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ARCH models provide parsimonious approximations to volatility dynamics and have found 
wide use in macroeconomics and finance. The family of ARCH models is the subject of this 
paper. In section Il, we sketch the rudiments of a rather general univariate time-series model, 
allowing for dynamics in both the conditional mean and variance. In section m, we provide 
motivation for the models. In section IV, we discuss the properties of the models in depth, 
and in section V, we discuss issues related to estimation and testing. In Section VI, we detail 
various important extensions and applications of the model. We conclude in section VIl with 
speculations on productive directions for future research. 
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I. Introduction 

Good macroeconomic and financial theorists, like all good theorists, want to get the 
facts straight before theorizing; hence, the explosive growth in the methodology and 
application of time-series econometrics in the last 25 years. Many factors fueled that growth, 
Illllging from important developments in related fields (e.g., Box and Jenkins, 1970) to 
dissatisfaction with the "incredible identifying restrictions" associated with traditional 
macroeconometric models (Sims, 1980) and the associated recognition that many tasks of 
interest, such as forecasting, simply do not require a structural model (e.g., Granger and 
Newbold, 1979). A short list of active subfields includes vector autoregressions, index and 
dynamic factor models, causality, integration and persistence, cointegration, seasonality, 
unobserved-components models, state-space representations and the Kalman filter, regime­
switching models, nonlinear dynamics and optimal nonlinear filtering. Any such list must also 
include models of volatility dynamics. ARCH models, in particular, provide parsimonious 
approximations to volatility dynamics and have found wide use in macroeconomics and 
finance. 1 The family of ARCH models is the subject of this chapter. 

Economists are typically introduced to heteroskedasticity in cross-sectional contexts, 
such as when the variance of a cross-sectional regression disturbance depends on one or more 
of the regressors. A classic example is the estimation of Engel curves by weighted least 
squares, in light of the fact that the variance of the disturbance in an expenditure equation may 
depend on income. Heteroskedasticity is equally pervasive in the time-series contexts 
prevalent in macroeconomics and finance. For example, in Figures 1 and 2, we plot the log of 
daily Deutschemark/Dollar and Swiss Franc/Dollar spot exchange rates, as well as the daily 
returns and squared returns, 1974--1991. Volatility clustering (that is, contiguous periods of 
high or low volatility) is apparent. However, models of cross-sectional heteroskedasticity are 
not useful in such cases because they are not dynamic. ARCH models, on the other hand, 
were developed to model such time-series volatility fluctuations. Engle (1982) used them to 



model the variance of inflation, and more recently they have enjoyed widespread use in 

modeling asset return volatility. 

Exhaustive surveys of the ARCH literature already exist, including Engle and 

Bollerslev (1986), Bollerslev, Chou and Kroner (1992), Bera and Higgins (1993) and 

Bollerslev, Engle and Nelson (1994), and it is not our intention to produce another. Rather, 

we shall provide a selective account of certain aspects of conditional volatility modeling that 

are of particular relevance in macroeconomics and finance. In section II, we sketch the 

rudiments of a rather general univariate time-series model, allowing for dynamics in both the 

conditional mean and variance. We introduce the ARCH and generalized ARCH (GARCH) 

models there. In section ID, we provide motivation for the models. In section IV, we discuss 

the properties of the models in depth, and in section V, we discuss issues related to estimation 

and testing. In Section VI, we detail various important extensions and applications of the 

model. We conclude in section VII with speculations on productive directions for future 

research. 

II. A Time-series Model with Conditional Mean and Variance Dynamics 

Wold's (1938) celebrated decomposition theorem establishes that any covariance 

stationary stochastic process { xJ may be written as the sum of a linearly deterministic 

component and a linearly indeterministic component with a square-summable, one-sided 

moving average representation.2 We write x, = cl,+ y., where cl, is linearly deterministic and 

y, is a linearly regular (or indeterministic) covariance stationary stochastic process (LRCSSP) 

given by 

y1 = B(L) e,, - -
B(L) = Lb; Li, L b/ < 00, b0 = 1, 

i=O i=O 

E[ e e ] = { a~ < 00
, if t = -r 

' ' 0, otherwise. 
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The uncorrelated innovation sequence { eJ need not be Gaussian and therefore need not be 
independent. Non-independent innovations are characteristic of nonlinear time series in 
general and conditionally heteroskedastic time series in particular. 

In this section, we introduce the ARCH process within Wold's framework by 
contrasting the polar extremes of the LRCSSP with independent and identically distributed 
(i.i.d.) innovations, which allows only conditional mean dynamics, and the pure ARCH 
process, which allows only conditional variance dynamics. We then combine these extremes 
to produce a generalized model that permits variation in both the first and second conditional 
moments. Finally, we introduce the Generalized ARCH (GARCH) process, which is very 
useful in practice. 

A. Conditional Mean Dynamics 

Suppose that y, is a LRCSSP with i.i.d., as opposed to merely white noise, 
innovations. 3 The ability of the LRCSSP to capture conditional mean dynamics is the source 
of its power. The unconditional mean and variance are ElY,l = o and E[ y,

2
] = o; 't bj

2
, which 

t=O are both time-invariant. However, the conditional mean is time-varying and is given by • m 

E[ y1 j Qt-I] = ~ b; e1_;, where the information set is Q1_1 = { e,-1> e,_2, ... }-1=1 
Because the volatility of many economic time series seems to vary, one would hope 

that the LRCSSP could capture conditional variance dynamics as well, but such is not the case 
for the model as presently specified. The conditional variance of y, is constant at 
E [ ( y

1 
- E [ y

1 
I Q

1
_ 

1 
] )2 jQt-1 ] = o! . This potentially unfortunate restriction manifests itself in 

the properties of the k-step-ahead conditional prediction error variance. The least squares 
forecast is the conditional expectation, 

m 

E[Y,.k I Q,1 = ~ bk•i~-j, 
1•0 
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and the associated prediction error is 

k-1 

Yt+k - E [ Yt+k I n, l = ~ bi e,.k-i• 
••0 

which has a conditional prediction error variance of 

As k - 00 , the conditional prediction error variance converges to the unconditional variance -a; L bi
2 

• Note that for any k, the conditional prediction error variance depends only on k 
i=O 

and not on 0 1_1; thus, readily available and potentially useful infonnation is discarded. 

B. Conditional Variance Dynamics 

By way of contrast, we now introduce a pure ARCH process, which displays only 

conditional variance dynamics. We write 

e, I n,-1 - N(O, h,} 

h, = w + y(L)t:;, 

-
w>O, y(L) = L yiLi, Yi;, 0 'ef i, y(I) <I. 

i=l 

The process is parameterized in tenns of the conditional density of e, I n,-1> which is assumed 

to be nonnal with a zero conditional mean and a conditional variance that depends linearly on 

past squared innovations .. Note that even though the e,'s are serially uncorrelated, they are not 

independent. The stated conditions are sufficient to ensure that the conditional and 

unconditional variances are positive and finite as well as that y, is covariance stationary. 

