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1 Statistical Model of Trend Growth

1.1 Long-Run Correlations and Cross-Correlations of Labor and

TFP Growth Within and Across Sectors

Our interest is on long-run variation and covariation of sectoral growth rates. With this

in mind, Tables A2-A4 present estimates and confidence intervals for long-run correlations

between the sectoral growth rates of labor and TFP using methods developed in Müller

and Watson (2018). These results rely on low-frequency transformations of the data that

retain variability for periods longer that 10 years, and discard higher frequency variability.

(They use the first q = 13 cosine transforms of the data.) The confidence sets are valid for

persistence patterns that include I (0), I (1), mixtures of I (0) and I (1) (such as the MUC

model), local-to-unity autoregressions, and fractional integration with values of d that satisfy

−0.4 ≤ d ≤ 1.0. The point estimates are posterior medians from a bivariate I (d) model
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where the values of d are uniformly distributed on [−0.4, 1.0]. See Müller and Watson (2018)

for details.

The sector numbers used in Tables A2-A4 correspond to the following sectors:

Table A1: Sector Names and Numbers

Sector Number Sector Name

1 Agriculture, Forestry, Fishing, and Hunting
2 Mining
3 Utilities
4 Construction
5 Durable Goods
6 Nondurable Goods
7 Wholesale Trade
8 Retail Trade
9 Transportation and Warehousing
10 Information
11 Finance, Insurance, and Real Estate (x

Housing)
12 Professional and Business Services
13 Education, Health Care, and Social

Assistance
14 Entertainment and Food Services
15 Other Services (except Government)
16 Housing

3



Table A2: Long-run Correlations for Sectoral Employment 
Posterior Medians and 68% Confidence Sets 

 
(a) Correlations of sectors 1-8 with sectors 1-8 

 1 2 3 4 5 6 7 8 
1 1.0 0.06 

[-0.16,0.31] 
-0.30 

[-0.65,-0.00]* 
0.16 

[-0.30,0.45] 
-0.50 

[-0.80,-0.32]* 
-0.38 

[-0.75,-0.04]* 
-0.03 

[-0.65,0.30] 
0.20 

[-0.30,0.46] 
2  1.0 0.09 

[-0.15,0.41] 
-0.05 

[-0.36,0.21] 
0.27 

[-0.00,0.53] 
-0.03 

[-0.30,0.21] 
0.27 

[0.00,0.52]* 
-0.16 

[-0.45,0.08] 
3   1.0 -0.06 

[-0.39,0.18] 
0.33 

[0.03,0.70]* 
0.46 

[0.21,0.80]* 
0.18 

[-0.07,0.65] 
0.01 

[-0.23,0.45] 
4    1.0 -0.09 

[-0.45,0.35] 
-0.43 

[-0.65,0.10] 
0.34 

[0.03,0.65]* 
0.42 

[0.16,0.64]* 
5     1.0 0.52 

[0.28,0.75]* 
0.35 

[0.03,0.65]* 
-0.10 

[-0.47,0.30] 
6      1.0 0.10 

[-0.19,0.55] 
0.01 

[-0.26,0.35] 
7       1.0 0.36 

[0.04,0.65]* 
8        1.0 

 
 

(b) Correlations of sectors 1-8 with sectors 9-16 
 9 10 11 12 13 14 15 16 

1 0.30 
[0.01,0.65]* 

-0.1 
[-0.50,0.07] 

-0.1 
[-0.65,0.13] 

0.11 
[-0.20,0.41] 

0.10 
[-0.13,0.35] 

0.32 
[-0.05,0.53] 

0.00 
[-0.55,0.32] 

-0.02 
[-0.21,0.21] 

2 -0.0 
[-0.30,0.22] 

0.0 
[-0.25,0.27] 

-0.0 
[-0.36,0.21] 

-0.13 
[-0.41,0.08] 

0.01 
[-0.21,0.30] 

-0.10 
[-0.41,0.12] 

-0.01 
[-0.27,0.22] 

-0.20 
[-0.45,0.02] 

3 -0.1 
[-0.55,0.10] 

0.1 
[-0.08,0.44] 

0.2 
[-0.01,0.70] 

-0.00 
[-0.28,0.25] 

0.02 
[-0.21,0.30] 

0.21 
[-0.04,0.45] 

0.21 
[-0.07,0.65] 

0.06 
[-0.13,0.34] 

4 -0.2 
[-0.51,0.02] 

0.2 
[-0.01,0.47] 

0.65 
[0.43,0.79]* 

0.40 
[0.10,0.64]* 

-0.05 
[-0.36,0.18] 

0.27 
[-0.00,0.52] 

0.38 
[0.07,0.70]* 

0.00 
[-0.23,0.25] 

5 -0.1 
[-0.60,0.10] 

0.33 
[0.02,0.54]* 

0.15 
[-0.08,0.60] 

-0.10 
[-0.42,0.12] 

-0.21 
[-0.46,0.04] 

-0.41 
[-0.60,-0.03]* 

0.03 
[-0.25,0.55] 

0.10 
[-0.08,0.41] 

6 0.2 
[-0.35,0.50] 

0.1 
[-0.12,0.41] 

-0.16 
[-0.49,0.40] 

-0.05 
[-0.37,0.18] 

0.27 
[-0.00,0.52] 

0.03 
[-0.21,0.32] 

0.05 
[-0.21,0.55] 

0.26 
[-0.00,0.50] 

7 -0.15 
[-0.55,0.15] 

0.50 
[0.27,0.71]* 

0.65 
[0.38,0.85]* 

0.45 
[0.20,0.65]* 

0.05 
[-0.18,0.36] 

0.30 
[0.01,0.52]* 

0.79 
[0.60,0.93]* 

-0.16 
[-0.44,0.12] 

8 0.2 
[-0.00,0.53] 

0.36 
[0.05,0.57]* 

0.49 
[0.20,0.68]* 

0.80 
[0.68,0.89]* 

0.27 
[-0.00,0.50] 

0.70 
[0.49,0.81]* 

0.59 
[0.38,0.76]* 

-0.01 
[-0.31,0.21] 

 
 

(c) Correlations of sectors 9-16 with sectors 9-16 
 9 10 11 12 13 14 15 16 

9 1.0 0.05 
[-0.20,0.36] 

-0.32 
[-0.55,-0.03]* 

0.22 
[-0.03,0.50] 

0.21 
[-0.03,0.45] 

0.10 
[-0.15,0.40] 

-0.00 
[-0.35,0.27] 

0.16 
[-0.05,0.42] 

10  1.0 0.41 
[0.13,0.58]* 

0.42 
[0.16,0.64]* 

-0.16 
[-0.42,0.05] 

0.04 
[-0.20,0.33] 

0.43 
[0.18,0.60]* 

-0.03 
[-0.33,0.18] 

11   1.0 0.44 
[0.18,0.64]* 

-0.16 
[-0.46,0.09] 

0.32 
[0.03,0.53]* 

0.64 
[0.38,0.85]* 

-0.16 
[-0.44,0.06] 

12    1.0 0.21 
[-0.01,0.46] 

0.71 
[0.53,0.84]* 

0.71 
[0.55,0.81]* 

-0.03 
[-0.35,0.20] 

13     1.0 0.53 
[0.30,0.71]* 

0.19 
[-0.05,0.46] 

0.08 
[-0.10,0.38] 

14      1.0 0.51 
[0.32,0.71]* 

0.01 
[-0.16,0.33] 

15       1.0 -0.21 
[-0.45,-0.00]* 

16        1.0 
 
Notes: The point estimates are posterior medians from a bivariate I(d) model with -0.4 ≤ d ≤ 1. The bracketed 
quantities are 68% frequentist confidence intervals. Asterisks highlight confidence intervals that do not include 
zero. 32% of the pairwise correlations are statistically different from zero at 33% level.The median pairwise 
point-estimate is 0.10. 
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Table A3: Long-run Correlations for Sectoral TFP 
Posterior Medians and 68% Confidence Sets 

 
(a) Correlations of sectors 1-8 with sectors 1-8 

 1 2 3 4 5 6 7 8 
1 1.0 -0.10  

[-0.39,0.13] 
-0.00 

[-0.26 ,0.21] 
0.23 

[0.01,0.45]* 
-0.02 

[-0.29,0.20] 
0.41 

[0.13,0.59]* 
0.01 

[-0.16,0.33] 
0.44 

[0.21,0.64]* 
2  1.0 0.79 

[0.62,0.88]* 
0.27 

[0.00,0.51]* 
0.21 

[-0.03,0.49] 
-0.01 

[-0.30,0.26] 
0.05 

[-0.18,0.35] 
0.08 

[-0.16,0.36] 
3   1.0 0.44 

[0.15,0.75]* 
0.20 

[-0.30,0.49] 
0.16 

[-0.10,0.55] 
-0.00 

[-0.28,0.25] 
0.15 

[-0.08,0.45] 
4    1.0 -0.30 

[-0.70,0.00] 
0.12 

[-0.16,0.55] 
-0.20 

[-0.46,0.05] 
0.38 

[0.07,0.54]* 
5     1.0 0.07 

[-0.18,0.39] 
0.20 

[-0.05,0.44] 
0.05 

[-0.20,0.36] 
6      1.0 0.15 

[-0.08,0.42] 
0.12 

[-0.10,0.41] 
7       1.0 0.23 

[-0.00,0.50] 
8        1.0 

 
 

(b) Correlations of sectors 1-8 with sectors 9-16 
 9 10 11 12 13 14 15 16 

1 -0.01  
[-0.30,0.16] 

-0.16 
 [-0.43,0.08] 

-0.20  
[-0.43,0.04] 

0.01  
[-0.21,0.28] 

0.05  
[-0.15,0.31] 

-0.08 
 [-0.36,0.08] 

0.04  
[-0.16,0.31] 

0.01  
[-0.21,0.28] 

2 0.05  
[-0.19,0.35] 

-0.38  
[-0.57,-0.05]* 

-0.32  
[-0.53,-0.00]* 

0.05  
[-0.21,0.36] 

0.04  
[-0.30,0.38] 

-0.20  
[-0.44,0.04] 

0.34  
[0.03,0.54]* 

0.21 
 [-0.03,0.49] 

3 0.23  
[-0.02,0.46] 

-0.41 
 [-0.56,-0.10]* 

-0.16 
 [-0.43,0.05] 

0.44  
[0.16,0.70]* 

0.30 
 [0.00,0.65]* 

-0.13  
[-0.41,0.10] 

0.23  
[-0.03,0.49] 

0.27  
[-0.03,0.65] 

4 0.11  
[-0.14,0.36] 

-0.23 
 [-0.45,-0.00]* 

-0.18 
 [-0.43,0.03] 

0.41  
[0.11,0.70]* 

-0.00  
[-0.33,0.50] 

-0.32  
[-0.55,-0.05]* 

0.35  
[0.03,0.53]* 

0.54  
[0.34,0.85]* 

5 0.08 
 [-0.15,0.39] 

0.03  
[-0.20,0.30] 

0.06  
[-0.15,0.35] 

0.03  
[-0.45,0.37] 

0.34  
[-0.30,0.59] 

0.44 
 [0.16,0.60]* 

-0.18 
 [-0.46,0.08] 

-0.48  
[-0.80,-0.21]* 

6 0.34  
[0.04,0.55]* 

-0.00 
 [-0.28,0.25] 

-0.45  
[-0.65,-0.20]* 

0.15 
 [-0.09,0.55] 

0.21  
[-0.05,0.47] 

-0.20  
[-0.46,0.05] 

0.03  
[-0.21,0.33] 

-0.07 
 [-0.39,0.30] 

7 -0.00 
 [-0.29,0.21] 

-0.30 
 [-0.51,-0.00]* 

-0.41 
 [-0.63,-0.08]* 

-0.48  
[-0.68,-0.21]* 

0.16 
 [-0.13,0.46] 

0.01  
[-0.21,0.30] 

0.36  
[0.04,0.56]* 

-0.10 
 [-0.36,0.15] 

8 0.00 
 [-0.23,0.27] 

-0.41  
[-0.65,-0.14]* 

-0.16 
 [-0.42,0.05] 

-0.05  
[-0.34,0.17] 

0.05  
[-0.18,0.36] 

-0.01  
[-0.30,0.21] 

0.30  
[0.00,0.52]* 

0.21  
[-0.04,0.46] 

 
 

(c) Correlations of sectors 9-16 with sectors 9-16 
 9 10 11 12 13 14 15 16 

9 1.0 0.05  
[-0.15,0.36] 

-0.33 
 [-0.55,-0.01]* 

0.42  
[0.16,0.63]* 

0.06  
[-0.16,0.34] 

0.23 
 [-0.01,0.47] 

0.01  
[-0.23,0.30] 

-0.03  
[-0.33,0.20] 

10  1.0 0.34  
[0.02,0.63]* 

0.01 
 [-0.21,0.30] 

-0.09  
[-0.37,0.13] 

0.08 
 [-0.10,0.38] 

