
The COVID-19 pandemic has presented chal-
lenges for forecasting and policy design. We 
confront these issues using a statistical time 
series model — developed in Ho, Lubik, and 
Matthes (2020) — that captures the dynamics 
of the COVID-19 pandemic in the fifty U.S. states 
and Washington D.C.1 In this brief, we focus on 
North Carolina and Washington, D.C., as illustra-
tive examples.

To model the dynamics of COVID-19, we first 
note that the time path of infections during 
a pandemic follows a typical pattern. When a 
pathogen enters a population that is susceptible 
to infection, the number of cases is low initially. 
However, the growth rate of new infections is 
high and tends to be exponential because each 
infected person creates a chain of new infections. 
But at some point, the pathogen runs out of sus-
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We discuss a statistical time series model to capture and forecast the dy-
namics of COVID-19 in the fifty U.S. states and Washington, D.C. We design 
the model to replicate the typical pattern of infections during a pandemic. 
We rely on Bayesian methods, which provide a straightforward way to 
quantify the uncertainty surrounding our estimates and forecasts. In this 
brief, we focus on North Carolina and Washington, D.C., since they have 
experienced different trajectories of COVID-19 and may have different impli-
cations for the efficacy of our approach. 
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ceptible hosts because they are already infected, 
immune, or simply not physically present be-
cause of health policies such as social distancing. 
At this inflection point, the growth rate decreases 
until it eventually hits zero.

We replicate this broad pattern by specifying a 
flexible functional form that describes the path 
of infections over time. In addition, we allow 
the number of deaths to depend flexibly on the 
daily number of new cases up to thirty-five days 
prior. In contrast to theoretical epidemiologi-
cal models, our empirical specifications have 
more leeway to follow the data and are not 
constrained by precise theoretical relationships 
that may be specified incorrectly. The model is 
able to fit the path of the pandemic in the fifty 
U.S. states and D.C., producing forecasts that 
perform well.
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In addition, our modeling approach explicitly re-
flects the uncertainty of this model’s estimates and 
the uncertainty inherent in forecasting the trajec-
tory of a virus. The precision of a forecast — or how 
tightly other possible forecast paths are concentrat-
ed around the most plausible path — is generally 
affected by two factors: first, the uncertainty of the 
model’s estimates in terms of overall fit and param-
eter estimates; and second, the extent to which 
the model may be subject to further disturbances 
or imprecise data collection in the future. We take 
both factors into account to give a sense of how 
uncertain forecasts in a pandemic truly are.

We extend the model in a panel dimension and 
introduce time variation in the parameters. The panel 
dimension captures and uses the differences across 
U.S. states because the dramatic contrast in out-
comes between, for instance, New York and Califor-
nia makes it clear that understanding differences, 

even within one country, is an important component 
in addressing the public-health challenge. In addi-
tion, we allow the parameters in our model to de-
pend on time-varying, state-level measures of social 
distancing and testing, providing an estimate of the 
relationship between these variables and the trajec-
tory of cases.

The Evolution of Forecasts over Time
As the COVID-19 pandemic unfolds across the United 
States, not only do the model’s predictions update 
to reflect the new data, but the uncertainty around 
those predictions also changes. We illustrate this 
evolution for Washington, D.C., and North Carolina 
in Figure 1, where we show 95 percent forecast error 
bands for forecasts taken from May 17, June 14, and 
August 8, 2020. The bands for the three forecasts are 
denoted by the blue, red, and green lines, respec-
tively. A wider gap between lines of the same color 
indicates greater uncertainty for that forecast.

Figure 1: COVID-19 Forecasts (Dotted Lines) with 95 Percent Error Bands (Actual Data in Gray)
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Source: Paul Ho, Thomas A. Lubik, and Christian Matthes, “How To Go Viral: A COVID-19 Model with Endogenously Time-Varying Parameters,” 
Federal Reserve Bank of Richmond Working Paper No. 20-10, August 2020.
Notes: Forecasts begin on May 17 (blue), June 14, (red), and August 8, 2020, (green). Dotted lines indicating the lower bounds of the error bands 
are difficult to see in the bottom panels (new deaths) because they overlap along zero.

