U.S. DEPARTMENT OF COMMERCE
 John T. Connor, Secretary

bureau of the census

A. Ross Eckler, Direcior
Morris H. Hansen, Asst. Director for Research and Development

JULIUS SHISKIN, Chief Economic Statistician

PREFACE This report brings together many of the available

 economic indicators in convenient form for analysis and interpretation. The presentation and classification of series follow the business indicators approach. The classification of series and the business cycle turning dates are those designated by the National Bureau of Economic Research (NBER) which, in recent years, has been the leader in this field of investigation. However, this publication is not to be taken as implying acceptance or endorsement by the Bureau of the Census or any other government agency of any particular approach to business cycle analysis. It is intended only to supplement other reports of the Department of Commerce that provide data for analyzing current business conditions.The unique features are the arrangement of data according to their usual timing relations during the course of the business cycle and the inclusion of special analytical measures and historical cyclical comparisons that help in evaluating the current stage of the business cycle. In addition the movements of the series are shown against the background of the expansions and contractions of the general business cycle so that "leads" and "lags" can be readily detected and unusual cyclical developments spotted.

About 90 principal series and over 300 components are included in preparing the report. The exact number of series included for the total and important classes of series may vary from month to month because of additions of new series and revisions in the composition of indexes. Almost all of the basic data are available in published reports. A complete list of series and the sources of data is shown on the back cover of this report. Series are seasonally adjusted except those that do not appear to contain seasonal movement.

The chief merits of this report are the speed with which the data are collected, assembled, and published and the arrangement of the series for business cycle studies. Publication is scheduled for around the 22 d of the month following the month of data.

ONTENTS

New Features and Changes for This Issue iii
Data Bank of Business Cycle Series iv
BCD Technical Papers iv
Descripitons and procednres
Introduction 1
Method of Presentation 1
Designation of Business Cycle Turning Points 2
Seasonal and Related Statistical Adjustments 2
MCD Moving Averages 2
Analytical Measures of Current Change 3
Comparisons of Cyclical Patterns 4
Charts 5
How to Read Charts 1 and 2 6
Wasic Dara
TABLE 1. Changes Over 4 Latest Months 8
CHART 1. Business Cycle Series From 1948 to Present 10
TABLE 2. Latest Data for Business Cycle Series 24
Analyical Measures
TABLE 3. Distribution of "Highs" for Current and Comparative Periods 38
CHART 2. Diffusion Indexes From 1948 to Present 39
TABLE 4. Latest Data for Diffusion Indexes 42
TABLE 5. Selected Diffusion Indexes and Components 46

ABOUT THE COVER-

Series in this publication are grouped according to their usual timing and shown against the background of contractions and expansions in general business activity. The cover design illustrates this concept. The black vertical bar represents a contraction; the top curve, the Leading Series which usually fall before a contraction has begun and rise before it has ended; the middle curve, the Coincident Series which usually fall with the contraction period; the bottom curve, the Lagging Series which fall after a contraction has begun and rise after it ends.

Cyclical Comparisons

CHART 3. Comparisons of Reference Cycles (See September issue)
CHART 4. Comparisons of Specific Cycles (See September issue)
TABLE 6. Comparisons From Reference Peak Levels and Reference TroughDates (See September issue)
TABLE 7. Comparisons From Reference Trough Levels and Reference Trough Dates (See September issue)
TABLE 8. Comparisons From Specific Peak and Trough Levels and Specific Trough Dates (See September issue)
BCD Technical Paper
Summary of the X-11 Variant of the Census Method II Seasonal Adjustment Program 57
Appendixes
Appendix A. Business Cycle Expansions and Contractions in the United States: 1854 to 1961 (See September issue)
Appendix B. Specific Trough and Peak Dates for SelectedBusiness Indicators (See September issue)
Appendix C. Average Changes and Related Measures for BusinessCycle Series (See September issue)
Appendix D. Current Adjustment Factors for Business Cycle Series (See September issue)
Appendix E. Percent Change for Selected Series Over Contrac- tion and Expansion Periods of Business Cycles: 1920 to 1961 (See September issue) 73
Index
Series Index to Charts, Tables, and Appendixes 75

The cyclical comparisons section and appendixes A to E have been dropped from this issue in order to present the BCD Technical Paper: Summary of the X-11 Variant of the Census Method II Seasonal Adjustment Program.

Abstract

3 A limited number of changes are made from time to time to reflect the change from one stage of the business cycle to another, to show new findings of business cycle research and newly available economic series, or to emphasize the activity of a particular series or series group. Such changes may involve additions or deletions of series used, changes in placement in relation to other series, changes in components of indexes, etc.

Changes in this issue are as follows:

1. The series on labor cost per unit of output (series 62 and 68) and price per unit of labor cost (series 17) have been revised for the period 1948 to date to reflect recent revisions in the national income accounts.
2. A paper, "Summary of the X-11 Variant of the Census Method II Seasonal Adjustment Program," is included in this report. The cyclical comparisons section usually shown monthly in BUSINESS CYCLE DEVELOPMENTS has been omitted from this issue to make room for this paper. The section will be reinstated in the November issue.

A full description of $\mathrm{X}-11$ will appear in Census Technical Paper No. 15, "The X-11 Variant of the Census Method II Seasonal Adjustment Program." Copies of this paper will be available from the U.S. Government Printing Office in about 3 weeks. Information concerning the purchase of a Fortran deck for X-ll can be obtained by writing to the Bureau of the Census.
3. Appendix F includes historical data for series 17,62 , and 68.

The November issue of BUSINESS CYCLE DEVELOPMENTS is scheduled for release on November 23.

RCD Technical Papers

To aid users of BUSINESS CYCLE DEVELOPMENTS, technical papers dealing with the statistical adjustments and series used in BCD will be included in this report from time to time. A limited number of copies of these articles are available, free of charge. The following papers have been included as part of this program:

No. 1.-Summary Description of the X-9 and X-10 Versions of the Census Method II Seasonal Adjustment Program (published as appendix E in September 1963 issue). A new version (X-11) is described in No. 7, below.

No. 2.-Business Cycle Indicators-The Known and the Unknown by Julius Shiskin (published as appendix H in the September 1963 issue).
No. 3.-Census Trading-Day Adjustment Method by Allan H. Young (published in May 1964 issue).
No. 4.-Eight Series on Manufacturers' Orders and Inventories: Descriptions and Procedures by John Musgrave and John Kuntz (published in July 1964 issue).

No. 5.-Series 54, Sales of Retail Stores: Descriptions and Procedures by Max Shor and Allan Young (published in September 1964 issue).

No. 6.-The Current Expansion in Historical Perspective by Julius Shiskin (published in January 1965 issue).

No. 7.-Summary Description of the X-11 Variant of the Census Method II Seasonal Adjustment Program by Julius Shiskin, Allan H. Young, and John C. Musgrave (published in October 1965 issue).

Please send requests for the material described above to Julius Shiskin, Chief Economic Statistician, Bureau of the Census, Washington, D.C. 20233.

Reports in the BUREAU OF THE CENSUS TECHNICAL PAPER SERIES are also useful to BCD readers. Two reports of particular interest are-

Tests and Revisions of Bureau of the Census Methods of Seasonal Adjustments, Bureau of the Census Technical Paper No. 5, by Julius Shiskin (1961), available from the Bureau of the Census at $\$ 1$ per copy;

Estimating Trading-Day Variation in Monthly Economic Time Series, Bureau of the Census Technical Paper No. 12, by Allan Young (1965), available from Superintendent of Documents, Government Printing Office, Washington D.C., 20402, at 30 cents per copy.

The X-11 Variant of the Census Method II Seasonal Adjustment Program, Bureau of the Census Technical Paper No. 15, by Julius Shiskin, Allan H. Young, and John C. Musgrave (1965), available from Superintendent of Documents, Government Printing Office. Washington D.C. 20402.

DESGRIPTIONS AND PROCEDURES

INTRODUCION

Students of economic conditions describe the business cycle as consisting of alternating periods of expansion and contraction in production, employment, income, money flows, prices, and other economic processes. The fluctuations take place in a concerted manner, but not simultaneously. Once an expansion gets underway, it spreads from firm to firm, from industry to industry, from area to area, and from process to process, cumulating until a cyclical peak in aggregate activity is reached. Even while expansion is widespread during the upward phase of the business cycle, some activities continue to move in the opposite direction. Declines begin to spread as the expansion nears its peak and continue to spread even faster after the peak has been passed. But some activities continue to expand during the general contraction. Before long these expansions become stronger and more widespread. When they begin to dominate the situation, the upturn in aggregate activity has arrived and a new expansion is underway. This sequence is recurrent, but not periodic.

The causal relations among these various economic processes are primarily responsible for the cumulative nature of cyclical forces, and explain why expansion eventually turns into recession and recession into expansion. Cyclical fluctuations in production and employment are preceded by fluctuations in measures which relate to future rather than to current produc-tion-measures such as new orders for durable goods, the formation of new business enterprises, and accessions to payrolls. They are followed by fluctuations in various types of economic costs, such as labor costs, interest rates, fulfillment of long-term commitments, and holdings of inventories and of debts.

Although this pattern has been characteristic of American economic history, today many economists do not consider it inevitable.

Intensive research by the National Bureau of Economic Research (NBER) over many years has provided a list of those significant series that usually lead, those that usually move with, and those that usually lag behind cyclical movements in aggregate economic ac-
tivity. The series have been grouped and classified by the NBER as "leading", "roughly coincident", or "lagging" indicators. These indicators are defined as follows:

变 NBER Leading Indicators.-Series that usually reach peaks or troughs before those in aggregate economic activity as measured by the roughly coincident series (see below). One group of these series pertains to activities in the labor market, another to orders and contracts, and so on.

* NBER Roughly Coincident Indicators.-Series that are direct measures of aggregate economic activity or move roughly together with it; for example, nonagricultural employment, industrial production, and retail sales.
NBER Lagging Indicators.-Series, such as new plant and equipment expenditures and manufacturers' inventories, that usually reach turning points after they are reached in aggregate economic activity.

Other U.S. series with business cycle significance are included in this report. Some of these series, such as change in money supply, merchandise trade balance, and cash surplus or deficit, represent important factors in the economy, but they have not qualified as indicators for various reasons, such as irregularity in timing. Finally, industrial production indexes for several countries which have important trade relations with the United States are presented.

The list of series covered and sources of the basic data are shown on the back cover of this report. Series numbers are for identification only and do not reflect series relationships or order.

METHOD OF PRESENTAYON

Data are shown in this report in three general categories, as follows:

- Basic Data (chart 1 and tables 1 and 2).-Data are shown for business cycle indicators, additional
U.S. series with business cycle significance, and industrial production indexes for selected countries. Together, they provide a broad view of current and prospective business cycle fluctuations in the economy as well as the basis for making an economic interpretation of these fluctuations.
- Analytical Measures (chart 2 and tables 3 to 5).— These are measures that aid in forming a judgment of the imminence of a turning point in the business cycle, determining the extent of current changes in different parts of the economy, and pointing to developments in particular industries and places.
- Cyclical Patterns (charts 3, 4; tables 6 to 8).Current cyclical levels are compared with levels at corresponding stages of earlier cycles. These comparisons are made in different ways depending upon the phase of the business cycle.

In addition to the data shown as part of the regular report, certain appendix materials are presented. These materials include historical data, key information, and adjustment factors.

DESIGNATON OR
 BUSMESS CYCLE TURNING POINTS

The business cycle turning dates used in this report are those designated by the NBER. They mark the approximate dates when aggregate economic activity reached its cyclical high or low levels. As a matter of general practice, a business cycle turning date will not be designated until at least 6 months after it has occurred.

Monthly business cycle peaks and troughs have been dated by the NBER for the period 1854-1961. Over this span, expansion has prevailed 61 percent of the time and contraction, 39 percent. If war periods are disregarded, expansion has prevailed 56 percent of the time and contraction, 44 percent.

SEASONA: ANO REATEO
 STATBTGAE AOUUSTMENTE

Adjustments for normal seasonal fluctuations are often necessary to bring out the underlying cyclical trends of a series. Such adjustments allow for periodic intrayear variations resulting chiefly from normal differences in weather conditions during the year and from various institutional arrangements. Some series contain considerable variation attributable to the number of working or trading days in each month. An additional adjustment is necessary in such cases to reduce this variation. Variations due to holidays are usually acDigitized for FRASE Kounted for by the seasonal adjustment process; how-
ever, there are some cases in which a separate holiday adjustment is necessary for holidays with variable dates. Such a case is retail sales of apparel which is affected strongly by the date of Easter and, to a lesser degree, by the dates of Labor Day and Thanksgiving.

In general, the seasonal adjustment process is designed to adjust for average weather conditions but not for the dispersion about that average. Thus, some seasonally adjusted series, such as housing starts, will tend to be low in months of unusually bad weather and high during unusually good weather. At the Bureau of the Census, studies have been started on some series to determine the effects of abnormal weather. Although it eventually may be possible, Census methods do not at present make any adjustments for such variations.

Most of the series contained in this report are presented in seasonally adjusted form. Unadjusted data are used only for those series which appear to have no pattern of seasonal variation. (Unadjusted series are identified in table 2.) In most cases, the seasonally adjusted data used for a series are the official figures released by the source agency; therefore, several different methods of seasonal adjustment are involved. In addition, for the special purposes of business cycle studies, a number of series that are not ordinarily published in seasonally adjusted form are shown on a seasonally adjusted basis in this report. For these series, seasonal adjustments have been developed by either the NBER or the Census Bureau. The adjustment factors for these series, derived by Census Method II, are shown in appendix D. Factors for series which are the sums of seasonally adjusted components or which are based on unpublished source data are not shown.

HED MOVING AVERAGES

MCD (months for cyclical dominance) is an estimate of the appropriate span over which to observe the cyclical movements in a monthly series. This span is usually longer than a single month because month-to-month changes are often dominated by erratic movements, but shorter than the frequently used 12 -month span (change from the same month a year ago), and is different for different series (see appendix C for MCD values and method of computation).

MCD is, on average, the first span of months for which the average change for the cyclical factor is greater than that of the irregular factor and remains so. It is small for smooth series and large for irregular series. The month-to-month differences between moving averages of the period equal to MCD are commensurate with the differences between seasonally adjusted values separated by the same MCD span; thus, the month-to-month differences in a 3-month
moving average are commensurate with differences in seasonally adjusted values over 3-month spans. MCD moving averages all have about the same degree of smoothness. Consequently, MCD moving averages of highly irregular series, such as business failures and Federal cash payments, will show their cyclical movements about as clearly as the seasonally adjusted data for such smooth series as industrial production.

MCD moving averages are shown in chart 1 for all series with an MCD of " 5 " or more. To provide an indication of the variation about these moving averages, seasonally adjusted data are also plotted beginning with 1958. Although not so smooth as more powerful moving averages (such as the weighted 15 -term Spencer curve), the MCD curve is more current and has a smaller rounding bias around business cycle peaks and troughs. On balance, the MCD curve seems to offer a reasonable compromise in terms of currency, smoothness, and fidelity to the patterns of business cycle fluctuations.

Because of advance reporting and preliminary seasonal factors, the MCD's for current data are usually larger than those computed from historical series and shown in appendix C. MCD is usually computed for a fairly long period, one covering both expansions and contractions. Since the pace of change varies from phase to phase of the business cycle, such a measure will not provide an accurate estimate of the span over which to estimate cyclically significant changes at all times. Thus, MCD computed for the period 1953-63 is likely to be too high during the early stages of recovery when expansion has usually been rapid and too low during the late stages of expansion when the rate of advance has usually been small. This limitation should be borne in mind when making use of this measure. ${ }^{1}$

A NAYTBA MEASURES
 mb rumptht chayce

Three kinds of analytical measures are presented-timing distributions, diffusion indexes, and directions of change. These measures aid in forming a judgment of the current changes compared to previous changes, the imminence of a turning point in the business cycle, and the extent of current changes in different parts of the economy. They also point to developments in particular industries and places.

[^0]which have risen over given spans of time. Their turning points tend to lead the turning points of the aggregate and they measure how widespread a business change is. They vary between the limits of 100 (all components rising) and zero (all components falling). Widespread increases are often associated with rapid growth and widespread declines with sharp reductions in aggregate activity.

The diffusion indexes in this report are grouped according to the timing classification of the NBER. For monthly series, comparisons are made over 1month spans (January-February, February-March, etc.) and generally for either 6- or 9-month spans, depending upon the irregularity of the series. The indexes based on 1-month spans are more "current" but they are also more irregular than the 6 - or 9 month indexes. (See chart 2.) Quarterly series are compared over 1 -quarter spans, 3 -quarter spans, and 4 -quarter spans.

Recent research has shown that the longer-span diffusion indexes are not only smoother, but have systematically larger amplitudes than the 1 -month indexes. The 1 -month indexes generally have large irregular fluctuations, but the movements may be significant when important changes are taking place, particularly around cyclical turning points. Since the longer-span diffusion indexes are centered, there is an apparent loss in currency equal to one-half the span; for example, 3 months in the case of a 6 -month diffusion index. However, the most recent figure for a 6 -month or longer-span index does provide the latest available information on changes over that span. If a significant reversal has taken place within that span, the 1 -month indexes are likely to reveal it. Presentation of both 1 -month and longer-span diffusion indexes provides an opportunity for the user to take advantage of the best features of each in interpreting current changes.

Series numbers preceded by the letter "D" designate diffusion indexes. When one of these numbers corresponds to the number of a basic indicator series, it means that the diffusion index has been computed from components of the indicator series; for example, the diffusion index numbered "D6" is computed from components of series 6. Diffusion indexes not computed from basic series components are assigned new numbers.

Diffusion indexes that are based on business expectations show what proportion of business enterprises (or industries) are forecasting a rise in activity. Comparisons with indexes based on actual changes show whether there is a generally optimistic bias or a lag in recognition of actual developments.

Direction-of-Change Table

The direction-of-change table (table 5) shows directions of change (" + " for rising, " o " for unchanged, and "-" for falling) in the components used for the diffusion indexes. This table provides a convenient view of changing business conditions and is helpfal in making an economic interpretation of the movements in the more highly aggregated statistical measures. That is, it shows which economic activities went up, which went down, and how long such movements have persisted. The table also helps to show how a recession or recovery spreads from one sector of the economy to another.

Directions of change for most diffusion index components are shown for consecutive months and, depending upon the irregularity of the series, for either 6 - or 9 -month spans.

COMPARISIONS
 OF CYCLCAL PATTERNS

In forming a judgment about the current intensity and probable ultimate character of a cyclical fluctuation, some economists find it helpful to compare the behavior of the indicator series in the current business cycle phase with their behavior during the corresponding phase of previous business cycles. These comparisons are made in different ways depending upon whether the current cyclical phase is an expansion or contraction.

Expansions are compared in one way by measuring changes from the immediately preceding peak levels. In table 6 of this report, data for the latest month in the current expansion (shown by number of months from the February 1961 trough) are compared with the May 1960 reference peak. For each earlier expansion, data for a like period (same number of months from the trough of the expansion) are compared with the preceding reference peak. This type of comparison is designated as changes computed from reference peak levels and from reference trough dates. This type of comparison shows whether, and by how much, the current level of activity exceeds or falls short of the level at the preceding business cycle peak, and how the current situation compares, in this respect, with earlier expansions. For those earlier periods of expansion that were shorter than the current one, the comparisons reflect the status at a point after a new contraction had set in.

Expansions are also compared by computing changes from reference trough levels and from reference trough dates (table 7). For the current expansion, this type of comparison measures the extent of the rise from the trough level (February 1961) to the
level at the current month. For each earlier expansion, data for a like period (same number of months from the trough of the expansion) are compared with the level at the trough. The same situation exists here as for the comparisons shown in table 6: For earlier expansions that were shorter than the current one, the comparisons show the status at a point after a new contraction had set in.

Contractions can be compared by computing changes over the span from the most recent business cycle peak to the current month and over equal spans from previous reference peaks. This type of comparison is designated as changes from reference peak levels and from reference peak dates. These comparisons will be made during a contraction period.

In addition to comparing cyclical fluctuations on the basis of reference dates (which are the same for all series), comparisons are made on the basis of specific peak and trough dates identified for each series. For example, the specific peak for the index of industrial production is January 1960 (corresponding to the May 1960 reference peak); the specific peak for stock prices is July 1959. (See appendix B.) Specific cycle comparisons are shown in table 8. For earlier expansions, these comparisons differ from those shown for reference cycles in that they show only the period up to the next specific peak date and do not include any part of the contraction that followed. In many cases, therefore, the earlier comparisons cover fewer months than those for the current expansion.

Nearly all series have undergone changes in definition, coverage, or estimation procedure since 1919; therefore, the historical comparisons are to be considered only approximate. Furthermore, it is sometimes necessary to use data for a closely related series for cycles prior to the period covered by the series used currently. The principal substitutions of this type are as follows:
7. New private nonfarm dwelling units started (prior to 1948: Residential building contracts, floor space, by F. W. Dodge Corp.)
41. Number of employees in nonagricultural establishments (prior to 1929: Factory employment)
52. Personal income (prior to 1929: Quarterly data as published by Barger and Klein)
54. Sales of retail stores (prior to 1929: Department store sales)
62. Index of labor cost per unit of output, total manufacturing (prior to 1948: Production worker wage cost per unit).

CBABES
Two types of charts are used to highlight the cyclical patterns of the business cycle indicators: Historical time series and cyclical comparisons.

Historical Time Series (charts 1 and 2)

These charts show cyclical fluctuations against the background of expansions and contractions in general business activity from 1948 to the current month. Shaded areas on the charts indicate periods of business cycle contractions between business cycle peak dates (beginnings of shaded areas) and business cycle trough dates (ends of shaded areas). The shading for a new contraction will be entered only after a trough has been designated.

Several different ratio and arithmetic scales are used to highlight the cyclical movements of the various series. The scale selected for each series is identified in the margin of the chart. Rates of change of various series can be compared with each other only where scales are identical. See the diagram, page 6, for additional help in using these charts.

Cyclical Comparisons

(charts 3 and 4)

These charts compare the performance of selected indicators during the current expansion with their performance during the expansion phase of previous business cycles. The usual date sequence followed in charts is disregarded, and instead the data are alined at the strategic point of the business cycle: For expansions, the reference trough (see chart 3) and specific trough (see chart 4). Thus, these comparisons facilitate judgments on the vigor of the current expansion relative to cyclical movements during the expansions of previous cycles.

Two types of cyclical comparisons are made. Chart 3 compares the pattern of the current reference cycle (the cycle for aggregate economic activity) with movements over the corresponding phases of previous reference cycles. Chart 4 compares the pattern of the current specific cycle (the cycle for a particular series) with the movements over the corresponding phases of previous specific cycles in that series. In both charts, the trough dates are alined. In chart 3, the levels of the preceding peaks are also alined while in chart 4 , the levels of the troughs are alined. See the section, "Comparisons of Cyclical Patterns", for more detailed descriptions of these comparisons.

Peak (P) of cycle indicates end of expansion and beginning of Recession (shaded areas) as designated by NBER.

See back cover for complete titles and sources of series.

Solid line indicates monthly data. (Data may be actual monthly figures or MCD moving averages.*)

Broken line indicates actual monthly data for series where an MCD moving average * is plotted.

Parallel lines indicate a break in continuity (data not available, changes in series definitions, extreme values, etc.)

Solid line with plotting points indicates quarterly data.

Solid line indicates monthly data over 6- or 9 -month spans.

Broken line indicates monthly data over 1-month spans.

Solid line with plotting points indicates quarterly data over various spans.

* Many of the more irregular series are shown in terms of their MCD moving averages as well as their actual monthly data. In such cases, the 4-, 5-, or 6-term moving averages are plotted $11 / 2,2$, or $21 / 2$ months, respectively, behind the actual data. See page 2 for a description of MCD moving averages.

CHART 1 - Business Cycle Series

CHART 2 - Diffusion Indexes

Trough (T) of cycle indicates end of recession and beginning of Expansion (white areas) as designated by NBER.

Arabic number indicates latest month for which data are plotted. ("12" = December)

Roman number indicates latest quarter for which data are plotted. ("II" = second quarter)

Dotted line indicates anticipated data.

Various scales are used to highlight the patterns of the individual series. Series plotted to different scales are not directly comparable. "Scale A" is an arithmetic scale, "scale L-1" is a logarithmic scale with 1 cycle in a given distance, "scale L-2" is a logarithmic scale with 2 cycles in that distance, etc.

Scale shows percent of components rising.

Arabic number indicates latest month for which data are used in computing the indexes. (" 12 " $=$ December)

Roman number indicates latest quarter for which data are used in computing the indexes. ("III" = third quarter)

Broken line with plotting points indicates quarterly data over various intervals. This line is also used to indicate anticipated quarterly data.

charts and tables

LEADING INDICATORS
Sensitive employment and unemployment
New investment commitments
New businesses and business failures
Profits and stock prices
Inventory investment, buying policy, and sensitive prices

ROUGHLY COINCIDENT INDICATORS

Employment and unemployment
Production
Income and trade
Wholesale prices
LAGGING INDICATORS
Investment expendifures
Cost per unif of output
Inventories
Debt
Inferest rates
OTHER U.S. SERIES
Federal budget and military commitments
Reserves, money supply, and financing
Interest rates
Foreign trade
INTERNATIONAL COMPARISONS
Industrial production indexes for selected foreign countries

