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1 Solving for the transmission rate

For the simulations, we use a discrete time approximation of the continuous time model for

which the unit of time is one day. We use the simplified version of the SEIR model, without

contact tracing and random testing, to recover the transmission rate.

The system of difference equations is

I∗t = IA,t +
(
1− εS

)
IS,t

∆St+1 = −αtStI∗t /N

∆Et+1 = αtStI
∗
t /N − φEt

∆IA,t+1 = φEt − (β + γA) IA,t

∆IS,t+1 = βIA,t − (δ + γS) IS,t

∆Rt+1 = γAIA,t + γSIS,t

∆Dt+1 = dt+1 = δIS,t.

We solve the system recursively, working backward, and operating on daily deaths. From

the ∆D equation

IS,t = dt+1/δ and ∆IS,t+1 = ∆dt+2/δ.

Sub IS into the ∆IS equation

βIA,t = ∆IS,t+1 + (δ + γ) IS,t

= ∆dt+2/δ + (δ + γ) (dt+1/δ) .

Therefore

IA,t = [∆dt+2 + (δ + γ) dt+1] / (βδ)

∆IA,t+1 =
[
∆2dt+3 + (δ + γ) ∆dt+2

]
/ (βδ) .

Sub into the ∆IA equation

Et = [∆IA,t+1 + (β + γ) IA,t] /φ

∆Et+1 =
[
∆2IA,t+2 + (β + γ) ∆IA,t+1

]
/φ

=
[
∆2dt+3 + (δ + γ) ∆dt+2

]
/ (βδ)

+ (β + γ) [∆dt+2 + (δ + γ) dt+1] / (βδ) .

Sub into the ∆E equation

αtStI
∗
t /N =φEt + ∆Et+1

αt =
φEt + ∆Et+1

StI∗t /N
.
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Solve forward with ∆S equation

St+1 = St + αtStI
∗
t /N.

2 Calibration

We use the following conventions: (1) pX→Y for transition probability from X to Y ; (2)

TX→Y for the average time to get from state X to Y ; and (3) TXY Z for the average time

spent in states X, Y , and Z.

For the calculations that follow, it is useful to recall the expected time to exit of a Poisson

process with exit rate α,∫ t

0

τeατdτ =
1

α2

[
1 + eαt (αt− 1)

]
and lim

t→∞

∫ t

0

τe−γτdτ =
1

γ2
. (1)

2.1 Transitions from exposed to symptomatic, pE→S and TE→S

pE→S is the probability that an exposed individual eventually becomes symptomatic,

pE→S =

∫ ∞
0

{∫ τ

0

[
φe−φs

] [
βe−β(τ−s)

] [
e−γA(τ−s)] ds} dτ (2)

where the first term is the probability that the individual becomes asymptomatic infectious

at s, and then becomes symptomatic at τ , without recovering. Working on this, we get

pE→S =φβ

∫ ∞
0

{
e−φτ

∫ τ

0

e−φ(s−τ)
[
e−γA(τ−s)] [e−β(τ−s)] ds} dτ

=φβ

∫ ∞
0

{
e−φτ

∫ τ

0

e−(γA+β−φ)(τ−s)ds

}
dτ

=
φβ

γA + β − φ

∫ ∞
0

{
e−φτ

[
1− e−(γA+β−φ)τ]} dτ

=
φβ

γA + β − φ

[
1

φ
− 1

(γA + β)

]
(3)

=
φβ

γA + β − φ

[
γA + β − φ
φ (γA + β)

]
.

