.3	490.4	120.8	110.7	10.1	4.9	180.2	1,007.7	603.2	152.7	140.7	12.0	3.5	248.3	786.2	995.7	79.02	5.8	2.7	2.9
1968	868.5	535.9	131.5	123.8	7.7	2.3	198.7	1, 051.8	633.4	159.5	150.8	8.7	$-.4$	259.2	880.8	1,043.1	82.57	9.1	4.4	4.5
1969	935.5	579.7	146.2	136.8	9.4	1.8	207.9	1,078.8	655.4	168.0	157.5	10.6	-1.3	256.7	926.2	1,068.2	86.72	7.7	2.6	5.0
1970.	982.4	618.8	140.8	137.0	3.8	3.9	218.9	1,075.3	668.9	154.7	150.4	4.3	1.4	250.2	978.6	1,071.0	91.36	5.0	$-.3$	5.4
1971.	1,063.4	668.2	160.0	153.6	6.4	1.6	233.7	1,107.5	691.9	166.8	160.2	6. 6	-. 6	249.4	1,057.1	1,100.9	96.02	8.2	3.0	5.1
1972	1,171.1	733.0	188.3	178.8	9.4	-3.3	253.1	1,171.1	733.0	188.3	178.8	9.4	-3.3	253, 1	1,161.7	1,161.7	100.00	10.1	5.7	4.1
1973	1,306. 6	809.9	220.0	202.1	17.9	7.1	269.5	1,235.0	767.7	207.2	190.7	16.5	7.6	252.5	1,288. 6	1,218. 5	105.80	11.6	5.5	5.8
1974	1,412.9	889.6	214.6	205.7	8.9	6.0	302.7	1,217.8	760.7	183.6	175.6	8.0	15.9	257.7	1,404.0	1,209.9	116.02	8.1	-1.4	9.7
1975.	1,528.8	979.1	190.9	201.6	-10.7	20.4	338.4	1,202.3	774.6	142.6	152.4	-9.8	22.6	262.6	1,539.6	1,212.1	127.15	8.2	-1.3	9.6
1976.	1,702.2	1,089.9	243.0	233.0	10.0	8.0	361.3	1,273.0	820.6	173.4	166.8	6.6	15.8	263.3	1,692.1	1,266. 4	133.71	11.3	5.9	5.2
1977	1,899. 5	1,210.0	303.3	281.3	21.9	-9.9	396.2	1,340.5	861.7	200.1	186.9	13.1	10.3	268.5	1,877.6	1,327.4	141. 70	11.6	5.3	6. 0
1978	2,127. 6	1,350.8	351.5	329.1	22.3	-10.3	435.6	1,399.2	900.8	214.3	200.2	14.1	11.0	273.2	2,105.2	1,385. 1	152.05	12.0	4.4	7.3

Note.-PCE=Personal consumption expenditures; $\mathrm{CBI}=$ Change in business inventories.

Table B.-National Income and Disposition of Personal Income
[Billions of dollars]

