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Abstract

We describe how to use the composite likelihood to ameliorate estimation, compu-
tational, and inferential problems in dynamic stochastic general equilibrium models.
We present a number of situations where the methodology has the potential to resolve
well-known problems. In each case we consider, we provide an example to illustrate
how the approach works and its properties in practice.
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1 Introduction

In macroeconomics it is standard to construct dynamic stochastic general equilibrium
(DSGE) models and use them for policy purposes. Until a decade ago, most anal-
yses were performed using parameters formally or informally calibrated. Nowadays,
it is more common to conduct inference using parameters estimated with classical or
Bayesian full information likelihood methods; see Andreasen et al. (2014) for an ex-
ception.

Estimation of DSGE models is difficult, making estimation results whimsical. There
are population and sample identification problems, see e.g., Canova and Sala (2009),
Komunjer and Ng (2011), Qu and Tkachenko (2013); singularity problems (the number
of shocks is generally smaller than number of endogenous variables), see e.g., Guerron
Quintana (2010), Canova et al. (2014), Qu (2015); informational deficiencies (mod-
els are constructed to explain only a portion of the data), see Boivin and Giannoni
(2006), Canova (2014), or Pagan (2016), that restrict the class of models for which the
likelihood can be computed. Computational complications, due, for example, to the
presence of latent variables that require the computationally challenging integration of
the joint likelihood of the endogenous variables of the model, and numerical difficulties
are also well-known. Both become particularly acute when the model is of large scale
or when the data are short or of poor quality.

Inference in estimated DSGE models is also troublesome. Standard frequentist
asymptotic theory needs regularity conditions, which are often violated in practice.
Bayesian methods may help when the sample size is short, but it is tricky to specify joint
priors when the parameter space is large and, as indicated by Del Negro and Schorfheide
(2008), assuming prior independence results in an overall prior does not fully reflect
priors beliefs held by researchers. Perhaps more importantly, standard likelihood-based
inference is conditional on the estimated model being correctly specified.

Policymakers are keenly aware of both estimation and inferential problems and,
when choosing policy actions, tend to informally pool results obtained from different
models. Furthermore, when there are structural instabilities in the data-generating
process (DGP), it may be attractive to use a number of models to robustify counter-
factual exercises and improve forecasting performance, see e.g., Aiolfi et al. (2010).

This paper is concerned with the estimation problems that researchers working
with DSGE models face. We propose a method that may help to solve some of the
above-mentioned difficulties and automatically provide estimates of the parameters
that formally combine the information present in different models using shrinkage-type
estimators. The approach we suggest is based on the composite likelihood, a limited
information objective function, well-known in the statistical literature but very sparsely
used in economics (Engle et al., 2008; Qu, 2015; Eisenstein et al., 2017).

In the original formulation of Besag (1974) and Lindsay (1980), the composite like-
lihood is constructed combining marginal or conditional likelihoods of the true DGP
and employed because the likelihood of the full model is computationally intractable or
features unmanageable integrals. When marginals or conditionals are used, the com-
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posite likelihood estimator is consistent and asymptotic normal, as either the number
of observations or the number of composite likelihood components grows. A composite
likelihood approach has been used to solve a number of complicated problems in fields
as diverse as spatial statistics, multivariate extremes, psycometrics, genetics/genomics,
see e.g., Varin et al. (2011).

In our setup, the composite likelihood combines the likelihood of distinct structural
or statistical models, which are not necessarily marginal or conditional partitions of
the DGP. Thus, standard composite likelihood properties do not necessarily apply.
Nevertheless, it is still possible to conduct formal inference and produce estimators
with desirable properties.

We describe how to construct and use the composite likelihood in a large class
of situations relevant to macroeconomists. We briefly discuss asymptotic inference
in our non-standard setup and how such an objective function can be treated as a
quasi-likelihood to conduct Bayesian inference. Kim (2002), Chernozukov and Hong
(2003) and Marin (2011) have used similar ideas in different contexts. However, to the
best of our knowledge, no author has constructed composite Bayesian estimators and
used the setup to analyze structural macroeconometric models as we do. We provide
a sequential, adaptive learning interpretation to our posterior estimators and discuss
the differences with standard Bayesian estimators and to other combination devices
present in the literature.

We show how the approach (in either its classical or Bayesian version) can be used to
potentially address the estimation and inferential problems noted in this introduction.
We present examples indicating that the composite likelihood constructed using the
information present in distinct models helps 1) to ameliorate population and sample
identification problems, 2) to solve singularity problems, 3) to produce more stable
estimates of the parameters of large scale structural models, 4) to robustly estimate
the parameters appearing in multiple models and 5) to combine information coming
from different sources, frequencies, and levels of aggregation.

The rest of the paper is organized as follows. The next section presents the tra-
ditional composite likelihood approach and introduces our setup. Section 3 discusses
quasi-Bayesian estimation and inference. Section 4 presents a number of examples
highlighting how the methodology can address standard estimation problems. Section
5 concludes. The appendices provide details for arguments discussed in the text and
the equations of the models used in our examples.

2 The composite likelihood

The original composite likelihood formulation has been suggested to deal with situa-
tions where the likelihood of a model is either difficult to construct because of latent
variables or hard to manipulate because the covariance matrix of the observables is
nearly singular. In some applications, see Engle et al., (2008), the likelihood is con-
ceptually tractable, but the dimensionality of the parameter space makes maximum
likelihood computations complex and unappealing.
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In all these situations, it might be preferable to use an objective function which
has smaller informational content than the likelihood but is easier to work with. One
such objective function, originally proposed by Linsday, 1980, is a weighted average of
marginal or conditional distributions of submodels (‘events’ in the terminology used
by this literature).

Suppose a known DGP produces a density F (yt, ψ) for an m × 1 vector of ob-
servables yt, where ψ is a q × 1 vector. Partition ψ = [θ, η] where, by convention,
θ is the vector of parameters estimated by composite likelihood methods, and η is a
vector of model-specific nuisance parameters. Let {Ai, i = 1, ...K} be a set of marginal
or conditional events of yt, and let f(yit ∈ Ai, θ, ηi) be the subdensities of F (yt, ψ)
corresponding to these events 1. Each Ai defines a submodel, with implications for a
subvector yit of length Ti and is associated with the vector ψi = [θ, ηi]

′ , where ηi are
(nuisance) event specific parameters. Let φ = (θ, η1, . . . ηK). Given a vector of weights
ωi, the composite likelihood is

CL(φ, y1t, . . . , yKT ) = ΠK
i=1 f(yit ∈ Ai, θ, ηi)ωi . (1)

Clearly, CL(φ, y1t, . . . , yKT ) is not a likelihood function. Nevertheless, if y[1,t] =(y1, . . . , yt)
is an independent sample from F (yt, ψ) and ωi are fixed quantities, φCL, the maximum

composite likelihood estimator of φ, satisfies φCL
P→ φ and

√
T (φCL − φ)

D→ N(0, G−1) (2)

for T going to infinity and K fixed (see e.g., Varin, et al., (2011)) where

G = HJ−1H; Godambe information (3)

J ≡ varφu(φ, y[1,t]); Variability matrix (4)

H ≡ −Eφ[5θu(θ, η1, . . . , ηK , y[1,t])]; Sensitivity matrix (5)

u(φ, y|ω1, . . . , ωK) =
∑
i

ωi 5φ li(φ, y[1,t]); Composite scores (6)

and 5φli(φ, y[1,t]) denotes the score associated with the log of f(yit ∈ Ai, θ, ηi). Thus,
θCL is constructed using the information present in all submodels, with ωi determining
how important each model is.

Note the composite likelihood ignores the potential dependence across Ai, i.e., sub-
models may feature common equations, and the fact that yit may not be mutually
exclusive across i, i.e., the same variable (say, the inflation rate) may appear in the
observables of each submodel 2.

Consistency obtains because each element in (2) is an unbiased estimating function
and a weighted avarage of unbiased estimating functions is unbiased. Asymptotic

1Marginal or conditional integrate out all elements of yt not in yit or condition on some yjt that are not
in yit. For ease of reading, the integrals and conditioning sets are left implicit.

2If T is fixed but the different Ai are independent, then (2) still holds when K → ∞ ,and a standard
Newey-West correction to J(θ) can be used if y[1,t] is not an independent sample.
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normality holds because the sampling distribution of the maximum likelihood estimator
of each submodel can be approximated quadratically around the mode. Note that the
asymptotic covariance matrix is HJ−1H and that in general H 6= J . Since it differs
from the Fisher information matrix, I, θCL is not efficient.

The choice of weights is typically left to the investigator, and, for example, one
may choose ωi to improve efficiency. Optimal weights can be obtained by minimizing
the distance between G(θ) and I(θ) or by making sure that the composite likelihood
ratio statistics has an asymptotic χ2 distribution (Pauli et al., 2011). Alternatively, one
could set ωi = 1

K ,∀i, to minimize the researcher input; or use a data-based approach to

their selection. For example, one could set ωi = exp(χi)

1+
∑K−1

i=1 exp(χi)
, where χi is a function

of some statistics of past data χi= fi(Y1,[1:τ ], ...., YK,[1:τ ]). If these statistics are updated
over time, ωi could also be made time varying. There is a large forecasting literature
(see e.g. Aiolfi et al., 2010) that can be used select training sample-based estimates of
ωi.

When K or the number of nuisance parameters ηi is large, joint estimation of
(θ, η1, . . . , ηK) may be computationally demanding. In this case, a two-step estimation
approach is possible where ηi is separately estimated for each log f(yit ∈ Ai, θ, ηi) and
plugged in the composite likelihood, which is then optimized with respect to θ, see e.g.
Pakel et al. (2011). Consistency of θCL is unaffected as long as ηi are consistently
estimated, but asymptotic standard errors for θCL in this case need to be adjusted to
account for the fact that ηi is estimated.

2.1 A composite DSGE setup

Our setup differs from the traditional one in several respects. First, we treat the DGP
as unknown. There are many reasons for such a choice. For example, we may not
have enough information to construct F (yt|ψ); we could write a VAR representation
for yt but not the structural model that generated it; or we do not have an analytic
expression for F (yt|ψ) , but only the first few terms of its Taylor expansion. Another
reason for treating F (yt|ψ) as unknown is that the dimension of yt may be large and a
researcher may have an idea of how portions of yt could have been generated but not
know yet how to link them in a coherent way.