-0.36  
[-0.60,-0.08]* 

-0.33  
[-0.53,-0.04]* 

11   1.0 0.08 
 [-0.15,0.42] 

-0.03 
 [-0.30,0.21] 

0.41  
[0.11,0.64]* 

-0.53  
[-0.72,-0.31]* 

-0.26 
 [-0.50,0.01] 

12    1.0 0.32 
 [0.01,0.65]* 

0.23 
 [-0.04,0.51] 

-0.21  
[-0.50,0.05] 

0.01  
[-0.23,0.50] 

13     1.0 0.05  
[-0.14,0.33] 

-0.26  
[-0.50,0.03] 

-0.03  
[-0.38,0.30] 

14      1.0 -0.42 
 [-0.62,-0.13]* 

-0.55 
 [-0.78,-0.33]* 

15       1.0 0.53 
 [-0.00,0.71] 

16        1.0 
 
Notes: See notes to Table A2. 32% of the pairwise correlations are statistically different from zero at 33% 
level.The median pairwise point-estimate is 0.03. 
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Table A4: Long-run Correlations for Sectoral Employment (rows) and TFP (columns) 
Posterior Medians and 68% Confidence Sets 

 
(a) Correlations of Employment sectors 1-8 with TFP sectors 1-8 

 1 2 3 4 5 6 7 8 
1 -0.21 

[-0.43,0.03] 
-0.27 

[-0.49,0.01] 
-0.53 

[-0.75,-0.30]* 
-0.48 

[-0.80,-0.21]* 
-0.00 

[-0.30,0.45] 
-0.42 

[-0.75,-0.16]* 
0.27 

[-0.20,0.46] 
-0.13 

[-0.42,0.10] 
2 -0.56 

[-0.72,-0.34]* 
-0.29 

[-0.50,-0.00]* 
-0.29 

[-0.50,0.00] 
-0.41 

[-0.54,-0.09]* 
-0.00 

[-0.29,0.25] 
-0.34 

[-0.56,-0.02]* 
-0.44 

[-0.65,-0.16]* 
-0.60 

[-0.74,-0.37]* 
3 0.06 

[-0.14,0.33] 
-0.18 

[-0.50,0.08] 
-0.01 

[-0.32,0.27] 
0.10 

[-0.19,0.55] 
-0.60 

[-0.80,-0.38]* 
0.08 

[-0.18,0.55] 
-0.16 

[-0.44,0.06] 
-0.34 

[-0.54,-0.03]* 
4 0.14 

[-0.08,0.42] 
-0.44 

[-0.64,-0.16]* 
-0.34 

[-0.57,0.10] 
-0.34 

[-0.56,-0.03]* 
0.16 

[-0.10,0.45] 
0.50 

[0.21,0.70]* 
0.53 

[0.29,0.71]* 
0.08 

[-0.13,0.38] 
5 -0.01 

[-0.30,0.21] 
-0.03 

[-0.34,0.21] 
0.19 

[-0.06,0.65] 
0.32 

[0.01,0.70]* 
-0.25 

[-0.60,0.00] 
-0.00 

[-0.27,0.50] 
-0.33 

[-0.55,-0.01]* 
0.15 

[-0.08,0.42] 
6 0.01 

[-0.21,0.23] 
-0.00 

[-0.29,0.28] 
0.18 

[-0.08,0.55] 
0.44 

[0.15,0.75]* 
-0.50 

[-0.80,-0.27]* 
-0.00 

[-0.30,0.45] 
-0.18 

[-0.46,0.08] 
0.01 

[-0.23,0.29] 
7 -0.20 

[-0.49,0.01] 
-0.42 

[-0.60,-0.12]* 
-0.23 

[-0.49,0.35] 
-0.11 

[-0.45,0.40] 
-0.27 

[-0.52,0.25] 
0.15 

[-0.12,0.60] 
-0.00 

[-0.27,0.25] 
-0.05 

[-0.37,0.17] 
8 -0.00 

[-0.29,0.21] 
-0.18 

[-0.55,0.08] 
-0.27 

[-0.52,0.01] 
-0.11 

[-0.55,0.16] 
-0.16 

[-0.45,0.15] 
0.06 

[-0.19,0.35] 
0.54 

[0.33,0.72]* 
0.05 

[-0.19,0.35] 
 
 

(b) Correlations of Employment sectors 1-8 with TFP sectors 9-16 
 9 10 11 12 13 14 15 16 

1 -0.42 
 [-0.65,-0.14]* 

0.25 
 [0.01,0.46]* 

0.16 
 [-0.03,0.60] 

-0.49  
[-0.80,-0.27]* 

-0.10 
 [-0.55,0.17] 

0.05 
 [-0.16,0.26] 

0.00  
[-0.50,0.27] 

-0.12 
 [-0.55,0.17] 

2 0.08 
 [-0.13,0.37] 

0.43  
[0.20,0.66]* 

0.50  
[0.23,0.68]* 

0.09 
 [-0.13,0.41] 

-0.16 
 [-0.46,0.20] 

0.38  
[0.08,0.63]* 

-0.54 
 [-0.72,-0.31]* 

-0.20 
 [-0.45,0.05] 

3 0.13  
[-0.10,0.41] 

-0.10 
 [-0.39,0.12] 

-0.21 
 [-0.46,0.01] 

0.15 
 [-0.10,0.55] 

-0.08 
 [-0.45,0.30] 

-0.20  
[-0.44,0.05] 

0.03  
[-0.21,0.33] 

0.30  
[0.01,0.55]* 

4 0.04  
[-0.18,0.33] 

0.00  
[-0.21,0.28] 

-0.06 
 [-0.37,0.14] 

-0.20 
 [-0.50,0.08] 

0.25 [ 
-0.02,0.50] 

0.18 
 [-0.05,0.42] 

-0.13 
 [-0.42,0.15] 

-0.34 
 [-0.54,-0.03]* 

5 0.53  
[0.33,0.72]* 

-0.13 
 [-0.41,0.08] 

-0.01 
 [-0.45,0.21] 

0.48  
[0.21,0.75]* 

0.00  
[-0.27,0.50] 

0.19 
 [-0.05,0.48] 

-0.00  
[-0.27,0.28] 

0.30  
[0.00,0.65]* 

6 0.40  
[0.10,0.54]* 

0.00 
 [-0.23,0.23] 

-0.19  
[-0.43,0.05] 

0.27 
 [-0.01,0.65] 

-0.21 
 [-0.50,0.30] 

-0.13  
[-0.41,0.10] 

0.35  
[0.03,0.54]* 

0.34 
 [0.03,0.65]* 

7 -0.00  
[-0.23,0.40] 

-0.01 
 [-0.23,0.20] 

0.05 
 [-0.20,0.35] 

0.03 
 [-0.23,0.55] 

-0.03 
 [-0.34,0.50] 

0.01 
 [-0.21,0.26] 

-0.05 
 [-0.38,0.20] 

-0.03 
 [-0.50,0.21] 

8 -0.00 
 [-0.32,0.22] 

-0.14 
 [-0.41,0.07] 

-0.42 
 [-0.60,-0.12]* 

-0.51 
 [-0.71,-0.21]* 

-0.02  
[-0.35,0.25] 

-0.03  
[-0.34,0.21] 

0.27 
 [-0.01,0.52] 

-0.13  
[-0.55,0.16] 

 
 

(c) Correlations of Employment sectors 9-16 with TFP sectors 1-8 
 1 2 3 4 5 6 7 8 

9 -0.34 
 [-0.54,-0.04]* 

0.18 
 [-0.08,0.46] 

-0.03  
[-0.50,0.23] 

-0.21 
 [-0.65,0.03] 

0.03  
[-0.21,0.50] 

-0.44  
[-0.64,-0.18]* 

0.30  
[0.00,0.52]* 

0.04 
 [-0.21,0.34] 

10 0.01 
 [-0.16,0.30] 

-0.26  
[-0.50,0.01] 

-0.03 
 [-0.33,0.21] 

-0.03 
 [-0.32,0.22] 

-0.27 
 [-0.52,0.01] 

-0.00  
[-0.28,0.28] 

0.13  
[-0.08,0.41] 

0.27 
 [-0.00,0.50] 

11 0.13  
[-0.10,0.42] 

-0.30 
 [-0.60,-0.01]* 

-0.27  
[-0.50,0.30] 

-0.10 
 [-0.43,0.45] 

-0.10 
 [-0.50,0.18] 

0.49 
 [0.21,0.75]* 

0.23  
[-0.03,0.50] 

0.05 
 [-0.17,0.36] 

12 0.00  
[-0.25,0.21] 

-0.18  
[-0.42,0.05] 

-0.28  
[-0.51,0.00] 

-0.10 
 [-0.36,0.13] 

-0.07  
[-0.40,0.16] 

0.06 
 [-0.15,0.35] 

0.44  
[0.20,0.65]* 

0.13 
 [-0.08,0.41] 

13 -0.02  
[-0.31,0.20] 

-0.07 
 [-0.37,0.15] 

-0.25  
[-0.49,0.01] 

-0.03 
 [-0.45,0.20] 

-0.16  
[-0.46,0.10] 

-0.00  
[-0.27,0.26] 

-0.01 
 [-0.33,0.21] 

-0.23 
 [-0.48,0.01] 

14 0.00 
 [-0.21,0.30] 

-0.28 
 [-0.50,0.00] 

-0.42 
 [-0.60,-0.12]* 

-0.05 
 [-0.37,0.17] 

-0.38  
[-0.57,-0.05]* 

0.07  
[-0.16,0.38] 

0.32  
[0.00,0.53]* 

-0.10 
 [-0.41,0.08] 

15 0.00 
 [-0.21,0.20] 

-0.41 
 [-0.70,-0.10]* 

-0.30  
[-0.50,0.20] 

-0.01 
 [-0.45,0.27] 

-0.27  
[-0.49,0.15] 

0.21 
 [-0.03,0.55] 

0.10 
 [-0.13,0.37] 

0.01 
 [-0.35,0.27] 

16 0.08 
 [-0.08,0.38] 

0.01 
 [-0.21,0.28] 

0.03 
 [-0.20,0.30] 

0.13  
[-0.12,0.33] 

-0.05  
[-0.33,0.13] 

-0.00 
 [-0.25,0.22] 

0.30 
 [-0.00,0.51] 

0.21  
[-0.02,0.45] 
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(d) Correlations of Employment sectors 9-16 with TFP sectors 9-16 
 9 10 11 12 13 14 15 16 

9 -0.05  
[-0.34,0.16] 

-0.03 
 [-0.31,0.19] 

-0.05 
 [-0.37,0.18] 

-0.50  
[-0.75,-0.21]* 

-0.27  
[-0.55,0.01] 

0.01 
 [-0.21,0.30] 

0.49 
 [-0.00,0.70] 

0.03  
[-0.45,0.38] 

10 -0.03 
 [-0.35,0.20] 

-0.39  
[-0.61,-0.10]* 

0.00 
 [-0.23,0.27] 

-0.20  
[-0.49,0.25] 

0.08  
[-0.16,0.36] 

0.02 
 [-0.16,0.32] 

-0.00 
 [-0.28,0.28] 

0.05 
 [-0.21,0.35] 

11 0.04 
 [-0.20,0.45] 

-0.14 
 [-0.43,0.07] 

-0.33  
[-0.53,-0.03]* 

-0.08  
[-0.42,0.40] 

0.27  
[0.00,0.55]* 

-0.05 
 [-0.34,0.20] 

-0.08 
 [-0.44,0.18] 

-0.03  
[-0.37,0.25] 

12 -0.30 
 [-0.53,0.00] 

-0.29  
[-0.51,0.00] 

-0.30  
[-0.52,-0.00]* 

-0.53  
[-0.71,-0.30]* 

-0.13  
[-0.41,0.10] 

-0.10 
 [-0.45,0.10] 

0.32  
[0.01,0.53]* 

-0.02 
 [-0.45,0.21] 

13 0.01 
 [-0.21,0.30] 

0.37  
[0.03,0.58]* 

-0.01 
 [-0.32,0.19] 

-0.14 
 [-0.45,0.08] 

-0.57 
 [-0.76,-0.41]* 

-0.08 
 [-0.38,0.10] 

0.21  
[-0.04,0.45] 

-0.23  
[-0.50,0.03] 

14 -0.27  
[-0.51,0.01] 

0.00 
 [-0.21,0.27] 

-0.33 
 [-0.54,-0.01]* 

-0.52 
 [-0.71,-0.05]* 

-0.27  
[-0.50,0.01] 

-0.42  
[-0.60,-0.05]* 

0.36  
[0.03,0.56]* 

0.00  
[-0.45,0.27] 

15 -0.16 
 [-0.40,0.25] 

-0.05 
 [-0.30,0.13] 

-0.12 
 [-0.38,0.11] 

-0.13 
 [-0.42,0.40] 

-0.01 
 [-0.33,0.45] 

-0.10 
 [-0.40,0.30] 

0.03 
 [-0.20,0.50] 

-0.04 
 [-0.55,0.19] 

16 0.16 
 [-0.04,0.42] 

-0.08  
[-0.38,0.08] 

-0.13  
[-0.41,0.07] 

-0.04  
[-0.31,0.16] 

-0.23 
 [-0.46,-0.00]* 

0.01  
[-0.20,0.30] 

0.58  
[0.33,0.77]* 

0.20  
[-0.04,0.45] 

 
Notes: See notes to Table A2. 25% of the pairwise correlations are statistically different from zero at 33% 
level. The median pairwise point-estimate is -0.03. The median diagonal correlation is -0.16 and 7/16 (44%) of 
the diagonal entries are statistically different from zero at the 33% level. 