Year	$\mathrm{Na}-$ tional income	Com-pensation of employees	Proprietors' income with IVA and CCAdj.			Rental income of persons with CCAdj.	Corporate profits with IVA and CCAdj.						Net interest	Personal income	Less: Personal tax and nontax payments	Equals: DPI	$\left\|\begin{array}{c} \text { Less: } \\ \text { Per } \\ \text { sonal } \\ \text { outlay } 3 \end{array}\right\|$	Equals: Per- sonal saving	Saving as percentage of DPI	DPI in constant (1972) dollars
									Profits	fter tax										
			Tot	Farm	Non-		Tota	tax	Total	Undis-tributed	IVA									
1929.	84.8	51.1	14.9	6.2	8.8	4.9	9.2	10.0	8.6	2.8	0.5	-1.3	4.7	84.9	2.6	82.3	79.1	3.1	3.8	229.8
1930	73.8	46.8	11.7	4.3	7.4	4.4	5.9	3.7	2.9	-2.6	3.3	-1.0	4.9	76.2	2.5	73.7	71.1	2.6	3.5	210.6
1931	58.6	39.7	9.1	3.4	5.6	3.6	1.3	$-.4$	$-.9$	-4.9	2.4	-. 7	5.0	65.4	1.8	63.5	61. 4	2.1	3.3	201.7
1932	42.4	31.1	5.6	2.1	3.5	2.9	-1.7	-2.3	-2.7	-5.2	1.0	-. 5	4.6	50.0	1.4	48.6	49.3	-7	-1.4	174.3
1933	39.9	29.5	5.8	2.6	3.2	2.2	-1.7	1.0	. 4	-1.6	-2.1	-. 5	4.1	49.9	1.4	45.5	46.5	-1.0	-2.2	169.7
1934.	48.7	34.3	7.5	3.0	4.6	1.7	1.0	2.3	1.6	-1.0	-. 6	-. 7	4.1	53.7	1.6	52.1	52.0	. 1	. 2	179.7
1935	56.5	37.3	10.7	5.3	5.4	1.8	2.6	3. 6	2.6	-. 2	$-.2$	-. 8	4.1	60.3	1.9	58.4	56.4	2.0	3. 4	196.6
1936	64.3	42.9	10.9	4.3	6.6	1.8	4.9	6.3	4.9	.4	$-.7$	-. 7	3.8	68.4	2.2	68.2	62.8	3.4	5.2 4.7	220.7
1937.	72.3 66.0	47.9 450	13.1	6. 0	7.1	1.9	5.6	6.8 4.0	5.3 2.9	. 6	0	-1.2	3.7 3.6	73.8	2.9	70.9	67.5 64.9	3.4	4.7	227.8 212.8
1939	71.3	48.0 48.1	11.7	4.4 4.4	6.8 7.3	2.4 2.6	3.8 5.3	4.0 7.0	2.9 5.6	.8 1.8	-. 0	-1.1	3.6 3.6	68.0 72.4	2.8 2.4	69.9	64.9 67.8	$\stackrel{.3}{1}$	$\stackrel{.4}{3.0}$	230.1
1940.	79.7	52.1	12.9	4.5	8.4	2.7	8.7	10.0	7.2	3.2	-. 2	-1.1	3.3	77.8	2.6	75.2	72.0	3.3	4.4	244.3
1941.	102.6	64.8	17.4	6.4	10.9	3.1	14.1	17.7	10.1	5.7	-2.5	-1.1	3.3	95.3	3.3	92.0	81.8	10.2	11.1	278.1
1942	135.7	85.3	24.0	9.8	14.3	4.0	19.3	21.5	10.1	5.9	-1.2	-1.0	3.1	122.4	5.9	116.5	89.4	27.0	23.2	317.3
1943	169.1	109.5	29.0	11.7	17.3	4.4	23.5	25.1	11.1	6.6	-. 8	-. 8	2.7	150.7	17.8	132.9	100.1	32.7	24.6	332.2
1944.	181.9	121.2	30.2	11.6	18.6	4.5	23.6	24.1	11.2	6.5	-. 3	-. 2	2.4	164.4	18.9	145.5	109.0	36.5	25.1	343.9
1945	180.6	123.1	31.7	12.2	19.4	4.6	19.0	19.7	9.0	4.4	$-.6$	-. 1	2.2	169.8	20.8	149.0	120.4	28.5	19.2	338.6
1946	178.3	118.1	36.6	14.9	21.6	5.5	16.6	24.6	15.5	9.9	-5.3	-2.7	1.6	177.3	18.7	158.6	145.2	13.4	8.5	332.4
1947	194.6	129.2	35.8	15.2	20.6	5.3	22.2	31.5	20.2	13.9	-5.9	-3.4	2.1	189.8	21.4	168.4	163.5	4.9	2.9	318.8
1948.	219.0	141.4	40.7	17.5	23.2	5.7	29.1	35.2	22.7	15.7	-2.2	-3.9	2.1	208.5	21.0	187.4	176.9	10.6	5.7	335.5
1949.	212.7	141.3	36.1	12.7	23.5	6.1	26.9	28.9	18.7	11.5	1.9	-3.8	2.2	205.6	18.5	187.1	180.4	6.7	3.6	336.1
1950.	236.2	154.8	38.4	13.5	24.9	7.1	33.7	42.6	24.7	15.9	-5.0	-4.0	2.3	226. 1	20.6	205.5	194.7	10.8	5.3	381.7
1951	272.3	181.0	42.8	15.8	27.0	7.7	38. 1	43.9	21.3	12.8	-1.2	-4.6	2.7	253.7	28.9	224.8	210.0	14.8	6.6	371.6
1952	285.8	195.7	42.9	14.9	28.0	8.8	35. 4	38.9	19.5	11.0	1.0	-4.5	3.0	270.4	34.0	233.4	220.4	16.0	6.8	382.1