400

300

200

100

20

15

10

5

4000

3000

2000

1000

150

100

50

New Cases (DC)

New Deaths (DC)

New Cases (NC)

New Deaths (NC)

0

100

200

300

400

3/17/2020
0:00

4/17/2020
0:00

5/17/2020
0:00

6/17/2020
0:00

7/17/2020
0:00

8/17/2020
0:00

9/17/2020
0:00

New Cases (DC)

fcast_1_l fcast_1_h fcast_2_l fcast_2_h
fcast_3_l fcast_3_h data

0

1000

2000

3000

4000

3/15/2020
0:00

4/15/2020
0:00

5/15/2020
0:00

6/15/2020
0:00

7/15/2020
0:00

8/15/2020
0:00

9/15/2020
0:00

New Cases (NC)

fcast_1_l fcast_1_h fcast_2_l fcast_2_h

fcast_3_l fcast_3_h data

0

5

10

15

20

3/17/2020
0:00

4/17/2020
0:00

5/17/2020
0:00

6/17/2020
0:00

7/17/2020
0:00

8/17/2020
0:00

9/17/2020
0:00

New Deaths (DC)

Series1 Series2 Series3 Series4

Series5 Series6 Series7

0

50

100

150

3/15/2020
0:00

4/15/2020
0:00

5/15/2020
0:00

6/15/2020
0:00

7/15/2020
0:00

8/15/2020
0:00

9/15/2020
0:00

New Deaths (NC)

fcast_1_l fcast_1_h fcast_2_l fcast_2_h

fcast_3_l fcast_3_h data



Although the forecasts are largely borne out by the 
data, we find substantial updates in the forecast 
levels and variances. In D.C., the forecasts are almost 
identical when taken from May 17 and June 14. 
However, by August 8, not only is the forecast revised 
upward, but the error bands become substantially 
wider. With the second peak in cases at the end 
of July, uncertainty about the model’s parameters 
increased, as it was unclear whether the spike in daily 
cases was a temporary deviation from the previously 
predicted decline or a fundamental change in the 
long-run trend. Even if the increase was only tempo-
rary, it indicated the possibility of large disturbances 
that could lead to greater volatility in the future path 
of the pandemic. In North Carolina, the forecasts are 
revised upward and become more uncertain be-
tween May 17 and June 14 but tighten significantly 
by August 8, especially at longer horizons. The sharp 
increase in cases between May 17 and June 14 plays 
a similar role to the D.C. data in the second half of 
July, causing increased forecast variance from both 
parameter uncertainty and shock volatility. How-
ever, by August 8, North Carolina had experienced a 
distinct peak in cases, and error bands narrowed to 
reflect tighter parameter estimates.

The Effects of Policy Measures 
on Time Variation in the Parameters
Our panel model allows for a specific form of time 
variation in the parameters in that we assume they 
depend on observed factors. To choose these predic-
tors, we assess how likely and important they are in 
affecting the time path of a pandemic. We focus on 
two variables. First, we allow the path of infections 
to depend on the Mobility and Engagement Index 
(MEI), which measures the degree of social distanc-
ing in terms of a broad index of travel.2 The MEI is de-
rived from geolocation data from millions of mobile 
phones, which show density and frequency of travel 
activity and its direction. For instance, these data 
would reflect the number of trips taken to the local 
mall. Next, we allow both the path of infections and 
the mortality rate to depend on the positive test rate, 
defined as the ratio of reported cases to number of 
tests performed, which indicates the intensity of test-
ing in each state. (A lower positive test rate generally 
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indicates more extensive testing.) While neither of 
these metrics is strictly controlled by government or 
health authorities, they can be influenced by policy 
to some extent. For instance, the degree of social 
distancing can be mandated by lockdowns or travel 
restrictions, and it also can be driven by personal 
decisions. Similarly, the availability of testing kits 
can be supported financially and logistically by lo-
cal and federal authorities, but it also depends on 
investment from the private sector.