1.2 Dynamic Factor Model

Let x denote labor, ` or TFP, z. The empirical model is given by

∆ ln(xj,t) = λj,ττc,t + λj,εεc,t + τj,t + εj,t,

τc,t = τc,t−1 + σ∆τ,c × ητ,c,t,

εc,t = σε,c × ηε,c,t,

τj,t = τj,t−1 + σ∆τ,j × ητ,j,t,

εj,t = σε,j × ηε,j,t,

where (ητ,c,t, ηε,c,t, {ητ,j,t, ηε,j,t}nj=1) ∼iid N(0, I2(n+1)).

1.3 Estimation

The full system of equations may be recast in state-space form as

∆ ln(xt)︸ ︷︷ ︸
yt

(n×1)

=
[
λε λτ I

]
︸ ︷︷ ︸

H′
n×(n+2)

 εc,t

τc,t

τt


︸ ︷︷ ︸

st
(n+2)×1

+ σε � ηε,t︸ ︷︷ ︸
wt
n×1

, (1)

7



 εc,t

τc,t

τt


︸ ︷︷ ︸

st
(n+2)×1

=

 0 0 0

0 1 0

0 0 In


︸ ︷︷ ︸

F
(n+2)×(n+2)

 εc,t−1

τc,t−1

τt−1


︸ ︷︷ ︸

st−1
(n+2)×1

+

 σε,c × ηε,c,t
σ∆τ,c × η∆τ,c,t

σ∆τ � η∆τ,t


︸ ︷︷ ︸

vt
(n+2)×1

. (2)

wt ∼ N

0, diag(σ2
ε)︸ ︷︷ ︸

R



vt ∼ N

0, diag(σ2
ε,c, σ

2
∆τ,c, σ

2
∆τ )︸ ︷︷ ︸

Q



Bayes’ rule implies that

Pr (Θ|y1:T ) = Pr(y1:T |Θ) Pr (Θ) /Pr(y1:T ),

where Pr (Θ) is the prior distribution, Pr (y1:T |Θ) is the likelihood, Pr (y1:T ) is the marginal

likelihood, and Pr (Θ|y1:T ) is the posterior distribution we are interested in estimating. The

data are denoted by y1:T = (y1, ..., yT ) and Θ = [ζt, θ] with

ζt =

{
∆τxc,t, ε

x
c,t,
{

∆τxj,t, ε
x
j,t

}n
j=1

}
, ζt ∼iid N (0,Σζ) ,

and

θ =

{
λxj,τ , λ

x
j,ε,
(
σxj,ε
)2
,
(
σxj,∆τ

)2
}n
j=1

.

We estimate the posterior distribution

Pr (ζt, θ|y1:T ) ,

by way of Gibbs sampling in two steps. The first Gibbs step draws ζt|θ, y1:T . The second

Gibbs step draws θ|ζt, y1:T .

1.3.1 The Kalman Smoother Conditional on Known Factor Loadings and Vari-

ances

Step 1: Draw ζt|θ, y1:T .

8



With known factor loadings and variances, equations (1) and (2) are interpreted as the

observation equation and state equation respectively in a Kalman filtering context,

yt = H ′st + wt, wt ∼ N (0, R) ,

st = Fst−1 + vt, vt ∼ N (0, Q) .

The linear-Gaussian structure implies that s1:T |y1:T is normally distributed, and the goal is

to obtain draws from this distribution. As shown in Carter and Kohn (1994), this can be

achieved as follows:

• Use the Kalman filter to obtain sT |T = E(sT |y1:T ) and PT |T = var(sT |y1:T ).

• Draw sT from N(sT |T , PT |T ).

• Note that the distribution of st| (y1:T , st+1, ..., sT ) depends only on (y1:t, st+1) and

st|(y1:t, st+1) ∼ N(µt,Σt) where µt = st|t − Pt|tF ′P−1
t+1|t(st+1 − st+1|t) and Σt = Pt|t −

Pt|tF
′P−1
t+1|tFPt|t. Recursively draw sT−1, sT−2, ..., s1.

Priors for s0 are set by initializing the mean and covariance matrices of the Kalman filter

using the normalization τc,0 = εc,0 = 0 and a diffuse prior for τ0: εc,0

τc,0

τ0

 ∼ N


 0

0

0

 ,
 0 0 0

0 0 0

0 0 κIn


 .

where κ = 1012 approximates the diffuse prior.

1.3.2 Factor Loadings and Variances Conditional on the States

Step 2: Draw θ|ζt, y1:T .

This step is divided into 2 sub-steps.

Step 2a: Draw λxj,τ , λ
x
j,ε|
(
ζt,
(
σxj,ε
)2
,
(
σxj,∆τ

)2
, y1:T

)
.

Write

(yt − τt) =
[
εc,t τc,t

] [ λε,t

λτ,t

]
+ ε̃t

[
λε,t

λτ,t

]
=

[
1 0

0 1

][
λε,t−1

λτ,t−1

]
+

[
0

0

]
,
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which is a linear-Gaussian state-space model with state st =

[
λε,t

λτ,t

]
. Because st is time in-

variant, we can draw sT |
(
ζt,
(
σxj,ε
)2
,
(
σxj,∆τ

)2
, y1:T

)
∼ N(sT |T , PT |T ), where sT |T and PT |T are

computed from the Kalman filter. We impose the normalization
∑

j λj,τ ≥ 0 and
∑

j λj,ε ≥ 0,

by drawing from the truncated normal (implemented by redrawing from the normal until

the constraint is satisfied).

Priors are set by initializing the mean and covariance matrices of the Kalman filter such

that

λτ ∼ N (0, In) and λε ∼ N
(
0, 42

)
.

Step 2b: Draw
(
σxj,ε
)2
,
(
σxj,∆τ

)2 |
(
ζt, λ

x
j,τ , λ

x
j,ε, y1:T

)
. These are inverse Gamma draws

with prior

σxj,· ∼ IG

(
Tprior,

T ∗ ω2
prior

2

)
which implies posterior draws from

σxj,ε ∼ IG

(
Tprior +

T

2
,
1

2

T∑
t=1

(yj,t − τj,t − λj,ττc,t − λj,εεc,t)2 +
T ∗ ω2

prior

2

)
,

and

σxj,∆τ ∼ IG

(
Tprior +

T

2
,
1

2

T∑
t=1

(τj,t − τj,t−1)2 +
T ∗ ω2

prior

2

)
.

1.4 Summary of DFM Posterior

The model was estimated using draws from two independent Gibbs runs, where each in-

cluded 505k draws with the first 5k discarded. Table A5 summarizes the posteriors for

(λj,τ , λj,ε, σj,∆τ , σj,ε). Figure A1 shows the estimated trends.
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Table A5: Posterior summaries for model parameters 
Median (68% credible interval) [90% credible interval] 

 
A. Labor 

Sector λτ λϵ σj,Δτ σj,ϵ 
Agriculture, forestry, 
fishing, and hunting 

0.33 
(-0.03  0.69) 
[-0.29  0.94] 

0.74 
(0.19  1.27) 
[-0.21  1.67] 

0.32 
(0.23  0.45) 
[0.18  0.58] 

2.70 
(2.48  2.97) 
[2.34  3.19] 

Mining 0.25 
(-0.38  0.90) 
[-0.84  1.38] 

-0.16 
(-1.24  1.00) 
[-2.01  1.80] 

0.41 
(0.21  1.91) 
[0.15  3.55] 

5.94 
(5.01  6.61) 
[3.93  7.09] 

Utilities 0.05 
(-0.20  0.30) 
[-0.38  0.48] 

0.63 
(0.27  0.99) 
[0.03  1.25] 

0.25 
(0.18  0.36) 
[0.14  0.47] 

1.82 
(1.65  2.00) 
[1.55  2.14] 

Construction 0.79 
(0.45  1.07) 
[-0.60  1.27] 

0.37 
(-0.04  0.78) 
[-0.32  1.08] 

0.23 
(0.16  0.36) 
[0.13  0.50] 

1.99 
(1.81  2.19) 
[1.70  2.35] 

Durable goods -0.55 
(-0.89 -0.14) 
[-1.12  0.71] 

0.40 
(0.00  0.80) 
[-0.29  1.06] 

0.51 
(0.33  0.78) 
[0.24  0.98] 

1.70 
(1.48  1.94) 
[1.33  2.12] 

Nondurable goods -0.36 
(-0.57 -0.09) 
[-0.72  0.53] 

0.60 
(0.36  0.84) 
[0.18  1.03] 

0.27 
(0.20  0.38) 
[0.16  0.47] 

1.11 
(0.99  1.24) 
[0.92  1.35] 

Wholesale trade 0.20 
(-0.01  0.42) 
[-0.17  0.57] 

0.09 
(-0.23  0.40) 
[-0.46  0.63] 

0.19 
(0.15  0.26) 
[0.12  0.34] 

1.70 
(1.55  1.86) 
[1.47  1.98] 

Retail trade 0.27 
(0.06  0.45) 
[-0.12  0.59] 

0.71 
(0.47  0.94) 
[0.30  1.14] 

0.18 
(0.14  0.25) 
[0.12  0.31] 

1.15 
(1.05  1.28) 
[0.98  1.37] 

Transportation and 
warehousing 

-0.21 
(-0.43  0.06) 
[-0.59  0.34] 

0.24 
(-0.05  0.52) 
[-0.25  0.72] 

0.28 
(0.20  0.41) 
[0.15  0.53] 

1.47 
(1.34  1.62) 
[1.25  1.74] 

Information 0.68 
(0.21  1.10) 
[-0.27  1.38] 

0.47 
(0.06  0.88) 
[-0.22  1.19] 

1.12 
(0.81  1.42) 
[0.56  1.62] 

1.54 
(1.32  1.81) 
[1.18  2.06] 

FIRE (ex Housing)  0.69 
(0.43  0.92) 
[-0.48  1.09] 

0.45 
(0.14  0.77) 
[-0.09  0.99] 

0.24 
(0.17  0.33) 
[0.14  0.43] 

1.43 
(1.29  1.58) 
[1.20  1.70] 

Professional and 
business services 

0.67 
(0.36  0.96) 
[-0.32  1.17] 

0.84 
(0.46  1.21) 
[0.19  1.47] 

0.22 
(0.16  0.31) 
[0.13  0.41] 

1.55 
(1.39  1.72) 
[1.29  1.85] 

Education, health 
care, and social 
assistance 

-0.09 
(-0.37  0.22) 
[-0.58  0.45] 

0.83 
(0.46  1.20) 
[0.17  1.48] 

0.24 
(0.17  0.36) 
[0.14  0.48] 

1.85 
(1.67  2.04) 
[1.55  2.20] 

Arts and 
entertainment 

0.49 
(0.18  0.79) 
[-0.14  1.00] 

1.36 
(1.03  1.68) 
[0.80  1.94] 

0.21 
(0.15  0.30) 
[0.13  0.40] 

1.37 
(1.22  1.55) 
[1.10  1.68] 

Other services (excl. 
gov.) 

