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Abstract

I study the long-run behavior of a two-agent economy where agents differ in their

beliefs and are endowed with homothetic recursive preferences of the Duffie-Epstein-

Zin type. When preferences are separable, the economy is dominated in the long

run by the agent whose beliefs are relatively more precise, a result consistent with

the market selection hypothesis. However, recursive preference specifications lead to

equilibria in which both agents survive, or to ones where either agent can dominate

the economy with a strictly positive probability. In this respect, the market selection

hypothesis is not robust to deviations from separability. I derive analytical conditions

for the existence of nondegenerate long-run equilibria, and show that these equilibria

exist for plausible parameterizations when risk aversion is larger than the inverse of

the intertemporal elasticity of substitution, providing a justification for models that

combine belief heterogeneity and recursive preferences.
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1 Introduction

The market selection hypothesis first articulated by Alchian (1950) and Friedman (1953)

is one of the supporting arguments for the plausibility of the rational expectations theory.

The hypothesis states that agents who systematically evaluate the distributions of future

quantities incorrectly (and are therefore called ‘irrational’) lose wealth on average, and will

ultimately be driven out of the market. Thus, in a long-run equilibrium, the dynamics of

the economy are only determined by the behavior of the rational agents whose beliefs about

the future are in line with the true probability distributions.

However, rationality does not guarantee survival, nor do deviations from rational prefer-

ences imply extinction. Ultimately, survival in a market is driven by the consumption-saving

decision and willingness to take risky positions with high expected return vis-à-vis market

prices. In this sense, rationality may facilitate survival if it prevents overconsumption and/or

leads the agent to take appropriate bets. On the other hand, specific forms of irrationality

may, at least in theory, provide even stronger incentives for survival in the long run, despite

not being optimal in the rational sense. Since individual decisions depend on equilibrium

prices, survival analysis only makes sense in the context of a fully specified model, including

preferences and belief formation of the market participants and their trading opportunities.

Survival of agents with incorrect beliefs has been studied extensively in complete market

models populated by agents endowed with separable preferences. The existing literature

on market survival has demonstrated how differences in beliefs can be counteracted by dif-

ferences in preferences. Yan (2008) analyzes a model with constant relative risk aversion

(CRRA) preferences and constructs a quantity called the survival index that aggregates the

role of intertemporal elasticity of substitution (IES), time preference, and belief distortion

into a single number that determines survival. When preferences are identical across agents,

then only agents whose beliefs are closest to the truth will survive in the long run.

This insight is central for the understanding of the survival mechanism and can be

rephrased as follows. If rich and poor agents are alike, in the sense that rich agents behave

as scaled versions of poor ones, then agents with relatively more incorrect beliefs cannot

survive in the long run. This is precisely correct for the homothetic CRRA preferences. In

their lucid analysis, Kogan, Ross, Wang, and Westerfield (2009) show that this statement is

also true for a class of preferences with bounded relative risk aversion, i.e., preferences that

are in some norm uniformly ‘close’ to the homothetic CRRA case.

This paper shows that support in favor of the market survival hypothesis weakens consid-

erably once the assumption of separability in preferences is relaxed. In order to focus solely
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on the impact of belief heterogeneity, I endow agents with identical homothetic recursive

preferences axiomatized by Kreps and Porteus (1978), and developed by Epstein and Zin

(1989) and Weil (1990) in discrete time, and by Duffie and Epstein (1992b) in continuous

time. These preferences allow one to disentagle the risk aversion with respect to intratempo-

ral gambles from the intertemporal elasticity of substitution, and include the CRRA utility

as a special case. Thanks to the additional degree of flexibility, this class of preferences is

widely used in the asset pricing literature to provide a better fit of the constructed models to

empirically observed patterns in asset returns. Homotheticity assures that survival results

are not driven by exogenous differences in the local properties of the utility functions.

The decoupling of risk aversion and IES proves to have a crucial impact on survival.

Consider an endowment economy with agents who are optimistic or pessimistic about the

growth rate of the stochastic aggregate endowment. A higher risk aversion in the economy

increases risk premia associated with risky assets and improves survival chances of relatively

more optimistic agents who are willing to invest in these assets. On the other hand, a

higher IES facilitates survival of agents who are relatively more optimistic about the return

on their own portfolio because of a stronger willingness to postpone consumption vis-à-vis

the higher expected returns. This mechanism can also facilitate survival of the relatively

pessimistic agents if they are willing to take a sufficiently large short position in the claim

to the aggregate endowment.

With CRRA preferences, risk aversion and IES are inversely related, so the two effects

offset each other. Increasing the risk aversion increases relatively more the expected returns

on portfolios held by optimistic agents, but the associated decrease in IES makes them, at

the same time, consume more out of their wealth, relative to agents with correct beliefs.

Pessimistic agents, on the other hand, are paying more to insure against the states with

low consumption growth as risk aversion increases; and the relatively lower willingness to

consume out of wealth linked to the associated decrease in IES in conjunction with lower

perceived expected returns is not strong enough to compensate for the cost.

I analyze these mechanisms in a two-agent, continuous-time endowment economy with

complete markets and an aggregate endowment process modeled as a geometric Brownian

motion. I find that both agents survive and a nondegenerate equilibrium exists in the long

run for wide regions of the parameter space when risk aversion is larger than the inverse of

IES. An optimistic agent will dominate the economy in the long run when risk aversion is

sufficiently large. A pessimistic agent survives in the long run when IES is sufficiently high

and risk aversion is not excessive. In the opposite case, when risk aversion is sufficiently
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lower than the inverse of IES, only one agent survives in the long run, but the surviving

agent can be either of the two agents with a strictly positive probability.

The market selection hypothesis is thus not robust to departures from separable prefer-

ences. Survival crucially depends on the interaction between risk attitudes that drive the

portfolio selection decision and the IES that influences the consumption-saving decision. Re-

cursive preferences provide an additional degree of freedom compared to the separable case

that allows one to separate these two effects.

Given the homotheticity of preferences and complete markets, the survival results are

driven purely by prices endogenously determined in general equilibrium. Crucially, non-

degenerate long-run equilibria arise for preference parameterizations that are considered

plausible in the asset pricing literature, which lends support to asset pricing models that

combine heterogeneous beliefs and recursive preferences.

1.1 Methodology and literature overview

The modern approach in the market survival literature1 originates from the work of De Long,

Shleifer, Summers, and Waldmann (1991), who study wealth accumulation in a partial equi-

librium setup with exogenously specified returns and find that irrational noise traders can

outgrow their rational counterparts and dominate the market. Similarly, Blume and Easley

(1992) look at the survival problem from the vantage point of exogenously specified saving

rules, albeit in a general equilibrium setting.

Subsequent research has shown that taking into account general equilibrium effects and

intertemporal optimization eliminates much of the support for survival of agents with incor-

rect beliefs that models with ad hoc price dynamics produce. Sandroni (2000) and Blume

and Easley (2006) base their survival results on the evolution of relative entropy as a measure

of disparity between subjective beliefs and the true probability distribution. In their models,

aggregate endowment is bounded from above and away from zero. As a result, changes in the

1Modeling of economies populated by agents endowed with heterogeneous beliefs constitutes a quickly
growing branch of literature, and a thorough overview of the literature is beyond the scope of this paper.
Here, I primarily focus on the intersection of this literature with the analysis of recursive nonseparable
preferences. Bhamra and Uppal (2009) provide a more general survey that also focuses on asset pricing
implications of belief and preference heterogeneity.
I also omit the discussion of evolutionary literature which predominantly focuses on the analysis of the

interaction between agents with exogenously specified portfolio rules and price dynamics. The survival
mechanism in this paper critically hinges on the interaction the of endogenous consumption-saving decision
and portfolio allocation vis-à-vis general equilibrium prices driven by the dynamics of the wealth shares, and
is thus only loosely related. See Hommes (2006) for a survey of the evolutionary literature, and Evstigneev,
Hens, and Schenk-Hoppé (2006) for an analysis of portfolio rule selection.

