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Abstract

The bootstrap is a convenient tool for calculating standard errors of the parameter

estimates of complicated econometric models. Unfortunately, the bootstrap can be

very time-consuming. In a recent paper, Honoré and Hu (2017), we propose a “Poor

(Wo)man’s Bootstrap” based on one-dimensional estimators. In this paper, we pro-

pose a modified, simpler method and illustrate its potential for estimating asymptotic

variances.
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1 Introduction

Most standard estimators for cross-sectional econometric models have asymptotic distribu-

tion of the form
√
n
(
θ̂ − θ0

)
d−→ N

(
0, H−1V H−1

)
(1)

where θ0 is the k-dimensional parameter of interest, H and V are symmetric, positive definite

matrices to be estimated. It is usually possible to get explicit expressions for H and V , but

estimating them can be computationally difficult in complicated models. The bootstrap1

provides a simple method for estimating H−1V H−1 directly.

One practical problem with the bootstrap is that it requires re-estimating the model a

large number of times. This can be a limitation for complicated models where it is time-

consuming to calculate the objective function that defines the estimator, or for estimators

that are based on sample moments that are discontinuous in the parameter.

In Honoré and Hu (2017), we introduced a version of the bootstrap which is based on

calculating one-dimensional estimators using a fixed set of directions in Rk for each bootstrap

replication. The covariance of these one-dimensional estimators is then used to back out

estimators of H and V via nonlinear least squares. The benefit of this approach is that it is

often much easier to calculate one-dimensional than k-dimensional estimators.

In this note, we introduce a modified approach which permits using one-dimensional

estimators in different directions in each bootstrap replication, and which makes it possible

to back out estimators to H and V via linear regression. In order to highlight the idea behind

the approach, we will be deliberately vague about the underlying regularity conditions.

Section 2 describes our basic idea in the context of an extremum estimator, but as

mentioned, the approach applies equally well to GMM estimators. In Section 3, we illustrate

the potential usefulness of the approach by considering Powell’s (1984) the Censored Least

Absolute Deviations. We choose this example because quantile regression estimators provide

a classical example where the matrix H in (1) cannot be estimated by a simple sample

analog. Section 4 demonstrates how the proposed approach can be used to estimate the

1The bootstrap can also be used to provide asymptotic refinements that can lead to more reliable inference

in finite samples. That is not the topic of this note.
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variance of two step estimators. Two step estimators also provide a classical example where

it is cumbersome to estimate the variance of an estimator. Section 5 concludes.

2 Our Modified Approach

To fix ideas, consider an extremum estimator of the form

θ̂ = arg min
t

1

n

n∑
i=1

q (zi; t) (2)

where zi is the data for observation number i, n is the sample size, and θ0 = arg mint

E [q (zi; t)] is the true parameter value. Under random sampling and weak technical assump-

tions, (1) holds with V = V [q′ (zi; θ0)] and H = E [q′′ (zi; θ0)], where the differentiation is

with respect to the parameter. See for example Amemiya (1985). The insight in Honoré and

Hu (2017) is to consider (infeasible) one-dimensional estimators of the form

â (δ) = arg min
a

1

n

n∑
i=1

q (zi; θ0 + aδ) ,

where δ is a fixed k-dimensional vector and a is a scalar. The joint asymptotic distribution

of m such estimators, â (δ1), ..., â (δm), is asymptotically normal with asymptotic variance

Ω = (C ′ (I ⊗H)C)
−1

(D′V D) (C ′ (I ⊗H)C)
−1
, (3)

where I is an m×m identity matrix,

D
(k×m)

=
(
δ1 δ2 · · · δm

)
and C

(km×m)
=


δ1 0 · · · 0

0 δ2 · · · 0
...

...
. . .

...

0 0 · · · δm

 .

Equation (3) implies the relationship,

(C ′ (I ⊗H)C) Ω (C ′ (I ⊗H)C) = (D′V D) . (4)

Honoré and Hu (2017) proved that for suitably chosen directions, δ1, .., δm, equation (4)

identifies2 V and H from Ω, and proposed estimating V and H by nonlinear least squares

2Except for an innocuous scale normalization.
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after estimating Ω with the bootstrap. Honoré and Hu (2017) also demonstrate that the

same approach can be used for GMM estimators.

