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Abstract

We study the implications of job destruction risk for optimal incentives in a long-term

contract with moral hazard. We extend the dynamic principal-agent model of Sannikov

(2008) by adding an exogenous Poisson shock that makes the match between the firm and

the agent permanently unproductive. In modeling job destruction as an exogenous Poisson

shock, we follow the Diamond-Mortensen-Pissarides search-and-matching literature. The

optimal contract shows how job destruction risk is shared between the firm and the agent.

Arrival of the job-destruction shock is always bad news for the firm but can be good news

for the agent. In particular, under weak conditions, the optimal contract has exactly two

regions. If the agent’s continuation value is below a threshold, the agent’s continuation

value experiences a negative jump upon arrival of the job-destruction shock. If the agent’s

value is above this threshold, however, the jump in the agent’s continuation value is positive,

i.e., the agent gets rewarded when the match becomes unproductive. This pattern of

adjustment of the agent’s value at job destruction allows the firm to reduce the costs of

effort incentives while the match is productive. In particular, it allows the firm to adjust

the drift of the agent’s continuation value process so as to decrease the risk of reaching

either of the two inefficient agent retirement points. Further, we study the sensitivity of

the optimal contract to the arrival rate of job destruction.
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1 Introduction

Understanding ex-post income heterogeneity of ex-ante identical workers is an important ques-

tion in economics. Two extensively studied explanations for this heterogeneity are search

∗FRB-Richmond and Texas A&M. The views expressed herein are those of the authors and not necessarily 
those of the Federal Reserve Bank of Richmond or the Federal Reserve System.

DOI: https://doi.org/10.21144/wp17-11 1



frictions and information frictions. Although these two sources of heterogeneity were tradi-

tionally studied in separation from each other, the literature has been moving recently toward

studying search and information frictions jointly in order to obtain models that can better ac-

count for the data. This paper’s goal is to contribute to this effort by studying the implications

of the risk of job destruction, which is commonly used in the search and matching literature

to generate separations, on the optimal long-term contract in a dynamic private-action (i.e.,

moral hazard) environment.

To this end, we study the implications of job destruction risk in the dynamic moral hazard

model of Sannikov (2008). Like most papers in dynamic contracting literature, Sannikov

(2008) assumes that productivity of the match between the firm and the worker/agent is time-

invariant, i.e., although output is subject to transitory idiosyncratic shocks, the match remains

productive indefinitely into the future. This assumption makes it difficult to integrate dynamic

contracting models with the search and matching theory, e.g., Mortensen and Pissarides (1994),

where persistent match productivity shocks are a basic source of heterogeneity. We take a step

toward removing this limitation of the dynamic contracting theory by allowing for persistent

shocks to the productivity of the match between the firm and the agent. In particular, we study

the implications of a job-destruction shock that makes the match permanently unproductive.

We follow Pissarides (1985) and Mortensen and Pissarides (1994) in modeling job destruction

as an exogenous, observable Poisson shock that arrives with a known intensity λ. Prior to the

arrival of this shock, our model is identical to Sannikov (2008): The agent chooses privately a

costly action at at all t, where more-costly actions have a larger positive impact on the firm’s

expected flow of revenue. At a random time θ, the match becomes unproductive: no further

revenue will be generated regardless of what actions the agent takes.

The job-destruction shock can be naturally interpreted in two ways. First, it can be viewed as

a productivity shock that affects the quantity of output produced inside the match. Second,

as in Mortensen and Pissarides (1994), it can be interpreted as a shock to the market price

of the differentiated good produced by the firm. Complete job destruction at shock arrival

means that either the physical productivity of the match or the market price of output become

permanently zero at date θ.

Our main results show how job destruction risk impacts the optimal contract. The contract has

the same qualitative features as in Sannikov (2008). The agent’s promised utility Wt is a state

variable sufficient for recursive characterization of the solution. The agent’s effort is positive

everywhere except at two absorbing boundaries of the support of Wt: the low retirement point

at W = 0 and the high retirement point Wgp > 0. The firm’s optimal profit function F (W ) is

hump-shaped with a unique maximum at W ∗ ∈ (0,Wgp). The agent receives no compensation

when Wt ≤W ∗ and positive compensation when Wt > W ∗. At θ, the contract becomes static:
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the agent is asked for no effort and is provided a constant retirement/severance payment flow

c′.

However, the agent is not fully insured against the job-destruction shock. At θ, both the

agent’s continuation utility and the firm’s continuation profit jump, i.e., job destruction risk

is shared between the firm and the agent. We show that the arrival of a job-destruction shock

is always bad news for the firm but can be good news for the agent. In particular, under weak

conditions, the optimal contract has exactly two regions. If the agent’s continuation value is

below a threshold, denoted by Wnj , the agent’s continuation value experiences a negative jump

at θ. If the agent’s value is above this threshold, however, the jump in the agent’s continuation

value is positive, i.e., the agent gets rewarded when the match becomes unproductive.

This pattern of adjustment of the agent’s value at job destruction is optimal because it allows

the firm to reduce the costs of effort incentives before the job-destruction shock arrives, i.e,

while the match is productive and the agent exerts effort. In particular, the level of continuation

utility promised to the agent conditional on job destruction is inversely related to the growth

(drift) of the agent’s promised utility conditional on no job destruction. If the firm promises

more after job destruction, drift of Wt is lower prior to that event and vice versa. In the

optimal contract, the promise of utility after job destruction is therefore used to manipulate

the dynamics of Wt so as to maximize the firm’s profit. There are two effects. First, there is the

wealth effect: the agent with higher W is more expensive to elicit effort from, which eventually

leads to retirement of the agent at Wgp. This effect calls for using the post-job-destruction

utility promise, W ′, to lower the drift of Wt. Second, there is the “poverty trap” effect: if Wt

hits 0, incentives no longer can be provided to the agent, as he has no further “skin in the

game.” This effect calls for using W ′ to increase the drift of Wt. In the optimal contract, the

poverty trap effect dominates at low W and the wealth effect dominates at high W , with the

unique threshold being Wnj .

In this paper, we study job destruction risk in the contracting problem between a single firm

and a single agent/worker without considering equilibrium in a broader labor market. We

do not explicitly model separations and transitions of agents from one job to another after a

job-destruction shock. Similar to Sannikov (2008), we use the simplifying assumption that the

agent retires after job destruction. However, our analysis provides a building block for solving

labor market equilibrium models with long-term contracts under moral hazard and subject

to job-destruction shocks. Any such model, e.g., one that would integrate moral hazard and

an explicit search friction a la Diamond-Mortensen-Pissarides, will need to solve a contracting

problem similar to ours. Our contract characterization results will continue to apply as long as

the equilibrium post-separation continuation value function for the firm satisfies the sufficient

condition on the post-retirement profit function that we identify in this paper.
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Related literature Several studies explore the impact of jump risk on the optimal provision

of incentives in risk-neutral environments without the consumption smoothing motive, e.g.,

Hoffmann and Pfeil (2010), Piskorski and Tchistyi (2010), DeMarzo et al. (2014). We share

with these studies the optimality condition that equates, whenever possible, the firm’s marginal

value before and after the jump shock. Our model provides additional implications for optimal

compensation, which, due to risk aversion, should remain continuous at job destruction.

Li (2017) allows risk aversion, a recurrent match-productivity shock, and provides a recur-

sive procedure for computing the optimal contract numerically. We study a permanent job-

destruction shock and provide analytical characterization of the optimal contract. Our ana-

lytical results can be extended to allow temporary, recurrent spells of zero productivity.

Tsuyuhara (2016) studies long-term contracts with moral hazard and job destruction embedded

in a labor market with directed search. That paper, however, does not allow for payments from

the firm to the agent after job destruction. In our paper, we allow for such payments (severance

or retirement benefits) and show that they are important for the agent’s incentives inside the

match. A similar model with long-term contracts, moral hazard, and job-destruction shocks

is solved in Lamadon (2016). There, however, output in the match does not depend on the

agent’s effort. The moral hazard problem applies to the probability of a job-destruction shock.