3



curvature of the utility function are immaterial for survival when mild regularity conditions

are satisfied. Controlling for pure time preference, the long-run fate of economic agents is

determined solely by belief characteristics, and only agents whose beliefs are in a specific

sense asymptotically ‘closest’ to the truth can survive.

With unbounded aggregate endowment, local properties of the utility function become

an additional survival factor. Even if preferences are identical across agents, the local curva-

ture of the utility function at low and high levels of consumption can be sufficiently different

to outweigh the divergence in beliefs, and lead to survival of agents with relatively more

incorrect beliefs. Kogan, Ross, Wang, and Westerfield (2009) show that a sufficient con-

dition to prevent this outcome is the boundedness of the relative risk aversion coefficient.

This condition can be interpreted as a bound on deviations of the utility function from

homotheticity.

Importantly, survival analysis under separable preferences corresponds to analyzing a se-

quence of time- and state-indexed static problems that are only interlinked through the initial

marginal utility of wealth, which is largely innocuous for the long-run characterization of the

economy. The survival literature frequently exploits martingale methods to characterize the

long-run divergence of subjective beliefs and marginal utilities of consumption.

Nonseparability of preferences breaks this straightforward link, and I therefore develop a

different method that is more suitable for this environment. I utilize the planner’s problem

derived in Dumas, Uppal, and Wang (2000) and extend it to include heterogeneity in beliefs.

The solution of the planner’s problem involves endogenously determined processes that can

be interpreted as stochastic Pareto weights.

The analysis of market survival then corresponds to investigating the long-run behavior

of scaled Pareto weights. I present tight sufficient conditions for the existence of nondegen-

erate long-run equilibria and for dominance and extinction. While the full model requires a

numerical solution, I show that the behavior at the boundaries, which is essential for survival

analysis, can be established analytically. I thus provide closed-form solutions for the regions

of the parameter space in which the survival conditions are satisfied.

The applicability of the derived solution method is not limited to fixed distortions. I

discuss how to extend the procedure to include learning and robust preferences of Anderson,

Hansen, and Sargent (2003). Explicit solutions of these problems are left for future work.

The approach based on the characterization of the behavior of the endogenously deter-

mined Pareto weights is closely linked to the literature on endogenous discounting, initiated

by Koopmans (1960) and Uzawa (1968), and to models of heterogeneous agent economies
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under recursive preferences, studied by Lucas and Stokey (1984) and Epstein (1987) under

certainty and by Kan (1995) under uncertainty. The survival conditions derived in this paper

resemble a sufficient condition for the existence of a stable interior steady state in Lucas and

Stokey (1984), called increasing marginal impatience. This condition postulates that agents

discount future less as they become poorer. I show that my analysis crucially depends on

a similar quantity that I call relative patience. The key difference lies in the determination

of the two quantities. While Lucas and Stokey require that the time preference exogenously

encoded in the utility specification changes with the level of consumption, in this paper the

variation in relative patience arises endogenously as an equilibrium outcome driven by belief

differences.

Anderson (2005) studies Pareto optimal allocations under heterogeneous recursive pref-

erences in a discrete-time setup using similar methods but he does not consider survival

under belief heterogeneity. Mazoy (2005) discusses long-run consumption dynamics when

agents differ in their IES. Colacito and Croce (2010) prove the existence of nondegenerate

long-run equilibria in a two-good economy when agents are endowed with risk-sensitive pref-

erences and differ in the preferences over the two goods. However, none of these papers

treats systematically the case of belief heterogeneity. This work aims at filling this gap.

The paper is organized as follows. Section 2 outlines the economic environment, provides

a theoretical exposition to recursive preferences, and derives the planner’s problem that is

central to the analysis. Section 3 presents the survival results. I provide in analytical form

tight sufficient conditions for survival and extinction and discuss the economic interpreta-

tion of the results. This analytical part is followed by numerical analysis of consumption

and price dynamics for economies with nondegenerate long-run equilibria in Section 4. Sec-

tion 5 summarizes the findings and outlines extensions of the developed framework involving

learning and endogenously determined belief distortions derived, for instance, from robust

preferences. The Appendix contains proofs omitted from the main text. Further material

that provides more details and extends the analysis is available in the online appendix.2

2 Optimal allocations under heterogeneous beliefs

I analyze the dynamics of equilibrium allocations in a continuous-time endowment economy

populated by two types of infinitely-lived agents endowed with identical recursive preferences.

I call an economy where both agents have strictly positive wealth shares a heterogeneous

2Available at http://home.uchicago.edu/∼borovicka/files/research/heterogeneous beliefs online appendix.pdf.
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economy. A homogeneous economy is populated by a single agent only. The term ‘agent’

refers to an infinitesimal competitive representative of the particular type.

Agents differ in their subjective beliefs about the distribution of future quantities but

are firm believers in their probability models and ‘agree to disagree’ about their beliefs as in

Morris (1995). Since they do not interpret their belief differences as a result of information

asymmetries, there is no strategic trading behavior.

Without introducing any specific market structure, I assume that markets are dynami-

cally complete in the sense of Harrison and Kreps (1979). This allows me to sidestep the

problem of directly calculating the equilibrium by considering a planner’s problem. The dis-

cussion of market survival then amounts to the analysis of the dynamics of Pareto weights

associated with this planner’s problem. Optimal allocations and continuation values gener-

ate a valid stochastic discount factor and a replicating trading strategy for the decentralized

equilibrium.

In this section, I specify agents’ preferences and belief distortions, and lay out the plan-

ner’s problem. I utilize the framework introduced by Dumas, Uppal, and Wang (2000),

and exploit the observation that belief heterogeneity can be analyzed in their framework

without increasing the degree of complexity of the problem. The method then leads to a

Hamilton-Jacobi-Bellman equation for the planner’s value function.

2.1 Information structure and beliefs

The stochastic structure of the economy is given by a filtered probability space (Ω,F , {Ft} , P )

with an augmented filtration defined by a family of σ-algebras {Ft} , t ≥ 0 generated by a

univariate Brownian motion W . Given the continuous-time nature of the problem, equalities

are meant in the appropriate almost-sure sense. I also assume that all processes, in particular

belief distortions and permissible trading strategies, satisfy regularity conditions like square

integrability over finite horizons, so that stochastic integrals are well defined and pathologi-

cal cases are avoided. Under the parameter restrictions below, constructed equilibria satisfy

these assumptions.

The scalar aggregate endowment process Y satisfies

dYt

Yt
= μydt+ σydWt, Y0 > 0 (1)

with constant parameters μy and σy.

Agents of type n ∈ {1, 2} are endowed with identical preferences but differ in their
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subjective probability measures Qn that they use to assign probabilities to future events. I

assume that measures Qn and P are equivalent for all finite-horizon events, so that there

exists the Radon-Nikodým derivative

(
dQn

dP

)
t

=̇Mn
t = exp

(
−1

2

∫ t

0

|un
s |2 ds+

∫ t

0

un
sdWs

)
, (2)

where un is an adapted process. The martingale Mn measures the disparity between the

subjective and true probability measures and is commonly called the belief ratio. While

a likelihood evaluation of the past observed data reveals that the view of an agent with

distorted beliefs becomes less and less likely to be correct as time passes, absolute continuity

of the measure Qn with respect to P implies that he can never refute his view of the world

as impossible. The main results of the paper are developed using a constant un, but the

computational strategy allows me to incorporate more general distortion processes, which I

discuss in the concluding remarks.

The Girsanov theorem implies that agent n, whose deviation from rational beliefs is

described by Mn, views the evolution of the Brownian motion W as distorted by a drift

component un, i.e., dWt = un
t dt + dW n

t , where W n is a Brownian motion under Qn. Con-

sequently, the aggregate endowment is perceived to contain an additional drift component

unσy, and un can be interpreted as a degree of optimism or pessimism about Y . When

σy = 0, this distinction loses its meaning but the the survival problem is still nondegenerate,

as long as the agents can contract upon the realizations of the process W .

