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1. Introduction

Some institutional arrangements intrinsically have high incentive costs. These costs

surface in adverse situations. Sometimes attempts to lessen the damage may appear

less cogent, while other times much harsher crisis management solutions are imple-

mented. In the past, these different treatments seemed ad hoc and random, which

economists often refer to as time inconsistent. In this paper, we argue that this seem-

ingly random pattern of crisis management may be approximately optimal to sustain

the relationship and to minimize long-term cost.

Historically, in episodes of financial turmoil, some troubled institutions have been

bailed out, and others have not. As a result, the fate of these troubled parties ranges

from complete failure/bankruptcy to full recovery.1 Typically, a troubled institution

gets bailed out on the ground that the alternative (failure) would have been a lot

more costly, at least in the short run, since it might impose a big negative externality

on many related parties. When this happens, economists are always quick to point

out a fatal flaw of such rescue operation: the moral hazard—the “too big to fail”

justification of bailout encourages behaviors that may lead to more failure. This

incentive cost serves as the rationale for not bailing out some troubled institutions. We

want to build an alternative theory on crisis/bailout that accounts for this very wide

spectrum of outcomes. In view of the diverse outcomes, and of the tension between ex-

ante and ex-post efficiency, questions about economic efficiency are especially salient.

We model this problem as a dynamic game between the “crisis-inflicting” party and

the potential “help-to-clean-up” party. We construct a noncooperative, two-player

model where an active agent takes costly unobservable action to reduce the incidence

of crisis (avoidance). Whenever a crisis occurs, both parties suffer. Each agent decides

unilaterally how much to contribute to contain the loss (mitigation). It is assumed

both players have nontransferable utility. They can contribute directly to reduce the

1For example, while the majority of US companies sink or float on their own, the US govern-
ment has consistently bailed out large corporations in the automobile industry such as GM and
Chrysler. Among financial institutions, the Federal Reserve Bank significantly assisted large banks
like Citigroup and Bank of America with loans and guarantees, while it let other large financial insti-
tutions such as Lehman Brothers and Washington Mutual fail during the 2007–2009 Great Recession.
Among sovereign countries, the US government helped Mexico survive the 1994 Tequila crisis, while
many countries suffered huge losses during the 1997 Asian financial crisis with little help from the
IMF. During the recent Euro-zone crisis, Greece, Italy, Spain, and other potential problem countries
received multiple rounds with varying magnitudes of bailouts.
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loss from the crisis but not to increase each other’s consumption. This assumption

rules out direct subsidy from the passive agent to the active agent to pay his avoidance

cost. The one-shot game can have any combination of avoidance/mitigation patterns

as the static Nash equilibrium. In particular, when the avoidance cost is too high

relative to the expected loss of crisis for the active agent, he cannot be induced to

take the socially desirable but costly avoidance action at a static Nash equilibrium.

As a result, crisis is more likely to happen. In this context, we consider what can be

accomplished with the infinite repetition of the one-shot game.

We study the perfect public equilibria (PPE) of the repeated game. We show that

in the environment where the active agent shirking is the only static Nash equilibrium

of the stage game, the first-best outcome that requires that he takes the avoidance

action every period cannot be implemented as a PPE of the infinitely repeated game.

This is because in order to induce the active agent to take the costly avoidance action,

the expected mitigation cost for him in case of crisis must be even higher. With both

high avoidance cost and high mitigation cost, the active agent is better off doing

nothing. In order to compensate the active player for taking the avoidance action

sometimes, he has to be allowed to shirk other times and/or be bailed out (pay less

than his share of the mitigation cost) when crises happen. Based on this intuition,

we show that at any constrained efficient PPE, the active agent shirks infinitely often,

and when crises happen, the active agent is bailed out infinitely often. As a result,

crisis occurs more often compared to the first-best outcome.

Given that the constrained efficient allocation is necessarily achieved with stochas-

tic shirking and bailout, we approximate the constrained efficient allocation with

equilibrium allocation of finite-state automaton representation of the original game.

With numerical examples, we show that a particular PPE, where the active agent

shirks sometimes and is bailed out other times, can yield a welfare level much higher

than the repetition of static Nash equilibrium, and the welfare loss relative to the

allocation of the first-best varies with the parameters of the model. The correspond-

ing PPE characterized by recurrent crises and bailouts is consistent with historical

episodes of financial crises with varying frequency and varied external responses for

troubled institutions and countries in the real world. As in Green and Porter (1984),

such a phenomenon reflects an equilibrium that passes recurrently through several

distinct states, rather than independent randomization by individual agents. It is a

deliberate arrangement of using both occasional shirking and bailout as mechanisms
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to incentivize good behavior of the active agent as often as possible. We explore some

comparative statics of the PPEs of the N-state automaton numerically.

Our paper is closely related to the studies of the incentive problem induced by

bailout policies. Most papers in the literature take particular institutional design and

market structures very seriously but abstract from strategic dynamic interactions.

We simplify the environment in several dimensions to make it tractable to illustrate

the mechanism of stochastic bailout, but complicate the analysis by taking seriously

the dynamic game played by the two parties involved in a bailout (the one who bails

out and the one who is bailed out). This difference is not only technical, but also has

interesting economic implications. In most papers, bailouts generate bad incentives

to private agents. This is also true in our model if we only consider the stage game.

However, we show that, in the repeated setting, promises of future bailouts are used

to generate good incentives and reduce the incidence of crisis. Such strategic behavior

is likely to be present in repeated interactions between long-lived large agents, such

as members of the European Union or a government and a large corporation.

Two examples of papers highlighting the negative incentives generated by bailout

policies are Farhi and Tirole (2012) and Chari and Kehoe (2015).2 Chari and Kehoe

(2015) study the time inconsistency problem of bailouts. The paper focus on the

dynamic policy decision of a bailout authority who cannot commit to future actions

(like the two players in our model). Farhi and Tirole (2012) consider a commitment

problem from the government side, but they focus on the strategic complementarity

of risk taking behavior from firms. The later paper study a finite stage game and the

former assumes bailout policies to be noncontingent in agents’ identities. As a result,

neither studies the dynamic strategic behavior between a government and a firm.

Green (2010) and Keister (2016) highlight that bailouts can be welfare enhancing

but not through incentives. Keister (2016) studies a version of Diamond and Dybvig

(1983) that allows the government to divert tax funds from public goods to bailout

banks and highlight two important implications of bailouts. On the one hand, bailouts

induce bad behavior for banks, leading them to become less cautious and more illiquid.

On the other hand, bailouts in their environment also provide insurance to depositors.

Keister (2016) shows that, when the probability of a crisis is small, the insurance

effect dominates. Similarly, in Green (2010), the welfare enhancing benefit of bailouts

comes from the fact that, once we are in a regime with limited-liability firms, bailouts

2Other examples are Schneider and Tornell (2004) and Ennis and Keister (2009).
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are necessary for firms to provide perfect risk sharing. The mechanism that makes

bailouts welfare enhancing in these models, however, is very different from ours and

doesn’t have the incentive properties we highlight.

The paper is structured as follows. Section 2 introduces the stage game, while

Section 3 describes the repeated game. Section 4 contains our main theoretical results.

Section 5 uses numerical exercises to illustrate how the incentive mechanism works

and to explore some comparative statics. Section 6 provides a discussion of alternative

mechanisms under different assumptions. Finally, Section 7 concludes.

2. The stage game

There are two agents, agent 1 and agent 2, and two subperiods. In the first subperiod,

agent 1 either takes an avoidance action to avert a crisis, a = 1, or not, a = 0. The

cost of taking the avoidance action is d > 0, and the cost of not taking the avoidance

action is normalized to zero. Agent 1’s action a is unobservable to agent 2.

In the second subperiod one of two things happens: either there is a crisis, denoted

by ξ = 1, or there is no crisis, denoted by ξ = 0. The probability of a crisis, conditional

on agent 1’s action in the first subperiod, a ∈ {0, 1}, is πa ∈ (0, 1). We assume that

π1 < π0 so that taking the avoidance action reduces the probability of crisis. But agent

2 cannot infer agent 1’s action from observing whether there is a crisis. Throughout

the text, we refer to agent 1 as the active agent given that his action affects the

probability of a crisis, and agent 2 as the passive one since he is forced to face the

consequence of a crisis but has no influence on its occurrence.

In the event of a crisis, ξ = 1, the two agents can jointly mitigate the crisis. Let

mi ≥ 0 denote agent i’s contribution to mitigation. The crisis is mitigated if the total

contribution of the two agents, m1 + m2, is no less than one. If the crisis is mitigated

(m1 + m2 ≥ 1), the cost to agent i is only his mitigation contribution mi. If the crisis

is not mitigated (m1 + m2 < 1), agent i suffers a loss ci > 0 due to the crisis and his

contribution mi. If there is no crisis, ξ = 0, nothing needs to be mitigated and agents

do not suffer any loss. It is implicit in the payoff structure that there is no transferable

utility; contribution m1 + m2 is made only to mitigate a crisis. Neither party can

consume it once it is made. The two agents can not make payment to each other in
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the first subperiod either. In Section 6, we show that relaxing this assumption would

greatly reduce the difficulty of achieving a better allocation in equilibrium. Figure 1

summarizes the structure of the stage game.
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Figure 1: The stage game

We are interested in studying the case where mitigation after a crisis is ex-post

efficient. Therefore, we make the following assumptions on the model parameters.

Assumption 1. For i = 1, 2, ci ∈ (0, 1), and c1 + c2 > 1.

Assumption 1 implies that neither agent alone is willing to mitigate the crisis, but

together they should. Since the total cost of mitigation is less than the total loss if

the crisis is not mitigated—that is, 1 < c1 + c2—mitigation is efficient.

2.1. Equilibrium of the stage game

The structure of the game allows us to restrict attention to pure and public strategies

without loss of generality. We thus solve for (pure-strategy, public-perfect) Nash

equilibria of the two-subperiod normal-form game.

Denote the strategy for the active agent 1 by (a, m1), and for the passive agent

2 by m2, where a is agent 1’s avoidance action, and mi is agent i = 1, 2 mitigation
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contribution. Given the strategy profile (a, m1, m2), agent 1 expected payoff is

u1(a, m1, m2) = −ad − πa(m1 + c1I{m1+m2≥1}), (1)

and agent 2 expected payoff is

u2(a, m1, m2) = −πa(m2 + c2I{m1+m2≥1}). (2)

As usual, a Nash equilibrium of the stage game is a strategy profile (a, m1, m2) such

that (a, m1) is a best response for agent 1 given the strategy m2 for agent 2, and m2

is a best response for agent 2 given the (a, m1) for agent 1. The stage game has many

equilibria, and it depends on parameters. We are interested in the parameter regions

where the efficient outcome cannot be supported as equilibrium outcome.

First, there are multiple best responses in the mitigation stage after a crisis. In

particular, by Assumption 1, after a crisis, not contributing to mitigation, mi = 0, is

always a best response if the other agent is doing the same—although this is ex-post

inefficient. However, if agent 1 contributes m1, and agent 2 contributes the remaining

1−m1, it must be m1 ≤ c1 and m2 = 1−m1 ≤ c2. That is, for (m1, 1−m1) to be both

agent’s best mitigation response to each other, we must have that 1 − c2 ≤ m1 ≤ c1.

This mitigation outcome is ex-post efficient. The case with m1+m2 > 1 or m1+m2 < 1

with either m1 > 0 or m2 > 0 can be easily ruled out since at least one agent would

be strictly better off by decreasing their mitigation contribution.

When deciding whether to take the avoidance action, agent 1 weighs the cost

d against the expected gain of taking the action and successfully avoiding a crisis,

which is either his expected contribution (π0 − π1)m1 or expected loss (π0 − π1)c1.