CHANGES OVER 4 LATEST MONTHS

Series (See complete titles and sources on back cover)	Basic data ${ }^{1}$					Average percent change ${ }^{2}$			Current percent change ${ }^{2}$		
	Unit of measure	$\begin{aligned} & \text { June } \\ & 1965 \end{aligned}$	$\begin{aligned} & \text { July } \\ & 1965 \end{aligned}$	Aug. 1965	$\begin{aligned} & \text { Sept. } \\ & 1965 \end{aligned}$	$\begin{gathered} 1953 \text { to } \\ 1963 \\ \text { (without } \\ \text { sign) } \end{gathered}$	Sept. '64 to date (without sign) ${ }^{4}$	Sept. '64 to date (with sign) ${ }^{5}$	$\begin{aligned} & \text { June } \\ & \text { to } \\ & \text { July } \\ & 1965 \end{aligned}$	$\begin{aligned} & \text { July } \\ & \text { to } \\ & \text { Aug. } \\ & 1965 \end{aligned}$	Aug. to Sept. 1965
NBER LEADING INDICATORS											
1. Avg. workweek, prod. workers, mfg	Hours	41.0	40.9	40.9	p40.9	0.5	0.4	+0.1	-0.2	0.0	0.0
2. Accession rate, manufacturing	Per 100 empl . .	4.5	r4.1	p4.0	(NA)	4.8	4.8	+0.6	-8.9	-2.4	(NA)
30. Nonagri. placements, all industries . . .	Thous	549	541	530	528	1.8	2.5	+0.2	-1.5	-2.0	-0.4
3. Layoff rate, manufacturing	Per 100 empl . .	1.4	r1.7	p1.5	(NA)	9.4	9.7	-0.6	-21.4	+11.8	(NA)
4. Temporary layoff, all industries. 5. Avg. weekly initial claims, State	Thous......	140	121	110	84	17.8	20.7	+0.2	+13.6	$+9.1$	$+23.6$
unemployment insurance	do	224	231	248	218	5.3	4.1	+0.8	-3.1	-7.4	+12.1
6. New orders, durable goods indus	Bil. dol	21.31	22.20	r21. 46	p21.75	3.8	2.6	+0.8	+4.2	-3.3	+1.4
24. New orders, mach. and equip. indusdo.....	4.09	4.35	r4.16	p4.10	4.5	2.6	$+0.9$	$+6.4$	-4.4	-1.4
9. Construction contracts, commercial and industrial	Mil. sq. ft. floor space ..	55.28	55.90	49.60	(NA)	9.7	9.3	$+0.2$	+1.1	-11.3	(NA)
10. Contracts and orders, plant, equip	Bil. dol......	4.81	5.16	p4.90	(NA)	4.9	3.5	+0.8	+7.3	-5.0	(NA)
11. New capital appropriations, mfg ${ }^{6} \ldots .$. do			(NA)		11.4	12.3	+5.9		(NA)	
7. Private nonfarm housing starts	Ann. rate, thous.	1,539	rl,447	rl,404	pl, 407	7.3	3.7	0.0	-6.0	-3.0	+0.2
29. New bldg. permits, private housing	1957-59 = $100 \ldots$	110.6	109.7	r107. 4	pl02.2	3.8	3.5	-0.5	-0.8	-2.1	-4.8
38. Index of net business formation do	105.4	105.3	104.2	(NA)	1.0	0.9	-0.1	-0.1	-1.0	(NA)
13. New business incorporations	Number	16,671	16,369	16,957	(NA)	2.7	2.1	+0.2	-1.8	+3.6	(NA)
14. Liabilities of business failures	Mil. dol	135.66	120.64	128.98	108.56	16.9	24.8	-3.9	+11.1	-6.9	+15.8
15. Large business failures	No. per week. .	47	39	45	43	13.1	11.4	-1.4	+17.0	-15.4	$+4.4$
16. Corporate profits after taxes ${ }^{6}$.	Ann. rate, bil. dol			(NA)		r5.7	6.0	+6.0		(NA)	
17. Ratio, price to unit labor cost, mfg . . .	$1957-59=100 .$.	r103.3	r104.0	r103.4	pl02.1	r0.6	0.6	+0.1	+0.7	-0.6	-1.3
18. Profits per dol. of sales, mfg ${ }^{6}$........ .	Cents	(NA)		6.8	7.0	+1.4		(NA)	
22. Ratio, profits to income originating, corporate, all industries ${ }^{6}$.	Percent			(NA)		r4.4	4.2	+3.7		(NA)	
19. Stock prices, 500 common stocks*	1941-43=10	85.04	84.91	86.49	89.38	2.6	1.7	+0.6	-0.2	+1.9	+3.3
21. Change in business inventories, all industries ${ }^{6,7}$	Ann. rate, bil. dol \qquad			+6.1		r2.3	1.9	+0.6		-0.6	+3.3
31. Change in book value, manufacturing and trade inventories ${ }^{7}$. do.	+6.1	r+11.6	p+7.7	(NA)	2.3 3.5	1.9 5.6	-0.3	+5.5	-3.9)
20. Change in book value, mfrs.' inventories of materials and supplies ${ }^{7} . .$. do.	-0.5	r+0.7	p+1.5	(NA)	1.5	1.7	-0.1	+ +1.2	+0.8	(NA)
37. Purchased materials, percent reporting higher inventories	Percent	58	57	60	58	6.8	3.7	-0.2	-1.7	+5.3	-3.3
26. Buying policy, prod. mtls., commitments 60 days or longer *	do	62	62	63	61	5.8	2.4	0.0	1.7 0.0	+ +1.6	-3.3 -3.2
32. Vendor performance, percent reporting slower deliveries*		66	62	64	62	7.7	4.9	-1. 3	-6.1	+3.2	-3.1
25. Change in unfilled orders, durable goods industries ${ }^{7}$	Bil. dol	66 +0.58	62 $\mathrm{r}+0.38$	64 $r+0.27$	62 $p+0.76$	7.7 0.49	4.9 0.33	-1.3 0.00	-6.1 -0.20	+3.2 -0.11	-3.1 +0.49
23. Industrial materials prices*.	1957-59 = 100 .	115.3	114.6	115.2	114.8	1.3	1.3	+0.5	-0.6	+0.11 +0.5	+0.49 -0.3
NBER ROUGHLY COINCIDENT INDICATORS											
41. Employees in nonagri. establishments . .	Thous.	60,382	r60,602	r60,680	p60,806	0.3	0.4	+0.3	+0.4	+0.1	+0.2
42. Total nonagricultural employment	P.... do	67,459	68,092	67,821	67,777	0.4	0.4	+0.3	+0.9	-0.4	-0.1
43. Unemployment rate, total	Percent.	4.7	4.5	4.5	4.4	3.9	3.6	+1.1	+4.3	0.0	+2.2
40. Unemployment rate, married males do. . . .	2.4	2.3	2.6	2.2	5.6	6.4	+1.6	+4.2	-13.0	+2.2 +15.4
45. Avg. weekly insured unemploy. rate, State \qquad	. do	2.9	3.0	3.0	2.9	4.8	2.8	+1.3	-3.4	0.0	+3.3
46. Help-wanted advertising	1957-59=100 .	146	145	152	pl60	3.1	2.7	$+2.0$	-0.7	+4.8	+5.3
47. Industrial production do....	142.7	144.2	r144.3	p142.8	1.1	1.0	+0.5	+1.1	+0.1	-1.0
50. GNP in 1958 dollars ${ }^{6}$.	Ann. rate, bil. dol							+1.1	1.1	+1 +1.3	
49. GNP in current dollars ${ }^{6}$	$\begin{gathered} \text { bil. dol } \\ \text {. . . do. . . . } \end{gathered}$	\ldots		p609.1 p676.9		rl. 1.5	1.1	+1.1 +1.6	\ldots	+1.3 +1.7	
57. Final sales ${ }^{6}$. do.			p670.8		1.5 1.3	1.6 1.5	+1.6 +1.5		+1.7 +1.8	
51. Bank debits, all SMSA's except N.Y.	. do	3,019.4	3,021.0	3,018.8	p3,022.6	1.5	1.6	+0.8	+0.1	-0.1	+0.1
52. Personal income. 0	528.8	530.5	r532.0	p545.3	0.5	0.7	+0.7	+0.3	+0.3	+2.5
53. Labor income in mining, mfg., constr . . .		141.5	142.5	r143.3	p143.6	0.8	0.8	+0.6	+0.7	+0.6	+0.2
54. Sales of retail stores	Mil. dol	23,331	r23,743	r23,653	p23,344	0.8	1.7	+0.4	+1.8	-0.4	-1.3
55. Wholesale prices, except farm products and foods. FRASER	$1957-59=100 .$.	102.6	102.6	r102.8	pl02.9	0.2	0.1	+0.4	0.0	+ +0.2	+0.1

[^1]
BUSINESS CYCLE SERIES FROM 1948 TO PRESENT

Sensitive employment and unemployment

2. Accession rate, mig. (per 100 employees)
30. Nonagri. placements, all indus. (thous.)
3. Layoff rate, mfg. (per 100 employees-

scale. MCD moving avg. -5 term)

9

BUSINESS CYCLE SERIES FROM 1948 TO PRESENT-CONTINUED

 NBER Leading Indicators-Continued6. New orders, dur. goods indus. (bill. dol.)

7. Private nonfarm housing starts (ann.rate, millions. MCD moving avg. 6 term)

8. New bldg. permits, private housing units (index: 1957-59=100)

BUSINESS CYCLE SERIES FROM 1948 TO PRESENT—Continued

BUSINESS CYCLE SERIES FROM 1948 TO PRESENT—Continued NBER Leading Indicators-Continued

and
4n 5al

9
$\left\{\begin{array}{cc}110 \\ 105 & \stackrel{3}{2} \\ 100 & \\ 95\end{array}\right.$

11

$11=\begin{aligned} & 16 \\ & 14 \\ & 12 \\ & 10 \\ & 8 \\ & 8\end{aligned}$

10

37. Purchased materials, percent reporting higher inventories

bed
\section*{BUSINESS CYCLE SERIES FROM 1948 TO PRESENT—Continued NBER Roughly Coincident Indicators}

(mond unemployment (mindions)

BUSINESS CYCLE SERIES FROM 1948 TO PRESENT-CONTINUED
 NBER Roughly Coincident Indicators-Continued

BUSINESS CYCLE SERIES FROM 1948 TO PRESENT —Continued NBER Roughly Coincident Indicators-Continued

BUSINESS CYCLE SERIES FROM 1948 TO PRESENT —Continued

NBER Lagging Indicators

BUSINESS CYCLE SERIES FROM 1948 TO PRESENT—Continued
D
Other Selected U.S. Series-Continued

Reserves, money supply, ond financing
Change in consumer installment debt (ann. rate, bil. dol.).
116. Corporate bond yields (percent)

BUSINESS CYCLE SERIES FROM 1948 TO PRESENT-Continued

81. Consumer prices (index: 1957-59=100)

11 $]_{-1}^{+1} 0$

8
115
110
105
100

Miscellaneous
4. Construction contracts, value (index: $1957-59=100$
MCD moving avg.- 5 term)

8
160
140
120
100 ?
$\stackrel{0}{\circ}$
$\stackrel{y y}{*}$

[^2] 3
$\stackrel{3}{3}$
$\stackrel{0}{3}$
0

BUSINESS CYCLE SERIES FROM 1948 TO PRESENT-Continued

LATEST DATA FOR BUSINESS CYCLE SERIES

A

NBER Leading Indicators

NOTE: Series are seasonally adjusted except those that appear to contain no seasonal movement. Unadjusted series are indicated by an asterisk (*). Current high values are indicated by $\boldsymbol{\square}$; for series that move counter to movements in general business activity (series 3, 4, 5, 14, 15, 40, 43, and 45), current low values are indicated by $\left[\begin{array}{ll}\text {. Series numbers arefor identification only and do not reflect series relationships or order. Complete titles and sources are shown on the back cover. The "r" indi- }\end{array}\right.$ cates revised; " p ", preliminary; " e ", estimated; " a ", anticipated; and " NA ", not available.

[^3]| Year and month | 9．Construction contracts，com－ mercial and in－ dustrial buildings | 10．Contracts and orders for plant and equipment | 11．Newly approved capital appropria－ tions， 1,000 manu－ facturing corpora－ tions ${ }^{1}$ | 7．New private nonfarm dwelling units started | 29．Index of new private housing units authorized by local building permits | 38．Index of net business forma－ tion | 13．Number of new business incorporations | 14．Current liabilities of business failures |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1962 | （Mil．sq．ft． floor space） | （Bil．dol．） | （Bil．dol．） | （Ann．rate， thous．） | （1957－59 $=100$ ） | （1957－59＝100） | （Number） | （Mil．dol．） |
| January．． | 38.70 | 3.71 | | 1，470 | 103.8 | 97.2 | 15，599 | 101.53 |
| February ．． | 42.75 | 3.98 | 3.03 | 1，296 | 109.1 | 97.8 | 15，758 | 86.03 |
| March ． | 45.90 | 3.71 | ．．． | 1，422 | 104.0 | 98.1 | 15，670 | 77.40 |
| April． | 42.72 | 3.96 | | 1，494 | 111.9 | 97.8 | 15，372 | 107.15 |
| May．．． | 44.64 | 3.76 | 2.53 | 1，515 | 103.8 | 97.8 | 15，245 | 89.80 |
| June． | 41.16 | 3.66 | | 1，365 | 106.1 | 97.6 | 14，947 | 93.15 |
| July | 40.56 | 3.72 | | 1，409 | 108.7 | 97.7 | 15，171 | 107.98 |
| August | 42.69 | 3.61 | 2.81 | 1，531 | 107.1 | 98.4 | 15，056 | 121.85 |
| September | 40.96 | 3.56 | | 1，300 | 109.1 | 98.5 | 1．5，249 | 106.02 |
| 0 October．． | 41.08 | 3.66 | | 1，410 | 107.2 | 98.5 | 14，892 | 129.87 |
| November． | 42.20 | 3.82 | 3.35 | 1，634 | 113.0 | 98.0 | 14，951 | 96.62 |
| December． | 41.89 | 3.99 | ．．． | 1，521 | 112.0 | 98.3 | 14，985 | 99.61 |
| 1963 | | | | | | | | |
| January．．． | 41.61 | 3.84 | | 1，285 | 111.8 | 98.9 | 14，924 | 146.46 |
| February | 45.11 | 3.82 | 2.80 | 1，438 | 108.2 | 100.2 | 15，390 | 93.05 |
| March ．． | 39.42 | 3.75 | ．．． | 1，486 | 112.9 | 100.5 | 15，563 | 94.12 |
| April．． | 40.23 | 3.98 | ， | 1，652 | 113.6 | 99.2 | 15，305 | 88.15 |
| May．． | 47.00 | 4.28 | 3.30 | 1，676 | 120.0 | 99.6 | 15，682 | 115.05 |
| June． | 51.39 | 3.96 | ．．． | 1，550 | 119.3 | 100.0 | 15，536 | 91.07 |
| July ． | 45.78 | 3.94 | \cdots | 1，574 | 116.5 | 100.7 | 15，431 | 144.50 |
| August | 44.93 | 3.91 | 3.72 | 1，522 | 113.5 | 101.7 | 16，093 | 田52．86 |
| September ．． | 43.88 | 4.08 | | 1，676 | 121.0 | 101.4 | 15，689 | 94.52 |
| October．．． November | 50.81 43.73 | 4.17 | \cdots | 1，706 | 123.6 | 101.7 | 16，275 | 99.92 |
| November．．．．． December．．．．． | 43.73 45.43 | 4.32 4.56 | 4.10 | 1，592 | 119.9 123.7 | 101.4 | 15,759 15,867 | 255.72 87.17 |
| 1964 | | | | | | | | |
| January．．．．．． | 51.07 | 4.38 | | － 1，753 $^{\text {l }}$ | 116.8 | 103.1 | 16，250 | 91.69 |
| February | 51.05 | 4.14 | 4.39 | 1，706 | ［1124．6 | 102.8 | 16，018 | 119.29 |
| March ． | 48.47 | 4.11 | ．．． | 1，571 | 121.7 | 102.9 | 15，992 | 110.67 |
| April．．．．．．．．．． | 53.48 | 4.36 | | 1，506 | 113.6 | 104.4 | 16，180 | 107.10 |
| May．．．．．．．．．．． | 46.22 | 4.63 | 4.81 | 1，496 | 112.9 | 104.7 | 15，917 | 97.92 |
| June． | 47.82 | 4.64 | | 1，593 | 115.1 | 103.2 | 15，919 | 136.19 |
| July ．．． | 52.62 | 4.52 | 50 | 1，475 | 111.5 | 102.5 | 15，979 | 125.14 |
| August ．．．． | 47.72 | 4.53 | 5.00 | 1，489 | 113.4 | 102.9 | 16，074 | 90.99 |
| September ．． | 51.41 53.75 | 4.51 4.56 | \ldots | 1，422 | 109.7 | 105.0 | 16，605 | 118.59 |
| November． | 49.61 | 4.92 | 4.52 | 1，495 | 110.8 | 107.0 | 16,493 17,103 | 97.98 111.00 |
| December． | 58.88 | 4.94 | ．．． | r1，575 | 105.4 | 106.6 | 17，154 | 126.49 |
| 1965 | | | | | | | | |
| January．．．．．．．．．． | 53.20 | 4.72 | | 1，417 | 112.9 | 田107．3 | 17，275 | 84.54 |
| February ．．．．．．．．． | 58.12 | 4.67 | 4.99 | 1，468 | 108.0 | 106.6 | ［－17，367 | 107.57 |
| March ．．．．．．． April． | 54．04 | 4.84 | | 1，465 | 112.0 | 105.0 | 17，112 | 146.29 |
| May．．．．．．．．．．．．． | $\begin{array}{r}\text { H64．26 } \\ \hline 56.13\end{array}$ | 4.98 | | 1，532 | 104.7 | 103.6 | 16，504 | 79.51 |
| June ．．．．．．．．． | 55.28 | 4.081 | 1－p5．84 | 1，501 | 109.4 | 104.3 | 16，043 | 139.09 |
| July | 55.90 | ［45．16 | | r1，447 | 110.6 | 105.4 | 16，671 | 120.64 |
| August ．．．．．．． | 49.60 | p4．90 | （NA） | r1，404 | r107．4 | 104.2 | 16，957 | 128.98 |
| September October ． | （NA） | （NA） | | p1，407 | pl02．2 | （NA） | （NA） | 108.56 |
| November．．．．．．
 December | | | | | | | | |

NOTE：Series are seasonally adjusted except those that appear to contain no seasonal movement．Unadjusted series are indicated by an asterisk（＊）．Current high values are indicated by $⿴ 囗 十$ ；for series that move counter to movements in general business activity（series $3,4,5,14,15,40,43$ ，and 45 ），current low values are indicated by $⿴ 囗 十 \leftrightarrow$ ．Series numbers are for identification only and do not reflect series relationships or order．Complete titles and sources are shown on the back cover．The＂r＂indi－ cates revised；＂p＂，preliminary；＂e＂，estimated；＂a＂，anticipated；and＂NA＂，not available．
${ }^{1}$ Data prior to 1961 not comparable because of＂a change in asset accounting basis in machinery，except electrical，and a recalculation of the seasonal pattern for petroleum and coal products．＂（See NICB publication Investment Statistics－Capital Appropriations：First Quarter 1965．）

LATEST DATA FOR BUSINESS CYCLE SERIES－Continued

NBER Leading Indicators－Continued

NOTE：Series are seasonally adjusted except those that appear to contain no seasonal movement．Unadjusted series are indicated by an asterisk（＊）．Current high values are indicated by $⿴ 囗 十 ⿴ 囗 十$ ；for series that move counter to movements in general business activity（series $3,4,5,14,15,40,43$ ，and 45），current low values are indicated by $⿴ 囗 十$ ．Series numbers are for identification only and do not reflect series relationships or order．Complete titles and sources are shown on the back cover．The＂ r ＂indi－ cates revised；＂ p ＂，preliminary；＂ e ＂，estimated；＂ a ＂，anticipated；and＂NA＂，not available．
${ }^{1}$ See＂New Features and Changes for This Issue，＂page iii．\quad Average for October 15，18，and 19.

OCTOBER 1965

NBER Leading Indicators－Continued

NOTE：Series are seasonally adjusted except those that appear to contain no seasonal movement．Unadjusted series are indicated by an asterisk（＊）．Current high values are indicated by $⿴ 囗 十$ ；for series that move counter to movements in general business activity（series $3,4,5,14,15,40,43$ ，and 45），current low values are indicated
 cates revised；＂p＂，preliminary；＂ e ＂，estimated；＂a＂，anticipated；and＂$N A$＂，not available．
${ }^{1}\left[\mathbf{H}=\right.$ December 1961．${ }^{2}$ Average for October 14，15，and 18.

LATEST DATA FOR BUSINESS CYCLE SERIES—Continued

NBER Roughly Coincident Indicators

Year and month	41．Number of em－ ployees，in non－ agricultural estab－ lishments	42．Total non－ agricultural employ－ ment，labor force survey ${ }^{1}$	43．Unemployment rate，total ${ }^{1}$	40．Unemployment rate，married males ${ }^{1}$	45．Average weekly insured unemployment rate， State programs ${ }^{2}$	46．Index of help－ wanted advertising in newspapers	47．Index of indus－ trial production
	（Thous．）	（Thous．）	（Percent）	（Percent）	（Percent）	（1957－59＝100）	$(1957-59=100)$
1962							
January．．．．．．．．	54，695	61，948	5.8	3.7	4.7	114	115.0
February．．．．．．．．．	55，003	62，162	5.5	3.3	4.5	115	116.4
March ．．．．．．．．．．	55，162	62，234	5.5	3.6	4.4	115	117.5
April．．．．．．．．．．	55，411	62，167	5.6	3.7	3.9	112	118.0
May．．．．．．．．．．．	55，502	62，565	5.5	3.5	3.8	114	118.2
June ．．．．．．．．．．	55，565	62，693	5.5	3.7	4.0	109	118.1
July ．．．．．．．．．．	55，657	62，623	5.5	3.6	4.2	110	119.0
August ．．．．．．．．	55，673	63，015	5.7	3.7	4.4	108	119.0
September ．．．．．．．	55，767	63，147	5.6	3.5	4.4	107	119.7
October．．．．．．．．．	55，802	63，070	5.4	3.5	4.5	107	119.1
November ．．．．．．．	55，874	62，921	5.8	3.5	4.6	107	119.8
December ．．．．．．．	55，881	63，336	5.5	3.5	4.7	e107	119.4
1963							
January．．．．．．．．	55，900	63，133	5.7	3.7	4.8	el07	119.8
February．．．．．．．．	56，044	63，230	5.9	3.7	4.6	el09	120.6
March ．．．．．．．．．	56，187	63，487	5.7	3.5	4.4	el08	121.9
April．．．．．．．．．．	56，368	63，708	5.7	3.4	4.2	109	122.7
May．．．．．．．．．．	56，511	63，613	5.9	3.4	4.2	105	124.4
June．．．．．．．．．	56，601	63，825	5.7	3.2	4.1	104	125.6
July ．．．．．．．．．．	56，763	64，055	5.7	3.2	4.1	109	125.6
August ．．．．．．．．．	56，768	64，089	5.5	3.1	4.1	105	125.4
September ．．．．．．．．	56，868	64，253	5.5	3.0	4.0	107	125.7
October．．．．．．．．．	57，070	64，205	5.6	3.1	4.0	111	126.1
November	57，101	64，371	5.8	3.3	4.1	112	126.1
December	57，291	64，449	5.5	3.3	4.3	118	127.0
1964							
January．．．．．．．．．	57，334	64，685	5.5	3.1	4.3	116	127.9
February．．．．．．．．．．	57，684	65，051	5.4	3.0	4.0	117	128.4
March ．．．．．．．．．．	57，754	65，175	5.4	2.9	3.8	118	129.3
April．．．．．．．．．．	57，827	65，695	5.4	2.8	3.8	120	130.8
May．．．．．．．．．．．	57，931	65，790	5.2	2.6	3.6	118	131.8
June．．．．．．．．．．	58，104	65，519	5.3	2.8	3.6	121	132.0
July ．．．．．．．．．．	58，256	65，632	5.0	2.7	3.6	124	133.3
August ．．．．．．．．．	58，301	65，641	5.1	2.6	3.5	123	134.0
September．．．．．．．	58，458	65，650	5.1	2.8	3.4	126	134.0
October．．．．．．．．	58，382	65，658	5.2	2.9	3.4	127	131.6
November ．．．．．．．	58，878	66，084	4.9	2.4	3.4	134	135.4
December ．．．．．．．	59，206	66，463	5.0	2.6	3.6	137	138.1
1965							
January．．．．．．．．．	59，334	66，771	4.8	2.7	3.4	137	138.6
February．．．．．．．．	59，676	66，709	5.0	2.6	3.3	145	139.2
March．．．．．．．．．．．	59，992	66，890	4.7	2.5	3.1	148	140.7
April．．．．．．．．．．	59，913	66，874	4.9	2.5	3.1	143	140.9
May．．．．．．．．．．．．	60，110	66，979	4.6	2.5	2.9	145	141.6
June．．．．．．．．．．．．	60，382	67，459	4.7	2.4	2.9	146	142.7
July ．．．．．．．．．．．	r60，602	－ 68，092 $^{\text {67 }}$	4.5	2.3	3.0	145	144.2
August ．．．．．．．．	r60，680	67，821	4.5	2.6	3.0	152	［Hrl44．3
September．．．．．． October．．．．．	［⿴囗十丌p60，806	67，777	［14．4．4	回2．2	［4］．9	Hip160	pl42．8
November ．．．．．．．．．							
December ．．．．．．．							

NOTE：Series are seasonally adjusted except those that appear to contain no seasonal movement．Unadjusted series are indicated by an asterisk（＊）．Current high values are indicated by \boldsymbol{T} ；for series that move counter to movements in general business activity（series $3,4,5,14,15,40,43$ ，and 45 ），current low values are indicated by \mathbb{H} ．Series numbers are for identification only and do not reflect series relationships or order．Complete titles and sources are shown on the back cover．The＂ r ＂indi－ cates revised；＂p＂，preliminary；＂ e ＂，estimated；＂ a ＂，anticipated；and＂NA＂，not available．

[^4]| Year and month | 50．Gross national product in 1958 dollars | 49．Gross national product in current dollars | 57．Final sales （series 49 minus series 21） | 51．Bank debits， all SMSA＇s ex－ cept New York （224 SMSA＇s） | 52．Personal income | 53．Labor income in mining，manu－ facturing，and construction | 54．Sales of retail stores | 55．Index of wholesale prices except farm products and foods |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1962 | （Ann．rate， bil．dol．） | （Mil．dol．） | $(1957-59=100)$ |
| January．．．． | \cdots | | | 2，260．6 | 430.7 | 114.3 | 18，990 | 100.8 |
| February ．．．．．． | 519.7 | 547.8 | 541.1 | 2，155．9 | 433.7 | 115.5 | 19，139 | 100.7 |
| March ．．．． | ．．． | ．．． | ．．． | 2，233．1 | 437.2 | 116.7 | 19，320 | 100.7 |
| April．．．． | －•• | | | 2，299．6 | 439.8 | 118.3 | 19，389 | 100.7 |
| May．．．． | 527.9 | 557.2 | 551.1 | 2，266．6 | 440.8 | 118.0 | 19，585 | 100.9 |
| June ．． | ．．． | ．．． | ．．． | 2，249．9 | 441.8 | 118.0 | 19，311 | 100.8 |
| July ．． | | | | 2，311．3 | 443.4 | 118.8 | 19，658 | 100.9 |
| August ．． | 533.6 | 564.4 | 559.2 | 2，268．8 | 444.6 | 118.7 | 19，671 | 100.8 |
| September ． | ．．． | ．．． | ．．． | 2，236．7 | 447.0 | 119.5 | 19，844 | 100.9 |
| October ．．． | | | | 2，340．7 | 447.9 | 118.9 | 19，837 | 100.9 |
| November．． | 538.5 | 572.0 | 565.6 | 2，351．5 | 450.4 | 119.7 | 20，112 | 100.8 |
| December．．．．． | ．．． | ．． | ．．． | 2，324．9 | 452.6 | 119.7 | 20，253 | 100.7 |
| 1963 | | | | | | | | |
| January．．．．．． | | | | 2，416．2 | 456.6 | 120.1 | 20，387 | 100.5 |
| February． | 541.2 | 577.0 | 572.5 | 2，345．9 | 454.9 | 120.0 | 20，374 | 100.5 |
| March ．．． | ．．． | ．．． | ．．． | 2，357．2 | 456.7 | 120.8 | 20，350 | 100.5 |
| April．．．． | \cdots | | | 2，472．5 | 457.2 | 120.7 | 20，276 | 100.4 |
| May．．．．． | 544.9 | 583.1 | 578.4 | 2，419．2 | 460.0 | 122.0 | 20，200 | 100.5 |
| June ． | ．．． | ．．． | ．．． | 2，368．2 | 463.1 | 123.0 | 20，486 | 100.8 |
| July ．．．． | －•• | ． 3 | | 2，561．0 | 464.8 | 123.3 | 20，719 | 100.9 |
| August | 553.7 | 593.1 | 587.3 | 2，463．1 | 467.1 | 123.4 | 20，666 | 100.9 |
| September ． | ．．． | ．．． | ．．． | 2，559．0 | 469.3 | 124.4 | 20，426 | 100.8 |
| October ．．． | | | | 2，605．5 | 473.2 | 125.1 | 20，716 | 100.9 |
| November．． | 560.0 | 603.6 | 595.5 | 2，527．4 | 474.7 | 125.7 | 20，558 | 100.9 |
| December．． | ．．． | ．．． | ．．． | 2，610．2 | 478.9 | 127.1 | 21，019 | 101.1 |
| 1964 | | | | | | | | |
| January ．．．． | | | ．．． | 2，571．5 | 481.2 | 126.5 | 21，000 | 101.1 |
| February ． | 567.1 | 614.0 | 610.7 | 2，590．3 | 483.2 | 127.9 | 21，533 | 101.2 |
| March ． | ．．． | ．．． | ．．． | 2，597．3 | 484.5 | 128.3 | 21，223 | 101.2 |
| April．．．． | 575．9 | 624 | 6 | 2，693．8 | 487.7 | 129.5 | 21，392 | 101.2 |
| May．．．．． | 575.9 | 624.2 | 620.1 | 2，688．4 | 491.2 | 130.3 | 21，777 | 101.1 |
| June． | ．．． | ．．． | ．．． | 2，607．4 | 492.8 | 130.9 | 21，773 | 101.0 |
| July ．． | 582.6 | 634 | | 2，746．7 | 496.1 | 131.5 | 21，935 | 101.2 |
| August ．． | 582.6 | 634.8 | 631.0 | 2，681．7 | 499.5 | 132.6 | 22，266 | 101.2 |
| September ． | ．．． | ．．． | ．．． | 2，755．9 | 501.7 | 133.8 | 22，254 | 101.3 |
| October ．． | $58 i \%$ | 610 | | 2，771．5 | 502.8 | 132.6 | 21，383 | 101.5 |
| November．． | 584.7 | 641.1 | 633.6 | 2，730．3 | 506.6 | 135.1 | 21，661 | 101.6 |
| December．．． | ．．． | ．． | ．．． | 2，803．5 | 512.0 | 137.3 | 22，781 | 101.7 |
| 1965 | | | | | | | | |
| January ．．．．．．． | | | | 2，803．3 | 515.8 | 137.8 | 22，900 | 101.7 |
| February ．．．．．． | 597.5 | 656.4 | 647.6 | 2，845．1 | 515.7 | 139.0 | 23，317 | 101.9 |
| March ．．． | ．．． | ．．． | ．．． | 2，923．8 | 518.4 | 140.4 | 22，805 | 102.1 |
| April．．．． | | | ．\cdot ． | 2，962．0 | 520.7 | 139.7 | 22，865 | 102.2 |
| May．．．．． | 601.4 | 665.9 | 659.2 | 2，871．5 | 525.3 | 140.6 | 23，352 | 102.3 |
| June ．．．．．． | ．．． | ．．． | ．． | 3，019．4 | 528.8 | 141.5 | 23，331 | 102.6 |
| July ．．．．．．．． | | | | 3，021．0 | 530.5 | 142.5 | ［（1） $\mathrm{r} 23,743$ | 102.6 |
| August ．．．． | IHp609．1 | ［早p676．9 | 田p670．8 | 3，018．8 | r532．0 | rl43．3 | r23，653 | r102．8 |
| September ．．． | | | | 田p3，022．6 | ［⿴囗十⺀⿺𠃊⿻丷木斤丶 545.3 | ［田p143．6 | p23，344 | Wp102．9 |
| November．．．．．．．． | | | | | | | | 102.7 |
| December．．．．．．． | | | | | | | | |