We conduct the following experiments, which are 
depicted in Figure 2 on the following page. Using 
North Carolina and Washington, D.C., as examples, 
we plot the model-implied paths of cases and 
deaths in the absence of disturbances under the 
median estimates for the two states. We compare 
these trajectories to those associated with different 
possible paths for the MEI and positive test rate in 
both North Carolina and Washington, D.C. The paths 
for the MEI and the testing variables are chosen to 
reflect the underlying data.

Under this baseline calibration (shown in gray), 
the pandemic in D.C. (top left panel) led to a quick 
increase in new cases reaching a peak of around 
350 per day about one month after the initial cases 
were reported. The number of new cases declined 
quickly beyond that peak but then declined only 
slowly to the point where 150 days into the pan-
demic, it cannot be considered over. North Carolina 
is naturally different in terms of the number of cases 
(top right panel), but the pattern of infections is 
similar, albeit much more drawn out. North Caro-
lina reaches a peak of new infections about 120 days 
after the first reported cases, with an even slower 
decline after the peak. In terms of deaths (bottom 
panels), the timelines and patterns are similar since 
the model implies that deaths follow infections 
with a lag. Qualitatively, the baseline trajectories 
match the empirical path of infections and deaths 
reported in both D.C. and North Carolina.

We first consider the experiment of a time path for 
the MEI that implies a high level of social distancing. 
This could be government-imposed or self-directed 
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suggests alternative policy paths could have reduced 
the spread of the virus in North Carolina.

We also consider how the model-implied path 
changes when the positive test rate is decreased 
from 10 percent to 5 percent. In Figure 2, the paths 
corresponding to the 5 percent positive test rate, 
which is associated with more testing than the base-
line, are denoted by the red dotted lines. In D.C., we 
find that more extensive testing is associated with 
a larger number of reported cases, with a peak of 
approximately 800 new cases per day instead of 350 
(top left panel). However, the peak for the model-
implied path for new deaths (bottom left panel) 
remains unchanged, suggesting that the increase 
in reported cases comes primarily from improved 
detection rather than an actual increase in COVID-19 
infections. A lower positive test rate typically corre-
sponds to more asymptomatic or mildly symptom-
atic patients being tested, leading to a lower number 

as risk awareness grows in the population. While the 
baseline path of the MEI was chosen to be similar 
to the actual path in North Carolina, the alternative 
with a high level of social distancing more closely 
resembles the path that was followed by D.C. The 
implied time paths for deaths and infections in the 
two localities are shown as dotted blue lines. In the 
case of Washington, D.C., the implied outcome under 
more social distancing almost exactly coincides with 
the baseline estimation. This suggests that, given the 
specific conditions in the nation’s capital, the higher 
level of social distancing did not lead to a substan-
tially lower number of cases. In contrast, for North 
Carolina, more social distancing would have led to 
cutting the number of infections and more impor-
tantly the number of deaths in half. While other 
considerations may have come into play, such as the 
structure of the economy in Washington, D.C., where 
a larger fraction of the population might have been 
able to work from home, our counterfactual analysis 

Figure 2: COVID-19 Modeling Experiments with Different Levels of Social Distancing and Testing in DC and NC
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Source: Authors’ calculations based on results from Paul Ho, Thomas A. Lubik, and Christian Matthes, “How To Go Viral: A COVID-19 Model 
with Endogenously Time-Varying Parameters,” Federal Reserve Bank of Richmond Working Paper No. 20-10, August 2020.
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of deaths per reported cases since a larger pool of 
tested individuals tends to include more lower-risk 
people. These results emphasize that the interpreta-
tion of reported case numbers depends on the level 
of testing in a locality. For North Carolina, our model 
associates the increase in testing with a reduction 
in cases by slightly less than half and a reduction in 
deaths by about two-thirds. These results suggest 
that greater testing in North Carolina could have 
decreased the number of infections by, for instance, 
enabling infected individuals to quarantine earlier 
and avoid spreading the virus.