0.47 
(0.18  0.72) 
[-0.15  0.90] 

0.88 
(0.58  1.19) 
[0.36  1.40] 

0.25 
(0.18  0.33) 
[0.15  0.41] 

1.36 
(1.23  1.51) 
[1.14  1.63] 

Housing -0.68 
(-1.22 -0.02) 
[-1.60  0.83] 

-0.37 
(-1.25  0.51) 
[-1.84  1.15] 

0.31 
(0.19  0.61) 
[0.14  1.02] 

4.58 
(4.17  5.02) 
[3.88  5.38] 
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B. TFP 
Sector λτ λϵ σj,Δτ σj,ϵ 

Agriculture, forestry, 
fishing, and hunting 

0.27 
(-0.43  0.96) 
[-0.92  1.49] 

1.11 
(-0.55  2.77) 
[-1.75  3.99] 

0.26 
(0.17  0.41) 
[0.14  0.59] 

9.50 
(8.72 10.35) 
[8.24 11.07] 

Mining 0.69 
(-0.61  1.61) 
[-1.24  2.17] 

-0.06 
(-1.53  1.45) 
[-2.59  2.46] 

0.43 
(0.22  1.04) 
[0.16  1.79] 

7.12 
(6.40  7.84) 
[5.92  8.42] 

Utilities 0.20 
(-0.24  0.64) 
[-0.57  0.97] 

0.84 
(-0.29  1.95) 
[-1.17  2.78] 

0.25 
(0.17  0.38) 
[0.14  0.53] 

4.52 
(4.12  4.95) 
[3.79  5.27] 

Construction 0.57 
(-0.65  1.07) 
[-0.99  1.33] 

0.60 
(0.13  1.04) 
[-0.20  1.39] 

0.38 
(0.24  0.60) 
[0.17  0.79] 

2.08 
(1.87  2.32) 
[1.72  2.51] 

Durable goods -0.11 
(-0.70  0.91) 
[-1.02  1.30] 

1.24 
(0.75  1.74) 
[0.34  2.09] 

0.47 
(0.27  0.76) 
[0.19  0.98] 

2.12 
(1.84  2.40) 
[1.67  2.61] 

Nondurable goods 0.11 
(-0.27  0.48) 
[-0.54  0.76] 

0.62 
(-0.11  1.38) 
[-0.72  1.89] 

0.26 
(0.18  0.41) 
[0.14  0.58] 

3.28 
(3.00  3.61) 
[2.81  3.86] 

Wholesale trade 0.11 
(-0.27  0.53) 
[-0.57  0.86] 

1.44 
(0.75  2.12) 
[0.17  2.62] 

0.24 
(0.17  0.37) 
[0.13  0.52] 

3.11 
(2.80  3.45) 
[2.56  3.70] 

Retail trade 0.20 
(-0.21  0.56) 
[-0.50  0.82] 

1.01 
(0.43  1.57) 
[-0.03  1.97] 

0.23 
(0.16  0.35) 
[0.13  0.47] 

2.39 
(2.15  2.65) 
[1.97  2.84] 

Transportation and 
warehousing 

0.01 
(-0.47  0.58) 
[-0.80  0.98] 

1.29 
(0.68  1.89) 
[0.26  2.33] 

0.29 
(0.19  0.49) 
[0.15  0.73] 

2.67 
(2.38  2.98) 
[2.16  3.22] 

Information -0.22 
(-0.75  0.57) 
[-1.04  0.98] 

0.32 
(-0.31  0.98) 
[-0.76  1.46] 

0.25 
(0.17  0.40) 
[0.13  0.57] 

3.29 
(3.00  3.62) 
[2.80  3.86] 

FIRE (ex Housing) -0.23 
(-0.70  0.44) 
[-1.02  0.83] 

-1.00 
(-1.62 -0.39) 
[-2.05  0.08] 

0.23 
(0.16  0.35) 
[0.13  0.48] 

3.03 
(2.75  3.34) 
[2.56  3.57] 

Professional and 
business services 

0.04 
(-0.27  0.39) 
[-0.50  0.62] 

0.61 
(0.22  0.99) 
[-0.06  1.27] 

0.26 
(0.19  0.39) 
[0.15  0.51] 

1.97 
(1.78  2.17) 
[1.66  2.33] 

Education, health 
care, and social 
assistance 

0.01 
(-0.31  0.36) 
[-0.54  0.60] 

0.37 
(-0.02  0.77) 
[-0.29  1.05] 

0.37 
(0.24  0.54) 
[0.19  0.69] 

2.00 
(1.81  2.21) 
[1.69  2.37] 

Arts and 
entertainment 

-0.24 
(-0.69  0.65) 
[-0.97  1.01] 

0.57 
(-0.03  1.14) 
[-0.45  1.56] 

0.21 
(0.16  0.32) 
[0.12  0.43] 

2.80 
(2.55  3.08) 
[2.40  3.29] 

Other services (excl. 
gov.) 

0.42 
(-0.48  0.82) 
[-0.77  1.05] 

1.12 
(0.65  1.57) 
[0.30  1.87] 

0.22 
(0.16  0.33) 
[0.13  0.44] 

1.93 
(1.71  2.15) 
[1.56  2.33] 

Housing 0.21 
(-0.34  0.42) 
[-0.49  0.54] 

0.02 
(-0.17  0.21) 
[-0.31  0.35] 

0.19 
(0.14  0.25) 
[0.12  0.32] 

1.03 
(0.94  1.13) 
[0.89  1.22] 
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Figure A1: Posterior estimates and 68% (pointwise) credible sets for trends 
 

 
A. Agriculture, forestry, fishing, and hunting 

 
 

B. Mining 
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C. Utilities

 
 

D. Construction 
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E. Durable goods 

 
 

F. Nondurable goods 
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G. Wholesale trade 

 
 

H. Retail trade 
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I. Transportation and warehousing 

 
 

J. Information 
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K. FIRE (ex Housing) 

 
 

L. Professional and business services 
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M. Education, health care, and social assistance 

 
 

N. Arts and entertainment 
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O. Other services 

 
 
 

P. Housing 
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2 A Structural Model with Sectoral Linkages in Mate-

rials and Investment

2.1 Economic Environment

Preferences are given by

E0

∞∑
t=0

βtCt,

Ct =
n∏
j=1

(
cj,t
θj

)θj
,

n∑
j=1

θj = 1, θj ≥ 0

where Ct represents an aggregate consumption bundle taken to be the numeraire good.

The production side of the economy is described by

yj,t =

(
vj,t
γj

)γj ( mj,t

1− γj

)(1−γj)

, γj ∈ [0, 1],

mj,t =
n∏
i=1

(
mij,t

φij

)φij
,

n∑
i=1

φij = 1, φij ≥ 0,

vj,t = zj,t

(
kj,t
αj

)αj ( `j,t
1− αj

)1−αj
, αj ∈ [0, 1].

We assume that labor supply follows an exogenous process.

Capital accumulation in each sector follows

kj,t+1 = xj,t + (1− δj)kj,t

xj,t =
n∏
i=1

(
xij,t
ωij

)ωij
,

n∑
i=1

ωij = 1, ωij ≥ 0.

Goods market clearing requires that

cj,t +
n∑
i=1

mji,t +
n∑
i=1

xji,t = yj,t.

Finally, since labor input is taken to be exogenous, we define

Aj,t = zj,t

(
`j,t

1− αj

)1−αj
,
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and express value added in sector j as

vj,t = Aj,t

(
kj,t
αj

)αj
.

We then express the driving process for Aj,t as

∆ lnAj,t = ∆ ln zj,t + (1− αj)∆ ln `j,t,

where

∆ ln zj,t = λzj,ττ
z
c,t + τ zj,t + λzj,εε

z
c,t + εzj,t,

τ zc,t = (1− ρ)gzc + ρτ zc,t−1 + ηzc,t,

τ zj,t = (1− ρ)gzj + ρτ zj,t−1 + ηzj,t,

∆ ln `j,t = λ`j,ττ
`
c,t + τ `j,t + λ`j,εε

`
c,t + ε`j,t,

τ `c,t = (1− ρ)g`c + ρτ `c,t−1 + η`c,t,

τ `j,t = (1− ρ)g`j + ρτ `j,t−1 + η`j,t,

where the disturbances have the properties described in section 1.

We assume that ρ is arbitrarily close to 1 in which case the processes for ∆ ln zj,t and

∆ ln `j,t approach those described in section 1.

Notation: Let Θ = (θ1, ..., θn), Γd = diag{γj}, Φ = {φij}, Ω = {ωij}, αd = diag{αj},
δd = diag{δj}.

2.2 The Planner’s Problem

max L=
∞∑
t=0

βt
n∏
j=1

(
cj,t
θj

)θj
+
∞∑
t=0

βt
n∑
j=1

pyj,t

[(
vj,t
γj

)γj ( mj,t

1− γj

)(1−γj)

− cj,t −
n∑
i=1

mji,t −
n∑
i=1

xji,t

]

+
∞∑
t=0

βt
n∑
j=1

pmj,t

[
n∏
i=1

(
mij,t

φij

)φij
−mj,t

]

+
∞∑
t=0

βt
n∑
j=1

pvj,t

[
Aj,t

(
kj,t
αj

)αj
− vj,t

]
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+
∞∑
t=0

βt
n∑
j=1

pxj,t

[
n∏
i=1

(
xij,t
ωij

)ωij
+ (1− δj)kj,t − kj,t+1

]

This yields:
θjCt
cj,t

= pyj,t, (3)

which also defines the ideal price index,

1 =
n∏
j=1

(
pyj,t
)θj .

Moreover, we have that

γj
pyj,tyj,t

vj,t
= pvj,t,

and

(1− γj)
pyj,tyj,t

mj,t

= pmj,t,

which define a price index for gross output,

pyj,t =
(
pvj,t
)γj (pmj,t)1−γj .

In addition,

φij
pmj,tmj,t

mij,t

= pyi,t,

which gives material prices in terms of gross output prices,

pmj,t =
n∏
i=1

(
pyi,t
)φij ,

and

ωij
pxj,txj,t

xij,t
= pyi,t,

which gives prices for capital in each sector in terms of gross output prices,

pxj,t =
n∏
i=1

(
pyi,t
)ωij .

Finally, we have an Euler equation

pxj,t = βEt
[
αj
pvj,t+1vj,t+1

kj,t+1

+ pxj,t+1(1− δj)
]
.
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Value added in sector j in this economy is pyj,tyj,t −
∑

i p
y
i,tmij,t = pyj,tyj,t −

∑
i(1 −

γj)φijp
y
j,tyj,t = γjp

y
j,tyj,t = pvj,tvj,t. GDP is then given by

∑
j p

v
j,tvj,t. It is also the case

that pyj,tyj,t −
∑

i p
y
j,tmji,t = pyj,tcj,t +

∑
i p

y
j,txji,t.

2.3 The Full Set of Equilibrium Conditions

For clarity, we collect in this subsection the full set of equilibrium conditions. The economic

environment is described by,

cj,t +
n∑
i=1

mji,t +
n∑
i=1

xji,t = yj,t, ∀j,

xj,t =
n∏
i=1

(
xij,t
ωij

)ωij
, ∀j,

kj,t+1 = xj,t + (1− δ)kj,t, ∀j, and kj,0 given,

vj,t = Aj,t

(
kj,t
αj

)αj
, ∀j,

mj,t =
n∏
i=1

(
mij,t

φij

)φij
, ∀j,

yj,t =

(
vj,t
γj

)γj ( mj,t

1− γj

)1−γj
, ∀j.

The first-order conditions from the planner’s problem are,

θjCt
cj,t

= pyj,t, ∀j,

Ct =
n∏
j=1

(
cj,t
θj

)θj
,

γj
pyj,tyj,t

vj,t
= pvj,t, ∀j,

(1− γj)
pyj,tyj,t

mj,t

= pmj,t, ∀j,

φij
pmj,tmj,t

mij,t

= pyi,t, ∀i, j,

ωij
pxj,txj,t

xij,t
= pyi,t, ∀i, j,
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pxj,t = βEt
[
αj
pvj,t+1vj,t+1

kj,t+1

+ pxj,t+1(1− δj)
]
∀j

The exogenous sectoral processes driving productivity are

∆ lnAj,t = ∆ ln zj,t + (1− αj)∆ ln `j,t,

∆ ln zj,t = λzj,ττ
z
c,t + τ zj,t + λzj,εε

z
c,t + εzj,t,

τ zc,t = (1− ρ)gzc + ρτ zc,t−1 + ηzc,t,

τ zj,t = (1− ρ)gzj + ρτ zj,t−1 + ηzj,t,

∆ ln `j,t = λ`j,ττ
`
c,t + τ `j,t + λ`j,εε

`
c,t + ε`j,t,

τ `c,t = (1− ρ)g`c + ρτ `c,t−1 + η`c,t,

τ `j,t = (1− ρ)g`j + ρτ `j,t−1 + η`j,t.

There are 2n2+15n+3 equations, with unknowns given by {yj,t, cj,t,mj,t, xj,t, vj,t, kj,t+1, Aj,t, τj,t,

pyj,t, p
m
j,t, p

x
j,t}nj=1, {mij,t, xij,t}ni,j=1, and Ct.

2.4 Special Cases with No Growth

Consider the case where αj = 0 ∀j and structural changes embodied in {zj,t, `j,t} are modeled

as stationary processes in levels. Then Aj,t is also stationary in levels rather than growth

rates. Aggregate value added or GDP, Vt, is then given by the aggregate consumption bundle,

Ct, and
∂ lnVt
∂ lnAj,t

= svj , (4)

where svj is sector j’s value added share in GDP, and where these shares may be summarized

in a vector, sv = (sv1, ..., s
v
n), given by sv = Θ(I − (I − Γd)Φ

′)−1Γd.
1

When αj > 0 for some j, the economy becomes dynamic and, absent shocks, converges

to a steady state in levels in the long-run. Getting rid of the t subscripts to denote variables

in that steady state, and letting A = (A1, ..., An) stand for the long-run vector of composite

exogenous sectoral states, we have that in the limit as β → 1,

∂ lnV

∂ lnAj
= ηsvj , (5)

where η is an adjustment factor approximately equal to the inverse of the mean employment

1The object Θ(I − (I − Γd)Φ′)−1Γd is the influence vector highlighted by Acemoglu et al. (2012).
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share across sectors. In particular, when sectors use capital with the same intensity, αj = α

∀j, η = 1
1−α . The influence vector in this case, sv, is given by Θ[Γ−1

d (I − (I − Γd)Φ
′) −

αdΩ
′]−1/Θ[Γ−1

d (I − (I − Γd)Φ
′)− αdΩ′]−11, where 1 is a unit vector of size n. When β < 1,

the influence vector also depends on sectoral depreciation rates, δj, and equation (5) holds

as an approximation that depends on β
1−β(1−δj) × δj ≈ 1 for standard calibrations of β. See

section 2.5.3 for a general formulation of steady state value added shares where equation (5)

arises as a special case.

