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Abstract 

We use a version of the Grossman and Hart (1983) principal-agent model with 10 

actions and 10 states to produce quantitative predictions for executive compensation. 

Performance incentives derived from the model are compared with the performance 

incentives of 350 firms from a survey by Michael Jensen and Kevin Murphy. The 

results suggest both that the model does a reasonable job of explaining the data and that 

actual incentives are close to the optimal incentives predicted by theory. 
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1. Introduction 

Economists as far back as Adam Smith and Alfred Marshall have wondered about 

the incentives of top executives. 'The principal-agent model provides an elegant theory 

of incentives, but very little practical advice on how large those incentives should be. 

Because of this, much recent work aimed at reconciling theory with the data on 

executive pay has focused on the qualitative predictions of the theory. Papers such as 

Murdoch (1993), Habib (1993), and Kole (1993) document, for example, that high- 

growth firms provide more compensation via stock-option plans. Such work, though 

important, avoids key quantitative issues, such as whether compensation provides 

sufficient incentives to maximize firm value (see Jensen and Murphy [1990a,b] and 

Cowan [1992]). We directly address the quantitative issues by comparing actual CEO 

incentives with the predictions of a finite-state principal-agent model. 

Haubrich (1994) took a preliminary step in this direction and showed how a simple 

parameterization of the Grossman and Hart (1 983) principal-agent model produced 

performance incentives broadly in line with those documented by Jensen and Murphy. 

We generalize those results along two dimensions here. First, instead of a two-state 

model (with a closed-form solution), we consider a 10-state, 10-action model. This 

allows incentive pay to be nonlinear. Wang (1994) generalizes in a different direction, 

developing a multiperiod model with two states and two actions. Second, where 

Haubrich (and Wang) made a simple comparison between the model and the mean of 

Jensen and Murphy's performancelpay ratio, we take a calibration approach. 

Specifically, we choose parameters that minimize the distance between the data and the 

model's output for 350 firms, explicitly comparing the distributions. This calibration 

approach has an added benefit: It provides an estimate of CEO productivity, a central 

but difficult aspect of executive pay. 
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The calibration begins with 350 firms chosen from Jensen and Murphy's "New 

Survey of Executive Compensation" (1990b). These firms appeared in the dataset of the 

Center for Research in Security Prices (CRSP) long enough for us to calculate the 

standard deviation of shareholder value. This variance, along with some global 

parameters, pins down the principal-agent problem for each firm. The program then 

solves the problem for many values of risk aversion and for another parameter that 

measures CEO productivity. It conducts a grid search for the values that minimize the 

distance between the 350 predictions and the actual values calculated by Jensen and 

Murphy. We use several metrics, including the sum of squared errors and the difference 

of sample means. 

Determining if the principal-agent model correctly describes executive incentives 

does matter. Competing models have very different implications. Jensen (1 989) argues 

that political constraints keep firms from tying compensation closely enough to firm 

performance, and that as a consequence, leveraged buyouts will replace corporations. 

The underinvestment model of Myers and Majluf (1984), by contrast, argues that 

compensation is tied too closely to firm performance. The desirability of proposals 

pending before Congress -- and shareholders -- depends on the resolution of this issue. 

2. The Model and Solution Technique 

The key question in the modeling of executive compensation was aptly put by 

Marglin (1974): "What do bosses do?" Grossman and Hart's (1983) answer is that 

bosses raise the likelihood of good outcomes. In their model, increased effort by the 

agent increases the probability of good states occurring. The boss adds value to the 

firm, but observing output does not let you infer his actions. A good outcome may 

reflect luck as well as hard work. 
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2.1. A Discrete Principal-Agent Model 

More formally, we assume that the firm has 10 profit levels: q, < q2 <. . . < q,, . 

The action set A consists of 10 possible actions: a, ,a2 ,..., a,,. The restrictions come 

from limitations of GAMS, the software we use to solve the nonlinear programming 

problem (see Brooke, Kendrick, and Meeraus [1992]). If we used, for example, the 

industrial version of GAMS, the number of profit levels and actions could be increased 

significantly. xi(a) denotes the probability of state (i.e., profit level) i given action a. To 

forestall some technical problems, xi(a)>O for all a and i. 

The agent's utility depends on actions and income, expressed as U(a,I). Grossman 

and Hart consider a fairly general form, but for calibration purposes, we use constant 

absolute risk aversion (CARA), (a, I) = -e-'('-"), in which effort appears as negative 

income.' Choosing the correct hnctional form has its difficulties, but Grossman and 

Hart find this utility hnction particularly useful in principal-agent theory, in part because 

it has a mutiplicatively separable representation, U(a,I)=K(a)V(I). In addition, since 

compensation depends on the disutility of effort, treating effort as negative income 

makes the resulting contract easier to interpret. For a more extensive discussion of the 

choice, see Haubrich (1994). The agent also has a reservation utility 0, derived from 

alternative employment or a leisure-time activity. 