The argument leading to (1) is almost always based on the representation

θ̂ − θ0 ≈ H−1
1

n

n∑
i=1

si (5)

where ≈ means that the two sides differ by a magnitude which is asymptotically negligible

relative to the right hand side, and si is a function of the data for individual i. For example,

for the extremum estimator in (2), si = q′ (zi; θ0) when q is smooth in the parameter. The

same basic argument applies to the bootstrap (see Hahn (1996)). Specifically, consider

a bootstrap sample
{
zbi
}

of size3 n, where the zbi ’s are drawn with replacement from the

empirical distribution of {zi}. Standard asymptotic theory implies that in each bootstrap

replication, b, the estimator, θ̂b = arg mint
1
n

n∑
i=1

q
(
zbi ; t

)
has the linear representation

θ̂b − θ̂ ≈ H−1
1

n

n∑
i=1

sbi (6)

for the same H and in (5).

As in Honoré and Hu (2017), this paper considers (infeasible) estimators of the form

â (δ) = arg min
a

1

n

n∑
i=1

q (zi; θ0 + aδ) ,

where δ is a fixed k-dimensional vector. These estimator have the representation

â (δ) ≈ (δ′Hδ)
−1
δ′

1

n

n∑
i=1

si

and the corresponding (feasible) estimators in a bootstrap sample,

âb (δ) = arg min
a

1

n

n∑
i=1

q
(
zbi ; θ̂ + aδ

)
,

have the representation

âb (δ) ≈ (δ′Hδ)
−1
δ′

1

n

n∑
i=1

sbi . (7)

3In principle, the bootstrap sample size can differ from the actual sample size. We ignore this in order to

keep the notation simpler.
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Note that we can write (7) as

(δ′Hδ) âb (δ) ≈ δ′sb

where sb = 1
n

n∑
i=1

sbi . Equivalently

âb (δ) (δ′Hδ)− δ′sb ≈ 0 (8)

or ∑
j,`

(âb (δ) δjδ`)hj` −
∑
j

δjs
b
j ≈ 0, (9)

where sbj is the j’th element of sb, δj is the j’th element of δ. Since hj` = h`j, equation (9)

can be written as∑
j

(âb (δ) δjδj)hjj +
∑
`<j

(2âb (δ) δjδ`)hj` −
∑
j

δjs
b
j ≈ 0. (10)

As in Honoré and Hu (2017), the same idea applies to GMM estimators.

It is useful to think of (10) as a linear regression model where the parameters are the

hj`’s and the sbj’s , the dependent variable is always 0 and (asymptotically) there is no error.

Of course, for this to be useful, one needs to impose a scale normalization such as h11 = 1

or
k∑
j=1

h2jj = 1. See Appendix 1 for how to impose the restriction in practice.

In each bootstrap replication, each δ-vector gives an observation from (10). The sb-

vector differs across bootstrap replications, but the elements of H are the same. In other

words, if we focus on H, we can think of sb as a bootstrap-specific fixed effect that can be

eliminated by a transformation similar to the “textbook” panel data deviations-from-means

transformation. For details4, see Appendix 2, where αi plays the role of sb . This provides

an easy way to estimate the elements of H (up to scale).

Once H has been estimated, one could back out the sb-vector for each bootstrap replica-

tion and use the sample variance of sb to estimate V . Specifically, the sb-vector for a bootstrap

replication can be estimated by stacking the terms
∑

j (âb (δ) δjδj) ĥjj+
∑

`<j (2âb (δ) δjδ`) ĥj`

4If one wants to impose the normalization

k∑
j=1

h2
jj = 1, then the method described in Appendix 1 can be

applied to the regression (14) in Appendix 2.
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for a given bootstrap replication and regressing them on the stacked δ′’s (this is the D′ from

above).

One potential advantage of exploiting (10) to recover H and sb is that it is straightforward

to allow the directions δ to differ across replications. This is useful because it seems intuitive

that in a given application, some choices of δ will be less informative for recovering H and sb

than others. For example, Honoré and Hu (2017) use all vectors of the from ej, ej + e` and

ej − e`, where ej denotes a vector that has 1 in its j’th element and zeros elsewhere. This

treats all the elements of θ̂ symmetrically. It would be more natural to treat all elements of

Avar
(
θ̂
)−1/2

θ̂ symmetrically. This would be scale and rotation invariant, and it amounts to

taking the directions in Honoré and Hu (2017) (or any other set of symmetric directions) and

pre-multiplying them by Avar
(
θ̂
)1/2

. Since Avar
(
θ̂
)

is not known, this is not feasible, but

one could adjust the directions for a given bootstrap replication using preliminary estimates

of H and V (and hence Avar
(
θ̂
)

) based on the bootstrap replications so far.