1953	299.7	209.6	41.3	12.9	28.4	10.0	35.5	40.5	20.2	11.5	-1.0	-4.1	3.4	286.1	35.5	250.7	233.7	17.0	6.8	397.5
1954.	299.1	208.4	40.8	12.3	28.5	11.0	34.6	38.1	20.5	11.4	$-.3$	-3.2	4.3	288.2	32.5	255.7	240.1	15.6	6.1	402.1
1955.	328.0	224.9	42.5	11.3	31.2	11.3	44.6	48.4	26.4	16.1	-1.7	-2.1	4.8	308.8	35.4	273.4	258.5	14.9	5.4	425.9
1956	346.9	243.5	43.6	11.2	32.4	11.6	42.9	48.6	26.6	15.5	-2.7	-3.0	5.2	330.9	39.7	291.3	271.6	19.7	6. 8	444.9
1957.	362.3	256.5	45.0	11.0	33.9	12.2	42.1	46.9	25.5	14.0	-1.5	-3.3	6.5	349.3	42.4	303.9	280.4	20.6	6.7	453.9
1958.	364.0	258.2	47.4	13.1	34.3	12.9	37.5	41.1	22.1	10.8	-. 3	-3.4	8.0	359.3	42.1	317.1	295.4	21.7	6.8	459.0
1959.	397.1	279.6	47.2	10.7	36.6	13.2	48.2	51.6	28.0	15.8	-. 5	-2.9	8.8	382.1	46.0	336.1	317.3	18.8	5.6	477.4
1960	412.0	294.9	47.0	11.4	35.6	13.8	46.6	48.5	25.8	13.0	. 3	-2.3	9.8	399.7	50.4	349.4	332.3	17.1	4.9	487.3
1961	424.2	303.6	48.3	11.8	36.4	14.3	46.9	48.6	25.8	12.5	.1	-1.8	11.2	415.0	52.1	352.9	342.7	20.2	5.6	500.6
1962	457.4	325.1	49.6	11.9	37.7	15.0	54.9	53.6	29.6	15.2	. 1	1.2	12.8	440.7	56.8	383.9	333.5	20.4	5.3	521.6
1963.	482.8	342.9	50.3	11.6	38.7	15.7	59.6	57.7	31.5	16.0	-. 2	2.1	14.3	453.1	60.3	402.8	384.0	18.8	4.7	539.2
1964.	519.2	368.0	52.2	10.3	42.0	16.1	67.0	64.7	36.7	19.4	$-.5$	2.8	15.9	495.7	58.6	437.0	410.9	26.1	6.0	577.3
1965.	566.0	396.5	56.7	12.6	44.1	17.1	77.1	75.2	44.3	25.2	-1.9	3.8	18.5	537.0	64.9	472.2	441.9	30.3	6.4	612.4
1966	622.2	439.3	60.3	13.6	45.7	18.2	82.5	80.7	47.1	27.6	-2.1	3.9	21.9	584.9	74.5	510.4	477.4	33.0	6.5	643.6
1967.	655.8	471.9	61.0	12.1	48.9	19.4	79.3	77.3	44.9	24.7	-1.7	3.7	24.3	626.6	82.1	544.5	503.7	40.9	7.5	669.8
1968	714.4	519.8	63.4	12.0	51.4	18.6	85.8	85.6	46.2	24.2	-3.4	3.7	26.8	635.2	97.1	583.1	550.1	38.1	6.5	695.2
1969.	767.9	571.4	66.2	13.9	52.3	18.1	81.4	83.4	43.8	21.2	-5.5	3.5	30.8	745.8	115.4	630.4	595.3	35.1	5.6	712.3
1970.	798.4	609.2	65.1	13.9	51.2	18.6	67.9	71.5	37.0	14.1	-5.1	1.5	37.5	801.3	115.3	685.9	635.4	50.6	7.4	741.6
1971.	858.1	650.3	67.7	14.3	53.4	20.1	77.2	82.0	44.3	21.3	-5.0	. 3	42.8	859.1	116.3	742.8	635.5	57.3	7.7	769.0
1972	951.9	715.1	76.1	18.0	58.1	21.5	92.1	96.2	54.6	30.0	-6.6	2.5	47.0	942.5	141.2	801.3	751.9	49.4	6.2	801.3
1973	1,064. 6	799.2	92.4	32.0	60.4	21.6	99.1	115.8	67.1	39.3	-18.6	1.9	52.3	1,052.4	150.8	901.7	831.3	70.3	7.8	854.7
1974.	1,136.0	875.8	86.2	25.4	60.9	21.4	83.6	126.9	74.5	43.6	-40.4	-2.9	69.0	i, 154.9	170.3	984.6	913.0	71.7	7.3	842.0
1975	1,215.0	931.1	87.0	23.5	63.5	22.4	95.9	120.4	70.6	38.7	-12.4	-12.0	78.6	1,255.5	168.8	t, 085. 7	1,003.0	83.6	7.7	859.7
1976	1,359.8	1,037.8	89.3	18.3	71.0	22.1	126.8	156. 0	92.2	54.7	-14.6	-14.5	83.8	(1, 381. 6	197.1	1, 184.5	1, 115.9	68.6	5.8	891.8
1977.	1,525.8	1, 156.9	100.2	19.6	80.5	24.7	150.0	177.1	104.5	62.4	-15.2	-12.0	94.0	İ,531.6	226.4	L, 305.1	1,240.2	65.0	5.0	929.5
1978.	1,724.3	1,304.5	116.8	27.7	89.1	25.9	167.7	206.0	121.5	74.3	-25.2	-13.1	109.5	1, 717.4	259.0	t, 458.4	1,386.4	72.0	4.9	972.5