Grossman and Hart concentrate on the cost of getting the agent to choose a 

particular action. When the principal observes the action, the cost is simply the agent's 

reservation price for action a, denoted CFB(a)=h[U/K(a)], where h=V -'. 
The point of the principal-agent problem is that the principal cannot observe the 

action taken by the agent. She can only make payment dependent on the observed 

1 Wang (1 994) uses the slightly more general specification -e7""' . 
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output state. This incentive scheme {I l . . . I l~),  a set of payments contingent on the state, 

gives the agent utility levels VI=V(II) ... vlo=V(Ilo). 

Although the principal cannot observe the action, she can design the incentive 

scheme so that the agent chooses a particular action. The expected value of payments to 

the agent defines the second-best cost of an action a, C(a). For a given action, the 

incentive scheme minimizes the principal's cost (the expected value of the incentive 

scheme) subject to three constraints. 

The first is the incentive compatibility constraint, which states that the agent takes 

action a only if it gives a higher payoff than any other action. The second and third 

constraints are the participation constraints, which state that the agent must get a certain 

minimum utility and that some income level produces that utility. 

Several incentive schemes (I or v sets) may induce the agent to choose action a 
4 

(that is, to implement a). Define C(a) as the least costly of these (technically, the 

greatest lower bound [infinum or infl of x n , [ a ] @ v , ] )  on the constraint set. If the 

principal cannot induce action a (an empty constraint set), set C(a) to infinity. 

A little terminology about the principal completes the basic notation. The risk- 

neutral principal receives the gross profits q;, so her expected gross benefit from the 

agent's action is B(a)=C ~i(a)q;. Her expected net benefit, B(a)-C(a), subtracts the cost 

of the action, and the (second-best) optimal action maximizes her expected net benefit. 

Grossman and Hart take a simple approach to solving the principal-agent problem. 

First, they compute the cost C(a) for each action a. Then, they optimize the net benefit, 

B(a)-C(a), over all actions a. 

Of central concern here is the proper specification of the n;(a) function: Measuring 

the CEO's contribution to the firm is the most problematic aspect of calibrating the 

principal-agent problem. Perhaps the best evidence comes from studies of CEO 

turnover, where the effects, though at times substantial, are generally small but 
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significant (Weisbach [1988]). At one extreme, when James Crosby, the controlling 

shareholder and chief executive of Resorts International, died, Resorts' stock increased 

by 37 percent in a single day (Holderness and Sheehan [1991]). 

With 10 states and 10 actions, the specification problem becomes even more 

difficult, since there are many ways that an action can make good states more likely. 

Finding an intuitively appealing specification proved difficult. Even after restricting the 

search to probability structures that satisfjl the "spanning condition" (SC), where better 

performance means higher pay, many structures had only degenerate feasible solutions 

or implied implausible CEO productivity. 

This point -- how CEO effort benefits the firm -- is clearly the major difficulty in 

using the direct quantitative approach. Squarely confronting that problem gives us a 

better idea of what we lack, both in terms of the data we would like to have and in 

regard to the theoretical concepts that need clarification. 

We generated the probabilities x;(a) that satisfjl the SC in Grossman and Hart, 
A - 

namely, that there exist vectors n ,n  such that for each action ~ E A ,  
A 

(1) ~ ( a )  = R(a)n+[l -R(a)]; for some 0 5 h (a) 1 

and 
gi 

(2 )  is nonincreasing in I. 
xi 

This precise form is a technical condition to ensure that the incentive scheme 

increases in effort. The finction h(a) measures the effects of CEO effort and describes 

how much better the probability distribution gets as the CEO expends more effort and 

takes increasingly difficult actions. We use a h(a) finction that is decreasing in a. This 

means that increasing a moves the probability distribution away fiom the "bad vector 

2 and closer to the "good" vector G ,  making good states more likely. 
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Clearly, a major parameter in the calibration exercise is the fbnction h(a). We did 

an extensive search in this direction, initially starting with the linear fbnctions h(a)=a and 

h(a)=l-a. Unfortunately, in both cases the optimal solution was action 1 or action 10. 

For this fbnction, the problem reduces to the two-state case.2 Therefore, we use a 

nonlinear fbnction to avoid the problem. 