Similar to Tsuyuhara (2016), Lamadon (2016) does not allow for compensation conditional on

job destruction.

Organization The rest of this paper is organized as follows. Section 2 lays out the model

and conducts preliminary analysis of the HJB equation. Section 3 provides our main results

on the jumps in the firm’s and the agent’s continuation values at job destruction. Section 4

examines contract dynamics and exit probabilities. Sections 5 and 6 study the sensitivity of

various contract features to the severity of the risk of job destruction, as measured by the rate

of arrival λ. Section 7 concludes.

2 The principal-agent problem

The principal-agent contracting problem is the same as in Sannikov (2008) except that at a

Poisson time θ the productivity of the match ends, i.e., the job is destroyed. Before θ, the

cumulative output Xt produced by the agent up to date t follows

dXt = Atdt+ σdZt,

where At ∈ A is the agent’s action (effort), Zt is a standard Brownian motion on (Ω,F , P ).

After θ, the cumulative output follows

dXt = 0, (1)
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i.e., no further output is produced inside the match. Time θ arrives with Poison intensity λ

and is independent of Zt.

The set of feasible actions A ⊂ R, as in Sannikov, is compact with the smallest element 0. The

contract is a pair of progressively measurable processes {(Ct, At), 0 ≤ t <∞}, where At is the

action recommended for the agent to take at t and Ct is his compensation. The agent and the

principal evaluate the contract according to, respectively,

E
[
r

∫ ∞
0

e−rt (u(Ct)− h(At)) dt

]
,

and

E
[
r

∫ ∞
0

e−rt(At − Ct)dt
]
,

where r > 0. The agent’s utility function u : R+ → R+ is C2 with u′ > 0, u′′ < 0, limc→0 u
′(c) =

0, and u(0) = 0. The function h : A → R+ representing the agent’s disutility from effort is

increasing and convex with h(0) = 0. In addition, we follow Sannikov (2008) in assuming that

there exists γ0 > 0 such that h(a) ≥ γ0a for all a ∈ A.

Under a given contract (C,A), the agent’s continuation value process is

Wt := Et
[
r

∫ ∞
t

e−r(s−t) (u(Cs)− h(As)) ds

]
.

The Sannikov model is a special case of this specification with λ = 0, i.e., the match remains

productive indefinitely.

Clearly, after the match productivity termination shock hits, the optimal action is At = 0

forever and the profit function for the firm is

F0(W ′) = −c′ such that u(c′) = W ′, (2)

with the agent receiving a constant payment c′ forever after the arrival of the shock, and W ′

represents the agent’s continuation utility after the arrival of the shock, i.e., after any jump-

at-arrival. Here, c′ can be interpreted as the flow of compensation to the agent in retirement

or as a severance benefit paid out upon termination of the job. The firm’s after-shock profit

function, F0, is negative, strictly decreasing and, by strict concavity of u, strictly concave.

Before the shock, the dynamics of the continuation value are

dWt = r(Wt − u(Ct) + h(At))dt+ rYt(dXt −Atdt) + ∆t(dNt − λdt), (3)

where dXt−Atdt is the agent’s observed performance relative to the benchmark Atdt, rYt rep-

resents the sensitivity of the agent’s continuation value to his performance, ∆t is the sensitivity
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to the Poisson shock, and Nt is the counting process stopped at 1. As in Sannikov (2008), the

contract is incentive compatible (IC) at t if

At ∈ argmax
a∈A

Yta− h(a). (4)

In equation (3), we can see how the risk of job destruction affects the drift of the agent’s

continuation value while the job is active, i.e., before the arrival of the job-destruction shock.

With dNt = 0, equation (3) reduces to

dWt = (r(Wt − u(Ct) + h(At))−∆tλ) dt+ rYt(dXt −Atdt)dt.

As we see, larger ∆t implies, ceteris paribus, a smaller rate of increase in Wt that is needed to

deliver Wt to the agent over time as the job continues to survive.

The same observation can be made using the agent’s post-job-destruction promised contin-

uation value. The sensitivity process ∆t shows by how much the agent’s continuation value

changes on arrival of the job-destruction shock in any date and state. Therefore, we can express

it as

∆t = W ′t −Wt = u(c′t)−Wt, (5)

where W ′t is the agent’s continuation value at t in the event θ = t, c′t is the (constant) level of

the retirement (or severance) benefit grated to the agent in the same event. Using W ′t or c′t
instead of ∆t, we can express the expected change in Wt conditional on job survival, i.e., the

drift term in (3) before job destruction, as

(r + λ)Wt − r(u(Ct)− h(At))− λW ′t
= (r + λ)Wt − r(u(Ct)− h(At))− λu(c′t).

Since Wt is replaced with W ′t = u(c′t) in the event of job destruction at t, a higher promise W ′t ,

or, equivalently, a higher severance promise c′t, decreases the drift in Wt before job destruction.

In the recursive form, the firm’s problem is to maximize the profit F (W ) that it can attain in

the relationship with the agent when the agent is owed the continuation value W . The HJB

equation for this problem is

(r+λ)F (W ) = max
c,a,Y,∆

ra−rc+F ′(W )r

(
W − u(c) + h(a)− λ

r
∆

)
+

1

2
F ′′(W )r2σ2Y 2+λF0(W+∆),

(6)

where W and W + ∆ must remain nonnegative because 0 is the agent’s minimax payoff.

The first order (FO) condition over ∆ is

−F ′(W )λ+ λF ′0(W + ∆) ≤ 0
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with strict equality if W + ∆ > 0.

Because F ′0(W ) ≤ 0 for all W , this FO condition leads to two cases. If F ′(W ) > 0, then

W + ∆ = 0, so ∆(W ) = −W . If F ′(W ) ≤ 0, then F ′0(W + ∆) = F ′(W ), so ∆(W ) =

−W + (F ′0)−1(F ′(W )).

The interpretation of the optimal adjustment ∆ is as follows. By increasing the promise of the

continuation value to be delivered to the agent after job destruction, the firm gains additional

(negative) profit F ′0(W + ∆), which it discounts at the rate of the shock arrival λ. That same

increase in the agent’s value post-arrival decreases the drift of the agent’s continuation value

conditional on the job’s survival, at the rate λ. This lower drift increases the firm’s profit at

the rate F ′(W )λ. The optimal ∆ is set where the marginal cost is equal to its marginal benefit.

Remark In the first best, the agent would get constant consumption forever and work until

the arrival of the job-destruction shock. Thus, his continuation utility would jump upward at

the moment of shock arrival, i.e., ∆ > 0 in the first best. The first-best profit function is

Ffb(W ) := max
c,a
{ r

r + λ
a− c : u(c)− r

r + λ
h(a) = W}. (7)

With moral hazard, we will have ∆ < 0 at least for small W . But consumption will be

continuous over the jump moment both with moral hazard and in first best.

2.1 Equivalent expressions of the HJB equation

Since the static contract is optimal after the shock, we can equivalently use the after-shock

agent’s continuation value W ′ = W + ∆, or his constant retirement/severance flow of compen-

sation, c′, where u(c′) = W ′, as controls in the HJB equation, instead of ∆.

With W ′ = W + ∆, the HJB can be written as

(r+λ)F (W ) = max
c,a,Y,W ′≥0

ra−rc+F ′(W )r

(
W − u(c) + h(a)− λ

r
(W ′ −W )

)
+

1

2
F ′′(W )r2σ2Y 2+λF0(W ′).

The maximization of terms that involve W ′, i.e., maxW ′≥0 {−F ′(W )W ′ + F0(W ′)}, implies

that W ′ = 0 if F ′(W ) ≥ 0, and W ′ solves

−F ′(W ) + F ′0(W ′) = 0

if F ′(W ) < 0. This says that, when possible, the slope of the firm’s profit function should match

before and after the shock. This is the same as the earlier discussion of the FO condition with

respect to ∆.