Note.-IVA = Inventory valuation adjustment; CCAdj. = Capital consumption adjustment; DPI=Disposal personal income.

Alternative Estimates of Capital Consumption and Profits of Nonfinancial Corporations, 1975-78

Estimates of capital consumption and profits of nonfinancial corporations for 1975-78, based on alternative depreciation formulas and service lives and valued at historical and current cost, are shown below. The estimates for $1976-78$ incorporate the revised and updated national income and product account (NIPA) estimates that appeared in the July 1979 Survey of Current Business. Estimates for 1929-72 appeared in the March 1976 Survey; estimates for 1973 appeared in the August 1976 Survey; and estimates for 1974 appeared in the August 1977 Survey. Service lives used far nonresidential structures and equipment are 100 percent of Internal Revenue Service Bulletin $F(F), 85$ percent of Bulletin F (.85F), 75 percent of Bulletin F (.75F), and 100 percent of Bulletin F through 1940 with a gradual decrease to 75 percent of Bulletin F in 1960 (F to $.75 F$); for residential structures, the lives are 80 and 65 years for new 1-to-4 and 5-ormore unit structures, respectively, with lives half as long as these for additions and alterations.

Table 1.-Capital Consumption Allowances, Nonfinancial Corporations: National Income and Product Account Estimates and Estimates Based on Alternative Methods of Depreciation
[Billions of dollars]

Line		1975	1976	1977	1978
1	Capital consumption allowances, NIPA ${ }^{1}$ -	84.9	92.4	104, 2	114.3
2	Capital consumption allowances with capital consumption adjustment, NIPA?	96.8	106.8	116.0	126.9
	Capital consumption allowances with capital consumption adjustment, alternative methods of depreciation:				
	Historical-cost valuation: Straight-line depreciation:				
3	F service lives...........	60.3 64.5	66.2 70.8	71.2 76.3	87.3
5	.$^{75 F}$ service lives.-	68.5	74.1	881.0	88.4
6	F to .75F service lives				
	Double-declining balance depreciation:				
	F sprvice lives...	69.0	75.6	${ }_{87}^{82}$	90.3
${ }_{9}^{8}$	${ }^{\text {. }} \mathbf{7 5 5}$ service lives.	72.9 75.9	79.9 83.2	87.8 90.8	96.0 100.5
10	F to .75 F service lives	76.976.5	83.788	91.3	100.9
	Current-cost valuation: Straight-line depreciation:				
11	${ }_{75 \mathrm{~F}} \mathrm{~F}$ service lives....	102.7	102.4	111.3 119.6	121.7
13	F to 75 F service ilives.	102.9	113.0	122.4	133.7
	Double-declining balance depreciation:				
14	F_{85} servicelives	${ }^{99.7}$	109.0	118.2	${ }_{133.8}^{129}$
16	.75F service lives	105.8	115.1	124.7	133.0
17	F to .75F service il	107.8	117.1	126.7	139.1

1. Tex return-based capital consumption allowances.
2. Tax return-based capital consumption allowances.
3. Based on current cost valuation, straight-line depreciation, and .85F service lives.

Table 2.-Capital Consumption Adjustment, Nonfinancial Corporations: National Income and Product Account Estimates and Estimates Based on Alternative Methods of Depreciation
[Billions of dollars]

1. Equals line 1, table 1, minus line 2 , table 1 .
2. Lines 2 through 16 are equal to tax return-based capital consumption allowances (line 1 , table 1) minus the capital consumption allowances based on the designated valuation, deprecia tion formula, and service lives (lines 3 through 17, table 1). For example, line 2 equals line 1, table 1 , minus line 3 , table 1 .

Table 3.-Corporate Profits With Inventory Valuation Adjustment, Nonfinancial Corporations:' National Income and Product Account Estimates and Estimates Based on Alternative Methods of Depreciation
[Billions of dollars]

Line		1975	1976	1977	1978
1	Corporate profits before deduction of capital consumption allowances, with inventory valuation adjustment. NIPA.	173.8	207.7	232.5	255.2
2	Corporate profits with inventory valuation adjustment and without capital consumption adjustment, NIPA ${ }^{\text {a }}$	88.9	115.3	123.3	140.9
3	Corporate profits with inventory valuation and capital consumption adjustments, NIPA ${ }^{\text {a }}$ -	76.9	100.9	116.5	128.3
	Corporate profits with inventory valuation and capital consumption adjustments, alternative methods of depreciation: 4				
	Historical-cost valuation: Straight-line depreciation:				
5		113.5 109.3	141.5 136.9	161.3 156.2	177.9 172.1
${ }_{7}^{6}$		105.3	${ }_{132.6}$	151.5	167.5166.8
	Double-declining balance depreciation:				
9	. 85 F service lives...	104.8 100.9	132.1 127.8	150.4 145.5	164.9 159.3
10	75F service livives -....-.--	$\stackrel{97.9}{ }$	124.0	141.2	15 . 3
11	F to .75F service lives....	97.3			
	Current-cost valuation: Straight-line depreciation:				
12	F service lives.......----	81.1 73.8	105.3 97.6	1121.2	
14	F to .75F service lives.	70.9	94.7	110.2	121.5
	Double-declining balance depreciation:				
16	. 855 service lives.	74.1 70.6	98.7 95.2	110.6	125.7 121.4
17	.75F service lives.	68.0	92.7	107.8	118.2116.2
18	F to .75F service lives..	66.0	90.6	105.8	

Excludes profts originating in the rest of the world.
Equals line 1, table 3, minus line 1 , table 1.
4. Lines 4 through 18 are equal to NIPA profits with inventory valuation adjustment and
without capital consumption adjustment (line 2, table 3) plus the capital consumption adustment based on the designated valuation, depreciation formula, and service lives (lines 2 through 16, table 2). For example, line 4 equals line 2, table 3, plus line 2, table 2 .