2.2. Solution Procedures 

All the pieces are now in place to delineate the nonlinear programming problem. Given 

specific risk aversion y and specific U ,  we have: 

10 ~n(-v,) 
min i=l  Ti ( a * ) ( - I )  

10 

e ~ '  C Z, (a*)): > e-p 

For every action a* from the action set A, GAMS produced the optimal solution whenever the 

problem was feasible. It did this by using one of its solvers, MINOS, which implements some of 

We do not yet have analytical proof of this, but it holds true for every set of parameters we 
have checked. Let's take a closer look at the linear case: 

A ( a ) = l - a , ~ ( a ) = ( l - a ) % + a ? l .  
The hnction B(a) has the following form: 

Here, K1 and K2 are constants not depending on action. 
Hence, max {B(a) - C(a))= max {K1 + K2a - C(a)). In every case we checked, all of the 

a a 

problems except those for actions 1 and 10 are infeasible, and so the values of their cost fbnctions 
are infinite. M here fore, the maximum will be obtained at either action 1 or action 10. 
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the most popular algorithms for solving nonlinear programming problems, i.e., problems in 

which at least the objective function or the constraint set is a nonlinear function. In our case, it 

is obvious that the objective function is nonlinear. GAMS specifies the above general model for 

every particular action from the action set. It then tries to find the optimum. As usual, the first 

step is to find a feasible solution. If successful, the next step is to find the optimum. In this 

specific example, because the objective function is convex [- ln(iVi)), the Kuhn-Tucker- 

Karush theorem guarantees that the optimal solution exists, and this is the result that GAMS 

produces. From this, GAMS generates the cost-function value C(a), where 
10 

C(a) = m i n x  ni(a) [-y) for every action from the action set, together with the vector 
i= 1 

V1,"2,...,"10. 

For some configurations, however, there are no points v, , v, , . . . , vlo that simultaneously 

satisfy the constraints. Some actions "a" cannot be implemented by the principal at any cost. 

For those cases, we assign an infinitely large number to be the value of the objective function, 

The next step is to choose which action to implement, that is, to choose a E A so as to 
10 

maximize B(a) - C(a), where ~ ( a )  = x ir, (a) qi . 
i=I 

As mentioned before, in the case of linear h(a) functions, only actions 1 and 10 are 
-& feasible. A nonlinear function avoids the reduction to the two-state case. We use A(a) = e , 

where 6 is a parameter measuring how additional effort affects output, and 

aeA={O. 1,O.Z.. .0.9,1.0). Figure 1 plots h(a) for three representative 6's. 

In our empirical study, we chose the following values for the vectors ir and k :  
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The above briefly describes one cycle of our procedure. The actual steps are 

Step 1 Choose some initial starting values for risk aversion y and CEO 
productivity 6. 

Ster, 2 Generate the probability distribution from equation (1) for every action a. 

Step 3 Use GAMS to solve the nonlinear problem (NP) for every action a. 
Produce as an output C(a) and v, , v,, ..., v,,. 

Step 4 Find max{~(a)  - ~ ( a ) }  . Obtain the second-best optimal action a  ̂
acA 

Step 5 Compute SSE, BAR, and DSSQ statistics (defined below) using data for 
350 companies. 

Step 6 Increment y and 6. 

Detailed description of Step 5: 

The data comprised those 350 companies in Jensen and Murphy's (1990b) "New Survey of 

Executive Compensation" for which we could extract shareholder value from the CRSP 

database. We extracted the stock price and the number of shares outstanding for the last 

trading day of each quarter for the years 1982 - 1990, then used this information to generate the 

profit levels q, based on the standard deviations computed for every company from the set. 

This meant rescaling the qi's given i 3 .  We next compared the profit shares produced by our 

procedure with the real profit shares obtained from Jensen and Murphy. Following their 

approach, we define profit share as the fraction of increased shareholder wealth that the CEO 

receives in total compensation. In our model, that translates to l o  - . We arrive at this by 
410 -91 
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using the following finctions: If we denote by x,,x2, ..., x3,, the profit shares fiom 

JensenlMurphy and by y, ,y2,. . . ,y3,, the profit shares from our procedure, then 

2 
( I )  SSE = Z(X, -yi) 

These three statistics are actually finctions of y and 6 .  The procedure was to minimize them 

with respect to 6 and y. 

The three metrics all have a natural interpretation. The first, the sum of squared errors, is 

the standard quadratic loss finction. The others attempt to match. specific moments. BAR 

matches the means, and DSSQ matches second moments. 

3. Results 

In looking at the results, three questions stand out: 1) What parameters does the 

calibration choose, 2) How closely do we match the data, and 3) What does the optimal 

compensation contract look like? Answering these questions resolves the deeper issue 

-- What have we learned about principal-agent theory and executive compensation? We 

see where the theory falters and what missing factors hold promise of better fits. 

3.1. Basic Results 

As described in section 2, the calibration approach searches across parameter 

combinations for the values that best match the observed profit shares. Figures 2, 3, and 

4 illustrate the procedure by plotting the three different loss finctions against risk 

aversion. Figure 2 plots the sum of squared errors, figure 3 plots the absolute 

difference in sample means, aiming at matching the first moment, and figure 4 plots the 
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absolute difference in sample standard deviations, aiming to match the second moment. 

