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Abstract

Climate change exacerbates environmental risks such as intensifying extreme precip-
itation and heat events. Urban design, in turn, can further amplify these background
climate stressors through the well-known urban heat island and rainfall effects, which are
largely controlled by the local dominance of impervious land covers, surface roughness,
and lack of mature tree canopy. While the extent to which present-day exposures and
outcomes related to these climate-exacerbated environmental risks in urban areas can be
linked to historical policies has received recent attention (Mujahid et al. 2021; Lane et al.
2022; Swope et al. 2022), causal inference within observed correlative associations has
yet to be established. Here, we use a boundary design to estimate the persistent, causal
effects of redlining on present-day exposure to climate change-exacerbated environmental
risks in six large U.S. cities. Properties in areas assigned a lower-credit grade by the
Home Owners’ Loan Corporation in the 1930s have 3% higher exposure to flood risk and
a 0.07◦F higher air temperature today compared to similar properties in higher-graded
areas. We show that these differences are driven by lower tree canopy coverage and ground
surface perviousness (important measures of environmental capital) in lower-graded areas.
Our findings establish, for the first time, that the long-lasting effects of historical urban
planning policies can be causally linked to present-day unequal exposures to climate risks.

∗The views expressed here are those of the authors and should not be interpreted as those of the Fed-
eral Reserve Bank of Richmond or the Federal Reserve System. Contacts: claire.conzelmann@rich.frb.org,
ariana@mit.edu, toan.phan@rich.frb.org and jhoffman@smv.org.



1 Significance Statement

Climate change exacerbates heat and precipitation extremes, which are further amplified in
urban environments. While studies have argued that redlining – the process of denying neigh-
borhoods access to capital based on a discriminatory grading scheme – can be linked to present-
day socioeconomic outcomes, observed patterns of inequitable climate risk through this lens
remain correlative in nature. Our method of analysis allows us to infer causality between
redlining policies in the 1930s and 1940s and present-day climate-exacerbated flood and heat
risk in six U.S. cities. This study contributes a first-of-its-kind application of a boundary
design to investigate environmental disparity.

2 Introduction

Decades-old housing policies institutionalized at the federal level have had a lasting effect
on American society. A prominent example is the “redlining” housing policy pursued by the
Home Owners’ Loan Corporation (HOLC) in the 1930s. This practice used maps to demarcate
neighborhoods according to their perceived lending risk. Although these maps were supposed
to reflect lending risk characteristics such as housing age and prices, the racial composition
of neighborhoods also played a prominent role in assigning grades. HOLC maps guided the
allocation of credit and mortgage lending, which ultimately affected housing markets and home
ownership in redlined neighborhoods (Aaronson et al. 2021b).

Redlining was outlawed in the 1960s due to its discriminatory nature, but its legacy con-
tinues to shape present-day income and wealth inequality (Krivo and Kaufman 2004; Ross
and Yinger 2002; Turner 2003; Appel and Nickerson 2016; Aaronson et al. 2021a,b). However,
evidence documenting whether this policy had long-lasting effects on communities’ exposure
to environmental and climate risks has remained largely unexplored. Filling this gap is key to
reducing environmental and health disparities among communities (Banzhaf et al. 2019a,b).

This paper provides novel evidence of the effects of redlining on present-day exposure to
environmental risks. We use digitized HOLC maps and combine them with high-resolution
data on key environmental risks, including flooding and heat exposure. We estimate the
effects of redlining by exploiting the fact that HOLC maps assigned grades to discrete areas
throughout cities, with higher grades reflecting a lower perceived risk of lending. The discrete
nature of this policy provides a natural experiment where otherwise similar properties end up
on opposite sides of HOLC boundaries, receiving different risk grades. We use a boundary
design that compares properties in contiguous HOLC areas with different grades to examine
whether those assigned a lower grade in the 1930s have higher exposure to flooding and heat-
related risks today.