Thus

pE→S =
β

γA + β
. (4)

Of course, since an exposed agent always becomes asymptomatic, we could just write

pE→S = pA→S =
β

γA + β
.
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TE→S is the average time to become symptomatic, conditional on eventually becoming

symptomatic, that is, the average time to get from state E to S

TE→S =

∫ ∞
0

τ

{∫ τ

0

[
φe−φs

] [
βe−β(τ−s)

] [
e−γA(τ−s)]

pE→S
ds

}
dτ

where the term in curly brackets is the probability of becoming symptomatic at τ , conditional

on eventually becoming symptomatic. Working on this, we get

TE→S =
φβ

pE→S

∫ ∞
0

τ

{
e−φτ

∫ τ

0

e−φ(s−τ)e−(γA+β)(τ−s)ds

}
dτ

=
φβ

pE→S

∫ ∞
0

τ

{
e−φτ

∫ τ

0

e−(γA+β−φ)(τ−s)ds

}
dτ

=
1

pE→S

φβ

γA + β − φ

∫ ∞
0

τ
{
e−φτ

[
1− e−(γA+β−φ)τ]} dτ

=
1

pE→S

φβ

γA + β − φ

[
1

φ2
− 1

(γA + β)2

]
.

Substituting for pE→S from (3), this simplifies to

TE→S =

{
φβ

γA + β − φ

[
1

φ
− 1

(γA + β)

]}−1
φβ

γA + β − φ

[
1

φ2
− 1

(γA + β)2

]
=

[
1

φ2
− 1

(γA + β)2

] [
1

φ
− 1

(γA + β)

]−1
=
[
(γA + β)2 − φ2

] [
(γA + β)2 φ− φ2 (γA + β)

]−1
=

(γA + β − φ) (γA + β + φ)

(γA + β)φ (γA + β − φ)

=
(γA + β + φ)

(γA + β)φ
.

Thus

TE→S =
1

φ
+

1

γA + β
. (5)

Note that this can be rewritten as

TE→S =
1

φ
+

β

γA + β

1

β
= TE + pA→STA→S = TE + TA

where the first term is the average time spent being latent, and the second term is the

probability of becoming symptomatic times the average time it takes to become symptomatic

from asymptomatic.
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2.2 Average duration of infectiousness, TAS

pA→S and pA→R are the probabilities that an infected individual becomes symptomatic or

recovers before becoming symptomatic, respectively

pA→S =
β

γA + β
(6)

pA→R =
γA

γA + β
. (7)

TAS is the average duration of infectiousness, that is, the average time spent in states A

and S

TAS =

∫ ∞
0

{
τ
[
γAe

−γAτ
] [
e−βτ

]
+

(
τ +

1

γS + δ

)[
e−γAτ

] [
βe−βτ

]}
dτ

=

∫ ∞
0

τ
[
(γA + β) e−(γA+β)τ

]
dτ +

(
1

γS + δ

)
β

β + γA

where the first term in the integral represents being asymptomatic for duration τ , followed by

a recovery, and the second term of the integral represents being asymptomatic for duration

τ , followed by being symptomatic with an average duration 1/ (γS + δ). This expression

simplifies to

TAS =
1

β + γA
+

β

β + γA

1

γS + δ
= TA + pA→STS, (8)

which is the average duration of being asymptomatic plus the average duration of being

symptomatic times the probability of becoming symptomatic.

2.3 Infection fatality rate (IFR), pE→D

The probability of dying when symptomatic is

pS→D =

∫ ∞
0

(
δe−δτ

)
e−γSτdτ =

δ

δ + γS
.

The probability of dying conditional on being infected is equal to the probability of mak-

ing the transition from asymptomatic to symptomatic times the probability of dying when

symptomatic

pE→D = pA→SpS→D =
δ

δ + γS

β

β + γA
. (9)

3 Reproduction rates

We now calculate the average new infections caused by a newly infectious individual. We

start with the basic reproduction rate in the SIR model and then calculate the average new

infections from an infected individual in an environment with quarantine and contact tracing.
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3.1 Basic reproduction rate R0 for SIR model

The individual is infectious at rate αS/N until recovery or death (γ̃ = γ + δ). The average

number of individuals who are infected by an infectious individual are

R0 =

∫ ∞
0

[
α
S (τ)

N
τ

] [(
γe−γτ

)
e−δτ +

(
δe−δτ

)
e−γ̃τ

]
dτ

≈αS (0)

N

∫ ∞
0

(τ)
(
γ̃e−γ̃τ

)
dτ

≈αγ̃
∫ ∞
0

τe−γ̃τdτ.