Second, f(yit ∈ Ai, θ, ηi) are approximations to the DGP and thus are neither
marginal nor conditional representations. Formally, the quality of the approximation
of f(yit ∈ Ai, θ, ηi) is measured by the distance of Gi(φ)−1Ii(φ) from the identity
matrix - when the approximation is exact, Gi(φ)−1 = Ii(φ). To be concrete, in one
leading example we have in mind, Ai are different structural models, e.g., a RBC model
with financial frictions, a New Keynesian model with sticky price, a New Keynesian
model with labor market frictions, etc.; yit is the data generated by these models,
and f(yit ∈ Ai, θ, ηi) the associated densities. Here, θ is the vector of the structural
parameters common to all models, e.g. the risk-aversion coefficient, or the Frisch
elasticity, while ηi could be other structural parameters of the models, e.g. a LTV ratio,
a Calvo parameter, or reduced-form mongrels used to approximate features of the DGP,
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e.g., the parameter regulating habit in consumption. In another leading example, we
have in mind F (yt|ψ) is a large-scale structural model, for example, a multi-country
model of trade interdependencies or a multi-country asset pricing model, and f(yit ∈
Ai, θ, ηi) are structural models describing bilateral blocks or country-specific portfolios.
In a third case of interest, f(yit ∈ Ai, θ, ηi) are the densities generated by different
approximate (perturbed or projected) solutions of a model or the densities of linear
solutions, where only the k-th component of parameter vector is allowed to be time
varying. Here, Ai represents either the order of the approximation employed or an
indicator function describing which parameter is allowed to change.

In all these situations, different models are treated as approximations because they
disregard aspects of the DGP; take short cuts to modeling the complexities of the DGP;
or condition on features which may be present or absent from the DGP.

A final case of interest is one where f(yit ∈ Ai, θ, ηi) represents different statistical
models. We term models ’statistical’ if they are obtained from the same theoretical
model but feature different observables. For instance, a standard three-equation New-
Keynesian model could be estimated using inflation, the nominal interest rate, and a
measure of output, or inflation, the nominal interest rate, and a measure of consumption
- in the model, consumption and output are equal. By extension, F (yt, ψ) could be
the density of an aggregate model and f(yit ∈ Ai, θ, ηi) the densities obtained when
i) data from cross sectional unit i are used; ii) data at a particular aggregation level
(e.g. firm, industry, regional, etc.) are employed. Alternatively, F (yt, ψ) could be the
density obtained using the full sample and f(yit ∈ Ai, θ, ηi) the densities constructed
using different subsamples (say, pre-WWI, interwar, post-WWII, etc.).

A third important difference from the traditional setup is that models we con-
sider need not be statistically compatible with each other. Compatibility implies that
asymptotically, θi,ML converges to the same value for each i. This is easy to show
when f(yit ∈ Ai, θ, ηi) are marginals or conditionals. Because of this potential incom-
patibility, the estimators for θ we construct need not enjoy the standard properties of
composite likelihood estimators.

Researchers working with DSGE models are generally free to choose what goes in
θ and in ηi. This allows substantial flexibility because even though some parameters
might be common to all models, researchers might prefer not to estimate a common
value. For example, when using different statistical models, and when Ai represents dif-
ferent levels of data aggregation, one could make the parameter regulating the comple-
mentarity of government expenditure and private consumption common, while making
the parameters regulating the process for goverment expenditure submodel specific.

Because all models we consider are approximations to the DGP, likelihood esti-
mators obtained in each of them will be inconsistent and, thus, the composite like-
lihood estimator will be inconsistent. Following White (1982) and Domowitz and
White (1982), one can show that, under regularity conditions, φi,ML, the likelihood
estimator in model Ai, converge, as T → ∞ to the pseudo-parameter vector, φ0,
which minimizes the Kullback-Leibler (KL) distance from the true DGP and that√
T (φi,ML−φ0) ∼ N(0, G−1i ), where Gi is the Godambe information matrix for model
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i.
The weighting scheme that the composite likelihood employs defines a density for

a different misspecified model (the weighted average of the K submodels). When
the weights wi are constant, φCL approaches asymptotically φ0,CL, the minimizer of
the KL distance between the density of the combination of models and the DGP.
Note that φ0,CL is not, in general, a weighted average of φ0,i, because models are not
necessarily independent. Mimicking the argument used for each model i, one can show
that

√
T (φCL − φ0,CL) ∼ N(0, G−1) where G is the Godambe information computed

using the composite likelihood (see Canova and Matthes (2017) for details).

3 Quasi-Bayesian estimation

Because we are interested in obtaining a small sample distribution of φ, rather than
its asymptotic approximation, and in treating ω as a random variable with a prior
distribution (to be interpreted as the investigator prior assessment of the likelihood of
model i), we estimate (θ, ωi, ηi, i = 1, . . . ,K) by quasi-Bayesian methods. Note that
what we are after is different from what finite mixture models (see e.g., Waggoner and
Zha, 2011) or Bayesian model average (BMA) exercises do. In BMA, each model is
estimated separately and their predictions combined using posterior weights; in our
setup, all models are jointly estimated and the predictions can be combined, if that
is of interest. In finite mixture models, y1t,= . . . = yKt and T1 = . . . = TK and the
(time-varying) weight determines at each t how important is yt for the estimations of
the parameters of model i. In our setup y1t 6= . . . 6= yKt and T1 6= . . . 6= TK and, as
shown below, parameter information is adaptively and sequentially updated as we add
models to the composite pool.

For each i, the prior for the parameters is of the form

p(θ, ηi) = p(θ)p(ηi|θ). (7)

In the spirit of Del negro and Schorfheide (2008), We allow the prior for ηi to depend
on θ, which is advisable if the composite pools features distinct structural models and,
a priori, we want these models to be on equal ground when matching certain statistics
of the data. If p(ω) ≡ p(ω1, . . . ωK) is the prior for the vector of weights, the composite
posterior kernel is:

p̌(θ, η1, ....ηK , ω1, . . . , ωK |Y1,t1 , . . . , Yk,Tk) =

L(θ, η1|Y1,T1)ω1p(θ, η1)
ω1 . . .L(θ, ηK |YK,TK )ωKp(θ, ηK)ωKp(ω) =

ΠiL(θ, ηi|Yi,Ti)ωip(ηi|θ)ωip(θ)p(ω), (8)

which can be used to obtain posteriors for (φ, ω) , as in Kim (2002) or Chernozukov
and Hong (2003). The appendix presents regularity conditions needed for standard
MCMC techniques to apply; the algorithm we employ to draw posterior sequences for
the parameters; and the adjustments one may want to implement for the posterior
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percentiles to take into account the fact yit may not be mutually exclusive across i
(along the lines of Mueller (2013), Qu (2015), or Ribatet et al (2012)) or that the
models may be more generally misspecified.

3.1 A sequential learning interpretation

It is easy to give a sequential, adaptive learning interpretation to the composite pos-
terior kernel (8) and to the Bayesian estimators for θ one obtains. For the sake of
illustration, suppose that ωi is fixed and K=2. The composite posterior kernel p̌ is

p̌(θ, η1....η2|Y1,T1 , Y2,T2) =

L(Y1,T1 |θ, η1)ω1p(η1|θ)ω1p(η2|Y2,T2,θ)ω2{[p(θ|Y2,T2)ML(Y2,T2)]ω2p(θ)ω1} (9)

where ML(Y2,T2) =
∫
L(Y2,T2 |ψ2)p(ψ2)dψ2 is the marginal likelihood of model 2.

As (9) makes clear, the posterior kernel can be obtained in two stages. In the first
stage, the prior for ψ2 and the likelihood for model 2 are used to construct p(θ|Y2,T2).
This conditional posterior, weighted by the marginal likelihood of the model 2, is
geometrically combined with the prior p(θ) for the next estimation stage of θ. Suppose
that ML(Y2,T2) is high. Then model 2 fits Y2,T2 well. If ω1 = ω2, the prior for model 1
will more heavily reflect p(θ|Y2,T2) relative to the initial prior p(θ). On the other hand,
if ML(Y2,T2) is low, p(θ|Y2,T2) has low weight relative to p(θ) when setting up the prior
for model 1. In general, the prior that θ receives in each stage of the learning process
depends on the relative weights assigned to the current and to all previous models
and on their relative fit for θ. Thus, a composite Bayesian approach to estimation
can be interpreted as an adaptive sequential learning process where the information
contained in models whose density poorly relates to the observables is appropriately
downweighted.

Note that the prior for stage 2 is not the posterior for stage 1 as in a standard
Bayesian setup but rather a weighted average of the initial prior and of the posterior
obtained at stage 1, where the latter is discounted by the fit at that stage. This is
why the approach is adaptive. Also, even though only Y2,T2 contains information for
η2, its posterior may be updated when using Y1,T1 since the posterior for θ sequentially
changes. Also, since Y2,T2 does not contain information for η1, p(η1|θ) will be unchanged
after estimation is performed with model 2.

Finally, note that while with a composite posterior there is an automatic discounting
whenever a model does not fit the data well, regardless of whether ωi is treated as a
parameter or a random variable. Del Negro et al. (2016) have shown that a finite
mixture have this property only if ω is random.
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4 Addressing estimation, computational, and in-

ferential problems

This section shows how the composite likelihood may help to deal with standard prob-
lems encountered in the estimation of DSGE models. While the improvements we
discuss are specific to the models and the parameterization used, the insights they
provide go beyond the model economies we deal with. When possible, we explicitly
state the conditions under which the composite likelihood provides a ”better” objec-
tive function than the likelihood of a single model in the sense that det(G(φ)−1I(φ)) <
minidet(Gi(phi)

−1Ii(φ)).
The first example discusses how small sample identification problems can be re-

solved by using the composite likelihood constructed using different structural models.
The intuition this example provides applies also to situations when different statistical
models are used to compute the composite likelihood or when the same model is used
with different samples of data. The second example demonstrates how the approach
can ameliorate population identification problems. The third example deals with singu-
larity issues; the fourth with the problem of estimating the parameters of a large-scale
structural model. The fifth example demonstrates how to robustly estimate structural
parameters appearing in different models. The last example shows how the composite
likelihood may be used to partially pool the information contained in panels of data
with potentially heterogeneous dynamics.

4.1 Reducing sample identification problems

In macroeconomics it is common to work with relatively small samples of time series.
Long data series are generally unavailable and, when they exist, definitional changes
or structural breaks make it unwise to use the full sample for estimation purposes. In
addition, the phenomena one is interested in characterizing (say, the zero lower bound
on interest rates) may be present only in the most recent portion of the sample. In
this section, we show how the composite likelihood could help reduce the severity of
small sample problems.