We find that flood risk and heat exposure significantly increase as the HOLC grade worsens.
Properties on the lower-graded side of a HOLC boundary have a flood factor 0.06 points higher
than properties on the higher-graded side (about a 3% increase in flood risk relative to the
sample mean). We also find that temperatures on lower-graded sides are 0.07◦F warmer than
on higher-graded ones. These estimates are statistically significant at the 1% level.
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We then study the mechanisms driving the higher environmental risks in redlined areas. We
document that lower-graded areas have less environmental capital—the stock of environmental
factors that mediate and determine risk. We proxy for environmental capital using street-level
vegetation, tree canopy coverage, and ground surface perviousness. These factors can be
improved via public and private investments and have been shown to reduce environmental
risk (Li et al., 2012; Davis et al., 2016; Xiao and McPherson, 2002). We find that properties
on the lower-graded side of a HOLC boundary have less vegetation, less tree canopy, and lower
perviousness than properties on the higher-graded side. We interpret these local differences
as reflecting a lack of investments in environmental capital on lower-graded sides of HOLC
boundaries.

This paper contributes to two primary literatures. First, we contribute to a growing liter-
ature documenting the adverse and persistent effects of historical redlining on contemporary
outcomes. This literature shows that HOLC maps became an important mechanism guiding
the allocation of credit and mortgage lending, which ultimately affected housing markets and
home ownership in redlined neighborhoods. For example, Appel and Nickerson (2016) and
Aaronson et al. (2021b) document the adverse long-run effects on housing market outcomes of
being assigned a lower grade. Krimmel (2018), Faber (2020), and Aaronson et al. (2021a) show
that the practice of redlining contributed to a decline in population density, greater segrega-
tion, and lower economic opportunity. Methodologically, we build on the work of Aaronson
et al. (2021b) and use a boundary design to identify the causal effects of the maps. Differ-
ent from previous work, we show that the practice of redlining had a persistent impact on
environmental risks and environmental capital.

Second, we contribute to the literature on environmental justice. This literature has pro-
vided ample evidence showing that, in the U.S., non-Hispanic minorities are disproportionately
exposed to pollution, heat, and other environmental risks (see Banzhaf et al., 2019b, for a com-
plete review). For example, Voelkel et al. (2018), Hsu et al. (2021), and Renteria et al. (2022)
document a higher heat exposure among non-Hispanic communities of color. Jbaily et al.
(2022) document a higher incidence of air pollution among racial and ethnic minorities and
lower-income groups, and Colmer et al. (2020) document that air pollution is persistently
concentrated in some areas and neighborhoods. Bakkensen and Ma (2020) document that
low-income and minority residents are more likely to move into areas with higher flood risks.
Wilson (2020) and Hoffman et al. (2020) documents that, on average, redlined areas are cur-
rently exposed to higher temperatures. We complement these studies by providing novel causal
evidence on the effects of redlining on neighborhoods’ exposure to climate and environmental
risks. We also explore the mechanisms leading to these differences and document an important
role of neighborhoods’ environmental capital in determining their exposure.

3 Data

Home Owners’ Loan Corporation Maps. We obtained HOLC map shapefiles from the
University of Richmond’s Digital Scholarship Lab’s Mapping Inequality database. The project
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digitized historical HOLC maps from 239 cities. The maps indicate the grades assigned to
different areas in these cities, with grades ranging from A (lowest lending risk) to D (highest
lending risk). Our sample consists of nine cities across the U.S. – Baltimore, Boston, Houston,
Miami, Los Angeles, New York City, Sacramento, Seattle, and Tampa – for which we have
measures of flood risk.1 HOLC maps of the nine cities are shown in Figure 4 in the Appendix.
The maps show that not all city areas received a grade. In our analysis, we focus on those
areas that did and explore the consequences of receiving a lower grade.

Measuring Environmental Risk. We use two measures of environmental risk: a flood
risk index and a measure of heat exposure. To measure flood risk, we use the First Street
Foundation’s Flood Factor. This is a novel measure of flood risk that assigns a score from one
to 10 to each property in the continental U.S. This measure reflects the risk of flooding in the
next 30 years, with a value of 1 denoting the lowest risk and a value of 10 the highest. The
flood factor is computed using a model that accounts for four major contributors to flooding:
rainfall, river overflow, high tide, and coastal storm surge. The First Street Foundation model
also accounts for future environmental changes, including sea level rise, which captures the
risk of flooding in the face of a changing climate. The model also incorporates information
on elevation, ground surface perviousness, and the prevalence of community flood protection
measures (such as dunes, wetlands, and seawalls), which make flood risk vary locally even
among neighboring properties.