For the first approximation, we assume that changes in the measure of susceptible individuals

S are small over the duration of an individual infection. For the second approximation, we

assume that initially the share of susceptible individuals is close to one. From equation (1),

it follows that the basic reproduction rate is

R0 =
α

γ̃
. (10)

3.2 Reproduction rate with quarantine and contact tracing

• A symptomatic individual who is not quarantined infects on average RS = α (S/N)RS

individuals until he recovers or dies, with

RS =

∫ ∞
0

τ
[(
e−γsτ

) (
δe−δτ

)
+
(
γSe

−γsτ
) (
e−δτ

)]
dτ

= (γS + δ)

∫ ∞
0

τe−(γs+δ)τdτ

=
1

γS + δ
.

• An asymptomatic individual who is not quarantined infects on averageRA = α (S/N)RA

until she recovers or becomes symptomatic, with

RA =

∫ ∞
0

στ
[(
e−γAτ

) (
βe−βτ

)
+
(
γAe

−γAτ
) (
e−βτ

)]
dτ

=σ
1

γA + β
.
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• An asymptomatic individual who is quarantined with rates εQA and εQS infects on

average RAS = α (S/N)RAS until he recovers or becomes symptomatic, with

RAS (εQA, εQS) =

∫ ∞
0

[(1− εQA)στ + (1− εQS)RS]
[(
e−γAτ

) (
βe−βτ

)]
dτ

+

∫ ∞
0

(1− εQA)στ
[(
γAe

−γAτ
) (
e−βτ

)]
dτ

= (1− εQA)RA + (1− εQS)
β

γA + β
RS.

• Let R̄AS (εT , εQA, εQS) denote the expected infection factor for a latent individual (the

individual of interest) before knowing whether the individual will be traced

R̄AS (εT , εQA, εQS) = εTRAS (εQA, εQS) + (1− εT )RAS (0, εQS) .

• Consider an individual who is latent, traced with efficiency εT , and quarantined with

rates εQA and εQS. The individual of interest may have been infected by (1) a symp-

tomatic individual who was not quarantined, there are (1− εQS) IS of them; (2) an

asymptomatic individual who was traced, but not quarantined, there are (1− εQA) IAT

of them; and (3) an asymptomatic individual who was not yet traced, there are IA of

them. We want to calculate the average of new infections coming from this individual

until she recovers or dies.

– Case 1 and 2: Since infectious individuals are only traced at the time they be-

come symptomatic, the individual of interest will never be traced. Therefore,

the expected number of new infections coming from the infected individual is

RAS (0, εQS) = α (S/N)RAS (0, εQS);

– Case 3: The expected number of new infections coming from the infected individ-

ual when the infecting individual was asymptomatic is RE = α (S/N)RE, with
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RE

=

∫ ∞
0

[
γAe

−(γA+β)τ0
]

[RAS (0, εQS)] dτ0 (11)

+

∫ ∞
0

[
βe−(γA+β)τ0

] [
e−φτ0

]
R̄AS (εT , εQA, εQS) dτ0 (12)

+

∫ ∞
0

[
βe−(γA+β)τ0

]{∫ τ0

0

[
φe−φs

] [
e−(γA+β)(τ0−s)

] [
σ (τ0 − s) + R̄AS (εT , εQA, εQS)

]
ds

}
dτ0

(13)

+

∫ ∞
0

[
βe−(γA+β)τ0

]{∫ τ0

0

[
φe−φs

] [∫ τ0−s

0

[
γAe

−(γA+β)t
]

[σt] dt

]
ds

}
dτ0 (14)

+

∫ ∞
0

[
βe−(γA+β)τ0

]{∫ τ0

0

[
φe−φs

] [∫ τ0−s

0

[
βe−(γA+β)t

]
[σt+ (1− εQS)RS] dt

]
ds

}
(15)

where the five sub-cases are

∗ Case 3.1, expression (11): The infecting individual recovers at τ0, and the

infected individual is not traced;

∗ Case 3.2-5, expressions (12) through (15): The infecting individual becomes

symptomatic at τ0 and

∗ Case 3.2, expression (12): The infected individual never became asymp-

tomatic;

∗ Case 3.3, expression (13): The infected individual became asymptomatic at

s and stayed so until τ0;

∗ Case 3.4, expression (14): The infected individual became asymptomatic at

s and recovered at s+ t;

∗ Case 3.5, expression (15): The infected individual became asymptomatic at

s and symptomatic at s+ t.