2.2 Recursive utility

Agents endowed with separable preferences reduce intertemporal compound lotteries (differ-

ent payoff streams allocated over time) to atemporal simple lotteries that resolve uncertainty

at a single point in time. In the Arrow-Debreu world with separable preferences, once trading

of state-contingent securities for all future periods is completed at time 0, uncertainty about

the realized path of the economy can be resolved immediately without any consequences for

the ex-ante preference ranking of the outcomes by the agents.

Kreps and Porteus (1978) relaxed the separability assumption by axiomatizing discrete-

time preferences where temporal resolution of uncertainty matters and preferences are not

separable over time. While intratemporal lotteries in the Kreps-Porteus axiomatization

still satisfy the von Neumann-Morgenstern expected utility axioms, intertemporal lotteries

cannot in general be reduced to atemporal ones. The work by Epstein and Zin (1989,
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1991) extended the results of Kreps and Porteus (1978), and initiated the widespread use of

recursive preferences in the asset pricing literature. Duffie and Epstein (1992a,b) formulated

the continuous-time counterpart of the recursion.3

I utilize a characterization based on the more general variational utility approach studied

by Geoffard (1996) in the deterministic case and El Karoui, Peng, and Quenez (1997) in

a stochastic environment.4 They show that recursive preferences can be represented as a

solution to the maximization problem

λn
t V

n
t = sup

νn
EQn

t

[∫ ∞

t

λn
sF (Cn

s , ν
n
s ) ds

]
(3)

subject to
dλn

t

λn
t

= −νn
t dt, t ≥ 0; λn

0 = 1, (4)

where νn is called the discount rate process, and λn the discount factor process. The felicity

function F (C, ν) encodes the contribution of the consumption stream C to present util-

ity. This representation closely links recursive preferences to the literature on endogenous

discounting, initiated by Koopmans (1960) and Uzawa (1968).

For the case of the Duffie-Epstein-Zin preferences, the felicity function is given by

F (C, ν) = β
Cγ

γ

(
γ − ρ ν

β

γ − ρ

)1− γ
ρ

,

with parameters satisfying γ, ρ < 1, and β > 0. Preferences specified by this felicity function5

are homothetic and exhibit a constant relative risk aversion with respect to intratemporal

wealth gambles α = 1 − γ and (under intratemporal certainty) a constant intertemporal

elasticity of substitution η = 1
1−ρ

. Parameter β is the time preference coefficient. Assump-

tion 2 below restricts parameters to assure sufficient discounting for the continuation values

to be finite in both homogeneous and heterogeneous economies. In the case when γ = ρ, the

3Duffie and Epstein (1992b) provide sufficient conditions for the existence of the recursive utility process
for the infinite-horizon case but these are too strict for the preference specification considered in this paper.
However, the Markov structure of the problem allows me to utilize existence results derived Duffie and Lions
(1992). Schroder and Skiadas (1999) establish conditions under which the continuation value is concave,
and provide further technical details. Skiadas (1997) shows a representation theorem for the discrete time
version of recursive preferences with subjective beliefs.

4Hansen (2004) offers a tractable summary of the link between the recursive and variational utility.
Interested readers may refer to the online appendix for a more detailed discussion.

5The cases of ρ → 0 and γ → 0 can be obtained as appropriate limits. The maximization problem (3)
assumes that the felicity function is concave in its second argument. When it is convex, the formulation
becomes a minimization problem.
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utility reduces to the separable CRRA utility with the coefficient of relative risk aversion α.

Formula (3), together with an application of the Girsanov theorem, suggests that it is ad-

vantageous to combine the contribution of the discount factor process λn and the martingale

Mn that specifies the belief distortion in (2):

Definition 1 A modified discount factor process λ̄n is a discount factor process that incor-

porates the martingale Mn arising from the belief distortion, λ̄n =̇ λnMn.

Applying Itô’s lemma to λ̄n leads to a maximization problem under the true probability

measure

λ̄n
t V

n
t = sup

νn
Et

[∫ ∞

t

λ̄n
sF (Cn

s , ν
n
s ) ds

]
(5)

subject to
dλ̄n

t

λ̄n
t

= −νn
t dt+ un

t dWt, t ≥ 0; λ̄n
0 = 1. (6)

The problem (5-6) indicates that F (C, ν) can be viewed as a generalization of the period

utility function with a potentially stochastic rate of time preference ν that depends on the

properties of the consumption process and thus arises endogenously in a market equilibrium.

Moreover, belief distortions are now fully incorporated in the framework of Dumas, Uppal,

and Wang (2000) — the only difference is that the modified discount factor process is not

locally predictable.

The diffusion term un
sdWs has an intuitive interpretation. Consider an optimistic agent

with un > 0. This agent’s beliefs are distorted in that the mass of the distribution of dWs

is shifted to the right — the agent effectively overweighs good realizations of dWs. Formula

(6) indicates that under the true probability measure, positive realizations of dWs increase

the term dλ̄n
s/λ̄

n
s , which implies that the optimistic agent discounts positive realizations of

dWs less than negative ones.

From the perspective of the utility-maximizing agent, assigning a higher probability to an

event and a lower discounting of the utility contribution of this event have the same effect.

In fact, equation (3) suggests that we can understand the belief distortion as a preference

shock and view λ̄nF (Cn, νn) as a state-dependent felicity function. However, interpreting

the martingale Mn as a belief distortion is more appealing since it bears a clearer economic

meaning, separating the structure of beliefs and preferences.
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2.3 Planner’s problem and optimal allocations

The problem of an individual agent (3–4) is homogeneous degree one in the modified discount

factors and homogeneous degree γ in consumption. In the homogeneous economy, there exists

a closed-form solution for the continuation value V n
t (Y ) = γ−1Y γ

t Ṽ
n where

Ṽ n =

(
β−1

[
β − ρ

(
μy + unσy − 1

2
(1− γ)σ2

y

)])− γ
ρ

(7)

with the associated discount rate

νn =
β

ρ

(
γ + (ρ− γ)

(
Ṽ n
)− ρ

γ

)
= β + (γ − ρ)

(
μy + unσy − 1

2
(1− γ)σ2

y

)
. (8)

Assumption 2 The parameters in the model satisfy the restrictions

β > max
n

ρ

(
μy + unσy − 1

2
(1− γ)σ2

y

)
, (9)

β > max
n

ρ

(
μc + u∼nσy − 1

2
(1− γ)σ2

y

)
+

ρ

1− ρ

[
(un − u∼n) σy +

1

2

(un − u∼n)2

1− γ

]
(10)

where ∼ n is the index of the agent other than n.

The first restriction is sufficient for the continuation values in the homogeneous economies

to be well-defined. The second restriction, which may be, depending on the parameterization,

somewhat tighter, is a sufficient condition assuring that the wealth-consumption ratio is

asymptotically well-behaved in the survival proofs when the agent becomes infinitesimally

small. Observe that both conditions are restrictions on the time-preference parameter of

the agents and can always be jointly satisfied by making the agents sufficiently impatient.

Since survival results will not depend on β, Assumption 2 does not introduce substantial

restrictions for the analysis of the problem.

In the heterogeneous economy, I can follow Dumas, Uppal, and Wang (2000) and intro-

duce a fictitious planner who maximizes a weighted average of the continuation values of the

two agents. Given a pair of strictly positive initial Pareto weights α = (α1, α2), the planner’s

time-0 objective function J0 (α) is the solution to the problem

J0 (α) = sup
(C1,C2,ν1,ν2)

2∑
n=1

E0

(∫ ∞

0

λ̄n
t F (Cn

t , ν
n
t ) dt

)
(11)
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subject to the law of motion for the modified discount factors,

dλ̄n
t

λ̄n
t

= −νn
t dt+ un

t dWt, t ≥ 0; λ̄n
0 = αn (12)

for n ∈ {1, 2}, and the feasibility constraint C1 + C2 ≤ Y .