Durable Goods Owned by Consumers in the United States, 1975-78

Estimates of durable goods owned by consumers in the United States for 1975-78 are shown below. The estimates for 1976-78 incorporate the revised and updated national income and product account estimates of personal consumption expenditures for durable goods that appeared in the July 1979 Survey of Current Business. Estimates for 1925-74 appeared in the March 1979 Survey.

Table 1.-Current-Dollar Gross Stock of Durable Goods Owned by Consumers, by Type
[Billions of dollars]

Yearend	Total	Motor vehicles 1		Furniture and household equipment					Other			
		Autos	Other	Furniture, including mattresses and bedsprings	$\left\|\begin{array}{c} \text { Kitchen } \\ \text { and } \\ \text { other } \\ \text { household } \\ \text { appliances 2 } \end{array}\right\|$	China, glassware tableware and utensils	Other durable house furnishings ${ }^{3}$	Radio and television receivers, records, and musical instruments	$\begin{aligned} & \text { Jewelry } \\ & \text { and } \\ & \text { watches } \end{aligned}$	Ophthalmic products and orthopedic appliances	Books and maps	
1975.	1,109.7	382.6	40.2	153.8	97.6	57.4	113.8	95.5	56.9	10.9	29.7	71:2
1976	1,219.7	424.6	48.1	163.5	106.4	60.7	125.9	105.4	61.5	11.6	32.2	79.9
1977-..	1,347.2	475.9 526.9	758	176.0 198	${ }_{128.5}$	65.0	135.2	115.4	66.5	12.4	35.3	88.6
1978.	1,512.8	526.9	70.7	198.2	128.3	72.7	155.1	130.1	77.2	13.3	39.3	100.8

Table 2.—Current-Dollar Net Stock of Durable Goods Owned by Consumers, by Type

Table 3.-Constant-Dollar Gross Stock of Durable Goods Owned by Consumers, by Type
[Billions of 1972 dollars]

1975	925.3	321.3	33.8	124.0	81.4	39.5	95.0	900	47.6	8.8	24.7	59.1
1976.	978.8	339.0	38.3	128.1	85.0	40.4	100.8	99.0	50.3	8.9	25.6	63.4
1977.	1,036.6	356.4	43.8	132.8	89.0	41.4	107.2	108.7	53.3	9.0	26.8	68.2
1978	1,097.8	373.4	50.1	137.8	92.8	42.4	113.9	118.7	56.9	9.2	28.5	74.0

Table 4.-Constant-Dollar Net Stock of Durable Goods Owned by Consumers, by Type [Billions of 1972 dollars]

1975	493.3	155.2	19.1	67.9	45.7	21.1	53.6	52.5	26.6	4.4	13.2	34.0
1976.	518.2	161.6	21.8	70.0	47.2	21.3	56.5	57.6	28.1	4.5	13.6	36.1
1977	548.4	169.8	25.1	72.6	49.1	21.6	59.8	63.0	29.8	4.5	14.4	38.6
1978.	581.6	178.1	28.8	75.4	50.9	22.1	63.3	68.5	32.0	4.7	15.6	42.1

1. Includes tires, tubes, accessories, and other parts.
2. Consists of refrigerators and freezers, cooking ranges, dishwashers, laundry equipment, aves, air conditioners, sewing machines, vacuum cleaners, and other appliances.
3. Includes sueh house furnishings as floor coverings, comforters, quilts, blankets, pillows,
picture frames, mirrors, art products, portable lamps, and clocks. Also includes writing equipment and hand, power, and garden tools.

Noтe.-The stock estimates are based on straight-line depreciation and service lives given in table \mathbf{F} of the March 1979 Survey article.

Table 5.-Personal Consumption Expenditures for Durable Goods, Depreciation, and Personal Consumption Expenditures for Durable Goods Net of Depreciation, in Current and Constant Dollars

Year	Billions of dollars			Billions of 1972 dollars		
	Expenditures	Depreciation	Expenditures net of depreciation	Expenditures	Depreciation	Expenditures net of depreciation
1975	132.6	106.0	26.6	112.7	91.0	21.7
1976	157.4	116.9	40.5	126.6	95.8	30.8
1977-..	178.8	128.2	50.6	138.2	101.2	37.0
1978....	200.3	142.9	57.4	146.7	106.9	39.8

Fixed Nonresidential Business and Residential Capital in the United States, 1975-78

Estimates of fixed nonresidential business and residential capital in the United States for 1975-78 are shown below. The estimates for 1976-78 incorporate the revised and updated national income and product account estimates of fixed investment that appeared in the July 1979 Survey of Current Business. Estimates for $1925-72$ appeared in the April 1976 Survey; estimates for 1973 appeared in the August 1976 Survey; and estimates for 1974 appeared in the August 1977 Survey.