• The probabilities are

for Case 3.1

pE1 =

∫ ∞
0

[
γAe

−(γA+β)τ0
]
dτ0 =

γA
γA + β

, (16)

for Case 3.2

pE2 =

∫ ∞
0

[
βe−(γA+β+φ)τ0

]
dτ0 =

β

γA + β + φ
, (17)
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for Case 3.3

pE3 =

∫ ∞
0

[
βe−(γA+β+φ)τ0

]{∫ τ0

0

[
φe−φ(s−τ0)

] [
e−(γA+β)(τ0−s)

]
ds

}
dτ0

=βφ

∫ ∞
0

[
e−(γA+β+φ)τ0

]{∫ τ0

0

[
e−(γA+β−φ)(τ0−s)

]
ds

}
dτ0

=βφ

∫ ∞
0

[
e−(γA+β+φ)τ0

] 1

γA + β − φ
[
1− e−(γA+β−φ)τ0

]
dτ0

=
βφ

γA + β − φ

∫ ∞
0

[
e−(γA+β+φ)τ0 − e−2(γA+β)τ0

]
dτ0

=
βφ

γA + β − φ

[
1

γA + β + φ
− 1

2 (γA + β)

]
=

βφ

γA + β − φ
· 2 (γA + β)− (γA + β + φ)

(γA + β + φ) 2 (γA + β)

=
βφ

γA + β − φ
· (γA + β − φ)

(γA + β + φ) 2 (γA + β)

=
βφ

2 (γA + β + φ) (γA + β)
, (18)

for Case 3.4

pE4 =

∫ ∞
0

[
βe−(γA+β)τ0

]{∫ τ0

0

[
φe−φs

] [∫ τ0−s

0

[
γAe

−(γA+β)t
]
dt

]
ds

}
dτ0

=βφγA

∫ ∞
0

[
e−(γA+β)τ0

]{∫ τ0

0

[
e−φs

] 1

γA + β

[
1− e−(γA+β)(τ0−s)

]
ds

}
dτ0

=
βφγA
γA + β

∫ ∞
0

[
e−(γA+β+φ)τ0

]{∫ τ0

0

[
e−φ(s−τ0)

] [
1− e−(γA+β)(τ0−s)

]
ds

}
dτ0

=
βφγA
γA + β

∫ ∞
0

[
e−(γA+β+φ)τ0

]{1

φ

[
eφτ0 − 1

]
− 1

γA + β − φ
[
1− e−(γA+β−φ)τ0

]}
dτ0

=
βφγA
γA + β

{
1

φ

[
1

(γA + β)
− 1

γA + β + φ

]
− 1

γA + β − φ

[
1

(γA + β + φ)
− 1

2 (γA + β)

]}
=
βφγA
γA + β

{
1

φ

[
φ

(γA + β + φ) (γA + β)

]
− 1

γA + β − φ

[
γA + β − φ

(γA + β + φ) 2 (γA + β)

]}
=
βφγA
γA + β

{
1

(γA + β + φ) (γA + β)
− 1

(γA + β + φ) 2 (γA + β)

}
=

1

2

βφγA

(γA + β)2
· 1

γA + β + φ
, (19)
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for Case 3.5

pE5 =

∫ ∞
0

[
βe−(γA+β)τ0

]{∫ τ0

0

[
φe−φs

] [∫ τ0−s

0

[
βe−(γA+β)t

]
dt

]
ds

}
dτ0

=βφβ

∫ ∞
0

[
e−(γA+β)τ0

]{∫ τ0

0

[
e−φs

] [ 1

γA + β

[
1− e−(γA+β)(τ0−s)