Let d̂ ≡ d/(π0 −π1) be the cost of avoidance adjusted by its impact on the probability.

If d̂ ≤ c1, the efficient equilibrium where agent 1 takes the avoidance action and crisis

is mitigated is always an equilibrium, and dominates all other equilibria. This is the

uninteresting case since the static Nash equilibrium—or the repetition of it in the

repeated game—achieves the first-best outcome. We ruled out this case and assume

that d̂ > c1.

Given the equilibrium restriction m1 ∈ [1 − c2, c1], the assumption d̂ > c1 implies

that a = 0 is always agent 1’s optimal action. In this case, agent 1 never takes

the avoidance action, and there are only two types of equilibrium: a nonmitigation
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equilibrium where (a, m1, m2) = (0, 0, 0), and a continuum of mitigation equilibria

where (a, m1, m2) = (0, m1, 1 − m1) and m1 ∈ [1 − c2, c1]. These equilibria are

inefficient when d̂ < 1 since the cost of action d is less than the expected social

gain of avoiding a crisis π0 − π1. This is exactly the situation we are looking for.

The inequality d̂ > c1 guarantees that there is no avoidance in equilibrium, d̂ < 1

guarantees that and all the equilibria of the stage game is inefficient.

Assumption 2. c1 < d̂ < 1.

We impose Assumption 2 on the parameters of the model, and in the next section,

we investigate what can be achieved in this region for the repeated game.

3. The repeated game

In the repeated game, time is discrete and is indexed by t ∈ {1, 2, . . .}. The two agents

live forever and discount future payoffs with the same discount factor δ ∈ (0, 1). At the

beginning of each period t, agents observe a payoff-irrelevant public signal θt ∼ U [0, 1],

which is i.i.d. across periods. After observing the public signal, the agents play the

stage game described in the previous section. The public signal allows agents to take

correlated actions in each period. This serves a technical purpose—it convexifies the

payoff set without explicitly considering randomized strategy for agent 1’s action at.

The public information at the beginning of date t is denoted by ht ∈ Ht. It consists

of the realization of all past and current public signals, the history of all past crises,

and the history of all past contributions.

We focus on perfect Bayesian equilibria where both agents play pure and public

strategies. Proposition A.2 establishes that this restriction is without loss of generality

(see Appendix A for details). A public strategy for the active agent 1 is a sequence of

measurable functions σ1 = (αt, µ1t)
∞
t=1, where αt(ht) ∈ {0, 1} is the avoidance action

of the active agent in period t given the public information ht, and µ1t(ht) ≥ 0 is his

contribution for the mitigation in case of a crisis. A public strategy for the passive

agent is a sequence of functions σ2 = (µ2t)
∞
t=1, where µ2t(ht) ≥ 0 is his contribution for

the mitigation in case of a crisis. We denote a public strategy profile by σ = (σ1, σ2).

The expected discounted utility for agent i from date t onward, given the strategy
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profile σ and public history ht is

vit(σ, ht) = (1 − δ)E

[

∞
∑

τ=t

δτ−tui

(

ατ (hτ ), µ1τ (hτ ), µ2t(hτ )
)

∣

∣

∣

∣

ht

]

, (3)

where the expectation is taken with respect to the crisis realizations from period t

onward and the public signal from period t+1 onward. With slight abuse of notation,

the average expected discounted utility for agent i at the beginning of the game is

denoted by vi(σ) = E[vi1(σ, h1)].

Definition 1. A public strategy profile σ∗ is a perfect public equilibrium (PPE) if and

only if vit(σ
∗, ht) ≥ vit(σ

′
i, σ∗

−i, ht) for any agent i, any public strategy σ′
i any period

t ≥ 1, and any public history ht.

We denote the set of PPE payoffs by V∗ = {v(σ∗) | σ∗ is a PPE}. A PPE always

exists because unconditional repetition of a static Nash equilibrium of the stage game

is a PPE. In Appendix A, we show that the set of PPE can be characterized recursively,

using a modified version of the standard APS recursive decomposition, and we use

this decomposition to establish some useful technical properties.

4. Optimal level of crises and bailouts

Under Assumptions 1 and 2, the first-best requires that in every period the active

agent takes the avoidance action, and both agents mitigate a crises if it happens.

However, the first-best is not achievable in a equilibrium of the stage game because

the active agent never takes the avoidance action in any of them. In this section, we

study how, and to what extent, welfare can be improved in the repeated setting. Our

first finding is that, even in the repeated setting, the first-best cannot be attained.

This result is a strong impossibility result because it holds for any discount factor of

agents.

Given that the first-best is not achievable, we then turn our attention to constrained-

efficient allocations by investigating the properties of PPEs that are Pareto efficient.

In any Pareto efficient PPE, crises are always mitigated amd the welfare loss arises

from the avoidance action not being taken every period. Furthermore, the frequency
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of avoidance action depends on the agents’ discount factor. For low discount fac-

tors, the active agent never takes the avoidance action in any equilibrium. Once the

discount factor is greater than some threshold, the active agent takes the avoidance

action infinitely often in any Pareto efficient PPE. Moreover, the passive agent has to

bailout the active agent also infinitely often, where “bailout” has a precise sense we de-

scribe further ahead. The optimal frequency of avoidance and bailouts is determined

endogenously.

4.1. The impossibility of implementing the first-best

Suppose that in some equilibrium the active agent takes the avoidance action with

positive probability. The expected discounted payoff for the active agent at that

moment (v1) is a convex combination of his expected discounted payoff conditional

on the event of a crisis (w1
1), and his expected discounted payoff if there is no crisis

(w0
1). Also, because taking the avoidance action is costly, it must be the case that

w0
1 is strictly greater than w1

1, so that the active agent finds it optimal to incur the

cost. Moreover, w1
1 cannot be too negative because of individual rationality. Using

these facts, we show in the appendix that there is a fixed positive constant γ, such

that w0
1 > v1 + γ. That is, whenever the active agent takes the avoidance action as

part of a PPE and there is no crisis, his continuation value must increase by at least

a fixed amount. Therefore, if there are no crises for a sufficiently long time interval,

the implied continuation value required for the active agent to be willing to take the

avoidance action value stops being feasible.3 We thus obtain the following result.

Proposition 4.1. There is no PPE in which the active agent takes the avoidance

action almost surely at every period along the equilibrium path.

4.2. Efficient mitigation

It is not possible to have avoidance played on every period. However, except for

low discount factors, a PPE exists in which the active agent sometimes takes the

avoidance action (see Lemma B.4 in the appendix). This requires the passive agent

3It is crucial for this proposition that the avoidance action is not observable, see Section 6.1.
Hence, this is a result of moral hazard and not of the structure of the payoffs.
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to provide incentives, for instance, by punishing the active agent after a crisis, or

rewarding him if there is no crisis. Two possible ways to punish the active agent after

a crisis are to let him suffer the cost of the crisis (no mitigation), or to ask him to

contribute more than necessary to mitigate the crisis (money burning). Our second

result is that neither of these forms of punishment schemes are optimal. In every

constrained efficient PPE, agents contribute exactly as much as needed to mitigate a

crisis when it happens.

Proposition 4.2. In any constrained-efficient PPE, crises are efficiently mitigated,

that is, µ1t(ht) + µ2t(ht) = 1 almost surely along the equilibrium path.

This result is very natural since both of these forms of punishment are ex-post

inefficient. However, the proof is far from trivial because, given that there is imper-

fect monitoring, some degree of inefficiency ex-post could be necessary to generate

incentives ex-ante. This is a common feature of models with imperfect monitoring

that can be traced back to Green and Porter (1984). We obtain the result because

we show that there are always better ways to punish the active agent. As it turns

out, any incentive scheme that can be generated in equilibrium via no-mitigation or

money burning can also be generated by adjusting the shares of the mitigation cost in

the future without incurring any efficiency losses due to either insufficient or excessive

mitigation. The details of the proof are in Appendix B.

4.3. Bailouts as an incentive mechanism for avoidance

The difficulty in inducing the active agent to take the avoidance action is that the

cost is too high for him to pay it on his own. The solution seems to be that the

passive agent should help pay part of it. In a world with perfectly transferable

utility, we could consider schemes where the passive agent directly subsidizes the

active agent.4 However, we have assumed that the agents’ contributions can only be

used to mitigate crises. In our environment, the only way for the passive agent to

compensate the active agent is by sometimes paying more in mitigation cost after a

crisis has occurred. When this happens, we call it a bailout.

4In Section 6.2, we study an extension with perfectly transferable utility, and show that the
first-best can be achieved when both agents are sufficiently patient.

10



Definition 2. A bailout is a situation where a crisis occurs, the agents jointly con-

tribute sufficient resources to mitigate it, and the contribution of the active agent is

less than his private crisis loss, i.e., µ1t(ht) + µ2t(ht) ≥ 1, and µ1t(ht) < c1.

We can show that bailouts are the only form of compensation available, and if

the active agent is not compensated, then he has no reason to choose avoidance. It

follows that bailouts are not only sufficient to induce the avoidance action, but also

necessary.

Proposition 4.3. In any PPE where the avoidance action is taken with positive

probability, bailouts occur with positive probability.

Proposition 4.3 shows that bailouts are necessary in order to support avoidance

actions, but it says nothing about sufficiency nor about efficiency. When is it possible

to support any avoidance at all? When is it efficient to do so? If the active agent

expects to be bailed out in the future as a form of compensation, he may be willing

to take the avoidance action, at least in some instances, and such arrangement is

necessary for efficiency when feasible. The following proposition formalizes these

results.

Proposition 4.4. There exists δ̃ ∈ (0, 1) such that:

1. If δ < δ̃, then every PPE (and therefore every constrained-efficient PPE) has

avoidance played with probability zero at all periods.

2. If δ > δ̃, then in every constrained-efficient PPE the avoidance action is played

infinitely often, and bailouts take place infinitely often.

Proposition 4.4 indicates that, for low discount factors, it is not possible to induce

the active agent to take any avoidance actions, and the set of efficient PPE essentially

reduces to repetition of static Nash equilibria of the stage game. For higher discount

factors, avoidance is not only possible, but it is also necessary for constrained efficiency.

Propositions 4.1 and 4.4 combined imply that, when δ > δ̃, in any constrained-

efficient PPE the active agent takes the avoidance action infinitely often, takes the

nonavoidance action infinitely often, and is bailed out infinitely often.

To prove this fact, the key step is to show that having at least some avoidance

is a Pareto improvement whenever it is incentive compatible. Formally, Lemma B.2

in the appendix asserts that, if it is possible to play avoidance at least once in some
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PPE, then every PPE without avoidance is Pareto dominated by a PPE with avoid-

ance. Because constrained Pareto efficiency requires continuation strategies to also

be constrained-efficient, this implies than, whenever possible, it is optimal to have

avoidance infinitely often. Because of Proposition 4.3, doing so requires also having

bailouts infinitely often.

5. Automata: endogenously determined frequencies

of crises and bailouts

From previous sections, we learned that, since the active agent’s private incentive

does not align with the social one, i.e., c1 < d̂ < 1, the way to align incentives is by

bailing out the active agent infinitely often. But how bailouts work as a mechanism

to generate incentives? How good is it? Is it close to the first-best? And how does it

change with the primitives of the model, such as, the cost to avert crisis, d, the private

costs of agents, c1 and c2, and the effectiveness of the avoidance action, π0 − π1? In

this section, we use numerical methods to investigate these questions.