The validity of this approach for a finite-horizon economy is discussed in Dumas, Uppal,

and Wang (2000) and Schroder and Skiadas (1999). The infinite-horizon problem in (11-12)

is a straightforward extension when individual continuation values are well-defined. The

planner’s objective function is bounded from above by the weighted average of continuation

values from the homogeneous economies, J0 (α) ≤ α1V n
0 (Y )+α2V n

0 (Y ), and the supremum

in (11) thus exists. Since the continuation values are concave, first-order conditions are

sufficient for the supremum problem. The following Lemma describes the behavior of the

objective function at the boundaries.

Lemma 3 The objective function J0 (α) can be continuously extended at the boundaries as

α1 ↘ 0 or α2 ↘ 0 by the continuation values calculated for the homogeneous economies, i.e.,

for α2 > 0

J0

(
0, α2

)
=̇ lim

α1↘0
J0

(
α1, α2

)
= α2V 2

0 (Y ) (13)

and limα1↘0C
2 (α1, α2) = Y . The case α2 ↘ 0 is symmetric.

The planner’s problem (11-12) suggests that we can interpret the modified discount factor

processes λ̄n as stochastic Pareto weights. Indeed, if λ̄n
0 = αn are the initial weights, then

λ̄n
t are the consistent state-dependent weights for the continuation problem of the planner

at time t.6,7

The evolution of the weights involves the drift component νn and thus can only be

determined in equilibrium unless agent n ’s preferences are separable, in which case νn = β.

6Similar techniques, which extend the formulation of the representative agent provided by Negishi (1960)
to representations with nonconstant Pareto weights, can be used to study models with incomplete markets
where changes in the Pareto weights reflect the tightness of the binding constraints. See Cuoco and He
(2001) for a general approach in discrete time and Basak and Cuoco (1998) for a model with restricted stock
market participation in continuous time.

7Jouini and Napp (2007) approach the problem from a different angle to show that a planner’s problem
formulation with constant Pareto weights is in general not feasible under heterogeneous beliefs. Given
an equilibrium with heterogeneous beliefs, they define a hypothetical representative agent with a utility
function constructed as a weighted average of individual utility functions, with weights given by the inverses
of marginal utilities of wealth. The implied consensus belief of the representative agent that would replicate
the equilibrium allocation is not a proper belief but can be decomposed into the product of a proper belief
and a discount factor. This discount factor would mimic the dynamics of the Pareto shares in problem
(11–12).
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The variation in Pareto weights arises from the interaction of two components in the model

— the nonseparable preference structure and the belief distortion that drives the diffusion

component in (12).8

Observe that the introduction of belief heterogeneity kept the structure of the problem

unchanged. For instance, Dumas, Uppal, and Wang (2000) show that in a Markov environ-

ment, the discount factor processes λn serve as new state variables that allow a recursive

formulation of the problem using the Hamilton-Jacobi-Bellman (HJB) equation. The same

conclusion is true for the modified discount factor processes λ̄n, once belief heterogeneity is

incorporated. Belief distortions thus do not introduce any additional state variables into the

problem, as long as the distorting processes un are functions of the existing state variables.

2.4 Hamilton-Jacobi-Bellman equation

From now on, I assume that both agents have constant belief distortions un, a frequently

considered case in the survival literature. Extensions involving endogenously determined

distortion processes including learning dynamics are considered in Section 5.

The planner’s problem has an appealing Markov structure. Homogeneity of the planner’s

problem (11-12) in
(
λ̄1, λ̄2

)
suggests a transformation of variables

θ1 = λ̄1
(
λ̄1 + λ̄2

)−1
θ2 = λ̄1 + λ̄2. (14)

The single state variable θ1 represents the Pareto share of agent 1. The dynamics of θ1

are central to the study of survival in this paper. Obviously, θ1 is bounded between zero

and one. It will become clear that for strictly positive initial weights, the boundaries are

unattainable, so that θ1 evolves on the open interval (0, 1). Since the objective function of

the planner is also homogeneous degree γ in Y , the planner’s problem can be characterized

as a solution to an ordinary differential equation with a single state variable θ1.

Proposition 4 The objective function for the planner’s problem (11-12) is

J0 (α) =
(
α1 + α2

)
γ−1Y γ

0 J̃
(
α1/

(
α1 + α2

))
,

8The belief heterogeneity introduces an additional risk component arising through the stochastic reweigh-
ing of wealth shares. The diffusion component in the weight dynamics will have a direct impact on local risk
prices. Notice that other sources of heterogeneity, including differences in risk aversion and IES parameters,
do not lead to a diffusion component in the dynamics of the Pareto weights (12), and reweighting therefore
has no impact on local risk prices in these cases. Different types of market participation constraints as in
Basak and Cuoco (1998) may also introduce a diffusion term into the Pareto weight dynamics.
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where J̃ (θ1) is the solution to the nonlinear ordinary differential equation

0 = θ1
β

ρ

(
ζ1
)ρ (

J̃1
)1− ρ

γ
+
(
1− θ1

) β
ρ

(
1− ζ1

)ρ (
J̃2
)1− ρ

γ
+ (15)

+

(
−β

ρ
+ μy +

(
θ1u1 +

(
1− θ1

)
u2
)
σy +

1

2
(γ − 1) σ2

y

)
J̃ +

+θ1
(
1− θ1

) (
u1 − u2

)
σyJ̃θ1 +

1

2

1

γ

(
1− θ1

)2 (
θ1
)2 (

u1 − u2
)2

J̃θ1θ1

with boundary conditions J̃ (0) = Ṽ 2 and J̃ (1) = Ṽ 1, where Ṽ n are defined in (7). The

functions J̃n (θ1) are the continuation values of the two agents scaled by γ−1Y γ,

J̃1
(
θ1
)

=̇ J̃
(
θ1
)
+
(
1− θ1

)
J̃θ1
(
θ1
)

(16)

J̃2
(
θ1
)

=̇ J̃
(
θ1
)− θ1J̃θ1

(
θ1
)
.

and the consumption share ζ1 is given by

ζ1
(
θ1
)
=

(θ1)
1

1−ρ

[
J̃1 (θ1)

] 1−ρ/γ
1−ρ

(θ1)
1

1−ρ

[
J̃1 (θ1)

] 1−ρ/γ
1−ρ

+ (1− θ1)
1

1−ρ

[
J̃2 (θ1)

] 1−ρ/γ
1−ρ

. (17)

Unfortunately, equation (15) does not have a general closed-form solution. However,

the Pareto share θ1 of agent 1 remains the only state variable. This considerably simplifies

numerical solutions, and, more importantly, allows one to formulate the survival problem

in terms of the boundary behavior of a scalar Itô process. Despite the nonexistence of a

closed-form solution for J̃ (θ1), this boundary behavior can be characterized analytically by

studying the limiting behavior of the objective function.

Equation (15) is not specific to the planner’s problem (11-12). For instance, Gârleanu

and Panageas (2010) use the martingale approach to directly analyze the equilibrium in

an economy with agents endowed with heterogeneous recursive preferences, and show that

they can derive their asset pricing formulas in closed form up to the solution of a nonlinear

ODE that has the same structure as (15), which they have to solve for numerically. The

analytical characterization of the boundary behavior of the ODE derived in this paper is thus

applicable to a wider class of recursive utility models, and can aid numerical calculations

which are often unstable in the neighborhood of the boundaries in this type of problems.
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3 Survival

Survival chances of agents with distorted beliefs have been studied extensively under sep-

arable utility. Kogan, Ross, Wang, and Westerfield (2009) show a tight link between the

behavior of the belief ratio, consumption shares, and the risk aversion coefficient as a measure

of curvature of the utility function. To provide a simple illustration, consider a period utility

function U (C) and the corresponding Euler equation that prices a payoff Zt+s at time t

P z
t = EQn

t

[
e−βsU

′ (Cn
t+s

)
U ′ (Cn

t )
Zt+s

]
= Et

[
e−βsU

′ (Cn
t+s

)
U ′ (Cn

t )

Mn
t+s

Mn
t

Zt+s

]
.