]]
ds

}
dτ0

=
φβ2

γA + β

∫ ∞
0

[
e−(γA+β+φ)τ0

]{∫ τ0

0

[
e−φ(s−τ0)

] [
1− e−(γA+β)(τ0−s)

]
ds

}
dτ0

=
φβ2

γA + β

∫ ∞
0

[
e−(γA+β+φ)τ0

]{1

φ

[
eφτ0 − 1

]
− 1

γA + β − φ
[
1− e−(γA+β−φ)τ0

]}
dτ0

=
φβ2

γA + β

{
1

φ

[
1

γA + β
− 1

γA + β + φ

]
− 1

γA + β − φ

[
1

γA + β + φ
− 1

2 (γA + β)

]}
=

φβ2

γA + β

{
1

φ

[
φ

(γA + β) (γA + β + φ)

]
− 1

γA + β − φ

[
γA + β − φ

(γA + β + φ) 2 (γA + β)

]}
=

φβ2

γA + β
· 1

(γA + β + φ)

{
1

(γA + β)
− 1

2 (γA + β)

}
=

1

2

φβ2

(γA + β)2
· 1

(γA + β + φ)
. (20)

Note that

pE5 =
β

γA
pE4.

The sum of the probabilities is one

γA
γA + β

+
β

γA + β + φ
+

βφ

2 (γA + β + φ) (γA + β)
+

βφγA

2 (γA + β + φ) (γA + β)2

+
φβ2

2 (γA + β + φ) (γA + β)2

=
γA

γA + β
+

β

γA + β + φ
+

βφ

2 (γA + β + φ) (γA + β)

[
1 +

γA + β

(γA + β)

]
=

γA
γA + β

+
β

γA + β + φ
+

βφ

(γA + β + φ) (γA + β)

=
γA

γA + β
+

β

γA + β + φ

[
1 +

φ

γA + β

]
=

γA
γA + β

+
β

γA + β
= 1.

• Before we proceed, note that the following is true∫ ∞
0

e−ατ0
{∫ τ0

0

se−βsds

}
dτ0 =

1

α (α + β)2
. (21)
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We use equation (1)∫ ∞
0

e−ατ0
{∫ τ0

0

se−βsds

}
dτ0

=

∫ ∞
0

e−ατ0
{

1

β2

[
1− (βτ0 + 1) e−βτ0

]}
dτ0

=
1

β2

{∫ ∞
0

e−ατ0dτ0 −
[
β

∫ ∞
0

τ0e
−(α+β)τ0dτ0 +

∫ ∞
0

e−(α+β)τ0dτ0

]}
=

1

β2

{
1

α
−
[

β

(α + β)2
+

1

α + β

]}
=

1

β2

{
(α + β)2 − αβ − α (α + β)

α (α + β)2

}

=
1

β2

{
(α + β) β − αβ
α (α + β)2

}
=

1

α (α + β)2
.

• The expected infections are

for Case 3.1

RE1 =RAS (0, εQS)

∫ ∞
0

[
γAe

−(γA+β)τ0
]
dτ0 = pE1RAS (0, εQS)

=
γA

γA + β
RAS (0, εQS) , (22)

for Case 3.2

RE2 =R̄AS (εT , εQA, εQS)

∫ ∞
0

[
βe−(γA+β)τ0

] [
e−φτ0

]
dτ0 = pE2R̄AS (εT , εQA, εQS)

=
β

γA + β + φ
R̄AS (εT , εQA, εQS) , (23)
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for Case 3.3 [where you use equation (21) at the fourth step]

RE3 =

∫ ∞
0

[
βe−(γA+β)τ0

]{∫ τ0

0

[
φe−φs

] [
e−(γA+β)(τ0−s)

] [
σ (τ0 − s) + R̄AS (εT , εQA, εQS)

]
ds

}
dτ0

=

∫ ∞
0

[
βe−(γA+β)τ0

]{∫ τ0

0

[
φe−φs

] [
e−(γA+β)(τ0−s)

]
[σ (τ0 − s)] ds

}
dτ0

+ pE3R̄AS (εT , εQA, εQS)