NOTE：Series are seasonally adjusted except those that appear to contain no seasonal movement．Unadjusted series are indicated by an asterisk（＊）．Current high values are indicated by $⿴ 囗 十 ⺝ 丶$ ；for series that move counter to movements in general business activity（series $3,4,5,14,15,40,43$ ，and 45 ），current low values are indicated by $⿴ 囗 十$ ．Series numbers arefor identification only and do not reflect series relationships or order．Complete titles and sources are shown on the back cover．The＂r＂indi－ cates revised；＂p＂，preliminary；＂e＂，estimated；＂a＂，anticipated；and＂$N A$＂，not available．

[^5]
LATEST DATA FOR BUSINESS CYCLE SERIES—Continued

NBER Lagging Indicators

Year and month	61．Business ex－ penditures on new plant and equip－ ment，total	62．Index of labor cost per unit of output，manufac－ turing	68．Index of labor cost per dollar of real corporate GNP	64．Book value of manufacturers＇ inventories	65．Book value of manufacturers＇ inventories of fin－ ished goods	66．Consumer in－ stallment debt	67．Bank rates on short－term business loans， 19 cities＊
1962	（Ann．rate， bil．dol．）	$\begin{gathered} (1957-59=100) \\ \text { Revised } \end{gathered}$	$\begin{gathered} (1957-59=100) \\ \text { Revised }^{1} \end{gathered}$	（Bil．dol．）	（Bil．dol．）	（Mil．dol．）	（Percent）
January．．．．．．．．．	\cdots	99.7	．\cdot	55.4	19.0	42，960	．．．
February．．．．．．．．	35.70	99.7	103.0	55.7	19.1	43，220	
March ．．．．．．．．．．	．．．	99.5	．．．	56.0	19.1	43，532	4.98
April．．．．．．．．．．．	．\cdot ．	100.7	．．．	56.1	19.2	44，017	
May．．．．．．．．．．．．	36.95	100.8	103.7	56.4	19.3	44，437	\cdots
June ．．．．．．．．．．	．．．	101.1	．．．	56.3	19.4	44，826	5.01
July ．．．．．．．．．．．		100.7	－••	56.9	19.5	45，200	．．．
August ．．．．．．．．．	38.35	100.9	103.3	57.0	19.5	45，588	
September ．．．．．．．	．．．	100.4	．．．	57.3	19.7	45，838	4.99
October．．．．．．．．．	．．．	100.6	．．．	57.4	19.7	46，206	．
November ．．．．．．．	37.95	100.3	103.3	57.6	19.8	46，689	．．．
December ．．．．．．．	．．．	100.7	．．．	57.8	19.8	47，174	因5．02
1963							
January．．．．．．．．	．$\cdot 9$	100.6	\cdots	57.9	19.9	47，659	\cdots
February ．．．．．．．．	36.95	100.2	104.0	58.0	20.0	48，154	．．．
March ．．．．．．．．．	．．．	99.7	．．．	58.1	20.0	48，631	5.00
April．．．．．．．．．．	．．．	99.5	．．．	58.3	20.0	49，152	
May．．．．．．．．．．．	38.05	99.3	104.2	58.5	20.1	49，593	．．．
June ．．．．．．．．．．．	．．．	98.7	．．．	58.7	20.3	50，079	5.01
July ．．．．．．．．．．	100	99.3	1030	58.9	20.3	50，588	．．．
August ．．．．．．．．．	40.00	100.1	103.9	58.9	20.4	51，069	．
September ．．．．．．．	．．．	99.7	．．．	59.1	20.6	51，410	5.01
October．．．．．．．．．		99.8		59.3	20.6	51，941	．．．
November ．．．．．．．	41.20	100.0	104.7	59.8	21.0	52，324	O
December 1964	．．．	100.0	．．	60.1	21.2	52，784	5.00
January．．．．．．．．．	－••	99.3	\cdots	60.0	21.2	53，212	－••
February．．．．．．．．	42.55	99.1	104.2	60.1	21.4	53，791	．．．
March ．．．．．．．．．．	．．．	99.7	．．．	60.3	21.4	54，315	4.99
April．．．．．．．．．．		99.3		60.5	21.6	54，727	．
May．．．．．．．．．．．．．．．	43.50	99.3 100.0	104.6	60.5	21.6	55，220	\cdots
July ．．．．．．．．．．．．．．	．．．	－99．7	．．．	60.4 60.5	21.5 21.6	55,590 56,073	4.99
August．．．．．．．．．．	45.65	99.5	105.1	60.8	21.6	56，508	．．．
September ．．．．．．．	．．．	100.3	．．．	61.0	21.6	57，021	4.98
October．．．．．．．．．	17．．	［⿴囗十丌101．2		61.8	21.8	57，431	．．．
November ．．．．．．．	47.75	99.5	［106．3	62.4	21.9	57，732	．．．
December ．．．．．．．	．．．	98.9	－••	62.9	22.2	58，292	5.00
1965							
January．．．．．．．．．		98.9		63.2	22.4	58，962	
February．．．．．．．．	49.00	99.5	105.2	63.4	22.4	59，603	．．．
March．．．．．．．．．	．．．	99.1	．${ }^{\text {a }}$	63.7	22.5	60，240	4.97
April．．．．．．．．．．	［ 50.35	99.8	106：	64.0	22.3	60，984	．．．
May．．．．．．．．．．．．	［	99.8	106.2	64.3	22.4	61，654	\cdots
June．．．．．．．．．．．．．．．	．．．	99.6 98.8	．．．	64.6 $\times 65$	22.3	62，256	4.99
August．．．．．．．．．．．．．	a51．15	98.8 99.8	$(\stackrel{1}{\mathrm{NA}})$	r65．4 mp6	［ P $_{\text {p22 }} 22.5$	62,922 $[H] 63,531$	．．．
September．．．．．．．	a 15	p101．0		（NA）	（NA）	（NA）	5.00
October．．．．．．．．．．．	a52．95						
December ．．．．．．．	as2． 9						

NOTE：Series are seasonally adjusted except those that appear to contain no seasonal movement．Unadjusted series are indicated by an asterisk（＊）．Current high values are indicated by Θ ；for series that move counter to movements in general business activity（series 3，4，5，14，15，40，43，and 45），current low values are indicated by Φ ．Series numbers arefor identification only and do not reflect series relationships or order．Complete titles and sources are shown on the back cover．The＂r＂indi－ cates revised；＂p＂，preliminary；＂e＂，estimated；＂a＂，anticipated；and＂$N A^{\prime \prime}$＂，not available．
${ }^{1}$ See＂New Features and Changes for This Issue，＂page iii．

OCTOBER 1965

Other Selected U.S. Series

Year and month	82. Federal cash payments to the public	83. Federal cash receipts from the public	84. Federal cash surplus (+) or deficit (-)	95. Surplus (+) or deficit (-), Federal income and product account	90. Defense Department obligations, procurement	91. Defense Department obligations, total	92. Military prime contract awards to U.S. business firms
1962	(Ann. rate, bil. dol.)	(Mil. dol.)	(Mil. dol.)	(Mil. dol.)			
January.........	109.9	102.2	-7.7		1,758	4,434	3,073
February	113.5	101.8	-11.7	-5.0	1,228	4,086	2,135
March	107.8	101.1	-6.7	...	1,410	4,421	2,225
April....	108.3	105.2	-3.1	. 6	1,791	4,477	2,062
May.....	108.6	108.6	0.0	-4.6	1,039	3,999	1,887
June	111.5	104.5	-7.0	...	1,311	4,082	1,930
July ...	113.5	110.4	-3.1		1,657	4,517	2,017
August ...	108.1	107.7	-0.4	-2.6	1,395	4,385	2,149
September	113.4	108.4	-5.0	...	1,040	3,892	2,111
October . .	113.7	107.1	-6.6	\ldots	1,675	4,535	2,983
November.	118.6	110.1	-8.5	-3.2	1,787	4,920	2,734
December. 1963	114.9	108.4	-6.5	...	1,205	4,140	1,984
January. .	112.4	108.6	-3.8		1,586	4,632	2,198
February	109.6	109.9	+0.3	-2.5	1,206	4,137	2,435
March .	116.6	110.5	-6.1	...	1,366	4,233	2,154
April...	113.5	108.0	-5.5		1,215	4,078	1,966
May....	116.3	114.0	-2.3	+1.8	1,358	4,507	2,240
June ...	115.3	112.7	-2.6	...	1,363	4,481	2,334
July	120.5	112.9	-7.6		1,132	4,349	2,419
August	121.9	116.5	-5.4	+0.6	1,700	4,580	2,733
September ..	119.9	112.6	-7.3	...	1,207	4,160	2,578
October ${ }^{\text {November }}$	122.0	114.7	-7.3	...	2,010	5,112	2,086
November. . .	119.3	114.9	-4.4	+1.2	1,094	4,093	1,681
December. 1964	117.2	118.1	+0.9	...	1,273	4,371	2,079
January.........	125.9	115.9	-10.0	\cdots	1,075	4,351	2,149
February.	119.2	120.5	+1.3	-2.6	1,843	5,317	2,689
March	120.4	117.1	-3.3	...	1,237	4,133	1,598
April.	122.6	121.4	-1.2		1,389	4,544	2,508
May...	119.1	108.7	-10.4	-7.6	1,910	4,818	2,454
June . .	116.7	113.8	-2.9	...	1,079	4,349	1,879
July ...	r122.8	r114.0	-8.8	\cdots	1,494	4,677	2,904
August ..	121.6	111.7	-9.9	-3.6	803	4,237	1,926
September ..	117.9	113.0	-4.9	...	1,141	4,405	2,191
October . . . November.	118.4 112.9	115.1 114.9	-3.3 +2.0	-1.1	889 1,089	3,773 4,228	1,745
December. . .	126.5	114.5	-12.0	-	1,870	4,328	1,883
1965							
January..........	121.8	114.0	-7.8		966	4,278	1,830
February	121.8	120.1	-1.7	+2.5	603	3,839	1,628
March	117.4	124.5	+7.1		1,735	4,624	1,874
April............	125.2 128.8	153.5	+28.3		1,557	4,593	2,926
May.............	128.8	119.9	-8.9	+2.8	1,567	4,630	2,025
June	133.0	119.4	-13.6	...	r1,140	r4,520	2,438
July August	rl20.2	r122.1	+1.9		954	4,258	2,699
$\begin{aligned} & \text { August } \\ & \text { September } \end{aligned}$	r129.5 137.7	r121.9 121.4	-7.6	(NA)	1,893	5,223	2,770
October	137.7	121.4	-16.3				
November. December......							

NOTE: Series are seasonally adjusted except those that appear to contain no seasonal movement. Unadjusted series are indicated by an asterisk (*). Series numbers are for identification only and do not reflect series relationships or order. Complete titles and sources are shown on the back cover. The " r " indicates revised; " p ", preliminary; " e ", estimated; " a ", anticipated; and " $N \mathrm{~A}$ ", not available.

LATEST DATA FOR BUSINESS CYCLE SERIES—Continued

Other Selected U.S. Series-Continued

Year and month	99. New orders, defense products	93. Free reserves*	85. Change in total U.S. money supply	98. Change in money supply and time deposits	110. Total private borrowing	111. Corporate gross savings	112. Change in business loans
1962	(Bil. dol.)	(Mil. dol.)	(Ann. rate, percent)	(Ann. rate, percent)	(Ann. rate, mil. dol.)	(Ann. rate, mil. dol.)	(Ann. rate, bil. dol.)
January.	1.99	+555	0.00	$+7.32$	\cdots		+2.90
February	2.05	+434	+2.52	+11.52	43,480	36,664	+1.51
March . . .	2.11	+382	+1.68	+9.36	+2.23
April. . .	2.24	+441	+4.08	$+8.76$	+2.09
May.	2.24	$+440$	-3.24	+1.56	53,388	37,780	+2.09
June	2.08	+391	+0.84	+6.12	+2.77
July . .	2.07	$+440$	-0.84	+5.04	+2.66
August ..	1.94	+439	-0.84	+4.08	48,972	39,040	+3.85
September	1.88	+375	-1.68	+4.56	+2.82
October. . .	2.09	+419	$+4.92$	+9.48		...	+2.82
November	1.70	+473	+4.08	$+8.40$	48,536	40,296	+2.28
December ..	2.53	+268	$+4.92$	$+10.80$,	,	+0.95
1963							
January... .	2.89	+375	+4.08	+8.76			$+1.43$
February.	2.09	+301	+4.92	+8.76	44,628	38,692	+1.42
March .	2.42	+269	+1.56	+7.20	+1.85
April. . . .	1.97	+313	+4.08	$+7.68$			+2.40
May.	2.40	$+247$	+3.24	$+6.24$	55,916	38,652	+2.35
June. .	1.90	+138	+3.96	+7.08	+1.74
July .	2.40	$+161$	+6.36	+9.00			+1.97
August ..	2.36	+133	+2.40	$+8.88$	57,348	40,372	+2.04
September.	2.47	+91	+2.40	+6.48	$+2.08$
October. .	1.92	+94	+5.52	$+8.76$	5...	...	$+4.66$
November . . .	1.97	+33	+7.08	$+11.04$	58,772	39,892	+5.22
December . . .	1.48	+209	-0.84	$+4.56$	+5.78
1964							
January.	2.67	+175	+3.96	+8.16			+1.79
February.	2.40	+89	+1.56	+5.88	52,448	44,200	$+3.48$
March . . .	2.18	+99	+2.40	+4.44		,	+1.42
April.	2.37	+167	+3.12	$+5.76$,	+3.17
May.	2.48	+82	0.00	+4.92	66,524	45,064	+4.25
June.	2.34	+120	+7.80	+9.72	.	.	+3.89
July	3.29	+135	+8.52	+8.76			+4.31
August	1.86	+83	+3.84	+9.12	57,548	45,468	+4.78
September	1.98	+89 +106	$+8.40$	+9.48		...	+4.28
October.	2.41	+106	+4.56	+8.52	…	\cdots	+1.43
November . . .	1.79 1.87	-34 +168	+2.28 +4.56	+8.04 +8.88	61,204	44,876	$+0.32$
1965							
January.	2.37	$+103$	+2.28	+10.44			+12.35
February.	2.44	+32	-2.28	+7.92	65,236	49,124	+13.14
March	2.46	-76	$+4.56$	$+6.96$	65,236.	49,124	+12.46
April. May.	3.24 2.46	-112	+6.00 -8.16	+9.00	73.9	19000	+6.32 +71.04
June.	2.46 2.58	-178 $\mathrm{r}-184$	-8.16 +13.44	0.00 +12.60	73,740	49,040	+11.04 +11.38
July.	r2.62	$r-184$ -175	+13.44 +5.16	+12.60 +9.72	\ldots	-	+11.38 +10.00
August	r2.80	r-136	+1.44	+10.80 +10	(NA)	(NA)	+10.00 +5.53
September October.	p3.15	p-154	$p+11.76$	p+12.24			$p+4.00$
November							
December							

NOTE: Series are seasonally adjusted except those that appear to contain no seasonal movement. Unadjusted series are indicated by an asterisk (*). Series numbers are for identification only and do not reflect series relationships or order. Complete titles and sources are shown on the back cover. The " r " indicates revised; " p ", preliminary; "e", estimated; "a", anticipated; and "NA", not available.

OCTOBER 1965

LATEST DATA FOR BUSINESS CYCLE SERIES—Continued
Other Selected U.S. Series-Continued

Year and month	113. Net change in consumer installment debt	114. Treasury bill rate*	115. Treasury bond yields*	116. Corporate bond yields*	117. Municipal bond yields*	118. Mortgage yields*	86. Exports excluding military aid shipments, total
1962	(Ann. rate, bil. dol.)	(Percent)	(Percent)	(Percent)	(Percent)	(Percent)	(Mil. dol.)
January......	+2.23	2.75	4.08	4.55	3.34	5.69	1,668.3
February	+3.12	2.75	4.09	4.54	3.21	5.68	1,809.3
March	+3.74	2.72	4.01	4.42	3.14	5.65	1,672.0
April.........	+5.82	2.74	3.89	4.31	3.06	5.64	1,795.4
May............	+5.04	2.69	3.88	4.26	3.11	5.60	1,761.7
June	+4.67	2.72	3.90	4.30	3.26	5.59	1,835.6
July	+4.49	2.94	4.02	4.41	3.28	5.58	1,748.3
August	$+4.66$	2.84	3.98	4.39	3.23	5.57	1,702.5
September ...	+3.00	2.79	3.94	4.28	3.11	5.56	1,907.9
0 Otober...	$+4.42$	2.75	3.89	4.27	3.02	5.55	1,542.8
November.	+5.80	2.80	3.87	4.23	3.04	5.54	1,724.6
December.	+5.82	2.86	3.87	4.28	3.07	5.53	1,838.7
1963							
January.........	+5.82	2.91	3.89	4.22	3.10	5.52	985.7
February	+5.94	2.92	3.92	4.25	3.15	5.48	2,123.6
March	+5.72	2.90	3.93	4.26	3.05	5.47	1,957.8
April..........	$+6.25$	2.91	3.97	4.35	3.10	5.46	1,913.7
May.....	+5.29	2.92	3.97	4.35.	3.11	5.45	1,895.2
June	+5.83	3.00	4.00	4.32	3.21	5.45	1,803.1
July ..	+6.11	3.14	4.01	4.34	3.22	5.45	1,840.8
August . .	+5.77	3.32	3.99	4.33	3.13	5.45	1,922.1
September	+4.09	3.38	4.04	4.40	3.20	5.45	1,958.2
October...	+6.37	3.45	4.07	4.36	3.20	5.45	1,967.5
November.	$+4.60$	3.52	4.11	4.42	3.30	5.45	1,965.6
December.	+5.52	3.52	4.14	4.49	3.27	5.45	2,090.8
1964							
January	+5.14	3.53	4.15	4.49	3.22	5.45	2,042.9
February......	$+6.95$	3.53	4.14	4.38	3.14	5.45	2,046.2
March	+6.29	3.55	4.18	4.45	3.28	5.45	2,074.0
April...	+4.94	3.48	4.20	4.49	3.28	5.45	2,061.1
May....	+5.92	3.48	4.16	4.48	3.20	5.45	2.061 .8
June	+4.44	3.48	4.13	4.49	3.20	5.45	2,034.2
July ...	$+5.80$	3.48	4.13	4.43	3.18	5.46	2,122.9
August...	$+5.22$	3.51	4.14	4.43	3.19	5.46	2,108.8
September	+6.16	3.53	4.16	4.49	3.23	5.46	2,235.3
October...	+4.92	3.58	4.16	4.49	3.25	5.45	2,154.8
November. . . .	+3.61	3.62	4.12	4.47	3.18	5.45	2,196.8
December. . .	+6.72	3.86	4.14	4.47	3.13	5.45	2,430.4
1965							
January..	$+8.04$	3.83	4.14		3.06	5.45	1,217.3
February........	+7.69	3.93	4.16	4.44	3.09	5.45	1,592.7
March	+7.64 +8.93	3.94	4.15 4.15	4.49	3.18	5.45	2,752.7
April.......... May........	+8.93 +8.04 +7.20	3.93 3.90	4.15 4.14	4.48 4.52	3.15 3.17	5.45 5.45	$2,380.3$ $2,277.7$
June . . .	$+7.22$	3.81	4.14	4.57	3.24	5.44	2,184.8
July .	+7.99	3.83	4.15	4.57	3.27	5.44	2,262.8
August	+7.31	3.84	4.19	4.66	3.24	5.45	2,345.7
September October . . .	(NA)	3.91	4.25	4.71	3.35	5.46	(NA)
November.							
December.							

NOTE: Series are seasonally adjusted except those that appear to contain no seasonal movement. Unadjusted series are indicated by an asterisk (*). Series numbers are for identification only and do not reflect series relationships or order. Complete titles and sources are shown on the back cover. The " r " indicates revised; " p ", preliminary; " e ", estimated; " a ", anticipated; and "NA", not available.

LATEST DATA FOR BUSINESS CYCLE SERIES-Continued

Other Selected U.S. Series-Continued

Year and month	87. General imports, total	88. Merchandise trade balance (series 86 minus series 87)	89. Excess of receipts (+) or payments $(-)$ in U.S. balance of payments	81. Index of consumer prices	94. Index of construction contracts, value	96. Manufacturers' unfilled orders, durable goods industries	97. Backlog of capital appropriations, manufacturing ${ }^{1}$
1962	(Mil. dol.)	(Mil. dol.)	(Mil. dol.)	$\begin{gathered} (1957-59= \\ 100) \end{gathered}$	$\begin{gathered} (1957-59= \\ 100) \end{gathered}$	(Bil. dol.)	(Bil. dol.)
January.	1,326.5	+341.8	. \cdot	104.7	115	45.80	\cdots
February	1,319.8	+489.5	-792	104.9	119	46.42	
March	1,341.7	+330.3	. .	105.1	131	45.75	8.44
April.	1,365.0	+430.4	...	105.3	121	45.41	...
May	1,404.1	+357.6	-267	105.4	117	44.95	
June	1,350.7	$+484.9$...	105.4	120	44.58	8.32
July	1,346.6	+401.7	. \cdot	105.3	117	44.33	...
August	1,345.9	+356.6	-433	105.5	118	43.73	,
September	1,471.4	+436.5	...	105.9	113	43.37	8.26
October.	1,312.1	+230.7	…	105.8	117	43.58	...
November	1,424.9	+299.7	-711	105.8	123	43.18	硅
December	1,376.5	+462.2	...	105.9	138	44.09	8.81
1963							
January	1,099.9	-114.2	-	106.1	121	45.06	...
February	1,510.4	+613.2	-1,199	106.1	130	45.74	
March	1,484.8	+473.0	...	106.2	118	46.68	8.88
April.	1,414.6	+499.1	-108	106.3	125	47.53	...
May.	1,416.3	+478.9	-1,108	106.4	144	47.86	-
June	1,430.9	+372.2	...	106.7	135	47.28	9.38
July	1,449.5	+391.3	. 0	106.9	126	46.74	...
August	1,497.3	$+424.8$	-210	107.1	132	46.70	.
September	1,443.3	+514.9	. .	106.9	128	47.07	10.05
October.	1,455.4	+512.1	…	107.0	146	47.17	-•
November	1,465.5	+500.1	-153	107.2	144	47.08	...
December	1,479.8	+6i1.0	...	107.7	148	46.68	11.02
1964							
January.	1,434.4	+608.5	\cdots	107.8	147	47.07	...
February.	1,460.3	+585.9	-257	107.7	143	47.64	. \cdot.
March	1,519.5	+554.5	...	107.8	140	47.80	12.08
April.	1,540.6	+520.5	...	108.0	138	48.84	...
May.	1,539.4	+522.4	-582	108.1	138	49.22	13.3
June	1,518.4	+515.8	...	108.1	138	50.04	13.23
July	1,578.1	+544.8 +533.9	- 993	108.1	140	51.30	...
September	1,546.4	+688.9	-593	108.3	131	52.14	14.54
October.	1,547.7	+607.1		108.4	136	53.14	...
November	1,697.7	+499.1	-1,366	108.6	143	53.41	...
December	1,642.2	+788.2	...	108.9	154	53.96	14.97
1965							
January.	1,206.4	+10.9	-	109.0	137	54.28	\cdots
February.	1,600.5	-7.8	-701	109.0	140	55.09	
March	1,869.0	+883.7	...	109.1	141	55.53	15.66
April.	1,834.7	$+545.6$	-	109.5	152	56.37	. . .
May.	1,798.9	+478.8 +350.0	+249	109.9	145 139	56.88 57.45	p17.06
June	$1,834.8$ $1,669.8$	+350.0 +593.0	\cdots	110.2 110.0	139 149	57.45 r 57.83	p17.06
August	1,725.8	+620.3	($\mathrm{NA} \mathrm{O}^{\text {a }}$	110.0	139 139	r58.10	.
September.	(NA)	(NA)		(NA)	(NA)	p58.87	(NA)
November							
December							

NOTE: Series are seasonally adjusted except those that appear to contain no seasonal movement. Unadjusted series are indicated by an asterisk (*). Series numbers are for identification only and do not reflect series relationships or order. Complete titles and sources are shown on the back cover. The " r " indicates revised; " p ", preliminary; " e ", estimated; " a ", anticipated; and "NA", not available.
${ }^{1}$ Data prior to 1961 not comparable because of "a change in asset accounting basis in machinery, except electrical, and a recalculation of the seasonal pattern for petroleum and coal products." (See NICB publication Investment Statistics - Capital Appropriations: First Quarter 1965.)

OCTOBER 1965

Year and month	47. United States, index of industrial production	123. Canada, index of industrial production	122. United Kingdom, index of industrial production	121. OECD, ${ }^{1}$ European countries, index of industrial production	125. West Germany, index of industrial production	126. France, index of industrial production	127. Italy, index of industrial production	128. Japan, index of industrial production
1962	$\begin{gathered} (1957-59= \\ 100) \end{gathered}$	$\begin{gathered} (1957-59= \\ 100) \end{gathered}$	$\begin{aligned} & (1957-59= \\ & 100) \end{aligned}$	$\begin{gathered} (1957-59= \\ 100) \end{gathered}$	$\begin{aligned} & (1957-59= \\ & 100) \end{aligned}$			
January.	115	113	108	122	126	122	149	182
February	116	115	110	124	129	123	151	178
March	118	116	111	123	125	124	149	181
April............	118	116	110	124	128	123	151	181
May............	118	117	113	125	129	124	153	182
June	118	118	114	124	130	123	147	130
July	119	118	113	125	130	125	151	179
August	119	119	114	126	131	125	149	180
September	120	119	115	127	132	126	150	181
October.	119	119	110	127	132	128	153	179
November.	120	120	113	128	133	128	158	179
December.......	119	120	110	127	132	126	160	178
1963								
January . . .	120	120	110	127	129	127	158	179
February	121	121	111	126	128	125	155	184
March	122	122	113	127	132	116	161	184
April............	123	122	114	130	133	129	165	191
May............	124	123	115	131	133	133	165	190
June	126	123	115	132	139	134	166	191
July	126	121	116	132	134	129	163	203
August	125	123	118	132	136	129	166	202
September ..	126	125	117	134	136	136	171	207
October... .	126	126	120	135	138	137	171	211
November.	126	128	121	136	140	136	173	214
December.	127	131	121	136	139	138	170	217
1964								
January.........	128	133	123	139	142	140	172	219
February	128	134	123	139	144	139	169	224
March	129	133	123	140	145	139	173	224
April...........	131	135	124	139	140	141	168	226
May.............	132	133	123	141	150	140	166	228
June	132	133	123	139	143	141	164	233
July ...	133	134	122	138	147	132	166	232
August	134	135	123	137	145	132	156	232
September October	134 132 132	135	123	140	145	141	165	239
October November. . .	132	136	127	144	149	142	164	241
Novernber........ December.	135 138	139	128	143	149	142	166	237
December.	138	140	129	143	149	139	166	242
1965								
January.........	139	142	131	146	156	138	166	243
February	139	141	129	146	155	140	169	237
March	141	143	128	143	150	139	165	242
April...	141	142	129	145	154	141	169	240
May...	142	142	129	146	r154	140	r174	234
June . .	143	143	r128	145	r154	142	175	r243
July	144 144	(1) NA)	p129	p144	r150	138	$p 175$	241
August September	144	(NA)	(NA)	(NA)	p154	p138	(NA)	p239
Oeptober	p143				(NA)	(NA)		(NA)
November.								
December.								

NOTE: Series are seasonally adjusted except those that appear to contain no seasonal movement. Unadjusted series are indicated by an asterisk (*). Series numbers are for identification only and do not reflect series relationships or order. Complete titles and sources are shown on the back cover. The " r " indicates revised; " p ", preliminary; " e ", estim ated; " a ", anticipated; and " NA ", not available.
${ }^{1}$ Organization for Economic Cooperation and Development.