The unconditional moments are constant and are given by E[ y1 ] = O and 

E[( y
1 - E[y, ])2] = w . As for the conditional moments, by construction, the I - y(I) 
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conditional mean of the process is zero, and the conditional variance is potentially time­
varying. That is, E[y, I Qt-1] = O and E[(Y, - E[y, I Qt-1 ]}2 1 Q1_1] = w + y(L)e;. 

C. Conditional Mean and Variance Dynamics 

We can incozporate both conditional mean and conditional variance dynamics by 
introducing ARCH innovations into the standard LR.CSSP. We write 

Y, = B(L)e,, 

e, I Q1_1 - N(o, Ji.} 

Ji.= w +y(L)e;, 
subject to the conditions discussed earlier. Both the unconditional mean and variance are 
constant; i.e., E[ y,] = O and 

However, the conditional mean and variance are time-varying; i.e., 

-
E[y, I Q,_i] = ~ biet-i, 

1=1 

E[(Y, - E[y, I Q,-iJ)2 I Qt-1] = w + y(L)e;. 

Thus, this model treats the co.nditional mean and variance dynamics in a symmetric fashion by 
allowing for movement in each, a common characteristic of economic time series. 

D. The Generalized ARCH Process 

In the previous subsections, we used an infinite-ordered ARCH process to model 
conditional variance dynamics. We now introduce the GARCH process, which we shall 
subsequently focus on almost exclusively. The finite-ordered GARCH model approximates 
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infinite-ordered conditional variance dynamics in the same way that finite-ordered ARMA 

models approximate infinite-ordered conditional mean dynamics.4 

The GARCH(p,q) process, introduced by Bollerslev (1986), is given by 

e1 I OH - N{O, h,} 

h, = w + o:(L )e; + p(L )h,, 

The stated conditions ensure that the conditional variance is positive and that y, is covariance 

stationary.5 The ARCH model of Engle (1982) emerges when p(L) = 0. If both o:(L) and 

P(L) are zero, then the model is simply i.i.d. noise with variance w. The GARCH(p,q) model 

can be represented as a restricted infinite-ordered ARCH model: 

h w + o:(L) e2 = w ~ 0 2 
"t = I - P(l) I - P(L) I I - P(l) + 6' ;f!t-i. 

The first two unconditional moments of the pure GARCH model are constant and given 

by E[y1 j = O and 

The conditional moments are E [ Y1 I 0 1_ 1 ] = 0 and 
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m. Motivating GARCH Processes 

GARCH models have been used extensively in macroeconomics and finance because of 

their attractive approximation-theoretic properties. However, these models do not arise 

directly from economic theory, and various efforts have been made to imbue them with 

economic rationale. Here, we discuss both approximation-theoretic and economic motivations 
for the GARCH framework. 

A. Approximation-Theoretic Considerations 

The primary and most powerful justification for the GARCH model is approximation­

theoretic. That is, the GARCH model provides a flexible and parsimonious approximation to 
conditional variance dynamics, in exactly the same way that ARMA models provide a flexible 

and parsimonious approximation to conditional mean dynamics. In each case, an infinite­

ordered distributed lag is approximated as the ratio of two finite, low-ordered lag operator 

polynomials. The power and usefulness of ARMA and GARCH models come entirely from 

the fact that ratios of such lag operator polynomials can accurately approximate a variety of 

infinite-ordered lag operator polynomials.6 In short, ARMA models with GARCH innovations 
offer a natural, parsimonious, and flexible way to capture the conditional mean and variance 

dynamics observed in a time series. 

B. Economic Considerations 

Economic considerations may also lead to GARCH effects, although the precise links 
have proved difficult to establish. Any of the myriad economic forces that produce persistence 
in economic dynamics may be responsible for the appearance of GARCH effects in volatility. 

In such cases, the persistence happens to be in the conditional second moment, rather than the 

first. 
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To take one example, conditional heteroskedasticity may arise in situations in which 

"economic time" and "calendar time" fail to move together. A well-known example from 

financial economics is the subordinated stochastic process model of Clark (1973). In this 

model and its subsequent extensions, the number of trades occurring per unit of calendar time 

(I,) is a random variable, and the price change per unit of calendar time (eJ is the sum of the I. 
intra-period price changes (o~, which are assumed to be normally distributed: 

i.i.d. 
oi - N( 0, TJ ). 

Using a simple transformation, e. can be written more directly as a function of I., 

i.i.d. 
N( 0, I). 

Thus, e, is characterized by conditional heteroskedasticity linked to trading volume. If the 

number of trades per unit of calendar time displays serial correlation, as in Gallant, Hsieh and 

Tauchen (1991), the serial correlation induced in the conditional variance of returns (measured 

in calendar time) results in GARCH-like behavior. Similar ideas arise in macroeconomics. 

The divergence between economic time and calendar time accords with the tradition of "phase­

averaging" (e.g., Friedman and Schwartz, 1963) and is captured by the time-deformation 

models of Stock (1987, 1988). 

Several other explanations for the existence of GARCH effects have been advanced, 

including parameter variation (Tsay, 1987), differences in the interpretability of information 

(Diebold and Nerlove, 1989), market microstructure (Bollerslev and Domowitz, 1991), and 

agents' "slow" adaptation to news (Brock and LeBaron, 1994). Currently, a consensus 

economic model producing persistence in conditional volatility does not exist, but it would be 

foolish to deny the existence of such persistence; measurement is simply ahead of theory. 
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IV. Properties of GARCH Processes 

Here we highlight some important properties of GARCH processes. To facilitate the 
discussion, we generate a realization of a pure GARCH(l, I) process of length 500 that we will -use repeatedly for illustration. 7 The parameter values are w = l, rx = .2 and p = . 7, and the 
underlying shocks are N(0, I). 8 This parameterization delivers a persistent conditional 
variance and has finite unconditional variance and kurtosis. 9 We plot the realization and its 
first 25 sample autocorrelations in Figure 3. The sample autocorrelations are indicative of 
white noise, as expected. 

A. The Conditional Variance is a Serially Correlated Random Variable 
The conditional variance associated with the GARCH model is 

h1 = w + rx(L)t; + P(L)Ji.. 
Recall that the unconditional variance of the process is given by 

2 W 
0 =------y 1-rx(l)-P(l). 

Replacing w with o;(I - rx(I) - P(I)) yields 

h1 = o~(l - rx(I) - PO))+ rx(L)t; + P(L)I\, 
so that 

I\ - o~ = rx(L)t; - o~rx(l) + P(L)I\ - ~P(l) 

= rx(L)(e~ - o;) + P(L)(I\ - o;). 
Thus, the conditional variance is itself a serially correlated random variable. 

We plot the conditional variance of the simulated GARCH(l, I) process and its sample 
autocorrelation function in Figure 4. The high persistence of the conditional variance is due to 
the large sum of the coefficients, rx+P = 0.90. 
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B. e! Has an ARMA Representation 

If e, is a GARCH(p,q) process, ~ has the ARMA representation 

t; = (,I) + [a(L) + j3(L)]~ = j3(L) v, + v
1, 

where v1 = ~ - 11t is the difference between the squared innovation and the conditional 

variance at time t. To see this, note that, by supposition, h, = (,I)+ a(L)~ + f3(L)11t­

Adding and subtracting j3(L)~ from the right side gives 

h1 = (,I)+ a(L)~ + j3(L)e: - j3(L)e: + j3(L)11t 

= (,I) + [a(L) + j3(L)]~ - j3(L)[e: -11t]. 
Adding ~ to each side gives 

so that 

t; = (,I)+ [a(L) + j3(L)]~ - j3(L)[e: -11t] + [t; -11t], 

=(,I)+ [a(L) + P(L)]e; - P(L)v, + v,. 
Thus, e~ is an ARMA([max(p,q)], p) process with innovation v,, where v

1 E[-h
1, oo), and it is 

covariance stationary if the roots of a(L)+P(L)=l are outside the unit circle. 