Suppose we have two structural models (call them A and B), with parameters
ψA = (θ, ηA), ψB = (θ, ηB), generating implications for (yAt, yBt), which could be two
different subvectors of yt. Assume that yAt and ytB are produced by the decision rules:

yAt = ρAyAt−1 + σAet (10)

yBt = ρByBt−1 + σBut (11)

where et and ut are both iid (0,I). Suppose that ρB = δρA, σB = γσA, yAt and yBt are
scalars, that we have TA(TB) observations on yAt ( yBt) with TA small, and that we
are interested in estimating θ = (ρA, σA). For the sake of the presentation, let δ, γ be
known.
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The (normal) log-likelihood functions of each model are:

logLA ∝ −TA log σA −
1

2σ2A

TA∑
t=1

(yAt − ρAyAt−1)2 (12)

logLB ∝ −TB log(σAγ)− 1

2σ2Aγ
2

TB∑
t=1

(yBt − ρAδyBt−1)2 (13)

which can be easily maximized with respect to ρA, σA. For 0 < ω < 1, the log composite
likelihood is

logCL = ω logLA + (1− ω) logLB (14)

.
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Figure 1: Likelihood and composite likelihood, small T.

We set ρA = 0.7, σA = 1.0, δ = 1.2, γ = 0.8 TA = 20, TB = 20 (or TB = 60), and
plot in Figure 1 the univariate contours in the (ρA, σA) dimensions, when (12) and
(14) are used. In the latter case, we set ω = 0.7. Figure 1 highlights two facts. First,
the composite likelihood has more curvature then the likelihood constructed using YtA
only, even when TA = TB. Second, the mode of the composite likelihood is closer to the
true values. Note that, as TB increases (TB = 60), the composite likelihood becomes
more bell-shaped around the true value and almost symmetric in shape.

As we show in section 4.5, differences between the likelihood constructed using
yAt and the composite likelihood have to do with three quantities ζ1 = 1−ω

ω
δ
γ2
, ζ2 =

1−ω
ω

δ2

γ2
= ζ1δ, and ξ = (TA + TB

1−ω
ωγ2

)−1. ζ1 and ζ2 control the relative shape of the
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composite likelihood, while ξ, the effective sample size, controls both the relative height
and the relative shape of the composite likelihood. Since all three quantities depend
on ω, γ, δ, these parameters regulate the amount of information that yBt provides
for ρA, σA. For example, if ω = 0.5 and γ = 1.0, the effective sample size used to
construct the composite likelihood is TA + TB, making this function higher than the
likelihood constructed using TA alone. In addition, the higher is γ, the less informative
is yBt for the estimation of ρA, σA - model B provides information that twists the
composite likelihood away from the true value. Similarly, the lower is δ, the lower will
be the informational content of yBt for the parameters of interest. Thus, the composite
likelihood gives importance to yBt if it is generated by a model with higher persistence
and lower standard deviation than the model for YAt. Such a scheme is reasonable
since the higher the serial correlation, the more important low frequency information
is; and the lower the standard deviation is, the lower the noise in yBt is.

This discussion highlights an interesting trade-off that the composite likelihood
exploits: yBt may give information for the parameters of interest, but may also twist
its shape away from the true values In this example, better local identification could
be attained if (yAt, yBt) are jointly used in estimation whenever ω, γ, and TB are such
that the effective sample size ξ > TA and ζ1, ζ2 are different from zero. If γ is small,
that is, if ytB is less volatile than ytA, or if ω is not too large, that is, if the degree of
trust a researcher has in model B is not negligible, the log composite likelihood (14)
will be more peaked around the mode than the likelihood (12).

So far models A and B are different structural models. However, the same argument
is applicable when A and B are two statistical models or when they are the same
structural model and yAt and yBt represent the same time series in different samples.
In the first case, the use of information coming from different time series may make the
composite likelihood more peaked around the true value than the likelihood of each
model, much in the same spirit as a data-rich approach to estimation may provide
better information about structural parameters (see e.g. Boivin and Giannoni, 2006).
In the second case, the use of, say, pre-break data may help to sharpen structural
inference, even if the pre-break data pulls the composite likelihood away from the
current sample likelihood, as long as the weights are appropriately chosen. Baumeister
and Hamilton (2015) suggested a procedure to reduce the information contained in
earlier subsamples that mimics a composite likelihood estimator in this situation.

We also would like to stress that TA and TB may be not only of different lengths
but also recorded at different frequencies (e.g., coming from a quarterly and an an-
nual model). The composite likelihood is a flexible tool that exploits the available
information to reduce small sample (local) identification problems.

4.2 Ameliorating population identification problems

This subsection presents an example where estimation is difficult because some param-
eters are underidentified and others weakly identified in population; it also shows how
the use of a composite likelihood approach can help remedy these problems.
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Consider a canonical three-equation New Keynesian model (call it model A)

RAt = τEtπAt+1 + e1t (15)

yAt = δEtyAt+1 − σ(RAt − EtπAt+1) + e2t (16)

πAt = βEtπAt+1 + γyAt + e3t (17)

whereRAt is the nominal rate, yAt the output gap, and πAt the inflation rate;(e1t, e2t, e3t)
are mutually uncorrelated structural disturbances, (τ, δ, σ, β, γ) are structural param-
eters, and Et is the conditional expectations operator. The determinate solution of
(15)-(17) is  RAt

yAt
πAt

 =

 1 0 0
σ 1 0
σγ σ 1

 e1t
e2t
e3t

 ≡ Aet. (18)

Clearly, β is underidentified - it disappears from (18) - and the slope of the Phillips
curve γ may not be well identified from the likelihood of (RAt, yAt, πAt) if σ is small.
In fact, large variations in γ may induce small variations in the decision rules (18) if σ
is sufficiently small, making the likelihood flat in the γ dimension.

Population underidentification of β implies, for example, that when (15)-(17) is the
data generating process, applied investigators can not distinguish if the Philips curve
is forward looking or not, nor can they measure the degree of forward lookingness, even
when T →∞. Weak population identification of γ implies that it is hard to pin down
the effects of the output gap (marginal costs) on inflation, regardless of the magnitude
of the ‘true’ slope of the Phillips curve. Problems of this type are common in DSGE
models (see Canova and Sala, 2009) and make estimation results whimsical.

Suppose we have available another model (call it, B) usable for inference. For
example, consider a single-equation Phillips curve with exogenous marginal costs:

πBt = βEtπBt+1 + γyBt + u2t (19)

yBt = ρyBt−1 + u1t (20)

where ρ > 0 measures the persistence of the output gap (marginal costs). Note that
(19) has the same format as (17), so that β and γ have the same economic interpretation
but the process generating yt is different. Suppose that model A is considered more
trustworthy and an applied investigator acknowledges this by setting ω >> 1 − ω.
By repeatedly substituting forward and letting ` be the lag operator, the solution to
(19)-(20) is [

(1− ρ`)yBt
(1− ρ`)πBt

]
=

[
1 0
γ

1−βρ 1− ρ`

] [
u1t
u2t

]
. (21)

Clearly, unless the process for the output gap is iid (ρ = 0), the log-likelihood of model
B has information about β. Thus, one would be able to identify (and estimate) β from
the composite likelihood but not from the likelihood of model A, avoiding observational
equivalence problems. In addition, in model B the curvature of the likelihood in the γ
dimension depends on 1

1−βρ , which, in general, is greater than one for ρ 6= 0. Hence,
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Figure 2: Likelihood and composite likelihood, weak identification.

small variations γ may lead to sufficiently large variations in the decision rule (21) and
thus in the composite likelihood, even when 1− ω is small.

We illustrate the argument in Figure 2. We plot the likelihood of model A and
the composite likelihood as function of γ when σ = 0.5 or σ = 0.1. The DGP has
γ = 0.4, β = 0.99, ρ = 0.8, and we present the shape of the composite likelihood when
ω = 0.85. As discussed, the likelihood of model A is flat around the true value of
γ when σ is small, and adding information from the second model helps to improve
the identification of γ. The same outcome obtains when σ = 0.5 as the likelihood
constructed from yAt is not quadratic in γ.

It should be clear that the argument we make here is independent of the size of the
effective sample ξ: since the identification problems we discuss occur in population,
having a large or a small ξ is irrelevant. It should also be emphasized that we have
implicitly assumed that the variances of (e2t, e3t) and of (u1t, u2t) are of the same order
of magnitude (in Figure 2, they are all equal to 1). When this is not the case, two
distinct forces are at play: the relative noise present in the two models is weighted
against the relative information present in the decision rules.

It goes without saying that adding models with Philips curves that are non-comparable
to those of model A is unlikely to reduce population identification problems. In other
words, if model B data have been generated from a mechanism that is different than
that of model A or, if the mechanism is the same but the values for β and γ are
very different, the biases introduced using model B data may be large relative to the
improved curvature. Hence, population identification improvements can be obtained
only after carefully examining the shape of the likelihood of the additional model(s)
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one may want to consider.
In sum, these two subsection have shown that the composite likelihood may improve

parameter identification when the sample is short or when parameters are weakly
identified in population. This happens when the additional data used in the composite
likelihood adds information to the likelihood of model A for the parameters of interest.
This additional information is easily measurable in practice: it will be reflected in the
height and the curvature of the composite likelihood, which will be more bell shaped
and symmetric than the likelihood of the baseline model. We recommend applied
investigators to plot likelihood and composite likelihoods as we have done in Figures 1
and 2 as a routine practice. This will help them to understand whether an additional
model should be used in the investigation.

4.3 Solving singularity problems

DSGE models are typically singular. That is, since they generally feature more en-
dogenous variables than shocks, the theoretical covariance matrix of the observables
is of reduced rank and the likelihood function can not be constructed and optimized.
There are many approaches to get around this problem. One could select a subvector
of the observables matching the dimension of the shock vector informally (see Guerron
Quintana, 2010) or formally (see Canova et al., 2014) and use the log-likelihood of this
subvector for estimation. Alternatively, one could add measurement errors to some
or all the observables - so as to make the number of shocks (structural and measure-
ment) larger or equal to the number observables (see Ireland, 2004). One could also
increase the number of structural shocks, for example, by transforming parameters into
disturbances (the discount factor becomes a preference shock, etc.) until shocks and
endogenous variables match.

An alternative way to deal with singularity problems is to construct a composite
likelihood weighting non-singular submodels, see also Qu (2015). To illustrate the
approach, we use a stylized asset pricing example. Suppose that the dividend process
is dt = et−αet−1, where et ∼ iid(0, σ2), α < 1, and that stock prices are the discounted
sum of future dividends. The solution for stock is pt = (1−βα)et−αet−1, where β < 1
is the discount factor. Since et drives both dividends and stock prices, the covariance
matrix of (dt, pt) has unitary rank. Thus, one has to decide whether dt or pt should be
used to construct the likelihood and to estimate the common parameters θ = (α, σ2).