Section TWO

charts and tables

dISTRIBUTION OF ‘HIGHS' FOR CURRENT AND COMPARATIVE PERIODS
DIFFUSION INDEXES BASED ON HUNDREDS OF COMPONENTS
Average workweek -21 industries
New orders-36 industries
Capital appropriations-17 industries
Profits- 700 companies
Stock prices-80 industries
Industrial materials prices- 13 materials
State unemployment claims-47 areas
Nonagricultural employment-30 industries
Production-24 industries
Wholesale prices-23 industries
Retail sales-24 types of stores
Net sales-800 companies
New orders- 400 companies
Carloadings-19 commodity groups
Plant and equipment expenditures-22 industries

Number of months before benchmark date that high was reached	Number of series that reached a high before benchmark dates-							
	Current expansion				Business cycle peak			
	$\begin{aligned} & \text { June } \\ & 1965 \end{aligned}$	$\begin{aligned} & \text { July } \\ & 1965 \end{aligned}$	Aug. 1965	$\begin{aligned} & \text { Sept. } \\ & 1965 \end{aligned}$	Nov. 1948	$\begin{aligned} & \text { July } \\ & 1953 \end{aligned}$	July 1957 1957	May 1960
	NBER LEADING INDICATORS							
8 months or more	7	7	8	7	15	9	24	16
7 months	\cdots	1	2	\ldots	\ldots	1	\ldots	2
6 months ...	1	2	1	2	\ldots	5	.	1
5 months .	2	1	3	1	4	1	...	2
4 months . .	1	3	2	1	..	2	...	3
3 months .	3	2	2	\ldots	1	...	\ldots	.
2 months . .	3	2	2	3	\ldots	2	...	\ldots
1 month	3	2	4	\ldots	\ldots
Benchmark month	4	4	..	2	...	1
Number of series used \qquad Percent of series high on benchmark date	24	24	24	16	${ }^{2} 20$	${ }^{2} 21$	24	24
	17	17	0	12	0	5	0	0
	NBER ROUGHLY COINCIDENT INDICATORS							
8 months or more .	\cdots	\cdots	\cdots	\ldots	2	1	2	1
7 months	\ldots	\ldots	\cdots	\cdots			
6 months	\cdots	\ldots	\cdots	\ldots	i	\ldots	\cdots	\cdots
5 months	\ldots	i	\cdots	\ldots	1	\cdots	$\frac{1}{3}$	
4 months 3 month	\cdots	1	\cdots	\ldots	1	3 1	3	$\stackrel{2}{3}$
2 months	\ldots	$\cdots \mathrm{i}$	\cdots	4	\cdots	\cdots	
1 month	2	1	3	1	...	3	1	2
Benchmark month	8	9		8	...	3		3
Number of series used .	11	11	11	11	11	11	11	11
Percent of series high on benchmark date	73	82	64	73	0	27	36	27
Number of months before benchmark date that high was reached	3d month before business cycle peak				6th month before business cycle peak			
	Aug. 1948	$\begin{aligned} & \text { Apr. } \\ & 1953 \end{aligned}$	$\begin{aligned} & \text { Apr. } \\ & 1957 \end{aligned}$	$\begin{aligned} & \text { Feb. } \\ & 1960 \end{aligned}$	$\begin{aligned} & \text { May } \\ & 1948 \end{aligned}$	$\begin{aligned} & \text { Jan. } \\ & 1953 \end{aligned}$	$\begin{aligned} & \text { Jan. } \\ & 1957 \end{aligned}$	$\begin{aligned} & \text { Nov. } \\ & 1959 \end{aligned}$
	NBER LEADING INDICATORS							
8 months or more	13	4	21	13	9	1	18	6
7 months	2	4	\cdots	2	1	1	\ldots	7
6 months	\ldots	1	\ldots	..	1	1	3
5 months....	...	2	2	1	5	1	2	2
4 months...	\cdots	2	\cdots	2	2	4	\cdots	2
3 months..	\cdots	5	\cdots	1	\cdots	1	1	
2 months	4	1	\cdots	2	.	2	2	1
1 month..........	" ${ }^{\text {i }}$	2	\cdots	${ }^{3}$	\cdots	3 7	\cdots	2
Number of series used \qquad Percent of series high on benchmark date \square	1_{20}^{1}	2	\cdots	\cdots	12	2	\cdots	
	$\begin{array}{r} 120 \\ 5 \end{array}$	${ }^{2} 21$	24 0	24 0	120 15	221 33	24 0	$\begin{array}{r}24 \\ 4 \\ \hline\end{array}$
	NBER ROUGHLY COINCIDENT INDICATORS							
8 months or more	2	1	2	1	1	1	2	\ldots
7 months	\cdots	\ldots	\cdots	\ldots	.	\cdots	\cdots
6 months	\cdots	.	\cdots	1	\cdots	.	\cdots	
5 months	\cdots	1	\cdots	\ldots	1	\cdots	\cdots	4
4 months	\cdots	\cdots	1	\cdots	\cdots	\cdots	\cdots	2
	$\cdots \mathrm{i}$	\ldots	$\cdots 3$	\ldots			${ }^{1}$	\ldots
2 months . 1 month.	$\frac{1}{2}$	\cdots	3 3	\cdots	$\frac{1}{3}$	3	4	1
Benchmark month...	,	4	2	5	5	6	4	3
Number of series used \qquad Percent of series high on benchmark date	11	$\frac{11}{36}$	$\frac{17}{18}$	$\frac{11}{45}$	11	11 55	11	11 27

NOTE: All quarterly series and 2 monthly series (series 15 , a leading indicator, and series 40 , a roughly coincident indicator) are omitted from the distribution.
14 series were not available.
${ }^{2}$ l series was not available and 2 series were omitted because their peaks were reached during the Korean War and such peaks were disregarded in this distribution.

DI. Avg. workweek, prod. wkrs., mfg.-21 indus.

D6. New orders, dur. goods indus. -36 indus.

DII. Newly approved capital appropriations-
17 indus., NICB
$(\rightarrow 3-0$ span, $\rightarrow-\cdots$ i-Q span $)$

11
$=]_{0} 50$
D34. Profits, FNCB of NY, percent reporting

D19. Stock prices, 500 common stocks -80 indus.

D5. Initial claims, State unempl. insur - 47 areas (inverted)
State unempl. insuri-47 areas (inverted)

DIFFUSION INDEXES FROM 1948 TO PRESENT-Continued

NBER Roughly Coincident Indicators

D41. Employees in nonagr. establishments-30 indus. (6 -mo. span - I-mo. span ...)

D47. Industrial production-24 indus. (6-mo. span - 1-mo. span ...)

D54. Sales of retail stores -24 types of stores
(9-mo. span - 1-mo. span ...)

Actual
 Anticipated ---.-.

D35. Net sales, all mfrs. -800 cos.
(4.Q span)

D48. Carloadings-19 mfrd. commodity groups (4-Q span)

D48. Change in total carloadings

D61. New plant and equipment expend.-17-22 indus. (1-Q span)

Series number and date of survey	Actual	Anticipated
D35, D36 (July 1965)	2nd Q 1964-2nd Q 1965	4th Q 1964-4th Q 1965
D48 (Sept. 1965)	4th Q 1963-4th Q 1964	4th Q 1964-4th Q 1965
361 (Aug. 1965)	1st Q 1965-2nd Q 1965	3rd Q 1965 - 4th Q 1965

LATEST DATA FOR DIFFUSION INDEXES

NBER Leading Indicators

Year and month	D1. Average workweek, manufacturing (21 industries)		D6. Value of manufacturers' new orders, durable goods industries (36 industries)		D11. Newly approved capital appropriations, NICB (17 industries) ${ }^{1}$	
	1-month span	9-month span	1-month span	9-month span	1-quarter span	3 -quarter span
1962						
January..........	21.4	85.7	63.9	77.8	65	47
February........	61.9	83.3	52.8	63.9	\ldots	...
March	85.7	50.0	36.1	63.9		\ldots
April............	76.2	23.8	51.4	47.2	29	76
May............	28.6	52.4	56.9	47.2	\ldots	\ldots
June	31.0	54.8	37.5	45.8	\cdots	\ldots
July	38.1	42.9	56.9	36.1	76	53
August	54.8	28.6	36.1	52.8	\ldots	\ldots
September	78.6	26.2	48.6	59.7	\because	
October.........	9.5	23.8	68.1	56.9	59	74
November	64.3	40.5	50.0	70.8	\ldots	...
December	35.7	19.0	47.2	69.4	...	\ldots
1963						
January.........	76.2	61.9	63.9	88.9	47	53
February........	50.0	45.2	43.1	69.4		\ldots
March	61.9	83.3	54.2	66.7	59	53
April.	14.3	69.0	63.9	63.9	59	53
May............	85.7	78.6	52.8	52.8	\ldots	\cdots
June.	54.8 47.6	76.2 61.9	47.2 51.4	66.7 62.5	$\dddot{5}$	65
August	57.1	64.3	51.4 52.8	62.5 72.2	53	$\ldots 5$
September.......	59.5	52.4	52.8	69.4		
0 O ctober. .	71.4	64.3	69.4	58.3	65	76
November	21.4	66.7	33.3	83.3	\ldots	\ldots
December	83.3	73.8	62.5	77.8
1964						
January.	4.8	85.7	55.6	76.4	53	76
February........	88.1	50.0	44.4	83.3		\ldots
March.	40.5	52.4	58.3	80.6		
April...........	66.7	73.8	61.1	75.0	56	71
May............	42.9	33.3	4.4	72.2
June........... July.........	26.2 54.8	85.7 73.8	50.0 63.9	58.3 63.9	- 53	,
August	71.4	88.1	63.9 40.3	63.9 83.3	53	44
September.......	14.3	78.6	54.2	72.2	\ldots	
October...	76.2	78.6	58.3	63.9	32	59
November	64.3	95.2	55.6	61.1	\cdots	...
December.......	92.9	59.5	68.1	68.1
1965						
January.........	52.4	76.2	48.6	77.8	r76	P71
February........	59.5	81.0	38.9	75.0	\ldots	
March..........	76.2	r 59.5	63.9	77.8	...	
April. May . .	19.0	r59.5	50.0	69.4	p71	
	83.3 23.8	p35.7	4.4 58.3	p63.9		
July............	r 27.6		r59.7			
August	r57.1		r 44.4			
September.......	p28.6		p51.4			
October......... November .						
December.......						

NOTE: Figures are the percent of series components rising and are centered within spans: 1-month indexes are placed on latest month and 9 -month indexes are placed on the 6th month of span; 1-quarter indexes are placed on the 1st month of the 2d quarter and 3-quarter indexes are placed on the 1st month of the 3 d quarter. Seasonally adjusted components are used. Table 5 identifies the components for most of the indexes show. The "r" indicates revised; " p ", preliminary; and " $N A^{\prime}$ ", not available.
${ }^{1}$ Data prior to 1961 not comparable because of "a change in asset accounting basis in machinery, except electrical, and a recalculation of the seasonal pattern for petroleum and coal products." (See NICB publication Investment, Statistics - Capital Appropriations: First Quarter 1965.)

Year and month	D34. Profits, manufacturing, FNCB (around 700 corporations)	D19. Index of stock prices, 500 common stocks (80 industries) ${ }^{1}$		D23. Index of industrial materials prices (13 industrial materials)		D5. Initial claims for unemployment insurance, State programs, week ended nearest the 22d (47 areas)	
	1-quarter span	1 -month span	9-month span	1-month span	9-month span	1-month span	9-month span
1962							
January. . . .	54	25.6	17.5.	53.8	38.5	46.8	80.9
February	75.0	6.2	46.2	30.8	76.6	55.3
March	\cdots	47.5	7.5	46.2	30.8	38.3	48.9
April......	47	8.7	3.1	42.3	38.5	48.9	36.2
May.	1.2	3.7	42.3	23.1	46.8	46.8
June	\cdots	1.2	2.5	46.2	15.4	19.1	44.7
July	48	69.4	1.2	23.1	30.8	63.8	38.3
August	78.1	3.7	30.8	38.5	61.7	27.7
September ..	$\ddot{56}$	36.2	18.7	50.0	38.5	42.6	27.7
October....	56	88.1	67.5 93.7	53.8 53.8	53.8	36.2 72.3	53.2
December.		84.4	95.0	53.8	61.5	36.2	74.5 53.2
1963							
January......	50	97.5	95.0	61.5	61.5	34.0	44.7
February	78.7	95.0	46.2	69.2	89.4	66.0
March	\cdots	43.7	98.7	50.0	61.5	31.9	72.3
April....	59	91.2	95.0	46.2	69.2	47.9	48.9
May.....	...	85.0	89.1	46.2	65.4	46.8	63.8
June....	\cdots	51.9	84.6	69.2	61.5	68.1	80.9
July	56	29.4	78.2	46.2	61.5	44.7	46.8
August	\ldots	75.0	79.5	38.5	61.5	44.7	31.9
September	\cdots	76.9	77.6	69.2	61.5	44.7	85.1
October........	55	44.9	69.2	69.2	53.8	59.6	60.6
November.	\ldots	44.9	71.2	50.0	61.5	40.4	53.2
December.	68.4	84.4	57.7	76.9	23.4	73.4
1964							
January......	57	74.7	83.1	53.8	61.5	89.4	73.4
February	...	65.2	78.2	53.8	69.2	27.7	72.3
March	\cdots	78.5	86.5	46.2	69.2	57.4	70.2
April...........	60	75.6	85.9	65.4	76.9	77.7	74.5
June	\ldots	52.6 35.3	84.6 84.6	30.8 53.8	76.9 80.8	48.9	89.4
July	$\stackrel{3}{57}$	89.7	81.8	46.2	84.6	63.8	61.7
August	\ldots	47.0	68.8	76.9	76.9	51.1	89.4
September	\cdots	76.3	65.6	69.2	69.2	53.2	61.7
October.........	56	73.1	75.3	73.1	69.2	34.0	70.2
December......	\cdots	24.0	76.6	38.5	69.2	83.0	72.3
January.....	55	92.2	80.5	53.8	69.2	24.5	78.7
February	81.8	58.4	30.8	76.9	57.4	78.7
	\cdots	64.3	51.9	69.2	61.5	66.0	59.6
May.....	59	70.8 66.9	58.4 72.7	76.9 53.8	69.2 53.8	61.7 59.6	66.0 61.7
June		0.0		57.7	${ }^{2} 53.8$	51.1	
July... August	(NA$)$	24.7		46.2		34.0	
September ...				42.3 50.0		38.3 78.7	
October......							
November.							
December.							

NOTE: Figures are the percent of series components rising and are centered within spans: 1-month indexes are placed on latest month and 9 -month indexes are placed on the 6th month of span; 1-quarter indexes are placed on the 1st month of the $2 d$ quarter. Seasonally adjusted components are used except in indexes D19 which requires no adjustment and D34 which is adjusted only for the index. Table 5 identifies the components for most of the indexes shown. The " r " indicates revised; " p ", preliminary; and "NA", not available.
${ }^{1}$ The diffusion index is based on 82 components through February 1963; on 80 components, March 1963 to August 1963 ; on 79 components, September 1963 to March 1964; on 78 components, April 1964 to November 1964; and on 77 components thereafter.
${ }^{2}$ Average for October 14,15 , and 18.

LATEST DATA FOR DIFFUSION INDEXES—Continued

NBER Roughly Coincident Indicators

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Year and month} \& \multicolumn{2}{|l|}{D41. Number of employees in nonagricultural establishments (30 industries)} \& \multicolumn{2}{|l|}{D47. Index of industrial production (24 industries)} \& \multicolumn{2}{|l|}{D54. Sales of retail stores (24 types of stores)} \& \multicolumn{2}{|l|}{D58. Index of wholesale prices (23 manufacturing industries)}

\hline \& 1-month span \& 6-month span \& 1-month span \& 6-month span \& 1-month span \& 9-month span \& 1-month span \& 6-month span

\hline \multicolumn{9}{|l|}{1962}

\hline January.... \& 65.0 \& 86.7 \& 25.0 \& 83.3 \& 58.3 \& 87.5 \& 67.4 \& 60.9

\hline February.... \& 75.0 \& 88.3 \& 87.5 \& 79.2 \& 50.0 \& 91.7 \& 52.2 \& 63.0

\hline March . . . \& 75.0 \& 81.7 \& 87.5 \& 70.8 \& 70.8 \& 91.7 \& 58.7 \& 58.7

\hline April. . . \& 86.7 \& 78.3 \& 75.0 \& 91.7 \& 68.8 \& 89.6 \& 60.9 \& 54.3

\hline May. \& 60.0 \& 73.3 \& 64.6 \& 77.1 \& 58.3 \& 89.6 \& 47.8 \& 58.7

\hline June \& 53.3 \& 71.7 \& 66.7 \& 83.3 \& 18.8 \& 72.9 \& 41.3 \& 43.5

\hline July . . \& 61.7 \& 51.7 \& 52.1 \& 66.7 \& 83.3 \& 95.8 \& 41.3 \& 32.6

\hline August ... \& 51.7 \& 45.0 \& 58.3 \& 77.1 \& 75.0 \& 95.8 \& 28.3 \& 41.3

\hline September . . \& 51.7 \& 41.7 \& 83.3 \& 60.4 \& 64.6 \& 87.5 \& 43.5 \& 37.0

\hline October. . . \& 50.0 \& 35.0 \& 29.2 \& 47.9 \& 39.6 \& 87.5 \& 32.6 \& 30.4

\hline November . . \& 48.3 \& 43.3 \& 68.8 \& 72.9 \& 87.5 \& 91.7 \& 56.5 \& 26.1

\hline December \& 43.3 \& 50.0 \& 35.4 \& 62.5 \& 66.7 \& 83.3 \& 30.4 \& 26.1

\hline \multicolumn{9}{|l|}{1963}

\hline January. \& 69.0 \& 60.0 \& 79.2 \& 83.3 \& 50.0 \& 70.8 \& 41.3 \& 32.6

\hline February. \& 46.7 \& 65.0 \& 66.7 \& 91.7 \& 54.2 \& 79.2 \& 41.3 \& 47.8

\hline March . . \& 71.7 \& 65.0 \& 83.3 \& 95.8 \& 52.1 \& 85.4 \& 41.3 \& 58.7

\hline April. . \& 76.7 \& 68.3 \& 54.2 \& 91.7 \& 41.7 \& 77.1 \& 47.8 \& 60.9

\hline May. . . \& 75.0 \& 68.3 \& 83.3 \& 91.7 \& 52.1 \& 60.4 \& 58.7 \& 63.0

\hline June. \& 63.3 \& 71.7 \& 75.0 \& 83.3 \& 75.0 \& 52.1 \& 73.9 \& 69.6

\hline July \& 78.3 \& 73.3 \& 72.9 \& 91.7 \& 66.7 \& 62.5 \& 50.0 \& 71.7

\hline August \& 53.3 \& 60.0 \& 68.8 \& 77.1 \& 64.6 \& 87.5 \& 58.7 \& 78.3

\hline September \& 56.7 \& 66.7 \& 58.3 \& 79.2 \& 25.0 \& 70.8 \& 52.2 \& 71.7

\hline Octaber. . \& 66.7 \& 60.0 \& 64.6 \& 77.1 \& 58.3 \& 91.7 \& 69.6 \& 69.6

\hline November . \& 53.3 \& 73.3 \& 50.0 \& 83.3 \& 54.2 \& 83.3 \& 63.0 \& 67.4

\hline December . \& 80.0 \& 73.3 \& 77.1 \& 85.4 \& 77.1 \& 77.1 \& 67.4 \& 82.6

\hline \multicolumn{9}{|l|}{1964}

\hline January. \& 53.3 \& 75.0 \& 62.5 \& 91.7 \& 43.8 \& 79.2 \& 63.0 \& 69.6

\hline February....... \& 83.3 \& 75.0 \& 75.0 \& 95.8 \& 70.8 \& 100.0 \& 67.4 \& 69.6

\hline March \& 66.7 \& 80.0 \& 75.0 \& 87.5 \& 52.1 \& 85.4 \& 52.2 \& 69.6

\hline April. . \& 63.3 \& 83.3 \& 87.5 \& 91.7 \& 52.1 \& 83.3 \& 71.7 \& 54.3

\hline May. . . . \& 65.0 \& 73.3 \& 66.7 \& 87.5 \& 66.7 \& 83.3 \& 34.8 \& 56.5

\hline June... \& 73.3 \& 75.0 \& 62.5 \& 89.6 \& 66.7 \& 83.3 \& 34.8 \& 56.5

\hline July . \& 66.7 \& 75.0 \& 83.3 \& 70.8 \& 45.8 \& 75.0 \& 69.6 \& 60.9

\hline August \& 51.7 \& 91.7 \& 64.6 \& 70.8 \& 52.1 \& 68.8 \& 65.2 \& 53.7

\hline September. . \& 73.3 \& 86.7 \& 45.8 \& 87.5 \& 37.5 \& 83.3 \& 60.9 \& 60.9

\hline October. . \& 46.7 \& 80.0 \& 68.8 \& 79.2 \& 64.6 \& 81.2 \& 60.9 \& 69.6

\hline November. \& 88.3 \& 90.0 \& 79.2 \& 91.7 \& 62.5 \& 60.4 \& 52.2 \& 78.3

\hline December. \& 78.3 \& 90.0 \& 81.2 \& 91.7 \& 62.5 \& 62.5 \& 60.9 \& 82.6

\hline \multicolumn{9}{|l|}{1965}

\hline January. \& 66.7 \& 83.3 \& 66.7 \& 83.3 \& 50.0 \& 75.0 \& 63.0 \& 76.1

\hline February. \& 81.7 \& 71.7 \& 66.7 \& 85.4 \& 72.9 \& 87.5 \& 60.9 \& 80.4

\hline March. . . \& 86.7 \& 76.7 \& 79.2 \& 83.3 \& 20.8 \& r91.7 \& 67.4 \& r82.6

\hline April. \& 58.3 \& 90.0 \& 58.3 \& r83.3 \& 62.5 \& r70.8 \& r67.4 \& 76.1

\hline May. \& 58.3
85.0 \& r80.0 \& 70.8 \& r79.2 \& 83.3 \& p79.2 \& 60.9 \& r67.4

\hline June. \& 85.0
86.7 \& p76.7 \& r81.2 \& p77.1 \& 39.6 \& \& 60.9 \& p76.1

\hline July \& 86.7
$\times 50.0$ \& \& 81.2

54 \& \& r81.2 \& \& r63.0 \&

\hline August
September . . . \& r50.0
p65.0 \& \& r54.2
p 37.5 \& \& r37.5
p 45.8 \& \& r54.3
p 54.3 \&

\hline October. \& \& \& \& \& \& \& \&

\hline November December \& \& \& \& \& \& \& \&

\hline
\end{tabular}

NOTE: Figures are the percent of series components rising and are centered within spans: 1 -month indexes are placed on latest month, 6 -month indexes are placed on the 4th month, and 9 -month indexes are placed on the 6 th month of span. Seasonally adjusted components are used. Table 5 identifies the components for the indexes shown. The " r " indicates revised; " p ", preliminary; and " $N A$ ", not available.

Year and month	D35. Net sales, manufactures (800 companies) 4-quarter span		D36. New orders, durable manufactures (400 companies) 4-quarter span		D48. Freight carloadings (19 manufactured commodity groups) 4-quarter span			D61. New plant and equipment expenditures (16 industries) 1-quarter span	
	Actual	Anticipated	Actual	Anticipated	Actual	Anticipated	Change in total (000)	Actual	Anticipated
1962									
January.	\cdots	\cdots	\because	\cdots		...	\cdot	65.6	62.5
February	80	88	76	84	57.9	94.7	-68
March	-••	-••	\ldots	\cdots	-	
April....	\cdots	- .	\cdots	$\ddot{\square}$	\cdots	\cdots	\cdots	68.8	68.8
May.	76	80	74	74	63.2	89.5	-96
June	\% ${ }^{\circ}$	
July	\cdots	\cdots	\cdots	\ldots	65.6	65.6
August	72	74	71	70	42.1	68.4	-67
September	\cdots	\cdots	. .	\cdots	-		
October.	,	...	\cdots	46.9	68.8
November.	74	82	76	76	63.2	63.2	+29
1963									
January	\ldots	\cdots	\cdots	.	\cdots	\cdots	\cdots	40.6	50.0
February	76	80	77	76	73.7	78.9	+39
March	\cdots	\cdots
April..........	\cdots	\cdots	. \cdot	65.6	75.0
May.	74	80	76	76	57.9	68.4	+44
June	\cdots	
July	82	81	8	$\ddot{80}$	78	78	\cdots	75.0	71.9
August	82	84	82	80	78.9	78.9	+21
September \cdot	…	\cdots
October	\cdots	\cdots	\cdots	\cdots	68.	73.7	-39	71.9	75.0
December.	\ldots	.
1964									
January . .	\ldots	\cdots	\cdots	\cdots	\cdots		. .	71.9	50.0
February	83	87	84	84	84.2	68.4	r+11
March	\ldots	\cdots	..
April...........	\cdots	\because	\cdots	\cdots	\cdots	-	\cdots	62.5	50.0
May.	82	86	81	84	73.7	94.7	+68
June . . .	- \cdot	\cdots
July ...	\cdots	-	\cdots	\because	\cdots	...	\cdots	84.4	75.0
August . .	83	87	84	84	(NA)	89.5	+51
September	-••	...	\cdots
October	$\because \square$	\cdots	\cdots	\cdots		\cdots	\cdots	96.9	68.8
November.	84	88	84	85		89.5	+49
December.	\ldots	...	\cdots		.	\cdots	...	\cdots
1965									
January.	56.2	65.6
February	(NA)	88	(NA)	84		84.2	$\mathrm{r}+23$
March		\cdots		\cdots		\cdots		75.0	68.8
May.... .		88		$\cdots 8$		84.2	
June	
July								(NA)	65.6
August \cdot
October									78.1
November.									
December.									

NOTE: Figures are the percent of series components rising and are centered within spans: 4 -quarter indexes are centered in the middle quarter; 1 -quarter indexes are placed in the 1st month of the $2 d$ quarter. Seasonally adjusted components are used for series D61; other indexes, based on 4 -quarter spans (same quarter a year ago), require no seasonal adjustment. The " r " indicates revised; " p ", preliminary; and " $N A$ ", not available.

Basic Data

Diffusion index title and components	1964					1965				
	Aug.	Sept.	Oct.	Nov.	Dec.	May	June	July ${ }^{\text {r }}$	Aug.	Sept ${ }^{\beta}$
	Average weekly hours									
D1. AVERAGE WORKWEEK OF PRODUCTION WORKERS, MANUFACTURING ${ }^{1}$ (21 industry components)										
All manufacturing industries	40.8	40.5	40.5	40.9	41.2	41.1	41.0	40.9	40.9	40.9
Durable goods industries:										
Ordnance and accessories.	40.4	40.0	40.6	40.4	40.6	41.7	41.8	42.6	r 41.7	42.6
Lumber and wood products	40.4	39.4	39.7	39.9	40.2	40.8	39.7	40.3	r 40.7	40.4
Furniture and fixtures	41.2	40.5	41.2	41.5	41.8	41.7	41.4	41.1	r 41.3	41.0
Stone, clay, and glass products	41.3	41.1	41.5	41.5	42.2	41.8	41.5	41.6	r 41.5	41.4
Primary metal industries Fabricated metal products	42.2	42.8	41.9	42.2	42.2	42.0	42.1	42.2	r42.2	42.0
Fabricated metal products	41.7	41.3	41.4	42.0	42.3	42.2	41.9	41.7	r41.7	41.5
Machinery, except electrical	42.5	42.0	42.0	42.8	43.1	43.0	42.9	42.9	r 42.8	42.7
Electrical machinery	40.6	40.3	40.7	40.9	41.1	41.1	40.9	40.6	40.7	40.6
Transportation equipment Instruments and related products	42.6	42.3	40.5	41.5	42.9	42.9	43.0	42.1	r42.2	43.0
Instruments and related products Miscellaneous manufacturing industries	41.0	40.9 39.1	40.9 39.7	41.1 39.7	41.3 40.0	47.7 39.8	41.5 39.6	41.4 39.8	r41.2 r 40.1	41.3 40.0
Nondurable goods industries:										
Food and kindred products	40.8	40.7	41.0	41.0	41.3	40.9	40.9	41.2	r41.0	40.2
Tobacco manufactures	38.4	37.0	39.3	38.5	39.6	37.6	37.2	38.3	r37.4	36.8
Textile mill products . .	41.2	40.0	41.4	41.5	41.8	41.5	41.4	41.3	r41.8	41.8
Apparel and related products	35.9	34.9	36.2	36.4	36.5	36.6	36.4	36.2	r36.1	36.1
Paper and allied products . . .	43.0	42.7	42.9	42.4	42.9	43.1	42.9	42.9	r43.0	42.8
Printing and publishing	38.6	38.5	38.6	38.4	38.6	38.5	38.5	38.4	r38.6	38.5
Chemicals and allied products	41.3	42.1	41.6	41.7	41.6	42.0	41.7	41.5	r41.7	42.6
Petroleum and related products	42.1	42.5	41.6	41.7	42.0	42.3	41.9	42.1	r42.7	42.8
Rubber and plastic products	41.8	41.3	41.6	41.3	41.6	41.6	41.7	41.6	r 42.2	42.5
Leather and leather products.	37.9	37.7	38.5	38.1	38.2	38.4	37.7	37.9	37.6	38.3
	Millions of dullars									
D6. VALUE OF MANUFACTURERS' NEW ORDERS, DURABLE GOODS INDUSTRIES ${ }^{1}$ (36 industry components)										
All durable goods industries	19,342	19,907	19,623	19,454	20,720	20,992	21,310	22,195	r21,461	21,751
Primary metals	3,280	3,847	3,767	3,663	3,821	3,286	3,454	3,493	r3,090	2,874
Blast furnaces, steel mills Nonferrous metals	1,825	2,296	2,203	2,072	2,243	1,632	1,816	1,851	pl,448	(NA)
Nonterrous metals Iron and steel foundries
Other primary metals. . .	\ldots	\ldots	\cdots		\cdots			
Fabricated metal products Metal cans, barrels, and drums	1,946	2,045	1,991	2,011	2,089	2,027	2,042	2,058	p1,968	(NA)
Hardware, structural metal and wire products.
Other fabricated metal products										
Machinery, except electrical.	2,952	2,923	2,994	2,971	3,098	3,108	3,189	3,140	p3,299	(NA)
Steam engines and turbines*. Internal combustion engines *	281	219	175	175	175	142	226	149	p283	(NA)
Farm machinery and equipment	\cdots	-		\cdots		. 601				
Construction, mining, and material handling *. .	528	520	566	592	526	601	560	603	p604	(NA)
Metalworking machinery *	205	183	221	201	239	208	204	242	p290	(NA)
Miscellaneous equipment *	p29	(1)
Machine shops	\ldots	\ldots
Special industry machinery *.	\cdots	\cdots	\cdots		\cdots	. .		
General industrial machinery*.	211	211	202	233	237	258	230	248	p247	(NA)
Office and store machines*... Service industry machinery *.	\cdots	\ldots	. .	\ldots	-•	-••	.	\cdots	p24	(

NOTE: Data are not shown when held confidential by the source agency. *Denotes machinery and equipment industries that comprise series $24 . \quad \mathrm{r}=\mathrm{revised}$; $p=$ preliminary; $N A=$ not available.
${ }^{1}$ Data are seasonally adjusted by source agency.