We measure heat exposure using the Urban Heat Island Maps from the National Integrated
Heat Health Information System. These maps were created using vehicular traverses to collect
ground-based temperature measurements. These are then used to estimate temperatures for
the entire urban area at a ten meter resolution. Rather than measuring ambient air temper-
ature or land surface temperatures, these urban heat island maps measure the ground-level
temperature, providing a more accurate measure of people’s exposure to heat.

Proxies of Environmental Capital. We use three proxies of environmental capital: tree
canopy coverage, street-level vegetation, and ground surface perviousness. We measure tree
canopy coverage for 2016 using raster data from the National Land Cover Database. These
data are available for 30-meter by 30-meter cells and provides the percentage of the cell area
that is covered by tree canopy. These estimates are derived from multi-spectral Landsat
imagery.

To measure street-level vegetation, we use the green view index from the Treepedia database,
produced by the MIT Senseable City Lab. The green view index measures the percentage of
vegetation in images from Google Street View panoramas. The index is available for points
along the street network sampled every 20 meters. This measure complements the tree canopy
measure constructed using satellite imagery by providing additional information on the pres-
ence of vegetation at the street level.

1Our sample also contains measures of heat exposure for six of these cities (Baltimore, Boston, Houston,
Los Angeles, Miami, and Seattle).
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Finally, we also obtained a measure of ground surface imperviousness for 2016 from the
National Land Cover Database, available for 30-meter cells. The database provides the share of
developed land that uses impervious surfaces. For ease of interpretation, we define perviousness
as 1 minus the imperviousness share.

Summary Statistics. Table 1 presents summary statistics for our measures of environmen-
tal risk and capital for the nine cities in our sample and by HOLC grade. The table shows
that as one moves from higher-graded to lower-graded cells, there is a sizable decline in our
proxies of environmental capital. For example, tree canopy coverage declines from 21.5% to
3.5% and perviousness decreases from 62.7% to 27.7% as we move from A-graded to D-graded
areas.

For environmental risks (flooding and heat exposure), there is no systematic pattern across
grades. However, mean differences in environmental risk across grades are hard to interpret,
since they also capture differences in geographic attributes that vary across locations, such
as elevation or coastal proximity. For example, A-graded properties could have a greater
flood risk because they are in high-income neighborhoods near the coasts. To separate the
role of redlining from other geographic differences, we implement a boundary design. This
design compares similar properties on opposite sides of HOLC boundaries, which offer a better
comparison group.

Defining the Boundary Sample

To implement our boundary design, we select HOLC boundaries separating areas with different
grades and decompose each boundary into straight segments, or borders. Our boundary sample
includes properties or cells within a 100-meter buffer of these borders. When constructing the
boundary sample, we compute distances as follows. For the flood factor data, we computed
the distance from the centroid of each property to the nearest HOLC border. For the tree
canopy, ground surface perviousness, and temperature data, we computed the distance from
each cell centroid to the nearest HOLC border. Finally for the green view index data, we
compute the distance from each sample point to the nearest HOLC border.

Figure 1 describes our sample construction. Panel (a) shows the HOLC map of Baltimore
and identifies the borders between polygons of differing grades and their corresponding 100
meter buffers. Panel (b) shows an enlarged map of a selection of the HOLC polygons in Bal-
timore. The thicker lines represent the HOLC border separating differently graded polygons.
The thinner lines show the 100 meter buffer zones around each border. The black and grey
points denote the set of properties within the 100 meter buffers. The black points are proper-
ties on the higher-graded side of the nearest HOLC border; the grey points are properties on
the lower-graded side of the nearest HOLC border.

Our boundary design estimates the effect of a lower HOLC grade by comparing properties
on opposite sides of the same border (i.e., the properties lying on opposite sides of the border
identified with black or grey dots in Figure 1). The key assumption behind this approach is that
properties on different graded sides of the HOLC borders share similar location fundamentals—
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Table 1: Summary statistics.