Since prices are observed in equilibrium, agents have to agree on them. When markets

are complete, the objects
U ′ (Cn

t+s

)
U ′ (Cn

t )

Mn
t+s

Mn
t

have to be equalized across agents n, and deviations in beliefs have to be offset by reciprocal

deviations in marginal utilities. Survival analysis thus corresponds to analyzing a sequence

of state- and time-indexed static problems that are interlinked only by the initial relative

marginal utilities of wealth of the two agents, whose choice is largely innocuous for the

long-run results. If agent 1 has a constant belief distortion u1 	= 0 and agent 2 is rational,

then M1 is a strictly positive supermartingale and lims→∞M1
t+s = 0 (P -a.s.), and thus

lims→∞ U ′ (C1
t+s

)
/U ′ (C2

t+s

)
= +∞ (P -a.s.). For a class of utility functions that includes the

CRRA utility (the special case when γ = ρ in this paper), this implies lims→∞ ζ1t+s/ζ
2
t+s = 0

(P -a.s.).

When preferences are not separable, this straightforward link breaks down because mar-

ginal utilities also depend on continuation values and the stochastic discount factor involves

the evolution of the endogenously determined discount rate process νn between t and t+ s.

Since these continuation values and discount rate processes are not available in closed form,

they have to in general be solved for numerically.

I show in this section that in order to evaluate the survival chances of individual agents,

a complete solution for the consumption allocation, continuation values, and the implied

discount rate processes is not necessary. In fact, it is sufficient to characterize the wealth

dynamics in the limiting cases when the wealth share of one of the agents becomes negligible,

and this limiting behavior can be solved for in closed form. This characterization of survival

requires taking an approach that is different from the majority of the literature, which

typically analyzes the global properties of relative entropy as a measure of disparity between
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subjective beliefs and the true probability distribution, and its convergence as t ↗ ∞.

Instead, I derive the local dynamics of the Pareto share θ1 and rely on its ergodic prop-

erties, which allow me to investigate the existence of a unique stationary distribution for θ1

that is closely related to survival. The derived sufficient conditions are tightly linked to the

behavior of the difference of endogenous discount rates of the two agents. In a decentralized

economy, these relative patience conditions can be reinterpreted in terms of the difference in

expected logarithmic growth rates of individual wealth.

Since the analyzed model includes growing and decaying economies, I am interested in

a measure of relative survival. The following definition distinguishes between survival along

individual paths and almost-sure survival.

Definition 5 Agent 1 becomes extinct along the path ω ∈ Ω if limt→∞ θ1t (ω) = 0. Otherwise,

agent 1 survives along the path ω. Agent 1 dominates in the long run along the path ω if

limt→∞ θ1t (ω) = 1.

Agent 1 becomes extinct (under measure P ) if limt→∞ θ1t = 0, P -a.s. Agent 1 survives if

lim supt→∞ θ1t > 0, P -a.s. Agent 1 dominates in the long run if limt→∞ θ1t = 1, P -a.s.

Kogan, Ross, Wang, and Westerfield (2009) or Yan (2008) use the consumption share

ζ1 as a measure of survival. Since the consumption share (17) is continuous and strictly

increasing in θ1 and the limits are limθ1↘0 ζ
1 (θ1) = 0 and limθ1↗1 ζ

1 (θ1) = 1, the two

measures are equivalent in this setting.

3.1 Dynamics of the Pareto share and long-run distributions

Recall the dynamics of the modified discount factor processes λ̄n in (12). An application of

Itô’s lemma to θ1 = λ̄1/
(
λ̄1 + λ̄2

)
yields

dθ1t
θ1t

=
(
1− θ1t

) [
ν2
t − ν1

t +
(
θ1t u

1 +
(
1− θ1t

)
u2
) (

u2 − u1
)]

dt+ (18)

+
(
1− θ1t

) (
u1 − u2

)
dWt.

Both heterogeneous beliefs and heterogeneous recursive preferences lead to nonconstant

dynamics of the Pareto share, although with different implications. Under nonseparabil-

ity, preference heterogeneity induces a smooth evolution of the Pareto weights, while belief

heterogeneity leads to dynamics with a nonzero volatility term. Identical belief distortions

(u1 = u2) under separable preferences with identical time preference coefficients or under
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identical recursive preferences imply a constant Pareto share θ1t ≡ α1/ (α1 + α2). In what

follows, I abstract from this situation, and assume u1 	= u2.

Under nonseparable preferences, the discount rates are determined endogenously in the

model as a solution to problem (11–12) and are given by

νn
(
θ1
)
=

β

ρ

(
γ + (ρ− γ)

(
ζn (θ1)

J̃n (θ1)1/γ

)ρ)
. (19)

The discount rates νn are twice continuously differentiable functions of the state variable

θ1, and thus θ1 is an Itô process on the open interval (0, 1) with continuous drift and volatility

coefficients.9 Intuitively, one would expect a stationary distribution for θ1 to exist if the

process exhibits sufficient pull toward the center of the interval when close to the boundaries.

This is formalized in the following Proposition:

Proposition 6 Define the following ‘repealing’ conditions (i) and (ii), and their ‘attracting’

counterparts (i’) and (ii’).

(i) limθ1↘0 [ν
2 (θ1)− ν1 (θ1)] > 1

2

[
(u1)

2 − (u2)
2
]

(i’) <

(ii) limθ1↗1 [ν
2 (θ1)− ν1 (θ1)] < 1

2

[
(u1)

2 − (u2)
2
]

(ii’) >

Then the following statements are true:

(a) If conditions (i) and (ii) hold, then both agents survive under P .

(b) If conditions (i) and (ii’) hold, then agent 1 dominates in the long run under P

(c) If conditions (i’) and (ii) hold, then agent 2 dominates in the long run under P .

(d) If conditions (i’) and (ii’) hold, then there exist sets S1, S2 ⊂ Ω which satisfy

S1 ∩ S2 = ∅, P
(
S1
) 	= 0 	= P

(
S2
)
, and P

(
S1 ∪ S2

)
= 1

such that agent 1 dominates in the long run along each path ω ∈ S1 and agent 2

dominates in the long run along each path ω ∈ S2.

The conditions are also the least tight bounds of this type.

9The unattainability of the boundaries follows from the proof of Proposition 6.
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Given the dynamics of the Pareto share (18), conditions (i) and (ii) are jointly sufficient

for the existence of a unique stationary density q (θ1). The proof of Proposition 6 is based

on the classification of boundary behavior of diffusion processes, discussed in Karlin and

Taylor (1981). The four ‘attracting’ and ‘repealing’ conditions are only sufficient and their

combinations stated in Proposition 6 are not exhaustive. There are delicate cases involving

equalities, which are however only of limited importance in the analysis below.

I call the difference in the discount rates ν2 (θ1) − ν1 (θ1) relative patience because it

captures the difference in discounting of future felicity in the variational utility specification

(3) between the two agents. Conditions in Proposition 6 have an intuitive interpretation.

Survival condition (i) states that agent 1 survives under the true probability measure even in

cases when his beliefs are more distorted, |u1| > |u2|, as long as his relative patience becomes

sufficiently high to overcome the distortion when his Pareto share vanishes.

Lucas and Stokey (1984) impose a similar condition called increasing marginal impatience

that is sufficient to guarantee the existence of a nondegenerate steady state as an exogenous

restriction on the preference specification. This condition requires the preferences in their

framework to be nonhomothetic, and rich agents must discount future more than poor ones.

In this model, preferences are homothetic, and variation in relative patience arises purely as

a response to the market interaction of the two agents endowed with heterogeneous beliefs.

The discount rate νn encodes not only a pure time preference but also an interaction through

the dynamics of the optimal consumption stream.

3.2 CRRA preferences

The framework introduced in this paper includes as a special case the separable constant

relative risk aversion preferences when γ = ρ. Yan (2008) and Kogan, Ross, Wang, and

Westerfield (2009) show that in the economy presented in this paper, the agent whose beliefs

are less distorted dominates in the long run under measure P . The conditions in Proposition 6

confirm these results as follows:

Corollary 7 Under separable CRRA preferences (γ = ρ), agent n dominates in the long

run under measure P if and only if |un| < |u∼n|. Agent n survives under P if and only if

the inequality is non-strict. Further, agent n survives under measure Qn and dominates in

the long run under Qn if and only if un 	= u∼n.