Further, if we use retirement/severance flow c′, we can write the HJB as

(r+λ)F (W ) = max
c,a,Y,c′≥0

ra−rc+F ′(W )r

(
W − u(c) + h(a)− λ

r
(u(c′)−W )

)
+

1

2
F ′′(W )r2σ2Y 2−λc′.
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The FO condition with respect to c′, F ′(W )u′(c′) = −1, is the same as the FO condition for

c, the agent’s consumption before the shock. This shows that at the time of shock arrival

consumption does not change, although the continuation value typically will. So, the arrival

of the shock “freezes” the current c and makes it fixed forever after.

Because c′ = c, it will be convenient for us to eliminate c′ and just use c as a single control

variable (representing consumption now and forever if the shock hits now). The HJB is

(r + λ)F (W ) = max
c,a,Y

ra− (r + λ)c+ F ′(W ) ((r + λ)(W − u(c)) + rh(a)) +
1

2
F ′′(W )r2σ2Y 2

or

F (W ) = max
c,a,Y

r

r + λ
a− c+ F ′(W )(W − u(c)) +

r

r + λ
F ′(W )h(a) +

r

r + λ

1

2
F ′′(W )rσ2Y 2, (8)

where, up to the time of arrival of the job-destruction shock, Wt follows

dWt = ((r + λ)(Wt − u(c)) + rh(a))dt+ rY σdZt. (9)

Collecting terms, we can write the HJB in the following form

r + λ

r

(
F (W )− F ′(W )W −max

c≥0

{
−c− F ′(W )u(c)

})
= max

a,Y

{
a+ F ′(W )h(a) +

1

2
F ′′(W )rσ2Y 2

}
.

Note that this equation reduces to the HJB equation of Sannikov (2008) when λ = 0.

2.2 Monotonicity of terms in the HJB equation

The left hand side of the HJB equation is monotone in λ. Whether the left hand side is increas-

ing or decreasing in λ depends on the sign of F (W )−F ′(W )W−maxc≥0 {−c− F ′(W )u(c)}. But

this sign is always positive as long as we are solving for a curve F in the region F (W ) ≥ F0(W )

at all W , and F is concave.

To see this, change c to W ′ again using u(c) = W ′. We have

F (W )− F ′(W )W −max
c≥0

{
−c− F ′(W )u(c)

}
= F (W )− F ′(W )W − max

W ′≥0

{
F0(W ′)− F ′(W )W ′

}
= min

W ′≥0

{
F (W )− F ′(W )W − F0(W ′) + F ′(W )W ′

}
= min

W ′≥0

{
F (W ) + F ′(W )

(
W ′ −W

)
− F0(W ′)

}
.

This quantity is the minimal vertical distance between the tangent to F at W and F0. By

concavity of F , the tangent is always above F , i.e., F (W ) +F ′(W ) (W ′ −W ) ≥ F (W ′) for all

W and W ′. So

min
W ′≥0

{
F (W ) + F ′(W )

(
W ′ −W

)
− F0(W ′)

}
≥ min

W ′≥0

{
F (W ′)− F0(W ′)

}
≥ 0,
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where the last inequality uses F ≥ F0.

Thus, the left hand side of the HJB is increasing in λ as long as we are solving for a concave

F above F0. The optimal solution will satisfy these conditions.

2.3 Option value of the agent’s effort

Let us denote this distance by S, i.e., let

S(W ) := F (W )− max
W ′≥0

{
F ′(W )(W −W ′) + F0(W ′)

}
= F (W )−max

c′≥0

{
F ′(W )(W − u(c′))− c′

}
.

Note that S is a function of F (W ), F ′(W ), and W . With this notation, the HJB reads

(1 +
λ

r
)S(W ) = max

a,Y

{
a+ F ′(W )h(a) +

1

2
F ′′(W )rσ2Y 2

}
,

or, using the IC condition Y = h′(a),

S(W ) =
r

r + λ
max
a

{
a+ F ′(W )h(a) +

1

2
F ′′(W )rσ2h′(a)2

}
,

which has an intuitive interpretation: S(W ) = F (W )−maxW ′≥0 {F ′(W )(W −W ′) + F0(W ′)}
is the firm’s surplus from being able to induce positive effort from the agent.1 The right hand

side of the HJB shows where this surplus is coming from. It is equal to expected output from

effort, a, less the cost of compensating the agent for his disutility of effort h(a), less the firm’s

cost of having to induce volatility Y = h′(a) in the state variable (it is a cost because F ′′ < 0).

The factor r
r+λ represents the risk of productivity termination, i.e., job destruction.

Note that the same variable represents the surplus from the agent’s effort at the first best

contract. Indeed, the FOC in

Sfb(W ) := Ffb(W )−max
c′≥0

{
F ′fb(W )(W − u(c′))− c′

}
implies c′ = cfb(W ). Using this and (7), we have

Sfb(W ) =
r

r + λ
afb − cfb −

(
F ′fb(W )(W − u(cfb))− cfb

)
=

r

r + λ
afb − F ′fb(W )(W − u(cfb))

=
r

r + λ
afb + F ′fb(W )

r

r + λ
h(afb)

=
r

r + λ
max
a

{
a+ F ′fb(W )h(a)

}
,

1If effort is no longer an option, then the firm’s profit is F0(W ′) after incurring the cost F ′(W )(W −W ′) of

optimally adjusting the agent’s value from W to W ′.

9



where afb and cfb at evaluated at W .2 This shows that in the first best the calculation of the

surplus from the agent’s effort is the same except for the cost of volatility does not show up in

the formula. Also note that Sfb(W ) > 0 at all W < W ∗gp and equals zero at W ∗gp.

2.4 Existence, regularity, and computation

Solving the HJB for F ′′, equivalently, we have

F ′′(W ) = min
a≥0

(1 + λ
r )S(W )− a− F ′(W )h(a)

1
2rσ

2(h′(a))2
, (10)

which can be solved forward from W = 0 using boundary conditions (F (0), F ′(0)) = (0, x) for

any x ≥ 0.

As in Sannikov (2008), the optimal profit curve is obtained by looking for the initial slope

F ′(0) such that the solution curve stays above F0 and touches it at a point, which is denoted

by Wgp. Sannikov (2008) shows that the contract constructed from the policy functions that

attain this solution in the HJB equation is optimal. These results, proved in Lemmas 1, 2, 3,

Proposition 3, Lemma 4, and Proposition 4 of Sannikov (2008), also hold in our model. It is

easy to see that nothing changes in the proofs of these results when a constant factor (1 + λ
r )

multiplying terms F (W )− F ′(W )(W − u(c)) + c is inserted into the HJB equation.

Solving (10) for the optimal F results with a profit function qualitatively similar to the solution

in Sannikov (2008): F is strictly concave with a unique maximum at W ∗ := argmaxF (W ),

where 0 < W ∗ < Wgp.

3 The jump at job destruction

In this section, we provide our main results that show how the optimal contract is affected by

the risk of job destruction and what happens at the arrival of a job-destruction shock.

3.1 The jump in the agent’s continuation value

Proposition 1 In the optimal contract, W ′(W ) = 0 at all W ≤ W ∗, and W ′ is strictly

increasing in W at all W ∗ < W < Wgp.

The first part follows from F ′(W ) > 0 below W ∗. The second part follows simply from strict

concavity of F0, which is a direct implication of strict concavity of u.

2Note that the third line uses the promise-keeping constraint in (7) and the last line uses the FOC for afb.
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Figure 1 illustrates this proposition in a computed example. The jump in the agent’s continu-

ation value at job destruction is represented by the vertical distance between the W ′(W ) curve

and the 45 degrees line. For all W ≤ W ∗, where F ′(W ) ≥ 0 and c = 0, we have W ′ = 0, i.e.,

the agent loses all of his continuation value with c′ = 0. Above W ∗, the retirement/severance

value W ′ is increasing in W , i.e., agents with larger continuation value at arrival receive a

higher retirement/severance value as well.