=βφσ

∫ ∞
0

[
e−(γA+β+φ)τ0

]{∫ τ0

0

[
e−φ(s−τ0)

] [
e−(γA+β)(τ0−s)

]
[(τ0 − s)] ds

}
dτ0

+ pE3R̄AS (εT , εQA, εQS)

=βφσ

∫ ∞
0

[
e−(γA+β+φ)τ0

]{∫ τ0

0

[
e−(γA+β−φ)(τ0−s)

]
[(τ0 − s)] ds

}
dτ0

+ pE3R̄AS (εT , εQA, εQS)

=βφσ
1

(γA + β + φ) [(γA + β + φ) + (γA + β − φ)]2
+ pE3R̄AS (εT , εQA, εQS)

=σ
βφ

(γA + β + φ) [2 (γA + β)]2
+ pE3R̄AS (εT , εQA, εQS)

=pE3

[
σ

2 (γA + β)
+ R̄AS (εT , εQA, εQS)

]
, (24)
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for Case 3.4

RE4 =

∫ ∞
0

[
βe−(γA+β)τ0

]{∫ τ0

0

[
φe−φs

] [∫ τ0−s

0

[
γAe

−(γA+β)t
]

[σt] dt

]
ds

}
dτ0

=βφγAσ

∫ ∞
0

e−(γA+β+φ)τ0

{∫ τ0

0

e−φ(s−τ0)
[∫ τ0−s

0

te−(γA+β)tdt

]
ds

}
dτ0

=βφγAσ

∫ ∞
0

e−(γA+β+φ)τ0

{∫ τ0

0

e−φ(s−τ0)

(γA + β)2

×
[
1− [(γA + β) (τ0 − s) + 1] e−(γA+β)(τ0−s)

]
ds
}
dτ0

=
βφγAσ

(γA + β)2

∫ ∞
0

e−(γA+β+φ)τ0

{∫ τ0

0

eφ(τ0−s)

×
[
1− [(γA + β) (τ0 − s) + 1] e−(γA+β)(τ0−s)

]
ds
}
dτ0

=
βφγAσ

(γA + β)2

∫ ∞
0

e−(γA+β+φ)τ0

{∫ τ0

0

eφs
[
1− [(γA + β) s+ 1] e−(γA+β)s

]
ds

}
dτ0

=
βφγAσ

(γA + β)2

∫ ∞
0

e−(γA+β+φ)τ0

{∫ τ0

0

[
eφs − e−(γA+β−φ)s − (γA + β) se−(γA+β−φ)s] ds} dτ0

=
βφγAσ

(γA + β)2

{∫ ∞
0

e−(γA+β+φ)τ0

{∫ τ0

0

[
eφs − e−(γA+β−φ)s] ds} dτ0

−
∫ ∞
0

e−(γA+β+φ)τ0

∫ τ0

0

(γA + β) se−(γA+β−φ)sdsdτ0

}
=

βφγAσ

(γA + β)2

{∫ ∞
0

e−(γA+β+φ)τ0

{
1

φ

[
eφτ0 − 1

]
− 1

γA + β − φ
[
1− e−(γA+β−φ)τ0

]}
dτ0

− (γA + β)
1

(γA + β + φ) [(γA + β + φ) + (γA + β − φ)]2

}
=

βφγAσ

(γA + β)2

{
1

φ

[
1

γA + β
− 1

γA + β + φ

]
− 1

γA + β − φ

[
1

γA + β + φ
− 1

2 (γA + β)

]
− (γA + β)

1

(γA + β + φ) [2 (γA + β)]2

}
=

βφγAσ

(γA + β)2

{
1

φ

[
φ

(γA + β) (γA + β + φ)

]
− 1

γA + β − φ

[
γA + β − φ

(γA + β + φ) 2 (γA + β)

]
− (γA + β)

1

(γA + β + φ) [2 (γA + β)]2

}
=

βφγAσ

(γA + β)2

{
1

(γA + β) (γA + β + φ)
− 1

(γA + β + φ) 2 (γA + β)