In this example, adding measurement error is difficult to justify, since neither div-
idends nor stock prices are subject to revisions, and making β a random variable is
unappealing because the density of stock prices becomes non-normal, complicating es-
timation. When the composite likelihood is employed, the joint information present in
(dt, pt) can be used to identify and estimate θ (and β, if it is of interest). Optimization
makes stock prices and dividends contain different information. Choosing one endoge-
nous variable for estimation, throws away part of the information the model provides.
By combining all available information, the composite likelihood may provide sharper
estimates of the parameters of interest.
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Following Hamilton (1994, p. 129), the likelihood functions of dt and pt are

logL(α, σ2|d̃t) = −0.5T log(2π)−
T∑
t=1

log ςt − 0.5

T∑
t=1

d̃2t
ς2t

(22)

where d̃t and ςt can be recursively computed as:

d̃t = dt − α
1 + α2 + α4 + . . .+ α2(t−2)

1 + α2 + α4 + . . .+ α2(t−1) d̃t−1 (23)

ς2t = σ2
1 + α2 + α4 + . . .+ α2t

1 + α2 + α4 + . . .+ α2(t−1) (24)

and

logL(β, α, σ2|p̃t) = −0.5T log(2π)−
T∑
t=1

log υt − 0.5
T∑
t=1

p̃2t
υ2t

(25)

where p̃t and υt can be recursively computed as:

p̃t = p∗t − γ
1 + γ2 + γ4 + . . .+ γ2(t−2)

1 + γ2 + γ4 + . . .+ γ2(t−1)
p̃t−1 (26)

υ2t = σ2
1 + γ2 + γ4 + . . .+ γ2t

1 + γ2 + γ4 + . . .+ γ2(t−1)
(27)

where γ = α
(1−βα) and p∗t = pt

1−βα . For illustration, set σ2 = 1, β = 0.99, and focus
attention on α. The first-order conditions that a maximum likelihood estimator solves
are ∂ logL(d̃t)

∂α = 0 and ∂ logL(p̃t)
∂α = 0. For a given ω assigned to d̃t, the composite

likelihood is a weighted sum of (22) and (25). While there are no closed expressions
for either the maximum likelihood or the maximum composite likelihood estimators of
α, we can still infer what (22) and (25) employ to estimate α using simulated data.

Figure 3 plots the likelihood contour in the α dimension, when (22), (25), or the
composite likelihood are used, and the true α is either 0.7 or 0.1. When the true
α = 0.1 (22) and (25) are similar. Thus, when dividends and stock prices are almost
serially uncorrelated, they have the same information and the shape of both likelihood
functions primarily reflects the volatility of the generating shock. When α = 0.7, the
two likelihood functions differ. In particular, the likelihood function of stock prices is
bell shaped around the true value, while the likelihood function of dividends is not.
Thus, the likelihood of stock prices contains information about the persistence of the
generating process that the likelihood of dividends does not generally have.

The composite likelihood, which, in this case, is constructed equally weighting the
two likelihoods, captures both the serial correlation and the variability properties of the
DGP, it is more bell shaped than each of the likelihoods and is centered around the true
value when α = 0.7. Because when α = 0.1, (22) and (25) have similar information,
neither the shape nor the location improves when the composite likelihood is used.
Clearly, depending on the value of ω, either the serial correlation or the variance
properties of (dt, pt) or both will be employed for identification and estimation.
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Figure 3: Likelihood and composite likelihood, singularity.

In general, when the equations of a singular model provide different information, it
is a-priori difficult to choose which ones to use in estimation. The composite likelihood
combines the information contained in different equations.

4.4 Dealing with large scale structural models

While in academics models are kept small for analytical tractability and to enhance in-
tuition, large scale models are common in policy institutions. Such models can be more
detailed and realistic, but estimating their parameters is computationally a daunting
task and estimates obtained are often unreasonable. We show here how the composite
likelihood can be used to make the estimation of the structural parameters of a large
scale model more manageable.

Suppose the decision rules of a model are yt = A(θ)yt−1+et, where et iid N(0,Σ(θ)), θ
is a vector of structural parameters, yt is of large dimension, and, to keep the presen-
tation simple, we let dim(yt) = dim (et).

The likelihood function is

L(θ|yt) = (2π)−T/2|Σ(θ)|T/2 exp{(yt −A(θ)yt−1)Σ(θ)−1(yt −A(θ)yt−1)
′} (28)

If dim(yt) is large, computation of Σ(θ)−1 may be demanding. Furthermore, numerical
difficulties may emerge if some of the variables in yt are near collinear or if there are
near singularities in the model due, for example, to the presence of an expectational
link between long and short term interest rates.
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Another case when the computation of (28) is difficult is when there are latent
endogenous variables. If yt = (y1t, y2t), where y2t is non-observable,

L(θ|y1t) =

∫
L(θ|y1t, y2t)dy2 (29)

and, when y2t is of large dimension, (29) may be intractable.
Rather than using (28) or (29) as objective functions or as inputs in Bayesian

calculation, we can take a limited information point of view and produce estimates of
the parameters using objects that are simpler to construct and use (see earlier work
by Pakel et al., 2011).

Suppose we partition yt = (y1t, y2t, . . . yKt), where yit and yjt are not necessarily
independent. Then two such objects are:

CL1(θ|yt) =
K∑
i=1

ωi logL(θ|yit) (30)

CL2(θ|yit) =
K∑
i=1

ωi logL(θ|yit, ȳ−it) (31)

where y−it indicates any combination of the vector yt, which excludes the i-th combi-
nation, and the bar indicates a given value.

CL1 is obtained by neglecting the correlation structure among yit. Thus, blocks of
the model are treated as if they provide independent information for θ, even though
this is not necessarily the case. For example, in a multi-country symmetric model,
yit could correspond to the observables of country i; in a closed economy model, it
could correspond to different sectors of the economy. CL2 is obtained by conditionally
blocking groups of variables. In the multi-country example, one would construct the
likelihood of each country’s variables yit, given the vector of the variables of all other
countries y−it, and then compute a weighted average. Which composite likelihood
one uses depends on the problem and the tractability of conditional vs. marginal
likelihoods.

To compare the likelihood of the full model and a particular composite likelihood, we
consider a simple consumption-saving problem where there are many countries i, and
consumers receive income from different countries but are forced to save domestically.
The solution when preferences are quadratic, β(1 + r) = 1, and the income process in
each county is transitory is

cit =
r

r + 1
ait +

r

1− ρ+ r
wit (32)

ait+1 = (1 + r)(ait + wit − cit) (33)

yit = ρyit−1 + σieit (34)

wit =

K∑
j=1

ζijyjt (35)
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where 0 < ζij < 1 and
∑

i ζij = 1,
∑

j ζij = 1, yit is domestic income, wit is total
income in country i, cit, is consumption and ait is asset holdings of country i, and
eit iid (0, 1), i = 1, 2, . . . ,K.
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Figure 4: Likelihood and composite likelihood, large scale model.

Suppose that rather than constructing the likelihood using (32)-(35) jointly for the
K countries, one constructs the likelihood of the model of each country (i.e. neglecting
(35) and using yit in place of wit in the first two equations) and equally weighs the
K likelihoods to construct a composite likelihood. Three types of misspecification are
present in the composite likelihood: consumption and asset holdings are functions of
total income, rather than domestic income; the volatility of domestic income is higher
than the volatility of total income; the ω weights should reflect ζij rather than being
constant. Clearly if ζij = ζi = 1, ∀j, and the volatility of the income process across i
is the same, and the loss of information in the composite likelihood relative to the full
likelihood is minimal.

Figure 4 plots the shape of the likelihood of the full model and the composite like-
lihood in the ρ dimension when K = 3, β = 0.99, ρ = 0.6, σi = [0.1, 0.2, 0.3], ω = 1/K,

r = 1/β − 1, β = 0.99 ζ =

 0.5 0.25 0.25
0.25 0.5 0.25
0.25 0.25 0.5

 using consumption data only when

T=1000. The likelihood function is not quadratic in ρ, as it is clear from inspection -
the marginal propensity to consume out of transitory income increases as ρ moves from
-1 to 1 - and the composite likelihood inherits this property. Nevertheless, although
the scale is different, the likelihood and the composite likelihood have very similar
shapes. Thus, the information loss due to the use of a limited information object like
the composite likelihood is small in this case.
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4.5 Estimating a parameter appearing in different models

Likelihood-based estimates are seldomly used directly in policy exercises but instead
twisted to reflect a-priori information not included in the estimation (”your boss’
prior”) or informally averaged taking the output of many models into account. Such
an approach is consistent with the idea that models are misspecified, that averaging
safeguards against structural breaks, time variations, etc., and that ”judgement” is
important when evaluating the appeal of certain counterfactual exercises.

In practice, two approaches are common in the literature: i) models are separately
estimated, counterfactuals are constructed in each model, and then averaged using
user-based weights; ii) estimates from different models are informally averaged, and one
counterfactual is constructed using the average estimates in the ”most-likely” model.
This section shows how the composite likelihood can be used to formally construct
counterfactuals when a number of structural models are available. The composite
likelihood formally averages the inputs of such a process. Canova and Matthes (2017)
show that when a Bayesian approach is used, one can pick the model with the highest
posterior mode for ω and construct counterfactuals using composite estimates of the
parameters and that model. Alternatively, one can use composite estimates in different
models and weight counterfactuals from different models with the posterior mode of ω.
Thus a composite likelihood approach provides a formal approach that justifies both
approaches used in the literature.