We approximate the second-best by considering PPEs where equilibrium behavior

can be described by finite-state automata. An automaton consists of four components:

states, an initial distribution over states, a transition rule, and a mapping from states

to actions. Let Ω be a finite set of states. States are mapped into actions by α1 : Ω →

Ai and µi : Ω × X → M , i = 1, 2. Given the current state ωt, the active agent takes

the action α1(ωt), and, after a crisis state ξt is realized, the agents’ contributions are

given by µi(ωt, ξt). After actions are realized, the state ωt+1 for the next period is

randomly drawn according to the transition rule η : Ω × X × M × M → ∆(Ω). The

initial state for period 1 is drawn according to the initial distribution η0 ∈ ∆(Ω).

An automaton describes a profile of public strategies for the repeated game. In

fact, if we didn’t restrict attention to finite automata, every profile of public strategies

could be described by an automaton (Mailath and Samuelson, 2006, pp. 230). How-

ever, for computational reasons, in all of our numerical exercises, we restrict attention

to finite automata with a fixed upper bound on the number of states in Ω. In what

follows, we provide an example in the form of an automaton, where avoidance takes

place at some but not at other times.

12



5.1. An illustrative example of equilibrium mechanism

Here, we illustrate how bailouts can be used to induce avoidance action and, thus,

improve efficiency. Consider the set of parameters

δ = 0.95, π1 = 0.2, π0 = 0.9, d = 0.5, c1 = 0.6, c2 = 0.5.

With this set of parameters, the adjusted avoidance cost is higher than the cost for

agent 1 and avoidance is socially efficient,

c1 = 0.6 < d̂ ≈ 0.7143 < 1.

The first-best has an expected total cost of 0.7, which is not obtainable in any PPE

by Proposition 4.1. The total cost that can be obtained in a static Nash equilibrium

is 0.9, which implies a welfare loss (relative to the first-best) of 28.57 percent.

ω1 :
a m1 m2

1 0.61 0.39

ω2 :
a m1 m2

1 0.00 1.00

ω3 :
a m1 m2

0 0.00 1.00

1.00 0.81

0.191.00

0.68

0.32

No-CrisisCrisis

0.13 0.74

0.87 0.26

Figure 2: Automaton

Figure 2 describes the PPE that minimizes the total expected long-run cost among

all PPEs that can be described by a four-state automata, with one state being the

minmax equilibrium. The equilibrium works as follows. Agents start in state ω1,

where the strategy profile is (a, m1, m2) = (1, 0.61, 0.39). In this state, agent 1 is

supposed to take the avoidance action, but his private cost in the crisis alone does

not generate incentives to do so since m1 = 0.61 < d̂ ≈ 0.7143. As a result, in order to

generate incentives, when there is no crisis, the state switches to ω2 with probability
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0.19. The ω2 is a bailout state since m1 = 0.00 < c1. The “reward” of a bailout in the

future helps generating incentives for the avoidance action. That is, the probability of

going to this bailout state, compensates for the fact that m1 = 0.61 < d̂, aligning the

private and social incentives to take the avoidance action. In ω2, the strategy profile

is (1, 0.00, 1.00). Again, agent 1 is supposed to take the avoidance action, but now

he has even less incentives to do so since his contribution to mitigation is now zero.

This time, to generate incentives, the equilibrium moves to state ω3 with probability

0.32 if there is no crisis. The state ω3 has an even stronger form of bailout because

the active agent contribution in mitigating crisis is zero, and he takes no avoidance

action.5 There is a fourth state ω4, which is not in the figure, with strategy profile

of nonavoidance/no-mitigation (the minmax equilibrium). This state is out of the

equilibrium path and works as a punishment state in case of a detectable deviation.

Table 1: Summary statistics of the PPE

State ω Invariant
distribution u1(ω) u2(ω) V1(ω) V2(ω) Welfare Welfare

loss (%)

ω1 0.50 −0.622 −0.078 −0.539 −0.177 −0.748 2.23

ω2 0.38 −0.500 −0.200 −0.478 −0.250 −0.727 3.87

ω3 0.12 −0.000 −0.900 −0.420 −0.328 −0.716 6.86

LRA − −0.501 −0.222 −0.501 −0.222 −0.724 3.41

Notes: LRA refers to the long-run averages, which correspond to the expected values evaluated
using the invariant distribution. ui(ω) denotes agent i’s expected payoff for the period when the
state is ω. Vi(ω) denotes agent i’s total discounted expected payoff when the state is ω.

Although this automaton PPE is not in the Pareto frontier, it provides a lower

bound on what can be achieved by a constrained efficient allocation. Table 1 provides

summary statistics of the equilibrium. In state ω1, the expected discounted total cost

is 0.748, which is only 2.23 percent greater than the minimum feasible one 0.7. On

average, crisis occurs 28.4 percent of the time, compared to 20 percent at the first-best.

When crisis does happen, bailout occurs 70.3 percent of the time. But the striking

result is that, even though the passive agent bailout the active agent over 70 percent

of the crisis, the expected present value of his cost is only 0.17. For a comparison,

in the best equilibrium for the passive agent with no bailouts, the expected present

value of his cost is 0.36. That is, by optimally choosing a bailout policy, the passive

agent can reduce his cost with crisis by half.

5The probability of moving to a state preferred by agent 1 is always higher when there is no crisis.
Hence, the automata is reminiscent of the revision strategies used in Rubinstein and Yaari (1983)
and Radner (1985).
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5.2. Comparative statics

The equilibrium displayed in Figure 2 illustrates how bailouts can be used in order

to induce avoidance in equilibrium. In this subsection, we study how properties of

this equilibrium change with key parameters of the model: the avoidance cost, d, the

private costs of nonmitigated crisis, (c1, c2), and the probabilities of crises, (π0, π1).

For each set of parameters, we found the PPE that minimizes the total discounted

long-run cost among six states automata. Then, we compare the implied long-run

probabilities of avoidance, crisis and bailouts, as well as the long-run average cost of

avoidance and the agents’ mitigation payments.

The impact of changes in the avoidance cost — Table 2 displays features of the equilib-

rium outcome for different values of the avoidance cost d. As one could expect, when

the avoidance cost increases, avoidance action is taken less frequently and, therefore,

crisis happens more often. The average avoidance cost (column 5) is nonmonotone, re-

flecting the more costly avoidance action is taken less often. The incidence of bailouts

(column 4) is nonmonotone, similar to agent 1’s mitigation cost (column 6). These

changes reflect the structure of the equilibrium. Bailouts are the mechanism where

agent 2 compensates agent 1 for bearing the avoidance cost alone. As d increases, the

compensation needed to generate incentives for the avoidance action also increases.

Table 2: The impact of changes in the avoidance cost1

d P(a = 1) P(ξ = 1) P(m1 < c1) E(d) E(m1) E(m2)
Expected

Total Cost (%)2

0.45 0.9569 0.2302 0.4647 0.4306 0.0784 0.1518 101.66
0.50 0.8571 0.3000 0.7937 0.4285 0.0340 0.2660 104.08
0.55 0.7598 0.3682 0.8942 0.4179 0.0182 0.3500 104.81
0.60 0.7115 0.4019 0.9301 0.4269 0.0143 0.3877 103.61
0.65 0.6851 0.4204 0.8727 0.4453 0.0227 0.3977 101.85

Note: The probabilities and expectations are evaluated using the implied invariant distribution.
1 Other parameters are δ = 0.9, π1 = 0.2, π0 = 0.9, c1 = 0.6 and c2 = 0.5.
2 Expressed as percentage of the first-best expected total cost.

The impact of changes in the private costs of a crisis — Table 3 displays features

of the equilibrium outcome for different values of (c1, c2). When c1 and c2 increases,

both agents’ minmax payoff decreases. The impact of c1 on the equilibrium outcome

is substantial. Increasing c1 from 0.55 to 0.65 reduces the long-run average cost from

about 106.4 percent to 101.8 percent of the first-best; the incidence of crisis is reduced
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by approximately one-third (from 0.36 to 0.24); and bailouts are reduced to 60 percent

from 89 percent. The reason is that increasing c1 helps aligning agent 1 private cost

of a crisis, c1, with the social cost of a crisis, which is the mitigation cost 1. Agent

2 private cost of crisis, c2, has little effect on the equilibrium outcome since he is a

passive agent and has no private information.

Table 3: The impact of changes in the private costs of a crisis1

c1 c2 P(a = 1) P(ξ = 1) P(m1 < c1) E(d) E(m1) E(m2)
Expected

Total Cost (%)2

0.55
0.5 0.7763 0.3566 0.8870 0.3882 0.0177 0.3388 106.39
0.7 0.7729 0.3590 0.8875 0.3864 0.0176 0.3414 106.49

0.60
0.5 0.8571 0.3000 0.7937 0.4285 0.0340 0.2660 104.08
0.7 0.8529 0.3029 0.7119 0.4265 0.0391 0.2638 104.20

0.65
0.5 0.9363 0.2446 0.6136 0.4681 0.0655 0.1791 101.82
0.7 0.9349 0.2456 0.5420 0.4675 0.0722 0.1733 101.86

Note: The probabilities and expectations are evaluated using the implied invariant distribution.
1 Other parameters are δ = 0.9, π1 = 0.2, π0 = 0.9, and d = 0.5.
2 Expressed as percentage of the first-best expected total cost.

The impact of changes in crisis probabilities — Table 4 displays the long-run ex-

pected total cost above the first-best for different combinations of (π0, π1). The other

parameters are set to δ = 0.95, d = 0.5, c1 = 0.6, and c2 = 0.5. The cells with symbol

“−” represent the cases where the parameters do not satisfy Assumption 2. The effect

of (π0, π1) on the welfare cost is not uniform. Combinations of (π0, π1), with d̂ either

closer to c1 or 1, lead to lower cost. This means that sometimes decreasing π0 reduces

the welfare cost, while sometimes increasing π0 reduces the welfare cost. The same is

true for π1.

On the other hand, for combinations of (π0, π1) with the same d̂ (that is, π0 − π1

constant), higher π0 and π1 always lead to a lower welfare cost. The interpretation

of these results is not simple. One could think that higher π1 means that avoidance

is less effective in preventing crisis, which could imply a higher cost, but this is not

true. The correct measure is π0 − π1, how much the probability of crisis decreases by

the avoidance action. With π0 − π1 held constant, the only impact is increasing π0.

Higher π0 implies that the minmax utility of agent 1 is lower, hence, it is easier to

generate incentives for avoidance.
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Table 4: Total cost above the first-best (%)1

π1 π0 0.65 0.70 0.75 0.80 0.85 0.90 0.95
0.10 3.25 5.71 8.49 9.05 8.00 2.94 −
0.15 − 2.70 4.65 6.46 6.59 4.41 1.28
0.20 − − 2.20 3.68 4.67 4.54 2.74
0.25 − − − 1.75 2.89 3.30 2.89
0.30 − − − − 1.38 2.19 2.26
1 Long-run average as percentage of the first-best.

The impact of changes in agents’ discount factor — Table 5 displays features of the

equilibrium outcome for different values of the discount rate δ. As one could expect,

lower δ is associated with lower welfare. Increasing δ from 0.6 to 0.9 decreases the

total cost in about 4 percent of the first-best. This pattern reflects that when δ is

high, agents are more willing to cooperate since they care more about punishments

in the future.

Table 5: The impact of changes in agents’ discount factor1

δ P(a = 1) P(ξ = 1) P(m1 < c1) E(d) E(m1) E(m2)
Expected

Total Cost (%)2

0.6 0.7111 0.4022 0.5978 0.3555 0.1063 0.2960 108.25
0.7 0.7630 0.3659 0.8345 0.3815 0.0636 0.3023 106.77
0.8 0.7979 0.3415 0.7491 0.3989 0.0444 0.2970 105.78
0.9 0.8571 0.3000 0.7937 0.4285 0.0340 0.2660 104.08

Note: The probabilities and expectations are evaluated using the implied invariant distribution.
1 Other parameters are π1 = 0.2, π0 = 0.9, c1 = 0.6, c2 = 0.5, and d = 0.5.
2 Expressed as percentage of the first-best expected total cost.