Samples

Full
Sample A grade B grade C grade D grade

100m-
Boundary
Sample

Environmental risk

Flood Factor (1 to 10) 1.802 2.026 1.756 1.793 1.805 1.771
(1.825) (2.307) (1.852) (1.765) (1.772) (1.748)

Number of properties in flood
factor sample 2,409,530 145,888 528,674 1,159,894 575,074 317,029

Temperature (◦F) 86.464 86.26 87.255 86.350 85.775 85.85
(7.235) (8.036) (7.018) (7.166) (7.205) (6.998)

Number of 10m cells in
temperature sample 9,849,451 871,227 2,559,612 4,468,268 1,950,344 1,343,274

Environmental capital

Green View Index (%) 19.365 29.264 23.326 17.423 17.134 20.634
(11.542) (11.480) (11.970) (10.279) (11.044) (11.622)

Number of points in GVI
sample 321,131 25,014 60,101 141,732 94,284 45,105

Tree Canopy (%) 8.843 21.505 13.401 6.240 3.486 9.875
(16.663) (22.977) (19.423) (13.566) (10.378) (16.818)

Number of 30m cells in tree
canopy sample 2,419,037 251,831 552,688 1,066,956 547,195 308,314

Perviousness (%) 37.326 62.686 45.936 31.792 27.745 36.035
(25.681) (24.433) (25.573) (22.003) (22.657) (24.367)

Number of 30m cells in
perviousness sample 2,419,045 251,830 552,685 1,067,038 547,133 308,341

Note.— The table provides the mean and standard deviation (in parentheses) for the measures of environ-
mental risk and the proxies for environmental capital. The columns break down these statistics by sample,
including HOLC areas in our nine cities, A-graded areas, B-graded areas, C-graded areas, and D-graded areas,
respectively. The final column reports these statistics for the 100m-boundary sample described in Section 3.

exogenous geographic attributes that may impact climate-related outcomes and differ only in
their historical grades.

To verify this assumption, we examine how properties differ in terms of precipitation, soil
quality, and elevation on both sides of the HOLC borders. For precipitation, we use data
on annual precipitation from the USDA available for 800 meter grids and measured in inches
of precipitation per year. For soil quality, we use data on soil water storage available for
10m cells. This is an indicator of soil’s ability to retain water, measured in centimeters and
ranging from 0 (least) to 150 (highest). For elevation, we use data from the U.S. Geographical
Services, which provides raster data on elevation in meters above the sea level available for
1/3 arcsecond cells (approximately 10m cells).

Table 2 reports the average precipitation, soil quality, and elevation on the higher- and
lower-graded sides of the HOLC borders in our sample. The last column reports the difference
between these means and its standard error. Differences in precipitation and soil quality across
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Figure 1: A visualization of sample construction. Panel (a) shows the HOLC map of
Baltimore with borders and buffer zones between polygons with differing HOLC grades. Panel
(b) shows an enlarged map of a sample of the HOLC borders in Baltimore. The thicker lines
represent the HOLC border separating differently graded polygons. The thinner lines are 100
meter buffer zones around each border. Only properties (or cells) within the 100 meter buffer
zones are included in the sample. A subsample of properties included in the sample are shown
on the map; the black properties are on the higher-graded side of the HOLC border, and the
grey properties are on the lower-graded side of the HOLC border.

HOLC borders are small and not statistically significant. On the other hand, higher-graded
sides have a 3.17-meter higher elevation than lower-graded sides. As a consequence, in our
regressions, we will need to control for elevation to account for these differences across HOLC
borders.

A second potential concern with our boundary design is that the sample might not be
representative of all areas that received a HOLC grade. The last column in Table 1 provides
summary statistics for the 100-meter boundary sample and shows that its average environmen-
tal risks and capital are comparable to the full sample reported in column 1. This suggests that
our estimates for the boundary sample are likely to be representative of the broader impacts
of redlining.
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Table 2: Location fundamentals for higher and lower-graded sides.

100m-Boundary Sample

Higher-Graded Side Lower-Graded Side Difference

PrecipitatioN 35.89421 35.16501 0.729206
(1.781018)

Number of 800m cells in
precipitation sample cells 164 154

Soil quality 13.60556 13.6027 -0.00285
(0.008211)

Number of 10m cells in soil
quality sample 1,324,287 1,315,116

Elevation 48.87415 45.7073 3.16685***
(0.070258)

Number of 1/3 arcsecond
cells in elevation sample 1,097,258 1,052,036

Note.— The table provides the average of each variable on the higher- and lower-graded sides of HOLC
borders and the difference in means. Standard errors are in parentheses. The 100m-boundary sample includes
observations within 100 meters of a HOLC border in areas with different HOLC grades. Precipitation measures
annual rainfall per year in inches. Soil quality measures the amount of available water storage in the soil in
centimeters. Elevation measures elevation above sea level in meters. ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1.