Table 1 reports the underlying numbers. 

The hnctions differ, of course, but a common pattern emerges. The global 

minimum occurs at a low level of risk aversion. For the sum of squared errors, there is a 

global minimum at 0.125. The two moment-matching cases show lower risk aversion. 

The mean case selects 0.025, and the variance case selects 0.025, a boundary value, 

suggesting that the actual minimum may occur at even lower values. The results for 6 

show greater variability. The SSE and BAR metrics produce values of 10 and 13.5, but 

matching variance produces a lower value of 3.5. 

What do these parameter values tell us? The risk aversion parameters may initially 

seem rather low, but they represent absolute risk aversion, not the relative risk aversion 

calculated in most consumption and asset-pricing studies. To convert absolute to 

relative risk aversion, we multiply by wealth. One measure of wealth, the median value 

of CEO stockholdings, is $3.5 million in the Jensen and Murphy sample. Since our 

paper works in million-dollar units, this suggests adjusting risk aversion by a factor 

between one and ten. With this in mind, the numbers look reasonable but still low. 

The meaning of the parameter 6, labeled CEO productivity, is less obvious. It 

describes how increased effort heightens the probability of good states, moving away 

from probability vector 7; toward ?I. For the SSE optimal value of 6=10, for example, 

with the lowest level of effort al=O. 1, the probability of the best state is 0.11; for a2=0.2, 

the probability is 0.13; and for a p l ,  the probability is 0.14. For the DSSQ optimal 

value of 6=3.5, the corresponding good-state probabilities are 0.08, 0.10, and 0.14. 

How well does this calibration match the data? Table 1 and figures 2, 3, and 4 

provide one set of answers (since they are explicit metrics), but these are hard to 

interpret. Another way to look at the match is as follows. The average actual 

performancelpay ratio for the 350 firms in the sample is 0.01003 (the CEO gets $10.03 
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for every $1,000 increase in shareholder value), and the sample standard deviation is 

0.032. For the mean (BAR) case, the corresponding figures are 0.01004 and 0.008. 

The calibration matches the mean quite well, to within 1 cent per $1,000 of shareholder 

wealth. It seriously understates the standard deviation, however, a topic we pursue in 

the next section. The calibration designed to match standard deviations did better, of 

course. 

Figure 5 plots the optimal incentive scheme (compensation contract) for each 

metric and lists the optimal action chosen under each scheme. The incentive schemes 

are monotonic, meaning that the agent gets paid more in good states. (This must 

happen because the probabilities satisfjl the SC.) However, they are also nonlinear: A 

given increase in firm profits (a constant difference in gross profits from one state to the 

next) corresponds to a different change in the agent's income. 

Figure 5 also indicates that the linear compensation scheme, implicitly assumed in 

Jensen and Murphy's empirical work and explicitly assumed in Rosen (1990), Haubrich 

(1994), and Wang (1994), is not the filly optimal contract. The CEO receives greater 

rewards for improving a bad state than for improving a good state. Kaplan (1994) finds 

evidence that incentives may differ across states in this manner. Figure 5 also suggests 

that the model takes this too far, overemphasizing the negative payments in bad states. 

Wang (1 994) argues that a dynamic approach avoids this problem. 

3.2. Comparing Distributions 

Formal metrics have the advantage of being explicit, but they can also hide 

information about the distributions being compared. The problem boils down to 

comparing two distributions. We use a series of graphs developed by statisticians to 

examine the total distributions in more detail. Figure 6 shows a percentile plot of the 

actual profit shares and the profit shares generated by the model (SSE case). A 
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percentile plot graphs the value against its percentile, allowing easy comparison between 

percentiles. Examining two together provides a picture of how the distributions differ, 

even if single numbers such as means match up closely. For the actual values, notice the 

small number of extreme values at the top. For the model, notice the absence of both 

negative and very high values. No predicted profit share exceeds 0.05, while 30 actual 

values do so, reaching as high as 0.43. In general, figure 6 shows that the model slightly 

overpredicts profit shares for most companies, but never produces the large profit shares 

found at the high end of the data. Our judgment is that in these extreme cases, such as 

An Wang, where the CEO is also a substantial stockholder of the firm, the distinction 

between principal and agent breaks down, making our model inappropriate. These 

major errors also explain why matching the standard deviation and the sum of squared 

errors is difficult. 

Figures 7 and 8 take the comparison one step further. Figure 7 shows apercentile 

comparison graph (see Cleveland [ I  985]), which plots the ordered values of one dataset 

against the ordered values of another. Identical distributions result in a perfect x = y 

line, while a small amount of noise results in random deviations around that line. One 

defect of the graph is that the human eye is a poor judge of distance from a slanted line. 