The square of our GARCH(l,l) realization is presented in Figure 5; the persistence in 
~, which is essentially a proxy for the unobservable 11t, is apparent. Differences in the 

behavior of~ and h1 are also apparent, however. In particular, ~ appears "noisy." To see 
why, use the multiplicative form of the GARCH model, e, = h.112 z1 with z, ~ N ( 0, I). It is 
easy to see that t; is an unbiased estimator of Ii., 

E[ ~ I n,_1 ] = E[11t I n,_i]E[z.
2 I n,_1 ] = EJ11t I n,_i], 

because z.
2 I OH ~ x:i>· However, because the median of a Jec1>is .455, 

P( ~ < .! 11t) > 1/2. Thus, the e; proxy introduces a potentially significant error into the 2 
analysis of small samples of Ii., t = 1, ... , T, altliough the error diminishes as T increases. 
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C. The Conditional Prediction Error Variance Depends on the Conditioning 
Information Set 

Because the conditional variance of a GARCH process is a serially correlated random 
variable, it is of interest to examine the optimal k-step-ahead prediction, prediction error and 
conditional prediction error variance. Immediately, the k-step-ahead prediction is 
E [ Y,.k I n,] = 0, and the prediction error is 

Yt•k - E [ Y,.k I n, l = etok· 
This implies that the conditional variance of the prediction error, 

E[(Y,.k - E[Y,.k I n,])2 In,]= E[e;.k In,} 
depends on both k and n, because of the dynamics in the conditional variance. Simple 
calculations reveal that the-expression for the GARCH(p, q) process is given by 

In the limit, this conditional variance reduces to the unconditional variance of the process, 

lim E [F.2 I Q l = <,) • k-~ ,.k ' I - a(l) - P(l) 

For finite k, the dependence of the prediction error variance on the current information 
set n, can be exploited to produce better interval forecasts, as illustrated in Figure 6 for k = l. 
We plot the one-step-ahead 90% conditional and unconditional interval forecasts of our 
simulated GARCH(l,l) process along with the actual realization. We construct the conditional 
prediction intervals using the conditional variance 

E[t:;.1 In_]= 1\.1 = w + at:; +Pl\= 1 + .2t:; + .7J\; 
thus, the conditional prediction intervals are ~l.64 [ii;}:~;. The 90% unconditional interval, 
on the other hand, is simply [f.os, f.9.J, where f. denotes the a percentile of the unconditional 
distribution of the GARCH process. The ability of the conditional prediction intervals to adapt 
to changes in volatility is clear. 
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D. The Implied Unconditional Distribution Is Symmetric and Leptokurtic 

The moment structure of GARCH processes is a complicated affair. In addition to the 

earlier-referenced surveys, Milhoj (1985) and Bollerslev (1988) are good sources. However, 

straightforward calculation reveals that the unconditional distribution of a GARCH process is 

symmetric and leptokurtic, a characteristic that agrees nicely with a variety of financial market 

data. The unconditional leptokurtosis of GARCH processes follows from the persistence in 

conditional variance, which produces the clusters of "low volatility" and "high volatility" 

episodes associated with observations in the center and in the tails of the unconditional 

distribution. 

GARCH processes are not constrained to have finite unconditional moments, as shown 

in Bollerslev (1986). In fact, the only conditionally Gaussian GARCH process with 

unconditional moments of all orders occurs when a(L) = ~(L) = 0, which is the degenerate 

case of i.i.d. innovations. Otherwise, depending on the precise parameterization, 

unconditional moments will cease to exist beyond some point. For example, most parameter 

estimates for financial data indicate an infinite fourth moment, and some even indicate an 

infinite second moment. Our illustrative process has population mean 0, variance I 0, 

skewness 0, and kurtosis 5.2. 

E. Temp(lral Aggregation Produces Convergence to Normality 

Convergence to nonnality under temporal aggregation is a key feature of much 

economic data and is also a property of covariance stationary GARCH processes. The key 

insight is that a low-frequency change is simply the sum of the corresponding high-frequency 

changes; for example, an annual change is the sum of the internal quarterly changes, each of 

which is the sum of its internal monthly changes, and so forth. Thus, if a Gaussian central 

limit theorem can be invoked for sums of GARCH processes, convergence to nonnality under 

temporal aggregation is assured. Such theorems can be invoked so long as the process is 
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covariance stationary, as shown by Diebold (1988) using a central limit argument from White 
(1984) that requires only the existence of an unconditional second moment. Drost and Nijman 
(1993) extend Diebold's result by showing that a particular generalization of the GARCH class 
is closed under temporal aggregation, and by characterizing the precise way in which temporal 
aggregation leads to reduced GARCH effects. 10 

V. Estimation and Testing of GARCH Models 

Following the majority of the literature, we focus primarily on maximum-likelihood 
estimation (MLE) and associated testing procedures. 11 

A. Approximate Maximum Likelihood Estimation 

As always, the likelihood function is simply the joint density of the observations, 

L(6; Y1, ... ,YT)= f(Y1•···,YT; 6). 
This joint density is non-Gaussian and does not have a known closed-form expression, but it 
can be factored into the product of conditional densities, 

L(6; Yi, ... , YT) = f(yT I QT-1; 6) ~YT-1 I QT-2; 6) ... ~Yp+1 IQP; 6) l{Yp• ...• Y1; 6), 
where, if the conditional densities are Gaussian, 

f(y, I Qt-I; 6} = -
1-l\(6r112exp(-.!_i_) . .fEi 2 h1(6) 

The f( Yp• ... ,y1; 6 )term is often ignored because a closed-form expression for it does not exist 
and because its deletion is asymptotically inconsequential. Thus, the approximate log 
likelihood is 

T T 2 
) T-p l " 1 " Y, lnL(6; Yp+l' ... , YT = -- ln(21t) - - ~ In 1\(6) - -

2 ~ h(6) · 2 2t=p+l t=p+l •'t 
It may be maximized numerically using iterative procedures and is easily generalized to models 
richer than the pure univariate GARCH process, such as regression models with GARCH 
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disturbances. In that case, the likelihood is ihe same with et = Yt - E [ Yt I Qt-1; 8] in place 
of y,. The unobserved conditional variances {h,(8)} T that enter the likelihood function are t=p+l 

calculated at iteration j using eG-1>, the estimated parameter vector at iteration j-1. The 
necessary initial values of the conditional variance are set at the first iteration to the sample 
variance of the observed data and at all subsequent iterations to the sample variance of a 
simulated realization with parameters eG-1>. 