Suppose the decision rules that two such models generate are given by (10) and
(11). Maximization of (14) with respect to θ leads to:

ρA = (

TA∑
t=1

y2At−1 + ζ2

TB∑
t=1

y2Bt−1)
−1(

TA∑
t=1

yAtyAt−1 + ζ1

TB∑
t=1

yBtyBt−1) (36)

where ζ1 = 1−ω
ω

δ
γ2
, ζ2 = 1−ω

ω
δ2

γ2
= ζ1δ and

σ2A =
1

ξ
(

TA∑
t=1

(yAt − ρAyAt−1)2 +
1− ω
ωγ2

TB∑
t=1

(yBt − δρAyBt−1)2) (37)

where ξ = (TA+TB
1−ω
ωγ2

)−1. The estimators of ρA and of σ2A obtained using just model
A or model B log-likelihoods are

ρAA = (

TA∑
t=1

y2At−1)
−1(

TA∑
t=1

yAtyAt−1); ρAB = δ−1(

TB∑
t=1

y2Bt−1)
−1(

TB∑
t=1

yBtyBt−1) (38)

and

σ2AA =
1

TA

TA∑
t=1

(yAt − ρAAyAt−1)2; σ2AB =
1

TB

TB∑
t=1

(yBt − δρAByBt−1)2 (39)

As (36)-(37) clearly show, θCL combines the information coming from yAt and yBt,
with model B playing the role of a prior for model A. The formulas in (36) and (37)
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are in fact similar to those i) obtained in least square problems with uncertain linear
restrictions (Canova, 2007, Ch.10), ii) derived using a prior-likelihood approach, see
e.g. Lee and Griffith (1979) or Edwards (1969) and iii) implicitly produced by a DSGE-
VAR setup (see Del Negro and Schorfheide, 2004), where TB is the number of additional
observations added to the original TA data points. Note that if (γ, δ) are unknown and
estimated jointly with ρA, σ

2
A using the composite likelihood, they will reflect only the

information contained in yBT .
When an array of models are available, θCL will be constrained by the structure

present in all models. For example, equation (36) becomes

ρA = (

TA∑
t=1

y2At−1 +
K−1∑
i=1

ζi2

Ti∑
t=1

y2it−1)
−1(

TA∑
t=1

yAtyAt−1 +
K−1∑
i=1

ζi1

Ti∑
t=1

yityit−1) (40)

where ζi1 = ωi
ωA

δi
γ2i
, ζi2 = ζi1δi. (40) has the same format as the estimator suggested by

Zellner and Hong (1989), and combines unit specific and average information contained
in the cross section of models. Thus, the composite likelihood makes inference more
robust, in the sense that estimates of θ are shrunk to be consistent with the data
generated by all available models.

Note that yAt and yBt may be different series. Thus, the procedure can be used
to estimate parameters appearing in models featuring different observables or different
levels of aggregation (say, aggregate vs. individual consumption). In general, yAt and
yBt may have common components and some model specific ones. The approach works
in all these situations.

We illustrate the idea when a researcher is interested in estimating the slope of
Phillips curve. The conventional wisdom is that the slope of the New Keynesian Phillips
curve is historically small (see Smets and Wouters, 2007, or Altig et al., 2011). Thus,
large changes in firms’ marginal costs imply small changes in the aggregate inflation
rate. In addition, there is evidence that the slope has further decreased since 2009 (see
e.g. Coibon and Gorodnichenko, 2013), perhaps because financial constraints imply a
trade-off between pricing decisions and firms’ market share (see e.g. Gilchrist et al.,
2016). However, Schorfheide (2008), surveying estimates of the slope of the Phillips
curve obtained in DSGE models, documents large cross-study variations and associates
the differences to i) the specification of the model, ii) the observability of marginal costs,
and iii) the number and the type of variables used in estimation.

Because of its importance for forecasting and counterfactual exercises, we examine
how the composite posterior distribution of the Phillips curve looks relative to the
posterior distribution obtained with i) single models and ii) ex-post averaging the
posteriors of different models. We then construct the responses of the ex-ante real rate
to monetary shocks in a variety of situations.

We consider five different models: a small scale New Keynesian model with sticky
prices but non-observable marginal costs, where the variables used in estimation are
detrended output Y, demeaned inflation π, and demeaned nominal rate R, as in Rubio
and Rabanal (2005); a small scale New Keynesian model with sticky prices and sticky
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wages, and observable marginal costs, where the variables used in estimation are de-
trended Y, demeaned π, demeaned R and detrended nominal wage W, again as in Rubio
and Rabanal (2005); a medium scale New Keynesian model with sticky prices, sticky
wages, habit in consumption and investment adjustment costs, where the variables
used in estimation are detrended Y, detrended consumption, detrendend investment,
demeaned π, demeaned R, detrended hours, and detrended W, as in Justiniano et
al. (2010); a New Keynesian model with search and matching labor market frictions,
where the variables used in estimation are detrended Y, demeaned π, demeaned R
and detrended real wage w, as in Christoffel and Kuester (2008); and a version of the
Bernanke, Gertler, and Gilchrist (1999) model, estimated with detrended Y, demeaned
π, and demeaned R. In this last model, part of the parameters governing the financial
frictions are calibrated, as in Cogley et al (2011), to sidestep the issue of which data
series should be used to match the model-implied spread. In all cases, the estimation
sample is 1960:1-2005:4 and a quadratic trend is used to detrend the data. The series
used are from the Smets and Wouters (2007) database, and the equations of each model
are reported in appendix B. Note that the models do not use the same observables, so
standard Bayesian model averaging is not possible in our case.

We assume that the prior for ω is Dirichlet with parameters 250*[1/4;1/3;1/7;1/4;1/3].
3 4

Table 2 displays some percentiles of the posterior of the slope of the Phillips curve
obtained either with the likelihood of each model separately or the composite likelihood.
For the first three models the median value is low and having non-observable marginal
costs increases the location of the posterior distribution. For the other two models, the
posterior median is higher and, for the model with search and matching friction, the
posterior also has larger spread. Note that the posteriors of these two models hardly
overlap with those of the first three models. Thus, in agreement with Schorfheide,
estimation results depend on the model employed, the nuisance features it includes,
the observability of marginal costs, and the variables used in the estimation.

The composite posterior has a median value of 0.26 and a credible 90 percentile
ranging from 0.18 to 0.40, which is smaller than the range obtained with a number of
individual models. Correcting the posterior percentiles (as suggested by Mueller, 2013)
leaves the location and the spread of the posterior distribution unchanged.

Figure 5 plots the prior and the posterior ω for each model. Interestingly, the
location of posterior for the models with financial and labor market friction is the
least affected by the estimation process. On the other hand, for the small NK model

3Results obtained using a looser prior (Dirichlet with parameters 40*[1/4;1/3;1/7;1/4;1/3]), and fixed
equal or unequal weights (set to the mean of the prior density we use as a benchmark) are similar and
available on request.

4While it is not the case in our specific example, it may be that in some applications the posterior weight
for some model goes to zero, implying that the parameters of that model become under-identified when the
composite likelihood is used in estimation. When this happens, a two-step approach can be used, where
the prior for the nuisance parameters is made data-based using the posterior for each model estimated on a
training sample. This effectively avoids under-identification and makes the priors for the nuisance parameters
endogenous.
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Table 1:Percentiles of the posterior of the slope of the Philips curve

5% 50% 95%
Prior 0.01 0.80 1.40
Basic NK 0.06 0.18 0.49
Basic NK with nominal wages 0.05 0.06 0.07
SW with capital and adj.costs 0.04 0.05 0.07
Search 0.44 0.62 0.86
BGG 0.13 0.21 0.35
CL 0.18 0.26 0.40
CL (corrected) 0.18 0.28 0.44

The table reports posterior percentiles of the slope of the Phillips curve for the prior, for a three variable

New Keynesian model (Basic NK); for a four variable New Keynesian model (Basic NK with

nominal wage); for a medium scale New Keynesian model with seven observables (SW with capital

and adj. costs), for the four variable search and matching model (Search) and the three variable

financial friction model (BGG). The rows with CL report composite posterior percentiles obtained

with MCMC draws and adjusted for misspecification (such as repeated use of the same time series

across models). The estimation sample is 1960:1-2005:4.

with observable marginal costs and the medium scale NK model the posterior median
decreases relative to the prior median, and the opposite is true for the basic NK model.
Also, posterior spreads are tighter than the prior spread, indicating that the data are
informative about the weights (see Mueller, 2012). Overall, the composite posterior
estimates of the Phillips curve reflect, to a large extent, the information present in the
small scale New Keynesian model and, to a less extent, in the BGG and the search and
matching model.

Some readers may be surprised about the fact that the standard medium scale New
Keynesian model, which is the workhorse used in many policy institutions, has the
lowest posterior probability among our five models. Recall that the posterior for ω
reflects the information of each model for the slope of the Phillips curve. Thus, figure
5 indicates that the medium scale NK model does not provide independent information
relative to the pool of the other models for this parameter.

Figure 6 presents the composite posterior distribution for the slope of the Phillips
curve we obtain together with two alternative naive posterior combinations: one that
equally weights the posteriors obtained with the five models separately; and one which
weights the posteriors obtained with the five models by the mode of ω for that model.
Clearly, combining ex-post estimates generate distributions whose locations are dif-
ferent and generally lower. In addition, ex-post combinations produce multimodal
posteriors: there is a sharp peak at 0.05, and a secondary, more round, one at 0.15.

Figure 7 reports the responses of the ex-ante real rate to a 25 annualized basis
points monetary policy shock in four situations: using the estimates obtained in the
model with the largest modal value of ω (the small NK model); using the two ex-post
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Figure 5: Prior and posterior densities of ω

combinations previously discussed, and using composite posterior estimates in each
model and then weighting the resulting impulse responses using the posterior mean of
ω for each model.

The mean impact is estimated to be 45-50 basis points, and the composite impact
response is intermediate among the values we present. Uncertainty is substantial, and
while the composite responses are a-posteriori different from zero, the 68% credible set
includes the point estimates of all models. At horizons larger than one, the composite
posterior real rate band becomes tighter and the responses obtained with the naive
equal weighting scheme fall outside the credible composite posterior interval. Note
also that the composite posterior real rate responses are much less persistent relative
to any other alternative and after four quarters the real rate responses are negligible.

4.6 Exploiting panel information in estimation.

A composite likelihood setup can also easily deal with the situation where there is a
single structural model, for example, an asset pricing model, but the observable data
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Figure 7: Real rate responses to a monetary shock

come from either different units (which could be, for example, many consumers or
many countries); or from different levels of data aggregation (firm, industry, sector,
region).

Earlier work by Chamberlain (1984, p.1272) has used similar ideas to estimate the
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parameters of a reduced form model when a panel is available but the cross-sectional
data are not necessarily homogenous. In the composite likelihood setup, we treat
time series for different cross-sectional units as different ”models” and combine their
information to estimate common structural parameters.

Let ŷ1t, ŷ2t, ...ŷKt represent the subset of the vector of observables of unit (level of
aggregation) i=1,2...K that is common across units. The composite log-likelihood is

CL(θ|ŷ1t...ŷKt, η1, . . . ηk) =

K∑
i=1

ωi logL(θ|ŷit, ηi) (41)

As in section 4.4, (41) neglects the correlation structure across units and, in par-
ticular, the presence of common shocks, but partially pools information about com-
mon parameters from the available cross section. Thus, the composite likelihood (41)
represents an intermediate case between complete pooling of cross unit information

CL(θ, η|ŷ1t...ŷKt) =
K∑
i=1

ωi logL(θ, η|ŷit) and complete heterogeneity CL(θ1, . . . θk, η1, . . . ηk|ŷ1t...ŷKt) =

K∑
i=1

ωi logL(θi, ηi|ŷit). It is similar in spirit to the objective function employed in partial

pooling Bayesian literature (e.g., Zellner and Hong, 1989). The main difference with
that literature is that in partial pooling exercises all cross-sectional parameters are
restricted; here only the subvector θ is restricted across units.