The Tukey Sum-Difference graph (figure 8) resolves the problem, plotting Yi-xi against 

yi+xi and in effect rotating the 45" line to the horizontal. Notice that for most values, 

the model predicts a profit share that is a little too high. For larger values, the model 

underpredicts profit share. This problem gets worse for larger values. 

3.3. Truncated Sample Results 

The comparisons in section 3.2 indicate that the model fails in cases of high 

performance pay. In these cases, the CEO is also a (often the) major stockholder in the 

firm, a point emphasized by looking at the names: Barron Hilton of Hilton Hotels, An 
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Wang of Wang Laboratories, and Richard Timken of Timken Industries. It no longer 

seems clear that the CEO is the agent of the stockholders, and it is not surprising that 

the model breaks down. 

To account for this, we truncated our sample by removing all executives (12) with 

a performancelpay ratio above 0.05 ($50/$1,000). After checking each to make certain 

that the high ratio was due to large shareholdings, we recalibrated the model. The 

results are presented in table 2 and figures 9 and 10. 

Table 2 shows that in addition to matching the mean, the model can also match the 

standard deviation of the truncated sample very closely. The percentile plots show an 

even closer match, but a similar pattern to before: overprediction of profit shares for 

most firms, underprediction for the highest. Figures 9 and 10 compare the actual and 

predicted distributions for the truncated sample. The extreme outliers are gone, though 

the model again does worse at high levels. Note the relative paucity of profit shares 

above 0.0 1. 

The model can clearly generate a distribution of profit shares that closely matches 

the actual distribution. This is not the same as accurately predicting each firm's profit 

share, however. Figure 11  illustrates this, plotting the predicted profit share for each 

firm against its actual profit share. While the model produces a distribution similar to 

that found in the data, a firm with a high predicted profit share may or may not have a 

high actual profit share. 

3.4. Parameter Uncertainty 

Calibration chooses parameters, but some degree of uncertainty necessarily 

surrounds the parameters chosen. More important, because we care little about the 

uncertainty in y and &per se, there is uncertainty in the predicted profit shares. 
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Cecchetti, Lam, and Mark (1993) correctly emphasize that this uncertainty has two 

parts. One part arises because the input data, the variance of shareholder value, is only 

an estimate of the true variance and thus has its own uncertainty, i.e., its own finite 

sample distribution. The other part exists because of the error in the final estimate; we 

estimate y and 6 with efror, so the predicted distribution of profit shares, which depends 

crucially on these parameters, also has an associated error.3 

Simulations can address the first source of uncertainty. For a normal population, 
(n - l)s2 

the sample variance has a distribution, or more precisely, - with (n-1) 
o2 

degrees of freedom. We took 100 draws from a ~ 3 4 9 ~  distribution and rescaled the 

sample variances to produce new input data. This new data, in conjunction with the old 

optimal contract, yielded new predictions of profit shares and a corresponding value for 

the distance between those predictions and the actual profit shares. Table 3 reports the 

results -- how the distribution varies when the underlying variance changes, given 

particular values for y and 6 .  The first panel reports the findings for the y and 6 that 

minimize the SSE in the actual data, while the second and third panels report the 

combinations that minimize differences in means and variances. 

We find that the uncertainty does matter: The variation around the optimal is 

nontrivial. This is particularly noticeable in the mean and variance case, which matched 

the original data most closely. For example, originally, mean-predicted pay matched the 

actual mean to within 1 cent in $1,000; changing the variances dropped the match to 

between $3 and $5 per $1,000. 

3~ procedure such as the Generalized Method of Moments would explicitly introduce these two 
types of uncertainty. Unfortunately, our model, both because of its particular form and because it 
has no closed-form solution, makes it difficult (if not impossible) to apply the required 
orthogonality conditions. 
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The other source of uncertainty, the estimated values of y and 6, already showed 

up in table 1, which revealed how the difference between predicted and actual values 

changes with shifts in y and 6 -- and how the distribution depends on the estimated 

parameters, which is exactly what we wish to know. 

4. Conclusion 

No one would deny the insights gained from looking at the qualitative 

correspondence between economic theory and executive compensation. Still, as 

recognized by Jensen and Murphy (1990a), exercises such as correlating CEO 

compensation with firm risk can run afoul of the biblical injunction about straining gnats 

and swallowing camels. The finer nuances may not matter if the CEO has inadequate 

incentives. Our results show the feasibility of using calibration to undertake a direct, 

quantitative approach. 