4 The Causal Effects of Redlining on Environmental Risk

To uncover the causal effects of redlining on environmental risk, we estimate the following
regression using the 100-meter boundary sample:

Environmental Riski = α+ βBBi + βCCi + βDDi + γ log elevationi + fb + ϵi. (1)

We use flooding and heat exposure as our measures of environmental risk. For flooding, i

denotes a property, and we estimate equation (1) at the property level. For heat exposure, i
denotes a 10-meter cell, and we estimate equation (1) at the cell level.

The regression explains environmental risk as a function of HOLC grades, treating a grade
of A as the excluded category. This is captured by the dummy variables Bi, Ci, and Di,
which indicate the HOLC grade of the area that contains each cell or property. In this model,
βB, βC , and βD capture the causal effect of being assigned a grade lower than A. In addition,
we control for the log of elevation (which is particularly important for the flood risk), and
for border fixed effects fb, where b is the closest HOLC border to property i. Border fixed
effects capture common geographic attributes of the properties and cells near a boundary but
on differently graded sides. They ensure that we identify the causal effect of lower HOLC
grades by comparing each property or cell to those on the opposite side of the same border.
To account for spatial correlation, we cluster errors at the border level.

The left panel of Figure 2 plots the point estimates along with the 95% confidence intervals
for β̂B, β̂C , β̂D from equation (1). The figure shows that the flood risk and temperature of
cells increases monotonically as the HOLC grade worsens. Properties in B-graded areas have
a flood factor that is 0.04 points higher than properties in A-graded areas. This effect more
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than triples for properties in D-graded areas, which have a flood factor that is 0.14 points
higher than A-graded properties. These estimates are economically significant, amounting to
about 2.5% and 8% of the sample standard deviation for the flood risk. Similarly, we see that
heat exposure increases as HOLC grade worsens. Compared to cells in A-graded polygons, C-
graded cells are approximately 0.11◦F hotter, and D-graded cells are 0.15◦F hotter. Appendix
Table 3 summarizes these results and provides additional information for these regressions.

Figure 2: Effects of historical HOLC grades on current environmental risk
and capital. The figure plots the point estimates β̂B, β̂C , and β̂D (with 95% confidence
intervals, standard errors clustered at the border level) from regressing Yi = α + βBBi +
βCCi + βDDi + γ log elevationi + fb + ϵi for our two measures of environmental risk, flood risk
and heat exposure (left panel), and our three proxies of environmental capital – green view
index (GVI), tree canopy, and perviousness (right panel).

To summarize our results in a parsimonious way, we pool the estimates of equation (1) in
a single value capturing the effect of being assigned to a lower-graded area. In particular, we
use the boundary sample to estimate the equation:

Environmental Riski = α+ βLGSi + γ log elevationi + fb + ϵi. (2)

In this specification, LGSi is an indicator for whether cell or property i is on the lower-graded
side of the nearest HOLC border.

The left panel in Figure 3 plots the coefficients for LGSi in equation (2) using flooding
and heat exposure as our measures of environmental risk. Being on the lower-graded side of
a HOLC border has a statistically and economically significant impact on a property’s flood
factor, increasing it by approximately 0.06 points. This corresponds to a 3% increase in risk
relative to the baseline flood factor. Being on the lower-graded side of a HOLC border also
increases exposure to heat. Cells on the lower-graded side are 0.069◦F warmer than cells on
the higher-graded side of the border. Appendix Table 4 summarizes these results and provides
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Figure 3: Effects of lower HOLC grade on current environmental risk and
capital. The figure plots the point estimate β̂ (with 95% confidence intervals, standard
errors clustered at the border level) from Yi = α + βLGSi + γ log elevationi + fb + ϵi for our
two measures of environmental risk, flood risk and heat exposure (left panel), and our three
proxies of environmental capital – green view index (GVI), tree canopy, and perviousness
(right panel).

additional information for these regressions. In a city with very high flood risk – such as New
Orleans, which has an average flood factor of 8.2 – this 0.06 point increase in flood factor
is small, increasing flood risk by around 0.6%. For cities with less frequent and more minor
flooding – such as Seattle, which has an average flood factor of 1.6 – this effect on flood factor
corresponds to an increase that is more than five times larger (3.5%) than the relative increase
for New Orleans.