SELECTED DIFFUSION INDEXES AND COMPONENTS—Continued

Directions of Change

$+=$ rising; $0=$ unchanged; $-=$ falling. Directions of change are computed even though data are held confidential. *Denotes machinery and equipment industries that comprise series 24.

Basic Data-Continued

[^6]$\mathrm{p}=$ preliminary; $\mathrm{NA}=$ not available.
${ }^{1}$ Average for October 14, 15, and 18.
${ }^{2}$ Data are seasonally adjusted by the source agency.
${ }^{3}$ Series components are seasonally adjusted by the Bureau of the Census. (See "Seasonal and Related Statistical Adjustments", page 2.) Industrial materials price index is not seasonally adjusted.

Diffusion index title and components	1－month spans											9－month spans										
	1964	1965										1964	1965									
	浐		$\begin{aligned} & \stackrel{\rightharpoonup}{\mathbf{0}} \\ & \stackrel{\rightharpoonup}{4} \\ & \stackrel{i}{\leftrightarrows} \end{aligned}$	$\begin{aligned} & \text { 范 } \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\begin{aligned} & \text { 눈 } \\ & \text { 六 } \end{aligned}$	$\begin{aligned} & \text { 槀 } \\ & \vdots ⿱ 亠 ⿱ 口 小 ⿺ ⿸ ⿻ 一 丿 又 丶 ~ \end{aligned}$		$\begin{aligned} & \text { 亏 } \\ & \text { 空 } \end{aligned}$	$\frac{20}{\frac{10}{7}}$	$\begin{aligned} & \text { 융 } \\ & \stackrel{\text { don }}{8} \end{aligned}$			$\begin{aligned} & \frac{\text { 득 }}{7} \\ & \frac{\dot{3}}{2} \end{aligned}$			$\frac{\overline{⿳ 亠 口}}{\overline{1}}$		$\begin{aligned} & \stackrel{气}{\overline{1}} \\ & \stackrel{\rightharpoonup}{\oplus} \end{aligned}$	$\begin{aligned} & \bar{\Xi} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	号	$\begin{aligned} & \text { O} 0 \stackrel{0}{0} \\ & \stackrel{0}{0} \end{aligned}$	－

D6．VALUE OF MANUFACTURERS＇NEW ORDERS，
DURABLE GOODS INDUSTRIES－Continued
Electrical machinery：

MATERIALS PRICES²
（13 industrial materials components）

Percent rising ．．．．．．．．．．．．． Industrial materials price index	38	54	31	69	$\begin{gathered} 77 \\ + \end{gathered}$	$\begin{gathered} 54 \\ + \end{gathered}$	58	46	$\begin{gathered} 42 \\ + \end{gathered}$		15	$\begin{array}{r} 77 \\ + \end{array}$	69 +	$\begin{array}{r} 69 \\ + \end{array}$	$\begin{array}{r} 77 \\ + \end{array}$	69	$\begin{array}{r} 69 \\ + \end{array}$	$\begin{gathered} 77 \\ + \end{gathered}$	$\begin{gathered} 62 \\ + \end{gathered}$	$\begin{gathered} 69 \\ + \end{gathered}$	$\begin{gathered} 54 \\ + \end{gathered}$	54 +
Copper scrap（lb．）	－	－	＋	＋	＋	＋	＋	－	＋	＋	＋	＋	＋	＋	＋	＋	＋	＋	＋	＋	＋	＋
Lead scrap（lb．）	＋	＋	－	＋	＋	－	＋	－	－	－	－	＋	＋	＋	＋	＋	＋	＋	＋	＋	－	－
Steel scrap（ton）	－	－	－	＋	－	$+$	－	－	－	－	－	＋	＋	＋	$+$	－	－	＋	－	－	－	－
Tin（lb．）．	－	－	－	＋	＋	＋	－	－	＋	＋	－	＋	＋	＋	＋	＋	＋	＋	－	＋	＋	＋
Zinc（lb．）	－	＋	＋	＋	＋	－	＋	－	－	＋	－	＋	＋	＋	＋	＋	＋	＋	＋	＋	＋	＋
Burlap（yd．）	＋	＋	$+$	$+$	＋	＋	－	－	＋	＋	－	＋	＋	＋	＋	＋	＋	$+$	＋	＋	＋	＋
Cotton（lb．），15－market average	－	－	－	－	－	－	－	＋	－	－	－	－	－	－	－	－	－	－	－	－	－	－
Print cloth（yd．），average ．．	＋	＋	－	＋	＋	＋	＋	＋	\bigcirc	－	－	＋	＋	＋	＋	＋	＋	＋	＋	＋	＋	＋
Wool tops（lb．）．	－	－	－	－	＋	－	＋	＋	＋	$+$	$+$	－	－	－	－	－	－	－	－	＋	$+$	＋
Hides（Ib．）	－	＋	－	＋	＋	＋	＋	＋	＋	－	－	＋	－	－	＋	＋	＋	＋	＋	＋	＋	＋
Rosin（100 lb．）	＋	＋	－	＋	－	－	＋	＋	－	－	－	－	－	－	－	－	－	－	＋	－	－	－
Rubber（lb．）．	－	$+$	－	－	＋	＋	－	－	－	－	－	＋	＋	＋	＋	＋	＋	＋	－	－	－	－
Tallow（lb．）	＋	－	＋	－	＋	－	－	＋	－	＋	－	＋	t	＋	＋	＋	＋	＋	＋	＋	－	－
D54．SALES OF RETAIL STORES （ 24 retail store components）																						
Percent rising	62	50	73	21	62	83	40	81	38	46		69	83	81	60	62	75	88	92	71	79	
All retail sales	＋	$+$	＋	－	＋	＋	－	＋	－	－		＋	＋	＋	＋	＋	$+$	＋	$+$	＋	＋	
Grocery stores	＋	－	＋	－	＋	－	＋	＋	－	＋		＋	＋	＋	＋	＋	＋	＋	＋	＋	＋	
Other food stores	＋	－	＋	－	－	$+$	＋	＋	－	－		－	－	$+$	－	－	＋	＋	＋	＋	＋	
Eating and drinking places	＋	＋	$+$	－	$+$	$+$	－	＋	－	－		＋	＋	$+$	＋	＋	＋	＋	＋	＋	＋	
Department stores ．．．．．．	$+$	＋	－	－	＋	$+$	－	＋	－	－		＋	＋	＋	＋	＋	＋	＋	＋	$+$	＋	
Mail order houses（department store merchand	＋	－	＋	＋	－	＋	－	＋	－	＋		＋	＋	＋	＋	＋	＋	$+$	＋	$+$	＋	
Variety stores	－	－	＋	－	－	＋	－	＋	＋	－		＋	＋	＋	＋	－	＋	＋	＋	＋	＋	
Other general merchandise stores	＋	－	－	－	＋	$+$	－	＋	$+$	－		＋	＋	＋	$+$	＋	＋	＋	＋	－	－	
Men＇s and boys＇wear stores	－	＋	＋	－	＋	＋	－	$+$	$+$	－		＋	＋	＋	＋	－	－	－	＋	＋	＋	

$+=$ rising； $0=$ unchanged；$-=$ falling．Directions of change are computed even though data are held confidential．＊Denotes machinery and equipment industries that comprise series 24.
${ }^{1}$ Average for October 14，15，and 18.
${ }^{2}$ Directions of change are computed before figures are rounded．

SELECTED DIFFUSION INDEXES AND COMPONENTS-Continued

Basic Data-Continued

Diffusion index title and components	1964					1965				
	Aug.	Sept.	Oct.	Nov.	Dec.	May	June	July ${ }^{\text {r }}$	Aug. ${ }^{\text {P }}$	Sept.
	Millions of dollars									
D54. SALES OF RETAIL STORES ${ }^{1}$ - Continued										
Women's apparel, accessory stores Family and other apparel stores	519	504	512	517	518	519	517	527	516	(NA)
Shoe stores .	224	206	210	229	226	224	216	213	212	($\mathrm{NA} \mathrm{A}^{\text {) }}$
Furniture, home furnishings stores	719	679	703	701	702	720	742	765	747	(NA)
Household appliance, TV, radio stores	375	388	385	397	411	365	365	370	384	(NA)
Lumber yards, building materials dealers	711	729	741	721	742	791	808	804	778	(NA)
Hardware stores......	227	237	242	261	262	239	234	245	242	(NA)
Farm equipment dealers			
Passenger car and other automotive dealers	5,025	4,301	3,265	3,428	4,344	4,279	4,341	4,474	4,429	(NA)
Tire, battery, accessory dealers.	234	230	230	257	244	259	243	246	256	(NA)
Gasoline service stations	1,690	1,695	1,722	1,738	1,755	1,818	1,829	1,835	1,839	(NA)
Drug and proprietary stores	722	734	739	724	731	749	758	776	774	(NA)
Jewelry stores......									\ldots	
Liquor stores ...	494	499	503	509	508	525	521	522	504	(NA)
0ther durable-goods stores. . . 0ther nondurable-goods stores		\cdots	\cdots	\cdots	\ldots	\ldots	\cdots	
	\cdots	\ldots	\ldots	\ldots						
	1964		1965			1965				
	Nov.	Dec.	Jan.	Feb.	Mar.	May	June	July ${ }^{1}$	Aug. ${ }^{\text {r }}$	Sept. ${ }^{\text {p }}$
D41 NUMBER OF EMPL OYEES IN Thousands of employees										
D41. NUMBER OF EMPLOYEES IN NONAGRICULTURAL ESTABLISHMENTS ${ }^{1}$ (30 industry components)										
All nonagricultural establishments	58,878	59,206	59,334	59,676	59,992	60,110	60,382	60,602	60,680	60,806
Ordnance and accessories	102	100	100	101	100	101	103	104	106	111
Lumber and wood products	532	536	533	540	544	531	529	534	532	533
Furniture and fixtures	340	344	345	348	352	352	352	354	352	353
Stone, clay, and glass products	500	501	503	503	508	500	500	506	505	506
Primary metal industries.	1,038	1,041	1,044	1,046	1,047	1,037	1,068	1,090	1,073	1,070
Fabricated metal products	933	951	964	979	, 957	981	987	998	993	, 992
Machinery	1,145	1,165	1,166	1,168	1,179	1,186	1,200	1,217	1,218	1,228
Electrical equipment ...	1,065	1,078	1,086	1,099	1,113	1,130	1,145	1,155	1,150	1,156
Transportation equipment	1,156	1,181	1,207	1,212	1,237	1,251		1,268	1,305	1,298
Instruments and related products	235	237	238	240	247	240	246	252	249	250
Miscellaneous manufacturing industries	330	333	332	334	337	335	336	336	345	343
Food and kindred products	1,151	1,154	1,150	1,144	1,147	1,131	1,121	1,129	1,126	1,127
Tobacco manufactures.	80	76	74	73	72	73	73	74	66	64
Textile mill products	808	812	817	820	824	822	824	826	826	829
Apparel and related products	1,181	1,186	1,196	1,192	1,199	1,211	1,233	1,207	1,206	1,216
Paper and allied products	496	495	495	498	500	499	501	507	505	505
Printing and publishing.	605	610	611	615	616	618	619	624	625	625
Chemicals and allied products	530	532	536	637	539	539	542	549	550	547
Petroleum and related products	114	113	113	112	114	111	113	115	114	11.4
Rubber and plastic products	337	339	343	350	354	354	355	358	363	361
Leather and leather products.	315	315	315	316	318	319	316	315	315	318
Mining	639	637	633	635	633	629	630	638	631	619
Contract construction	3,162	3,244	3,235	3,281	3,304	3,207	3,220	3,178	3,211	3,191
Transportation and public utilities	3,997	4,020	3,939	3,997	4,042	4,057	4,068	4,074	4,092	4,112
Wholesale trade	3,246	3,259	3,270	3,288	3,303	3,329	3,352	3,362	3,355	3,358
Retail trade .	9,065	9,103	9,177	9,244	9,319	9,307	9,321	9,348	9,353	9,366

NOTE: Data are not shown when held confidential by the source agency. $\quad r=$ revised; $p=$ preliminary; $N A=$ not available.
${ }^{1}$ Data are seasonally adjusted by the source agency.

$+=$ rising; $\circ=$ unchanged; $-=$ falling. Directions of change are computed even though data are held confidential.

SELECTED DIFFUSION INDEXES AND COMPONENTS-Continued

Basic Data-Continued

Diffusion index title and components	1964		1965			1965				
	Nov.	Dec.	Jan.	Feb.	Mar.	May	June	July	Aug. ${ }^{\text {r }}$	Sept. ${ }^{p}$
	Thousands of employees									
D41. NUMBER OF EMPLOYEES IN NONAGRICULTURAL ESTABLISHMENTS²-Con.										
Finance, insurance, real estate	2,970	2,975	2,979	2,987	2,997	3,005	3,013	3,018	3,024	3,026
Service and miscellaneous................... .	8,634	8,654	8,689	8,730	8,754	8,797	8,814	r8,886	8,897	8,917
Federal government. .	2,354	2,352	2,342	2,335	2,340	2,345	2,352	2,374	2,379	2,385
State and local government	7,306	7,340	7,365	7,407	7,451	7,519	7,567	r7,568	7,579	7,640

D47. INDEX OF INDUSTRIAL PRODUCTION ${ }^{1}$
(24 industry components)

All industrial production. .
Durable goods:
Primary and fabricated metals
Primary metal products. Fabricated metal products
Machinery, except electrical . . .
Electrical machinery.
Transportation equipment Instruments and related products. \qquad
Clay, glass, and stone products . . .
Furniture and miscell
Nondurable goods:
Textiles, apparel, and leather
Textile mill products
Apparel products .
Leather and products
Paper and printing
Paper and products
Printing and publishing
Chemicals, petroleum, and rubber.
Chemicals and products
Petroleum products
Rubber and plastics products.
Foods, beverages, and tobacco
Foods and beverages
Tobacco products.
Minerals:
Coal .
Crude oil and natural gas
Metal, stone, and earth minerals
Metal mining Stone and earth minerals

NOTE: Data are not shown when held confidential by the source agency.
${ }^{1}$ Data are seasonally adjusted by the source agency.
${ }^{2}$ Data are seasonally adjusted by the Bureau of the Census

Index: $1957-59=100$

135.4	138.1	138.6	139.2	140.7	141.6	142.7	144.2	144.3	142.8
136.1	138.6	139.6	136.9	140.4	140.2	143.0	r148.7	144.2	130
136.9	139.7	140.6	145.0	145.2	146.0	r146.4	r148.1	1.48 .2	146
148.1	150.7	151.3	152.7	153.8	157.0	159.4	r162.0	162.0	162
147.2	149.2	150.0	152.3	154.1	156.8	158.4	r158.6	158.9	161
129.2	140.3	141.4	139.7	144.4	147.3	149.5	149.8	151.3	148
140.2	142.0	142.7	145.3	146.9	147.0	149.8	152.1	151.5	154
									126
127.7	130.2	132.4	131.8	129.2	130.3	131.6	132.6	133.1	133
109.2	105.5	111.9	115.6	120.5	117.1	112.8	r115.4	114.5	(NA)
149.3	151.5	150.6	154.3	154.3	156.5	156.8	r155.8	157.2	197
137.4	139.1	139.6	140.8	142.4	143.6	143.6	r142.1	146.2	147
								134.7	135
128.7	130.3	131.7	132.0	131.5	131.6	r132.2	r133.8	133.9	(NA)
139.1	140.6	142.2	143.7	144.0	145.3	r145.4	p114.8	(NA)	(NA)
105.4	105.6	108.7	106.6	106.1	110.9	r105.1	p107.7	(NA)	(NA)
\cdots									135
133.8	140.2	139.1	137.5	139.0	140.9	139.4	r142.3	141.6	(NA)
124.2	126.2	126.8	127.7	128.5	129.3	130.0	r131.3	132.9	130
...		...						164.7	166
163.2	166.4	166.7	167.8	169.5	169.3	169.9	r172.8	174.4	(NA)
121.7	120.9	119.0	121.5	122.2	122.9	121.8	r126.3	125.2	(NA)
163.7	165.7	164.7	171.1	172.6	168.2	r169.1	pl69.4	(NA)	(NA)
	\cdots							122.6	123
123.5	123.8	124.3	123.4	123.4	121.9	122.3	r123.1	122.8	(NA)
121.0	125.4	122.2	123.5	127.2	116.5	121.8	p119.9	(NA)	(NA)
109.6	110.1	107.7	103.2	103.1	113.0	r117.1	117.1	115.2	107
110.4	110.4	109.8	110.6	111.4	111.9	r112.5	r112.6	114.5	112
						. 7			127
126.6	121.8	126.7	123.4	124.6	121.6	123.7	r126.4	127.4	(NA)
123.9	123.4	120.8	122.9	124.1	123.9	125.8	r127.3	128.4	(NA)
101.4	101.5	101.6	101.8	102.0	102.6	103.1	103.0	103.3	103.2
100.3	100.6	102.1	101.7	100.9	99.6	99.3	99.5	101.0	101.4
98.6	98.5	98.3	98.2	98.3	98.0	98.0	97.8	97.7	97.7
101.8	101.5	101.8	101.7	101.8	101.8	102.1	102.1	101.7	101.9
100.8	100.9	101.1	101.1	101.4	101.3	101.3	101.6	101.3	101.4

$r=$ revised; $p=$ preliminary; $N A=$ not available.

Diffusion index title and components	1－month spans										6－month spans									
	1964	1965									1964	1965								
	$\begin{aligned} & \text { O} \\ & 0 \\ & \text { ò } \\ & \text { 足 } \end{aligned}$			$\begin{aligned} & \text { 출 } \\ & \text { 칭 } \\ & \text { © } \end{aligned}$	$\begin{aligned} & \frac{\vdots}{i} \\ & \frac{i}{i N} \\ & \stackrel{i}{\mathbf{N}} \end{aligned}$		$\begin{aligned} & \text { 들 } \\ & \stackrel{\text { in }}{\text { in }} \end{aligned}$	$\begin{aligned} & \bar{亏} \\ & \vdots \\ & \vdots \end{aligned}$	$\frac{n_{3}^{3}}{\frac{1}{3}}$	$\begin{aligned} & \text { 융 } \\ & \stackrel{1}{3} \\ & \stackrel{y}{8} \end{aligned}$		$\frac{\sqrt{7}}{\frac{1}{5}}$		$\begin{aligned} & \text { 누 } \\ & \sum_{i}^{\prime} \\ & \text { 형 } \end{aligned}$	$\begin{gathered} \text { 는 } \\ \stackrel{\rightharpoonup}{\overleftarrow{O}} \end{gathered}$		$\begin{aligned} & \text { 愛 } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \bar{\vdots} \\ & \text { 亏 } \\ & \text { ָ } \end{aligned}$	$\begin{aligned} & 00 \\ & \stackrel{0}{\mathbf{1}} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	
D41．NUMBER OF EMPLOYEES IN NONAGRICULTURAL ESTABLISHMENTS－Con．																				
Finance，insurance，real estate	＋	＋	＋	＋	0	＋	＋	＋	＋	＋	＋	＋	$+$	＋	＋	＋	＋	＋	＋	＋
Service and miscellaneous ．	＋	＋	$+$	＋	＋	＋	＋	＋	＋	＋	＋	＋	＋	＋	＋	＋	＋	＋	$+$	＋
Federal government．	－	－	－	＋	＋	－	＋	＋	$+$	＋	＋	＋	＋	＋	＋	－	－	＋	＋	＋
State and local government．	＋	＋	＋	＋	＋	＋	$+$	\bigcirc	＋	＋	＋	＋	＋	＋	＋	＋	＋	＋	$+$	＋
D47．INDEX OF INDUSTRIAL PRODUCTION （24 industry components）																				
Percent rising ${ }^{1}$ ．．．．．．．	81	67	67	79	58	71	81	81	54	38	88	79	92	92	83	85	83	83	79	77
All industrial production	＋	$+$	$+$	$+$	＋	＋	＋	＋	$+$	－	$+$	＋	$+$	＋	＋	＋	＋	$+$	＋	＋
Durable goods																				
Primary and fabricated metals ．．．																				
Primary metal products ．．	＋	＋	－	＋	＋	－		$+$	－	－	＋	＋	＋	＋	$+$	$+$	＋	＋	$+$	－
Fabricated metal products	＋	＋	＋	＋	＋	－	＋	＋	＋	－	＋	＋	＋	＋	＋	＋	＋	＋	$+$	＋
Machinery and related products．	．	．	．	．	．	．	\cdots	．	．	．．	．	．	．	．	．	．	．	．	．	．
Machinery，except electrical ．	＋	＋	$+$	＋	＋	＋	＋	＋	\bigcirc	－	$+$	＋	＋	＋	＋	＋	＋	＋	＋	＋
Electrical machinery．．	＋	＋	$+$	$+$	＋	＋	＋	＋	＋	＋	$+$	＋	＋	＋	＋	＋	＋	＋	$+$	＋
Transportation equipment	＋	＋	－	＋	$+$	＋	＋	＋	＋	－	＋	＋	＋	＋	＋	$+$	＋	＋	＋	＋
Instruments and related products	＋	＋	＋	＋	－	＋	＋	$+$	－	＋	＋	＋	＋	＋	＋	＋	$+$	＋	$+$	＋
Clay，glass，and lumber．．．．．．．．．	．	．	．	．．	\cdots	．	．	．	\cdots	－	．	．	．	．	－	－	．	．	．	－
Clay，glass，and stone products	＋	＋	－	－	＋	＋	＋	＋	＋	＋	＋	＋	＋	＋	＋	＋	＋	＋	＋	$+$
Lumber and products．．．．．．．．	＿	＋	＋	$+$	－	＋	－	＋	－	NA	－	－	＋	$+$	＋	＋	$+$	＋	－	NA
Furniture and miscellaneous．	\cdots	－	\cdots	－	－	\cdots	\cdots	．	\cdots	\cdots	\cdots		\cdots	\cdots	\cdots	\cdots	\cdots			
Furniture and fixtures．	＋	－	$+$	\bigcirc	＋	＋	＋	－	$+$	－	$+$	$+$	＋	$+$	$\stackrel{+}{+}$	$+$	$+$	$+$	$+$	＋
Miscellaneous ．	＋	＋	$+$	＋	＋	$+$	－	－	$+$	＋	＋	＋	＋	＋	＋	＋	$+$	＋	$+$	$+$
Nondurable goods：																				
Textiles，apparel，and leather	．	．	－•	．	－	．	\cdots	－	－	＋	．	．	－	－	－•	－	－•	．	＋	＋
Textile mill products ．．．．	＋	＋	＋	－	＋	－	＋	＋	$+$	NA	＋	＋	＋	$+$	＋	＋	＋	＋	$+$	NA
Apparel products ．．．	＋	＋	＋	＋	$+$	$+$	＋	－	NA	NA	$+$	＋	＋	＋	＋	＋	＋	＋	NA	NA
Leather and products	＋	$+$	－	－	－	＋	－	＋	NA	NA	＋	＋	＋	$+$	＋	＋	－	－	NA	NA
Paper and printing．．．	－	．	．	－•	．	．	．	－	－	－	\cdots	－	－	－	－	．	．	－	．	$+$
Paper and products．	＋	－	－	$+$	＋	＋	\cdots	＋	－	NA	＋	$+$	$+$	$+$	$+$	＋	－	$+$	＋	NA
Printing and publishing．	＋	＋	＋	$+$	－	＋	＋	＋	＋	－	$+$	＋	＋	＋	＋	＋	＋	＋	$+$	$+$
Chemicals，petroleum，and rubber	．	．	．	．	．	．	．	．	$+$	$+$	．	．	．	．	．	．	．	．	$+$	$+$
Chemicals and products ．．．．	＋	＋	＋	＋	－	＋	＋	＋	＋	NA	＋	＋	＋	＋	＋	＋	＋	＋	＋	NA
Petroleum products．．．．．．	－	－	＋	$+$	＿	＋	－	＋	－	NA	－	－	＋	＋	－	＋	＋	＋	＋	NA
Rubber and plastics products	＋	－	＋	＋	－	＋	＋	＋	NA	NA	＋	＋	$+$	＋	＋	＋	＋	$+$	NA	NA
Foods，beverages，and tobacco	\cdots	\cdots	－	\cdots			－	\cdots	－	${ }^{\circ}$	\cdots	－	\cdots	\cdots	\cdots		．	．	－	
Foods and beverages ．．．．．	＋	＋	－	\bigcirc	－	－	$+$	＋	－	NA	$+$	＋	＋	＋	$+$	\cdots	\cdots	－	－	NA
Tobacco products．．．	＋	－	＋	$+$	－	－	＋	－	NA	NA	＋	－	＋	$+$	－	－	－	－	NA	NA
Minerals：																				
Coal．．．．．．．．．	＋	－	－	－	$+$	＋	＋	\bigcirc	－	－	＋	－	－	－	－	＋	＋	＋	＋	＋
Crude oil and natural gas．．	\bigcirc	－	＋	＋	$+$	－	＋	＋	$+$	－	－	－	－	－	$+$	$+$	＋	＋	＋	$+$
Metal，stone，and earth minerals	．	\ldots	．	\ldots	．	．	\ldots	\cdots	．	－	．	．	．	．	．	．	．	．	．	＋
Metal mining	－	＋	－	$+$	＋	－	＋	$+$	＋	NA	＋	＋	$+$	＋	＋	－	＋	－	$+$	NA
Stone and earth minerals．	－	－	＋	＋	－	＋	＋	＋	＋	NA	＋	＋	$+$	$+$	－	\bigcirc	＋	＋	＋	NA
D58．INDEX OF WHOLESALE PRICES， ALL MANUFACTURING （23 manufacturing industries）																				
Percent rising ．．	61	63	61	67	67	61	61	63	54	54	61	70	78	83	76	80	83	76	67	76
All manufacturing industries．	$+$	$+$	＋	＋	$+$	＋	＋	－	＋	5	$+$	＋	$+$	＋	＋	＋	＋	＋	$+$	＋
Durable goods：																				
Lumber and wood products．	＋	＋	－	－	－	－	－	＋	＋	＋	＋	＋	＋	＋	－	－	－	－	－	＋
Furniture and other household durables	－	－	－	＋	－	\bigcirc	\bigcirc	－	－	\bigcirc	\bigcirc	－	－	－	－	－	－	－	－	－
Nonmetallic mineral products．．．．	－	＋	－	＋	－	＋	＋	\bigcirc	－	＋	\bigcirc	＋	－	－	－	\bigcirc	＋	＋	\bigcirc	＋
Iron and steel．．	＋	$+$	\bigcirc	$+$	$+$	－	\bigcirc	＋	－	＋	＋	＋	\bigcirc	$+$	＋	＋	＋	＋	＋	\bigcirc

$+=$ rising； $0=$ unchanged；$-=$ falling．NA Not available．
${ }^{1}$ The percent rising is based on 24 industry components．Where actual data for separate industries are not available，esti－ mates are used to compute the percent rising．Directions of change for the most recent spans are computed before figures for the current month are rounded．

SELECTED DIFFUSION INDEXES AND COMPONENTS—Continued

Basic Data-Continued

Diffusion index title and components	1964		1965			1965				
	Nov.	Dec.	Jan.	Feb.	Mar.	May	June	July	Aug. ${ }^{\text {r }}$	Sept. ${ }^{p}$
	Index: 1957-59 = 100									
D58. INDEX OF WHOLESALE PRICES, ALL MANUFACTURING1-Continued										
Durable goods-Continued										
Nonferrous metals	112.3	113.2	111.6	112.1	112.3	114.9	116.2	115.8	116.6	117.2
Fabricated structural metal products	99.7	99.9	100.1	100.1	100.4	101.4	101.2	101.4	101.7	101.7
Fabricated nonstructural metal products	108.3	108.0	107.8	108.6	109.0	109.5	109.0	109.3	110.2	110.1
General purpose machinery and equipment	r104.4	r104.7	r103.9	104.3	104.4	104.7	104.8	104.7	105.7	105.5
Miscellaneous machinery	104.9	104.1	105.2	105.1	105.0	105.6	105.6	105.2	105.2	105.0
Electrical machinery and equipment	96.3	95.8	96.8	96.9	97.3	96.6	97.2	97.3	96.7	96.6
Motor vehicles.	100.6	100.8	100.8	101.0	100.7	100.5	100.7	100.5	100.7	100.7
Miscellaneous products	108.7	109.4	107.9	108.4	109.1	110.8	113.0	113.3	112.2	110.9
Nondurable goods:										
Processed foods.	100.4	101.1	101.3	102.2	102.0	104.1	106.2	106.3	107.0	106.1
Tobacco products and bottled beverages	107.3	107.4	107.4	108.0	108.0	108.4	107.7	107.2	107.1	107.4
Cotton products	98.8	98.9	99.1	99.2	99.3	100.1	100.7	100.9	100.8	100.9
Wool products	103.4	102.5	103.0	102.9	102.7	103.8	103.9	104.7	105.1	105.4
Manmade fiber textile products	96.5	96.9	97.0	96.4	96.2	95.8	95.7	95.6	94.8	94.3
Apparel	103.1	103.1	103.3	103.3	103.4	103.4	103.6	103.6	103.7	103.8
Pulp, paper, and allied products	99.0	98.9	98.6	98.7	99.3	100.1	100.1	100.2	100.3	100.4
Chemicals and allied products. .	97.0	97.3	97.0	97.4	97.3	97.5	97.4	97.5	97.3	97.4
Petroleum products, refined. .	93.6	93.3	94.1	94.0	94.5	95.5	95.4	95.5	97.4	96.7
Rubber and rubber products	91.8	91.8	92.0	$\begin{array}{r}92.0 \\ \hline 105\end{array}$	92.1	$\begin{array}{r}93.2 \\ \hline\end{array}$	93.5	r93.5	93.4	93.5
Hides, skins, leather, and leather products	105.0	105.1	105.1	105.9	106.7	107.3	107.6	108.4	112.0	111.2

[^7]
$+=$ rising; $0=$ unchanged; $-=$ falling.
${ }^{1}$ Data are not seasonally adjusted.
${ }^{2}$ The 23 components shown here include 18 of the more important industries and 5 composites representing an additional 23 of the industries used in computing the diffusion index in table 4.
${ }^{3}$ Based on 78 components to November 1964 and on 77 components thereafter.