Further, Figure 1 suggests that the sign of ∆ = W ′ −W only changes once. That is, in the

region above W ∗, agents with relatively small W are hurt by job destruction. However, agents

with high W gain from it. We prove this feature of the optimal contract under an additional

assumption.

Proposition 2 Assume F ′0 is weakly concave. Then there exists a unique Wnj such that

∆(W ) < 0 for all 0 < W < Wnj; ∆(Wnj) = 0; and ∆(W ) > 0 for all 0 < Wnj < Wgp. Also,

Wnj > W ∗.

Proposition 2 shows that it is optimal to widen the spread of the agent’s value at the arrival of

the job-destruction shock: the agents with high W (higher than Wnj) see their value increased,

∆(W ) > 0, while the agents with low W (lower than Wnj) experience a drop in their continu-

ation value at job destruction, ∆(W ) < 0. To see why doing so is profitable, recall that ∆(W )

has an inverse impact on the drift of Wt prior to job destruction: positive ∆ decreases the

drift of Wt and negative ∆ increases it. By suppressing the growth of Wt when Wt is high and

increasing it when Wt is low, the optimal policy ∆(W ) decreases the chance of hitting either

of the two inefficient agent retirement points, 0 and Wgp, while the match remains productive.

This decrease in the chance of early contract termination improves efficiency.

The assumption of weak concavity of F ′0 is a convenient sufficient condition that can be relaxed.

If u is trice differentiable, this assumption is equivalent to u′′′(c)u′(c) ≤ 3u′′(c)2 at all c, which

is very simple condition to verify.

Proposition 2 also implies that S(W ) is single peaked with a unique maximum at Wnj . Indeed,

differentiating S(W ) we have

dS

dW
= F ′(W )− F ′′(W )(W −W ′(W ))− F ′(W )

= F ′′(W )
(
W ′(W )−W

)
= F ′′(W )∆(W )

so ∆ and S′ are of opposite sign. Proposition 2, by pinning down the sign of ∆(W ), implies

the following:

11
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Figure 1: Optimal jump of the agent’s continuation value at job destruction.

Corollary 1 S′(W ) > 0 at all W < Wnj, S
′(Wnj) = 0, and S′(W ) < 0 for all 0 < Wnj < Wgp.

Thus, Wnj is the unique peak point of S(W ).

This means that the jump in the agent’s continuation value at job destruction is zero only at

the single W at which the firm’s option value of the agent’s effort is maximal.3

3.2 The jump in the firm’s value

From the definition of S, we have S(W ) = F (W ) +F ′(W )∆(W )−F0(W ′(W )), which gives us

F (W )− F0(W ′(W )) = S(W )− F ′(W )∆(W ).

This says that the firm’s loss of value at job destruction, F (W )− F0(W ′(W )), equals the loss

of the option on the agent’s effort, S(W ), and the cost of the agent’s gain in utility, ∆(W ),

valued at the marginal price of utility, −F ′(W ). The loss of productivity option value is always

3Note that S(W ) does not have to be concave.
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Figure 2: The firm’s loss of profit after the optimal jump in W at arrival of job destruction.

positive, as S ≥ 0. The second term may be positive or negative, as both ∆ and F ′ change

sings.

Proposition 3 Assume F ′0 is weakly concave. Then the firm always loses value at arrival of

the job-destruction shock: F (W ) ≥ F0(W ′(W )), strictly at all 0 < W < Wgp.

The above result is very intuitive at W equal 0 or Wgp. There, there is no loss of profits due

to job destruction because the job is dissolved endogenously at these two points anyway (i.e.,

both S and ∆ are zero there).

At all 0 < W < Wgp, the effort option value S(W ) is strictly positive. The firm’s value of the

agent’s utility jump depends on W . Above Wnj , ∆ > 0 and F ′ < 0, i.e., in addition to the

loss of productivity, the firm is hurt at job destruction by a positive jump in the value it owes

to the agent. Below W ∗, the firm is again hurt by the adjustment to the agent’s value, but

for the opposite reason, as signs of both ∆ and F ′ are switched. With ∆ < 0 and F ′ > 0, the

agent’s loss of value actually hurts the firm’s value. In fact, the agent loses all promised value

as W ′ = 0 in this region, but this does not help the firm as all of the agent’s value in this

13



region comes from his future expected compensation. Finally, in the region between W ∗ and

Wnj we have ∆ < 0 and F ′ < 0, so the loss of the agent’s utility value does offset the firm’s

loss of productivity to an extent. However, it turns out that that this offset is insufficient.

Figure 2 provides a computed example. Note the small region in which F0(W ′(W )) > F0(W ).

There, the negative jump in the agent’s continuation value at job destruction partially com-

pensates the firm for the loss of the option on the agent’s effort.

4 Contract dynamics and exit probabilities

In this section, we discuss contract dynamics with particular attention to exits. We will

characterize these features of the optimal contract by finding an associated ODE and solving

it numerically using the policies from the optimal contract.

We will denote the drift of Wt under the optimal contract by µ(W ) and its volatility by ν(W ).

We have from (9) that

µ(W ) = (r + λ)
(
W − u(c(W ))

)
+ rh(a(W )),

ν(W ) = rσY (W ),

where c(W ), a(W ), and Y (W ) are the policy functions from the optimal contract.

Figure 3 shows the drift and volatility functions in a computed example, where λ gives a

realistic contract duration. Following the labor literature, we target in our parametrization

an average duration of a job to be 10 calendar quarters. We approximate job duration here

as the expected time to arrival of a job-destruction shock, 1/λ. As we see, the contract has

interesting dynamics. At small W , the drift of W is positive and high with high volatility. The

contract likely moves out of this region toward the middle region of W . There, the contract

“slows down,” i.e., has drift close to zero and moderate volatility, which means the contract

will likely spend a lot of time in the middle region once it reaches it. Thus, the job-destruction

shock is likely to arrive while Wt is in that region.

4.1 Time remaining and exit probability

Let us denote by T (W ) the expected time until job end (including both exogenous job destruc-

tion and endogenous agent retirement). The job can “end” in three ways: the agent may be

retired at 0, retired at Wgp, or the job is ended by a job-destruction shock.

The probability of end/exit at 0 will be denoted by P0(W ), and the probability of exit at Wgp

by Pgp(W ). The probability that the contract ends with the arrival of the job-destruction

shock will be denoted by PJD(W ). Clearly, P0(W ) + Pgp(W ) + PJD(W ) = 1 for all W .
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Figure 3: Drift µ(W ) and volatility ν(W ) at the optimal contract under a parametrization with average

time till job destruction of 10 quarters.

We compute T and P by finding an ODE for each of them. These ODEs can then be easily

solved numerically using policy functions from the optimal contract.

Lemma 1 T and P satisfy the following ODEs

λT (W ) = 1 + T ′(W )µ(W ) +
1

2
T ′′(W )ν(W )2,

(r + λ)P (W ) = P ′(W )µ(W ) +
1

2
P ′′(W )ν(W )2,

with boundary conditions T (0) = T (Wgp) = 0, P0(0) = 1, P0(Wgp) = 0, Pgp(0) = 0,

Pgp(Wgp) = 1, and PJD(0) = PJD(1) = 0.

Figure 4 shows T and the three P functions in our parametrized example. The probability of

exit at either end of the support of W drops very quickly in the distance between W and this

boundary. In the middle, the contract “slows down” very dramatically, as we saw in Figure 3.

It is therefore extremely unlikely that Wt reaches either retirement point before the arrival of

a job-destruction shock. Thus, in this region, T (W ) is very close to 1/λ and PJD(W ) is very

close to 1.
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Figure 4: T and P under parametrization with r/λ = 0.12, i.e., average job duration of 10 quarters.