A key observation from our numerical experiments 
is that the effect of policies can vary across localities. 
Countries, states, and cities differ along many dimen-
sions, including demographics, industry composi-
tion, and population density. These factors not only 
influence the spread of the virus but can also affect 
the outcome of policy interventions, such as lock-
downs or increased testing. Furthermore, local condi-
tions also impact the spillover of public-health policy 
into the economy.

Our analysis can only be suggestive. It is subject to 
the criticism that the behavior of a reduced-form 
relationship changes when underlying policy vari-
ables, in our case, the MEI and positive test rates, 
change, so that inference about future outcomes is 
unreliable. More specifically, a high number of cases 
likely leads to more stringent social distancing mea-
sures, so that the MEI cannot be considered exog-
enous. Therefore, statements to the effect that social 
distancing causes the number of cases to change 
are imprecise in that they likely underestimate the 
effect. Nevertheless, we would advocate for coun-
terfactual analysis like this as a tool to understand 
how the dynamics of a virus’s spread change with 
policy-relevant measures.

Conclusion
In this brief, we highlight a statistical model of the 
COVID-19 pandemic in the United States. We built 
the model around insights from epidemiological 
research into how pandemics evolve over time, but 
the model also allows for flexibility in how patterns 
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of infections and deaths are described in aggregate 
and state-level data. The model is able to fit the time 
path of the pandemic across the fifty U.S. states and 
Washington D.C., while providing transparent quanti-
fication of forecast uncertainty. In addition, the model 
allows for a form of time variation in its parameters 
in that they depend on variables that likely influence 
the shape and time path of the pandemic. The time 
variation allows us to perform counterfactual policy 
analysis, to some extent, by positing alternative 
paths of exogenous, perhaps policy-driven, factors 
and tracing out their impact on the forecast.

There is a tradeoff between the parsimony and trans-
parency of our statistical model with the detail of 
more sophisticated models. For example, our model’s 
predictions are predicated on assumed paths for 
social distancing and testing. These are not perfectly 
controlled by policy. Their future paths are uncertain 
and can also be influenced by the path of the pan-
demic. In addition, we have omitted numerous other 
variables, such as demographics and industry com-
position, that may further influence the outcomes 
of the pandemic. Despite these simplifications, our 
model captures the striking and complex ways that 
new data and the specifics of a locality can influence 
the predicted path of the virus and its response 
to policy.

Paul Ho is an economist and Thomas A. Lubik is a 
senior advisor in the Research Department at the 
Federal Reserve Bank of Richmond. Christian Matthes 
is an associate professor of economics at Indiana 
University.

Endnotes
  1   For a more detailed description of the model and results for 

each state and Washington, D.C., see Paul Ho, Thomas A. Lubik, 
and Christian Matthes, “How To Go Viral: A COVID-19 Model 
with Endogenously Time-Varying Parameters,” Federal Reserve 
Bank of Richmond Working Paper No. 20-10, August 2020.

  2   The Federal Reserve Bank of Dallas produces the Mobility and 
Engagement Index, which summarizes information from seven 
different variables based on geolocation data collected from 
mobile devices to gain insight into the economic impact of the 
pandemic. The MEI measures the deviation from normal mobil-
ity behavior induced by COVID-19.

https://www.richmondfed.org/publications/research/working_papers/2020/wp_20-10
https://www.richmondfed.org/publications/research/working_papers/2020/wp_20-10
https://www.dallasfed.org/research/mei.aspx
https://www.dallasfed.org/research/mei.aspx
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