2.5 Balanced Growth

Consider the case where all variables are growing at a constant rate along a non-stochastic

steady state path, εic,t = εij,t = 0 for i = z, `, ηic,t = ηij,t = 0 for i = z, `, and τ ij,t = τ ij,t−1,

τ ic,t = τ ic,t−1 for i = z, `, and all j and t. Then,

∆ lnAj,t ≡ gj = λzj,τg
z
c + gzj + (1− αj)

(
λ`j,τg

`
c + g`j

)
(6)

so that

Ãj,t =
Aj,t
Aj,t−1

= egj ≈ 1 + gj.

for reasonable growth rates.

2.5.1 Making the Model Stationary

We normalize the model’s variables with respect to sector-specific factors, µj,t, determined

below, to yield a system of equations that is stationary in the normalized variables. If all

growth rates are constant, the resource constraint in any individual sector implies that all the

variables in that constraint must grow at the same rate. Thus, define ỹj,t = yj,t/µj,t, c̃j,t =

cj,t/µj,t, m̃ji,t = mji,t/µj,t, and x̃ji,t = xji,t/µj,t. Then, the economy’s resource constraint

becomes

c̃j,t +
n∑
i=1

m̃ji,t +
n∑
i=1

x̃ji,t = ỹj,t.

Given the above definitions, the production of investment goods may be re-written as

x̃j,t =
n∏
i=1

(
x̃ij,t
ωij

)ωij
,
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where x̃j,t = xj,t/
n∏
i=1

µ
ωij
i,t . Under this normalization, the capital accumulation equation is

kj,t+1 = x̃j,t

n∏
i=1

µ
ωij
i,t + (1− δj)kj,t,

and so becomes

k̃j,t+1 = x̃j,t + (1− δj)k̃j,t
n∏
i=1

(
µi,t−1

µi,t

)ωij
,

where k̃j,t+1 = kj,t+1/
n∏
i=1

µ
ωij
i,t .

The expression for value added may be written as

vj,t = Aj,t


k̃j,t

n∏
i=1

µ
ωij
i,t−1

αj


αj

,

so that, defining ṽj,t = vj,t/Aj,t

(
n∏
i=1

µ
ωij
i,t−1

)αj

, it becomes

ṽj,t =

(
k̃j,t
αj

)αj

.

The composite bundle of materials used in sector j may be expressed as

m̃j,t =
n∏
i=1

(
m̃ij,t

φij

)φij
,

with m̃j,t = mj,t/
n∏
i=1

µ
φij
i,t .

Under our normalization, gross output may be written as

ỹj,tµj,t =


ṽj,tAj,t

n∏
i=1

µ
αjωij
i,t−1

γj


γj 

m̃j,t

n∏
i=1

µ
φij
i,t

1− γj


1−γj

,
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which, collecting terms, gives

ỹj,t =

(
ṽj,t
γj

)γj ( m̃j,t

1− γj

)1−γj
[
A
γj
j,t

µj,t

n∏
i=1

µ
γjαjωij
i,t−1 µ

(1−γj)φij
i,t

]
.

We can now use the expression in square brackets to solve for the normalizing factors, µj,t,

as a function of the model’s underlying parameters.

First, re-write the term in square brackets as

A
γj
j,t

µj,t

(
n∏
i=1

µ
γjαjωij
i,t−1

µ
γjαjωij
i,t

)(
n∏
i=1

µ
(1−γj)φij
i,t µ

γjαjωij
i,t

)
,

where this last expression involves the growth rate of µi,t. Thus, without loss of generality

with respect to growth rates, we choose µj,t such that

A
γj
j,t

µj,t

n∏
i=1

µ
γjαjωij+(1−γj)φij
i,t = 1.

Taking logs of both sides of the above expression, we have

γj lnAj,t − lnµj,t +
n∑
i=1

(γjαjωij + (1− γj)φij) lnµi,t = 0,

or in vector form,

Γd lnAt − lnµt + ΓdαdΩ
′ lnµt + (I − Γd)Φ

′ lnµt = 0,

which gives us

lnµt = Ξ′ lnAt, (7)

where

Ξ′ = (I − ΓdαdΩ
′ − (I − Γd)Φ

′)
−1

Γd,

with Ξ = {ξij}.
Going back to equation (6), and writing the vector of productivity growth rates as

∆ lnAt = ga, it follows that

∆ lnµt = Ξ′ga = Ξ′

λzτgzc + gz︸ ︷︷ ︸
gz

+ (I − αd)
(
λτg

`
c + g`

)︸ ︷︷ ︸
g`

 .
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Note: Γ−1
d (I − ΓdαdΩ

′ − (I − Γd)Φ
′)1 = (I − αd)1.

Let µvj,t denote the normalizing factor for value added in sector j, Aj,t

(
n∏
i=1

µ
ωij
i,t−1

)αj

,

defined above,

µvj,t = Aj,t

(
n∏
j=1

µ
ωij
i,t−1

)αj

.

Then, using equation (7), we have that

lnµvt = lnAt + αdΩ
′Ξ′ lnAt−1,

or

∆ lnµvt =

I + αdΩ
′(I − αdΓdΩ′ − (I − Γd)Φ

′)
−1

Γd︸ ︷︷ ︸
Ξ′

 ga. (8)

Equation (7) gives us the normalizing factor in the resource constraint for sector i, lnµi,t =
n∑
k=1

ξki lnAk,t, so that

µi,t =
n∏
k=1

Aξkik,t .

The normalized capital accumulation equation then becomes

k̃j,t+1 = x̃j,t + (1− δj)k̃j,t
n∏
i=1

(
n∏
k=1

Ã
−ωijξki
k,t

)

where Ãk,t = Ak,t/Ak,t−1. Similarly, normalized gross output in sector j may be written as

ỹj,t =

(
ṽj,t
γj

)γj ( m̃j,t

1− γj

)1−γj
(

n∏
i=1

n∏
k=1

Ã
−ξkiγjαjωij
k,t

)
.

Normalized aggregate consumption, C̃t = Ct/

n∏
j=1

µ
θj
j,t, solves

C̃t =
n∏
j=1

(
c̃j,t
θj

)θj
.

The planner’s first-order conditions may now also be easily expressed in normalized terms,
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θjC̃t
c̃j,t

= p̃yj,t ≡
pyj,tµj,t
n∏
k=1

µθkk,t

, ∀j,

γj
p̃yj,tỹj,t

ṽj,t
= p̃vj,t ≡

pvj,tAj,t

n∏
k=1

µ
ωkjαj
k,t−1

n∏
k=1

µθkk,t

∀j,

(1− γj)
p̃yj,tỹj,t

m̃j,t

= p̃mj,t ≡ pmj,t

n∏
k=1

µ
φkj−θk
k,t , ∀j,

φij
p̃mj,tm̃j,t

m̃ij,t

= p̃yi,t, ∀i, j,

pxj,t
n∏
k=1

µ
θk−ωkj
k,t

≡ p̃xj,t =
p̃yi,tx̃ij,t

ωijx̃j,t
, ∀i, j,

p̃xj,t = βEt
n∏
i=1

n∏
k=1

Ã
ξki(θi−ωij)
k,t+1

[
αj
p̃vj,t+1ṽj,t+1

k̃j,t+1

(
n∏
i=1

n∏
k=1

Ã
ξkiωij
k,t+1

)
+ p̃xj,t+1(1− δ)

]
.

Finally, the normalized driving processes may be expressed as

ln Ãj,t = ∆ ln zj,t + (1− αj)∆ ln `j,t

∆ ln zj,t = λzj,ττ
z
c,t + τ zj,t + λzj,εε

z
c,t + εzj,t,

τ zc,t = (1− ρ)gzc + ρτ zc,t−1 + ηzc,t,

τ zj,t = (1− ρ)gzj + ρτ zj,t−1 + ηzj,t,

∆ ln `j,t = λ`j,ττ
`
c,t + τ `j,t + λ`j,εε

`
c,t + ε`j,t,

τ `c,t = (1− ρ)g`c + ρτ `c,t−1 + η`c,t,

τ `j,t = (1− ρ)g`j + ρτ `j,t−1 + η`j,t.

2.5.2 Steady State of the Stationary Environment

The relationships between price indices hold in normalized form,
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∑
j

θj ln p̃yj = 0,

ln p̃yj = γj ln p̃vj + (1− γj) ln p̃mj + γjαj

n∑
i=1

n∑
k=1

ωijξki ln Ãk,

ln p̃mj =
∑
i

φij ln p̃yi ,

ln p̃xj =
∑
i

ωij ln p̃yi .

In matrix form, these are

Θ ln p̃y = 0,

ln p̃y = Γd ln p̃v + (I − Γd) ln p̃m + αdΓdΩ
′Ξ′ ln Ã,

ln p̃m = Φ′ ln p̃y,

ln p̃x = Ω′ ln p̃y.

The definition of value added gives

ln ṽj,t = αj ln

(
k̃j
αj

)
,

while the normalized Euler equation implies

p̃xj

[
1− (1− δj)β

n∏
i=1

n∏
k=1

(1 + gk)
ξki(θi−ωij)

]
= βαj

p̃vj ṽj

k̃j

(
n∏
i=1

n∏
k=1

(1 + gk)
ξkiθi

)

so that

k̃j
αj

=

(
p̃vj ṽj

p̃xj

)
β

n∏
i=1

n∏
k=1

(1 + gk)
ξkiθi

1− β

[
n∏
i=1

n∏
k=1

(1 + gk)
ξki(θi−ωij)

]
(1− δj)

 .
Combining these expressions yields

(1− αj) ln
(
p̃vj ṽj

)
= ln p̃vj − αj ln p̃xj + αj ln ∆j,
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where ∆j =

β

n∏
i=1

n∏
k=1

(1+gk)ξkiθi

1−β


n∏
i=1

n∏
k=1

(1+gk)ξki(θi−ωij)

(1−δj)

. In matrix form, we then have

(I − αd) ln (p̃v.× ṽ) = ln p̃v − αd ln p̃x + αd ln ∆,

where (p̃v.× ṽ) = {p̃vj ṽj} and ∆ = {∆j}.
Using the normalized price indices

(I − αd) ln (p̃v.× ṽ) = Γ−1
d (I − (I − Γd)Φ

′) ln p̃y − αdΩ′ ln p̃y + αd ln ∆− αdΩ′Ξ′ ln Ã

= Π ln p̃y − αdΩ′ ln p̃y + αd ln ∆− αdΩ′Ξ′ ln Ã

where Π = Γ−1
d (I − (I − Γd)Φ

′). It follows that

ln p̃y = (Π− αdΩ′)−1
[
(I − αd) ln (p̃v.× ṽ)− αd ln ∆ + αdΩ

′Ξ′ ln Ã
]
.

From the normalized resource constraint, we have that

p̃yj ỹj = p̃yj c̃j +
n∑
i=1

p̃yj m̃ji +
n∑
i=1

p̃yj x̃ji,

or alternatively

p̃vj ṽj

γj
= θjC̃ +

n∑
i=1

φji(1− γi)
p̃vi ṽi
γi

+
n∑
i=1

ωji

[
1− (1− δi)

n∏
k=1

n∏
`=1

(1 + g`)
−ωkiξ`k

]
∆iαip̃

v
i ṽi.

In matrix form, this last expression becomes

Γ−1
d (p̃v.× ṽ) = Θ′C̃ + Φ(I − Γd)Γ

−1
d (p̃v.× ṽ) + ΩGdαd (p̃v.× ṽ) ,

where Gd = diag

{[
1− (1− δi)

n∏
k=1

n∏
`=1

(1 + g`)
−ωkiξ`k

]
∆i

}
. Therefore,

(p̃v.× ṽ)

C̃
= [(I − Φ(I − Γd))Γ

−1
d − ΩGdαd]

−1Θ′

= (Π′ − ΩGdαd)
−1Θ′

≡ ψ.
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Taking logs,

ln (p̃v.× ṽ) = lnψ + 1 ln C̃, (9)

and, substituting this expression into the equation for gross output prices, we obtain

ln p̃y = (Π− αdΩ′)−1
[
(I − αd)(lnψ + 1 ln C̃)− αd ln ∆ + αdΩ

′Ξ′ ln Ã
]
.