6. Alternative mechanisms

We have shown that the first-best cannot be achieved as a PPE of the repeated game,

and that whenever avoidance is possible in equilibrium, every constrained efficient

PPE involves bailouts infinitely often. In this section, we consider two alternative

mechanisms that can help to improve welfare. We analyze one model where the

avoidance action is perfectly observed, and one where the passive agent can directly

subsidize the active agent. In both cases, it is still the case that either bailouts

or direct transfers are necessary for the active agent to take the avoidance action.
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However, unlike our benchmark model, these alternative specifications admit PPE

that achieve the first-best when agents are patient enough.

6.1. The avoidance action is observable

In our benchmark model, we assumed that the avoidance action of the active agent

is private. The passive agent could only make imperfect inferences about it via the

realization of crises. Now, consider the alternative specification where a is perfectly

observable to both agents. This allows agents to use strategy profiles that bail out

the active agent if and only if he takes the avoidance action, but it does not change

the fact that bailouts are necessary for avoidance.

Proposition 6.1. In any PPE of the game with observable actions, if the avoidance

action is taken with positive probability, then bailouts occur with positive probability.

To illustrate the difference from the unobservable action case, consider the follow-

ing simple strategy profile. Along the equilibrium path, the active agent always takes

the avoidance action, and crisis is always mitigated.

(αt(ht), µ1t(ht), µ2t(ht)) = (1, m∗
1, 1 − m∗

1),

for some fixed constant m∗
1 > 0, which is specified ahead. After any deviation, then the

active agent chooses a = 0 forever after, and both agents never again make positive

mitigation contributions. We show in the appendix that, if the discount factor is

sufficiently high, then one such grim trigger strategy exists, which is a PPE. Since

there is always avoidance and mitigation along the equilibrium path, this strategy

profile implements the first-best.

Proposition 6.2. There exists δ̃′ ∈ (0, 1) such that, if δ > δ̃′, then the game with

observable actions admits a PPE where the active agent takes the avoidance action at

every period and after every history.

6.2. Monetary transfers

The previous analysis depends crucially on the assumption of nontransferable utility.

That is, if agent 1 takes the avoidance action, he has to pay the cost d by himself.
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Moreover, both agents’ contributions for cleanup can only be used to mitigate crises.

Suppose we relax this assumption by allowing the passive agent to directly transfer

resources to agent 2 for consumption. More precisely, suppose that at any date t and

after any history ht, agent 2 can make a transfer βt1(t, ht) ≥ 0 if there is a crisis and

a transfer βt0(t, ht) ≥ 0 if there is no crisis. These transfers enter the stage game

payoffs as an additive term. That is, the stage-game payoffs for the active (passive)

agent in the game with transfers are exactly those from the game without transfers

plus (minus) whatever transfer he receives (makes).

A version of Proposition 4.3 continues to hold in this modified model. For the

active agent to be willing to take the avoidance action, he must expect some form

of compensation. The only difference is that the passive agent has new forms of

compensation available. Agent 2 can still compensate agent 1 by bailing him out,

by contributing sufficient resources so that the cost incurred by agent 1 in case of a

crisis is less than c1. Additionally, agent 2 can transfer resources to agent 1 in periods

where there are no crises. Any equilibrium with avoidance must involve at least one

of these forms of compensation.

Proposition 6.3. In any PPE of the game with transfers where the active agent

takes the avoidance action with positive probability, agent 2 compensates agent 1 by

having either βt0(ht) > 0 or βt1(ht) − µ1t(ht) > −c1, or both with positive probability.

To illustrate the difference from the nontransferable-utility case, consider the fol-

lowing simple strategy profile for the game with transfers.

(αt(ht), µ1t(ht), µ2t(ht)) = (1, m∗
1, 1 − m∗

1),

and

(βt0(ht), β1t(ht)) = (b∗, 0),

for all t and every ht along the equilibrium path, where m∗
1 ∈ (0, 1) and b∗ > 0 are

fixed constants specified in Appendix B.7. That is, agent 1 always takes the avoidance

action and contributes m∗
1 when there is a crisis, and agent 2 compensates agent 1

with b∗ units of consumption when there is no crisis. The transfer b∗ can be viewed as

a subsidy to agent 1 from agent 2 in no-crisis time. In case of a detectable deviation,

the agents switch to play the one-shot Nash equilibrium with no-avoidance and no
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mitigation forever. We show in the appendix that, if the discount factor is high

enough, this strategy profile constitutes a PPE of the game with transfers. Hence,

when the agents are patient enough, the first-best is attainable in equilibrium.

Proposition 6.4. There exists δ̃′′ ∈ (0, 1) such that, if δ > δ̃′′, then the game with

transfers admits a PPE where the active agent takes the avoidance action at every

period and after every history.

This subsidy scheme is simple theoretically but may not be easy to implement in

reality. For example, it might be difficult to justify paying Greece’s government every

period—subsidy in normal time and mitigation in crisis time—to the public!

7. Conclusion

We have studied a liability-sharing problem between two asymmetric parties in an

infinitely repeated game. The main frictions in the model are unobserved action by

the active player (moral hazard) and nontransferable utility between the two parties.

With this model, we want to make several points. First, there are environments where,

conditional on some social arrangement (such as the European Monetary Union) hav-

ing already been formed to share some risk, shirking and bailouts are not only con-

sistent with equilibrium behavior, but also necessary to achieve constrained optimal.

The incentive cost may be too high to ask for outcomes devoid of these vices. Insist-

ing otherwise is unrealistic. The high incentive cost to the social arrangement should

be considered before any coalition/arrangement is made rather than ex-post trying

to eliminate it. Second, stochastic shirking and bailout may be necessary features

of the approximately efficient outcome. Roughly speaking, when the active player

is expected to shirk, there is no need for incentive to induce his current-period ef-

fort, and hence bailout is likely as a reward from the passive player to the active

player for future effort. In a period when the active player is supposed to put in

effort, he is unlikely to be bailed out. The constrained optimal requires coordina-

tion between the two parties. This coordination can be accomplished with the use

of n-state automata and the correlated equilibrium given the automata. To achieve

the constrained optimal, the fine-tuning tools for incentive provision are the levels

of mitigation contribution and the transition probability from any state to any other
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state conditional on current state and outcome. These transition probabilities are

endogenously chosen, unlike the exogenous sunspot type of modeling device. Third,

our numerical simulation results show that the equilibrium of the n-state automata,

with n optimally chosen (approximate second-best), can achieve quite high level of

welfare relative to the first-best. Fourth, if one thinks that the nontransferable utility

assumption is too strong, relaxing the assumption can improve welfare of the two

parties, but it will not eliminate “bailout.” With transferable utility, the payment

from the passive player 2 to the active player 1 is simply shifted from ex-post (after

the crisis happens) to ex-ante (before the effort is exerted), but does not disappear.

The model is very schematic: it does not have any realistic features such as

different maturities of debt instrument, sovereign default, renegotiation of debt, yield,

fiscal and monetary policies, etc. This is intentional and meant to illustrate the

mechanism of stochastic bailout as an incentive device.
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Appendix

A. Recoursive analysis of the set of PPE

With agents playing public strategies only, the repeated game has a recursive structure.

After an arbitrary history, the continuation strategy profile of a PPE is an equilibrium

profile of the original game. The standard way to characterize the set of PPE values

is to use the self-generation procedure introduced in Abreu, Pearce, and Stacchetti

(1990) (APS). This appendix establishes an analogous procedure and shows that our

restriction to pure and public strategies is without loss of generality.6

A.1. Incentive constraints

We begin by providing three necessary conditions that any PPE must satisfy after

each history: one feasibility condition and two incentive constraints. Consider any

PPE of the repeated game σ∗ = (α∗, µ∗
1, µ∗

2), and any arbitrary public history ht ∈ Ht.

Let s∗ = (a∗, m∗
1, m∗

2) denote the action profile dictated by σ∗ for period t given

ht, i.e., (a∗, m∗
1, m∗

2) = (α∗
t (ht), m∗

1t(ht), m∗
2t(ht)). Also, let w∗ = (w∗

i (ξ))i=1,2;ξ=0,1 ∈

R
2×2 denote the profile of continuation expected average discounted values from date

(t + 1) onward given σ∗ as a function of the crisis state on date t, i.e., w∗
i (ξ) :=

E

[

vit+1(σ
∗, ht+1)|ht, ξt = ξ

]

. With this notation, note that we can write the following

feasibility condition

vit(σ
∗, ht) = gi(s

∗, w∗), (F)

where gi : ({0, 1} × R
2
+) × R

2×2 → R is the function given by

g
(

(a, m1, m2), w
)

= (1 − δ)ui

(

a, m1, m2

)

+ δ
[

πawi(1) + (1 − πa)wi(0)
]

. (4)

There are two kinds of necessary date-t conditions for σ∗ to be a PPT. The first

6We cannot simply apply the procedure from APS because our model differs from theirs in the
monitoring structure, our stage game is a multistage game, and we allow for public randomization
but exclude individual mixed strategies.
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condition refers to the mitigation contributions. If a crisis were to arise on t, each

agent i could unilaterally decide to contribute exactly the minimum amount required

to mitigate it, Agent i’s cost from the crisis would be − max{0, 1−m∗
−i}. Alternatively,

if m∗
−i < 1, agent i could decide to not contribute anything to mitigate the crisis, and

incur a cost of −ci. By doing so, agent i’s ex-post cost due to the crisis on the period

would be − min{ci, max{0, 1 − m∗
−i}}, and his continuation value would be no worse

than his minimax −π0ci. For σ∗ to be a PPE, this potential deviation cannot be

strictly profitable. That is, it must be the case that

(1 − δ)ki(m
∗
1, m∗

2) + δw∗
i (1) ≥ −(1 − δ) min{ci, max{0, 1 − m∗

−i}} − δπ0ci

≥ −(1 − δ + δπ0)ci (M)

where ki : R2
+ → R+ is agent i’s cost from a date-t crisis as a function of the mitigation

contributions, i.e.,

ki(m1, m2) = −mi − ciI{m1+m2<1}. (5)

We call Condition (M) the mitigation constraint for agent i.

Secondly, suppose that α∗ = 1. The active agent—agent 1—could deviate at

period t by not taking the avoidance action and following σ∗
1 after that. Since this

deviation is not observable, agent 1 would expect in equilibrium that agent 2 would

continue to follow σ∗
2. For this deviation to not be profitable, the expected discounted

utility for the active agent in case there is no crisis (δw∗
1(0) should be greater than

if there is a crisis ((1 − δ)k1(m
∗
1, m∗

2) + δw∗
1(1)). Moreover, it should be sufficiently

greater to compensate the active agent for the private cost of taking the avoidance

action, that is,

(1 − δ)d̂ ≤ δw∗
1(0) −

[

(1 − δ)k1(m
∗
1, m∗

2) + δw∗
1(1)

]

.

If α∗ = 0, the converse inequality must hold. After doing some simple algebra, we

can summarize both cases via the following avoidance constraint

0 ≤ (−1)a∗

[

d̂ + k1(m∗
1, m∗

2) +
δ

1 − δ

(

w∗
1(1) − w∗

1(0)
)

]

. (A)
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A.2. APS decomposition

So far, we have argued that conditions (F), (M), and (A) are necessary for a strategy

profile to be a PPE. In what follows, we will show that they are also sufficient to

characterize the set of PPE payoffs V∗. In particular, we will show that a vector of

feasible payoffs v is attainable in equilibrium if and only if it can be attained by (a

distribution over)7 action profiles and continuation values that satisfy such conditions.