SELECTED DIFFUSION INDEXES AND COMPONENTS—Continued

B
Directions of Change－Continued

Diffusion index title and components	1－month spans										9－month spans									
	1964	1965									1964	1965								
	$\begin{aligned} & \text { U } \\ & \text { ì } \\ & \text { 2} \end{aligned}$		$\begin{aligned} & \text { 0 } \\ & \stackrel{0}{4} \\ & \stackrel{i}{7} \end{aligned}$		容	$\begin{aligned} & \frac{\pi}{\stackrel{y}{x}} \\ & \frac{i}{2} \end{aligned}$	$\begin{aligned} & \text { 气 } \\ & \vdots \\ & \vdots \\ & \text { 空 } \end{aligned}$	三	号			辱	咎	$\underset{\text { 交 }}{\text { 気 }}$	$\stackrel{\text { 年 }}{\frac{1}{3}}$		镸	三	号	宕
D5．INITIAL CLAIMS FOR UNEMPLOYMENT INSURANCE，STATE PROGRAMS ${ }^{1}$ （26 area components）																				
Percent rising ．．．．． 47 labor market areas	83 +	24	57	66 +	62	60 +	51 +	34	38	79 +	89 +	62	70 +	$\begin{array}{r}74 \\ + \\ \hline\end{array}$	72 +	$\begin{array}{r} 79 \\ + \end{array}$	79 +	60 +	66 +	$\begin{array}{r} 62 \\ + \end{array}$
Northeast region：																				
Boston（7）．．	$+$	－	＋	＋	－	－	＋	－	－	＋	＋	＋	＋	＋	＋	－	＋	－	－	＋
Buffalo（19）	$+$	－	－	－	＋	$+$	$+$	＋	－	$+$	＋	＋	＋	－	＋	－	－	＋	－	＋
Newark（11）．	＋	－	－	＋	－	＋	＋	－	－	＋	＋	－	－	＋	＋	＋	＋	＋	＋	－
New York（1）．	＋	－	＋	＋	－	＋	$+$	－	$+$	＋	$+$	$+$	＋	＋	＋	＋	＋	＋	＋	＋
Paterson（20）．	＋	－	－	＋	－	$+$	－	－	＋	－	＋	$+$	＋	＋	－	＋	＋	－	＋	－
Philadelphia（4）	＋	－	＋	＋	＋	$+$	＋	－	＋	－	$+$	$+$	＋	＋	＋	$+$	＋	＋	$+$	＋
Pittsburgh（9）．．．	$+$	－	$+$	－	＋	－	－	＋	$+$	－	$+$	$+$	＋	－	$+$	$+$	＋	$+$	$+$	－
Providence（25）	－	－	$+$	－	－	＋	＋	－	－	＋	＋	＋	$+$	＋	＋	＋	＋	＋	－	＋
North Central region：																				
Chicago（2）．．．．	＋	－	－	－	＋	＋	t	＋	－	＋	＋	$+$	＋	＋	＋	＋	＋	＋	＋	＋
Cincinnati（21）	＋	－	＋	＋	＋	＋	－	$+$	－	＋	－	－	－	－	$+$	＋	－	$+$	－	$+$
Cleveland（10）．	＋	－	＋	＋	＋	＋	－	$+$	－	$+$	＋	－	＋	＋	$+$	$+$	＋	$+$	－	$+$
Columbus（26）	－	－	＋	－	＋	－	＋	－	－	＋	$+$	－	＋	＋	$+$	＋	$+$	＋	＋	＋
Detroit（5）．．．．．	$+$	＋	＋	＋	－	＋	－	－	－	＋	$+$	＋	＋	＋	$+$	＋	＋	－	$+$	$+$
Indianapolis（23）．	＋	－	＋	－	＋	＋	－	＋	－	＋	＋	－	＋	＋	＋	＋	＋	$+$	－	－
Kansas City（18）	＋	＋	－	＋	－	－	－	＋	－	＋	－	＋		＋	＋	＋	－	$+$	－	＋
Milwaukee（15）．．．	－	$+$	－	$+$	＋	＋	－	－	$+$	＋	＋	$+$	－	＋	－	$+$	－	$+$	$+$	＋
Minneapolis（13）	＋	＋	－	＋	－	$+$	－	－	$+$	－	$+$	$+$	＋	$+$	－	$+$	＋	－	$+$	$+$
St．Louis（8）．．	$+$	＋	－	－	＋	－	＋	－	－	＋	$+$	$+$	－	－	＋	＋	＋	－	$+$	＋
South regiori：																				
Atlanta（17）．	$+$	－	－	＋	－	－	－	＋	－	＋	＋	－	＋	＋	＋	＋	－	＋	－	－
Baltimore（12）	$+$	－	$+$	$+$	－	$+$	＋	＋	－	$+$	＋	$+$	－	＋	－	＋	$+$	＋	－	－
Dallas（16）．．．	＋	＋	－	＋	－	－	＋	－	－	＋	$+$	$+$	＋	＋	＋	－	$+$	＋	＋	＋
Houston（14）．．．．．．．．．．．．．．．．．．．．．．．．．	－	＋	－	＋	＋	－	－	－	$+$	＋	$+$	＋	＋	＋	＋	＋	＋	－	－	＋
West region：																				
Los Angeles（3）．	＋	＋	＋	－	＋	＋	＋	－	－	＋	$+$	＋	＋	＋	＋	＋	＋	＋	＋	＋
Portland（24）．．．．	＋	＋	－	＋	－	＋	－	$+$	－	$+$	－	$+$	－	＋	＋	＋	＋	$+$	$+$	$+$
San Francisco（6）．	＋	－	＋	－	－	$+$	－	－	－	$+$	$+$	－	＋	＋	－	＋	－	－	＋	$+$
Seattle（22）．	－	$+$	－	＋	－	＋	＋	－	＋	＋	$+$	$+$	＋	$+$	－	＋	＋	＋	$+$	＋

[^8]
SUMMARY OF THE X-11 VARIANT OF THE CENSUS METHOD II SEASONAL ADJUSTMENT PROGRAM

Julius Shiskin, Allan H. Young, and John C. Musgrave
Bureau of the Census

I. HISTORY OF CENSUS SEASONAL ADJUSTMENT METHODS

There are various and sundry methods for seasonally adjusting economic time series, all of which are based on the premise that seasonal fluctuations can be measured in an original series (O) and separated from trend, cyclical, trading-day, and irregular fluctuations. The seasonal component (S) is defined as the intrayear pattern of variation which is repeated constantly or in an evolving fashion from year to year. The trend-cycle component (C) includes the long-term trend and the business cycle. The trading-day component (TD) consists of variations which are attributed to the composition of the calendar. The irregular component (I) is composed of residual variations, such as the sudden impact of some political events, the effect of strikes, unseasonable weather conditions, reporting and sampling errors, etc. The seasonally adjusted series (CI) consists of the trend-cycle and irregular components. Experience has indicated that the seasonal, trend-cycle, trading-day, and irregular components are related in a multiplicative fashion ($\mathrm{O}=\mathrm{S} \times \mathrm{C} \times \mathrm{TD} \times \mathrm{I}$) for most national economic time series.

The seasonal-adjustment method in the most widespread use today is the ratio-to-moving-average method, which was developed during the 1920's by Frederick R. Macaulay at the National Bureau of Economic Research (NBER). It has the advantages of relatively precise measurement of the components and flexibility concerning the types of series which may be well adjusted by it.

In 1954, the Bureau of the Census introduced the first electronic computer program for seasonally adjusting economic time series, making the application of the ratio-to-moving-average method on a large-scale basis possible for the first time. Variants of the Census Method are now in widespread use throughout the world for adjusting series at the company, industry, and national-aggregate levels.

In 1955, the original Census Bureau program was replaced with a revised procedure called Census Method II. Since that time, the Census Bureau has conducted an extensive research program designed to improve seasonal adjustment methods. This program has moved forward on two fronts. First, there has been a major effort to improve the ratio-to-movingaverage method. This effort has been directed primarily to methods of improving the moving averages used to compute seasonal-factor and trend-cycle curves, the moving-average weights used for computing the ends of these curves, the estimation of trading-day variation from monthly data, and the handling of extreme values. In addition, research intended to exploit parametric methods using multiple regression
techniques has been undertaken. Regression analysis allows for explicit functional specifications of the seasonal and trend-cycle components which lend themselves to conventional statistical analysis more readily than the estimates provided by the ratio-to-moving-average method. However, such techniques are presently not as desirable as the movingaverage methods in practice, since no regression models have yet been demonstrated empirically to provide sufficiently accurate estimates of the trend-cycle and the seasonal, particularly in the current period.

From time to time, experimental variants of Method II which incorporate the results of this research are introduced. They are identified with the letter " X " and a sequence number. The first such variant to be made available to the public (1960) was X-3. It differed from the original Method II in the method of replacing extreme values and the method of computing the seasonal factors for the most recent years. The latest variants to be introduced (1961) were X-9, which was used as the standard program, and $\mathrm{X}-10$, which was used to adjust more erratic series. X-10 contains a variable seasonal-factor curve routine, which selects a seasonalfactor moving average whose length depends on the relative amplitudes of the irregular and seasonal fluctuations in a given month. Thus, it is able to fit more stable seasonal curves to highly irregular series than previous variants of Method II.

In October 1965, the X-11 version of Method II replaced the X-9 and X-10 versions as the standard program at the Bureau of the Census and is now available to other users. It includes several improvements over earlier versions. The new features in X-11 provide additional tools for the time series analyst. While the computations in the standard program are sufficient for most applications, the analyst can select optional features peculiar to his own needs. For example, he may choose between the additive and multiplicative versions and between the full seasonal-adjustment routine and one limited to the calculation of summary measures computed from seasonally adjusted data obtained from other sources; the σ limit for identifying extreme values may be varied, providing for contingencies such as strikes; and he may specify the moving averages to be used in estimating the trend-cycle and seasonal components. Another possibility is to take into account both the absolute and relative relations among the seasonal, trend-cycle, and irregular components

[^9]of time series by making additive and multiplicative adjustments sequentially. As a result of the availability of these options, $\mathrm{X}-11$ is an instrument, not only for the massive seasonal adjustment of time series, but also for seasonally adjusting unusual series, for research into new techniques of time series analysis, and for studies of the relations among different types of fluctuations. ${ }^{1}$

The major improvements in $\mathrm{X}-11$ are summarized in section II and described in sections III to VI. X-11 is compared with earlier versions of Method II in section VII.

II. SUMMARY OF IMPROVEMENTS IN X-1l

Quarterly Program

In addition to the monthly seasonal adjustment program, a program ($\mathrm{X}-11 \mathrm{Q}$) is now available to adjust quarterly series. The operations in the quarterly program are analogous to those in the monthly program.

Additive Programs

Both X-11 and X-11Q contain options which enable the user to make additive as well as multiplicative adjustments. As in earlier versions of Method II, an option is available to compute summary measures of the trend-cycle andirregular components from seasonally adjusted input data.

Fortran Coding

The X-11 and X-11Q programs are available in Fortran IV, a simplified programming language which can be used on many different computers. The selection of Fortran makes X-11 readily available for use on many medium- and largescale electronic computers. Program modifications can easily be made to adapt the computations or selection of output tables to specific uses.

Trading-Day Routine

A technique for estimating trading-day variation from information contained in the monthly data is included in X-11. The monthly irregular values are regressed upon a calendar that contains the number of times each day of the week occurs in each particular month in order to estimate seven daily weights. The user has the choice of basing a trading-day adjustment solely on the internally computed estimates, combining the internal estimates with a priori information that may be available or basing the adjustment solely on a priori information as in earlier versions of Method II. More information concerning the new trading-day routine is given in section III.

Variable Trend-Cycle
 Moving-Average Routine

A choice of several moving averages is available in $\mathrm{X}-11$ for estimating the trend-cycle component. The appropriate moving average of the seasonally adjusted series is chosen on the basis of a preliminary estimate of the $\bar{I} / \overline{\mathrm{C}}$ ratio, which relates the average absolute month-to-month percent change in the irregular to that in the trend-cycle. While the trendcycle moving average selected for most series will be about the same as that in previous versions of the program, where

[^10]a weighted 15 -term average was applied regardless of the I/C ratio, more appropriate moving averages will be selected for highly irregular and very smooth series. In this manner, the range of series which can be adequately adjusted by Method II is extended. For special purposes, the user can specify the moving average to be applied rather than accept the selection provided by the program. More details are given in section IV.

Graduated Treatment of Extremes

An improved treatment of extreme values is introduced. Rather than designating values in the irregular component that fall more than 2 standard deviations (σ 's) from 100 as "extreme" and assigning them a "weight" of zero as was done in earlier variants, a graduated scheme is used. Values outside 2.5σ are considered definitely extreme and receive zero weight. Weights for values between 1.5 and 2.5σ are graduated linearly from full weight at 1.5σ to zero weight at 2.5σ. Values within 1.5σ receive full weight. Iteration, based upon a modified original series where irregular values beyond 1.5σ are modified with the graduated weights, is used to reduce the effect of large irregular values upon the final estimates of the seasonal and trendcycle components. More details are given in section V.

Additional Tests and Summary Measures

New rests and summary measures have been added as analytical aids. Included are the following:

1. New summary measures.-Estimates of the percent contributions of S, C, I, TD, and P (prior adjustment factors, such as holiday adjustments) to the variation in O are given as additional summary measures. These measures give the user a better appreciation of the importance of each component than did the previous technique of presenting ratios of average absolute month-to-month percent changes ($\overline{\mathrm{I}} / \overline{\mathrm{C}}, \overline{\mathrm{I}} / \overline{\mathrm{S}}$, \bar{S} / \bar{O}, etc.). $\overline{\mathrm{I}} / \overline{\mathrm{C}}$ is now shown for 1 - to 12 -month spans instead of the previous 1 - to 5 -month spans, although MCD (months for cyclical dominance) is still shown as " 6 " when $\overline{\mathrm{I}} / \overline{\mathrm{C}} 21.0$ over the 5 -month span. Also, other summary measures such as $\overline{\mathrm{I}}, \overline{\mathrm{CI}}$, etc., are computed over spans other than 1 month. In addition to measures of average percent change without regard to sign ($\overline{\mathrm{I}}, \overline{\mathrm{C}}$, etc.), the average percent change with regard to sign and the standard deviations of the percent changes in $\mathrm{O}, \mathrm{I}, \mathrm{C}, \mathrm{S}, \mathrm{CI}$ and MCD (the MCD-span moving average of Cl) over several monthly spans are shown.
2. X-11 test for stable seasonality.-This consists of an analysis-of-variance F-test for stable seasonality. The F-test is applied to the S-I ratios to determine whether seasonality is present in the unadjusted series.
3. Test for the existence of trading-day variation. An analysis-of-variance F-test may be applied to determine whether trading-day variation is present in the unadjusted series. Since this method also tests the significance of the daily weights which may be computed internally from the data, the F-ratio may be used to decide whether or not to apply the computed daily weights.
4. Standard errors, -Estimates of standard errors of the trading-day weights and monthly adjustment factors are included to aid the user in assessing the significance of trading-day variation in the series.

More details on these tests and summary measures are given in section VI.

III. TRADING-DAY ADJUSTMENT

An option in X-11 provides for a trading-day adjustment based upon the actual variations in the data. Seven daily weights are estimated by regressing the irregular series upon the number of times each day of the week occurs in each particular month. From these seven weights, monthly factors are constructed and divided into the data to remove trading-day variation. A trading-day adjustment based upon the information contained in the data rather than upon a priori information concerning the daily pattern of activity has the following advantages:

1. It is less expensive than attempting to establish independently the pattern of daily activity for each individual series.
2. It often provides a better adjustment because allowance is made for the net effect of several factors related to the calendar, some of which (such as the effect of bookkeeping practices) may not be possible to determine a priori.

In general, when the irregular component of the series has an average absolute month-to-month change (I) of less than about 8 percent, the estimates provided from the data are adequate for the removal of trading-day variation. When the data are more irregular, the routine will not provide useful estimates. Standard tests of significance are provided to help appraise the reliability of the estimates for a given series and to determine whether trading-day variation (or residual trading-day variation if a prior adjustment has been made) is present in the original series.

In addition to the option of estimating seven daily weights from the data, two other options are available:

1. Rather than basing an adjustment upon estimates made from the data, seven daily weights from which the computer constructs monthly adjustment factors can be supplied by the user. This option is useful when there is reliable a priori information concerning trading-day variation or when the user wants to apply the same weights as those used in another adjustment.
2. Seven daily weights can be supplied by the user; and, if they do not entirely explain the trading-day variation found in the data, they can be corrected on the basis of the internal evidence and the modified weights can be used to make the trading-day adjustment.

In addition to these new techniques which use seven daily weights, an option of supplying a set of monthly adjustment factors which the computer divides into the unadjusted data is available. This option can be used in place of the new techniques to adjust for trading-day variation; or it can be used with or without the new techniques to adjust for holidays, strikes, etc.

In computing monthly trading-day adjustment factors from a set of seven daily weights (a priori or those computed by $\mathrm{X}-11$), an option is available to include a length-of-month adjustment in the monthly adjustment factors. ${ }^{2}$ The sea-

[^11]sonally adjusted series will be virtually the same whether or not this option is used, since length-of-month variation will be included in the seasonal factors if allowance is not made for it in the trading-day factors.

IV. MOVING AVERAGES

Variable Trend -Cycle Curve Routine

In $\mathrm{X}-11$, the moving average used to estimate the trendcycle component is selected on the basis of the amplitude of irregular variations in the data relative to the amplitude of long-term systematic variations. This routine selects a moving average that provides a suitable compromise between the need to smooth the irregular with a long-term inflexible moving average and the need to accurately reproduce the systematic element with a short-term flexible moving average. For many series, the average chosen in $\mathrm{X}-11$ has about the same smoothing power as those used in earlier versions of Method II. For highly irregular or very smooth series, a more appropriate average is chosen, thereby extending the range of series which can be well adjusted by Method II.

The selection of the appropriate moving average for estimating the trend-cycle component is made on the basis of a preliminary estimate of the \bar{I} / \bar{C} ratio (the ratio of the average absolute month-to-month change in the irregular to that in the trend-cycle). A 13-term Henderson average of the preliminary seasonally adjusted series is used as the preliminary estimate of the trend-cycle, and the ratio of the preliminary seasonally adjusted series to the 13 -term average is used as the preliminary estimate of the irregular. The appropriate average selected for a given value of \bar{I} / C is given in the following table:

\bar{I} / \bar{C}	Length of moving average selected
$0.00-0.99$	9-term Henderson
$1.00-3.49$	13-term Henderson
3.50 and over	23-term Henderson

The three new weighted moving averages in the variable trend-cycle routine replace the weighted 15 -term Spencer average used in earlier versions of Method II. The new averages meet the same criterion of smoothness as the 15term Spencer average; i.e., they minimize the sum of squares of the third differences of the curve. The distinctive feature in X-11 is the introduction of a 9 -term moving average for smooth series and a 23 -term moving average for highly irregular series. (A 5 -term Henderson average is used for all quarterly series.)

Seasonal-Factor Curve Routine

The S-I ratios for each month are smoothed by a 3×5-term moving average (a 3 -term average of a 5 -term average) to estimate final seasonal factors. In the X-9 version, S-I ratios were smoothed with a 3×3 - or a 3×5-term average depending on the value of $\overline{\mathrm{I}}$. The weights for extending the 3×5 average at the ends of series in $\mathrm{X}-11$ are the same as those used in X-9.

Optionally, the user may specify any of the following seasonal factor curves to compute final seasonal factors for any particular month: $3-, 3 \times 3-, 3 \times 5-, 3 \times 9-$, n-term, where" n " is the number of years of data in a particular month (i.e., a stable seasonal).

V. GRADUATED TREATMENT OF EXTREMES

Many economic series contain extreme values which must be modified or removed before adequate estimates of the seasonal, trading-day, and trend-cycle components can be made. These extremes may reflect economic developments, such as strikes; reactions to unexpected political events; unseasonable weather; errors of measurement; etc. In many instances, allowance for extremes can be made by the user before the data are submitted for seasonal adjustment. However, it is generally more feasible to rely upon the computerized statistical tests provided in Method II to detect and remove extremes.

Previous versions of Method II computed preliminary estimates of S and the standard deviation of I and designated as extreme those S-I ratios which fell 2 or more σ 's beyond the estimates of S. The σ 's were computed separately for each month. Values designated as extreme were replaced in the original version of Method II with an average of the extreme value and the ratios for that month in the preceding and following years. In $\mathrm{X}-3, \mathrm{X}-9$, and $\mathrm{X}-10$, the extremes were replaced with an average of the two nearest nonextreme S-I ratios on either side of the extreme for that month.

The previous techniques are replaced in $\mathrm{X}-11$ with a new scheme that tests each value of a preliminary irregular component against a standard deviation computed over a moving 5 -year period (60 months or 20 quarters). For example, the irregulars in 1952 are tested for extremeness by comparing them with a σ computed from 1950 to 1954. A preliminary σ is computed, values beyond 2.5σ are removed, and σ is recomputed. Values outside 2.5σ are considered extreme and are assigned a zero (0.0) weight. Values inside 1.5σ receive full weight (1.0). Values between 2.5 and 1.5σ receive partial weight, graduated linearly from zero at 2.5σ to full weight at 1.5σ.

The choice of 1.5 and 2.5 as σ limits is optional. For some purposes other limits may be desirable. Lower limits are sometimes better for highly irregular series or series substantially affected by strikes, where a greater portion of the series may be regarded as extreme. Likewise, higher limits are sometimes better for very smooth series.

Iteration is used in the following ways to improve the designation of extremes:

1. The computation of σ is iterated by computing a preliminary σ, removing extremes beyond 2.5σ and recomputing σ.
2. The process of developing a preliminary irregular component in which extremes are identified involves iteration by (a) modifying values in the original series corresponding to months where less than full weight was assigned to an irregular, (b) reestimating the trendcycle and seasonal components and deriving a new preliminary irregular component, and (c) reidentifying extremes and modifying the original series again. After modifying the original series for the second time, final estimates of the trend-cycle and seasonal are developed.

This new technique of identifying extremes results in the following improvements:

1. It modifies the original series rather than the S-I ratios, thereby taking account of the effect of extremes upon the trend-cycle.
2. Assigning a graduated weight pattern to nearextreme values removes the all-or-nothing decision in earlier versions of Method II, where a value might receive full weight in one adjustment and zero weight in a subsequent adjustment containing additional data. This phenomenon had, at times, contributed to substantial revisions in the seasonal factors.
3. Computing the σ limits over all 12 months makes it possible to identify more extremes in a single month.
4. Computing the σ limits over moving 5 -year periods substantially abates the effect of additional data upon revisions in the seasonal factors for the early years of the series.

In estimating trading-day variation, a less complex technique is used to identify extremes than that described above. A "trading-day standard deviation" is computed, extremes beyond 2.5σ are removed, and σ is recomputed. For the entire period included in the trading-day regression, irregular values beyond 2.5σ limits are excluded from the regression.

The X-11 treatment is an adaptation of that introduced in 1964 by the Bureau of Labor Statistics (BLS). It combines the iterative procedure with the variable trend-cycle moving average and trading-day routines. Also, the Census Bureau procedure of developing a modified original series allows for the contigency that several consecutive values may be regarded as extreme, as in the case of a prolonged strike. The limits of 1.5 and 2.5σ are optional in X-11, whereas the BLS procedure uses fixed limits of 1.0 and 2.8σ.

VI. NEW TESTS AND SUMMARY MEASURES

X-11 Test for the Existence of Stable Seasonality

A test for the existence of stable seasonality (available optionally in X-9 and X-10) is performed on the final unmodified S-I ratios in X-11. It consists of computing the ratio of the "between months" variance to the residual variance. If this F -ratio is above a given tabled value, a message is printed that stable seasonality is present.

Some caveats in interpreting the results of the X-11 test are given below:

1. The test may not be completely reliable when the variance of the irregular is very large or very small relative to the variance of the seasonal. In such cases, the user may find it necessary to examine $\overline{\mathrm{I}}$ and $\overline{\mathrm{S}}$ before making a decision.
2. When the variance of the seasonal is sufficiently small in absolute value or small relative to the variance in the other systematic components (trend-cycle and trading-day), there may be a case for not making a seasonal adjustment even though the tests show that the seasonal is significant relative to the irregular.
3. The existence of moving seasonality may reduce the "between months" variance in the stable seasonality test so that the test may find no evidence of stable seasonality when in fact a pronounced seasonal pattern is present.
4. Special problems arise when a series contains discontinuities in the seasonal pattern or when parts of a series contain no seasonal pattern. These conditions may be ascertained by an inspection of the seasonal factors and their charts. When a series contains an abrupt change in the seasonal pattern, it is best to break the series at the change and test and adjust the two parts of the series separately. When the amount of seasonal variation in a series has been declining over time, it would be well to analyze only the most recent years and to base decisions concerning adjustment of current data on this analysis.

Tests for the Existence of Trading-Day Variation

As part of the trading-day routine in X-11, tests for the existence of trading-day variation are provided as follows:

An F-test is performed to test for the significance of the trading-day regression. If prior daily weights (or monthly factors) are applied to the original series, this test determines the adequacy of the prior adjustment. If not, this test determines the existence of trading-day variation in the unadjusted data. In addition, t-tests are provided to determine whether each of seven computed daily weights is significantly different from the corresponding prior weight and/or 1.0 (no trading-day variation is represented by all seven weights equal to 1.0). As an option, the user may make the decision as to whether to apply the estimated weights according to the value of the F-ratio.

Also, standard errors of the daily weights and monthly adjustment factors are supplied to aid the user in assessing the significance of trading-day variation.

New Summary Measures

As a set of new summary measures, estimates of the percent contributions of $\mathrm{S}, \mathrm{C}, \mathrm{I}, \mathrm{TD}$ and P to the variation in O are given. For example, the percent contribution of S would be

$$
\frac{\overline{\mathrm{S}}^{2}}{\overline{\mathrm{~S}}^{2}+\overline{\mathrm{C}}^{2}+\overline{\mathrm{I}}^{2}+\overline{\mathrm{T}}^{2}+\overline{\mathrm{P}}^{2}}
$$

where $\overline{\mathrm{S}}, \overline{\mathrm{C}}, \overline{\mathrm{I}}, \overline{\mathrm{TD}}$ and $\overline{\mathrm{P}}$ are as defined in sections I and II.
The measures of average percent change without regard to sign ($\overline{1}, \overline{\mathrm{C}}$, etc.), which are computed over 1 -month spans in earlier versions of Method II, are now computed over longer spans. $\bar{O}, \overline{C I}, \bar{I}, \bar{C}, \bar{S}, \bar{P}$ and $\overline{T D}$ are computed and printed out over 1- to 6- and 7-, 9-, 11-,12-month spans. Also, measures of the average percent changes with regard to sign and the standard deviations of the percent changes for $\mathrm{O}, \mathrm{I}, \mathrm{C}, \mathrm{S}, \mathrm{CI}$ and MCD over the same spans are given to facilitate applications of statistical tests to the components. The $\overline{\mathrm{l}} / \overline{\mathrm{C}}$ ratio is now printed out for 1 - to 12 -month spans, although months for cyclical dominance (MCD) is still designated as " 6 " when $\overline{1} / \mathrm{C} \geq 1.0$ over the 5 -month span as in earlier versions of Method II.

VII. COMPARISON OF X-ll WITH EARLIER VARIANTS OF METHOD II

The sample printout in section IX illustrates some of the improvements introduced in X-11. The trading-day routine and the new tests and summary measures are shown for U.S. General Imports.