Beyond demonstrating feasibility, calibration produces some usehl information by 

forcing us to look at questions that would not come up in most purely econometric 

settings. In so doing, we get an estimate of CEO productivity: By taking the best 

action rather than the worst, the CEO increases the probability of the most profitable 

outcome from 0.08 to 0.14. We also find that theory predicts a decidedly nonlinear pay 

schedule for top executives, one that rewards improvements from bad outcomes more 

than improvements from good outcomes. 

Our results suggest that standard principal-agent theory predicts low profit shares 

for CEOs. Results such as those of Jensen and Murphy should not be taken as strong 

evidence that CEO compensation schemes are seriously out of line with proper 

incentives. 

Quantitatively, the theory can be said to match the data success&lly by two 

criteria. First, by matching moments, the mean of the predicted values differs from the 
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mean of the actual values by only 1 cent in $1,000. Next, on a more subjective level, the 

percentile comparison plots show broad coherence between actual and predicted 

distributions. This occurs despite ignoring differences known to affect CEO pay, such 

as company size (Rosen [1990]) and CEO tenure (Gibbons and Murphy [1992]). 

Calibration has contributed substantially to our understanding of asset pricing and 

business cycles. We believe that taking the quantitative predictions of theoretical models 

seriously can also contribute to the study of executive compensation and, more broadly, 

to corporate finance as well. 
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Figure 2 3D Plot SSE 

Source: Authors' cal~ulati~ns. 
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Figure 5: Incentive Pay in Each State for the Different Optimal Values of Gamma and Delta 
Pay 
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Source: Authors' calculations. 
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FIGURE 6: PERCENTILE PLOT, ACTUAL AND 
PREDICTED PROFIT SHARES, 350 FIRMS 

Profit share 

Predicted 

I I I I I 

60 
Percent 

SOURCES: Michael C. Jensen and Kevin J. Murphy, "A New Survey of Executive Compensation" (1990); and authors' calculations. 
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FIGURE 7: PERCENTILE COMPARISON PLOT, ACTUAL 
AND PREDICTED PROFIT SHARES, 350 FIRMS 
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SOURCES: Michael C. Jensen and Kevin J. Murphy, "A New Survey of Executive Compensation" (1990); and authors' calculations. 
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FIGURE 8: TUKEY SUM-DIFFERENCE GRAPH 
OF PERCENTILES, 350 FIRMS 
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SOURCES: Michael C. Jensen and Kevin J. Murphy, "A New Survey of Executive Compensation" (1990); and authors' calculations. 
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FIGURE 9: PERCENTILE PLOT, ACTUAL AND 
PREDICTED PROFIT SHARES, 338 FIRMS 
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SOURCES: Michael C. Jensen and Kevin J. Murphy, "A New Survey of Executive Compensation" (1990); and authors' calculations. 
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Table 1.: MINIMIZING THE LOSS FUNCTIONS 

Source: Authors' calculations. 

SSE 
Y~S 
0.001 
0.005 
0.025 
0.125 
0.225 
0.325 
0.425 
0.525 
0.625 
0.725 
0.825 
0.925 

14 13.5 13 12.5 12 11.5 11 10.5 10 9.5 9 
0.55111 0.68391 0.80316 0.70816 0.65400 0.65583 0.68357 0.76505 0.79702 0.70971 0.77705 
0.43298 0.40798 0.41208 0.40503 0.44856 0.47376 0.44765 0.44017 0.45097 0.46733 0.49516 
0.38553 0.38417 0.37865 0.38635 0.37702 0.37645 0.37248 0.38336 0.38728 0.37681 0.38660 
0.37591 0.37225 0.37209 0.37545 0.37659 0.37517 0.37583 0.37484 0.37185 0.37505 
0.38400 0.38470 0.38092 0.37635 0.37672 0.37861 0.38013 0.37918 0.38095 0.38185 0.37464 
0.38516 0.38580 0.38644 0.38705 0.38765 0.37910 0.38003 0.38193 0.38134 0.38296 0.38393 
0.38594 0.38661 0.38723 0.38782 0.33838 0.38892 0.38943 0.37903 0.38271 0.38288 0.38454 
0.38628 0.38707 0.38775 0.38837 0.38893 0.38946 0.38994 0.39040 0.39083 0.38262 0.38387 
0.38580 0.38703 0.38793 0.38866 0.38928 0.38984 0.39033 0.39079 0.39120 0.39159 0.39195 
0.39535 0.38531 0.38749 0.38858 0.38938 0.39003 0.39058 0.39106 0.39148 0.39187 0.39221 
0.39547 0.39559 0.39571 0.38761 0.38906 0.38996 0.39064 0.39119 0.39166 0.39206 0.39242 
0.39559 0.39571 0.39581 0.39591 0.38719 0.38935 0.39042 0.39114 0.39170 0.39215 0.39254 