Recall that the normalized ideal consumption price index implies Θ ln p̃y = 0. It follows that

0 = Θ(Π− αdΩ′)−1
[
(I − αd)(lnψ + 1 ln C̃)− αd ln ∆ + αdΩ

′Ξ′ ln Ã
]
,

which gives aggregate consumption as a function of model parameters only,

ln C̃ =
Θ(Π− αdΩ′)−1

[
αd ln ∆− αdΩ′Ξ′ ln Ã− (I − αd) lnψ

]
Θ(Π− αdΩ′)−1(I − αd)1

. (10)

Note: Θ(Π− αdΩ′)−1(I − αd)1 = 1. Therefore,

ln C̃ = Θ(Π− αdΩ′)−1
[
αd ln ∆− αdΩ′Ξ′ ln Ã− (I − αd) lnψ

]
.

Normalized GDP is then given by

Ṽ = 1′ (p̃v.× ṽ) = 1′ψC̃.

All other normalized prices and allocations, as well as shares, are functions of the model’s

parameters and can now be computed recursively.

2.5.3 Steady State Sectoral Value Added Shares in GDP

The vector of sectoral value added shares or influence vector is given by

sv =
[(I − Φ(I − Γd))Γ

−1
d − ΩGdαd]

−1Θ′

1′[(I − Φ(I − Γd))Γ
−1
d − ΩGdαd]−1Θ′

,

where

Gd = diag

{[
1− (1− δi)

n∏
k=1

n∏
`=1

(1 + g`)
−ωkiξ`k

]
∆i

}
,
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with ∆i =

β

n∏
j=1

n∏
k=1

(1+gk)
θjξkj

1−β(1−δi)


n∏
j=1

n∏
k=1

(1+gk)
ξkj(θj−ωji)


.

Consider the case where no sector is growing in the long-run, gj = 0 ∀j, and where

elements of At are instead stationary in levels with steady state values given by the vector

A. Then, detrending is immaterial and the model’s steady state may be solved using the set

of equilibrium conditions in section 2.3 directly. In that steady state,

sv =
[(I − Φ(I − Γd))Γ

−1
d − Ω∆dδdαd]

−1Θ′

1′[(I − Φ(I − Γd))Γ
−1
d − Ω∆dδdαd]−1Θ′

,

where ∆d = diag
(

β
1−β(1−δj)

)
, and

d lnV

d lnA
=
d lnC

d lnA
=

([I − Φ(I − Γd)]Γ
−1
d − Ωαd)

−1Θ′

1′(I − αd)([I − Φ′(I − Γd)]Γ
−1
d − Ωαd)−1Θ′

.

Therefore, in the limit where β → 1, so that
(

β
1−β(1−δj)

)
δj → 1,

d lnV

d lnAj
= ηsvj ,

where η is an adjustment factor related to the inverse mean of employment shares in each

sector. When sectors use capital with the same intensity, αj = α ∀j, η = 1
1−α .

2.5.4 Details of Steady State Calculations

step 1. Compute Gd = diag

{[
1− (1− δi)

n∏
k=1

n∏
`=1

(1 + g`)
−ωkiξ`k

]
∆i

}
. Let

Ti =
n∏
k=1

n∏
`=1

(1 + g`)
−ωkiξ`k

so that

lnTi = −
n∑
k=1

n∑
`=1

ωkiξ`k ln(1 + g`),

or, in matrix notation,

lnT = −Ω′Ξ′ ln(1 + g).

34



In matrix form,

{1− (1− δi)
n∏
k=1

n∏
`=1

(1 + g`)
−ωkiξ`k} = 1− (I − δd)eln(T ).

Next, consider the term,

∆i =

β

n∏
j=1

n∏
k=1

(1 + gk)
θjξkj

1− β(1− δi)

[
n∏
j=1

n∏
k=1

(1 + gk)
ξkj(θj−ωji)

] ,

and let T∆1 denote the double product in the numerator,

T∆1,i =
n∏
j=1

n∏
k=1

(1 + gk)
ξkjθj ,

so that

lnT∆1,i =
n∑
j=1

n∑
k=1

θjξkj ln(1 + gk).

We write this term in matrix notation as

lnT∆1 = ΘrΞ′ ln(1 + g),

where

Θr =

 θ1 ... θn

... ... ...

θ1 ... θn

 .
Observe that lnT∆1 is an N × 1 vector where each element is the same for all i. Let T∆2

denote the double product in the denominator

T∆2,i =
n∏
j=1

n∏
k=1

(1 + gk)
ξkj(θj−ωji),

so that

lnT∆2,i
=

n∑
j=1

n∑
k=1

ξkj (θj − ωji) ln(1 + gk)
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=
n∑
j=1

n∑
k=1

ξkjθj ln(1 + gk)−
n∑
j=1

n∑
k=1

ωjiξkj ln(1 + gk).

Then, in matrix notation, we have that

lnT∆2 = [ΘrΞ′ − Ω′Ξ′] ln(1 + g).

It follows that

{∆i} = βeln(T∆1)./
(
1− β(I − δd)eln(T∆2)

)
.

Moreover

Gd = diag
{[

1− (1− δd)eln(T2)
]
.× {∆i}

}
.

step 2. Compute

ψ = (Π′ − ΩGdαd)
−1

Θ′.

step 3. Compute aggregate consumption, equation (10).

ln C̃ =
Θ(Π− αdΩ′)−1

[
αd ln ∆− αdΩ′Ξ′ ln Ã− (I − αd) lnψ

]
Θ(Π− αdΩ′)−1(I − αd)1

.

step 4. Compute aggregate GDP, GD̃P = 1′ (p̃v.× ṽ) = 1′ψC̃.

step 5. Compute nominal sectoral value added, (p̃v.× ṽ) = ψC̃.

step 6. Compute nominal sectoral gross output, {p̃yj ỹj} = Γ−1
d (p̃v.× ṽ) .

step 7. Compute nominal sectoral consumption. {p̃yj c̃j} = Θ′C̃.
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step 8. Compute nominal material inputs, p̃y1m̃11 ... p̃y1m̃1N

... ...

p̃yNm̃N1 ... p̃yNm̃NN

 =

 φ11 ... φ1N

... ...

φN1 ... φNN


 (1− γ1) ... 0

... ...

0 ... (1− γN)



×

 γ1 ... 0

... ...

0 ... γN


−1  (p̃v1.× ṽ1) ... 0

... ...

0 ... (p̃vn.× ṽn)

 .

step 9. Compute nominal sectoral investment, p̃y1x̃11 ... p̃y1x̃1N

... ...

p̃yN x̃N1 ... p̃yN x̃NN

 =

 ω11 ... ω1N

... ...

ωN1 ... ωNN


 α1 ... 0

... ...

0 ... αN



×

 Gd,1 ... 0

... ...

0 ... Gd,N


 (p̃v1.× ṽ1) ... 0

... ...

0 ... (p̃vn.× ṽn)

 .

step 10. Compute gross output shares using nominal values above,

scj =
c̃j
ỹj

=
p̃yj c̃j

p̃yj ỹj
, smji =

m̃ji

ỹj
=
p̃yj m̃ji

p̃yj ỹj
, and sxji =

x̃ji
ỹj

=
p̃yj x̃ji

p̃yj ỹj
.

step 11. Compute gross output prices and value added prices,

ln p̃y = (Π− αdΩ′)−1
[
(I − αd) ln (p̃v.× ṽ)− αd ln ∆ + αdΩ

′Ξ′ ln Ã
]
,

ln p̃v = Π ln p̃y − αdΩ′Ξ′ ln Ã.

step 12. Compute steady state (normalized) consumption, capital, and investment,

c̃j =
p̃yj c̃j

p̃yj
,
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and

ln p̃vj ṽj − ln p̃vj = αj ln

(
k̃j
αj

)
⇒ k̃j = αje

1
αj

(ln p̃vj ṽj−ln p̃vj ),

while investment is given by

x̃j =

(
1− (1− δj)

n∏
i=1

n∏
k=1

(1 + gk)
−ωijξki

)
k̃j,

or in terms of the notation introduced earlier in step 1,

x̃ =
(
1− (I − δd)eln(T )

)
.× k̃.

2.6 Balanced Growth at the Sectoral and Aggregate Level

As derived above, sectoral value added growth is given by

∆ lnµvt = [I + αdΩ
′Ξ′] ga,

where

Ξ′ = (I − ΓdαdΩ
′ − (I − Γd)Φ

′)
−1

Γd

with jth element gj +
n∑
i=1

αjωij

n∑
k=1

ξkigk, and where ga denotes the vector of productivity

growth rates, ∆ lnAt.

The Divisia index describing aggregate GDP growth is

∆ lnVt =
n∑
j=1

svj,t∆ ln vj,t,

where ∆ ln vj,t denotes the growth rate of real value added in sector j, and sj,t, is the share

of sector j in nominal value added,

svj,t =
pvj,tvj,t
n∑
j=1

pvj,tvj,t

.
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Hence, the balanced growth rate of real aggregate GDP is

∆ lnVt =
n∑
j=1

svj

[
gj +

n∑
i=1

αjωij

n∑
k=1

ξkigk

]
. (11)

Using the expressions for the normalized variables, we have

pvj,tvj,t =


p̃vj,t

n∏
k=1

µθkk,t

Aj,t

n∏
k=1

µ
ωkjαj
k,t−1


(
ṽj,tAj,t

n∏
i=1

µ
ωijαj
i,t−1

)

= p̃vj,tṽj,t

n∏
k=1

µθkk,t,

so that

svj,t =

p̃vj,tṽj,t

n∏
k=1

µθkk,t

n∑
j=1

p̃vj,tṽj,t

n∏
k=1

µθkk,t

=
p̃vj,tṽj,t
n∑
j=1

p̃vj,tṽj,t

.

Then, along a balanced growth path where p̃vj,tṽj,t is constant in every sector, nominal shares

in value added are also constant and given by

svj =
p̃vj ṽj

1′ (p̃v.× ṽ)
, (12)

where (p̃v.× ṽ) is obtained through equations (9) and (10).

2.7 Dynamics of the System

2.7.1 Linearized Equations:

The “hat” notation stands for percent deviation from steady state for the normalized vari-

ables (i.e. for some variable, xt, and with some abuse of notation, x̂t = ̂̃xt = ln(x̃t/x
∗)).

The linearized version of the resource constraint is

scj ĉj,t +
n∑
i=1

smjim̂ji,t +
n∑
i=1

sxjix̂ji,t = ŷj,t,

where scj = c̃j/ỹj, smji = m̃ji/ỹj, and sxji = x̃ji/ỹj. The production of investment goods in
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linearized form becomes

x̂j,t =
n∑
i=1

ωijx̂ij,t.

The capital accumulation equation in linearized form becomes

k̂j,t+1 = κxjxj,t + (1− δj)κkj k̂j,t − (1− δj)κkj
n∑
i=1

n∑
k=1

ωijξkiÂk,t,

where κxj = x̃j/k̃j, κkj =
n∏
i=1

n∏
k=1

(1 + gk)
−ωijξki . Real value added in linearized form becomes

v̂j,t = αj k̂j,t.

The composite material bundle used in sector j takes the form

m̂j,t =
n∑
i=1

φijm̂ij,t.

Gross output production in linearized form is

ŷj,t = γj v̂j,t + (1− γj)m̂j,t − γjαj
n∑
i=1

n∑
k=1

ωijξkiÂk,t.

Aggregate consumption in linearized form is

Ĉt =
n∑
j=1

θj ĉj,t.

In linearized form, the first-order conditions are:

Ĉt − ĉj,t = p̂yj,t,

p̂yj,t + ŷj,t − v̂j,t = p̂vj,t,

p̂yj,t + ŷj,t − m̂j,t = p̂mj,t,

p̂mj,t + m̂j,t − m̂ij,t = p̂yi,t,

p̂yi,t + x̂ij,t − x̂j,t = p̂xj,t,
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and

p̂xj,t =
n∑
i=1

n∑
k=1

ξki(θi − ωij)Et
(
Âk,t+1

)
+ π1,jEt

[
p̂vj,t+1 + v̂j,t+1 − k̂j,t+1 +

n∑
i=1

n∑
k=1

ξkiωijÂk,t+1

]
+ π2,jEt

(
p̂xj,t+1

)
,

where π1,j = 1− π2,j and π2,j = β(1− δj)
n∏
i=1

n∏
k=1

(1 + gk)
ξki(θi−ωij).