The assumption of conditional normality is not always appropriate. Nevertheless, 
Weiss (1986) and Bollerslev and Wooldridge (1992) show that even when normality is 

inappropriately assumed, the resulting quasi-MLE estimates are asymptotically normally 
distributed and consistent if the conditional mean and variance functions are specified 
correctly. Bollerslev and Wooldridge (1992), moreover, derive asymptotic standard errors for 
the quasi-MLE estimates that are robust to conditional non-normality and are easily calculated 
as functions of the estimated parameters and the first derivatives of the conditional mean and 
variance functions. 

B. Exact Maximum Likelihood Estimation 

Diebold and Schuermann (1993) propose a numerical procedure for constructing the 
exact likelihood function of an ARCH process using simulation techniques in conjunction with 
nonparametric density estimation, thereby retaining the information contained in {yp, ... ,y1}.

12 

Consider the ARCH(p) process, Yt = t\, where et I Qt-1 - N( 0, h,} 
ht = w + a 1e~_1 + ... + «lf-p, w > 0, «; ;;,; 0, v' i = I, ... , p, and t «; < 1. The 

••I conditional normality assumption is adopted only because it is the most common; alternative 
distributions can be used with no change in the procedure. Let 8 = ( <a>, «1, ••• , aP } 

The initial likelihood term f( Yp, ... ,y1; 8) for any given parameter configuration 8 is 

simply the unconditional density of the first p observations evaluated at {Yp, ... ,y1 }, which can 
be estimated to any desired degree of accuracy using well-known techniques of simulation and 
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consistent nonparametric density estimation. At any iteration j, a current "best guess" of the 
parameter vector e0 > exists. Therefore, a very long realization of the process with parameter 
vector e0 > can be simulated and the value of the joint unconditional density evaluated at 
{yP, ... ,y1} canbeconsistentlyestimatedanddenotedas f(yP, ... , y1; e0 >) This estimated 
unconditional density can then be substituted into the likelihood where the true unconditional 
density appears. By simulating a large sample, the difference between ~Yp, ... , y

1; e<i l) and 
f(Yp• ... , y1; e0 >) is made arbitrarily small, given the consistency of the density estimation 
technique. The full conditionally Gaussian likelihood, evaluated at em, is then 

L(B<il;y1>···,Y1)" r(Yp•·--,Y1;0<il) II [/iii 1i,(emi-112 exp[-21 (y~">) l l t=p+l 21t h 0 J t which may be maximized with respect to 0 using standard numerical techniques. 

C. Testing 

Standard likelihood-ratio procedures may be used to test the hypothesis that no ARCH 
effects are present in a time series, but the numerical estimation required under the ARCH 
alternative makes that a rather tedious approach. Instead, the Lagrange-multiplier (LM) 
approach, which requires estimation only under the null, is preferable. Engle (1982) proposes 
a simple LM test for ARCH under the assumption of conditional normality that involves only a 
least-squares regression of squared residuals on an intercept and lagged squared residuals. 
Under the null of no ARCH, TR2 from that regression is asymptotically distributed as x\>• 
where q is the number of lagged squared residuals included in the regression. 

A minor limitation of the LM test for ARCH is the underlying assumption of 
conditional normality, which is sometimes restrictive. 13 A more important limitation is that it 
is difficult to generalize to the GARCH case. Lee (1991) and Lee and King (1993) present 
such a generalization, but as discussed in Bollerslev, Engle and Nelson (1994), the GARCH 
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parameters cannot be separately identified in models close to the null -- the 1M test for 
GARCH(l,l) is the same as that for ARCH(!). 

Thus, less formal diagnostics are often used, such as the sample autocorrelation 
function of squared residuals. McLeod and Li (1983) show that under the null hypothesis of 
no non-linear dependence among the residuals from an ARMA model, the vector of 
normalized sample autocorrelations of the squared residuals, 

where 62 is the estimated residual variance and t = 1, ... , m, is asymptotically distributed as 
a multivariate normal with a zero mean and a unit covariance matrix. Moreover, the 
associated Ljung-Box statistic, 

Q,, (m) = T(T +2>:E f>,,(t}2, 
•=I T-t 

is asymptotically X~mJ under the null. If the null is rejected, then non-linear dependence, such 
as GARCH, may be present. 14 

After fitting a GAR CH model, it is often of interest to test the null hypothesis that the 
standardized residuals are conditionally homoskedastic. Bollerslev and Mikkelsen (1993) 
argue that one may use the Ljung-Box statistic on the squared standardized residual 

autocorrelations, but that the significance of the statistic should be tested using a ~m-k) 

distribution, where k is the number of estimated GARCH parameters. This adjustment is 
necessary due to the deflation associated with fitting the conditional variance model. 

A related testing issue concerns the effect of GARCH innovations on tests for other 

deviations from classical behavior. Diebold (1987, 1988) examines the impact of GARCH 
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effects on two standard serial correlation diagnostics, the Bartlett standard errors and the 
Ljung-Box statistic. As is well-known, in the large-sample Gaussian white-noise case, 

and 

i.i.d. ( ) p(-r) - N 0, ~· , -r-= 1, 2, ... 

m 1 a 
Q (m) = T(T+2) L . p(-r)2 

- X~m)• 
t=l (f-'t) 

where p(-r) denotes the sample autocorrelation at lag -r. In the GARCH case, however, an 
adjustment must be made, 

N( 0, ~(I+ Yy;~-r)) ), -r = I, 2, ... , 
i.i.d. 

p(-r) 

where y y,(-r) denotes the autocovariance function of y,2 at lag -r and a4 is the squared 
unconditional variance of y,. The adjustment is largest for small -r and decreases 

monotonically as -r-00 if the process is covariance stationary. Similarly, the robust Ljung-Box 
statistic is 

Q(m) = T(T+2) t-1-( o4 ) p(-r)2 ~ X~mJ· 
t=l (T--r) o4 + Yy2('t) 

The formulae are made operational by replacing the unknown population parameters with the 
usual consistent estimators. 

It is important to note that the standard error adjustment serves to increase the standard 
errors; failure to perform the adjustment results in standard error bands that are "too tight." 
Similarly, failure to adjust the Ljung-Box statistic c:auses empirical test size to be larger than 
nominal size -- often much larger, due to the cumulation of distortions through summation. 
Thus, failure to use robust serial correlation diagnostics for GARCH effects may produce a 
spurious impression of serial correlation. 
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A more general approach that yields robust sample autocovariances and related statistics 

is obtained by adopting a generalized method of moments (GMM) perspective, as proposed by 
West and Cho (1994). 15 Define "1 = (e;, e,e1-1, ... , e.e.-m)', 
6 = (E[e;J Eft;e,_iJ ... , Eft;e,-m])' and g.(6) = X. - 6 as.((m+l)xl)vectorsand 60MM 
as the value of 6 that satisfies the condition 

Note that, because there are as many parameters being estimated as there are orthogonality 

conditions, GMM simply yields the standard point estimates of the autocovariances. Their 

standard errors and related test statistics are asymptotically robust, because as shown by 

Hansen (1982) under general conditions allowing for heteroskedasticity and serial correlation 

of unknown form, /f(eoMM - e) ~ N(O,V) where 

V = { E [ a &(:~MM) ] S -I E [ ag,( !:MM} r r 1 

and S is the spectral density matrix of g.(6) at frequency zero. This expression for V is made 
operational by replacing all population objects with consistent estimates. The GMM-estimated 
autocovariances of y, and their standard errors will be robust to possible conditional 

heteroskedasticity in e,, as will the Ljung-Box statistic computed using the GMM-estimated 

autocovariances. 