To formalize this idea, we make use of the following definition.

Definition 3. Given an action profile s∗ = (a∗, m∗
1, m∗

2), a profile of continuation

values w∗ = (wi(ξ))i=1,2;ξ=0,1, and a set V ⊂ R
2, the pair (s∗, w∗) is said to be

admissible with respect to V if and only if: (a) it satisfies the mitigation constraints

(M) for i = 1, 2, (b) it satisfies the admissibility constraint (A), and (c) w∗(ξ) =

(w∗
1(ξ), w∗

2(ξ)) ∈ V for ξ = 0, 1.

In our setting with public randomization, the relevant self-generating operator is

the one introduced by Cronshaw and Luenberger (1994). For any set V ⊆ R
2 and

every action profile s = (a, m1, m2), define:

Bs(V) =
{

v ∈ V
∣

∣

∣ ∃w such that (s, w) is admissible w.r.t. W and v = g(s, w)
}

. (6)

Intuitively, Bs(V) would be the set of payoff profiles that could be obtained by playing

s on the first period and using continuation values from the set V , in such a way that

there are no profitable one-shot deviations on the first period. To take into account

the possibility of public randomization, let

B(V) = co

(

⋃

s∈S

Bs(V)

)

. (7)

A set V ⊆ R
2 is said to be self-generating if and only if V ⊆ B(V). The following

proposition states that, the set of PPE satisfies some desirable properties and, using

this notion of self-generation, the following APS-like result applies to our setting.

7So far in this section, we have not yet discussed public randomization. The action profile
(a∗, m∗

1, m∗

2) specifies the pure actions chosen after θt is realized, and the continuation values w∗

are taken to be the average continuation values integrating over θt+1. Public randomization enters
implicitly in the convex hull operation in (7).
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Proposition A.1 (APS decomposition). The set of PPE payoffs V∗ is the largest

self-generating set, and Bn(V) → V∗ for every bounded set V ⊆ R
2
+ such that V∗ ⊆ V.

Proposition A.1 serves two purposes. First, it enables us to use a recursive ap-

proach to characterize the set of PPE. We use this approach implicitly in the proofs

of our main results. Secondly, it allows us to establish some desirable properties for

the set of PPE, which are summarized in the following proposition.

Proposition A.2. The set of PPE payoffs V∗ is nonempty, compact and convex,

and is increasing with respect to the discount factor δ. Moreover, V∗ would remain

unchanged if we allowed player 1 to use private strategies and we allowed both players

to use mixed strategies.

A.3. Proofs of recursive characterization

Proving propositions A.1 and A.2 requires a number of technical lemmas. Because

many of the proof steps are standard, we omit some details and refer the interested

reader to Mailath and Samuelson (2006) instead.

Lemma A.3 (One-shot deviation principle). An individually rational strategy profile

is a PPE if and only if it admits no profitable one-shot deviations.

Proof. This lemma is analogous to Proposition 2.2.1 in (Mailath and Samuelson, 2006,

pp 25), and the corresponding arguments can be easily adapted to our setting. The

structure of the argument is as follows. Fix an individually rational strategy profile.

Suppose that there is a profitable deviation, and let v be the difference in values

between the proposed strategy profile and the profitable deviation. Since the set

of feasible individually rational payoffs of the stage-game is bounded, we know that

there is some number T such that the payoffs after T periods amount to less than

‖v‖/2. Thus, there must also be a profitable deviation of length at most T . If the

deviation in the last period is profitable, then the proof is complete. If not, then there

is a profitable deviation of length at most T − 1 periods. By induction, this implies

that there is a profitable deviation of length 1. �

Lemma A.4 (Self-generation). If V ⊆ R
2 is bounded and self-generating, then V ⊆

V∗.
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Proof. Take any point v ∈ V. Since v ∈ V ⊆ V∗, Carateheodory’s theorem implies

that the value profiles b1
v, b2

v, b3
v ∈ ∪sBs(V) exist, and a vector of weights (λ1

v, λ2
v, λ3

v) ∈

∆3 such that v =
∑3

n=1 λn
v bn

v . For each bn
v , since bn

v ∈ ∪sBs(V), there exist sn
v and a

profile of continuation values wn
v such that bn

v = g(sn
v , wn

v ), and (sn
v , wn

v ) is admissible

w.r.t. V .

Now, fix some v∗ ∈ V. We will construct a PPE σ∗ such that v∗ = v(σ∗). For

that purpose, we will construct a sequence of (public) history-dependent continuation

values v0
t : Ht → V such that v0

t (ht) does not depend on θt. Along the equilibrium

path, σ∗ is defined as a function of v0:

σ∗
t (ht) =



























s1
v0

t
(ht) if θt ≤ λ1

v0
t
(ht)

s2
v0

t
(ht) if λ1

v0
t
(ht) < θt ≤ λ2

v0
t
(ht)

s3
v0

t
(ht) if θt > λ2

v0
t
(ht)

.

Along the equilibrium path, v0
t is defined recursively with v0

1(h1) ≡ v∗ and:

v0
t+1 (ht+1) =



























w1
v0

t
(ht)(ξt) if θt ≤ λ1

v0
t
(ht)

w2
v0

t
(ht)(ξt) if λ1

v0
t
(ht) < θt ≤ λ2

v0
t
(ht)

w3
v0

t
(ht)(ξt) if θt > λ2

v0
t
(ht)

.

After any observable deviation from σ∗, agents turn to the autartic equilibrium with

σ∗
t (ht) = (0, 0, 0) and v∗

t = −π0c for any subsequent public history ht. It is straight-

forward to see that v0
t , and thus σ∗

t , are measurable. For every public history ht along

the equilibrium path, by construction we have that

v0
t (ht) =

3
∑

n=1

λn
v0

t
(ht)g

(

sn
v0

t
(ht), wn

v0
t
(ht)

)

= Et

[

(1 − δ)u(σ∗
t (ht)) + δv0

t+1(ht+1)
]

= (1 − δ)Et

[

u(σ∗
t (ht)) + δu(σ∗

t+1(ht+1)) +
δ2

1 − δ
v0

t+2(ht+2)

]

= (1 − δ)Et

[

∞
∑

τ=0

δτ u(σ∗
t+τ (ht+τ ))

]

+ lim
τ→∞

δτ
Et

[

v0
t+τ (ht+τ )

]

= vt (σ∗, ht) .

Hence, we have that v∗ = v0
1(h1) = v(σ∗). Finally, since actions and continuation

values are admissible at every period, we know that there are no profitable single

deviations. (Recall that the conditions (A) and (M) that define admissibility are
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precisely the requirement that there should be no one-shot deviations at the avoidance

and mitigation stages, respectively). By Lemma A.3, this implies that σ∗ is a PPE.

�

Lemma A.5 (Factorization). V∗ is self-generating

Proof. Fix an arbitrary point v∗ ∈ V∗, and let σ∗ be the PPE that generates it. For

each possible realization of the date-1 public signal (θ1) ∈ [0, 1], let σ′|θ1
denote the

corresponding continuation strategy from period t1 onward (assuming that there are

no detectable deviations), and let wθ1
= v(σ′|θ1

). Since σ∗ is measurable, it follows

that wθ1
is also measurable. Since σ∗ is a PPE, we know that wθ1

∈ V∗ for all θ1.

Moreover, Lemma A.3 implies that there are no profitable single-shot deviations from

σ∗ on period 1. Therefore, (σ∗
1(θ1), wθ1

) is admissible w.r.t. V∗ for each realization of

θ1. Hence, g (σ∗
1(θ1), wθ1

) ∈ Bσ∗
1

(θ1)(V
∗). This implies that:

v∗ =
∫ 1

0
g (σ∗

1(θ1), wθ1
) dθ1 ∈ co

(

⋃

s

Bs(V
∗)

)

= B(V∗),

thus completing the proof. �

Lemma A.6. If V is compact, then B(V) is compact.

Proof. Fix some a ∈ {0, 1}. We will start by showing that Ba(V) := ∪mBa,m(V)

is compact. Consider any sequence (vn) in Ba(V) converging to some v∗ ∈ R
2.

By construction, sequences (mn) and (wn) exist such that vn = g(a, mn, wn), and

(a, mn, wn) is admissible w.r.t. V . Since it is contained in a compact space, the

sequence (mn, wn) has a subsequence converging to some limit (m∗, w∗). Since V

and R
2
+ are closed, we know that m∗ ∈ R

2
+ and w∗ ∈ V. Since g is continuous, we

know that v∗ = g(a, m∗, w∗). Since the incentive constraints (A) and (M) are defined

by continuous functions, we know that (a, m∗, w∗) is admissible w.r.t. V . Hence,

v∗ ∈ Ba(V). Since this was for arbitrary convergent sequences, this means that Ba(V)

is closed.

Now, since the payoffs of the stage game are all nonpositive and V is bounded,

then Ba(V) is bounded above. Since admissibility implies that the values have to be

conditionally individually rational, it is also bounded below. Hence, Ba(V) is compact.

Since a finite union of compact sets is compact, we have that ∪sBs(V) = ∪aBa(V) is

compact. The result then follows from the fact that the convex hulls of compact sets

are compact. �
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Proof of proposition A.1. Since B is ⊆-monotone by construction, Lemma A.4 implies

that V∗ contains the union of all self-generating sets. By Lemma A.5, this implies that

V∗ is the largest self-generating set. Since B(V) is convex for any V by construction,

Lemma A.5 also implies that V∗ is convex. Now, fix any bounded set V such that

V∗ ⊆ V . Let V̄ be the closure of V , and define the sequence {Vn}∞
n=1 by V0 = V̄

and Vn+1 = B(Vn) for n = 1, 2, . . .. By definition of B and Lemma A.6, we know

that Vn is a ⊆-decreasing sequence of compact sets and therefore has a (Hausdorff)

limit V∞ = ∩nVn, and this limit is compact. Since B is ⊆-monotone and V∗ is self-

generating, we know that V∗ = Bn(V∗) ⊆ Bn(V0) = Vn for all n, and thus V∗ ⊆ V∞.

It remains to show that V∞ is self-generating. For this purpose, we combine the

proofs from lemmas A.4 and A.6. Consider any v∗ ∈ V∞. By construction we know

that v∗ ∈ B(Vn) for all n. Therefore, sequences
{

(bnk, λnk, snk, wnk)3
k=1

}∞

n=1
exist such

that v∗ =
∑3

k=1 λnkbnk, bnk = g(snk, wnk) and (snk, wnk) is admissible w.r.t. Vn for all n.

Since it is contained in a compact space, the sequence {bnk, λnk, snk, wnk(0), wnk(1, mnk)}

has a subsequence converging to some limit (b∗k, λ∗k, m∗k, w∗k). Since all the relevant

sets are closed, we know that the limit belongs to the set where we want it to be.

Since g is continuous, we know that b∗k = g(s∗k, w∗k). Since the incentive constraints

are defined by continuous functions, we know that (s∗k, w∗k) is admissible w.r.t. V∞.

It is straightforward to see that v∗ =
∑3

k=1 λ∗kb∗k ∈ B(V∞). Therefore V∞ is self-

generating and, by Lemma A.4, V∞ ⊆ V∗. �

We are now in a position to prove our claim about the restriction to pure-public

strategies being without loss of generality. One could extend the definition of equi-

librium in the obvious way to allow for mixed strategies that depend on private in-

formation. The following proposition states that the set of equilibrium payoffs would

not change. The reason for this is because the new set would be self-generating in

the original sense, and thus it would be contained in V .