Table 1.-Current-Dollar Gross Stocks of Fixed Nonresidential Business Capital, by Major Industry Group and Legal Form of Organization
[Billions of dollars]

Yearend	Total			By major industry group									By legal form of organization											
				Farm			Manufacturing			Nonfarm nonmanufacturing			Corporate						Noncorporate					
				Total	Nonfinancial																			
	Equipment and structures	Equipment	Structures				Equipment and structures	Equipment	Structures	Eatio- ment and structures	Equipment	Structures	Equipment and structures	Equipment	Structures									
1975...	2,392. 4	1, 104.8	1,287.6	164.1	95.9	68.3				527.8	307.0	220.8	1,700. 5	701.9	998.5	1,768.5	889.8	878.7	1,693.7	858.2	835.5	693.9	215.0	408.9
1976...	2,600.0	1,215. 4	1,384. 5	180.0	106.8	73.2	566.8	341.1	225.7	1,853.2	767.6	1,085. 6	1, 933.3	979.3	954.0	1,850. 3	943.5	906.8	666.7	236.1	430.6			
1977...	2,871.3	1,348.6	1,522. 6	198.3	118.1	80.1	625.3	383.0	242.3	2,047. 7	847.5	1,200.2	2,139.6	1,089.0	1.050.6	2, 045.3	1,048.6	996.7	731.6	259.6	472.0			
1978---	3,206.6	1,491.2	1,715.4	220.3	130.2	90.1	685.7	426.1	269.6	2,290. 6	934.9	1,355. 7	2,389.9	1,206.0	1,183.9	2,280.2	1,159.4	1,120.8	816.7	285.3	531.5			

Table 2.-Current-Dollar Net Stocks of Fixed Nonresidential Business Capital, by Major Industry Group and Legal Form of Organization

1975...	1,378.6	605.2	773.4	91.3	51.3	39.9	280.4	165.3	115.1	1,006. 9	388.6	618.3	1,005.1	491.2	513.9	953.5	471.8	481.7	373.5	114.0	259.5
197	1,485.0	660.8	824.2	90.9	57.3	42.5	301.1	184.2	116.9	1,084. 1	419.2	664.9	1,089. 9	535.4	554.4	1,033.3	513.7	519.6	395.1	125.4	269.8
1977	1,631.8	731.6	900.2	109.3	63.0	46.3	332.5	208.2	124.3	1,190.0	460.4	729.6	1,201. 5	593.7	607.8	1,137.8	569.4	568.4	430.3	137.9	292.4
1978..-	1,816. 7	807.0	1,009. 7	120.7	68.9	51.8	369.6	231.4	138.2	1,326.4	506.7	819.7	1,339.2	655.3	683.9	1, 265.8	627.6	638.2	477.5	151.7	325.8

Table 3.-Constant-Dollar Gross Stocks of Fixed Nonresidential Business Capital, by Major Industry Group and Legal Form of Organization

[Billions of 1972 dollars]																					
1975...	1,701.7	806.9	894.7	115.4	65.5	49.9	380.6	223.0	157.6	1,205.6	518.4	687.2	1,255. 5	652.5	603.0	1,199.3	627.2	572.2	446.2	154.5	291.7
1976...	1,748.2	832.8	915.4	118.7	67.5	51.2	389.7	231.9	157.8	1,239.8	533.3	706.4	1,290.7	674.0	616.7	1,230.4	646.7	583.7	457.5	158.8	298.7
1977...	1,805.2	867.6	937.6	121.3	69.0	52.4	401.3	242.9	158.4	1,282.6	555.7	726.8	1,336.1	704.3	631.8	1,271.6	675.0	596.6	469.1	163.3	305.8
1978...	1,866. 7	903.0	963.7	124.0	70.4	53.7	413.5	253.1	160.5	1,329, 1	579.5	749.6	1,385.2	734.7	650.4	1,315.9	703.0	612.9	481.5	168.2	313.3

Table 4.-Constant-Dollar Net Stocks of Fixed Nonresidential Business Capital, by Major Industry Group and Legal Form of Organization

1975...-	981.2	442.3	539.0	64.6	35.4	29.2	202.2	120.0	82.2	714.5	286.9	427.6	714.0	360.2	353.8	675.6	344.8	330.8	267.3	82.1	185.2
1976...	1,000.8	453.4	547.4	66.3	36.6	29.7	206.8	125.2	81.7	727.7	291.7	436.0	728.9	368.8	360.1	688.1	${ }^{352.4}$	335.7	272.0	84.6	187.4
1977.-.	1,029.0	472.1	556.8	67.4	37.1	30.3	213.3	132.0	81.2	748.3	303.0	445.3	752.1	385.0	${ }^{367.1}$	709.0	367.6	341.4	276.9	87.2	189.7
1978...	1,060.2	490.7	569.6	68.4	37.5	30.8	219.9	137: 6	82.3	771.9	315.5	456.5	778.0	400.7	377.3	732.1	382.0	350.1	282.2	90.0	192.3

Note.-Capital stock estimates are based on straight-line depreciation and . 85 F service lives.