It is to be noted that only a few of the innovations in X-11 apply to the seasonal adjustment process itself. Most concern prior adjustments of the data and add further measures for analyzing and interpreting the seasonally adjusted series. Experience in developing X-11 (and earlier variants of Census Method II) has demonstrated that we find it difficult to make improvements in our method of seasonal adjustment. We feel that while $\mathrm{X}-11$ has much to contribute to time series analysis in the broad sense, it represents only a small step forward so far as seasonal adjustment is concerned.

Highly irregular series may be more adequately adjusted by X-11 because of the graduated treatment of extremes and the choice of several moving averages to estimate the trendcycle. Revisions between preliminary and final seasonalfactor estimates for early years of a series have been virtually eliminated in $\mathrm{X}-11$. Limited evidence indicates that current-year revisions in $\mathrm{X}-11$ are about the same as those in X-9 and X-10. When widespread experience with this variant is acquired by our staff and other users, a systematic evaluation of these changes will be made.

VIII. DESCRIPTION OF THE COMPUTER PRINTOUT

The computer program is divided into seven main parts, as follows:

Part A - Adjustments for trading-day variation, holiday variation, etc., (when supplied by the user) are applied prior to the seasonal computations.

Part B - Preliminary estimates of internally computed trading-day factors (when applicable) and weights for the irregular component are estimated.

Part C-Final estimates of trading-day factors (when applicable) and weights for the irregular component are computed.

Part D-Final estimates of the seasonal factors, seasonally adjusted series, and trend-cycle and irregular components are developed.

Part E - For analytical purposes, the original and seasonally adjusted series and the irregular component are modified for extreme values. Also, the ratios (differences) of annual totals and the month-to-month percent changes (differences) in the original and seasonally adjusted series are computed.

Part F - The MCD moving average of the seasonally adjusted series and the $\mathrm{X}-11$ summary measures are calculated.

Part G - Point charts of the trend-cycle, seasonally adjusted series, seasonal factors, and S-I ratios are developed.

The sample printout shown in section IX is the standard X-11 printout. Although all the computations described above are performed (except part A, which is not applicable), only the final estimates of the components and the analytical tables are printed out.

IX. SAMPLE PRINTOUT

Shown below is the monthly $\mathrm{X}-11$ multiplicative adjustment of U.S. General Imports, 1953 to 1964 , with the standard printout. Trading-day weights are computed internally. This series is shown for purposes of illustration only. It is not directly comparable to the official published series because of the difference in the time periods of the adjustments and because of prior strike adjustments which have been applied to the official series.

To conserve space, only part of the trend-cycle and seasonal-factor charts (G1 and G2) are shown. The complete charts appear in the actual computer printout.

> X-11 SEASONAL ADJUSTMENT PROGRAM U.S. BUREAU OF THE CENSUS ECONOMIC RESEARCH AND ANALYSIS DIVISION SEPTEMBER 28.1965

```
THE X-11 PROGRAM IS DIVIDED INTO SEVEN MAJOR PARTS:
    PART DESCRIPTION
        A. PRIOR ADJUSTMENTS; IF ANY
        B. PRELIMINARY ESTIMATES OF IRREGULAR COMPONENT WEIGHTS
            AND REGRESSION TRADING DAY FACTORS
        C. FINAL ESTIMATES OF ABOVE
        D. FINAL ESTIMATES OF SEASONAL, TREND-CYCLE AND IRREGULAR COMPONENTS
        E. ANALYTICAL TABLES
        F. SUMMARY MEASURES
        G. CHARTS
TABLES ARE IDENTIFIED BY THEIR PART LETTER AND SEQUENCE WITHIN THE PART. A GIVEN TABLE HAS THE SAME
IDENTIFICATION IN THE STANDARD, LONG AND FULL PRINTOUTS. THE SAME NUMBER IS GIVEN TO CORRESPONDING
TABLES IN PARTS B, C AND D. THUS, TABLES B10., C10. AND D10. ARE ALL TABLES OF SEASONAL FACTORS.
WHERE NO CORRESPONDING TABLE EXISTS THE SEQUENCE NO. IS INOT USED IN THE PART. THUS, B8. AND D8. ARE
TABLES OF UNMODIFIED SI RATIOS BUT THERE IS NO CB.
THIS SERIES RUN AUG 1965
SERIES TITLE- U. S. GENERAL IMPORTS IN MILLIONS OF DOLLARS SERIES NO. X746 PERIOD COVERED- \(1 / 53\) TO \(12 / 64\)
TYPE OF RUN - MULTIPLICATIVE SEASONAL ADJUSTMENT STANDARD PRINTOUT. STANDARD CHARTS.
TRADING DAY REGRESSION COMPUTED STARTING 1953 EXCLUDING IRREGULAR VALUES OUTSIDE 2.5-SIGMA LIMITS. TRADING DAY REGRESSION ESTIMATES AFPLIED STARTING 1953 IF SIGNIFICANT. SIGMA LIMITS FOR GRADUATING EXTREME VALUES ARE 1.5 AND 2.5
```

YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	Nov	UEC	TOTAL
1953	922.4	855.9	1004.2	1013.1	901.9	933.0	908.1	839.8	925.7	813.4	849.2	906.6	10873.3
1954	832.8	808.8	864.6	957.2	829.2	946.9	821.8	824.8	780.4	766.6	839.7	942.6	10215.4
1955	871.2	849.9	1019.3	871.1	959.3	936.8	885.3	960.6	947.1	1010.9	1064.9	1008.0	11384.4
1956	1073.3	1051.2	1102.1	991.3	1094.8	1033.8	1051.6	1055.3	995.2	1121.0	986.7	1058.6	12614.9
1957	1114.8	992.9	1132.6	1118.7	1105.8	986.0	1147.8	1042.7	1007.4	1148.1	1043.2	1142.4	12982.4
1958	1095.9	955.9	1071.7	1056.9	1060.9	1031.1	1049.1	950.1	1073.4	1150.4	1085.6	1253.5	12834.5
1959	1154.1	1118.6	1295.1	1220.9	1264.2	1369.8	1250.0	1187.8	1395.3	1201.5	1283.0	1466.9	15207.2
1960	1174.1	1329.4	1409.7	1293.8	1289.4	1332.0	1182.7	1258.5	1192.7	1184.0	1196.7	1174.5	15017.5
1961	1149.7	1067.7	1255.3	1063.0	1222.9	1232.1	1287.0	1252.1	1197.2	1357.6	1335.0	1294.2	14713.8
1962	1367.6	1213.0	1380.8	1334.0	1453.1	1348.7	1333.6	1356.8	1341.5	1442.1	1449.2	1359.4	16379.8
1963	1116.2	1385.4	1462.5	1454.2	1458.9	1355.9	1502.1	1459.7	1398.3	1591.3	1425.0	1528.5	17138.0
1964	1444.5	1336.8	1590.2	1560.6	1455.7	1593.7	1610.7	1491.0	1561.8	1613.0	1671.7	1755.0	18684.7
AVge	1109.7	1080.5	1215.7	1161.2	1174.7	1175.0	1169.1	1139.9	1151.3	1200.0	1185.8	1240.8	
	TABLE	TOTAL:	168045.8		MEAN:	1167.0		D. DEV	TION:	223.6			

AUG 1965 U. S. GENERAL IMPORTS IN MILLIONS OF DOLLARS

P. 2, SEKIES
$\times 746$
C14. EXTREME IRREGULAR VALUES EXCLUDED FROM TRADING DAY REGRESSION

YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	Nov	$u t C$	AVGE
1953	*******	*******	*******	*******	*******	*******	*******	*******	109.7	*******	*******	*******	*******
1954	*******	*******	93.4	*******	*******	109.4	*******	*******	*******	*******	*******	*******	********
1955	*******	*******	*******	91.4	*******	*******	*******	*******	*******	*******	*******	91.1	********
1956	*******	*******	*******	91.9	*******	*******	*******	*******	*******	*******	*******	*******	********
1957	*******	*******	*******	*******	*******	*******	*******	*******	*******	*******	*******	*******	********
1958	*******	*******	*******	*******	*******	*******	*******	*******	*******	*******	*******	*******	********
1959	*******	*******	*******	*******	*******	*******	*******	*******	111.4	89.4	*******	*******	********
1960	88.5	*******	*******	*******	*******	*******	*******	*******	*******	*******	*******	*******	********
1961	*******	*******	*******	*******	*******	*******	106.8	*******	*******	*******	*******	*******	********
1962	*******	*******	*******	*******	*******	*******	*******	*******	102.3	*******	*******	*******	********
1963	82.4	109.0	*******	*******	*******	*******	*******	*******	*******	*******	*******	*******	********
1964	*******	*******	*******	*******	*******	*******	*******	*******	*******	*******	*******	*******	********

$\begin{array}{lll}\text { * COMBINED WT. SIGNIFICANTLY DIFFERENT FROM } 1 \text { AT 1\% LEVEL } \\ \text { ** } & \text { COMBINEO WT. SIGNIFICANTLY DIFFERENT FROM PRIOR WEIGHT AT } 1 * \text { LEVEL }\end{array}$

SOURCE OF	SUM OF	DGRS.OF	MEAN	
VARIANCE	SQUARES	FREEDOM	SQUARE	F
REGRESSION	92.808	6.	15.468	45.811***
ERROR	42.206	125.	. 338	
TOTAL	135.014	131.		
*** RESIDUAL	TRADING D	VARIATI	NT AT T	Level

STANDARD ERRORS OF TRADING DAY ADJUSTMENT FACTORS DERIVED FROM REGRESSION COEFFICIENTS

31-DAY MONTHS:	.42
30-DAY MONTHS:	.43
29-DAY MONTHS:	.47
28-DAY MONTHS:	.00

AUG 1965 U. S. GENERAL IMPORTS IN MILLIONS OF DOLLARS
$\begin{array}{llllll}\text { C16. TRADING DAY ADJUSTMENT FACTORS DERIVED FROM REGRESSION COEFFICIENTS } \\ \text { C16A. REGRESSION COEFFICIENTS - MON } & \text { TUE } & \text { WED } & \text { THUR } & \text { FRI }\end{array}$ $\begin{array}{lll}\text { C16A. REGRESSION COEFFICIENTS - MON } & 1.565 & 1.402 \\ \text { C16B. REGRESSION TRADING DAY ADJUSTMENT FACTORS }\end{array}$

CBE REGRESSION	TRADING		
YEAR	JAN	FEB	
1953	98.7	99.1	100
1954	95.4	99.1	10
1955	96.6	99.1	10
1956	100.8	103.2	
1957	102.8	99.1	
1958	102.1	99.1	
1959	98.7	99.1	10
1960	95.4	104.7	10
1961	100.8	99.1	10
1962	103.6	99.1	
1963	102.8	99.1	
1964	102.1	99.5	

MAR	$A P R$	
100.8	101.6	
103.6	101.6	
102.8	97.6	1
98.7	99.5	1
95.4	103.2	102
96.6	101.9	
100.8	101.6	
102.8	97.6	100
102.1	94.6	103
98.7	99.5	1
95.4	103.2	102
100.8	101.6	

TABLE TOTAL: 14401.1

AUG 1965 U. S. GENERAL IMPORTS IN MILLIONS OF DOLLARS
C18. TRADING DAY ADJUSTMENT FACTORS FROM COMBINED DAILY WEIGHTS (SAME AS TABLE C16.)

AUG 1965 U. S. GENERAL IMPORTS IN MILLIONS OF DOLLARS
E 1. ORIGINAL SERIES MODIFIED FOR EXTREMES

AUG 1965 U				S. GENERAL IMPORTS IN MILLIONS OF DOLLARS								P.15. SERIES		$\times 746$
E 2. MODIFIED SEASONALLY ADJUSTED				SERIES										
YEAR	JAN	FEB	MAR	AFR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC		total
1953	914.3	904.9	921.3	94.1	933.1	912.6	914.0	905.7	884.5	841.7	869.6	841.2		10784.1
1954	853.9	854.5	862.5	893.0	848.1	851.6	855.6	851.8	818.6	816.1	827.6	879.8		10223.1
1955	882.2	899.1	916.6	855.2	941.1	930.5	954.0	965.8	989.6	1049.9	1059.1	1053.9		11497.0
1956	$1044 \cdot 4$	1072.2	1034.4	1051.6	1050.4	1065.7	1073.8	1079.4	1112.9	1071.1	1062.3	1038.8		12757.1
1957	1067.4	1057.0	1107.0	1071.8	1067.3	1042.2	1140.9	1103.8	1063.6	1094.0	1074.2	1074.8		12963.9
1958	1062.0	1021.1	1039.2	1039.5	1058.7	1029.3	1050.1	1038.2	1085.9	1095.9	1149.4	1149.9		12819.1
1959	1163.2	1200.3	1212.4	1211.0	1305.3	1309.6	1256.8	1274.9	1294.2	1302.4	1286.6	1362.6		15179.1
1960	1332.8	1357.3	1297.6	1342.0	1258.6	1289.6	1269.1	1250.2	1216.4	1185.5	1169.2	1141.5		15109.9
1961	1149.1	1157.2	1167.7	1135.0	1163.8	1192.9	1217.7	1243.8	1269.1	1302.3	1303.1	1310.2		14611.8
1962	1337.5	1322.3	1325.9	1351.8	1397.9	1364.8	1336.7	1347.0	1353.0	1342.5	1408.7	1361.4		16249.5
1963	1384.2	1393.3	1453.2	1415.7	1414.6	1421.4	1457.1	1494.6	1454.4	1494.5	1435.8	1470.0		17288.8
1964	1444.9	1469.9	1493.8	1543.6	1508.1	1533.9	1584.1	1558.4	1587.9	1579.3	1650.7	1655.6		18610.2
A VGE	1136.3	1142.4	1152.6	1154.3	1162.3	1162.8	1175.8	1176.1	1177.5	1181.3	1191.4	1195.0		
	TABLE	TOTAL:	168093		MEAN:	1167.3		D. DEVI	TION:	213.5				

IN MILLIONS OF DOLLAR												P.16. SERIES		$\times 746$
E 3. MOD	C IRRE	UlAR S	ES											
YEAR	JAN	FEB	MAR	AFR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC		S.D.
1953	99.8	98.4	99.8	101.7	100.8	99.0	100.1	100.7	100.0	96.8	101.2	98.6		1.3
1954	100.2	99.8	100.0	103.0	97.8	100.0	100.5	101.4	98.3	97.9	98.1	102.4		1.7
1955	100.5	100.4	$100 \cdot 9$	93.2	101.6	99.2	99.8	98.7	98.6	102.3	101.5	100.0		$2 \cdot 3$
1956	98.9	101.7	98.4	100.0	99.3	99.9	99.9	100.1	103.4	100.2	100.0	98.1		1.4
1957	100.8	99.4	103.4	99.5	98.7	96.2	105.1	101.5	97.8	101.0	99.9	101.0		$2 \cdot 3$
1958	$100 \cdot 7$	97.6	99.9	100.2	102.1	99.0	100.2	97.9	100.6	99.4	102.0	100.0		1.3
1959	99.2	100.4	99.5	97.6	103.5	102.7	97.9	99.0	100.0	$100 \cdot 0$	97.9	102.7		1.9
1960	100.0	102.0	98.0	102.3	97.0	$100 \cdot 7$	100.6	100.8	100.1	99.5	99.8	98.7		1.5
1961	100.0	100.9	101.6	98.0	99.3	100.0	100.0	99.9	99.9	100.9	99.9	99.7		. 9
1962	101.0	99.1	98.6	99.8	102.9	100.4	98.5	99.5	100.0	99.0	103.3	99.1		1.5
1963	100.0	100.0	103.6	100.2	99.2	98.7	100.3	102.2	99.1	101.9	98.2	100.7		1.5
1964	98.7	99.6	$100 \cdot 1$	102.1	98.6	99.4	101.8	99.2	99.9	98.3	101.5	100.9		1.2
S.D.	$\stackrel{\cdot 7}{\text { TABLE }}$	$\begin{array}{r} 1 \cdot 2 \\ \text { TOTAL: } \end{array}$	$\begin{array}{r} 1.7 \\ 14402 \end{array}$	2.5	$\begin{array}{r} 2.0 \\ \text { MEAN: } \end{array}$	$\begin{array}{r} 1.5 \\ 100.0 \end{array}$	1.7	1.2 ${ }_{\text {L }}$ DEV	$\begin{gathered} 1.4 \\ \text { TION: } \end{gathered}$	$\begin{aligned} & 1.6 \\ & 1.6 \end{aligned}$	1.6	1.4		

AUG 1965 U. S. GENERAL IMPORTS IN MILLIONS OF DOLLARS

E 4.	RATIOS OF ANNUAL TOTALS:	ORIGINAL AND ADJUSTED SERIES
YEAR	UNMODIFIED MODIFIED	
1953	100.0 100.1	
1954	100.1 100.2	
1955	99.7 99.8	
1956	100.2 100.2	
1957	100.1 100.1	
1958	100.1 100.1	
1959	100.1 100.2	
1960	100.1 100.0	
1961	99.8 99.8	
1962	$100.1 \quad 100.2$	
1963	100.0 100.1	
1964	100.4100 .4	

AUG 1965 U. S. GENERAL IMPORTS IN MILLIONS OF DOLLARS

AUG 1965												P.20. SERIES		$\times 746$
F 1. MCD	$\begin{aligned} & \text { MOVING AV } \\ & \text { MCD IS } \end{aligned}$	$\begin{aligned} & \text { VERAGE } \end{aligned}$												
YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	Nov	DEC		TOTAL
1953	*******	*******	920.4	925.1	927.0	925.2	916.4	925.6	907.9	896.8	880.6	851.6		9076.6
1954	854.8	830.2	243.1	841.6	862.7	883.8	873.5	866.1	835.5	828.5	835.5	851.4		10206.9
1955	872.2	894.4	888.3	903.0	910.9	920.2	947.8	960.0	989.8	1016.1	1017.2	1030.9		11350.8
1956	1036.5	1030.3	1030.5	1032.0	1030.4	1040.3	1067.3	1083.0	1084.3	1060.6	1050.4	1039.1		12584.7
1957	1035.5	1067.6	1075.8	1075.8	1072.1	1080.5	1088.6	1087.6	1100.6	1083.9	1076.6	1076.2		12920.8
1958	1058.0	1049.2	1040.4	1039.6	1041.7	1044.4	1044.1	1050.9	1067.5	1092.3	1120.3	1139.6		12788.0
1959	1165.7	1181.4	1196.7	1232.2	1259.6	1270.7	1286.6	1316.1	1284.2	1291.6	1313.6	1265.7		15064.1
1960	1309.6	1312.3	1307.2	1313.9	1297.0	1289.8	1266.9	1256.3	1230.3	1205.3	1178.2	1161.3		15128.1
1961	1154.3	1153.9	1152.2	1155.9	1164.8	1211.7	1238.9	1265.2	1292.6	1279.6	1296.2	1313.3		14678.5
1962	1318.3	1324.0	1334.4	1349.5	1360.1	1362.8	1361.6	1378.8	1373.2	1391.2	1394.8	1304.7		16253.3
1963	1349.6	1360.7	1374.3	1451.4	1426.2	1427.2	1446.9	1456.9	1475.1	1469.8	1463.7	1461.3		17163.2
1964	1455.2	1469.7	1488.1	1503.9	1519.8	1542.4	1546.1	1566.1	1577.4	1594.0	1618.4	*******		16881.0
AVGE	1146.3	1152.2	1137.6	1152.0	1156.0	1166.6	1173.7	1184.4	1184.9	1184.2	1187.1	1135.9		
	TABLE	TOTAL:	164096											

AUG 1965 U. S. GENERAL IMPORTS IN MILLIONS OF DOLLARS
F 2. SUMMARY MEASURES
AVERAGE PER CENT CHANGE WITHOUT REGARD TO SIGN OVER INDICATED SPAN

SPAN											
IN	B1	D11	D13	D12	D10	A2	C18	F1	E1	E2	E3
MONTHS	0	CI	1	C	S	P	T0*	MCD	MOD. 0	MOD.CI	MOD. I
1	7.46	3.84	3.62	-91	4.21	. 00	4.14	1.30	6.73	2.25	1.96
2	6.90	4.26	3.49	1.80	4.66	. 00	3.71	2.17	6.68	2.80	1.87
3	6.32	4.81	3.47	2.64	4.63	. 00	2.07	3.00	6.32	3.60	1.99
4	8.09	5.25	3.17	3.45	5.10	. 00	4.21	3.82	7.70	4.05	1.64
5	7.55	5.90	3.35	4.19	3.97	. 00	3.23	4.43	7.22	4.77	1.80
6	7.71	6.32	3.35	4.90	4.48	. 00	2.40	5.01	7.89	5.36	1.73
7	8.97	6.81	3.26	5.57	3.99	. 00	4.16	5.53	8.65	6.00	1.73
9	8.79	7.93	3.33	6.84	4.57	. 00	2.00	6.72	8.91	7.22	1.72
11	9.86	8. 73	3.16	8.01	4.11	. 00	2.89	7.86	10.23	8.33	1.55
12	9.89	9.47	3.73	8.55	. 36	. 00	2.71	8.36	7.51	9.00	2.04

RELATIVE CONTRIBUTIONS OF COMPONENTS TO VARIANCE IN ORIGINAL SERIES

SPAN							
IN	013	D12	D10	A2	C18		RATIO
MONTHS	I	c	5	P	TD*	TOTAL	($\times 100$)
1	26.83	1.68	36.28	. 00	35.21	100.00	87.71
2	23.89	6.36	42.71	. 00	27.04	100.00	106.93
3	26.88	15.62	47.93	. 00	9.57	100.00	111.96
4	15.34	18.09	39.59	. 00	26.99	100.00	100.26
5	20.43	31.96	28.66	. 00	18.94	100.00	96.69
6	18.39	39.34	32.85	. 00	9.42	100.00	102.61
7	14.18	41.47	21.23	. 00	23.12	100.00	93.03
9	13.40	56.58	25.19	. 00	4.83	100.00	107.11
11	10.06	64.54	16.99	. 00	8.41	100.00	102.42
12	14.71	77.38	-14	. 00	7.77	100.00	96.58
AVERAGE DURATION		OF RUN	CI	I	C	MCD	
			1.79	1.51	8.41	2.98	

I/C RATIO FOR MONTHS SPAN

OR MONTHS SPAN										
1	2	3	4	5	6	7	8	9	10	11
4.00	1.94	1.31	.92	.80	.68	.58	.57	.49	.46	.39

MONTHS FOR CYCLICAL COMINANCE 4
AVERAGE PER CENT CHANGE WITH REGARD TO SIGN AND STANDARD DEVIATION OVER INDICATED SPAN

SPAN	B1		D13		$\underset{c}{012}$		$\begin{gathered} 010 \\ 5 \end{gathered}$		$\begin{array}{r} \mathrm{D} 11 \\ \mathrm{CI} \end{array}$		$\begin{array}{r} \text { Fi } \\ \text { MCD } \end{array}$	
IN												
MONTHS	AVGE	S.D.										
1	. 85	9.03	.17	5.79	. 41	1.03	. 15	5.53	. 58	5.93	. 42	1.64
2	1.30	8.75	. 18	5.47	. 84	2.03	- 20	5.36	1:02	5.95	. 83	2.55
3	1.59	8.06	. 15	5.23	1.26	2.99	. 17	5.42	$1: 42$	6.15	1.25	3.43
4	2.09	10.02	. 15	5.23	1.69	3.89	. 14	6.00	1.85	6.69	1.69	4.30
5	2.39	9.20	. 12	5.05	2.13	4.72	. 06	5.01	2.25	7.04	2.12	4.92
6	2.84	9.61	. 15	5.23	2.57	5.49	. 10	5.73	2:72	7.66	2.55	5.58
7	3.38	10.63	. 14	5.15	3.02	6.21	. 09	5.03	3.16	8.10	3.00	6.20
9	4.24	10.76	. 08	5.24	3.96	7.49	. 19	5.30	4.03	9.13	3.93	7.32
11	5.25	11.39	. 08	5.11	4.94	8.55	. 19	5.16	5:01	9.86	4.91	8.21
12	5.62	11.01	. 10	5.34	5.44	9.00	. 00	. 47	5.52	10.31	5.44	8.58

* (TRADING DAY ADJUSTMENT FACTORS WITHOUT LENGTH OF MONTH ADJUSTMENT)

```
G 1. CHART - D11. FINAL SEASONALLY ADJUSTED SERIES
    (X) - D11. FINAL SEASONALLY
        (0) - D12. FINAL TREND CYCLE
```

 SCALE-SEMI-LOG HALF CYCLE
 771.11157.
 JAN57
 JAN57
FEB57
MAR57
FEB5
MAR57

MARS 7
APR

APR57
MAr5

MAY57
JUNS
JUN57
JULS 57
AUGS 7
SEPS 7
SEPS7
SEPS7
OCTS7
NOV57
NOV57
DEC57
DEC57
JAN5
JANS
FEB58
MAR58
FEB58
MAR58
APR58
APR58
MAY58
MAY5 8
MA
JUN5B
JUL58
UUG58
AUG58
SEP58
OCT58
SEP58
OCT58
NOV58
DEC58
NOV5B
DEC58
JAN5
JEC5
JAN59
FEB59
MAR59
MAR59
APR59
APR59
MAY59
MAY59
JUN59
JUL 59
JUL59
AUG59
AUG59
SEP59
SEP59
OCTS
NOV59
NOV59
DEC59
JANGO
$\begin{array}{cc}0 \\ \text { FEBGO } & 0 \quad 0 \\ 0 \times \\ 0\end{array}$
MAR60
APR60
MAY 60
MAYGO
JUNGO
JUN6O
JUL6O
JUL60
AUG6O
SEPSO
SEPGO
OCT6O
OCT60
NOV60
NOV60
DEC6O
DEC6O
JANG 1
FEBG 1
FEB6 1
MARG1
MARG 1
AFRG 1
MAYG1
JUNG1
JUNG1
JULG1
SEP61
SEPGI
OCTG1
OCTG1
NOVG1
NOV61
JEC6 1
JAN62
FEB62
MAR62
APR62
APR62
MAY62
MAY62
JUN62
JUN6

1928. 2313. 2699. 3084.
(X) - D 8. FINAL UNMCDIFIED SI RATIOS
(0) - D 9. FINAL SI PATIOS MODIFIED FOR EXTREMES
(+) - D10. FINAL SEASONAL FACTORS
(*) - COINCIDENCE OF POINTS

AUG 1965 U. S. GENERAL IMPORTS IN MILLIONS OF DOLLARS
P.25. SERIES $\times 746$

G 2. CHART
(x) - D 8. FINAL UNMCDIFIED SI RATIOS
(O) - D 9. FINAL SI FATIOS

MODIFIED FOR EXTREMES
(+) - D10. FINAL SEASONAL FACTORS
(*) - COINCIDENCE OF POINTS

SCALE-A	IC													
78.	81.	84.	87.	90.	93.	96.	99.	102.		105.		108.		111.
-	-	-	-	-	-	-	-	-		-		-		
MARCH														
1953												+*		
1954												O+		
1955												+	*	
1956												+		
1957											+	+	0	x
1958											*+			
1959														
1960									*	+				
1961										+	*			
1962									*	+				
1963										+	0		x	
1964										*				
1965										+				
.	-	-	-	-	-	-	-	-		*		-		,
78.	81.	84.	87.	90.	93.	96.	99.	102.		105.		108.		111.

```
    G 2. CHART
MAY
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
```

 (X) - D 8. FINAL UNMCOIFIED SI RATIOS
 (0) - D 9. FINAL SI PATIOS MODIFIED FOR EXTREMES
 (t) - DIO. FINAL SEASONAL FACTORS
 (*) - COINCIDENCE OF POINTS
 | 73. | 81. | - | 84. | 87. | 90. | 93. | 96. | 99. | 102. | 105. | 108. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | |

X. REFERENCES

The references cited below indicate sources for further reading on time series analysis in general and the work which forms the basis for X-11 in particular. References which deal with the problem of seasonal adjustment as it relates to the analysis of current economic conditions are 9,14 , and 15. Early works on seasonality and seasonal adjustment methods are 1,6 , and 7 . Works dealing with the history of Census seasonal adjustment methods are $8,11,15,17$, and 18. Alternative methods of adjustment are described in $3,5,10$, and 12 .