− 1

(γA + β + φ) 4 (γA + β)

}
=

βφγAσ

4 (γA + β + φ) (γA + β)3
, (25)
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for Case 3.5

RE5 =

∫ ∞
0

[
βe−(γA+β)τ0

]{∫ τ0

0

[
φe−φs

] [∫ τ0−s

0

[
βe−(γA+β)t

]
[σt+ (1− εQS)RS] dt

]
ds

}
dτ0

=β2φσ

∫ ∞
0

e−(γA+β)τ0

{∫ τ0

0

e−φs
[∫ τ0−s

0

te−(γA+β)tdt

]
ds

}
dτ0

+ (1− εQS)RSβ
2φ

∫ ∞
0

e−(γA+β)τ0

{∫ τ0

0

e−φs
[∫ τ0−s

0

e−(γA+β)tds

]
dt

}
dτ0

=
β

γA
βγAφσ

∫ ∞
0

e−(γA+β)τ0

{∫ τ0

0

e−φs
[∫ τ0−s

0

te−(γA+β)tdt

]
ds

}
dτ0

+ (1− εQS)RSpE5

=
β

γA
RE4 + (1− εQS)RS

β

γA
pE4

=
β

γA
[RE4 + pE4 (1− εQS)RS] , (26)

and

RE =
5∑
i=1

RE,i.

• A newly infected individual then infects on average R = α (S/N)R individuals where

R =
[(1− εQA) IAT + (1− εQS) IS]RAS (0, εQS) + IARE

(1− εQA) IAT + (1− εQS) IS + IA
.

3.3 Traceable individuals

This time we consider an asymptomatic infectious individual who is quarantined once he

becomes symptomatic. For this case, we calculate the average number of exposed and

infectious asymptomatic individuals who this individual has created.

By the time an asymptomatic individual becomes symptomatic, on average who individ-

ual has infected α (t)S(t)/N(t)RAQ other individuals, where

RAQ =

∫ ∞
0

(στ)
(
βe−βτ

) (
e−γAτ

)
dτ

=σβ

∫ ∞
0

τe−(β+γA)τdτ

=σ
β

(β + γA)2
.

The average number of individuals who the infectious individual has infected and who are

not yet infectious at the time the individual becomes symptomatic is α (t)S(t)/N(t)RAQE

where

RAQE =

∫ ∞
0

σpEE (τ)
[
βe−(β+γA)τ

]
dτ.
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where the term in brackets is the probability that the infectious individual has been asymp-

tomatic for duration τ , and pEE (τ) denotes the fraction of individuals who were infected

by the infectious individual over the interval τ and who have not yet become infectious at

the time the individual becomes symptomatic. The probability that an individual who was

infected time s ago and has not yet become infectious is e−φs. Thus

pEE (τ) =

∫ τ

0

e−φsds =
1

φ

(
1− e−φτ

)
and

RAQE =βσ

∫ ∞
0

[
1

φ

(
1− e−φτ

)]
e−(β+γA)τdτ

=
βσ

φ

[
1

β + γA
− 1

β + γA + φ

]
=
βσ

φ

φ

(β + γA) (β + γA + φ)
.

Therefore

RAQE = σ
β

(β + γA) (β + γA + φ)
. (27)

The average number of individuals who an infectious individual has infected and who are

infectious but asymptomatic at the time the individual becomes symptomatic is α (t)S(t)/N(t)RAQA

where

RAQA =

∫ ∞
0

[
σ

∫ τ

0

pEA (s) ds

] [
βe−(β+γA)τ

]
dτ

and pEA (s) denotes the fraction of individuals who were infected time s ago, have become

infectious in the meantime, but have not yet recovered or become symptomatic. Thus

pEA (s) =

∫ s

0

φe−φve−(γA+β)(s−v)dv

=φe−(γA+β)s

∫ s

0

e−(φ−γA−β)vdv

=e−(γA+β)s φ

φ− γA − β
[
1− e−(φ−γA−β)s

]
,

lim
s→∞

pEA (s) =0.
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Substituting in the expression for RAQA, we get