4.1 The Role of Environmental Capital

We now explore the mechanisms behind the higher environmental risk in lower-graded HOLC
areas. We explore the idea that redlining lowers investment in environmental capital, which
then manifests into higher environmental risks. A lower HOLC grade can reduce investments
in environmental capital for several reasons. For example, lower property values can affect local
taxes and the ability of communities to invest in vegetation, trees, and better construction
materials (Schwarz et al., 2015; Hope et al., 2006; Kinzig et al., 2005). Further, areas with high
income inequality have been linked to lower levels of social capital and community engagement
(Alesina and La Ferrara, 2000, 2002; Paarlberg et al., 2018), which could impede a community’s
investment in public goods. We view our measures of perviousness, tree canopy, and street
vegetation as capturing the ability of a community to invest in local public goods that reduce
environmental risk. For example, communities could increase their tree coverage and reduce
their heat exposure by investing in parks and public gardens. Likewise, communities could
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invest in draining systems or in better and more pervious materials to reduce their risk of
flooding.

The right panel in Figure 2 reports estimates of equation (1) using our three measures
of environmental capital as outcomes. We find that lower HOLC grades lead to reduced
perviousness, street vegetation, and tree canopy. Cells in B-graded and D-graded areas have a
level of perviousness 3.5 and 7.9 percentage points lower, respectively, than cells in A-graded
areas on the opposite site of the HOLC border. These effects are large when compared to an
average perviousness of 36.5% in our sample. Likewise, cells in D-graded areas have a tree
canopy and green view index 3.8 and 5.5 percentage points lower, respectively, than cells in
A-graded areas. These effects are also sizable relative to the sample means in Table 1.

The right panel of Figure 3 reports estimates of equation (2) using our three measures of
environmental capital as outcomes. These single measures of the effects of redlining show that
being assigned a lower HOLC grade results in a reduction in perviousness of 3.1 percentage
points, tree canopy of 1.4 percentage points, and the green view index of 2.1 percentage points.
These effects are all sizable at about 5 to 10% of their sample means.

4.2 Robustness Checks

A potential concern with our boundary design sample is that it is not representative of all areas
that received a HOLC grade. We provide results from equations (1) and (2) utilizing different
samples to corroborate our main findings. Appendix Table 5 offsets our 100-meter boundary
sample by 50 meters on either side. The top panel shows that our boundary design is robust
to this 50-meter boundary offset. Furthermore, in this sample, each measure of environmental
risk increases monotonically as HOLC grade worsens, and each measure of environmental
capital decreases monotonically as HOLC grade worsens (bottom panel). Appendix Table 6
presents results from Equations (1) and (2) using properties/cells within 300 meters of each
HOLC border with a grade change. When increasing the sample to this distance, we risk the
grids becoming less comparable, though most of our results are robust to this sample selection
as well.

In another robustness check, we include a specification that controls for the Housing Price
Index (HPI) of each property or cell. This is because the difference in housing prices can
account for differences in environmental capital that we do not observe. We gather HPI data
at the census tract level from the Federal Housing Finance Agency and use the average HPI
for each census tract from 2016-2019. Appendix Table 7 shows that our results from equations
(1) and (2) are robust to the addition of this control, signaling that the lower environmental
capital and higher environmental risk we find in lower-graded properties/cells are not being
driven by differences in housing prices. Because lower housing prices are a result of redlining,
however, these results should be interpreted with a degree of caution, as the inclusion of the
control could introduce selection bias (Angrist and Pischke, 2014).
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5 Conclusion

This paper documented the persistent causal impact of the redlining housing policy pursued
by the Home Owners’ Loan Corporation (HOLC) in the 1930s on present-day exposure to
environmental risks. We use a boundary design that compares properties or cells within 100
meters of a HOLC border of differing grades to identify causality. We find that properties on
the lower-graded side of a HOLC border have significantly higher flood factor and heat exposure
than properties on higher-graded sides. We further find that the higher environmental risks are
in part driven by a decline in environmental capital in redlined areas. In particular, we show
that properties on the lower-graded side have lower levels of green view index, tree canopy,
and ground surface perviousness, which we take to reflect a a lack of investments in public
goods that can mitigate environmental risks.