VI. Applications and Extensions 

There are numerous applications and extensions of the basic GARCH model. In this 

section, we highlight those that we judge most important in macroeconomic and financial 

contexts. It is natural to discuss applications and extensions simultaneously because many of 

the extensions are motivated by applications. 
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A. Functional Form and Density Form 

Numerous alternative functional forms for the conditional variance have been suggested 
in the literature. 16 One of the most interesting is Nelson's (1991) exponential GARCH(p,q) or 
EGARCH(p,q) model, 

1, 112 Y1 = et = ''t Z,, 

i.i.d. 
z, - N( 0, I), 

In(!\} = w + ta; g( z,_;) + t P; In(!\-;} 
,,... 1= 1 

g(z,} = 8z1 + Y(/z,/ -E[/z,/]). 

The log specification ensures that the conditional variance is positive, and the model allows for 
an asymmetric response to the z. innovations depending on their sign. Thus, the effect of a 
negative innovation on volatility may differ from that of a positive innovation. This allowance 
for asymmetric response has proved useful for modeling the "leverage effect" in the stock 
market described by Black (1976). 17 

With respect to density form, non-Gaussian conditional distributions are easily 

incorporated into the GARCH model. This is important, because it is commonly found that 
the Gaussian GARCH model does not explain all of the leptokurtosis in asset returns. With 
this in mind, Bollerslev (1987) proposes a conditionally Student-t GARCH model, in which 
the degrees-of-freedom is treated as another parameter to be estimated. Alternatively, Engle 
and Gonzalez-Rivera (1991) propose a semiparametric methodology in which the conditional 
variance function is parametrically specified in the usual fashion, but the conditional density is 
estimated nonparametrically. 

B. GARCH-M: Time-Varying Risk Premia 
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Consider a regression model with GARCH disturbances of the usual sort, with one 

additional twist: the conditional variance enters as a regressor, thereby affecting the 

conditional mean. Write the model as 

Y1 = x.'P + Yh. +t,, 

e, I n,_1 - N ( o, Ii.). 
This GARCH-in-Mean (GARCH-M) model is useful in modeling the relationship between risk 

and return when risk (as measured by the conditional variance) varies. Engle, Lillien and 

Robins (1987) introduce the model and use it to examine time-varying risk premia in the tenn 

structure of interest rates. 

C. !GAR.CH: Persistence in Variance 

A special case of the GARCH model is the integrated GARCH (IGARCH) model, 

introduced by Engle and Bollerslev (1986). A GARCH(p,q) process is integrated of order one 

in variance if I - a(L) - P(L) = 0 has a root on the unit circle. The IGARCH process is 

potentially important because, as an empirical matter, GARCH roots near unity are common in 

high-frequency financial data. 

The earlier ARMA result for the squared GARCH process now becomes an ARIMA 

result for the squared IGARCH process. As before, e"; = <il +[a(L) +p(L)Jt;-p(L)v1 +v1; 

thus, [I -a(L) - P(L)JC: = <il - P{L) v, + v,. When the autoregressive polynomial 

contains a unit root, it can be rewritten as 

[ 1 - a(L) - p (L)] e; = q>(L)(l -L) t; = <il - p (L) v, + v,. 
Thus, the differenced squared process is of stationary ARMA fonn. 

Unlike· the conditional prediction error variance for the covariance stationary GARCH 

process, the IGARCH conditional prediction error variance does not converge as the forecast 

horizon lengthens; instead, it grows linearly with the length of the forecast horizon. Fonnally, 
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E [ e;.k I n,] = (k-l)w + 11..1 so that Jim E [ e;.k I n,] = 00 • Thus, the IGARCH process has k-• 
an infinite unconditional variance. 

Clearly, a parallel exists between the IGARCH process and the vast literature on unit 
roots in conditional mean dynamics (see Stock, 1994). This parallel, however, is partly 
superficial. In particular, Nelson (1990b) shows that the IGARCH(l,1) process (with w ., 0) 
is nevertheless strictly stationary and ergodic, which leads one to suspect that likelihood-based 
inference may proceed in the standard fashion. This conjecture is verified in the theoretical 
and Monte Carlo work of Lee and Hansen (1994) and Lumsdaine (1992, 1995). 

Although conditional variance dynamics are often empirically found to be highly 
persistent, it is difficult to ascertain whether they are actually integrated. (Again, this 
difficulty parallels the unit root literature.) Circumstantial evidence against I GAR CH arises 
from several sources, such as temporal aggregation. Little is known about the temporal 
aggregation of IGARCH processes, but due to the infinite unconditional second moment, we 
conjecture that a Gaussian central limit theorem is unattainable. (To the best of our 
knowledge, no existing Gaussian central limit theorems are applicable.) If so, this bodes 
poorly for the IGARCH model, because actual series displaying GARCH effects seem to 
approach normality when temporally aggregated. It would then appear likely that highly 
persistent covariance-stationary GARCH models, not IGARCH models, provide a better 
approximation to conditional variance dynamics. 

The possibility also arises that some findings of IGARCH may be due to 
misspecification of the conditional variance function. In particular, Diebold (1986) suggests 
that the appearance of IGARCH could be an artifact resulting from failure to allow for 
structural breaks in the unconditional variance, if in fact such breaks exist. This is borne out 
in various contexts by Lastrapes (1989), Lamoureux and Lastrapes (1990), and Hamilton and 
Susmel (1994). Accordingly, Chu (1993) suggests procedures for testing parameter instability 
in GARCH models. 
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D. Stochastic Volatility Models 

A simple first-order stochastic volatility model is given by 

e1 = 0 1 Zi = exp( ; ) Zi, 

Zi - N( 0, 1 ), 

h, = (A) + Pl\-1 + ,,,, 

111 - N ( 0, o~ ). 
Thus, as opposed to standard GARCII models, h, is not deterministic conditional on QH; the 

conditional variance evolves as a first-order autoregressive process driven by a separate 

innovation. Moreover, the exponential specification ensures that the conditional variance 

remains positive. It is clear that the stochastic volatility model is intimately related to Clark's 

(I 973) subordinated stochastic process model -- in fact, for all practical purposes, it is Clark's 

model. For further details, see Harvey, Ruiz and Shephard (1994), and for alternative 

approaches to estimation, which can be challenging, see Jacquier, Polson and Rossi (1994) and 

Kim and Shephard (1994). Although there has been substantial recent interest in stochastic 

volatility models, their empirical success relative to GARCII models has yet to be established. 