4.2 Other contract features

This method, i.e., finding a function by numerically solving an ODE, can be used to compute

other features of the optimal contract and the value function. In this section, we illustrate this

point by computing a decomposition of F into its cost and revenue parts.

The expected, discounted remaining revenue will be denoted by R(W ), and the expected

discounted remaining wage bill by B(W ). That is:

R(Wt) = Et
[
r

∫ ∞
0

e−rsa(Wt+s)ds

]
and B(Wt) = Et

[
r

∫ ∞
0

e−rsc(Wt+s)ds

]
,

so we have F (W ) = R(W )−B(W ) for all W .

Lemma 2 R and B satisfy the following ODEs

(r + λ)R(W ) = ra+R′(W )µ(W ) +
1

2
R′′(W )ν(W )2,

(r + λ)B(W ) = (r + λ)c+B′(W )µ(W ) +
1

2
B′′(W )ν(W )2,

with boundary conditions R(0) = R(Wgp) = 0, and B(0) = 0, B(Wgp) = u−1(Wgp) =

−F0(Wgp).

Figure 5 shows the solutions of the ODEs for R and B, along with the profit function F ,

obtained with λ such that 1/λ is 10 quarters, as before. As we see, the wage bill by B(W )

accounts for most of the variation in F (W ) with expected revenue R(W ) being relatively flat.

However, it is the revenue part of F that gives it its hump shape, as B is monotone in W .
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Figure 5: Profit, revenue and the wage bill.

5 Sensitivity of profit to job destruction risk

In this section, we study how the firm’s expected discounted profit depends on the expected

duration of the relationship, 1/λ, or, equivalently, on λ measuring job-destruction risk. For

comparisons with respect to the level of λ, let us always write λ̃ > λ ≥ 0 and denote the

solution under λ̃ as F̃ .

Lemma 3 Take two solutions F and F̃ of the HJB, where the first is with λ and the second

is with λ̃ > λ, such that F (W 0) ≤ F̃ (W 0) and F ′(W 0) < F̃ ′(W 0) at some W 0 ≥ 0. Then

F ′(W ) < F̃ ′(W ) at all W > W 0.

From here on, by F and F̃ we mean the optimal solution curves under λ and λ̃, respectively.

Proposition 4 F (W ) > F̃ (W ) at all 0 < W ≤ W̃gp, and Wgp > W̃gp.

Intuitively, the above result shows that principal-agent relationships with lower expected du-

ration, i.e., faster rate of arrival of the job-destruction shock, are less profitable to the firm

for any fixed value W the firm might owe to the agent. Further, the upper agent retirement
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point Wgp is always lower in the relationships with lower expected duration. That is, the firm

has a weaker incentive to invest in the agent’s incentives in relationships with a higher risk of

exogenous job destruction.

5.1 Application of the Feynman-Kac formula

Here, we use the approach of Lemma 4 of DeMarzo and Sannikov (2006) to derive the following

formula.

Lemma 4
∂F (W0)

∂λ
= −E

[∫ τ

0
e−(r+λ)tS(Wt)dt

]
< 0, (11)

where τ denotes the time of fist exit of Wt from (0,Wgp).

Further, since S(0) = S(Wgp) = 0 and the dynamics of Wt stop if either of these points is

reached, we can write the above equation as

∂F (W0)

∂λ
= −E

[∫ ∞
0

e−(r+λ)tS(Wt)dt

]
.

Proposition 4 was obtained by a different argument. The above formula provides additional

information of the magnitude of ∂F (W0)
∂λ by relating it to the firm’s option value on the agent’s

effort, S(W ). This expression will allow us to show, numerically, that the firm’s profit is less

sensitive to the job destruction risk with moral hazard than it would be without moral hazard

(i.e., in the first-best contract).

5.2 Profit sensitivity relative to the first best

Differentiating the first-best profit function Ffb given in (7) with respect to λ and using the

envelope condition, we obtain

∂Ffb(W0)

∂λ
= − r

(r + λ)2
(afb + F ′fb(W0)h(afb))

= − 1

r + λ
Sfb(W0)

= −
∫ ∞

0
e−(r+λ)tSfb(W0)dt.

In Section 2.3, we show that Sfb(W0) > 0 for any W0 < W ∗gp. The above formula thus implies

that ∂Ffb(W0)
∂λ < 0, as in the case with moral hazard shown above.
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Figure 6: The function S in the optimal contract with moral hazard and in the first best.

The comparison between ∂F (W0)
∂λ and ∂Ffb(W0)

∂λ is difficult to obtain analytically because the

first-best contract is static. This means that S takes into account two components of the costs

of higher effort: F ′, and F ′′ representing the cost of volatility. In contrast, Sfb only needs to

account for one cost, F ′fb. However, F ′ will generally be less negative than F ′fb, so it is unclear if

two smaller costs are larger than one bigger cost. For this reason, we compare these measures

of sensitivity numerically.

Figure 6 plots S and Sfb in our parametrized example. Since S < Sfb, we have ∂F (W )
∂λ > ∂Ffb(W )

∂λ

for all 0 ≤ W ≤ Wgp, regardless of the fact that the agent’s continuation value process has

complicated dynamics under moral hazard but is reduced to a constant under first best.

6 Sensitivity of compensation front-loading to job destruction

risk

In this section, we briefly discuss the impact of the risk of job destruction on the amount of

compensation front-loading in the optimal contract. We maintain the assumption that F ′0 is

weakly concave.
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Proposition 5 There exists a unique W s such that for all W ∈ [0, W̃gp], c (W ) ≤ c̃ (W ) if

and only if W ≤W s. That is, the contract associated with higher λ involves more front-loaded

payments.

Following the terminology of Sannikov (2008), a contract involves more front-loaded payment

when it pays higher wage now rather than later. Proposition 5 concludes that a more likely

job-destruction shock (higher λ) induces front-loading of wages when the agent’s continuation

utility is low. When the continuation utility is high, the optimal contract front-loads less as

the job-destruction risk increases.

7 Conclusion

In this paper, we study the impact of exogenous job destruction risk on the optimal long-

term contract in an dynamic moral hazard environment. We show that post-job-destitution

payments to the agent are an important incentive device. In particular, they help the firm

control the drift of the agent’s continuation value inside the contract. In the optimal contract,

these payments are used to keep the agent’s continuation value in the region where the firm’s

option value of using the agent’s effort is highest. The contract promises a positive jump in

the agent’s value at job destruction whenever the firm’s option value on the agent’s effort is

decreasing in the agent’s value. Likewise, a negative jump is promised whenever the firm’s

option value is increasing. These promised jumps help keep the state variable near the peak

of the firm’s option value.

In the model without job destruction risk, the optimal contract has two exit points: the low

and high agent retirement points 0 and Wgp, respectively. Job destruction adds the third

contract exit possibility. Further, our analysis suggests that with job destruction the high

retirement exit point becomes unreachable, as the contract dynamics become very slow before

the contract can get there. Only in relationships with very long expected duration, the high

retirement point may remain reachable. This conjecture can be further explored by studying

the limiting contract as the job destruction arrival rate goes to infinity.

Our model can be extended in several interesting directions. Job destruction can be endoge-

nized in a way similar to Mortensen and Pissarides (1994): the job-destruction shock can be

partial, i.e., reducing the productivity of the match to a low but positive level. It is natural

to conjecture that the contract would terminate endogenously (retire the agent at 0 or Wgp)

shortly after the arrival of such a shock. The model can be embedded in a broader labor market

with search, as in Lamadon (2016) and Tsuyuhara (2016), to study the impact of severance

payments on the agent’s search behavior.
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Appendix

Proof of Proposition 1

Above W ∗, the FO condition for W ′ is F ′(W ) = F ′0(W ′(W )). Differentiation yields

F ′′(W ) = F ′′0 (W ′)
dW ′

dW
.

That W ′ is strictly increasing in this region follows from strict concavity of F and F0.