This long-term effect of redlining on environmental risk exposure is relevant for several
reasons. First, because higher flood risk typically means the financial risk from flood damage
is elevated, increased flood risk could exacerbate the existing economic inequality in these
communities. Second, the long-term effects of redlining suggest that policies can significantly
impact communities long after their cessation. This highlights the importance not only of
ensuring that policies like the HOLC lending practices are not reinstated, but also of creating
equitable climate policy that can reduce climate risk exposure in communities experiencing
systematic disinvestment and disproportionate exposure to environmental risk due to past
discriminatory policies. As sea levels continue to rise, floods continue to increase in frequency,
and temperatures keep rising, recognizing the unequal exposure to environmental risks will be
crucial to creating place-specific policies that effectively abate future climate risk for all.
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(i) Manhattan

Figure 4: HOLC Map Scans of Cities Included in Sample

Table 3: Effects of Historical HOLC Grade on Current Environmental Risk and Capital

100m-Boundary Sample

Flood Factor Temperature GVI %Canopy %Perviousness

B Grade 0.044* 0.029 -1.528*** -1.944*** -3.563***
(0.024) (0.019) (0.438) (0.249) (0.339)

C Grade 0.099*** 0.110*** -3.660*** -3.722*** -7.274***
(0.034) (0.022) (0.461) (0.268) (0.378)

D Grade 0.141*** 0.149*** -5.472*** -3.819*** -7.923***
(0.052) (0.030) (0.533) (0.294) (0.438)

log(elevation) -1.564*** -0.139*** 0.008 0.234*** 0.093
(0.357) (0.035) (0.599) (0.031) (0.080)

N 316110 1343217 44025 307380 307426
R2 0.615 0.994 0.659 0.631 0.663

Note.—Flood risk, exposure to heat, GVI, canopy coverage, and perviousness all worsen as HOLC grade
worsens. The table shows the results from regressing Yi = α+ βLGSi + γ log(elevi) + fb + ϵi using properties
and cells i within 100m of nearest HOLC border b, where Y is either Flood Risk, Heat Exposure, Perviousness,
Canopy coverage, or Green View Index. Standard errors clustered at border level in parentheses; ∗ ∗ ∗p <
0.01, ∗ ∗ p < 0.05, ∗p < 0.1.
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Table 4: Effects of Lower HOLC Grade on Current Environmental Risk and Capital

100m-Boundary Sample

Flood Factor Temperature GVI %Canopy %Perviousness

lower-graded Side 0.056*** 0.069*** -2.094*** -1.418*** -3.107***
(0.020) (0.010) (0.172) (0.091) (0.146)

log(elevation) -1.564*** -0.139*** 0.087 0.229*** 0.086
(0.356) (0.035) (0.600) (0.031) (0.081)

N 316110 1343217 44025 307380 307426
R2 0.615 0.994 0.659 0.631 0.662

Note.—Properties/cells on a lower HOLC graded side have worse flood risk, perviousness, canopy coverage,
green view indices, and heat risk than those on a higher-graded side. The table shows the results from regressing
Yi = α + βLGSi + γ log(elevi) + fb + ϵi using properties and cells i within 100m of nearest HOLC border b,
where Y is either Flood Risk, Heat Exposure, Perviousness, Canopy coverage, or Green View Index. Standard
errors clustered at border level in parentheses; ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1.

Table 5: 50M-Boundary Offset

50m-Boundary Offset Sample

Flood Factor Temperature GVI %Canopy %Perviousness

Lower-Graded Side 0.064*** 0.066*** -2.382*** -1.578*** -3.898***
(0.021) (0.010) (0.164) (0.093) (0.147)

log(elevation) -1.382*** -0.153*** -1.076 0.214*** 0.128***
(0.371) (0.037) (0.660) (0.024) (0.045)

N 300839 1296255 41889 291657 291617
R2 0.617 0.995 0.664 0.648 0.673

B Grade 0.064** 0.061*** -1.207*** -1.855*** -3.835***
(0.026) (0.019) (0.466) (0.254) (0.347)