Under separable CRRA preferences, the dynamics of the Pareto share (18) do not de-

pend on the characteristics of the endowment process. The survival result in Corollary 7
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thus extends to an arbitrary adapted aggregate endowment process Y that satisfies elemen-

tary integrability conditions, including a constant one, as long as the two agents can write

contracts on the realizations of the Brownian motion W . It is a special case of the analysis in

Kogan, Ross, Wang, and Westerfield (2009), who show that this survival result holds, under

mild conditions, for any separable preferences with bounded relative risk aversion. In this

sense, the separable environment generates a robust result about the extinction of agents

whose beliefs are relatively imprecise.

A specific situation in Corollary 7 arises when un = −u∼n. The proof of the corollary

shows that although none of the agents becomes extinct, a nondegenerate long-run distribu-

tion for θ1 does not exist.

3.3 The nonseparable case

When preferences are not separable, consumption choices across periods are interlinked

through the endogenously determined discount rate processes νn, which opens another chan-

nel for intertemporal tradeoff and thus potential survival. This endogenous discounting is

reflected in the evolution of the Pareto share θ1. In this section, I derive closed-form formulas

for the boundary behavior of νn, and evaluate analytically the region in the parameter space

in which the conditions of Proposition 6 hold.

The proof strategy in this section relies on a decentralization argument and utilizes the

asymptotic properties of the differential equation (15) for the planner’s continuation value.

The economy is driven by a single Brownian shock, and two suitably chosen assets that

can be continuously traded are therefore sufficient to complete the markets in the sense of

Harrison and Kreps (1979). Let the two traded assets be an infinitesimal risk-free bond

in zero net supply that yields a risk-free rate rt = r (θ1t ) and a claim on the aggregate

endowment with price Ξt = Ytξ (θ
1
t ), where ξ (θ

1) is the aggregate wealth-consumption ratio.

Individual wealth levels are denoted Ξn
t = Ytζ

n (θ1t ) ξ
n (θ1t ), where ξn (θ1) are the individual

wealth-consumption ratios.

The results reveal that as the Pareto share of one of the agents converges to zero, the

infinitesimal returns associated with the two assets converge to those which prevail in a

homogeneous economy populated by the agent with the large Pareto share. Solving the

individual optimization problems yields the required limits for the discount rates νn. The

limiting problems correspond to the analysis of homogeneous economies for which analytical

solutions exist, and thus the limits for νn are also available in closed form.

The proof also shows that the conditions on the limiting behavior of the discount rates
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in Proposition 6 that assure the existence of a nondegenerate long-run equilibrium can be

directly restated as conditions on the limiting expected growth rates of the logarithm of

individual wealth levels in a decentralized economy.

3.3.1 Equilibrium prices

Homotheticity of preferences implies that individual wealth-consumption ratios are given by

ξn
(
θ1
)
=

1

β

(
J̃n (θ1)

1/γ

ζn (θ1)

)ρ

. (20)

I start by assuming that ξn (θ1) are functions that are bounded and bounded away from

zero. This, among other things, implies that the discount rate functions νn (θ1) in (19) are

bounded and that the drift and volatility coefficients in the stochastic differential equation

for θ1, (18), are bounded as well. The assumption will ultimately be verified by a direct

calculation of the limits of ξn (θ1) as θ1 ↘ 0 or θ1 ↗ 1.

Without loss of generality, it is sufficient to focus on the case θ1 ↘ 0. First notice some

asymptotic results for the planner’s continuation value J̃ (θ1).

Lemma 8 The solution of the planner’s problem implies that

lim
θ1↘0

θ1J̃θ1
(
θ1
)
= lim

θ1↘0

(
θ1
)2

J̃θ1θ1
(
θ1
)
= lim

θ1↘0

(
θ1
)3

J̃θ1θ1θ1
(
θ1
)
= 0.

The Markov structure of the problem implies that the evolution of the continuation values

and consumption shares can be written as

dJ̃n (θ1t )

J̃n (θ1t )
= μJ̃n

(
θ1t
)
dt+ σJ̃n

(
θ1t
)
dWt (21)

dζn (θ1t )

ζn (θ1t )
= μζn

(
θ1t
)
dt+ σζn

(
θ1t
)
dWt, (22)

where the drift and volatility coefficients are functions of θ1, and the results from Lemma 8

allow the characterization of their limiting behavior.

Lemma 9 The coefficients in equations (21–22) for agent 2 satisfy

lim
θ1↘0

μJ̃2

(
θ1
)
= lim

θ1↘0
σJ̃2

(
θ1
)
= lim

θ1↘0
μζ2
(
θ1
)
= lim

θ1↘0
σζ2
(
θ1
)
= 0. (23)
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The result follows from an application of Itô’s lemma to J̃2 and ζ2. Utilizing formulas

(16) and (17), the coefficients will contain expressions for the value function J̃ (θ1) and its

partial derivatives up to the third order, and all the expressions can be shown to converge

to zero using Lemma 8.

Using the construction from Duffie and Epstein (1992a), the stochastic discount factor

process for agent 2 under the subjective probability measure Q2 is given by

S2
t = exp

(
−
∫ t

0

ν2
(
θ1s
)
ds

)(
Yt

Y0

)γ−1(
ζ2 (θ1t )

ζ2 (θ10)

)ρ−1
(
J̃2 (θ1t )

J̃2 (θ10)

)1− ρ
γ

. (24)

Since limθ1↘0 ν
2 (θ1) = ν2, which is given in (8), and Lemma 9 states that the local drift and

volatility of the last two terms decline to zero as θ1 ↘ 0, the infinitesimal risk-free rate and

the local price of risk converge to their homogeneous economy counterparts. Moreover, the

price of aggregate endowment Ξ converges as well, and so does the local return on aggregate

wealth. The following Proposition summarizes the limiting pricing implications.

Proposition 10 As θ1 ↘ 0, the infinitesimal risk-free rate r (θ1), the aggregate wealth-

consumption ratio ξ (θ1), and the drift and volatility coefficients of the aggregate wealth pro-

cess dΞt/Ξt = μΞ (θ
1
t ) dt+ σΞ (θ

1
t ) dt converge to their homogeneous economy counterparts:

lim
θ1↘0

r
(
θ1
)

= r (0) = β + (1− ρ)
(
μy + u2σy

)− 1

2
(2− ρ) (1− γ) σ2

y ,

lim
θ1↘0

ξ
(
θ1
)

= ξ (0) =

[
β − ρ

(
μy + u2σy − 1

2
(1− γ) σ2

y

)]−1

,

lim
θ1↘0

μΞ

(
θ1
)

= μy, and lim
θ1↘0

σΞ

(
θ1
)
= σy.

Consequently, the infinitesimal return on the claim on aggregate wealth,

[[
ξ
(
θ1t
)]−1

+ μΞ

(
θ1t
)]

dt+ σΞ

(
θ1t
)
dWt, (25)

has coefficients that converge as well.

Notice that the convergence of the coefficients of the wealth process is not an immediate

consequence of the convergence of the aggregate wealth-consumption ratio. It may be that

the wealth-consumption ratio ξ (θ1) converges as θ1 ↘ 0, yet its price dynamics are such that

μΞ (θ
1) and σΞ (θ

1) do not converge to μy and σy, respectively. The fact that this does not

happen is closely linked to the dynamics of log θ1. The bounded drift and volatility coefficient

of log θ1 assure that the local variation in ξ (θ1) becomes irrelevant as log θ1 ↘ −∞.
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The results in Proposition 10 are sufficient to proceed with the construction of the main

result. As a side note, prices of finite-horizon risk-free claims and individual cash flows from

the aggregate endowment converge as well:

Corollary 11 For every fixed maturity t, prices of a zero-coupon bond and a claim to a

payout from the aggregate endowment stream converge to their homogeneous economy coun-

terparts as θ1 ↘ 0.