RAQA =σβ
φ

φ− γA − β

∫ ∞
0

[∫ τ

0

e−(γA+β)s
[
1− e−(φ−γA−β)s

]
ds

]
e−(β+γA)τdτ

=
σφβ

φ− γA − β

∫ ∞
0

[
1

γA + β

[
1− e−(γA+β)τ

]
− 1

φ

(
1− e−φτ

)]
e−(β+γA)τdτ

=
σφβ

φ− γA − β

{
1

γA + β

[
1

γA + β
− 1

2 (γA + β)

]
− 1

φ

[
1

β + γA
− 1

β + γA + φ

]}
=

σφβ

φ− γA − β

{
1

2

1

(γA + β)2
− 1

φ

[
φ

(β + γA) (β + γA + φ)

]}
=

σφβ

(φ− γA − β) (β + γA)

{
1

2

1

β + γA
− 1

β + γA + φ

}
=

σφβ

(φ− γA − β) (β + γA)

{
(β + γA + φ)− 2 (β + γA)

2 (β + γA) (β + γA + φ)

}
=

σφβ

(φ− γA − β) (β + γA)

φ− β − γA
2 (β + γA) (β + γA + φ)

.

Therefore

RAQA = σ
φβ

2 (β + γA)2 (β + γA + φ)
. (28)

The average number of individuals who the infectious individual has infected and who

have become symptomatic or recovered at the time the individual becomes symptomatic is

α (t)S(t)/N(t)RAQR where

RAQR =

∫ ∞
0

σ

∫ τ

0

pER (s) dτ
[
βe−(β+γA)τ

]
dτ

and pER (s) denotes the fraction of individuals who were infected time s ago and who have

recovered or become symptomatic,

pER (s) =

∫ s

0

φe−φv
[
1− e−(γA+β)(s−v)] dv.

Note that

pEE (τ) +

∫ τ

0

[pEA (s) + pER (s)] ds

=

∫ τ

0

e−φsds+

∫ τ

0

[∫ s

0

φe−φvdv

]
ds

=
1

φ

(
1− e−φτ

)
+ φ

∫ τ

0

[
1

φ

(
1− e−φs

)]
ds

=
1

φ

(
1− e−φτ

)
+ τ − 1

φ

(
1− e−φτ

)
=τ,
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which are all the individuals who have been infected over the interval τ . Therefore

RAQR =

∫ ∞
0

σ

[
τ − pEE −

∫ τ

0

pEA (s) dτ

] [
βe−(β+γA)τ

]
dτ

=σ

∫ ∞
0

τ
[
βe−(β+γA)τ

]
dτ − σ

∫ ∞
0

pEE
[
βe−(β+γA)τ

]
dτ

− σ
∫ ∞
0

[∫ τ

0

pEA (s) dτ

] [
βe−(β+γA)τ

]
dτ

=RAQ −RAQE −RAQA

=
σβ

(β + γA)2
− σβ

(β + γA) (β + γA + φ)
− σβφ

2 (β + γA)2 (β + γA + φ)

=
σβ

β + γA

[
1

β + γA
− 1

(β + γA + φ)
− φ

2 (β + γA) (β + γA + φ)

]
=

σβ

β + γA

[
2 (β + γA + φ)− 2 (β + γA)− φ

2 (β + γA) (β + γA + φ)

]
=

σβ

β + γA

[
φ

2 (β + γA) (β + γA + φ)

]
.

Thus

RAQR =
σβφ

2 (β + γA)2 (β + γA + φ)
= RAQA.

What about the relative magnitudes?

RAQE

RAQ

=
σβ/ [(β + γA) (β + γA + φ)]

σβ/ (β + γA)2
=

β + γA
β + γA + φ

RAQA

RAQ

=
σβφ/

[
2 (β + γA)2 (β + γA + φ)

]
σβ/ (β + γA)2

=
φ

2 (β + γA + φ)

RAQR

RAQ

=
σβφ/

[
2 (β + γA)2 (β + γA + φ)

]
σβ/ (β + γA)2

=
φ

2 (β + γA + φ)
.
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