E. Multivariate GARCH Models 

Cross-variable interactions are key in macroeconomics and finance. Multivariate 

GARCII models are used to capture cross-variable conditional volatility interactions. The first 

multivariate GARCII model, developed by Kraft and Engle (1982), is a multivariate 

generalization of the pure ARCII model. The multivariate GARCII (p,q) model is proposed in 

Bollerslev, Engle and Wooldridge (1988). The N-dimensional Gaussian GARCII(p,q) process 

is e, I n,_1 - N (0, H,), · where H. is the (NxN) conditional covariance matrix given by 

vech(If.) = W + t A; vech{ eH t;_;} + t Bi vech(lf. ~ 
i=l j=l 
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vech(.) is the vector-half operator that converts {NxN) matrices into (N(N+ 1)/2xl) vectors of 
their lower triangular elements, W is an (N(N + 1)/2xl) parameter vector, and A; and B; are 
((N{N + 1)/2) x {N(N + 1)/2)) parameter matrices. Likelihood-based estimation and inference 
are conceptually straightforward and parallel the univariate case. The approximate log 
likelihood function for the conditionally-Gaussian multivariate GARCH(p,q) process, aside 
from a constant, is 

In practice, however, two complications arise. First, the conditions needed to ensure that H. is 
positive definite are complex and difficult to verify. Second, the model lacks parsimony; an 
unrestricted parameterization of H. is too profligate to be of much empirical use. As written 
above, the model has (N(N + 1)/2)[1 +(p+q)N(N + 1)/2] = O(N4) parameters, which makes 
numerical maximization of the likelihood function extremely difficult, even for low values of 
N, pandq. 

Various strategies have been proposed to deal with the positive definiteness and 
parsimony complications. Engle and Kroner (1993) propose restrictions that guarantee 
positive definiteness without entirely ignoring these cross-variable interactions. Bollerslev, 
Engle and Wooldridge (1988) enforce further parsimony by requiring that the A; and B; 
matrices be diagonal, reducing the number of parameters to (N(N + 1)/2)[1 +p+q] = O{N2

). 

However, the parsimony of this "diagonal" model comes at potentially high cost, because 
much of the potential cross-variable volatility interaction, a key point of multivariate analysis, 
is assumed away. 

F. Common Volatility Patterns: Multivariate Models With Factor Structure 
Multivariate models with factor structure, such as the latent-factor GARCH model 

(Diebold and Nerlove, 1989) and the factor GARCH model (Engle, 1987 and Bollerslev and 
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Engle, 1993), capture the idea of commonality of volatility shocks, which appears empirically 
relevant in systems of asset returns in the stock, foreign exchange, and bond markets. 18 

Models with factor structure are also parsimonious and are easily constrained to maintain 
positive definiteness of the conditional covariance matrix. 

In the latent-factor model, movements in each of the N time series are driven by an 
idiosyncratic shock and a set of k < N common latent shocks or "factors". 19 The latent factors 
display GARCH effects, whereas the idiosyncratic shocks are i.i.d. and orthogonal at all leads 
and lags. The one-factor model is important in practice, and we describe it in some detail. 
The model is written as e, = .i..F1 + v,, where e., A and u, are (Nxl) vectors and F, is a scalar. 
F, and u, have zero conditional means and are orthogonal at all leads and lags. The factor F, 
follows a GARCH(p,q) process, 

F, 1 n,_1 - N(o, I\) 

h1 = c.> + a(L)F,2 
+ PCL)h., 

so that the conditional distribution of the obseived vector is 

e,I0,_1 - N ( 0, ff.} 
T-f = .i...i..'h + r .... ' , 

where r = cov(v,) = diag(y1, ••• , yN). Thus, the j'11 time-t conditional variance is 

- 2 2( t 2 q ) H.. = )... h + y. = )... c.> + a.F, . + 't"' ll._h . JJ,t J -~ J J 1 -1 L..J t'1•'t-1 
i=I i=I 

+ Y· J' 

and the j ,1<'1' time-t conditional covariance is 

Note that the latent factor F, is unobseivable and not directly included in '21-1 = {e1_1, ••• , e1 } 

Effectively, the latent-factor model is a stochastic volatility model. 

In general, the number of parameters in the k-factor model is 

N(k + 1) + k 2(1 +p +q) = O(N), so the number of parameters in the one-factor case is 
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2N +(I +p+q), a drasti~ reduction relative to the general multivariate case. Moreover, the 
conditional covariance matrix is guaranteed to be positive definite, so long as the conditional 
variances of the common and idiosyncratic factors are _constrained to be positive. 

A simulated realization from a bivariate model with one common GARCH(l, 1) factor 
is sho.wn in Figures 7-9. The model is parameterized as 

h, = I + .2F/.1 + .71\_1, 

i.i.d. 
(v1,, v2.)' - N(O, I). 

The realization of the common factor underlying the system is precisely the one presented in 
our earlier discussion of univariate GAR.CH models. The latent-factor GAR.CH series exhibit 
the volatility clustering present in the common factor. As before, the squared realizations of 
the two series indicate a degree of persistence in volatility. Furthermore, as expected, the 
conditional second moments of the two series are similar to that of F, because, as shown 
above, they are simply multiples of Ii.-

Diebold and Nerlove (1989) suggest a two-step estimation procedure. The first step 
entails performing a standard factor analysis; i.e., factoring the unconditional covariance 
matrix as H = ;\.;\.1o2 + r, where o2 is the unconditional variance ofF,, and extracting an 
. estimate of the time series of factor values {F ,}: 

1
. The second step entails estimating the 

latent-factor GAR.CH model treating the extracted factor series F, as if it were the actual series 
F,. 

The Diebold-Nerlove procedure is clearly suboptimal relative to fully simultaneous 
maximum likelihood estimation, because the F, series is not equal to the F, series, even 
asymptotically. Harvey, Ruiz and Sentana (1992) provide a better approximation to the exact 

26 



likelihood function that involves a correction factor to account for the fact that the F, series is 

unobservable.20 For example, using an ARCH(l) specification, the conditional variance of the 

latent factor F, in the Diebold-Nerlove model is 

Ii. = var(F,IC:J.-i) = w + aF,:1 = w. + aE [ F1:t1Q._1} 
Using the identity F1-1 = F1-1 + (F1-1 - Ft-1} 

Er F,:1101-1 J = E [ Ft-I + ( Ft-1-F,-1) r 10,-1 J = Er F,~110,-1 J + P(-1 = F,~1 + P,-1, 
where p,.1 is the correction factor. Thus, h, is expressed as Ii. = w + a F1~ 1 + p

1_1 }. The 

correction factor can be constructed using the appropriate elements in the conditional 

covariance matrix of the state vector estimated by the Kalman filter. 

Finally, we note that recently-developed Markov-chain Monte Carlo techniques 

facilitate exact maximum-likelihood estimation of the latent-factor model (or, more precisely, 

approximate maximum-likelihood estimation with the crucial distinction that the approximation 

error is under the user's control and can be made as small as possible). For details see Kim 

and Shephard (1994). 