Proof of proposition A.2. V∗ is nonempty because unconditional static repetition of

a Nash equilibrium of the stage game constitutes a PPE. Compactness and convexity

follow directly from the first part of the proof of Proposition A.1. For δ-monotonicity,

it is easy to see from the definition of B that, if V∗ ⊆ V , then B(V) is ⊆-monotone

with respect to δ. Hence, the set of PPE payoffs is also ⊆-monotone with respect to

δ.
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Finally, it remains to argue that the restriction to pure strategies is without loss

of generality. The complete proof is technical and burdensome. Hence, we only

present a sketch of the proof, but a formal proof can be provided upon request. The

definitions of equilibrium and v(σ) can be easily extended to allow for mixed and

private strategies in the obvious way. Let Ṽ be the corresponding set of equilibrium

payoffs with the modified definitions. Fix some v∗ ∈ Ṽ , and let σ∗ be the (possibly

mixed or private) strategy profile that generates it and constitutes an equilibrium.

Now delegate all the randomization to θ1, define continuation values in the obvious

way, and show that the resulting pairs (σ|θ1, w|θ1) are admissible in accordance with

Definition 3 w.r.t. Ṽ . Intuitively, this occurs because R
2
+ is convex and thus there

is no need to randomize mitigation contributions. Moreover, m1 and m2 are chosen

after observing a, and thus there is no need to randomize the avoidance action. This

implies that Ṽ is self-generating and is thus contained in V∗. �

B. Proofs of the main results

B.1. Preliminaries

Throughout this section, we use the notation 〈a, m1, m2〉 to denote the stationary

strategy profile for the repeated game that consists of repeating (a, m1, m2) in every

period and after any public history. From the analysis in Section 2, we know that

(0, m1, 1 − m1) is a NE of the stage game as long as m1 ∈ [1 − c2, c1]. Therefore,

〈0, m1, 1 − m1〉 is a PPE as long as m1 ∈ [1 − c2, c1]. We use this fact repeatedly in

the subsequent proofs.

Each agent i can guarantee a minmax payoff of −π0ci by never making any positive

contributions and, if i = 1, then never taking the avoidance action. Hence, every

equilibrium payoff v ∈ V∗ must satisfy the individual rationality conditions vi ≥

−π0ci, for i = 1, 2. The set of feasible and individually rational payoffs corresponds

to the shaded area in Figure 3. Each of the diagonal lines in the figure corresponds

to the feasible payoffs that can be attained with efficient mitigation with and without

taking the avoidance action, respectively. The thick blue line corresponds to the set of

equilibrium payoffs that can be achieved by unconditional repetitions of static Nash
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equilibria of the stage game.

v2

v1

v1 = −π0c1

v2 = −π0c2

v1 + v2 = −π1

v1 + v2 = −π0

b

b

b

b

u(0, c1, 1 − c1)

u(1, c1, 1 − c1)

u(0, c2, 1 − c2) u(1, c2, 1 − c2)

Figure 3: Feasible and individually rational payoffs, and stationary PPE payoffs.

B.2. Proof of Proposition 4.1

Let σ∗ = (α∗, µ∗
1, µ∗

2) be a PPE and fix a history (ht with α∗
t (ht) = 1, (if there are no

such PPE and histories, then the proposition is true). For σ∗ to be an equilibrium,

it must satisfy the feasibility and incentive constraints from Section A.1. First, the

feasibility condition (F) implies that

v1t(σ
∗, ht) = −(1 − δ)d + π1

(

(1 − δ)k1(m
∗
1, m∗

2) + δw∗
1(1)

)

+ (1 − π1)δw∗
1(0), (8)

where m∗
i = µ∗

it(ht) is agent i’s equilibrium mitigation contribution for date-t accord-

ing to σ∗, and w∗
i (ξ) are his equilibrium continuation values. The avoidance constraint
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(A) can be written as

(

(1 − δ)k1(m
∗
1, m∗

2) + δw∗
1(1)

)

≤ δw∗
1(0) − (1 − δ)d̂. (9)

Combining this constraint with the mitigation constraint (M), we have that:

δw∗
1(0) − (1 − δ)d̂ ≥ −(1 − δ + δπ0)c1.

⇒ δπ0d̂ ≥ −δw∗
1(0) − (1 − δ + π0δ)

(

c1 − d̂
)

. (10)

Solving for ((1 − δ)k1(m
∗
1, m∗

2) + δw∗
1(1)) in (8), substituting in (9), and rearranging

terms yields:

δπ0d̂ ≤

(

δ2

1 − δ

)

w∗
1(0) −

(

δ

1 − δ

)

v1t(σ
∗, ht). (11)

Combining (10) and (11) and doing some more algebra we obtain:

w∗
i (0) ≥ v1t(σ

∗, ht) + γ, γ := (1 − δ + π0δ)

(

1 − δ

δ

)

(

d̂ − c1

)

. (12)

Hence, we have established that whenever the active agent chooses a = 1 in

equilibrium and there is no crisis, his expected value must increase at least by a fixed

factor γ. The assumption d̂ > c1 guarantees that γ > 0. This implies that, if there

is no crisis for n subsequent periods and the active agent keeps choosing a = 1 with

probability 1, then we must have

wn
i > v1t(σ

∗, ht) + nγ,

where wn
i is agent 1’s expected discounted value at period t + n. Since the set of

feasible payoffs of agent 1 is bounded above by 0, it must be the case that after a long

enough history of no crisis, agent 1 takes the nonavoidance action. Otherwise, wn
i

would be greater than 0. On the other hand, since π1, π0 ∈ (0, 1), any finite sequence

of no crisis occurs with positive probability. Therefore, taking the avoidance action

at every period with probability 1 cannot be part of a PPE. �
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B.3. Proof of Proposition 4.2

The central step of the proof of Proposition 4.2 is to establish Lemma B.1 below. The

lemma can be understood as follows. In equilibrium, starting from a history where

either crises are not mitigated (m1 + m2 < 1) or money is burned (m1 + m2 > 1), it is

possible to make a Pareto improvement that makes agent 2 strictly better off, while

keeping the payoff of agent 1 constant.

Lemma B.1. If (s0, w0) is admissible w.r.t. the set of PPE V∗ and m1 + m2 6= 1,

then v′ ∈ V∗ exists such that v1 = g1(s
0, w0) and v2 > g2(s

0, w0), where g1 and g2 are

defined as in (4).

Proof. There are three different cases to consider.

Case 1.— Suppose that crises are not mitigated, i.e., m0
1 + m0

2 < 1. Consider

the alternative action profile s′ = (a′, m′
1, m′

2) with a′ = a0, m′
1 = m0

1 + c1, and

m′
2 = min{0, 1−m′

1}. Note that, m′
1 +m′

2 = 1, that is, crises are mitigated according

to the new action profile. Hence, the cost in case of a crisis for the active agent

remains unchanged, that is,

k1(m
′
1, m′

2) = −m′
1 = −m0

1 − c1 = k1(m
0
1, m0

2),

where k1 is the crisis cost function as defined in (5). In contrast, the cost in case of

a crisis for the active agent goes down since

k2(m
′
1, m′

2) = − min{0, 1 − m′
1} ≥ −(1 − c1) > −c2 ≥ k2(m0

1, m0
2),

where the strict inequality follows from Assumption 1. This implies that g1(s
′, w0) =

g1(s
0, w0) and g2(s

′, w0) > g2(s
0, w0). Moreover, since the mitigation contributions

only enter the incentive constraints (A) and (M) through ki, the pair (s′, w0) is ad-

missible w.r.t. V∗. Thus, by Proposition A.1, g(s′, w0) ∈ V∗.

Case 2.— Suppose that the passive agent burns money in case of a crisis, i.e.,

m0
1 + m0

2 > 1 and m2 > 0. Consider the alternative action profile s′ = (a′, m′
1, m′

2)

with a′ = a0, m′
1 = m0

1, and m′
2 = min{0, 1 − m′

1}. As in the previous case, we have

k1(m
′
1, m′

2) = k1(m
0
1, m0

2), and k2(m′
1, m′

2) < k2(m
0
1, m0

2). Moreover, this implies that

g(s′, w0) ∈ V∗, g1(s
′, w0) = g1(s

0, w0) and g2(s
′, w0) > g2(s

0, w0).

Case 3.— Suppose that only the active agent burns money in case of a crisis,
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i.e., m0
1 > 1 and m0

2 = 0. We begin by showing that, in this case, the equilibrium

continuation value for the active agent in case of a crisis cannot be the maximum

equilibrium value, i.e., we must have w0
2(1) < max{v2 | v ∈ V∗}.

For that purpose, consider the alternative continuation value profile w′ and the

alternative action profile s′ = (a′, m′
1, m′

2) with a′ = 1, m′
1 = m0

1, m′
2 = 0, and w′

i(ξ) =

w0
i (1) for i = 1, 2 and ξ = 0, 1. Since w′

1(1) = w′
1(0), the avoidance constraint (A)

for (s′, w′) can be written as d̂ ≤ −k1(m
0
1, m0

2). It is satisfied because −k1(m
0
1, m0

2) =

m0
1 > 1, and Assumption 2 requires that d̂ < 1. The mitigation contributions and

continuation values after a crisis are the same under (s′, w′) and (s0, w0). Hence, we

know that (s′, w′) satisfies the mitigation constraints (M) for both agents. Hence,

(s′, w′) is admissible w.r.t. V∗ and, by Proposition A.1, g(s′, w′) ∈ V∗.

Since w′
2(0) = w′

2(1) = w0
2(1), it follows that

g2(s
′, w′) = (1 − δ)u2(s

′) + δw0
2(1) = δw0

2(1).

Now, it is easy to show that there are no equilibria where agent 1 always mitigates

crises on its own. This implies that w0
2(1) < 0 and, therefore, g2(s

′, w′) < w0
2(1).

Hence, v∗ ∈ V∗ exists such that v∗
2 > w0

2(1).

Now, we can return to showing that (s0, w0) is inefficient. For each ε ∈ (0, 1),

consider the alternative continuation value profile wε and the alternative action profile

sε = (aε, mε
1, mε

2) with aε = a0, mε
2 = 0,

mε
1 = m0

1 +
δ

1 − δ
ε(v∗

1 − w0
1(1)),

wε
i (0) = w0

i (0), and

wε
i (1) = (1 − ε)w0

i (1) + εv∗
i ,

for i = 1, 2.

Now, fix any ε sufficiently small so that mε
1 > 1. Note that mε

1 was chosen

specifically so that

−(1 − δ)mε
1 + δwε

1(1) = −(1 − δ)
[

m0
1 +

δ

1 − δ
ε(v∗

1 − w0
1(1))

]

+ δ
[

(1 − ε)w0
i (1) + εv∗

i

]

= −(1 − δ)m0
1 + δw0

i (1).
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Hence, both the avoidance (A) and the mitigation constraint (M) for the active agent

are satisfied by (sε, wε) and g1(s
ε, wε) = g1(s

0, w0). As for the passive agent, since

k2(m
ε
1, mε

2) = k2(m
ε
1, mε

2), wε
2(0) = w0

2(0) and wε
2(1) > w0

2(1), we know that his

mitigation constraint is satisfied by (sε, wε), and g2(s
ε, wε) > g2(s

0, w0). Also, by

Proposition A.2, we know that V∗ is convex and thus wε(1) = (wε
1(1), wε

2(1)) ∈ V∗.

Hence, (sε, wε) is admissible w.r.t. V∗ and thus, by Proposition A.1, g(sε, wε) ∈

V∗. �

With Lemma B.1, it is easy to prove Proposition 4.2.