Suppose we have available decision rules like (11) for unit i where now δi, γi are unit
specific, δ1 = γ1 = 1, while ρA, σA are common. As seen, for fixed ω, the composite
likelihood estimator for ρA is

ρA = (

T1∑
t=1

y21t−1 +
K∑
i=2

ζi2

Ti∑
t=1

y2it−1)
−1(

T1∑
t=1

y1ty1t−1 +
K∑
i=2

ζi1

Ti∑
t=1

yityit−1) (42)

where ζi1 = ωi
ω1

δi
γ2i
, ζi2 = ζi1δi. Clearly, the CL estimator for ρA pools cross-sectional

information if ζij = 1, ∀i, j, and corresponds to the ML estimator obtained with unit 1
data if ζij = 0, ∀i, j,. When ωi = 1/K, ζij captures the degree of heterogeneity in the
cross section. In general, cross sectional information is not exactly pooled, as for exam-
ple, in standard panel estimators and the degree of cross-sectional shrinkage depends
on the precision of various sources of information. Thus, when dealing with panels of
time series, the composite likelihood uses at least as much information as the individ-
ual likelihoods; stochastically exploits commonalities in cross section if they exist; and
may lead to improved estimates of the common parameters when the cross sectional
data display similarities. The partial pooling approach that the composite likelihood
delivers is likely to be preferable when each yit is short, when the heterogeneties in the
DGP for θ are unsystematic (if they are systematic, the partial pooling device could
be applied to units whose variations are unsystematic), and when the volatility of the
endogenous variables is of similar order of magnitude.

To illustrate the use of the composite likelihood in this particular setup, we build
on the exercise of Karabarbounis and Neiman (2014). They notice that the labor
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Figure 8: Prior and Posterior distributions for σ

share has dramatically fallen in many countries over the last twenty years and argue
that shocks to the relative price of investment, which also decline over time, may
be responsible for this decline. Their argument hinges on having the elasticity of
substitution between labor and capital in production, σ, to be greater than one. Using
their model specification (the log-linearized optimality conditions are in appendix C)
and their dataset, we first estimate this parameter separately using data from the US,
UK, Canada, Germany and France. We then use the composite likelihood to estimate
σ jointly using data from all five countries 5. In this latter case, all other parameters
of the model are allowed to be country specific.

Figure 8 presents the prior for σ (first row), the posterior obtained with the data of
the individual countries (second row) and the composite posterior when we use fixed
equal weights or random weights. The data is informative about σ for all countries and,
except for the UK, the posterior distribution is entirely above one. The two composite
posterior distributions are also all above one and tight, despite the fact that UK data
receive non-negligible weight in both composite estimation exercise (modal value of
the posterior of ω for the Uk is 0.07). US data appear to be most informative and the
posterior of ω for the US has mode equal to 0.45.

Figure 9 shows the responses of the labor share, in log deviation from the steady
state to a positive shock to the relative price of investment (with mean equal to half of

5Although we present results when shocks to the price of investment are stationary, we also perform
estimation assuming non-stationary shocks. None of the conclusions we reach depend on this assumption.
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Figure 9: Labor share responses to shocks to the relative price of investment

the estimated US standard deviation) in each of the five countries and with the panel
when random weights are used. Indeed, we do find a positive dynamic conditional
correlation between shocks to the relative price of investment and the labor share
whenever the posterior of σ is above one. For the UK instead, shocks to the relative
price of investment have negligible dynamic effects on the labor share.

Thus, our analysis confirms by and large Karabarbounis and Neiman’s two main
conclusions, i.e., i) the elasticity of substitution between capital and labor is greater
than one, and ii) shocks to the relative price of investment are potentially able to explain
the fall in the labor share observed in many countries. Nevertheless, we would like to
stress that our results are more general because we allow for stochastic heterogeneity
across countries, and we use likelihood-based estimators that exploit all the information
present in the optimality conditions the theory provides.

5 Conclusions

This paper describes a procedure that has the potential to ameliorate identification
and estimation problems in DSGE models. The method may help to solve a number
of difficulties researchers typically face and automatically provides estimates of the
parameters that formally combine the information present in different models/ different
data using shrinkage-like estimators. The procedure helps to robustify estimates of the
structural parameters in a variety of interesting economic problems and it is applicable
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to many empirical situations of interest.
The approach we suggest is based on the composite likelihood, a limited-information

objective function, well known in the statistical literature but very sparsely used in eco-
nomics. In the original formulation, the composite likelihood is constructed combining
marginal or conditional likelihoods of the true DGP when the likelihood of the full
model is computationally intractable or features unmanageable integrals due to the
presence of latent variables. When marginals or conditionals are used, the composite
likelihood estimator is consistent and asymptotic normal, as either the number of ob-
servations or the number of composite likelihood components grows, but it is not fully
efficient.

In our setup, the composite likelihood combines the likelihood of distinct structural
or statistical models, none of which are necessarily marginal or conditional partitions
of the DGP. Thus, standard composite likelihood properties do not necessarily apply.
Still, the approach we propose has desirable statistical properties, is easy to use; and,
in its Bayesian version, has an appealing sequential learning interpretation.

We present examples indicating that the composite likelihood constructed using the
information present in distinct models helps 1) to ameliorate population and sample
identification problems, 2) to solve singularity problems, 3) to produce more stable
estimates of the parameters of large-scale structural models, 4) to robustly estimate
the parameters appearing in multiple models and select models with different numbers
of observables, 5) to combine information coming from different sources and levels of
aggregation. In Canova and Matthes (2017), we have shown that a composite likelihood
approach can also be used to deal with model misspecification and has a built-in feature
that allows researchers to i) examine whether the composite likelihood produces better
estimates than the likelihood of a single model, and ii) assess a-posteriori which model
is closer to the unknown DGP.

We believe the methodology has potential, and the examples we describe in the
text highlight ways in which the flexibility of the approach can be exploited for useful
economic applications.
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Amsterdam.

Chan, J., Eisentain, E., Hu, C. and G. Koop (2017) Composite likelihood methods
for large BVARs with stochastic volatility, manuscript.

Chernozhukov, V. and A. Hong (2003). An MCMC approach to classical inference,
Journal of Econometrics, 115, 293-346.

Christoffel, K. and K. Kuester (2008). Resuscitating the wage channel in models
with unemployment fluctuations. Journal of Monetary Economics, 55, 865-887.

Cogley, T., de Paoli, B., Matthes, C., Nikolov, K., and T. Yates (2011). A Bayesian
Approach to Optimal Monetary Policy with Parameter and Model Uncertainty. Journal
of Economic Dynamics and Control, 35, 2186-2212.

Coibon, O. and Y., Gorodnichenko (2013). Is the Phillips curve alive and well
after all? Inflation expectations and the missing deflation, University of Berkeley,
manuscript.

Del Negro, M. and F. Schorfheide (2004). Prior for General equilibrium models for
VARs. International Economic Review, 45, 643-573.

Del Negro, M., and F. Schorfheide (2008). Forming priors for DSGE models and



6 REFERENCES 30

how it affects the assessment of nominal rigidities. Journal of Monetary Economics,
55, 1191-1208.

Del Negro, M., Hasegawa, R., and F. Schorfheide (2016). Dynamic Prediction
Pools: An Investigation of Financial Frictions and Forecasting Performance. Journal
of Econometrics, 192, 391-405.

Domowitz, I and H. White (1982). Misspecified models with dependent observa-
tions. Journal of Applied Econometrics, 20,35-58

Engle, R. F., Shephard, N. and K. Sheppard, (2008). Fitting vast dimensional
time-varying covariance models., Oxford University, manuscript.

Edwards, A.W. F. (1969). Statistical methods in scientific inference, Nature, Land
22, 1233-1237.

Gilchrist, S., Sim, J., Schoenle, R., and E. Zackrajsek (2016).Inflation dynamcis
during the financial crisis, forthcoming, American Economic Review.

Guerron Quintana, P. (2010). What do you match does matter: the effect of data
on DSGE estimation. Journal of Applied Econometrics, 25, 774-804.

Hamilton, J. (1994). Time series analysis. Princeton University Press, Princeton,
NJ.

Herbst, E. and F. Schorfheide (2015) Bayesian Estimation of DSGE models, Prince-
ton University Press, Princeton, NJ.

Ireland, P. (2004). A method for taking models to the data, Journal of Economic
Dynamics and Control, 28, 1205-1226. Justianiano, A. Primiceri, G. and A. Tambalotti
(2010). Investment shocks and the business cycle. Journal of Monetary Economics,
57, 132-145.

Karabarbounis, L. and B. Neiman (2014). The global decline of the labor share.
Quarterly Journal of Economics, 129, 61-103

Komunjer, I and S. Ng (2011) Dynamic identification of DSGE models. Economet-
rica, 79, 1995-2032.

Kim, J.Y. (2002). Limited information likelihood and Bayesian methods. Journal
of Econometrics, 108, 175-193.

Lee, L. F. and W. Griffith (1979). The prior likelihood and the best linear unbiased
prediction in stochastic coefficients linear models, http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.518.5107&rep=rep1&type=pdf.
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Appendix A

The MCMC algorithm Given (yit, Ti), suppose that supθ,ηi f(yit ∈ Ai, θ, ηi) <
bi ≤ B <∞, a condition generally satisfied for DSGE models; that L(θ, ηi|yi,Ti) can be
constructed for eachAi and that the composite likelihood L(θ, η1, ....ηK , ω1, . . . , ωK |y1,Ti , . . . , yK,Tk)
can be computed for 0 < ωi < 1,

∑
i ωi = 1.

For computational and efficiency reasons, we employ a 2K + 1 block Metropolis-
within-Gibbs algorithm to derive sequences for the parameters. Herbst and Schorfheide
(2015) have also suggested drawing DSGE parameters in blocks. However, while they
randomly split up the parameter vector in different blocks at each iteration, the blocks
here are predetermined by the K submodels of interest.