Table 5.-Current-Dollar Gross Stocks of Residential Capital, by Legal Form of Organization and Tenure Group [Billions of dollars]

Yearend	Total	By legal form of organization							By tenure gronp ${ }^{1}$			
		Business				Government			Owner occupied		Tenant occupied	
		Total	Corporate		Noncorporate	Total	Federal	State and local	Farm	Nonfarm	Farm	Nonfarm
			Total	Non- financial								
1975	2,043.9	1,998. 4	74.4	71.2	1,924.1	45.4	13.9	31.5	58.7	1,392.7	16.9	524.0
1976	${ }^{2,289.6}$	2, 239.2	82.6	78.7	${ }^{2}, 156.6$	50.4	15.4	35.0	64.4	1,573.2	18.0	577.3
1977......	$2,639.4$ $3,026.4$	$2,581.9$ $2,961.1$	94.2 107.2	89.3 101.0	$2,487.7$ $2,853.9$	57.5 65.3	17.4 19.6	40.1	72.5 81.0	$1,829.8$ $2,115.2$	19.7 21.4	653.3 736.9
1978.				10.0	2,803.9					2,115.2		

Table 6.-Current-Dollar Net Stocks of Residential Capital, by Legal Form of Organization and Tenure Group

1975.	1,327.8	1,295.1	52.5	50.3	1,242.6	32.7	9.3	23.4	26.5	956.4	4.4	306.3
1976	1,483. 3	1,447.6	57.5	54.7	1,390. 1	35.7	10.1	25.6	29.0	1,077.4	4. 6	335.3
1977.	1,710.5	1,670.4	64.9	61.2	1,605.5	40.1	11.3	28.9	32.9	1,253.4	4.9	378.5
1978	1,961.6	1,916.6	73.1	68.4	1,843. 5	45.0	12.5	32.5	36.7	1,448.6	5.2	426.0

Table 7.-Constant-Dollar Gross Stocks of Residential Capital, by Legal Form of Organization and Tenure Group [Billions of 1972 dollars]

1975	1,476.9	1,444.1	53.9	51.6	1,390. 2	32.8	10.0	22.7	42.4	1,005.6	12.2	379.5
1976.	1,510. 3	1,477.2	54.7	52.1	1,422.5	33.1	10.1	23.0	42.4	1,036.8	11.9	382.0
1977.	1,552. 4	1,518.7	55.7	52.7	1, 463.0	33.7	10.2	23.5	42.6	1,074.9	11.5	385.9
1978.	1,595. 6	1,561.3	56.8	53.5	1,504.5	34.3	10.3	24.0	42.6	1,113.6	11.2	390.4

Table 8.-Constant-Dollar Net Stocks of Residential Capital, by Legal Form of Organization and Tenure Group

1. Excludes stocks of nonhousekeeping residential capital, such as hotels, motels, and dormitories.

Note.-Capital stock estimates are based on straight-line depreciation and service lives given in the text of the April 1976 SURVEY article.

INDISPENSABLE for those who make their living by numbers-

Basic economic data
from the Bureau of Economic Analysis

Digitized for FRASER
http://fraser.stlouisfed.org/

1979 RLLLASE DATES FOR BEA ESTIMATES

Subject	Release Date*
Merchandise Trade (balance of payments basis), 3d quarter 1979. \qquad	Nov.
Personal Income, October 1979	ov.
Gross National Product (lst revision), 3d quarter 1979	Nov.
Corporate Profits (preliminary), 3d quart	ov. 20
Selected International Transactions, 3d quarter 1979	ov.
Federal Receipts and Expenditures, 3d quarter 19	ov.
Composite Indexes of Leading, Coincident, and Lagging Indicators, October 1979.	Nov.
Plant and Equipment Expenditures, 3d quarter 1979	Dec.
Personal Income, November 1979	ec.
Gross National Product (2d revision), 3d qu	
Corporate Profits (revised), 3d quarter 1979	De
Summary of International Transactions, 3d quarter 1979. \qquad	Dec.
Composite Indexes of Leading, Coincident, and Lag ging Indicators, November 1979.	Dec.
For information, call (202) 523-0777, Bureau of Analysis, U.S. Department of Commerce.	conom

Merchandise Trade (balance of payments basis), 3d quarter 1979

Nov. 1
Personal Income, October 1979.................... Nov. No 19
Gross National Product (1st revision), 3d quarter 1979... Nov. 20
Corporate Profits (preliminary), 3d quarter 1979....... . Nov. 20
Selected International Transactions, 3d quarter 1979.. Nov. 20
Federal Receipts and Expenditures, 3d quarter 1979. . . Nov. 21
Composite Indexes of Leading, Coincident, and Lag-
ging Indicators, October 1979. Nov. 30