3 Illustration: Censored Least Absolute Deviations

In this section we use the Censored Least Absolute Deviations (CLAD) estimator to illustrate

our approach. Powell (1984) considered the model

yi = max {0, x′iβ + εi}

with median (εi|xi) = 0 and proposed the Censored Least Absolute Deviations estimator,

β̂ = arg min
b

∑
|yi −max (0, x′ib)| .

Under random sampling and weak regularity conditions,

√
n
(
β̂ − β

)
d−→ N

(
0, H−1V H−1

)
with V = E [1 {x′iβ > 0}xix′i] and H = 2E

[
f εi|xi (0|xi) 1 {x′iβ > 0}xix′i

]
. Note that in this

case, the “Hessian” in asymptotic variance involves the conditional density of εi given xi. The

CLAD estimator, along with its uncensored predecessor, is one of the simplest and earliest

asymptotically normal econometric estimators for which the asymptotic variance cannot be
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estimated by a simple sample analog. See, for example, Buchinsky (1998) for a discussion of

various approaches.

We consider 1,000 Monte Carlo replications from a random sample of size n from

yi = max{0, x′iβ + εi},

where we first generate (x̃i1, x̃i2, x̃i3, x̃i4) from a normal distribution with means 0, variances

1, and all covariances 1
2
. The explanatory variables are then xij = 1 {x̃ij ≥ 0} for j = 1 · · · 3,

xi4 = x̃i4 and xi5 = 1. The error, εi, is N
(
0, (1 + xi1)

2) and β =
(
1
5
, 2
5
, 3
5
, 4
5
, 1
)
. This results

in approximately 20% censoring. We choose n to be 10,000. This is unrealistically large given

the number of explanatory variables. We choose a very large sample size because it allows us

to focus on the marginal contribution of this paper to the estimation of asymptotic variances,

without worrying about whether the asymptotic distribution is a good approximation to

begin with, or whether the discrete nature of the empirical distribution of the data causes

small sample issues for the bootstrap.

Since we know the data generating process, we can calculate the variance of the estimator

implied by the asymptotic distribution. The corresponding standard errors are given in the

first row of Table 1. The second row reports the standard deviation of the estimator across

the Monte Carlo samples.

The next three rows of Table 1 report estimated standard errors based on the following

bootstrap procedures with 1,000 bootstrap replications: (i) the regular multinomial boot-

strap, (ii) the poor (wo)man’s bootstrap from Honoré and Hu (2017), and (iii) the compu-

tationally easy bootstrap from Section 2. To simplify the comparison of (ii) and (iii), we use

the directions, δ, proposed in Honoré and Hu (2017) for both.

The final row of Table 1 illustrates how our proposed procedure can sometimes be sim-

plified by using the structure of the problem. For the CLAD estimator, the V -matrix is easy

to estimate by a sample analog, but the H-matrix is more troublesome because it contains

the conditional density of the errors. Also, in this case si = 1 {x′iβ > 0} sign (yi − x′iβ)xi.

In each bootstrap replication, we therefore use 1
n

n∑
i=1

1
{
xb′i β̂ > 0

}
sign

(
ybi − xb′i β̂

)
xbi to es-

timate sb, and then we use (9) estimate the elements in H (by least absolute deviations). V

is estimated by 1
n

n∑
i=1

1
{
x′iβ̂ > 0

}
xix
′
i.
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Table 1: Average Estimated Standard Errors

β1 β2 β3 β4 β5

Square Root of Asymptotic Variance 0.044 0.038 0.038 0.024 0.028

Standard Deviation Across Replications 0.044 0.037 0.038 0.024 0.028

Average of Bootstrap Standard Errors 0.044 0.039 0.039 0.024 0.028

Standard Errors Based on Honoré and Hu (2017) 0.044 0.038 0.038 0.024 0.028

Standard Errors Based on (9) Section 2 0.045 0.039 0.039 0.024 0.028

S.E. Based on (9) using the Structure of the CLAD 0.046 0.040 0.040 0.025 0.030

The results presented in Table 1 suggest that the approach proposed here can be useful

for estimating asymptotic variances. Somewhat surprisingly, the approach that used the

structure of the asymptotic variance (in row six) performs slightly worse than the one based

on (9) Section 2. On the other hand, the former is computationally simpler.