G. Optimal Prediction Under Asymmetric Loss 

Volatility forecasts are readily generated from GARCH models and used for a variety 

of purposes, such as producing improved interval forecasts, as discussed previously. Less 

obvious but equally true is the fact that, under asymmetric loss, volatility dynamics can be 

exploited to produce improved point forecasts, as shown by Christoffersen and Diebold 

(1994). If, for example, Y,+k is normally distributed with conditional mean µ,.klO, and 

conditional variance 11..klO. and L(et+k) is any loss function defined on the k-step-ahead 

prediction error e,.k = Y,.k - Y,.k• then the optimal predictor is Y,.k = µ,.klO, + a,, where a, 
depends only on the loss function and the conditional prediction error variance 

var( e,.klO,} = var(y,.klO,} = 11..klO,. The optimal predictor under asymmetric loss is not the 

conditional mean, but rather the conditional mean shifted by a time-varying adjustment that 
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depends on the conditional variance. The intuition for this is simple - when, for example, 
positive prediction errors are more costly than negative errors, a negative conditionally 
expected error is desirable and is induced by setting the bias 0:1 > 0. The optimal amount of 
bias depends on the conditional prediction error variance of the process. As the conditional 
variation around µ,.d 01 grows, so too does the optimal amount of bias needed to avoid large 
positive prediction errors. 

To illustrate this idea, consider the linlin loss function, so-named for its linearity on 
each side of the origin (albeit with possibly different slopes): 

l ajy,.k -y,.kl, if Y,.k -y,.k > 0 
L(Y,.k -:r,.k) = • .f • b/y,.k-yt•k'• 1 Y,.k-Yt+k s; O. 

Christoffersen and Diebold (1994) show that the optimal predictor of Yi+k under this loss 
function is 

where cl> is the Gaussian cumulative density function. In contrast, a pseudo-optimal predictor, 
which accounts for loss asymmetry but not conditional variance dynamics, is 

Yt+k = µ,.k/0, + 0k q,-1( a:b), 

where CJ~ is the unconditional variance of Y,+t· 

In Figure 10, we show our GARCH(l,l) realization together with the one-step-ahead 
linlin-optimal, pseudo-optimal and conditional mean predictors for the loss parameters a = . 95 
and b = .05. Note that the optimal predictor injects more bias. when conditional volatility is 
high, reflecting the fact that it accounts for both loss asymmetry and conditional 
heteroskedasticity. This conditionally optimal amount of bias may be more or less than the 
constant bias associated with the pseudo-optimal predictor. Of course, the conditional-mean 
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predictor injects no bias, as it accounts for neither loss asymmetry nor conditional 

heteroskedasticity. 

H. Evaluating Volatility Forecasts 

Although volatility forecast accuracy comparisons are often conducted using mean­

squared error, loss functions that explicitly incorporate the forecast user's economic loss 

function are more relevant and may lead to different rankings of models. West et al. (1993) 

and Engle et al. (1993) make important contributions along those lines, proposing economic 

loss functions based on utility maximization and profit maximization, respectively. 

Lopez (1994) proposes a volatility forecast evaluation framework that subsumes a 

variety of economic loss functions. The framework is based on transforming a model's 

volatility forecasts into probability forecasts by integrating over the distribution of t\. By 

selecting the range of integration corresponding to an event of interest, a forecast user can 

incorporate elements of her loss function into the probability forecasts. For example, given 

e, I 0 1_ 1 - D( 0, Ii.) and a volatility forecast h., an options trader interested. in the event 

e, E [ L •. ,. Uc. 1 ] would generate the probability forecast 

p : Pr(L <e < U )·: Pr[ L •. , <7 < u •. ,l : ·~, 
t c.t t c,t /hi --, Jr. 

where z. is the standardized innovation, f( z,) is the functional form of the distribution 

D ( o, I ) , and [ 1 •. ,, u •. 1 ] is the standardized range of integration. In contrast, a. forecast user 
such as a portfolio manager or a central bank interested in the behavior of y, = µ1 + e,, where 

µ
1 

= E [ y1 I 0 1_1 ], would generate the probability forecast 

P = Pr(L < y < U ) = Pr[ Ly., - lli < z, < uy.t - µ,l = 
I y.t t y.t A A 
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where 11, is the forecasted conditional mean and [ ly. T•t' uy, T•t] is the standardized range of 
integration. 

The probability forecasts so-generated can be evaluated using statistical tools tailored to 
the user's loss function. In particular, probability scoring rules can be used to assess the 
accuracy of the probability forecasts, and the significance of differences across models can be 
tested using a generalization of the Diebold-Mariano (1995) procedure. Moreover, the 
calibration tests of Seillier-Moiseiwitsch and Dawid (1993) can be used to examine the degree 
of equivalence between an event's predicted and observed frequencies of occurrence within 
subsets of the probability forecasts specified by the user. 

vn. Directions for Future Research 

Fifteen years ago, little attention was paid to conditional volatility dynamics in 
modeling macroeconomic and financial time series; the situation has since changed 
dramatically. GARCH and related models have proved tremendously useful in modeling such 
dynamics. However, perhaps in contrast to the impression we may have created, we believe 
that the literature on modeling conditional volatility dynamics is far from settled, and that 
complacency with the ubiquitous GARCH(l, 1) model is not justified. 

Almost without exception, low-ordered (and hence potentially restrictive) GARCH 
models are used in applied work. For example, among hundreds of empirical applications of 
the GARCH model, almost all casually and uncritically adopt the GARCH(l,1) specification. 
EGARCH applications have followed suit with the vast majority adopting the EGARCH(l, I) 
specification. Similarly, applications of the stochastic volatility model typically use an AR(l) 
specification. However, recent findings suggest that such specifications - as well as the 
models themselves, regardless of the particular specification -- are often too restrictive to 
maintain fidelity to the data. 
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It appears, for example, that the conditional volatility dynamics of stock market returns 
(as well as certain other asset returns) contain long memory. Ding, Engle and Granger (1993) 
find positive and significant sample autocorrelations for daily S&P 500 returns at up to 2500 

lags and that their rate of decay is slower than exponential. A model consistent with such 
long-memory volatility findings is the fractionally-integrated GARCH (FIGARCH) model 

developed by Baillie, Bollerslev and Mikkelsen (1993), building on earlier work by Robinson 

(1991). FIGARCH is a model of fractionally-integrated conditional variance dynamics, in 

parallel to the well-known fractionally-integrated ARMA models of conditional mean dynamics 

(e.g., Granger and Joyeux, 1980). The FIGARCH model implies a hyperbolic rate of decay 
for the autocorrelations of the squared process that is slower than exponential. 

To motivate the FIGARCH process, begin with the GARCH(l,l) process, 

e, I 01_1 - N(O, h,} 

'1t = w + a(L)t:; + P(L)h.-
Rearranging the conditional variance into ARMA form, the FIGARCH (p,d,q) equation is 

[! - a(L) - P(L)] e; = <!>(L) (I -Lt e; = w + (1-P(L)) u,. 
That is, the [ I - a(L) - P(L)] polynomial can be factored into a stationary ARMA 

component and a long-memory difference operator. If O < d < l, the process is 

FIGARCH(p,d,q). If d=O, then the standard GARCH(p,q) model obtains; if d = 1, then the 
IGARCH(p,q) model obtains. Bollerslev and Mikkelsen (1993) conjecture that the coefficients 

in the ARCH representation of a FIGARCH process (d < 1) are dominated by those of an 

IGARCH process. If so, then FIGARCH (d < 1) would be strictly stationary (though not 

covariance stationary), because IGARCH is strictly stationary. 

Long memory is only one of many previously unnoticed features of volatility. 

Interestingly, as we study volatility more carefully, more and more anomalies emerge. 