QED

Proof of Proposition 2

Step 1. Differentiating the HJB and canceling out like terms, we get

0 = F ′′r

(
W − u+ h− λ

r
(W ′ −W )

)
+

1

2
F ′′′r2σ2Y 2

= F ′′r

(
h− (1 +

λ

r
)(W ′ −W )

)
+

1

2
F ′′′r2σ2Y 2.

From here we get that W ′−W < 0 implies F ′′′(W ) > 0 (i.e., F ′ must be strictly convex when

∆ < 0).

Step 2. We know F ′(0) > 0 = F ′0(0). We also know that F approaches F0 from above as

W becomes close to Wgp, which means that for ε > 0 small enough, F (W ) > F0(W ) for

all W ∈ (Wgp − ε,Wgp) and F (Wgp) = F0(Wgp). This implies that F ′(W ) < F ′0(W ) for all

W < Wgp close enough to Wgp. Therefore, the number of crossings between F ′ and F ′0 on

(0,Wgp) is odd. We will show that this number is one. If this number is three or more, then

there must exist a point W̃ somewhere between the second and the third crossing at which

F ′ is more concave than F
′
0. (If this was not true, the third crossing of F ′ and F ′0 would not

exist.) Thus, F ′′′(W̃ ) < F ′′′0 (W̃ ) ≤ 0, where the weak inequality uses the assumption of weak

concavity of F
′
0. I.e., F ′ is strictly concave at W̃ . Since W̃ is between the second and the

third crossing of F ′ and F ′0, we have F ′(W̃ ) > F ′0(W̃ ), which implies that W ′(W̃ ) < W̃ . We

obtain a contradiction because we showed in Step 1 that F ′ must be convex when W ′ < W ,

i.e., W ′(W̃ ) < W̃ implies F ′′′(W̃ ) > 0.

Step 3. Denote the unique crossing point between F ′ and F ′0 by Wnj . The sign of ∆(W ) is

the same as the sign of F ′0 − F ′, which is negative for W < Wnj and positive W > Wnj by

the single crossing property shown in Step 2. Also, Wnj > W ∗ follows from F ′(W ∗) = 0,

F ′(Wnj) = F ′0(Wnj) < 0, and F ′ continuous and decreasing.

QED
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Proof of Proposition 3

If the contract reaches either of the two agent retirement points before the shock arrives, then

there is no jump.

For any fixed 0 < W < Wgp, we have

F (W ) > F0(W ). (12)

At Wnj , which satisfies 0 < Wnj < Wgp, we have W ′(Wnj) = Wnj , so if the shock arrives when

Wt = Wnj , the firm loses simply because of the loss of productivity, i.e., because of equation

(12). Indeed, we have F (Wnj) > F0(Wnj) = F0(W ′(Wnj)).

At all Wnj < W < Wgp, the firm loses at shock arrival for two reasons. First, as in the previous

case, because of the productivity loss, i.e., equation (12). Second, the firm loses because the

agent gains and F is strictly decreasing in this region (recall W ∗ < Wnj). Indeed W > Wnj

implies W ′(W ) > W and F strictly decreasing implies F (W ) > F (W ′(W )). Together, we have

F (W ) > F (W ′(W )) > F0(W ′(W )).

At all 0 < W ≤W ∗, the adjustment from W to W ′ still hurts the firm, but its two components

switch signs. The agent gives up value, but this hurts the firm because F is increasing in this

region. In fact, W ′(W ) = 0 < W for all 0 < W ≤ W ∗, so we have F (W ) > 0 = F0(0) =

F0(W ′(W )).

For W ∗ < W < Wnj , we have W ′(W ) < W and F is decreasing, so the jump in W benefits the

firm. Thus, the loss of productivity effect and the jump in W effect work in opposite directions.

We will show that the productivity loss effect is stronger, i.e., the fact that the agent gives up

value does not make up for the loss of productivity.

Because F (W ∗) > 0 = F0(W ′(W ∗)), showing that F (W ) − F0(W ′(W )) is increasing at all

W ∗ < W < Wnj will be sufficient for F (W ) > F0(W ′(W )) at all W ∗ < W < Wnj . We will

show that this is the case. Taking the derivative of F (W ) − F0(W ′(W )) and using the FO

condition F ′(W ) = F ′0(W ′(W )) we have

F ′(W )− F ′0(W ′)
dW ′

dW
= F ′(W )

(
1− dW ′

dW

)
,

which means that it is sufficient to show that dW ′

dW > 1 at all W ∗ < W < Wnj . We know that

W ′(W ∗) = 0 and W ′(Wnj) = Wnj , so W ′ starts below the 45 degrees line and catches up to it

over the interval W ∗ < W < Wnj , but we need to show that the catching up has no gaps.

Differentiating the FO condition F ′(W ) = F ′0(W ′(W )) yields

F ′′(W ) = F ′′0 (W ′)
dW ′

dW
.
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We have F ′′(W ) < F ′′(Wnj) ≤ F ′′0 (Wnj) ≤ F ′′0 (W ′). The first inequality follows from the strict

convexity of F ′ at all W < Wnj by Step 1 in the proof Proposition 2. The second inequality

follows from the fact that F ′ crosses F ′0 from above at Wnj . The third inequality follows from

the (weak) concavity of F ′0 and W ′ < W < Wnj . Finally, from F ′′(W ) < F ′′0 (W ′) < 0 it follows

that F ′′(W )/F ′′0 (W ′) > 1, which implies

dW ′

dW
= F ′′(W )/F ′′0 (W ′) > 1.

QED

Proof of Lemma 1

For the expected time T , define H =
∫∞

0 1s<θ1s<τds, where θ is the arrival time of the job-

destruction shock, and τ is the time when Wt hits 0 or Wgp. Define a martingale Ht as

Ht = Et[H] =
∫ t

0 Et[1s<θ]1s<τds + Et[1t<θ]E[
∫∞
t 1s<θ1s<τds|Ft, t < θ] =

∫ t
0 e
−λs1s<τds +

e−λt1t<τT (Wt). If t < τ , then its drift is

e−λt
(

1 + T ′(W )((r + λ)(W − u) + rh) +
1

2
T ′′(W )(rσY )2 − λT (W )

)
,

which must be zero.

For the exit probability functions P , the argument is similar.

Proof of Lemma 2

Let Ft be the information set containing the sample path of the diffusion process of Wt, and

let Gt be the information set containing the realization of the job-destruction shock. Ft and

Gt are independent. We denote E[·|Ft] as Et[·] to simplify notation.

For the revenue function R, define H =
∫∞

0 1s<θ1s<τre
−rsasds, and a martingale Ht = Et[H] =∫ t

0 Et[1s<θ]1s<τre−rsasds+Et[1t<θ]1t<τe−rtR(Wt) =
∫ t

0 re
−(r+λ)s1s<τasds+e

−(r+λ)t1t<τR(Wt).

If t < τ , then its drift is

e−(r+λ)t

(
rat +R′(W )((r + λ)(W − u) + rh) +

1

2
R′′(W )(rσY )2 − (r + λ)R(W )

)
,

which must be zero because Ht is a martingale.

For the wage bill B, define c̃t = ct∧τ and H =
∫∞

0 re−rs(1s<θ c̃s + 1s≥θ c̃θ)ds =
∫ θ

0 re
−rsc̃sds +
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e−rθ c̃θ. Define the martingale as

Ht = Et[H]

= Et
[∫ θ∧t

0
re−rsc̃sds+ 1θ≥t

∫ θ

t
re−rsc̃sds

]
+ Et[1θ<te−rθ c̃θ + 1θ≥te

−rθ c̃θ]

= Et
[∫ θ∧t

0
re−rsc̃sds+ 1θ<te

−rθ c̃θ

]
+ Et

[
1θ≥t

(∫ θ

t
re−rsc̃sds+ e−rθ c̃θ

)]
=

∫ t

0
Et[1θ≥s]re−rsc̃sds+ Et[1θ<te−rθ c̃θ] + Et[1θ≥t]E

[(∫ θ

t
re−rsc̃sds+ e−rθ c̃θ

)
|Ft, θ ≥ t

]
=

∫ t

0
re−(r+λ)sc̃sds+

∫ t

0
λe−λse−rsc̃sds+ e−λte−rtB(Wt)

=

∫ t

0
(r + λ)e−(r+λ)sc̃sds+ e−(r+λ)tB(Wt).