Plant and Equipment Expenditures, 3d quarter 1979. . Dec. 6
Personal Income, November 1979. Dec. 18
Gross National Product (2d revision), 3d quarter 1979.. Dec. 19
Corporate Profits (revised), 3d quarter 1979............. . Dec. 19
Summary of International Transactions, 3d quarter
1979.. Dec. 20

Composite Indexes of Leading, Coincident, and Lagging Indicators, November 1979

31

Analysis, U.S. Department of Commerce.

[^0]: 1. The Brookings Institution, 1974.
 2. To be published by The Brookings Institution at the end of this year. Methods of estimation are little changed from those described in Accounting for Growth.
 3. The practice of using two decimal points to present growth rates and the contributions of the sources is adopted to prevent rounding errors in small numbers when sources or periods are compared. It is not meant as an indication of accuracy.
 4. Three aspects of the education component need stating even in a brief summary. First, it counts only regular, formal education (except insofar as other types of education are systematically related to formal education). Second, it measures the contribution made to output by increased skills and versatility of workers resulting from additional education when the state of knowledge in the society is given. Neither the fact that advances in knowledge permit new knowledge to be transmitted in educational institutions nor the possibility that a more educated population may advance the frontiers of knowledge more rapidly is reflected in the education estimate. Third, the size of the contribution made by education in any time period depends upon the difference between the education of persons who left employment during the period and those who entered it, not the difference between those attending school at the beginning of the period and those attending at its end.
 5. See Accounting for Growth, 1989-1969, p. 77, for the main categories. Part of the fifth category now appears in table 1 as "Changes in the legal and human environment" and therefore is no longer included in miscellaneous determinants.
 6. To the extent that they are not offsetting, some types of error in the estimates for other determinants also affect this estimate. This, of course, is not a matter of classification but of accuracy.
 7. Estimates through 1975 were published in Edward F. Denison, "Effects of Selected Changes in the Institutional and Human Environment Upon Output Per Unit of Input," Survex of Current Business, vol. 58 (January 1978). The 1976 estimate assumes the changes analyzed in the article curtailed the annual increase in output per unit of input less in 1976 than in 1975.
 8. For an explanation of the effect of variations in the calendar on productivity see Accounting for Growth, pp. 67-68 and 311-13. The fact that 1976 was a leap year that consisted of 52 weeks plus a Thursday and Friday probably raised the 1976 figure for the residual and for productivity series.
 9. "Tax Policy and the Supply Side," address before the American Economic Association and the American Finance Association in Chicago, August 29, 1978. The Secretary also pointed to regulatory costs.
 10. Thomas O'Toole, The Washington Post, June 21, 1978. The experts also referred to increased Government regulation and an outdated patent policy.
[^1]: 1. The personal income level shown for the United States differs from that in the national
[^2]: Acknowledgments
 The personal income estimates were prepared under the direction of Edwin J. Coleman, Chief of the Regional Economic Measurement Division. The review and evaluation of methods was provided by Jeanne S. Goodman. Tables were prepared by Eunice P. James, Stuart A. Schwartz, and Kathy A. Albetski of the Regional Economic Information System Branch. Secretarial support was provided by C. Dale Lyons.

 Estimates of private nonfarm wages and salaries and other labor income were prepared under the supervision of Elizabeth H. Queen, Chief of the Private Wage and Income Branch. She was assisted principally by: David J. Albright, Carl J. Carlson, Sharon C. Carnevale, Carol E. Evans, Kevin O'Brien, Michael G. Pilot, William E. Reid, Jr., and Victor Sahadachny.

 Estimates of farm income, government wages and salaries, government other labor income, proprietors' income, property income, transfer payments, and contributions for social insurance were prepared under the supervision of Kenneth P. Berkman, Chief of the Government, Proprietary, and Investment Income Branch. He was assisted principally by: Vivian G. Conklin, Andrew E. Weiser, Gary V. Kennedy, and Jeanne O'Neill.

 Residence adjustments, disclosure-avoidance, and final preparation of the State personal income estimates were performed under the supervision of David W. Cartwright, Chief of the Regional Economic Information System Branch. He was assisted principally by Wallace K. Bailey and Paul M. Levit.

[^3]: * Less than $\$ 500,000$.

 D Not shown to avoid disclosure of confidential information; data are included in totals. $\quad 3$. Includes wages and salaries of U.S. residents working for international organizations.

 1. Consists of wage and salary disbursements, other labor income, and proprietors' income.
[^4]: See footnotes on pp. 32-33.

[^5]: See footnotes on pp. 32-33

[^6]: See footnotes on pp. 32-33.

[^7]: See footnotes on pp. 32-33

[^8]: See footnotes on pp. 32-33.