C Grade 0.116*** 0.127*** -3.591*** -3.731*** -8.053***
(0.035) (0.022) (0.478) (0.271) (0.383)

D Grade 0.175*** 0.154*** -5.842*** -3.971*** -9.699***
(0.054) (0.030) (0.530) (0.300) (0.447)

log(elevation) -1.382*** -0.153*** -1.142* 0.217*** 0.130***
(0.371) (0.037) (0.663) (0.025) (0.044)

N 300839 1296255 41889 291657 291617
R2 0.617 0.995 0.664 0.648 0.673

Note.— Table presents results from Equations (1) and (2) using a sample that offsets our 100 meter buffer
zones by 50 meters on either side of the HOLC border. The top panel shows results from Equation (2);
the bottom panel shows results from Equation (1). Standard errors clustered at border level in parentheses;
∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1.
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Table 6: 300M-Boundary Sample

300M-Boundary Sample

Flood Factor Temperature GVI %Canopy %Perviousness

Lower-Graded Side 0.027 0.106*** -2.184*** -2.016*** -4.165***
(0.024) (0.021) (0.175) (0.099) (0.166)

log(elevation) -1.594*** -0.176*** -0.260 0.303*** 0.148
(0.275) (0.037) (0.470) (0.040) (0.091)

N 654988 2762811 90404 615672 615735
R2 0.529 0.992 0.602 0.586 0.611

B Grade 0.040 0.085** -1.925*** -2.860*** -5.156***
(0.029) (0.035) (0.477) (0.279) (0.381)

C Grade 0.084** 0.236*** -4.160*** -5.216*** -10.098***
(0.042) (0.040) (0.506) (0.296) (0.426)

D Grade 0.080 0.266*** -5.945*** -5.602*** -11.118***
(0.061) (0.057) (0.569) (0.318) (0.486)

log(elevation) -1.594*** -0.170*** -0.369 0.311*** 0.160*
(0.275) (0.037) (0.475) (0.040) (0.090)

N 654988 2762811 90404 615672 615735
R2 0.529 0.992 0.602 0.587 0.612

Note.— Table presents results from Equations (1) and (2) using properties/cells within 300 meters of the
nearest HOLC border with a grade change. The top panel shows results from Equation (2); the bottom panel
shows results from Equation (1). Standard errors clustered at border level in parentheses; ∗ ∗ ∗p < 0.01, ∗ ∗ p <
0.05, ∗p < 0.1.

Table 7: Controlling for Housing Price Index

100m-Boundary Sample

Flood Factor Temperature GVI %Canopy %Perviousness

Lower-Graded Side 0.072*** 0.068*** -1.842*** -1.395*** -3.023***
(0.023) (0.011) (0.226) (0.116) (0.176)

log(elevation) -1.215*** -0.119*** -0.304 0.224*** 0.084
(0.357) (0.037) (0.780) (0.031) (0.084)

HPI -0.000 -0.000 0.004** 0.003*** 0.008***
(0.000) (0.000) (0.002) (0.001) (0.001)

N 193768 604595 28007 218251 218322
R2 0.638 0.970 0.645 0.622 0.622

B Grade 0.032 0.034*** -1.587*** -1.817*** -3.360***
(0.027) (0.013) (0.501) (0.273) (0.370)

C Grade 0.107*** 0.110*** -3.368*** -3.461*** -6.653***
(0.038) (0.018) (0.568) (0.304) (0.422)

D Grade 0.164** 0.143*** -5.162*** -3.407*** -7.222***
(0.064) (0.025) (0.728) (0.366) (0.533)

log(elevation) -1.215*** -0.121*** -0.353 0.228*** 0.092
(0.358) (0.037) (0.782) (0.031) (0.083)

HPI -0.000 -0.000 0.004* 0.003*** 0.009***
(0.000) (0.000) (0.002) (0.001) (0.001)

N 193768 604595 28007 218251 218322
R2 0.638 0.970 0.645 0.623 0.622

Note.— Table presents results from Equations (1) and (2) with the inclusion of a control for housing price
index at the census tract level. The top panel shows results from Equation (2); the bottom panel shows results
from Equation (1). Standard errors clustered at border level in parentheses; ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1.
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