4 Our Approach with Two Step Estimators

The asymptotic variance of two step estimators does not have the representation in (9).

However, they are still asymptotically linear ( Newey (1984)), so the same basic idea applies.

Specifically, suppose that we have a two step estimation problem

θ̂1 = arg min
t

1

n

n∑
i=1

q (zi; t) and θ̂2 = arg min
t

1

n

∑
r
(
zi; θ̂1, t

)
,

with first order conditions5

0 =
1

n

n∑
i=1

q1(zi; θ̂1) and 0 =
1

n

n∑
i=1

r2(zi; θ̂1, θ̂2). (11)

In that case general GMM theory applies, and it follows that

√
n

((
θ̂1
θ̂2

)
−

(
θ1
θ2

))
d−→

N

0,

(
Q11 0

R21 R22

)−1(
V11 V12
V21 V22

)( Q11 0

R21 R22

)−1′ ,

5Here, we implicitly assume that the objective functions are smooth, but similar expressions can often be

obtained when they are not. See for example Huber (1967).
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where Q11 = E
[
∂q1(zi;θ1)

∂θ1

]
, R21 = E

[
∂r2(zi;θ1,θ2)

∂θ1

]
, R22 = E

[
∂r2(zi;θ1,θ2)

∂θ2

]
, V11 = V [q (zi; θ1)] ,

V12 = cov [q (zi; θ1) , r (zi; θ1, θ2)], and V22 = V [r (zi; θ1, θ2)].

Since (11) constitute a set of moment conditions and we pointed out in Section 2 that

the approach discussed there applies to GMM estimators, it is tempting to conclude that

two step estimators do not warrant a special treatment. However, the problem is that the

one-dimensional estimation used in Section 2 will not preserve the simplicity of the two-step

estimator. For example, Heckman’s two-step estimator is based on two simple optimization

problems (probit and OLS) which deliver two parameter vectors α̂ and β̂ separately. In

contrast, the procedure in Section 2 would lead to estimating linear combinations of the

elements of α and β. See Section 5 of Honoré and Hu (2017). In this section, we therefore

provide a different procedure that explicitly preserves the simplicity of the two-step estimator.

One way to see this in smooth cases is to do a Taylor series approximation to (11) around

the true parameter values to get

0 ≈ 1

n

n∑
i=1

q1(zi; θ̂1)

≈ 1

n

n∑
i=1

q1(zi; θ1) +

(
1

n

n∑
i=1

q11(zi; θ1)

)(
θ̂1 − θ1

)
≈ s1 +Q11

(
θ̂1 − θ1

)
,

where s1 = 1
n

∑n
i=1 q1(zi; θ1), and

0 ≈ 1

n

n∑
i=1

r2(zi; θ̂1, θ̂2)

≈ 1

n

n∑
i=1

r2(zi; θ1, θ2) +

(
1

n

n∑
i=1

r21(zi; θ1, θ2)

)(
θ̂1 − θ1

)
+

(
1

n

n∑
i=1

r22(zi; θ1, θ2)

)(
θ̂2 − θ2

)
≈ s2 +R21

(
θ̂1 − θ1

)
+R22

(
θ̂2 − θ2

)
,

where s2 = 1
n

∑n
i=1 r2(zi; θ1, θ2).

Now suppose that, as in Honoré and Hu (2017), we calculate (infeasible) directional

estimators of the form

â1 (δ1) = arg min
a1

1

n

∑
q (zi; θ1 + a1δ1) ,

â2 (δ1, δ2) = arg min
a2

1

n

∑
r (zi; θ1 + â1δ1, θ2 + a2δ2) ,

â3 (δ2) = arg min
a3

1

n

∑
r (zi; θ1, θ2 + a3δ2) .
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A Taylor series expansion of the first order conditions yields

0 ≈ δ′1Q11δ1â1 (δ1) + δ′1s1

0 ≈ δ′2R22δ2â2 (δ1, δ2) + δ′2s2 + δ′2R21δ1â1 (δ1)

0 ≈ δ′2R22δ2â3 (δ2) + δ′2s2.