Proof of Proposition 4.2. Let σ∗ be a PPE, and let H0 ⊆ ∪∞
t=1Ht be the (possibly

empty) set of public histories ht such that (a) µ∗
1t(ht) + µ∗

2t(ht) 6= 1 and (b) µ∗
1t(h

′
t) +

µ∗
2t′(ht) = 1 for every public history h′

t, which is a predecessor of ht. By Lemma B.1,

we know that for every such history ht ∈ H0, a strategy profile σht exists such that

v1(σ
ht) = v1t(σ

∗, ht) and v2(σ
ht) > v2t(σ

∗, ht). Let σ′ be the strategy profile that

mimics σ∗ until it reaches a public history ht ∈ H0 and follows σht from then onward

(treating ht as the empty history). Since continuation values for the passive agent

remain unchanged, and continuation values for the active agent only go up, it follows

that σ′ is a PPE. Finally, if H0 is nonempty and is reached with positive probability,

then v1(σ
′) = v1(s

∗) and v2(σ
′) > v2(s

∗). �

B.4. Proof of Proposition 4.3

Proof. We will show that in a PPE where there are no bailouts, the active agent

always takes the no-avoidance action almost surely. Consider a strategy profile with

no bailouts, i.e., such that for almost every history (ht), either µ1t(ht) ≥ c1 or µ1t(ht)+

µ2t(ht) < 1. This implies that u1(σt(ht)) ≤ −d − π1c1 for histories with αt(ht) = 1,

and u1(σt(ht)) ≤ −π0c1 for histories with αt(ht) = 0. Assumption 2 implies that

−d−π1c1 < −π0c1, and thus v1(σ) ≤ −π0c1, with strict inequality whenever αt(ht) =

1 for some history set of histories {ht}, which is reached with positive probability

along the equilibrium path. Individual rationality requires v1(σ) ≥ −π0c1. Hence, a

strategy profile with no bailouts can satisfy individual rationality only if αt(ht) = 0

almost surely along the equilibrium path. �
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B.5. Proof of Proposition 4.4

The proof of Proposition 4.4 makes use of three lemmas. Lemma B.2 simply asserts

that, whenever it is possible to have avoidance, it is possible to do it in a way that

dominates the best static Nash equilibria of the stage game in terms of total cost.

Lemma B.2. If it is possible for agent 1 to choose the avoidance action at least once

in at least one PPE, then a PPE exists with total cost less than π0, i.e., if a PPE σ∗

and a public history ht exist such that α∗
t (ht) = 1, then (v1, v2) ∈ V∗ exists such that

v1 + v2 > −π0.

Proof. Suppose it is possible for agent 1 to choose the avoidance action at least once

in at least one PPE. Then, by Proposition A.1, there exist a profile of continuation

values w∗ and a profile of actions s∗ = (a∗, m∗
1, m∗

2) with a∗ = 1 such that (s∗, w∗) is

admissible w.r.t. V∗. If either w∗
1(0) + w∗

2(0) > −π0 or w∗
1(1) + w∗

2(1) > −π0, then the

proof is complete. Hence, for the rest of the proof, we assume that w∗
1(0) + w∗

2(0) ≤

−π0 and w∗
1(1) + w∗

2(1) ≤ −π0.

Individual rationality implies that w∗
i (0) ≥ −π0ci for i = 1, 2. Hence, we know

that −π0c1 ≤ w∗
1(0) ≤ −π0(1 − c2). This implies that m0

1 ∈ [1 − c2, c1] exists such

that w∗
1(0) = −π0m0

1 (See Figure 3). Now, consider the alternative continuation

value profile w′ and the alternative action profile s′ = (1, c1, 1 − c1), w′
1(1) = −π0c1,

w′
2(1) = −π0(1 − c1), w′

1(0) = −π0m0
1 and w′

2(0) = −π0(1 − m0
1).

Since 〈0, c1, 1 − c1〉 and 〈0, m0
1, 1 − m0

1〉 is a PPE, we know that w′(ξ) ∈ V∗ for

ξ = 0, 1. Also, it is straightforward to verify that (s′, w′) satisfies the mitigation

constraints (M) for both agents. In order to show that (s′, w′) satisfies the avoidance

constraint (A), first consider the pair (s∗, w∗). Since (s∗, w∗) is admissible w.r.t. V∗,

it must satisfy the mitigation constraint

(1 − δ)k1(m
∗
1, m∗

2) + δw∗
1(1) ≥ −(1 − δ + δπ0)c1,

and the avoidance constraint

(1 − δ)k1(m1, m∗
2) + δw∗

1(1) ≤ δw∗
1(0) − (1 − δ)d̂.

35



Together, these two constrains imply that

−(1 − δ + δπ0)c1 ≤ δw∗
1(0) − (1 − δ)d̂,

which is precisely the avoidance constraint for (s′, w′).

We have shown that (s′, w′) is admissible w.r.t. V∗. By Proposition A.1, this

implies that g(s′, w′) ∈ V∗. Finally, note that

g1(s
′, w′) + g2(s

′, w′) = (1 − δ)(−π1) − δπ0 < −π0,

where the last inequality follows from Assumption 2. �

Lemma B.3, is the crucial step of the proof. It states that if it is possible to have

avoidance then, starting from any nonavoidance PPE, it is possible to improve the

payoff of the passive agent without affecting the payoff of the active agent. Since

continuation values of efficient PPE must always lay on the upper boundary of V∗,

this implies that avoidance must happen infinitely often. By Proposition 4.3, this

implies that bailouts must happen infinitely often as well.

Lemma B.3. If a PPE exists with total cost less than π0, then every PPE without

avoidance is Pareto dominated by a different PPE that increases the payoff of agent

2 while keeping the payoff of agent 1 unchanged, i.e., for every PPE σ0 such that

α0
t (ht) = 0 almost surely, v′ ∈ V∗ exists such that v′

1 = v1(σ
0) and v′

2 > v2(σ
0).

Proof. Further below we will show that v1, v2 ∈ V∗ exist such that vi
i = −π0ci, and

vi
−i > −π0(1 − ci), for i = 1, 2. For now, take this fact as given, and let σ0 be

PPE without avoidance. Since α0
t (ht) = 0 for all ht, we know that v1(σ

0) + v2(σ
0) ≤

−π0. Moreover, individual rationality implies that −π0c1 ≤ v1(σ
0) ≤ −π0(1 − c2).

Therefore, some µ ∈ (0, 1) exists such that v1(σ
0) = µv1

1 + (1 − µ)v2
1. Let vµ =

µv1 + (1 − µ)v2. By construction, we know that vµ
1 + vµ

2 > −π0, which implies that

vµ
2 > v2(σ

0), see Figure 4. The result then follows because V∗ is convex (Proposition

A.2) and, consequently, vµ ∈ V∗.

It only remains to show the existence of v1 and v2. We will only show existence

of v1. The proof for v2 is analogous. Let v∗ ∈ V∗ be a PPE with total expected

discounted cost less than π0, i.e. such that v∗
1 + v∗

2 > −π0. Individual rationality

implies that v∗
1 ≥ −π0c1 If v∗

1 = −π0c1, then we can simply set v1 = v∗. For the rest

of the proof, we consider the case that v∗
1 = −π0c1 + ∆ for some ∆ > 0.
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v2

v1

v1 = −π0c1

v2 = −π0c2

v1 + v2 = −π1

v1 + v2 = −π0

b

b

b

b

v1

v2

vµ = µv1 + (1 − µ)v2

v(σ0)

Figure 4: PPE without avoidance result in payoff profiles within the shaded area, all
of which are dominated by convex combinations of v1 and v2.

Fix any λ ∈ (0, λ̄), where

λ̄ := min

{

1,
1 − δ

δ∆
(1 − c1)

}

> 0.

Let vλ = (1 − λ)u(0, c1, 1 − c1) + λv∗. In particular, this implies that

vλ
1 = −π0c1 + λ∆.

Since 〈0, c1, 1−c1〉 is a PPE and V∗ is convex (Proposition A.2), we know that vλ ∈ V∗

for all λ ∈ (0, 1).

Consider the action profile sλ = (aλ, mλ
1 , mλ

2), with aλ = 0, mλ
1 = c1 + ε, and

mλ
2 = 1 − c1 − ε, where

ε :=

(

δ

1 − δ

)

λ∆ > 0.
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Also, consider the profile of continuation values wλ with wλ
i (0) = ui(0, c1, 1 − c1), and

wλ
i (1) = vλ

i , for i = 1, 2. In words, (sλ, wλ) represents the following plan, see Figure 5.

If there is no crisis, then the play transitions to 〈0, c1, 1−c1〉 forever. If a crisis occurs,

the play transitions to a mixture of 〈0, c1, 1 − c1〉 and the strategies that generate v∗.

As we show below, the value of ε is carefully selected to guarantee that all the efficiency

gains from avoidance go to agent 2, i.e., in order to have g1(s
µ, wµ) = −π0c1.

v1 = −π0c1 v1 + v2 = −π0

b

b
b

b

b

u(0, c1, 1 − c1)

u(0, c1 + ε, 1 − c1 − ε)

v1

vλ

v∗

Figure 5: v1 is a mixture of u(0, c1 + ǫ, 1 − c1 − ǫ) on the first period, u(0, c1, 1 − c1)
from the second period onward if there is no crisis, and vλ from the second period
onward in case of a crisis.

The condition λ < λ̄ guarantees that c1 + ε < 1, so that mλ
2 + mλ

1 = 1, and mλ
2

is a static best response to mλ
1 . This implies that agent 2’s mitigation constraint (M)

for (sλ, wλ) is satisfied. Also, it implies that

(1 − δ)k1(m
λ
1 , mλ

2) + δwλ
1 (1) = −(1 − δ)(c1 + ε) + δvλ

1 = −(1 − δ + δπ0)ci.

This implies that agent 1’s mitigation constraint and his avoidance constraint (A) are

also satisfied, and that g1(s
µ, wµ) = −π0c1. Therefore, (sλ, wλ) is admissible w.r.t. V∗

and, by Proposition A.1, g(sλ, wλ) ∈ V∗. Finally, note that

g1(s
µ, wµ) + g2(s

µ, wµ) = π0
[

(1 − δ)u1(s
λ) + δvλ

]

− (1 − π0)δπ0 > −π0.

Since g1(s
µ, wµ) = −π0c1, this implies that g2(s

µ, wµ) > −π0(1− c1), thus completing
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the proof. �

Finally, Lemma B.4 shows that it is not possible to have avoidance when the

discount factor is very low, and it is possible to do so when it is very high. This,

together with the monotonicity of the set of PPE payoffs with respect to the discount

factor, implies the existence of the threshold δ∗—strictly between 0 and 1—separating

a region where no avoidance is possible, from a region where avoidance and bailouts

happen infinitely often in all efficient equilibria.

Lemma B.4. There exist numbers 0 < δ < δ̄ < 1 such that if δ ≤ δ, then there is no

avoidance in any PPE and if δ > δ̄, then a PPE exists where the avoidance action is

played with positive probability along the equilibrium path.

Proof. Let δ̄ and δ be the bounds for the discount factor given by

δ̄ :=
d̂ − c1

d̂ − c1 + π0(c1 + c2 − 1)
and δ :=

d̂ − c1

d̂ − c1 + π0c1

.

Assumptions 1 and 2 require that d̂ > c1, c1 + c2 > 1, and c2 < 1. These conditions

imply that 0 < δ < δ̄ < 1.

We begin by showing that, if δ > δ̄, then a PPE exists where the avoidance action

is played with positive probability. Let σ0 be the public strategy profile described

as follows. On the first period, σ0
1(h1) = (1, c1, 1 − c1) for all h1 ∈ H1. If a crisis

occurs on the first period, then σ0
t (ht) = (0, c1, 1 − c1) for every subsequent history ht.

Otherwise, if there is no crisis on period one, then σ0
t (ht) = (0, 1 − c2, c2) for every

subsequent history ht.