1. Barton, H.C., Jr., "Adjustment for Seasonal Variation," Federal Reserve Bulletin, June 1941, pp. 518-28.
2. Bongard, Joseph, "Some Remarks on Moving Averages", Seasonal Adjustment on Electronic Computers, Organization for Economic Cooperation and Development, 1960, pp. 361-387.
3. _, "L'Élimination des Variations Saisonnières par la Méthode des Modèles Mobiles", 1963.
4. \qquad "Notes on the Characteristics of Seasonal Variation in Europe", Seasonal Adjustment on Electronic Computers, Organization for Economic Cooperation and Development, 1960, pp. 179-204.
5. Hannan, E. J., "The Estimation of Seasonal Variations in Economic Time Series", Journal of the American Statistical Association, Vol 58, No. 301, March 1963, pp. 31-44.
6. Kuznets, Simon, Seasonal Variations in Industry and Trade, National Bureau of Economic Research, 1933.
7. Macaulay, Frederick R., The Smoothing of Time Series, National Bureau of Economic Research, Inc., 1931.
8. Marris, Stephen N., "The Treatment of Moving Seasonality in Census Method II," Seasonal Adjustment on Electronic Computers, Organization for Economic Cooperation and Development, 1960, pp. 257-309.
9. McLaughlin, R. L., Time Series Forecasting, Marketing Research Technique Series No. 6, American Marketing Association, 1962.
10. Nettheim, Nigel F., "A Spectral Study of 'Overadjustment' for Seasonality" 1964 Proceedings of the Business and Economic Statistics Section, American Statistical Association, 1965, republished as Bureau of the Census Working Paper No. 21, 1965.
11. Organization for Economic Cooperation and Development, Seasonal Adjustment on Electronic Computers, 1960.
12. Rosenblatt, Harry M., "Spectral Analysis and Parametric Methods of Seasonal Adjustment of Economic Time Series", 1963 Proceedings of the Business and Economic Statistics Section; American Statistical Association, 1963, pp. 94-133; republished as Bureau of the Census Working Paper No. 23, 1965.
13. Scheffé, Henry, The Analysis of Variance, 1959.
14. Shiskin, Julius, "Decomposition of Economic Time Series", Science, Vol. 128, No. 3338 (December 19, 1958), pp. 1539-1546.
15. __, "Electronic Computers and Business Indicators", Journal of Business, October 1957, republished as NBER Occasional Paper No. 57.
16. _._, "Seasonal Computations on Univac", American Statistician, Vol. IX, No. 1, February 1955, pp. 19-23.
17. ___ Tests and Revisions of Bureau of the Census Methods of Seasonal Adjustments, U.S. Bureau of the Census Technical Paper No. 5, 1961.
18. __and Harry Eisenpress, "Seasonal Adjustments by Electronic Computer Methods", Journal of the American Statistical Association, December 1957, pp. 415-449, republished as NBER Technical Paper No. 12.
19. U.S. Bureau of Labor Statistics, The BLS Seasonal Factor Method (1964), 1964.
20. Young, Allan, Estimating Trading-Day Variation in Monthly Economic Time Series, U.S. Bureau of the Census Technical Paper No. 12, 1965.

APPENDIXES

Appendixes A through E have been omitted from this issue. (See September issue.) They will be reinstated in the November issue.

Appendix F.-HISTORICAL DATA FOR SELECTED SERIES

Dach month historical data are presented for series that either have not been shown here previously or have been revised historically. The months of issue for series previously included in this appendix are given in the index. Current data are shown in tables 2 and 4. Data are seasonally adjusted.

Year	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
	17. Price per unit of labor cost index (1957-59=100) ${ }^{1}$											
1948.	106.8	106.0	104.3	105.9	107.1	106.9	106.7	105.0	104.7	104.9	103.7	104.8
1949.	102.6	101.8	102.0	101.2	99.9	100.1	99.7	101.3	101.2	101.8	102.1	102.0
1950.	102.3	102.8	102.9	105.1	105.2	106.6	108.7	112.2	111.3	110.7	108.9	113.5
1951.	114.7	115.1	113.9	112.0	111.2	109.1	105.9	104.6	104.1	104.8	104.4	104.7
1952.	103.9	104.4	103.4	102.7	101.3	101.1	101.7	101.8	101.1	101.2	101.7	100.9
1953.	100.8	100.7	100.9	100.4	100.9	100.3	101.3	100.3	99.9	99.0	97.9	97.6
1954.	97.7	97.7	97.5	98.1	98.9	98.7	98.2	98.6	98.3	97.8	98.7	99.8
1955.	101.2	101.1	101.7	102.3	101.7	102.1	101.8	101.7	102.3	103.6	102.9	103.1
1956.	102.5	102.6	101.7	102.2	101.5	100.7	97.3	100.0	100.6	101.1	101.6	101.6
1957.	102.0	102.2	102.5	100.7	100.5	100.5	100.4	101.2	100.3	98.6	98.6	98.0
1958.	97.4	96.0	95.3	94.9	96.2	97.5	98.4	99.0	99.4	100.4	100.9	100.1
1959.	101.0	101.7	102.1	103.2	103.2	102.4	101.4	100.0	100.0	99.7	99.2	101.1
1960.	103.8	102.0	101.5	100.5	99.8	99.4	99.6	99.7	99.4	99.9	100.1	99.7
1961.	99.3	98.8	98.8	100.0	100.0	100.3	100.7	101.5	101.5	101.2	101.0	101.2
	62. Index of labor cost per unit of output, total manufacturing (1957-59=100) ${ }^{2}$											
1948.	77.3	77.3	78.9	78.4	77.8	78.4	78.9	80.2	80.5	80.0	80.7	80.2
1949.	81.0	81.0	80.6	80.7	81.0	80.5	80.1	78.5	78.4	78.0	77.7	78.1
1950.	77.8	78.0	77.9	76.8	77.3	76.6	76.6	75.5	77.3	78.8	81.0	80.1
1951.	80.9	81.7	82.5	84.2	84.4	85.5	87.4	88.0	88.0	87.7	88.0	87.9
1952.	88.0	87.9	88.3	88.7	89.7	89.8	89.0	89.0	89.7	89.4	88.8	89.3
1953.	89.3	89.6	89.5	89.9	89.7	90.3	89.9	90.6	91.1	92.0	93.1	93.6
1954.	93.8	93.6	93.8	93.5	92.7	92.5	92.9	92.5	92.6	93.1	92.5	91.8
1955.	90.5	90.8	90.0	89.5	90.1	90.2	90.5	91.0	91.1	90.3	91.0	91.2
1956.	91.9	92.2	93.2	93.4	94.5	95.2	98.3	96.4	96.2	96.3	96.2	96.4
1957.	96.5	96.7	96.4	98.0	98.3	98.5	98.8	98.3	99.1	100.6	101.0	101.9
1958.	102.9	104.1	105.0	105.2	103.9	102.5	101.6	101.2	100.7	99.7	99.6	100.5
1959.	99.6	99.2	98.9	97.9	98.2	98.7	99.7	101.0	101.0	101.2	101.7	99.6
1960.	97.3	99.0	99.7	100.7	101.3	101.7	101.6	101.5	101.6	101.2	101.2	101.4
1961.	101.9	102.4	102.4	101.0	100.7	100.1	99.8	99.0	99.0	99.3	99.5	99.5
	68. Index of labor cost per dollar of real corporate GNP (1957-59=100) ${ }^{3}$											
1948.	\cdots	76.2	\ldots	...	75.6	...		77.7	...		77.6	. . .
1949.	...	77.5	77.5	...		76.1	...		77.5	
1950.	-••	76.1	\ldots	\cdots	75.8	...		76.0	...		77.4	...
1951.	. .	80.9	\cdots		82.6			82.6	...		83.0	...
1952.		84.9		\cdots	85.9	...		87.2			87.7	...
1953.		88.0	88.5	...		89.2			91.9	
1954.		91.8			91.2	...		90.3	89.9	. . .
1955.		88.5		\ldots	88.6	\ldots		89.6			90.6	...
1956.		93.0	.	. .	93.9	...		95.4			96.6	
1957.		97.2		. .	98.1	\ldots		98.9			100.4	...
1958.	...	102.1			101.2	. .		100.5			99.4	. . .
1959.		100.3			99.5			101.3			101.7	
1960.		101.7			102.8	...		103.8			104.6	...
1961.		104.9			103.7			103.4			102.8	. .

[^12]
INDEX

(Page numbers)

Series number ${ }^{1}$	Charts				Tables								Appendixes									
	1	2	3	4	1	2	3	4	5	6	7	8	A	B^{2}	C^{2}	D^{2}	E^{2}	F			G	
																		Page	Issu		Page	Issue
1.	10	\cdots	.	\cdots	8	24	\cdots	\cdots	\cdots	64	65	66	.	68	69	\cdots	\cdots	68	Dec.	164	\cdots	
2.	10	8	24	64	65	\cdots	.	.	69	.	.	68	Dec.	164	.	
3	10	.	\cdots	\cdots	8	24	\ldots	\ldots	\ldots	64	65	\cdots	.	\cdots	69	\because	.	68	Dec.	: 64	\ldots	
	10	\cdots	\ldots	\ldots	8	24	.	\ldots	.	.	\cdots	.	.	.	69	72	.	*66	Nov.	163	.	
5	10	. \cdot	.	\ldots	8	24	.	\cdots	\cdots	.	\ldots	\cdots	.	\cdots	69	72	.	*66	July	'63	.	
6.	11	.	..	\ldots	8	24	.	.	.	54	65	\cdots	. \cdot	..	69	\cdots	.	65	May	'64	\cdots	
7	11	\cdots	.	\ldots	8	25	.	.	.	64	65	\cdots	.	\cdots	69	\cdots	.	74	July	'65	\ldots	
	11	8	25	.	.	.	64	65	.	.	68	69	.	.	-•		..	.	
10.	11	\cdots	\cdots	\cdots	8	25	\cdots	..	\cdots	.	\cdots	\cdots	..	\cdots	69	\cdots	\cdots				..	
11.	11	.	.	\cdots	8	25	\ldots	\ldots	.	.	70	\cdots	\because	68	Nov.	164	\ldots	
13.	12	\cdots	\cdots	.	8	25	.	.	.	64	65	66	\cdots	68	69	72	73	*66	Aug.	'63	.	
14.	12	. \cdot	..	.	8	25	.	\cdots	.	64	65	.	\cdots	\cdots	69	72	73	*66	Nov.	'63	.	
15.	12	\cdot	.	\cdots	8	26	\ldots	.	.	.	69	72	.	*66	Mar.	164	.	\cdots
16.	13	\cdots	$\ddot{5}$	$\stackrel{9}{9}$	8	26	\ldots	.	\cdots	64	65	\cdots	. \cdot	$\stackrel{\square}{\square}$	70	\because	.	77	Aug.	165	.	
17.	13	.	56	59	8	26	.	. \cdot	.	64	65	66	.	68	69	72	.	73	Oct.	'65	.	
18.	13	.	\because		8	26	.	..	\cdots	\cdots	.	70	72	..	64	June	164	..	
19.	13	.	56	59	8	26	.	\cdots	.	64	65	66	. .	68	69	\cdots	..	66	Apr.	${ }^{164}$.	\cdots
20.	14	\cdots	.	\cdots	8	27	..	\cdots	\cdots	\cdots	\cdots	\ldots	..	\cdots	71	\cdots	\cdots	64	June	164	\cdots	.
21.	14	\ldots	.	\ldots	8	26	.	..	\ldots	\cdots	\cdots	\cdots	.	\cdots	71	\cdots	\ldots	71	Aug.	${ }^{1} 65$..	
22.	13	.		\because	8	26	..	.	\cdots	\because	\ldots	\ldots	..	\ldots	70	\ldots	.	74	Sept.	'65	\cdots	
23.	14	.	56	59	8	27	.	\cdots	\ldots	64	65	66	.	68	69	.	..	*66	Jan.	'64	.	
24.	11	\cdots	56	59	8	24	.	\cdots	\cdots	64	65	66	.	68	69	.	. \cdot	*66	Dec.	163	.	
25.	14	\cdots	\cdots	\cdots	8	27 27	\cdots	\ldots	\cdots	\ldots	\cdots	.	\ldots	\cdots	71 69	\cdots	\cdots	*66	Dec. June	163	\because	
29.	11	\cdots	\cdots	\ldots	8	25	\cdots	\cdots	\cdots	$\ddot{64}$	$\stackrel{6}{6}$	$\ddot{66}$	\cdots	68	69	\cdots	\cdots	74	June	165	\ldots	
30.	10	.	.	\ldots	8	24	\cdots	..	\cdots	\cdots	.	\cdots	\cdots	..	69	72	..	*66	Oct.	163	\cdots	\cdots
31.	14	.	.	\ldots	8	27	\because	\cdots	\cdots	\ldots	\cdots	\cdots	\cdots	\because	71	\ldots	\cdots	65	June	164	\cdots	
32.	14	.	.	.	8	27	\cdots	\cdots	..	\cdots	69	\cdots	.	*66	Mar.	'64	..	
37.	14	\cdots	\cdots	.	8	27	\ldots	. \cdot	.	\cdots	\cdots	\cdots	.	\cdots	69	72	..	*68	June	: 63	.	
	12	8	25	.	.	.	\cdots	.	\cdots	\cdots	.	.	\cdots	..	74	June	165	.	\cdots
40.	15	.			8	28	\cdots	\cdots	.	\ldots	..	\cdots	\cdots	.	69	.	\ldots	72	Feb.	165	\cdots	\cdots
41.	15	\cdots	57	60	8	28	\ldots	\ldots	\ldots	64	65	66	\cdots	68	69	\cdots	73	68	Dec.	164	.	
42.	15	\cdots	57	60	8	28	\ldots	.	\cdots	\cdots	. 6	\cdots	\cdots	\cdots	69	\cdots		72	Feb.	'65	. \cdot	\cdots
45.	15	\cdots	.	.	8	28	\cdots	\cdots	\cdots	64	65	66	\cdots	68	69 69	\cdots	73	72 +66 $*$			\because	\cdots
	15	\cdots		.	8	28	\ldots	\cdots	\cdots	\cdots	\ldots	\cdots	\cdots	\cdots	69	\cdots	\cdots	*66	Feb.		\cdots	
47.	16	\cdots	57	60	8	28	\ldots	\cdots	\cdots	64	65	66	\ldots	68	69	\cdots	73	70	Sept.	164	\cdots	\because
	16	\cdots	57	60	8	29	\ldots	\cdots	\cdots	64	65	66	\ldots	68	70	. \cdot	73	71	Aug.	: 65	\cdots	
50.	16	\cdots	\cdots	.	8	29	\cdots	\cdots	.	64	65	66	.	68	70	.	73	71	Aug.	165	\cdots	.
51.	17	.	.	\cdots	8	29	.	\cdots	\ldots	64	65	\cdots	\ldots	. \cdot	69	\cdots	73	72	Mar.	${ }^{1} 65$	\ldots	\ldots
52.	17	.	..	\ldots	8	29	.	\ldots	\cdots	64	65	.	.	68	69	.	73	72	Aug.	165	.	
53.	17	.	. \cdot	.	8	29	.	..	\ldots	\cdots	. 6	66	.	68	69	.	\because	72	Aug.	${ }^{165}$	\cdots	
54.	17	\cdots	\cdots	.	8	29	.	.	.	64	65	66	.	68	69	\ldots	73	*66	Oct.	163	..	\cdots
	17	.	. \cdot	.	8	29	.	.	.	64	65	\cdots	69	72	.	69	Aug.	164	.	.
57.	16	.	\cdots	..	8	29	70	.	\cdots	72	Aug.	165	..	.
58.	.	\cdots	\ldots	.	.	.	\cdots	\cdots	\cdots \cdot	\cdots	66	Apr.	'64	\cdots	\cdots
61.	18		58	61	9	30	\cdots	\cdots	\cdots	64	65	66	..	68	70	..	\cdots	65	June	164	\cdots	\cdots
62.	18	\cdots	58	61	9	30	64	65	66	.	68	69	72	..	73	Oct.		..	.
64.	18	..	58	61	9	30	64	65	66	.	68	69	.	.	66	June	164	.	.
65.	18	.	..	\cdot	9	30	\cdots	\cdots	\cdots	\cdots	. 6	. \cdot	.	..	69	. \cdot	.	66			\cdots	\cdots
66.	18	\cdots			9	30 30	\cdots	\cdots	\ldots	64	65	$\because 6$	\cdots	\because	69	\cdots	\cdots	70	Aug.		\cdots	..
68.	18	..	58	61	9	30 30	\ldots	\cdots	\ldots	64	65	66	\cdots	68	70	\ldots	\cdots	73	Aug. Oct.	'65	\ldots	\cdots

*Appendix G.
${ }^{1}$ See back cover for series titles and sources.
${ }^{2}$ Page number shown is for September issue.
(Page numbers)

[^13]
TITLES AND SOURCES OF PRINCIPAL BUSINESS CYCLE SERIES AND DIFFUSION INDEXES

The numbers assigned to the series are for identification purposes only and do not necessarily reflect series relationships or order. " M " indicates monthly series " Q " indicates quarterly series. Dota apply to the whole period except for series designated by "EOM" or "EOQ". "EOM" indicates that data are for the end of the month ond "EOQ" indicotes data are for the end of the quarter. The general classification of series follows the approach of the National Bureau of Economic Reseorch. The series preceded by an asterisk (*) were included in the 1960 NBER list of 26 indicators.

30 nerrieadingindicators

*1. Average workweek of production workers, manufacturing (M)..-Department of Labor, Bureau of Labor Statistics
*2. Accession rote, manufacturing (M).--Department of Labor, Bureau of Labor Statistics
*3. Loyoff rote, monufocturing (M).--Department of Labor, Bureau of Labor Statistics
4. Number of persons on temporary layoff, all industries (M).-Department of Labor; Bureau of Labor Statistics; seasonal adjustment by Bureau of the Census
5. Average weekly initial claims for unemployment insurance, Stafe programs (M).--Department of Labor, Bureau of Employment Security; seasonal adjustment by Bureau of the Census
*6. Volue of manufacturers' new orders, durable goods industries (M)..-Department of Commerce, Bureau of the Census
*7. New private nonform dwelling units started (M),-Department of Commerce, Bureau of the Census
*9. Construction contracts awarded for commercial and industrial buildings, floor space (M).-F. Dodge Corporation; seasonal adjustment by Bureau of the Census and National Bureau of Economic Research, Inc.
10. Contracts and orders for plant and equipment (M).-Department of Commerce, Bureau of the Census, and F. W. Dodge Corporation; seasonal adjustment by Bureau of the Census and National Bureau of Economic Research, Inc.
11. Newly approved capital oppropriations, 1,000 manufocturing corporations (O)- Na tional Industrial Conference Board; component industries are seasonally adjusted and added to obtain seasonally adjusted total
13. Number of new business incorporations (M)..-Dun and Bradstreet, Inc.; seasonal adjustment by Bureau of the Census and National Bureau of Economic Research, Inc.
*14. Current liobilities of business foilures (M).--Dun and Bradstreet, Inc.; seasonal adjustment by Bureau of the Census and National Bureau of Economic Research, Inc.
15. Number of business failures with tiabilities of $\$ 100,000$ and over(A).--Uuii and Bradstreet, Inc; seasonal adjustment by Bureau of the Census and National Bureau of Economic Research, Inc.
*16. Corporate profits after faxes (Q).--Department of Commerce, Office of Business Ecanomics
17. Price per unit of labor cost index-ratio, wholesole prices of manufactured goods index to index of compensation of employees (sum of wages, salaries, and supplements to wages and salaries) per unit of output (M).--Department of Commerce, Office of Business Economics;' Department of Labor, Bureau of Lator Statistics; and Board of Governors of the Federal Reserve System; seasonal adjustment by Bureau of the Census
18. Profits (before taxes) per dollar of soles, all manufacturing corporations (Q).--Federal Trade Commission and Securities and Exchange Commission; seasonal adjustment by Bureau of the Census.
*19. Index of sfock prices, 500 common stocks (M).--Standard and Poor's Corporation; no seasonal adjustment
20. Change in buok value of manufucturers' inventaries of materials and supplies (M)..Department of Commerce, Bureau of the Census
*21. Change in business inventories, farm and nonfarm, after valuation adiustment (GNP component) (O)..-Department of Commerce, Office of Business Economics
22. Rafio of profits (after taxes) to income originating, corporate, all industries (Q).Department of Commerce, Office of Business Economics
*23. Index of industrial materials prices (M).--Department of Labor, Bureau of Labor Statistics; no seasonal adjustment
24. Value of manufacturers' new orders, machinery and equipment industries (M)..-Department of Commerce, Bureau of the Census
25. Change in manufacturers' unfilled orders, durable goods industries (M).--Department of Commerce, Bureau of the Census
26. Buying policy-production moterials, percent reporting commitments 60 days or longer (M).--National Association of Purchasing Agents; no seasonal adjustment
29. Index of new private housing units authorized by local building permits (M).--Depart. ment of Commerce, Bureau of the Census
30. Nonagriculfural placements, oll industries (M).--Department of Labor, Bureay of Employment Security: seasonal adjustment by Bureau of the Census
31. Change in book value of manufacturing and trode inventories, total (M)...Department of Commerce, Office of Business Economics
32. Vendor performance, percent reporting slower deliveries (M).--Chicago Purchasing Agents Association; no seasonal adjustment
37. Percent reporfing higher inventories, purchased materials (M)..-National Association of Purchasing Agents; seasonal adjustment by Bureau of the Census
*38. Index of ne business formation (μ).--Dun and Bradstreet, Inc., and Departinent of Commerce, Bureau of the Census; seasonal adjustment by Bureau of the Census and National Bureau of Economic Reseârch. Inc.

15 ABER ROUGHLY COINCIDENTINDICATORS

40. Unemployment rote, married males, spouse present (M)..-Department of Labor, Bureau of Labor Statistics
*41. Number of employees in nonagricultural establishments (M)..-Department of Labor, Bureau of Labor Statistics
41. Total nonagricultural employment, labor force survey (M).--Departm ent of L abor, Bu reau of Labor Statistics, and Department of Commerce, Bureau of the Census
*43. Unemployment rate, total (M).--Deparfment of Labor, Bureau of Labor Statistics, and Department of Commerce, Bureau of the Census
42. Average weekly insured unemployment rate, State programs (M).--Department of Labor, Bureau of Employment Security
43. Index of help-wanted advertising in newspapers (M).-National Industrial Conference Board
*47. Index of industrial production (M).--Board of Governors of the Federal Reserve System
*49. Gross national product in current dollars (Q)..-Depertment of Commerce, Office of Business Economics
*50. Gross national product in 1958 dollars (Q).--Department of Commerce, Office of Business Economics
*51. Bank detits, all standardmetropolitan statistical areas except New York (224 SMSA's) (M).--Eoard of Governors of the Federal Reserve System
*52. Personal income (M).--Department of Commerce, Office of Business Economics
44. Labor income in mining, manufacturing, and construction (m)..-Department of Commerce, Office of Business Economics
*54. Soles of retail stores (m)..-Department of Commerce, Bureau of the Census
*55. Index of wholesale prices, all commodities other than form products and foods (M)..Department of Labor, Bureau of Labor Statistics; seasonal adjustment by Bureau of the Census
45. Final sales (series 49 minus series 21) (Q).--Department of Commerce, Office of Business Economics

7 NBER LAGGING INDICATORS

*61. Susiness expenditures on new plant ond equipment, total (Q)..-Department of Commerce, Office of Business Economics, and the Securities and Exchange Commission
*62. Index of labor cost per unit of output, total manufacturing-ratio, index of compensation of employees in manufacturing (the sum of wages and salaries and supplements to wages and salaries) to index of industrial production, manufacturing (M).--Department of Commerce, Office of Business Economics, and the Board of Governors of the Federal Reserve System; seasonal adjustment by Bureau of the Census
*64. Book value of manufacturers' inventories, all manufacturing industries (EOM).--Department of Conmerce, Bureau of the Census
65. Book value of manufacturers' inventories of finished goods, all manufacturing industries (EOM)..-Department of Commerce, Bureau of the Census
*66. Consumer installment debt (EOM)..-Board of Governors of the Federal Reserve System. FRS seasonally adjusted net change added to seasonally adjusted figure for previous month to obtain current figure
*67. Bank rates on short-term business loans, 19 cities (EOQ).--Boafd of Governors of the Federal Reserve System; no seasonal adjustment
68. Index of labor cost per doflar of real corporate gross national praduct (ratio of compensation of employees in corporate enterprises to value of corporate product in 1958 dollars) (Q)..-Department of Commerce, Office of Business Economics, Mational Income Division

Continued on reverse

 by He Busuon He whis

 Teate of the Segats

88. Merchondise tro thetidice (series 86 minus series 67$) 1 T H$, Vepinfent or Commerce, Bureau bf lla Censis.
 merce, onfledi Etishess feonomics

 Division sersbratatistom by Bureat of hie censtrs

 nors of the Federthersere yslem; no seasomit 2 fistity

 Ofice of Busifess stighines

 sonally adicsied tow

99. New orders, defeasi frodicts (10),-Depantment of Cominerce, BuLadu of the Census
 Gevenors of lie refien Reserie System
 Federal Reserves y fefit

 Fthanvelem

 15 thent

 Ment

WHethestiver, index of indostiol prodicitor $(4)=$ sef sules 47

BIruslorithtis

 Spinth
 Thr bhty d esion inderes are as lollows

 IStitiont

[^0]: ${ }^{1}$ For a more complete description of MCD and its use in studying economic series, see Business Cycle Indicators, Geoffrey H. Moore, editor; National Bureau of Economic Research, Inc., vol. 1, ch. 18, "Statistics for Short-Term Economic Forecasting," by Julius Shiskin (Princeton University Press: 1961).

[^1]: $r=$ revised; $p=$ preliminary; $e=$ estimated; $a=$ anticipated; $N A=$ not available.
 ${ }^{1}$ Series are seasonally adjusted except for those series, indicated by an asterisk (*), that appear to contain no seasonal movement. See additional basic data and notes in table 2.
 ${ }^{2}$ To facilitate interpretations of cyclical movements, those series that usually fall when general business activity rises and rise when business falls are inverted so that rises are shown as declines and declines as rises (see series $3,4,5,14,15,40,43$, and 45). Percent changes are calculated in the usual way but the signs are reversed. See footnote 7 for other "change" qualifications.
 ${ }^{3}$ This average is based on month-to-month (or quarter-to-quarter) changes without regard to sign. The period varies among the series, covering 1953-63 for most series.
 ${ }^{4}$ Average computed without regard to sign.
 ${ }^{5}$ Average computed with regard to sign.
 ${ }^{6}$ Quarterly series. Figures are placed in the middle month of quarter.
 ${ }^{7}$ Since basic data for this series are expressed in plus or minus amounts, the changes are month-to-month (or quarter-to-quarter) differences expressed in the same unit of measure as the basic data, rather than in percent.
 ${ }_{8}$ Figures are placed in the last month of quarter.

[^2]: 9 1

 11
 $-\begin{aligned} & 40 \\ & 18 \\ & 16 \\ & 14 \\ & 12 \\ & 10 \\ & 10 \\ & 8\end{aligned}$

[^3]: ${ }^{1}$ Beginning with April 2962, the 1960 Census is used as the benchmark for computing this series. Prior to April 1962 , the 1950 Census is used as the benchmark. ${ }^{2}$ Data exclude Puerto Rico which is included in figures published by source agency.

[^4]: ${ }^{1}$ Beginning with April 1962，the 1960 Census is used as the benckmark for computing this series．Prior to April 1962，the 1950 Census is used as the benchmark．${ }^{2}$ Data exclude Puerto Rico which is included in figures published by source agency．

[^5]: ${ }^{1}$ Week ended October 12.

[^6]: NOTE: Data are not shown when held confidential by the source agency.

[^7]: r = revised; $p=$ preliminary.
 ${ }^{1}$ Data are seasonally adjusted by the Bureau of the Census. (See "Seasonal and Related Statistical Adjustments", page 2.)

 > Basic data for components of diffusion index D19, Index of stock prices, 500 common stocks, and of diffusion index D5, Initial claims for unemployment insurance, State programs, are not available from the Census Bureau.

[^8]: －＝rising； $0=$ unchanged；$+=$ falling．The signs are reversed because this series usually rises when general business activity falls and falls when business rises． Data used are for the week ending nearest the 22d of the month．
 ${ }^{1}$ Series components are seasonally adjusted by the Bureau of the Census before the direction of change is determined．（See ＂Seasonal and Related Statistical Adjustments＂，page 2．）The percent rising is based on 47 labor market areas．Directions of change are shown separately for only the 26 largest areas．The number in parentheses indicates the size rank for each labor market area．

[^9]: A full description of X-11 will appear in Bureau of the Census Technical Paper No. 15, The X-11 Variant of the Census Method II Seasonal Adjustment Program. A Fortran deck for $\mathrm{X}-11$ will also be available from the Bureau of the Census at cost.

 Morton Somer programed the monthly versions of X-11 and Norman E. Bakka programed the quarterly versions.

[^10]: ${ }^{1}$ For the advantages of time series analysis with the types of adjustments made by this program, see Electronic Computers and Business Indicators by Julius Shiskin, National Bureau of Economic Research, Occasional Paper No. 57, New York, 1957.

[^11]: ${ }^{2}$ "Length-of-month variation" is defined as variation attributable to the number of days in a particular month, while "trading-day variation" is defined as variation attributable to the number of Mondays, Tuesdays, etc., in a particular month.

[^12]: ${ }^{1}$ Ratio of index of wholesale prices of manufactured goods to index of labor cost per unit of output (series 62).
 ${ }^{2}$ Ratio, index of compensation of employees in manufacturing (sum of wages and salaries plus supplements to wages and salaries) to index of industrial production, manufacturing.
 ${ }^{3}$ Ratio of compensation of employees in corporate enterprises, in current dollars, to value of corporate product in constant (1958) dollars.

[^13]: ${ }^{1}$ See back cover for series titles and sources.
 ${ }^{2}$ Page number shown is for September issue.