If t < τ , then its drift is

e−(r+λ)t

(
(r + λ)ct +B′(W )((r + λ)(W − u) + rh) +

1

2
B′′(W )(rσY )2 − (r + λ)B(W )

)
= 0.

QED

Proof of Lemma 3

Let us use the following notation

Ha,Y,c;λ(W,F, F ′) :=
(1 + λ

r )(F − F ′(W − u(c)) + c)− a− F ′h(a)
1
2rσ

2Y 2
.

By contradiction, let’s define W 1 as the smallest point at which F ′(W 1) = F̃ ′(W 1). Because

F (W 0) ≤ F̃ (W 0) and F ′(W ) < F̃ ′(W ) at all W ∈ [W 0,W 1), we have F (W 1) < F̃ (W 1), and

F ′′(W 1) ≤ Ha,Y,c;λ(W 1, F (W 1), F ′(W 1)) < Ha,Y,c;λ̃(W 1, F̃ (W 1), F̃ ′(W 1)) = F̃ ′′(W 1),

where (a, Y, c) are controls that attain F̃ ′′(W 1). The strict inequality is true becauseHa,Y,c;λ(W,F, F ′)

is strictly increasing in F and increasing in λ. This implies F ′(W 1 − ε) > F̃ ′(W 1 − ε) for a

sufficiently small ε > 0, which contradicts the definition of W 1.

QED

Proof of Proposition 4

1. Fix F and take a candidate solution for F̃ . Because λ̃ > λ, F ′(0) = F̃ ′(0) implies F ′(W ) <

F̃ ′(W ) for all W > 0, which shows that the solution F̃ never returns to F0 so it is not a feasible
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candidate for an optimal contract. Lemma 3 now implies that F ′(0) > F̃ ′(0) at the optimal

solution F̃ . Thus, F (ε) > F̃ (ε) for all sufficiently small ε > 0.

2. We show that F and F̃ must meet on (0,Wgp], i.e., it cannot be that F (W ) > F̃ (W ) for all

(0,Wgp]. Indeed, we’d have F0(Wgp) = F (Wgp) > F̃ (Wgp), which contradicts F0 ≤ F̃ .

3. Let Ŵ ≤ Wgp be the smallest W > 0 where F and F̃ have the same value. We show that

W̃gp ≤ Ŵ . If not, then Lemma 3 implies that F̃ never returns to F0, so W̃gp does not exist,

which is a contradiction.

4. There are two possibilities: W̃gp = Ŵ = Wgp and W̃gp < Ŵ < Wgp. We show that the first

is not the case. Indeed, with W̃gp = Wgp the value matching and smooth pasting conditions

F (Wgp) = F̃ (Wgp) = F0(Wgp),

F ′(Wgp) = F̃ ′(Wgp) = F ′0(Wgp)

imply

S(Wgp) = S̃(Wgp) = F0(Wgp)− max
W ′≥0

{
F ′0(Wgp)(Wgp −W ′) + F0(W ′)

}
= 0.

Plugging S(Wgp) = S̃(Wgp) = 0 into the HJB equation and applying an Envelope Theorem,

we obtain F ′′(Wgp) = F̃ ′′(Wgp) and hence a(Wgp) = ã(Wgp) and F ′′′(Wgp) = F̃ ′′′(Wgp). Re-

peating the same argument after differentiating the first-order condition for a at Wgp, we have

F (4)(Wgp) < F̃ (4)(Wgp), since dW ′ (Wgp) /dW = dW̃ ′ (Wgp) /dW < 1. Thus there exists ε > 0

such that F ′′′(W ) > F̃ ′′′(W ), F ′′(W ) < F̃ ′′(W ) and F ′(W ) > F̃ ′(W ) for allW ∈ [Wgp−ε,Wgp),

which contradicts the fact that F̃ ′(W ) is cutting F ′(W ) from above at W = Wgp. Thus, we

must have W̃gp < Ŵ < Wgp.

QED

Proof of Lemma 4

Differentiating the HJB (8) wrt λ, we have

∂F (W )

∂λ
=

−r
(r + λ)2

(
a+ F ′(W )h(a) +

1

2
F ′′(W )rσ2Y 2

)
+

r

r + λ

(
∂F (W )

∂λ

)′
h(a) +

r

r + λ

1

2

(
∂F (W )

∂λ

)′′
rσ2Y 2 +

(
∂F (W )

∂λ

)′
(W − u(c))
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Denoting ∂F (W )
∂λ as G(W ), we have a second-order differential equation

G(W ) =
−1

r + λ

r

r + λ

(
a+ F ′(W )h(a) +

1

2
F ′′(W )rσ2Y 2

)
+G′(W )

(
W − u(c) +

r

r + λ
h(a)

)
+

r

r + λ

1

2
G′′(W )rσ2Y 2

=
−1

r + λ
S(W ) +G′(W )

(
W − u(c) +

r

r + λ
h(a)

)
+

r

r + λ

1

2
G′′(W )rσ2Y 2,

or

(r + λ)G(W ) = −S(W ) +G′(W ) ((r + λ)(W − u(c)) + rh(a)) +
1

2
G′′(W )r2σ2Y 2, (13)

with boundary conditionsG(0) = G(Wgp) = 0, where S(W ) = r
r+λ(a+F ′(W )h(a)+1

2F
′′(W )rσ2Y 2)

is a known function, and where W follows

dWt = ((r + λ)(Wt − u(c)) + rh(a))dt+ rY σdZt.

As before, we denote drift of Wt by µ and its volatility by ν.

The derivation of the equality in (11) follows DeMarzo and Sannikov (2006). Let

Ht := −
∫ t

0
e−(r+λ)sS(Ws)ds+ e−(r+λ)tG(Wt).

We have

dHt = −e−(r+λ)tS(Wt)dt− (r + λ)e−(r+λ)tG(Wt)dt+ e−(r+λ)tdG(Wt),

and thus, using Ito’s lemma,

e(r+λ)tdHt = −S(Wt)dt− (r + λ)G(Wt)dt+

(
G′(Wt)µ(Wt) +

1

2
ν(Wt)

2G′′(Wt)

)
dt+

G′(Wt)ν(Wt)dZt.

The dt terms sum up to zero by (13), and E [Ht] is bounded, i.e., Ht is a martingale. Thus,

G(W0) = H0 = E [Hτ ] = E
[
−
∫ τ

0
e−(r+λ)tS(Wt)dt+ e−(r+λ)τG(Wτ )

]
,

which, with the boundary conditions G(Wτ ) = ∂F (W )
∂λ

∣∣∣
W=0

= ∂F (W )
∂λ

∣∣∣
W=Wgp

= 0, which gives

us the equality in (11).

To verify the boundary conditions at exit time, consider first
∂F (Wgp)

∂λ , where Wgp also depends

on λ. Differentiating the value-matching condition F (Wgp) = F0(Wgp) totally with respect to

λ, we have
∂F (Wgp)

∂λ
+ F ′(Wgp)

∂Wgp

∂λ
= F ′0(Wgp)

∂Wgp

∂λ
,
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so,
∂F (Wgp)

∂λ
= (−F ′(Wgp) + F ′0(Wgp))

∂Wgp

∂λ
= 0,

where the second inequality uses the smooth-pasting condition. The other boundary condition

is easy to verify because F (0) = 0 at all λ, so obviously ∂F (0)
∂λ = 0.

The strict inequality in (11), i.e., G(W0) < 0, follows from S > 0 everywhere in (0,Wgp).