We will show that σ0 is a PPE as long as δ ≥ δ̄. For t > 1, σ0 consists of

unconditional repetition of static Nash equilibria of the stage game. Hence, the

continuation strategies are PPE, and we only need to check the incentive constraints

from section A.1 for date t = 1. If there is a crisis in period 1, the agents’ contributions

are static mutual best responses and do not affect the continuation value. Therefore,

the mitigation constraints (M) are satisfied. The avoidance constraint (A) can be

written as

0 ≤ d̂ + k1(c1, 1 − c1) +
δ

1 − δ

(

u1(0, 1 − c2, c2) − u1(0, c1, 1 − c1)
)

= d̂ − c1 −
δ

1 − δ
π0(c1 + c2 − 1).
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Rearranging terms, it is straightforward to show that this is equivalent to δ ≥ δ̄.

Now, we will show that if δ ≤ δ, then there cannot be any avoidance in any PPE.

For that purpose, suppose that σ∗ is a PPE with α∗
t (ht) = 1 for some history ht. As

in the proof of Proposition 4.1, the mitigation (M) and avoidance (A) constraints for

the active agent after ht can be written as

(1 − δ)k1(m
∗
1, m∗

2) + δw∗
1(1) ≥ (1 − δ + δπ0)c1

(1 − δ)k1(m
∗
1, m∗

2) + δw∗
1(1) ≤ δw∗

1(0) − (1 − δ)d̂.

Together, they imply that

(1 − δ)d̂ ≤ (1 − δ + δπ0)c1 + δw∗
1(0) ≤ (1 − δ + δπ0)c1,

where the last inequality follows from w∗
1(0) ≤ 0. After some simple algebra, this

condition is equivalent to δ ≥ δ. Hence, in order for a PPE with avoidance to exist,

it cannot be the case that δ < δ. �

Now, we are in a position to prove Proposition 4.4.

Proof of Proposition 4.4. Let D ⊆ (0, 1) be the set of discount factors where it is

possible to play avoidance, and let δ̃ = inf D. Lemma B.4 implies that D 6= ∅.

Lemma B.2 implies that for any δ ∈ D, a PPE exists with total cost below π0. Since

the set of PPE payoffs is monotone with respect to the discount factor (Proposition

A.2), the same is true for every δ′ > δ̃. Since obtaining a cost below π0 requires

avoidance, this implies that (δ̃, 1) ⊆ D. Lemma B.4 implies that 0 < δ ≤ δ̃ ≤ δ̄ < 1.

For the remainder of the proof, fix any δ > δ̃, and let σ∗ be a PPE given δ. We

are interested in the first time after which there is no more avoidance according to

σ∗. For that purpose, let H0 be the (possibly empty) set of histories h0
t after which

there is no more avoidance, i.e., such that a∗
t′(h′

t′) = 0 for every h′
t′ that follows h0

t .

Let H ′ ⊆ H be the set of histories h′
t such that there is no h0

t ∈ H0, which is a strict

predecessor of h′
t.

For every history h′ ∈ H ′, let σh′
be the continuation strategies from h′

t onward.

Since δ ∈ D, we know by Lemma B.4 that the consequence of Lemma B.3 applies.

Hence, vh′
∈ V∗ exists such that vh′

1 = v1(σ
h′

) and vh′

2 > v2(σ
h′

).

Now, let σ′ be the strategy profile that mimics σ∗ before it reaches any history
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h′ ∈ H ′, and then it follows the strategies that support vh′
instead of σh′

. Since

the continuation values after these histories for the active agent remain unchanged,

and the continuation values for the passive agent increases, all the previous incentive

constraints are still satisfied. Hence, σ′ is a PPE that (weakly) Pareto dominates σ∗,

and strictly Pareto dominates it if H ′ is reached with positive probability. Therefore,

we can conclude that if σ∗ is constrained efficient, then there is avoidance infinitely

often almost surely. By Proposition 4.3, this implies that there are also bailouts

infinitely often almost surely. �

B.6. Proofs for the observable-actions model

Proof or Proposition 6.1. Proposition 6.1 is the analogous of Proposition 4.3 for the

observable-actions case. Note that the proof of Proposition 4.3 did not make use of

the fact that avoidance actions were unobservable. Hence, a completely analogous

argument serves to prove Proposition 6.1. �

Proof or Proposition 6.2. Let δ̃′ ∈ (0, 1) be the threshold given by

δ̃′ :=
d + π1(1 − c2) − π0c1

d + π1(1 − c2) − π0c1 + π1(d + π0(c1 + c2) − π1)
. (13)

Let σ∗ be the grim-trigger strategy profile described in section 6.1. We will show that,

if δ ≥ δ̃′, then σ∗ is a PPE of the repeated game with observable avoidance actions.

The single-deviation principle still applies, and hence it suffices to search for devi-

ations at a single period. The strategies after a deviation are a repetition of a static

Nash equilibrium of the stage game, and thus constitute a PPE. Along the equilib-

rium path, it is optimal for the active agent to choose the avoidance action if and

only if:

−(d + π1m∗
1) ≥ −π0c1.

The mitigation incentive constraint for agent 1 is:

−(1 − δ)m∗
1 − δ(d + π1m∗

1) ≥ −(1 − δ)c1 − δπ0c1,
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and for agent 2 it is:

−(1 − δ)m∗
2 − δπ1m∗

2 ≥ −(1 − δ)c2 − δπ0c2,

where m∗
2 = 1 − m∗

1. The mitigation constraint for agent 2 is satisfied if and only if:

m∗
2 ≤

(

1 − δ + δπ0

1 − δ + δπ1

)

c2.

Hence, we can choose m∗
2 to satisfy this condition with equality, and incentives for

player 2 are automatically satisfied. Then, using the fact that m∗
1 + m∗

2 = 1, we have

that:

m∗
1 = 1 −

(

1 − δ + δπ0

1 − δ + δπ1

)

c2 < 1 − c2 < c1.

This implies that c1 − m∗
1 > 0, and thus, after some simple algebra, the mitigation

constraint for 1 is satisfied whenever the avoidance constraint is satisfied. This implies

that the proposed strategy profile is a PPE if and only if:

d + π1 − π1

(

1 − δ + δπ0

1 − δ + δπ1

)

c2 ≤ π0c1,

which, after some algebra, is equivalent to δ ≥ δ̃′. �

B.7. Proofs for the monetary-transfers model

Proof or Proposition 6.3. Proposition 6.3 is the analogous of Proposition 4.3 for the

monetary-transfers model. The argument of the proof is analogous. Consider a strat-

egy profile with no bailouts or monetary compensation, i.e., such that for almost

every history (ht), βt0(ht) = 0 and βt1(ht) − µ1t(ht) ≤ −c1. This implies that the

per-period utility for the active agent is less or equal than −d−π1c1 for histories with

αt(ht) = 1, and less or equal than −π0c1 for histories with αt(ht) = 0. Assumption 2

implies that −d−π1c1 < −π0c1, and thus v1(σ) ≤ −π0c1, with strict inequality when-

ever αt(ht) = 1 for some history set of histories {ht}, which is reached with positive

probability along the equilibrium path. Individual rationality requires v1(σ) ≥ −π0c1.

Hence, a strategy profile with no bailouts can satisfy individual rationality only if
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αt(ht) = 0 almost surely along the equilibrium path. �

Proof of Proposition 6.4. Let σ∗ be the grim-trigger strategy profile described in sec-

tion 6.2, with the constants b∗ and m∗
1 taking the values

m∗
1 := c1 + δ(1 − π0)(d̂ − c1) and b∗ = (1 − δ + δπ0)(d̂ − c1). (14)

Assumption 2 guarantees that m∗
1 ∈ (0, 1) and b∗ > 0. We will show that, if δ ≥ δ̃′′,

then σ∗ is a PPE of the repeated game with observable avoidance actions. The

single-deviation principle still applies. The strategies after a detectable deviation are

a repetition of a static Nash equilibrium of the stage game, and thus constitute a

PPE. Hence, we only need to verify that there are no profitable deviations along the

equilibrium path.

Since the avoidance action is not observable and s∗ is stationary, if it were prof-

itable for the active agent to deviate at a single period by not taking the avoidance

action on that period, then it would also be profitable to deviate by not taking the

avoidance action in any period. Hence, in order to show that it is optimal for the

active agent to take the avoidance action along the equilibrium path, it suffices to

show that his equilibrium average expected discounted utility is weakly greater than

the average expected discounted utility he would get by taking a = 0 on every period.

We denote the value of this deviation v′
1. Note that b∗ = d̂ − m∗

1. As we show below,

this value was chosen specifically so that v′
1 = v1(σ

∗). Since σ∗ is stationary along

the equilibrium path, each agent’s average expected discounted utility equals their

per-period utility. In particular, for the active agent we have that

v1(σ
∗) = −d − π1m∗

1 + (1 − π1)b∗ = −d − π1m∗
1 + (1 − π1)(d̂ − m∗

1)

= −m∗
1 + d

(

1 − π1

π0 − π1
− 1

)

= −m∗
1 + (1 − π0)d̂. (15)

By a similar argument, we have that

v′
1 = −π0m∗

1 + (1 − π0)b∗ = (1 − π0)d̂ − m∗
1,

which implies that v′
1 = v1(σ

∗).

In turn, using an analogous argument for the benchmark model (see section A.1),

the mitigation constraint for the active agent on the monetary-transfer model can be
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written as

− (1 − δ)m∗
1 + δv1(σ

∗) ≥ −(1 − δ + δπ0)c1

⇔ − (1 − δ)m∗
1 + δ(−m∗

1 + (1 − π0)d̂) ≥ −(1 − δ + δπ0)c1

⇔ c1 + δ(1 − π0)(d̂ − c1) ≥ m∗
1,

where the first implication follows from (15), and the second implication is obtained

by rearranging terms. From (14), it follows that the mitigation constraint for the

active agent is satisfied with equality.

The values of m∗
1 and b∗ were specifically chosen so that the incentive constraints

for the active agent are satisfied with equality. Now, it remains to show that, when

δ is close enough to 1, this leaves enough slack for the passive agent to be able to

contribute m∗
2 = 1 − m∗

1 in case of a crisis and to transfer b∗ to the passive agent each

time there is no crisis. The mitigation constraint for the passive agent is

−(1 − δ)m∗
2 + δv2(σ

∗) ≥ −(1 − δ)c2 − δπ0c2,

and his constraint for transfers in case there is no crisis is

−(1 − δ)b∗ + δv2(σ
∗) ≥ −δπ0c2.

Below, we will show that limδ↑1 v2(σ
∗) > −π0c2. This implies that, in the limit when

the discount factor approaches 1, both constraints are satisfied with strict inequality.

By continuity, this implies that there exists some δ̃′′ such that σ∗ is a PPE of the

monetary-transfers model as long as δ ≥ δ̃′′.

By a similar argument as before, the average expected equilibrium value for the

passive agent is

v2(σ
∗) = −π1(1 − m∗

1) − (1 − π1)b∗ = −π1 + m∗
1 − (1 − π1)d̂

= −π1 − (1 − π1)d̂ + c1 + δ(1 − π0)(d̂ − c1).

Therefore, we have that

lim
δ↑1

v2(σ
∗) = −π1 − (1 − π1)d̂ + c1 + (1 − π0)(d̂ − c1) = π0c1 − π1 − d. (16)
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Finally, Assumptions 1 and 2 imply that

c1 + c2 > 1 ∧ d < π0 − π1

⇒ π0(c1 + c2) − π1 > π0 − π1 > d

⇒ π0c1 − π1 − d > −π0c2.

Hence, by (16), we have limδ↑1 v2(σ
∗) > −π0c2, thus completing the proof. �
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