BAR 
~16 
0.001 
0.005 
0.025 
0.125 
0.225 
0.325 
0.425 
0.525 
0.625 
0.725 
0.825 
0.925 

14 13.5 13 12.5 12 11.5 11 10.5 10 9.5 9 
0.01880 0.02211 0.02387 0.01999 0.01796 0.01889 0.02230 0.02494 0.02397 0.02262 0.02592 
0.00453 0.00469 0.00586 0.00773 0.00981 0.00979 0.00792 0.00834 0.00945 0.01109 0.01145 
0.00078 1 1  0.00048 0.00054 0.00038 0.00030 0.00088 0.00170 0.00142 0.00123 0.00190 
0.00524 0.0049 0.00455 0.00443 0.00477 0.00511 0.00522 0.00494 0.00439 0.00408 0.00415 
0.00746 0.00761 0.00671 0.00617 0.00568 0.00594 0.00624 0.00642 0.00666 0.00693 0.00580 
0.00771 0.00784 0.00796 0.00807 0.00818 0.00656 0.00641 0.00679 0.00700 0.00722 0.00744 
0.00786 0.00799 0.00810 0.00821 0.00831 0.00840 0.00848 0.00662 0.00705 0.00734 0.00758 
0.00793 0.00807 0.00820 0.00830 0.00840 0.00848 0.00856 0.00863 0.00870 0.00703 0.00755 
0.00784 0.00807 0.00823 0.00835 0.00846 0.00854 0.00862 0.00869 0.00876 0.00881 0.00887 
0.00934 0.00784 0.00815 0.00834 0.00847 0.00858 0.00866 0.00873 0.00880 0.00886 0.00891 
0.00936 0.00937 0.00939 0.00817 0.00842 0.00857 0.00867 0.00876 0.00882 0.00888 0.00894 
0.00937 0.00939 0.00940 0.00941 0.00810 0.00847 0.00864 0.00875 0.00883 0.00890 0.00895 

DSSQ 
Y~S 
0.025 
0.125 
0.225 
0.325 
0.425 
0.525 
0.625 
0.725 
0.825 
0.925 

6 5.5 5 4.5 4 3.5 3 2.5 2 1.5 1 
0 . 0 0 2 8 9 w l  0.00696 0.00724 
0.00433 0.00429 0.00409 0.00382 0.00351 0.00371 0.00487 0.00592 0.00675 0.00728 0.00735 
0.00678 0.00606 0.00628 0.00581 0.00627 0.00566 0.00543 0.00656 0.00722 0.00757 0.00746 
0.00690 0.00748 0.00788 0.00693 0.00762 0.00703 0.00628 0.00610 0.00726 0.00764 0.00732 
0.00854- 0.00878 0.00784 0.00832 0.00704 0.00805 0.00725 0.00805 0.00756 0.00777 0.00699 
0.00846 0.00881 0.00903 0.00797 0.00857 0.00886 0.00819 0.00857 0.00864 0.00832 0.00781 
0.00954 0.00858 0.00899 0.00919 0.00932 0.00865 0.00893 0.00901 0.00890 0.00877 0.01101 
0.00957 0.00965 0.00859 0.00907 0.00928 0.00938 0.00941 0.00936 0.00912 0.00911 0.01101 
0.00955 0.00965 0.00972 0.00976 0.00895 0.00921 0.00926 0.00911 0.00930 0.00903 0.01101 
0.00944 0.00960 0.00969 0.00975 0.00977 0.00976 0.00969 0.00951 0.00946 0.01101 0.01101 
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Table 2: RESULTS FOR 338 FIRMS 

Source: Authors' calculations. 

SSE 
Yfi 

0.025 
0.125 
0.225 
0.325 
0.425 
0.525 
0.625 
0.725 
0.825 
0.925 

14.5 14 13.5 13 12.5 12 11.5 11 10.5 10 
0.04331 0.04694 0.04186 0.03799 0.04235 0.03700 0.03772 0.03901 0.05058 0.04985 
0.01787 0.01796 0.01734 0.01869 0.02026 0.01978 0.01957 0.01905 0.01944 0.01863 
0.01888 0.01897 0,01909 0.01776 0.01798 0.01807 0.01836 0.01824 0.01891 
0.01905 0.01919 0.01934 0.0195 1 0.01969 0.01987 0.01744 0.01803 0.01830 0.01823 
0.01920 0.01938 0.01956 0.01974 0.01993 0.02011 0.02030 0.02048 0.01776 0.01823 
0.01923 0.01947 0.01969 0.01990 0.02011 0.02030 0.02049 0.02068 0.02085 0.02102 
0.01901 0.01934 0.01968 0.01996 0.02021 0.02043 0.02063 0.02082 0.02100 0.02 1 17 
0.02294 0.02300 0.01901 0.01982 0.02018 0.02047 0.02071 0.02092 0.02111 0.02129 
0.02300 0.02306 0.02312 0.02317 0.01986 0.02035 0.02068 0.02095 0.02117 0.02136 
0.02306 0.02312 0.02317 0.02322 0.02327 0.01973 0.02045 0.02086 0.02115 0.02138 