Volatility patterns tum out to differ across assets, time periods, and transformations of the 
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data. The complacency with the "standard" GARCH model is being shattered, and we think it 
unlikely that any one consensus model will take its place. The implications of this 
development are twofold. First, real care must be taken in tailoring volatility models to the 
relevant data, as in Engle and Ng (1993). Second, because all volatility models are likely to 
be misspecified, care should be taken in assessing models' robustness to misspecification. 

To illustrate the deviations from classical GARCH models that turn out to be routinely 
present in real data, we present in Figure 11 the sample autocorrelation functions of the 
absolute and squared change in the Jog daily closing value of the S&P 500 stock index, 1928-
1990. The autocorrelation functions are shown to displacement -c = 200 in order to assess the 
evidence for long memory, and dashed lines indicate the Bartlett 95 % confidence interval for 
white noise. Note that substantially more persistence is found in absolute returns than in 
squared returns, in keeping with Ding, Engle, and Granger (1993), and that both absolute and 
squared returns appear too persistent to accord with any of the "standard" volatility models. In 
addition, these patterns are different over time. In Figure 12, we show squared returns over 
various subperiods: 1928-1940, 1941-1970, 1971-1980 and 1981-1990. It seems clear that 
most of the Jong memory is driven by the 1928-1940 period. To the extent that there is any 
long memory in the post-1940 period, it seems to be coming from the 1970's. Interestingly, 
there seems to be no GARCH effects in the 1980's as shown by the negligible autocorrelations 

2 for e,. 

Other assets, including interest rates, foreign exchange rates, and other stock indexes, 
display a bewildering variety of volatility patterns, as discussed in Mor (1994). Sometimes 
there seems to be long memory; sometimes not. Sometimes the autocorrelation patterns of e; 
match those of je,I, and sometimes the autocorrelation patterns of le,I appear much more 
persistent. The patterns differ across assets and often seem to indicate structural change. For 
example, the long memory seemingly present in exchange rate volatility seems concentrated in 
the 1970's, while long memory in interest rate volatility is typically concentrated in the 
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1980's. These observed phenomena, as well as occasional long-horizon spikes in 

autocorrelations and the appearance of oscillatory autocorrelation behavior, are again 

inconsistent with standard specifications. 

An additional illustration of the inadequacies of GARCH models is provided by West 

and Cho (1994). Using weekly exchange rates, they show that for horizons longer than one 

week, out-of-sample GARCH volatility forecasts loose their value, even though volatility 

seems highly persistent. The good in-sample perfonnance of GARCH models breaks down 

rapidly out-of-sample. 21 In addition, standard tests of forecast optimality, such as regressions 

of realized squared returns on an intercept and the GARCH forecast, strongly reject the null of 

the optimality of the GARCH forecast with respect to available infonnation. West and Cho 

suggest time-varying parameters and discrete shifts in the mean level of volatility as possible 

explanations. 

In light of the emerging evidence that GARCH models are likely misspecified and the 

unlikely occurrence of happening upon a "correct" specification, it is of interest to consider 

whether GARCH models might still perfonn adequately in tracking and forecasting volatility -­

that is, whether their good properties are robust to misspecification. In a series of papers 

{Nelson, 1990a, 1992, 1993; Nelson and Foster, 1991, 1994), Nelson and Foster find that the 

usefulness of GARCH models in volatility tracking and short-tenn volatility forecasting is 

robust to a variety of types of misspecification; thus, in spite of misspecification, GARCH 

models can consistently extract conditional variances from high-frequency time series. More 

specifically, if a process is well approximated by a continuous-time diffusion, then broad 

classes of GARCH models provide consistent estimates of the instantaneous conditional 

variance as the sampling frequency increases. This occurs because the sequence of 

GARCH{l,I) models used to fonn estimates of next period's conditional variance average 

increasing numbers of squared residuals from the increasingly recent past. In this way, a 
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sequence of GARCH(l,l) models can consistently estimate next period's conditional variance 
despite potentially severe misspecification. 
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Endnotes 

1. ARCH is short for AutoRegressive Conditional Heteroskedasticity. · 

2. A process is linearly detenninistic if it can be predicted to any desired degree of accuracy by linear projection on sufficiently many past observations. 

3. Recall that the defining characteristic of white noise-is a lack of serial correlation, which is a weaker condition than serial independence. 

4. The obvious empirically useful approximation to an LRCSSP (which is an infinite-ordered moving average) with infinite-ordered ARCH errors is an ARMA process with GARCH errors. See Weiss (1984), who studies ARMA processes with finite-ordered ARCH errors. (The GARCH process had not yet been invented.) 

5. Nelson and Cao (1992) show that, for higher order GARCH processes, the nonnegativity constraints are sufficient, but not necessary, for the conditional variance to be positive. 

6. See, for example, Jorgenson (1966). 

7. Setting Yo= 0 and ho= E(y,2), we generate 1500 observations, and we discard the first 1000 to eliminate the effects of the start-up values. 

8. The parameter values for a and P are typical of the parameter estimates reported in the empirical literature. 

9. For a precise statement of the necessary and sufficient condition for finite kurtosis, see Bollerslev (1986). 

10. Their results, however, require a finite fourth unconditional moment, a condition likely to be violated in financial contexts. 

11. Alternative approaches may of course be taken. Geweke (1989), for example, discusses Bayesian procedures. 

12. Generalization to the GARCH case has not yet been done. 

13. However, Bollerslev and Wooldridge (1992) introduce a modified LM test robust to non­nonnal conditional distributions. 

14. As always, rejection of the null does not imply acceptance of the alternative. Tests for conditional heteroskedasticity, for example, often have power against alternatives of serial correlation as well; see Engle, Hendry and Trumble (1985). 

15. Robinson (1991) also treats the issue of robustness by proposing general classes of heteroskedasticity-robust serial correlation tests and serial correlation-robust heteroskedasticity 
tests. 

16. In fact, Robinson (1987) goes so far as to propose nonparametric estimation of the conditional variance function, thereby eliminating the need for parametric specification of 
functional fonn. 
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17. Negative shocks appear to contribute more to stock marlcet volatility than do positive 
shocks. This phenomena is called the leverage effect, because a negative shock to the market 
value of equity increases the aggregate debt/equity ratio (other things the same), thereby 
increasing leverage. 

18. Models of "copersistence" in variance and cointegration in variance are based on similar 
ideas; see Bollerslev and Engle (1993). 

19. Despite the similarity in their names, the latent-factor GARCH model discussed here is 
different from the factor GARCH model. In the latent-factor GARCH case, the observed 
variables are linear combinations of latent GARCH processes, whereas in the factor GARCH 
case, linear combinations of the observed variables follow univariate GARCH processes. As 
pointed out by Sentana (1992), the difference between the two models is similar to the 
difference between standard factor analysis and principal components analysis. 

20. See also King, Sentana and Wadhwani (1994), Demos and Sentana (1991), and Sentana 
(1992). 

21. Note, however, that West and Cho (1994) evaluate volatility forecasts using the mean­
squared error criterion, which may not be the most appropriate. For further discussion, see 
Bollerslev, Engle and Nelson (1994) and Lopez (1995). 
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