3.3.2 Decision problem of an agent with negligible wealth

I have now established that the actual general equilibrium price dynamics that agent 1 with

infinitesimal wealth takes as given when solving his portfolio problem are locally the same

as those in an economy populated only by agent 2. However, the construction of the main

result is not completed yet. The marginal utility of agent 1 is forward looking due to the

nonseparable nature of the preferences, and will thus depend on agent’s 1 continuation value.

It remains to show that the continuation value of agent 1 converges as well.

Agent 1, whose wealth Ξ1 is close to zero, solves

λ̄1
tV

1
t = max

C1,π1,ν1
Et

[∫ ∞

t

λ̄1
sF
(
C1

s , ν
1
s

)
ds

]

subject to (6) and the budget constraint,

dΞ1
t

Ξ1
t

=

[
r
(
θ1t
)
+ π1

t

([
ξ
(
θ1t
)]−1

+ μΞ

(
θ1t
)− r

(
θ1t
))− C1

t

Ξ1
t

]
dt+ π1

t σΞ

(
θ1t
)
dWt, (26)

where π1 is the portfolio share invested in the stock. The homogeneity of the problem

motivates the guess

γV 1
t =

(
Ξ1
t

)γ
V̂ 1
(
θ1t
)
. (27)

The drift and volatility coefficients depend explicitly on θ1 because Ξ1 and θ1 are linked

through

Ξ1
t = Ytζ

1
(
θ1t
)
β− 1

1−ρ

[
V̂ 1 (θ)

] ρ
γ

1
1−ρ

. (28)

Recall that we are interested in the characterization of the limiting solution as θ1 ↘ 0.
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The associated HJB equation leads to a second-order ODE (omitting dependence on θ1)

0 = max
C1,π1,ν1

1

ρ
β

1
1−ρ

(
V̂ 1
)1− ρ

γ
1

1−ρ
+ V̂ 1

(
−β

ρ
+ μΞ1 + u1σΞ1 − 1

2
(1− γ) (σΞ1)2

)
+ (29)

+V̂ 1
θ1θ

1

(
1

γ

(
μθ1 + u1σθ1

)
+ σθ1σΞ1

)
+ V̂ 1

θ1θ1

(
θ1
)2 1

2

1

γ
(σθ1)

2 ,

which yields the first-order conditions on C1
t and π1

t :

C1
t

Ξ1
t

= β
1

1−ρ

(
V̂ 1
(
θ1t
))− ρ

γ
1

1−ρ

(30)

π1
t =

[ξ (θ1t )]
−1

+ μΞ (θ
1
t ) + u1σΞ (θ

1
t )− r (θ1t ) +

θV̂ 1
θ1
(θ1)

V̂ 1(θ1)
σθ1 (θ

1
t ) σΞ1 (θ1t )

(1− γ) (σΞ (θ1t ))
2 ,

where μΞ1 and σΞ1 are the drift and volatility coefficients on the right-hand side of (26),

and μθ1 and σθ1 are the coefficients associated with the evolution of dθ1t /θ
1
t . Notice that the

portfolio choice π1 almost corresponds to the standard Merton (1971) result, except the last

term in the numerator which explicitly takes into account the covariance between agent’s 1

wealth and the evolution in the state variable θ1 imposed by (28).

The solution of this equation determines the consumption-wealth ratio of agent 1 and,

consequently, the evolution of his wealth. While a closed-form solution of this equation is

not available, it is again possible to characterize the asymptotic behavior as θ1 ↘ 0.

Lemma 12 The following results hold:

lim
θ1↘0

θ1V̂ 1
θ1

(
θ1
)
= lim

θ1↘0

(
θ1
)2

V̂ 1
θ1θ1

(
θ1
)
= 0.

These results are similar to those in Lemma 8. They imply that the derivative terms in

the ODE (29) vanish as θ1 ↘ 0, and we obtain the limit for V̂ 1 (θ1) and the evolution of Ξ1

in closed form.

Proposition 13 The consumption-wealth ratio of agent 1 converges to

lim
θ1↘0

β
1

1−ρ

(
V̂ 1
(
θ1
))− ρ

γ
1

1−ρ
= β − ρ

(
μy + u2σy − 1

2
(1− γ) (σy)

2

)
− (31)

− ρ

1− ρ

[(
u1 − u2

)
σy +

1

2

(u1 − u2)
2

1− γ

]
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and the wealth share invested into the claim on aggregate consumption to

lim
θ1↘0

π1
(
θ1
)
= 1 +

u1 − u2

(1− γ) σy

. (32)

It follows that the asymptotic coefficients for the evolution of agent’s 1 wealth are

lim
θ1↘0

μΞ1

(
θ1
)

= μy +
1

1− ρ
(u1 − u2) σy +

1

2

2− ρ

1− ρ

(u1 − u2)
2

1− γ
− u1 (u1 − u2)

1− γ

lim
θ1↘0

σΞ1

(
θ1
)

= σy +
u1 − u2

(1− γ)
.

Naturally, the wealth evolution must track the evolution of the aggregate endowment

when u1 = u2.

3.3.3 Limiting relative patience and relationship to wealth growth

Importantly, these results allow one to calculate the limiting discount rate ν1 (θ1) and state

the main result of this section.

Proposition 14 The expressions for the limiting behavior of the relative patience in Propo-

sition 6 are

lim
θ1↘0

ν2
(
θ1
)− ν1

(
θ1
)

=
ρ− γ

1− ρ

[(
u1 − u2

)
σy +

1

2

(u1 − u2)
2

1− γ

]
, (33)

lim
θ1↗1

ν2
(
θ1
)− ν1

(
θ1
)

=
ρ− γ

1− ρ

[(
u1 − u2

)
σy − 1

2

(u1 − u2)
2

1− γ

]
. (34)

Section 3.4 discusses which regions of the parameter space satisfy the individual survival

and extinction conditions from Proposition 6. It remains for me to verify that the assumption

about the boundedness of wealth consumption ratios indeed holds.

Corollary 15 Under parameter restrictions in Assumption 2, the wealth-consumption ratios

are bounded and bounded away from zero.

Notice that while Assumption 2 imposes a restriction on the time preference parameter

β of the agents, the survival conditions do not explicitly depend on β. The survival results

thus always hold with the implicit assumption that time discounting is sufficiently large.

The construction of the main survival result utilized the link between the planner’s prob-

lem and the competitive equilibrium. It turns out that relative patience conditions that

assure survival can be restated as conditions on the relative growth rates of individual wealth.

23



Corollary 16 The survival conditions in part a) of Proposition 6 are equivalent to:

(i) limθ1↘0 μΞ1 (θ1)− 1
2
[σΞ1 (θ1)]

2
> limθ1↘0 μΞ2 (θ1)− 1

2
[σΞ2 (θ1)]

2
,

(ii) limθ1↗1 μΞ1 (θ1)− 1
2
[σΞ1 (θ1)]

2
< limθ1↗1 μΞ2 (θ1)− 1

2
[σΞ2 (θ1)]

2
.

Verifying the conditions in Proposition 6 therefore amounts to checking that the expected

growth rate of the logarithm of wealth is higher for the agent who is at the brink of extinction.

This is of course a natural condition for a competitive equilibrium, but the planner’s problem

was still required to determine these limiting growth rates.

3.4 Limiting behavior of asset prices

The results in the previous section establish that, as the Pareto share of one of the agents

becomes negligible, agents make their portfolio and consumption-saving decisions as if they

observed prices in a homogeneous economy populated only by the large agent. If there exists

a nondegenerate stationary distribution of the Pareto share θ1, then an agent will always

have a nontrivial price impact in the future, even if his current Pareto share is negligible.

The forward looking nature of the optimization problem then implies that this price impact

should be taken into account when making current decisions. The results show that as the

Pareto share of the agent vanishes, the time when his price impact becomes relevant is so

distant that it is immaterial for current decisions.

The logic manifests itself in the behavior of the last term in the numerator of the portfolio

share π1 in equation (30). This term explicitly takes into account agent 1’s knowledge about

the impact of his portfolio decision on equilibrium prices. Since this term vanishes as θ1 ↘ 0,

the agent understands that asymptotically the portfolio decisions made by agents of his type

will not have any impact on local equilibrium price dynamics, and thus behaves as if he

resided in an economy populated only by agent 2.