These are again linear in the elements of Q11, R21 and R22 and we can use the same

approach as in Section 2.

5 Conclusion

The bootstrap is a convenient tool for estimating asymptotic variances, but it can some-

times be quite time consuming. In Honoré and Hu (2017) we proposed a version of the

bootstrap that is based on calculating one-dimensional estimators. This can lead to great

computational gains in complicated models because search in one dimension is faster and

more reliable than in higher dimensions.

This paper proposes a modification to the approach in Honoré and Hu (2017). The ad-

vantage of the approach is that while Honoré and Hu (2017) requires nonlinear least squares,

the approach here can be implemented with linear regression. In also has the advantage that

one can calculate one-dimensional estimators in different directions in different bootstrap

replications. In Honoré and Hu (2017), the directions must be the same in each bootstrap

replication.

The approach applies to extremum estimators as well as GMM estimators, including

two-step estimators.
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Appendix 1

In order to estimate H and V from (9) we regress 0 on a set of explanatory variables subject

to a scale normalization. In other words, we minimize a sum of squares of the form
∑

(x′ib)
2

subject to a normalization. If the normalization is that one of the elements of b is 1, then

that can be done by a simple linear regression. If the normalization is of the form
∑

b2j = 1

where the sum is over some subset of the parameters (for example, the diagonal elements of

H), we use the following.

Consider the minimization problem

min b′

(
A B

B′ C

)
b s.t. b′1b1 = 1

where b = (b′1, b
′
2)
′. The minimization problem

min b′1Ab1 + b′1Bb2 + b′2B
′b1 + b′2Cb2 s.t. b′1b1 = 1

has Lagrangian

L = b′1Ab1 + b′1Bb2 + b′2B
′b1 + b′2Cb2 + λ (b′1b1 − 1) .

The first order condition with respect to b2 is

2B′b1 + 2Cb2 = 0

or

b2 = −C−1B′b1 (12)

while the first order condition with respect to b1

2Ab1 + 2Bb2 + 2λb1 = 0. (13)

Substituting (12) into (13), we obtain

2Ab1 − 2BC−1B′b1 + 2λb1 = 0

or (
A−BC−1B′

)
b1 + λb1 = 0

12



so the minimizing value of b1 must be an eigen-vector of (A−BC−1B′) and −λ is the

corresponding eigenvalue.

Returning to the original objective function and plugging in (12), we have

b′1Ab1 + b′1Bb2 + b′2B
′b1 + b′2Cb2

= b′1Ab1 − b′1BC−1B′b1 − b′1BC−1B′b1 + b′1BC
−1CC−1B′b1

= b′1
(
A−BC−1B′

)
b1

= b′1 (−λb1)

= −λb′1b1 = −λ

because b1 is an eigenvector with eigenvalue −λ. So b1 must be the eigenvector associated

with the smallest (real) eigenvalue..

Finally, we will show that (A−BC−1B′) is positive definite, so all its eigenvalues are

real. This will establish that the minimizing value for b1 is the eigenvector associated with

the smallest eigenvalue. The solution for b2 is then given by (12).

Note that

(
A B

B′ C

)
is positive definite, hence its inverse is also positive definite. This

inverse can be partitioned as (
(A−BC−1B′)−1 ??

?? ??

)

Hence (A−BC−1B′)−1 is positive definite, and then so is its inverse, (A−BC−1B′).

Appendix 2

Consider the panel data regression model

yi = Xiβ + Ziαi + εi

where yi is Ti × 1, X1 is Ti ×K, Zi is Ti × L, εi is Ti × 1 and E [εi|Xi, Zi] = 0. Here, yi,

Xi and Zi are observed data, β is the parameter of interest and αi is a vector of individual

specific “fixed” effects. Assume that L < Ti and that Z ′iZi has full rank and define PZi
=

13



I − Zi (Z ′iZi)
−1 Z ′i. Then

PZi
yi = PZi

Xiβ + PZi
Ziαi + PZi

εi

= PZi
Xiβ + PZi

εi,

or 
PZ1y1
PZ2y2

...

PZnyn

 =


PZ1X1

PZ2X2

...

PZnXn

 β +


PZ1ε1
PZ2ε2

...

PZnεn

 . (14)

As a result, β can be estimated by applying OLS to equation (14). When Zi is a column

vector of ones and αi is one-dimensional, this is the usual deviations-from-means fixed effects

estimator.
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