Finally, the linearized driving processes are given by:

Âj,t = ln

(
Ãj,t

1 + gj

)
= ln

(
Ãj,t

)
− gj

= ∆ ln zj,t − λzj,τgzc − gzj + (1− αj)
(
∆ ln `j,t − λ`j,τg`c − g`j

)
= λzj,τ

(
τ zc,t − gzc

)︸ ︷︷ ︸
τ̂zc,t

+ τ zj,t − gzj︸ ︷︷ ︸
τ̂zj,t

+ λzj,εεc,t + εzj,t

+ (1− αj)

λ`j,τ(τ `c,t − g`c)︸ ︷︷ ︸
τ̂`c,t

+ τ `j,t − g`j︸ ︷︷ ︸
τ̂`j,t

+ λ`j,εεc,t + ε`j,t


τ̂ zc,t = ρτ̂ zc,t−1 + ηzc,t,

τ̂ zj,t = ρτ̂ zj,t−1 + ηzj,t,

τ̂ `c,t = ρτ̂ `c,t−1 + η`c,t,

τ̂ `j,t = ρτ̂ `j,t−1 + η`j,t,

Define ĉt = (ĉ1,t..., ĉn,t)
′
, ŷt = (ŷ1,t..., ŷn,t)

′
, x̂t = (x̂1,t..., x̂n,t)

′
, m̂t = (m̂1,t..., m̂n,t)

′
, and

analogous vectors for prices. In addition, define M̂t = (m̂11,t, m̂12,t, ..., m̂nn,t)
′

and X̂t =

(x̂11,t, x̂12,t, ..., x̂nn,t)
′
. Then, in matrix form, the above system of equations reads as

Scĉt + SmM̂t + SxX̂t = ŷt,

where

Sc =


sc1 ... 0
...

. . .
...

0 ... scn

 , Sm =


sm11 sm12 ... 0 0

...
...

. . .
...

...

0 0 ... smn(n−1)
smnn

 ,
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and

Sx =


sx11 sx12 ... 0 0

...
...

. . .
...

...

0 0 ... sxn(n−1)
sxnn

 ,
x̂t = Ω̃X̂t,

where

Ω̃n×n2 =


ω11 0 ... 0 ω21 0 ... 0 ... ωn1 0 ... 0

0 ω12 ... 0 0 ω22 ... 0 ... 0 ωn2 ... 0
...

...
. . .

...
...

...
. . . ... ...

...
...

. . .

0 0 ... ω1n 0 0 ... ω2n ... 0 0 ... ωnn

 ,

k̂t+1 = κxx̂t + (I − δd)κkk̂t − (I − δd)κkΩ
′
Ξ′Ât

v̂t = αdk̂t,

m̂t = Φ̃M̂t,

where

Φ̃n×n2 =


φ11 0 ... 0 φ21 0 ... 0 ... φn1 0 ... 0

0 φ12 ... 0 0 φ22 ... 0 ... 0 φn2 ... 0
...

...
. . .

...
...

...
. . . ... ...

...
...

. . .

0 0 ... φ1n 0 0 ... φ2n ... 0 0 ... φnn

 ,

ŷt = Γdv̂t + (I − Γd)m̂t − ΓdαdΩ
′Ξ′Ât,

Ĉt = Θĉt,

where Θ = (θ1, ..., θn),

1nĈt − ĉt = p̂yt ,

p̂yt + ŷt − v̂t = p̂vt ,

p̂yt + ŷt − m̂t = p̂mt ,

M̂t = M1p̂
m
t −M2p̂

y
t + M1m̂t,

where

M1 = 1n×1 ⊗ I and M2 = I ⊗ 1n×1,
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X̂t = M1p̂
x
t −M2p̂

y
t + M1x̂t,

and finally the Euler equations,

p̂xt = (Θr − Ω′)Ξ′EtÂt+1

+ (I − π2)Et
[
p̂vt+1 + v̂t+1 − k̂t+1 + Ω′Ξ′Ât+1

]
+ π2Etp̂xt+1,

where

π2 =


π2,1 ... 0

...
. . .

...

0 ... π2,n

 .
2.7.2 System Reduction:

We now substitute out the flow variables in order to arrive at a dynamic system of equations

expressed in terms of the basic state and co-state variables only.

Starting with the equation for investment, we have

x̂t = Ω̃ (M1p̂
x
t −M2p̂

y
t + M1x̂t) ,

where Ω̃M1 = I and Ω̃M2 = Ω′. Then,

p̂xt = Ω′p̂yt .

Similarly, from the equations governing the choice of material inputs,

m̂t = Φ̃ (M1p̂
m
t −M2p̂

y
t + M1m̂t) ,

where Φ̃M1 = I and Φ̃M2 = Φ′, we have

p̂mt = Φ′p̂yt .

The Euler equation then implies

Ω′p̂yt = (Θr − Ω′ + (I − π2) Ω′)Ξ′EtÂt+1

+ (I − π2)Et
[
p̂yt+1 + ŷt+1 − k̂t+1

]
+ π2Et

[
Ω′p̂yt+1

]
.
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Observe that 1nΘ = Θr, and since Ĉt = Θĉt, 1nĈt − ĉt = p̂yt gives

(Θr − I) ĉt = p̂yt ,

so that the Euler equation becomes

Ω′ (Θr − I) ĉt = (Θr − Ω′ + (I − π2) Ω′)Ξ′EtÂt+1

+ (I − π2)Et
[
ŷt+1 − k̂t+1

]
+ [(I − π2) + π2Ω′] (Θr − I)Etĉt+1. (13)

From the equation describing production, we have

ŷt = Γdαdk̂t + (I − Γd) (p̂yt + ŷt − p̂mt )− ΓdαdΩ
′Ξ′Ât,

and using the derivation for p̂mt above,

ŷt = αdk̂t + Γ−1
d (I − Γd)(I − Φ′)(Θr − I)ĉt − αdΩ′Ξ′Ât,

which we express as

ŷt = αdk̂t +Qcĉt −QaÂt,

with Qc = Γ−1
d (I − Γd)(I −Φ′)(Θr − I) and Qa = αdΩ

′Ξ′. Substituting for ŷt+1 in the Euler

equation (13) gives

Ω′ (Θr − I) ĉt = [(Θr − π2Ω′)Ξ′ − (I − π2)Qa]EtÂt+1

+ (I − π2) [αd − I]Etk̂t+1

+ ([(I − π2) + π2Ω′] (Θr − I) + (I − π2)Qc)Etĉt+1, (14)

an equation in terms of states, k̂, Â, and co-states, p̂y = (Θr − I) ĉ, only.

Turning to the resource constraint, we have

ŷt = Scĉt

+ Sm (M1p̂
m
t −M2p̂

y
t + M1m̂t)

+ Sx (M1p̂
x
t −M2p̂

y
t + M1x̂t) , (15)
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where x̂t in the capital accumulation satisfies

x̂t = κ−1
x k̂t+1 − (I − δd)κ−1

x κkk̂t + (I − δd)κ−1
x κkΩ

′
Ξ′Ât.

Substituting for x̂t in equation (15), and using the fact that p̂yt + ŷt = p̂mt +m̂t while p̂xt = Ω′p̂yt

and p̂mt = Φ′p̂yt , we obtain

(I − SmM1) ŷt = Scĉt + Sm (M1p̂
y
t −M2p̂

y
t )

+ Sx

(
M1Ω′p̂yt −M2p̂

y
t + M1

[
κ−1
x k̂t+1 − (I − δd)κ−1

x κkk̂t + (I − δd)κ−1
x κkΩ

′
Ξ′Â

])
,

or

(I − SmM1) ŷt = Scĉt + [Sm (M1 −M2) + Sx (M1Ω′ −M2)] p̂yt

+ SxM1κ
−1
x k̂t+1 − (I − δd)SxM1κ

−1
x κkk̂t + (I − δd)SxM1κ

−1
x κkΩ

′
Ξ′Ât.

Substituting for ŷt and p̂yt in this last expression, the economy resource constraint becomes

(I − SmM1)
(
αdk̂t +Qcĉt −QaÂt

)
= Scĉt + [Sm (M1 −M2) + Sx (M1Ω′ −M2)] (Θr − I) ĉt

+ SxM1κ
−1
x k̂t+1 − (I − δd)SxM1κ

−1
x κkk̂t + (I − δd)SxM1κ

−1
x κkΩ

′
Ξ′Ât, (16)

an equation in terms of k̂, Â, and ĉ only.

We summarize equations (14) and (16) as[
[(I − π2) + π2Ω′] (Θr − I) + (I − π2)Qc (I − π2) [αd − I]

0 SxM1κ
−1
x

]
Et

[
ĉt+1

k̂t+1

]

=

[
Ω′ (Θr − I) 0

B21 B22

][
ĉt

k̂t

]

+

[
− [(Θr − π2Ω′)Ξ′ − (I − π2)Qa]

0

]
EtÂt+1

+

[
0

− (I − SmM1)Qa − (I − δd)SxM1κ
−1
x κkΩ

′
Ξ′

]
Ât,

where

B21 = (I − SmM1)Qc − Sc − [Sm (M1 −M2) + Sx (M1Ω′ −M2)] (Θr − I) ,
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and

B22 = (I − SmM1)αd + (I − δd)SxM1κ
−1
x κk.

The dynamics of the above system, along with the driving process,

Ât = ẑt + (I − αd) ̂̀t,
ẑt = τ̂ zt + εzt + λzτ τ̂

z
c,t + λzεε

z
c,t,̂̀

t = τ̂ `t + ε`t + λ`τ τ̂
`
c,t + λ`εε

`
c,t,

τ̂ zc,t = ρτ̂ zc,t−1 + ηzc,t,

τ̂ zt = ρτ̂ zt−1 + ηzt ,

τ̂ `c,t = ρτ̂ `c,t−1 + η`c,t,

τ̂ `t = ρτ̂ `t−1 + η`t ,

may be solved using standard linear rational expectations solution toolkits, including in this

case King and Watson - KW - (2002).

2.8 Solution and Policy Functions in KW (2002)

In the notation of KW (2002), the Markov decision and policy rules take the form,


ĉt

k̂t

Ât

ẑt̂̀
t

 =


πck πcτz πcεz πcτzc τcεzc πcτ` πcε` πcτ`c πcε`c
I 0 0 0 0 0 0 0 0

0 I I λzτ λzε I − αd I − αd (I − αd)λ`τ (I − αd)λ`ε
0 I I λzτ λzε 0 0 0 0

0 0 0 0 0 I I λ`τ λ`ε





k̂t

δ1,t

δ2,t

δ3,t

δ4,t

δ5,t

δ6,t

δ7,t

δ8,t


,
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

k̂t

δ1,t

δ2,t

δ3,t

δ4,t

δ5,t

δ6,t

δ7,t

δ8,t


=



mk mτz mεz mτzc mεzc mτ` mε` mτ`c
mε`c

0 ρδ1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 ρδ3 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 ρδ5 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 ρδ7 0

0 0 0 0 0 0 0 0 0





k̂t−1

δ1,t−1

δ2,t−1

δ3,t−1

δ4,t−1

δ5,t−1

δ6,t−1

δ7,t−1

δ8,t−1



+



0 0 0 0 0 0 0 0

I 0 0 0 0 0 0 0

0 I 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 I 0 0 0

0 0 0 0 0 I 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1





ηzt

εzt

ηzc,t

εzc,t

η`t

ε`t

η`c,t

ε`c,t


,

where δ1,t = τ̂ zt , δ2,t = εzt , δ3,t = τ̂ zc,t, δ4,t = εzc,t, δ5,t = τ̂ `t , δ6,t = ε`t, δ7,t = τ̂ `c,t, δ8,t = ε`c,t, and

ρδ1 = ρδ3 = ρδ5 = ρδ7 ≈ I.

2.9 Time Series Implications for Sectoral and Aggregate Value

Added

We wish to recover the implications of the model for sectoral value added growth, ∆ ln vj,t,

and aggregate GDP growth, ∆ lnVt. Observe that ∆ ln k̃j,t = ∆k̂j,t, where ∆k̂j,t follows from

the Markov decision rules, and

∆ ln ṽj,t = αj∆ ln k̃j,t.

By definition of ṽj,t,

∆ ln vj,t = ∆ ln ṽj,t + ∆ lnAj,t +
n∑
i=1

αjωij∆ lnµi,t−1

= αj∆k̂j,t + Âj,t + gj +
n∑
i=1

αjωij∆ lnµi,t−1
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or in vector form,

∆ ln vt = αd∆k̂t + Ât + ga + αdΩ
′∆ lnµt−1.

The sector-specific detrending factors, µj,t, solve

∆ lnµt = Ξ′∆ lnAt,

where

Ξ′ = (I − ΓdαdΩ
′ − (I − Γd)Φ

′)
−1

Γd.

Then,

∆ ln vt = αd∆k̂t + Ât + ga + αdΩ
′Ξ′
(
Ât−1 + ga

)
or

∆ ln vt = (I + αdΩ
′Ξ′) ga + αd∆k̂t + Ât + αdΩ

′Ξ′Ât−1.

When all shocks are set to zero, so that ∆k̂t = Ât = Ât−1 = 0, we recover the sectoral

balanced growth paths for value added,

∆ ln vt = (I + αdΩ
′Ξ′) ga.

2.10 Solving the Model When Households Have Imperfect Infor-

mation

Thus far, the representative household is assumed to have full information with respect to

transitory and permanent shocks, as well as between idiosyncratic and common shocks, that

affect the economy. In contrast, we now consider an imperfect information case in which the

representative household cannot distinguish between permanent and transitory components

of exogenous changes to the environment. In this alternative scenario, the household faces an

additional filtering problem in which it must infer estimates of these components in deciding

how much to consume and save.