The algorithm we use has four steps:

1. Start with some [η01 . . . η
0
K , θ

0, ω0
1 . . . ω

0
K ].

For iter = 1 : draws do steps 2-4

2. For i = 1 : K, draw η∗i from a symmetric proposal Pηi . Set ηiter = η∗i with
probability

min

(
1,

L(
[
η∗i , θ

iter−1
]
|Yi,Ti

)ω
iter−1
i p(η∗i |θiter−1)ω

iter−1
i

L(
[
ηiter−1
i , θiter−1

]
|Yi,Ti

)ω
iter−1
i p(ηiter−1

i |θiter−1)ω
iter−1
i

)
(43)

3. Draw θ∗ from a symmetric proposal P θ. Set θiter = θ∗ with probability

min

(
1,

L(
[
ηiter1 , θ∗

]
|Y1,T1

)ω
iter−1
1 . . .L(

[
ηiterK θ∗

]
|YK,TK

)ω
iter−1
K p(θ∗)

L(
[
ηiter1 , θiter−1

]
|Y1,T1

)ω
iter−1
1 . . .L(

[
ηiterK , θiter−1

]
|YK,TK

)ω
iter−1
K p(θiter−1)

)
(44)

4. For i = 1 : K draw , draw ω∗i from a symmetric proposal Pω. Set ωiter =
ω∗ = (ω∗1... ω

∗
k) with probability

min

(
1,

L(
[
ηiter1 , θiter

]
|Y1,T1

)ω
∗
1 . . .L(

[
ηiterK θiter

]
|YK,TK

)ω
∗
Kp(ω∗)

L(
[
ηiter1 , θiter

]
Y1,T1

)ω
iter−1
1 . . .L(

[
ηiteri , θiter

]
|YK,TK

)ω
iter−1
K p(ωiter−1)

)
(45)

Note that in (43) only the likelihood of model i matters because ηi only appears
in that likelihood. A few interesting special cases are nested in the algorithm. For
example, when the K submodels feature no nuisance parameters, as in the case when
the composite likelihood is constructed using statistical models, steps 2.-3. can be
combined in a single step. On the other hand, when ωi’s are treated as fixed, step
4 disappears. Notice also that when ωi = 0, i 6= k, ωk = 1, the algorithm collapses
into a standard Block Gibbs-Metropolis MCMC. A standard random walk proposal for
(θ, ηi) seems to work well in practice; a multivariate logistic proposal or an independent
Dirichlet proposal (if only a few models are considered) are natural choices for ωi.

The estimation problem is non-standard since yit are not necessarily mutually exclu-
sive across i and estimation may be performed repeatedly using the same time series
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in the composite likelihood conditioning set. Naive implementation of the MCMC
approach produces marginal posterior percentiles for θ which are too concentrated,
because the composite likelihood treats yit as if they were independent across i. In
addition, as we show next as T → ∞, the posterior distribution will approach a nor-
mal distribution, but the asymptotic covariance matrix is the sensitivity matrix H,
rather than the Godambe matrix. For all these reasons, one may want to adjust the
percentiles of the posterior to reflect these facts.

Let θCL be the maximum composite likelihood estimator of θ and let θp be the mode
of the prior p(θ).Let h(θCL) = −O2

θCL(θCL|y) and h(θp) = −O2
θ log p(θp). Taking a

second order expansion of pCL(θ|Y ) we have

pCL(θ|Y ) ∝ {CL(θCL|y)− 0.5(θ − θCL)T (h(θCL)(θ − θCL) + logp(θp)− 0.5(θ − θp)T (h(θp)(θ − θp)}

≈ N(θ̂, h(θCL, θp)
−1) (46)

where θ̂ = h(θCL, θp)
−1(h(θCL)θCL + h(θp)θp) and h(θCL, θp) = h(θCL) + h(θp).

Under standadrd regularity conditions p(θ) will vanish as T → ∞. Then, almost
surely, the strong law of large number implies that

T−1h(θCL, θp) → −E(O2CL(θ0|Y )) ≡ H(θ0) (47)

θ̂ = (T−1h(θCL, θp))
−1(T−1h(θCL)θCL + T−1h(θp)θp)→ θ0 (48)

and thus pCL(θ|Y ) ≈ N(θ0, T
−1H(θ0)

−1).
Mueller (2103) has argued that in situations like ours, MCMC percentiles should

be adjusted to obtain asymptotic coverage which is consistent with the amount of
information present in the data. To do so, we follow Ribatet et al. (2012) and Qu
(2015) and modify the MCMC algorithm adding two steps. The first involves com-
puting the ”sandwich” matrix, H(θ)J(θ)−1H(θ) where H(θ) = −E(O2pc(θ|Y )) and
J(θ) = V ar[Opc(θ|Y )] via maximization of the composite posterior pc. The second
step involves adjusting the accepted draws using

θ̃j = θ̂ + V −1(θj − θ̂) (49)

where θ̂ is the posterior mode, V = CTHC and C = M−1MA is a semi-definite square
matrix; MT

AMA = HJ−1H,MTM = H and MA and M are obtained via singular value
decompositions.

Note that the adjustment works well only when θ is well identified from the com-
posite posterior and if the composite posterior has a unique maximum. As Canova and
Sala (2009) have shown, such properties may not hold in a number of DSGE models.
Thus, it may be advisable to report both standard and adjusted percentiles.

Asymptotic properties of estimators of misspecified models Let yt be
a sample from the density f(yt) with respect to some σ-measure µ. Suppose a model
with the density g(yt, ψ), where ψ ∈ Ψ ⊂ Rm is a vector of parameters, is used and the
log-likelihood is Lg(ψ) =

∑
t log g(yt, ψ). The model is misspecified because f(yt) 6=
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g(yt, ψ), ∀ψ. Let ψML be the maximum likelihood estimator, i.e. ψML = supψLg(ψ).
Since T−1Lg(ψ) → E(log g(yt, ψ)) by a uniform law of large numbers, ψML will be
consistent for ψ0 = argmaxψ E log g(yt, ψ), where the expectations are taken with
respect to the density f . If f is absolutely continuous with respect to g

E log g(yt, ψ)− E log f(yt) = −
∫
f(yt) log

f(yt)

g(yt, ψ)
dµ(y) = −KL(ψ) (50)

where KL(ψ) is the Kullback-Leibler divergence between f and g. Hence ψ0 is also
the minimizer of KL(ψ).

Let st(ψ) = ∂ ln g(yt,ψ)
∂ψ be the score of observation t and let ht(ψ) = ∂st(ψ)

∂ψ . If the
maximum is in the interior

∑
t st(ψ) = 0, and taking a first order expansion we have

0 ≈ T−0.5
∑
t

st(ψ0) + T 0.5Σ−11 (ψML − ψ0) (51)

where Σ1 = −E(ht(ψ0)) = ∂2KL(ψ)
∂ψ∂ψT |ψ=ψ0 . Then, using a central limit theorem for

correlated observations we have that T−0.5(ψML − ψ0) ∼ N(0, V ) where V = Σ1Σ2Σ1

and Σ2 = E(st(ψ)st(ψ)′).
In standard DSGE applications st(ψ) are computed with the Kalman filter and are

functions of martingale difference processes (the shocks of the model). Thus, the con-
dition

∑
t st(ψ) = 0 is likely to hold. Further regularity conditions (see, e.g. Mueller,

2013) need to be imposed for the argument to go through.

The composite likelihood is the weighted average of different models g(yt, ψi), each
of which is misspecified. Thus the resulting composite model is in general misspec-
ified with density g̃(yt, ψ1, . . . ψK) = g̃(yt, θ, η1, . . . ηK). Repeating the argument of
the previous paragraph, the composite likelihood estimator θCL minimizes the KL(θ)
divergence between the g̃ and f . Under regularity conditions, θCL convergences to
θ0,CL and its distribution is normal with zero mean and covariance maatrix VCL =
Σ1,CLΣ2,CLΣ1,CL where Σ2,CL = E(st,CL(θ, η1, . . . , ηK)st,CL(yt, θ, η1, . . . ηK)′), Σ1,CL =
∂st,CL(yt,θ,η1,...ηK)

∂θ and st,CL = ∂g̃(yt,θ,η1,...,ηK)
∂θ .

Appendix B

We present the optimality conditions for each of the five models we consider in section
4.5. In estimation, the priors for the parameters are generally Gaussian and centered
at the values used (or estimated) in the original papers, with a standard deviation of at
least 25 percent of the mean value. For those parameters that are naturally restricted
to be positive or between 0 and 1, we truncate the Gaussian priors, in which case the
standard deviation refers to the value before truncation. The only parameter we treat
as common across models is the slope of the Phillips curve, for which we assume a prior
mean of 0.2 and a prior standard deviation of 0.5 (thus a very loose prior) and truncate
the support to be positive. Posterior moments are computed using 50000 draws, which
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are generated after a burn-in phase of 10000 draws.

a) Small scale New Keynesian models

yt = Etyt+1 − σ (rt − Et∆pt+1 + Etgt+1 − gt) (52)

yt = at + (1− δ)nt (53)

mct = wt − pt + nt − yt (54)

mrst =
1

σ
yt + γnt − gt (55)

rt = ρrrt−1 + (1− ρt) [γπ∆pt + γyyt] + zt (56)

wt − pt = wt−1 − pt−1 + δwt − δpt (57)

at = ρaat−1 + εat (58)

gt = ρggt−1 + εgt (59)

zt = εzt (60)

λt = ελt (61)

∆pt = βEt∆pt+1 + κp (mct + λt) (62)

wt − pt = mrst (63)

∆pt = γb∆pt−1 + γfEt∆pt+1 + κ′p (mct + λt) (64)

In the sticky wage model, the wage equation (63) is replaced by:

∆wt = βEt∆wt+1 + κw [mrst − (wt − pt)] (65)

b) Medium scale New Keynesian model
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ŷt =
y + F

y

[
αk̂t + (1− α) L̂t

]
(66)

ρ̂t = ŵt + L̂t − k̂t (67)

ŝt = αρ̂t + (1− α) ŵt (68)

π̂t = γfEtπ̂t+1 + γbπ̂t−1 + κŝt + κλ̂p,t (69)

λ̂t =
hβeγ

(eγ − hβ) (eγ − h)
Etĉt+1 −

e2γ + h2β

(eγ − hβ) (eγ − h)
ĉt +

heγ

(eγ − hβ) (eγ − h)
ĉt−1 (70)

+
hβeγρz − heγ

(eγ − hβ) (eγ − h)
ẑt +

eγ − hβρb
eγ − hβ

b̂t (71)

λ̂t = R̂t + Et

(
λ̂t+1 − ẑt+1 − π̂t+1

)
(72)

ρ̂t = χût (73)

φ̂t = (1− δ)βe−γEt
(
φ̂t+1 − ẑt+1

)
+
(
1− (1− δ)βe−γ

)
Et

[
λ̂t+1 − ẑt+1 + ρ̂t+1

]
(74)