BAR 

Yfi 
0.025 
0.125 
0.225 
0.325 
0.425 
0.525 
0.625 
0.725 
0.825 
0.925 

14.5 14 13.5 13 12.5 12 11.5 11 10.5 10 
0.00561 0.00565 0.00490 0.00428 0.00427 0.00441 0.00509 0.00571 0.00652 0.00629 
0.001 14 0,00039 o.ooo1o o.ooo3o 0.00044 o.ooo1o 0,00029 0.00039 0.00044 !..!,.. 4:.i:::..: ........... .,,;;!,!; 

0.00244 0.00260 0.00275 0.00184 0.00130 0.00081 0.00106 0.00136 0.00158 0.00181 
0.00270 0.00284 0.00297 0.00309 0.00320 0.00331 0.00169 0.00153 0.00191 0.00214 
0.00286 0.00300 0.00312 0.00323 0.00334 0.00343 0.00352 0.00360 0.00176 0.00216 
0.00288 0.00306 0.00321 0.00333 0.00343 0.00352 0.00361 0.00369 0.00376 0.00382 
0.00266 0.00297 0.00320 0.00336 0.00348 0.00358 0.00367 0.00375 0.00382 0.00388 
0.00444 0.00445 0.00298 0.00328 0.00347 0.00360 0.00370 0.00378 0.00386 0.00392 
0.00445 0.00447 0.00449 0.00450 0.00330 0.00354 0.00369 0.00379 0.00388 0.00395 
0.00447 0.00449 0.00450 0.00451 0.00453 0.00323 0.00359 0.00376 0.00387 0.00395 

DSSQ 

Yfi 
0.025 
0.125 
0.225 
0.325 
0.425 
0.525 
0.625 
0.725 
0.825 
0.925 

14.5 14 13.5 13 12.5 12 11.5 11 10.5 10 
0.00555 0.00561 0.00487 0.00426 0.00426 0.00438 0.00503 0.00564 0.00647 0.00624 
0.00117 0.00042 0.00014 0.00027 0.00041 0 00031 0.00041 0.00013 0.00040 

3 . .  :.. . . . . , . 
0.00247 0.00263 0.00278 0.00 187 0.00133 0.00084 0.00 109 0.00138 0.00160 0.00183 
0.00273 0.00287 0.00300 0.00312 0.00323 0.00334 0.00172 0.00156 0.00194 0.00217 
0.00289 0.00303 0.00315 0.00327 0.00337 0.00347 0.00356 0.00364 0.00179 0.00220 
0.00291 0.00309 0.00324 0.00336 0.00346 0.00356 0.00364 0.00372 0.00379 0.00386 
0.00270 0.00300 0.00323 0.00339 0.00351 0.00362 0.00370 0.00378 0.00385 0.00391 
0.00447 0.00449 0.00301 0.00331 0.00350 0.00363 0.00373 0.00382 0.00389 0.00395 
0.00449 0.00451 0.00452 0.00454 0.00333 0.00358 0.00372 0.00383 0.00391 0.00398 
0.00451 0.00452 0.00454 0.00455 0.00456 0.00326 0.00363 0.00379 0.00390 0.00399 
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Table 3 : EFFECT OF INPUT VALLIE UNCERTAINTY ON LOSS FUNC'IIONS 

Source: Authors' calculations. 

Optimal results from the model 

Simulation results 
100 draws 

Optimal results from the model 

Simulation results 
100 draws 

Optimal results from the model 

Simulation results 
100 draws 

Average 
StDev 

High 
Low 

Average 
StDev 

High 
Low 

Average 
StDev 

High 
Low 

SSE 
0.370024 

0.38205 1 

0.003645 

0.389342 

0.37 1578 

0.384 17 1 

0.38 1940 

0.006583 

0.395234 

0.364810 

0.398710 

0.390155 

0.007941 

0.4 1 1602 

0.367236 

BAR 
0.004395 

0.006860 

0.000149 

0.007248 

0.006441 

0.000013 

0.004497 

0.000261 

0.005066 

0.003571 

0.000810 

0.004549 

0.000302 

0.005087 

0.003725 

DSSQ 
0.005366 

0.0078% 

0.00015 1 

0.008215 

0.007396 

0.000962 

0.005443 

0.000265 

0.006026 

0.004498 

0.0001 10 

0.005464 

0.000312 

0.00601 1 

0.004620 
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