QED

Proof of Proposition 5

It is equivalent to prove that there exists a unique W s ∈ [0,Wgp] such that F ′(W ) ≥ F̃ ′(W ) if

and only if W ≤W s.

0. Suppose W̃gp ≤ Wnj . We want to show that there does not exist W s < W̃gp that solves

F ′ (W s) = F̃ ′ (W s). Since F ′ (0) > F̃ ′ (0), the fact that W̃gp < Wnj implies F̃ ′(W̃gp) =

F ′0(W̃gp) < F ′(W̃gp) following Proposition 2. So, generically, either there exists an even number

of W s solving F ′ (W s) = F̃ ′ (W s), or the solution does not exist.

1. Suppose there are at least two solutions, denoted as W 1 and W 2, where W 1 < W 2 < W̃gp,

such that F ′(W j) = F̃ ′(W j) for j = 1, 2. The fact that the signs of second derivative alternate,

i.e., F ′′(W 1) < F̃ ′′(W 1) and F ′′(W 2) > F̃ ′′(W 2) implies

(1 +
λ

r
)S(W 1) < (1 +

λ̃

r
)S̃(W 1),

(1 +
λ

r
)S(W 2) > (1 +

λ̃

r
)S̃(W 2).

Notice that by construction we have

F ′(W ) < F̃ ′(W ) for W ∈
(
W 1,W 2

)
.

And there exist W 1.5 such that W 1 < W 1.5 < W 2 and

F ′′(W 1.5) = F̃ ′′(W 1.5) (14)

F ′′(W ) < F̃ ′′(W ) for W ∈ [W 1,W 1.5),

F ′′(W ) > F̃ ′′(W ) for W ∈
(
W 1.5,W 2

)
.

The goal is to contradict the equality.
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2. For any W ∈
(
W 1.5,W 2

)
, the fact that F ′(W ) < F̃ ′(W ) and W < Wgp < Wnj implies

W̃ ′ (W ) < W ′ (W ) < W . The derivative of S (W ) is given by

S′ (W ) = −F ′′(W )(W −W ′ (W )),

< −F̃ ′′(W )(W̃ − W̃ ′ (W )),

= S̃′ (W ) .

Then the premise that (1 + λ
r )S

(
W 2
)
> (1 + λ̃

r )S̃
(
W 2
)

implies

⇒ (1 +
λ

r
)

(
S
(
W 1.5

)
+

∫ W 2

W 1.5

S′ (W ) dW

)
> (1 +

λ̃

r
)S̃
(
W 2
)
,

⇒ (1 +
λ

r
)S
(
W 1.5

)
+ (1 +

λ̃

r
)

∫ W 2

W 1.5

S̃′ (W ) dW > (1 +
λ̃

r
)S̃
(
W 2
)
,

⇒ (1 +
λ

r
)S
(
W 1.5

)
> (1 +

λ̃

r
)S̃
(
W 1.5

)
,

which contradicts (14). In this case Proposition 5 holds by setting W s = W̃gp.

3. [Existence of W s and odd number of crossing points.] Suppose W̃gp ∈ (Wnj ,Wgp). From

Proposition 4, we have that F̃ ′(0) < F ′(0). We also have F̃ ′(W̃gp) = F̃0(W̃gp) > F ′(W̃gp),

where the equality is the smooth-pasting condition and the inequality follows from Proposition

2 because W̃gp ∈ (Wnj ,Wgp). Thus, F̃ ′ and F ′ cross on (0, W̃gp), and the number of crossing

points W s ∈ (0, W̃gp), i.e., solutions to F̃ ′(W s) = F ′(W s), is odd.

4. Suppose there are at least three solutions, denoted as W 1, W 2, and W 3, where W 1 < W 2 <

W 3, such that F ′(W j) = F̃ ′(W j) for j = 1, 2, 3. The fact that the signs of second derivative

alternate, i.e. F ′′(W 1) < F̃ ′′(W 1), F ′′(W 2) > F̃ ′′(W 2) and F ′′(W 3) < F̃ ′′(W 3) implies

(1 +
λ

r
)S
(
W 1
)

< (1 +
λ̃

r
)S̃
(
W 1
)
,

(1 +
λ

r
)S
(
W 2
)

> (1 +
λ̃

r
)S̃
(
W 2
)
,

(1 +
λ

r
)S
(
W 3
)

< (1 +
λ̃

r
)S̃
(
W 3
)
.

Notice that by construction we have

F ′(W ) < F̃ ′(W ) for W ∈
(
W 1,W 2

)
,

F ′(W ) > F̃ ′(W ) for W ∈
(
W 2,W 3

)
.
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And there exist W a, W b and W c such that W 1 < W a < W 2 < W b < W c < W 3 and

F ′′ (W a) = F̃ ′′(W a) (15)

F ′′(W b) = F̃ ′′(W b) (16)

F ′′(W ) > F̃ ′′(W ) for W ∈ (W a,W b),

F ′′(W ) < F̃ ′′(W ) for W ∈ (W b,W c).

The goal is to contradict the two equalities.

5. Consider two cases: W 2 < Wnj and W 2 ≥ Wnj . In the case of W 2 < Wnj , for any

W ∈
(
W 1,W 2

)
, the fact that F ′(W ) < F̃ ′(W ) implies W̃ ′ (W ) < W ′ (W ); the fact that

W a < W < W 2 < Wnj implies W ′ (W ) < W and F ′′(W ) > F̃ ′′(W ). The derivative of S (W )

is given by

0 < S′ (W ) = −F ′′(W )
(
W −W ′ (W )

)
,

< −F̃ ′′(W )
(
W −W ′ (W )

)
,

< −F̃ ′′(W )
(
W − W̃ ′ (W )

)
,

= S̃′ (W ) .

Then the premise that (1 + λ
r )S

(
W 2
)
> (1 + λ̃

r )S̃
(
W 2
)

implies

(1 +
λ

r
)

(
S (W a) +

∫ W 2

Wa

S′ (W ) dW

)
> (1 +

λ̃

r
)S̃
(
W 2
)
,

⇒ (1 +
λ

r
)S (W a) + (1 +

λ̃

r
)

∫ W 2

Wa

S̃′ (W ) dW > (1 +
λ̃

r
)S̃ (W2) ,

⇒ (1 +
λ

r
)S (W a) > (1 +

λ̃

r
)S̃ (W a) ,

⇒
(1 + λ

r )S (W a)− a− F ′(W a)h(a)
1
2rσ

2(h′(a))2
>

(1 + λ̃
r )S̃ (W a)− a− F̃ ′(W a)h(a)

1
2rσ

2(h′(a))2
,

which contradicts (15).

6. In the second case W 2 ≥Wnj , for any W ∈
(
W 2,W 3

)
, the fact that F ′(W ) > F̃ ′(W ) implies

W̃ ′ (W ) > W ′ (W ) > W . Then the premise that F ′′
(
W b
)

= F̃ ′′
(
W b
)

implies S′
(
W b
)
>

S̃′
(
W b
)
, thus there exists ε > 0 such that W b + ε ≤ W c and 0 > S′ (W ) > S̃′ (W ) for all

W ∈ [W b,W b + ε). The fact that F ′′
(
W b
)

= F̃ ′′
(
W b
)

implies

(1 + λ
r )S

(
W b
)
− a− F ′(W b)h(a)

1
2rσ

2(h′(a))2
=

(1 + λ̃
r )S̃

(
W b
)
− a− F̃ ′(W b)h(a)

1
2rσ

2(h′(a))2
,

⇒
(1 + λ

r )S
(
W b + ε

)
− a− h(a)F ′(W b + ε)

1
2rσ

2(h′(a))2
>

(1 + λ̃
r )S̃

(
W b + ε

)
− a− h(a)F̃ ′(W b + ε)

1
2rσ

2(h′(a))2
,

⇒ F ′′(W b + ε) > F̃ ′′(W b + ε),
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which contradicts the premise that F ′′(W ) < F̃ ′′(W ) for W ∈
(
W b,W c

)
.

QED
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