λ̂t = φ̂t + ût − e2γS′′ (ι̂t − ι̂t−1 + ẑt) + βe2γS′′Et

[
ι̂t+1 − ι̂t + ẑt+1

]
(75)

k̂t = ût + ˆ̄kt−1 − ẑt (76)

ˆ̄kt = (1− δ) e−γ
(

ˆ̄kt−1 − ẑt
)

+
(
1− (1− δ) e−γ

)
(ût + ι̂t) (77)

ŵt =
1

1 + β
ŵt−1 +

β

1 + β
Etŵt+1 − κwĝw,t + (78)

+
ιw

1 + β
π̂t−1 +

1 + βιw
1 + β

πt +
β

1 + β
Etπ̂t+1 + (79)

+
ιw

1 + β
zt−1 −

1 + βιw − ρzβ
1 + β

zt + κwλ̂w,t (80)

ĝw,t = ŵt −
(
νL̂t + b̂t − λ̂t

)
(81)

R̂t = ρRR̂t−1 + (1− ρR) [φππ̂t + φX (x̂t − x̂∗t )] + φdX [(x̂t − x̂t−1)−
(
x̂∗t − x̂∗t−1

)
] + η̂mp,t(82)

x̂t = ŷt −
ρk

y
ût (83)

1

g
ŷt =

1

g
ĝt +

c

y
ĉt +

i

y
ι̂t +

ρk

y
ût (84)
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c) Model with search and matching frictions

λ̂t = Et

{
λ̂t+1 + R̂t + ε̂bt − Π̂t+1

}
(85)

λ̂t = − σ

1− %
(ĉt%ĉt−1) (86)

Π̂t = γfEt

{
Π̂t+1

}
+ γbπt−1 + κpm̂ct (87)

m̂ct = x̂Lt (88)

m̂t = ξût + (1− ξ) v̂t (89)

n̂t = (1− ϑ) n̂t−1 +
m

n
m̂t−1 (90)

n̂t =
u

1− u
ût (91)

q̂t = m̂t − v̂t (92)

ŝt = m̂t − ût (93)

Ĵ?t + δ̂Wt = ∆̂?
t + δ̂Ft −

1

1− η
η̂t (94)

x̂Lt + ẑt = (α− 1) ĥt = ŵt (95)

ŵt = γ
[
ŵt−1 − Π̂t

]
+ (1− γ) ŵ?t (96)

δ̂Ft = [1− β (1− ϑ) γ]

[
−α

1− α
ŵ?t +

1

1− α
(
x̂Lt + ẑt

)]
+ β (1− ϑ) γEt

{
−α

1− α

[
ŵ?t − ŵ?t+1 − Π̂t+1

]
+ δ̂Ft+1 + λ̂t+1 − λ̂t

}
(97)

δW δ̂Wt =
−α

1− α
wh

[
−α

1− α
ŵ?t +

1

1− α
(
x̂Lt + ẑt

)]
− −1

1− α
mrsh

[
(−1) (1 + ϕ)

1− α
ŵ?t − λ̂t +

1 + ϕ

1− α
(
x̂Lt + ẑt

)]
+

β (1− ϑ) γ

1− β (1− ϑ) γ

[(
α

1− α

)2

wh− (1 + ϑ)

(1− α)2
mrsh

]
Et

{
ŵ?t − ŵ?t+1 − Π̂t+1

}
+ β (1− ϑ) γδWEt

{
λ̂t+1 − λ̂t + δ̂Wt+1

}
(98)

JĴ?t =
wh

α

[
−αŵ?t + x̂Lt + ẑt

]
+

β (1− ϑ) γ

1− β (1− ϑ) γ
whEt

{
ŵ?t+1 + Π̂t+1 − ŵ?t

}
+ β (1− ϑ) JEt

{
λ̂t+1 − λ̂t + Ĵ?t+1

}
(99)
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∆∆̂?t = wh
1

1− α
[
−αŵ?t + x̂Lt + ẑt

]
− 1

1 + ϕ
mrsh

[
1 + ϕ

1− α
(
−ŵ?t + x̂Lt + ẑt

)
− λ̂t

]
+

β (1− ϑ) γ

1− β (1− ϑ) γ

[
α

1− α
wh− 1

1− α
mrsh

]
Et

{
ŵ?t+1 + Π̂t+1 − ŵ?t

}
+

βγs

1− β (1− ϑ) γ

[
α

1− α
wh− 1

1− α
mrsh

]
Et

{
ŵ?t+1 + Π̂t+1 − ŵ?t

}
+ (1− ϑ− s)β∆Et

{
λ̂t+1 − λ̂t + ∆̂?

t+1

}
− β∆sŝt (100)

−κ
q
q̂t =

βγ

1− β (1− ϑ) γ
whEt

{
ŵ?t+1 + Π̂t+1 − ŵ?t

}
+ βJEt

{
λ̂t+1 − λ̂t + Ĵ?t+1

}
(101)

yŷt = cĉt + gĝt + κvv̂t + Φnn̂t (102)

ŷt = ẑt + αĥt + n̂t (103)

Ψ̂L
t =

1−α
α wh

1−α
α wh− Φ

[
ŵt + ĥt

]
(104)

R̂t = γRR̂t−1 + (1− γR)
[γπ

12
Π̂a
t−1 +

γy
12
ŷt

]
+ ε̂moneyt (105)

ε̂bt = ρbε̂
b
t−1 + ξbt , ξbt

iid∼ N
(
0, σ2b

)
(106)

ẑbt = ρbẑ
b
t−1 + ξzt , ξzt

iid∼ N
(
0, σ2z

)
(107)

ĝbt = ρbĝ
b
t−1 + ξgt , ξgt

iid∼ N
(
0, σ2g

)
(108)

ε̂moneyt = ξmoneyt , ξmoneyt
iid∼ N

(
0, σ2money

)
(109)

Ĵe,nt + δ̂W,e,nt = ∆̂e,n
t + δ̂F,e,nt − 1

1− η
η̂e,nt (110)

x̂Lt + ẑt + (α− 1) ĥe,nt = ŵe,nt (111)

δW δ̂W,e,nt =
−α

1− α
wh

[
−α

1− α
ŵe,nt +

1

1− α
(
x̂Lt + ẑt

)]
− −1

1− α
mrsh

[
(−1) (1 + ϕ)

1− α
ŵe,nt − λ̂t +

1 + ϕ

1− α
(
x̂Lt + ẑt

)] (112)

JĴe,nt =
wh

α

[
−αŵe,nt + x̂Lt + ẑt

]
+ β (1− ϑ) JEt

{
λ̂t+1 − λ̂t + Ĵet+1

} (113)
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∆∆̂e,n
t =wh

1

1− α
[
−αŵe,nt + x̂Lt + ẑt

]
− 1

1 + ϕ
mrsh

[
1 + ϕ

1− α
(
−ŵe,nt + x̂Lt + ẑt

)
− λ̂t

]
+ (1− ϑ− s)β∆Et

{
λ̂t+1 − λ̂t + ∆̂e

t+1

}
− β∆sŝt

(114)

−κ
q
q̂t = βJEt

{
λ̂t+1 − λ̂t + Ĵnt+1

}
(115)

ŵt = (1− ϑ) ŵet + ϑŵnt (116)

d) Model with financial frictions

yt =
C

Y
ct +

I

Y
it +

G

Y
gt +

Ce

Y
cet + · · ·+ φyt (117)

ct = −rt+1 + Et {ct+1} (118)

cet = nt+1 + · · ·+ φc
e

t (119)

Et

{
rkt+1

}
= rt+1 − ν [nt+1 − (qt + kt+1)] (120)

rkt+1 = (1− ε) (yt+1 − kt+1 − xt−1) + εqt+1 − qt (121)

qt = ϕ (it − kt) (122)

yt = at + αkt + (1− α) Ωht (123)

yt = ht + xt + ct + η−1ht (124)

πt = Et {κp (−xt) + γfπt+1 + γbπt−1} (125)

kt+1 = δit + (1− δ) kt (126)

nt+1 =
γRK

N

(
rkt − rt

)
+ rt + nt + · · ·+ φnt (127)

rnt = ρrnt−1 + (1− ρ)ςπt−1 + εtnt (128)

gt = ρggt−1 + εgt (129)

at = ρaat−1 + εat (130)

Appendix C

The log-linearized optimality conditions that Karabarbounis and Neiman’s (2014)
model delivers are:
1) production function

Ŷt = Y σ/(σ−1)[αk(Âkt + k̂t) + ((1− α)nÂnt)] (131)
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2) Labor share

µsL
1− µsL

ŝLt +
1

1− µsL
µ̂t = (σ − 1)(Âkt − µ̂t − R̂t) (132)

3) Definition of return to capital

R̂t+1 =
1

R
[(1 + r)(Ẑt + r̂t+1)− (1− δ)Ẑt+1] (133)

4) Definition of the real rate

r

1 + r
r̂t+1 = −γ(ĉt − ĉt+1) (134)

5) Markup

µ̂t +
sL

sL + sk
ŝLt + (1− sL

sL + sk
)ŝkt = 0 (135)

6) Capital share
ŝkt = R̂t + K̂t − Ŷt (136)

7) National identity

Ŷt =
c

y
Ĉt +

k

y
(δẐit + k̂t − (1− δ)k̂t−1) (137)

8) MPK=real wage
σ − 1

σ
Âkt + ŷt − k̂t = µ̂t + R̂t (138)

9) Labor supply
n̂t = 0 (139)

The process for the three exogenous variables are:

logZt = ρ1 logZt−1 + u1t u1t ∼ (0, ω1) (140)

logAnt = ρ2 logAnt−1 + u2t u2t ∼ (0, ω2) (141)

logAkt = ρ3 logAkt−1 + u3t u3t ∼ (0, ω3) (142)

We set δ = 0.10 and β = 0.96. We estimate ρj , ωj , j = 1, 2, 3, γ, σ. The prior for σ is
truncated normal with mean 1 and standard deviation 0.4; the prior for γ is truncated
normal with mean 1 and variance 1; the priors for ρj are truncated normal with mean
0.9 and variance 0.4; the prior for ωj are truncated normal with mean 1 and variance 1.
The only common parameter we assume across countries is σ. We have estimated the
model also under the assumption that γ is also common without appreciable changes
in the posteior of σ. To construct the composite likelihood, data for the five countries
receives either equal weight (ω=0.20) or the prior for ω is Dirichlet with mean 0.20.
We use 50000 draws after an initial burn-in phase of 10000 draws.
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