With imperfect information, the objective function of the representative household is

given by
∼
E0

∞∑
t=0

βtCt,

where the ‘tilde’ over the expectations operator accounts for the fact that the information

set does not allow households to distinguish between persistent and transitory shocks. It

can be shown that the filtering problem that households then face does not affect the calcu-

lation of eigenvalues that determine whether the dynamic equilibrium is saddle-path stable
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or, alternatively, unique. This filtering problem, however, does lead to different Markov de-

cision rules insofar as expectations of future shocks now involve estimates of the unobserved

exogenous states.

In vector form, the composite driving processes for ẑt and ˆ̀
t are

ẑt = λzτ τ̂
z
c,t + τ̂ zt + λzεε

z
c,t + εzt ,

τ̂ zc,t = ρInτ̂
z
c,t−1 + ηzc,t,

τ̂ zt = ρInτ̂
z
t−1 + ηzt ,

and
ˆ̀
t = λ`τ τ̂

`
c,t + τ̂ `t + λ`εε

`
c,t + ε`t,

τ̂ `c,t = ρInτ̂
`
c,t−1 + η`c,t,

τ̂ `t = ρInτ̂
`
t−1 + η`t .

Given the Gaussian nature of the shocks and the above linear processes, estimates of the

unobserved exogenous states, {τxc,t, τxt }, x = z, `, are formed using the Kalman filter with

observables ẑt and ˆ̀
t.

For a given variable x = z, `, the observation error is

uxt = λxεε
x
c,t + εxt ,

with the observation equation written as

x̂t =
[
λxτ In

]
︸ ︷︷ ︸

H

[
τ̂xc,t

τ̂xt

]
+ uxt , u

x
t ∼ N

0,Σx
ε + σxεcλ

x
ελ

x′
ε︸ ︷︷ ︸

Rx

 .

The corresponding state equation is[
τ̂xc,t

τ̂xt

]
=

[
ρ 0

0 ρIn

]
︸ ︷︷ ︸

F

[
τ̂xc,t−1

τ̂xt−1

]
+

[
ηxc,t

ηxt

]
,

[
ηxc,t

ηxt

]
∼ N (0, Qx) .

Given a steady-state Kalman gain matrix, Kx, the Kalman updating follows[
τ̂xc,t|t−1

τ̂xt|t−1

]
=

[
ρ 0

0 ρIn

][
τ̂xc,t−1|t−1

τ̂xt−1|t−1

]
,
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[
τ̂xc,t|t
τ̂xt|t

]
=

[
τ̂xc,t|t−1

τ̂xt|t−1

]
+Kxaxt ,

where axt is the forecast error,

axt = x̂t − x̂t|t−1,

and

x̂t|t−1 =
[
λxτ In

] [ τ̂xc,t|t−1

τ̂xt|t−1

]
=
[
λxτ In

] [ ρ 0

0 ρIn

][
τ̂xc,t−1|t−1

τ̂xt−1|t−1

]
.

It follows that a household with imperfect information who is unable to distinguish be-

tween persistent and transitory shocks faces the following effective driving process,[
τ̂xc,t|t
τ̂xt|t

]
=

[
ρIn 0

0 ρIn

][
τ̂xc,t−1|t−1

τ̂xt−1|t−1

]
+Kxaxt ,

axt = x̂t −
[
λxτ In

] [ ρIn 0

0 ρIn

][
τ̂xc,t−1|t−1

τ̂xt−1|t−1

]
,

where x = z, `, and x̂t is treated as the shock. Put alternatively, the imperfect information

problem introduces estimates of the unobserved exogenous states as state variables (rather

than the states themselves) and modifies the driving processes the representative household

faces. However, given these modified processes, the model may be solved using standard

linear rational expectations solution toolkits as before.

2.10.1 Computation of the Steady State Kalman Gain

The observation and state equations for x = z, `, are respectively,

xt = Hτxt + uxt , u
x
t ∼ N (0, Rx) ,

and

τxt = Fτxt−1 + ηxt , η
x
t ∼ N (0, Qx) ,

where τxt = (τxc,t, τ
x
t )′ and H and F are defined above (for simplicity, we leave out the “ˆ”

notation over the variables).

The prediction equations are:

• τxt|t−1 = Fτxt−1|t−1,

• Pt|t−1 = E[(τxt − τxt|t−1)(τxt − τxt|t−1)′|xt−1] = FPt−1|t−1F
′ +Qx,
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• xt|t−1 = Hτxt|t−1,

• St|t−1 = E[(xt − xt|t−1)(xt − xt|t−1)′|xt−1] = HPt|t−1H
′ +Rx.

The updating equations are:

• τxt|t = τxt|t−1 + Pt|t−1H
′S−1
t|t−1︸ ︷︷ ︸

Kx
t

(xt − xt|t−1),

• Pt|t = Pt|t−1 − Pt|t−1H
′S−1
t|t−1︸ ︷︷ ︸

Kx
t

HPt|t−1.

The steady state Kalman gain is then given by Kx = PH ′S−1 where P and S respectively

solve

P = FPF ′ +Qx,

S = HPH ′ +Rx.

We obtain Qx and Rx by computing covariances of the shocks from the MUC model,

Qx = V ar

([
ηxc,t

ηxt

])
,

Rx = V ar
(
λxεxε

x
c,t + εxt

)
.

We then compute the steady state Kalman gain by iterating on the following equations

where, given iteration j − 1,

P1 = FP
(j−1)
0 F ′ +Qx,

S = HP
(j−1)
1 H ′ +Rx,

Kx(j) = P
(j−1)
0 H ′S−1,

and

P
(j)
0 = P1 −Kx(j)HP1.

We stop the iterations when
∥∥∥P (j)

0 − P
(j−1)
0

∥∥∥ < 10−8. The steady state Kalman gain is then

Kx(j).
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2.10.2 Expression for the Driving Processes as an Input to King and Watson

(2002)

The driving process in this case is

[
ẑt
ˆ̀
t

]
=

[
0 ρIn 0 λzτρ In 0 0 0 0 0

0 0 0 0 0 0 ρIn 0 λ`τρ In

]



τ̂ zt|t
τ̂ zt−1|t−1

τ̂ zc,t|t
τ̂ zc,t−1|t−1

azt

τ̂ `t|t
τ̂ `t−1|t−1

τ̂ `c,t|t
τ̂ `c,t−1|t−1

a`t




τ̂ zt|t
τ̂ zt−1|t−1

τ̂ zc,t|t
τ̂ zc,t−1|t−1

azt

τ̂ `t|t
τ̂ `t−1|t−1

τ̂ `c,t|t
τ̂ `c,t−1|t−1

a`t



=



ρIn 0 0 0 0 0 0 0 0 0

I 0 0 0 0 0 0 0 0 0

0 0 ρ 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 ρIn 0 0 0 0

0 0 0 0 0 I 0 0 0 0

0 0 0 0 0 0 0 ρ 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0





τ̂ zt−1|t−1

τ̂ zt−2|t−2

τ̂ zc,t−1|t−1

τ̂ zc,t−2|t−2

azt−1

τ̂ `t−1|t−1

τ̂ `t−2|t−2

τ̂ `c,t−1|t−1

τ̂ `c,t−2|t−2

a`t−1



+



K2z 0

0 0

K1z 0

0 0

I 0

0 K2`

0 0

0 K1`

0 0

0 I



[
azt

a`t

]

3 Data

The raw data from KLEMS, after excluding 4 sectors corresponding to government activities,

covers N = 61 industries with growth rates over T = 70 years from 1947-2016. The data

include nominal gross output (Yj,t), nominal capital (Kj,t), nominal labor (Lj,t), and nominal

intermediates (Mj,t). Similarly, they include constant dollar values of gross output (yj,t),

capital (kj,t), labor (`j,t), and intermediates (mj,t).
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3.1 Assembling the Sectoral Data

We construct the following additional series.

1. Nominal Value Added

Vj,t = Yj,t −Mj,t,

2. Capital Share

Skj,t =
Kj,t

Yj,t
,

3. Labor Share

S`j,t =
Lj,t
Yj,t

,

4. Intermediate Share

Smj,t =
Mj,t

Yj,t
,

5. Gross Output Growth Rates

100×∆ ln yj,t = 100× ln

(
yj,t
yj,t−1

)
,

6. Capital Growth Rates

100×∆ ln kj,t = 100× ln

(
kj,t
kj,t−1

)
,

7. Labor Growth Rates

100×∆ ln `j,t = 100× ln

(
`j,t
`j,t−1

)
,

8. Intermediate Growth Rates

100×∆ lnmj,t = 100× ln

(
mj,t

mj,t−1

)
,

9. TFP Growth Rates

100×∆ ln zj,t = 100×

[
∆ ln yj,t − 1

2

(
Skj,t−1 + Skj,t

)
∆ ln kj,t

−1
2

(
S`j,t−1 + S`j,t

)
∆lj,t − 1

2

(
Smj,t−1 + Smj,t

)
∆mj,t,

]
,
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10. Nominal Gross Output to Value Added Ratios

SY Vj,t =
Yj,t
Vj,t

,

11. Value Added Growth Rates

100×∆ ln vj,t = 100×
[

1

2

(
SY Vj,t−1 + SY Vj,t

)
∆ ln yj,t +

1

2

(
2− SY Vj,t−1 − SY Vj,t

)
∆ lnmj,t

]
,

12. Nominal Gross Output in Value Added Shares (Hulten weights)

SV Aj,t =
Yj,t∑N
i=1 Vi,t

,

13. Nominal Value Added in Total Value Added Shares

SVj,t =
Vj,t∑N
i=1 Vi,t

.

3.2 Aggregating KLEMS into Consolidated Sectors

We combine the disaggreated KLEMS sectors into broader consolidated sectors. For example,

we might combine sectors j ∈ {1, ..., n} into a single sector J . To that end, we incorporate

data from the Input-Output (IO) tables, where M IO
ij,t denotes the nominal use of materials

used by sector j purchased from sector i. Similarly, V IO
j,t denotes value-added in sector j in

the IO tables.

We use the following formulas to create consolidated sectors.

1. Value Added Growth Rates

100×∆vJ,t = 100×
∑
j∈J

1

2

(
Vj,t∑
i∈J Vi,t

+
Vj,t−1∑
i∈J Vi,t−1

)
∆ ln vj,t,

2. Capital Growth Rates

100×∆ ln kJ,t = 100×
∑
j∈J

1

2

(
Kj,t∑
i∈J Ki,t

+
Kj,t−1∑
i∈J Ki,t−1

)
∆ ln kj,t,
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3. Labor Growth Rates

100×∆ ln lJ,t = 100×
∑
j∈J

1

2

(
Lj,t∑
i∈J Li,t

+
Lj,t−1∑
i∈J Li,t−1

)
∆ ln `j,t,

4. Nominal Intermediate Inputs. (IO Tables)

M IO
J,t =

∑
j∈J

∑
i/∈J

M IO
ij,t ,

5. Nominal Value Added (IO Tables)

V IO
J,t =

∑
j∈J

V IO
j,t ,

6. Nominal Gross Output (IO tables) in consolidated sector J ,

Y IO
J,t = V IO

J,t +M IO
J,t ,

7. TFP Growth Rates. In considering value-added TFP, ∆ ln zvj,t, we have the following

identities

∆ ln zvj,t =
1

2

(
Yj,t
Vj,t

+
Yj,t−1

Vj,t−1

)
∆ ln zj,t,

∆ ln zvJ,t =
∑
j∈J

1

2

(
Vj,t∑
i∈J Vi,t

+
Vj,t−1∑
i∈J Vi,t−1

)
∆ ln zvj,t,

∆ ln zJ,t =
1

2

(
V IO
J,t

Y IO
J,t

+
V IO
J,t−1

Y IO
J,t−1

)
∆ ln zvJ,t.

Combining these identities produces

∆ ln zJ,t =
1

2

(
V IO
J,t

Y IO
J,t

+
V IO
J,t−1

Y IO
J,t−1

)∑
j∈J

1

2

(
Vj,t∑
i∈J Vi,t

+
Vj,t−1∑
i∈J Vi,t−1

)
1

2

(
Yj,t
Vj,t

+
Yj,t−1

Vj,t−1

)
∆ ln zj,t.

3.3 Aggregating the Consolidated Sectors

We aggregate TFP measures from the N = 61 original series, but also from the N∗ = 15

consolidated series denoted by J above, using Hulten weights. Weights for the consolidated

series follow from the IO Tables.

We use the following formulas to aggregate TFP growth rates.
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1. Aggregate TFP Growth Rates from Original Industries

100×∆ ln z
(N)
t = 100×

N∑
j=1

1

2

(
SV Aj,t + SV Aj,t−1

)
∆ ln zj,t,

2. Hulten Weights for the Consolidated Industries

SV AJ,t =
Y IO
J,t∑N∗

i=1 V
IO
i,t

,

3. Aggregate TFP Growth Rates from Consolidated Industries

100×∆ ln z
(N∗)
t = 100×

N∗∑
J=1

1

2

(
SV AJ,t + SV AJ,t−1

)
∆ ln zJ,t.
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