This implies that the survival question, whose answer only depends on the behavior at

the boundaries, can be resolved by studying homogeneous economies with an infinitesimal

price-taking agent. Even if the agent survives with probability one and has an impact on

equilibrium prices in the long run, he does not influence current prices and returns.

The dynamics of the Pareto share (18) that has bounded drift and volatility coefficients

is also informative about experiments that ‘inject’ infinitesimal heterogeneous agents into

an initially homogeneous economy. By making the initial θ10 arbitrarily close to zero, one

can extend the time before the presence of the new agent becomes noticeable (measured,
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e.g., by sufficiently large deviations in prices or return distributions from their homogeneous

economy counterparts) arbitrarily far into the future.

3.5 Survival regions

This section analyzes the regions of the parameter space in which agents with distorted

beliefs survive or dominate the economy. It turns out that all four combinations outlined

in Proposition 6 can occur, and Figure 1 visualizes the survival regions. Each panel fixes

the belief distortions (u1, u2) and the volatility of aggregate endowment σy, and plots the

regions in the risk aversion / inverse of IES (1− γ, 1− ρ) plane. The results do not reveal

what happens at the boundaries of the regions where conditions from Proposition 6 hold

with equalities, but the survival characteristics inside the individual regions are well-defined.

3.5.1 Asymptotic results

It is useful to describe the asymptotic results as either risk aversion or intertemporal elasticity

of substitution moves toward extreme values, holding the other parameters fixed.

Corollary 17 Holding other parameters fixed, the survival restrictions imply the following

asymptotic results.

(a) As risk aversion increases (γ ↘ −∞), the agent who is relatively more optimistic about

the growth rate of aggregate endowment always dominates in the long run.

(b) As agents become risk neutral (γ ↗ 1), each agent dominates in the long run with a

strictly positive probability.

(c) As intertemporal elasticity of substitution increases (ρ ↗ 1), the relatively more opti-

mistic agent always survives. The relatively more pessimistic agent survives (and thus

a nondegenerate long-run equilibrium exists) when risk aversion is sufficiently small.

(d) As the intertemporal elasticity of substitution decreases to zero (ρ ↘ −∞), a nondegen-

erate long-run equilibrium cannot exist.

In order to shed more light on the results, it is useful to consider the discrete-time version

of the recursive preferences, featured by Epstein and Zin (1989):

Ṽt =

[(
1− e−β

)
(Ct)

ρ + e−β
(
EQ

t

[(
Ṽt+1

)γ]) ρ
γ

] 1
ρ

.
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Figure 1: Survival regions for different parameterizations. All panels except the bottom left panel

assume σy = 0.02. In the bottom left panel, aggregate endowment is deterministic, σy = 0. Belief

distortion parameters un are shown in the titles of individual panels.

The risk aversion parameter γ drives the risk adjustment of the next-period continuation

value Ṽt+1; and as risk aversion increases, the lower tail of the distribution of Ṽt+1 will

contribute with an increasingly larger penalty to the expected value. When two agents differ

in their beliefs, the more pessimistic agent assigns a higher probability to the tail events.

Since the penalty increases as γ ↘ −∞, he is willing to sacrifice an increasingly large amount

of wealth in the remaining states in order to insure against the low-probability tail event

that will ultimately drive him to extinction.

In the other extreme, when γ ↗ 1 and agents become risk neutral with respect to

intratemporal gambles, all that matters in the next period’s contribution is the expected

continuation value. Depending on the current distribution of wealth, there will be a belief-

ratio threshold that divides the realizations of the shock tomorrow into two sets, where in

each set one of the agents appropriates all wealth while the other becomes immediately
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extinct.

A higher IES provides more incentives to substitute consumption across time and accept

steeper consumption profiles. In an economy with ρ > 0 (IES > 1), a relatively more

optimistic agent with negligible wealth who faces prices essentially determined by the more

pessimistic agent is willing to postpone consumption into the future vis-à-vis higher expected

returns on his portfolio, as indicated by the last term in the consumption-wealth ratio (31).

As ρ ↗ 1, this saving motive dominates, and the relatively more optimistic agent outsaves

the other agent whenever the Pareto share of the relatively more optimistic agent becomes

sufficiently small, thus guaranteeing his survival.

A similar mechanism operates when the Pareto share of the relatively more pessimistic

agent becomes negligible. Observe that the last term in brackets in the consumption-wealth

ratio (31), which dominates the saving decision when ρ ↗ 1, is equal to

1

2

(
u1 − u2

)
σy

(
1 + π1 (0)

)
.

If agent 1 is relatively more pessimistic, then u1 − u2 < 0, and thus π1 (0) < −1 is needed

for the saving motive of agent 1 to increase as ρ ↗ 1. In that case, despite being relatively

more pessimistic about the growth rate of aggregate endowment, agent 1 becomes sufficiently

optimistic about the return on his own portfolio, which contains a short position in the claim

on aggregate endowment, so that he outsaves the relatively more optimistic agent 2 when

the Pareto share of agent 1 declines to zero. This will happen when γ is not too large — a

high risk aversion prevents the agents from taking sufficiently disparate portfolio positions

that would imply a short stock position in the portfolio of the pessimistic agent.

Finally, when preferences of the agents become inelastic (ρ ↘ −∞), formulas in Proposi-

tion 14 imply that the survival conditions cannot hold simultaneously. Inelastic preferences

imply that the agents are unwilling to substantially change the slope of their consumption

profiles; and the mechanism based on differences in saving rates, which operated for high

IES, is largely absent. The consumption-wealth ratio when one agent has a negligible Pareto

share is dominated by the second term in expression (31), which is common for both agents.

An increased willingness to save when the Pareto share decreases is thus not strong enough

to compensate for mistakes in portfolio allocation for at least one of the agents. When IES

is sufficiently low, then a pessimistic agent 1 with relatively more distorted beliefs can dom-

inate the economy in situations when the sum of the belief distortions of the two agents is

not too large (the exact condition requires u1 + u2 + 2σy > 0).
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3.5.2 Economic interpretation of the equilibrium price mechanism

Figure 1 documents the survival regions results for different belief parameterizations. Pre-

vious literature on survival under separable preferences already confirmed that along the

dotted diagonal, the agent with the smaller belief distortion dominates. This paper estab-

lishes that although this conclusion holds in a neighborhood of the diagonal, there are wide

regions of the parameter space where nondegenerate long-run equilibria exist. Moreover,

such equilibria generically arise for plausible parameterizations when risk aversion is larger

than the inverse of IES that are typically used in the asset pricing literature.

The two boundaries in the top left panel which delimit the region with a nondegenerate

stationary distribution of the Pareto share are asymptotically parallel as γ ↘ −∞ with

slope 2σy/ (u
1 + u2 + 2σy). The graphs confirm the asymptotic results from Section 3.5.1,

where I explained why the relatively more optimistic agent dominates the economy if risk

aversion is sufficiently high (γ ↘ −∞). But why do we obtain an intermediate region in

the parameter space where nondegenerate long-run equilibria exist? The existence of these

equilibria critically depends on general equilibrium price effects.

Consider a parameterization that falls into the region where a nondegenerate long-run

equilibrium exists in an economy populated by an optimistic and a rational agent, shown in

the top two panels of Figure 1. Proposition 10 shows that as the Pareto share of one of the

agents becomes negligible, prices are determined by the large agent. The optimistic agent

holds a leveraged position in the stock, which is relatively overpriced due to his presence,

but the extent of overpricing varies with the Pareto share. When the Pareto share of the

optimistic agent is large, overpricing is large as well; investment in the overpriced asset slows

down the growth rate of the optimistic agent’s wealth, and allows the survival of the rational

agent. On the other hand, when the Pareto share of the rational agent is large, overpricing

disappears, and the leveraged high expected return strategy of the optimistic agent prevents

his extinction.

The equilibrium price mechanism also explains why survival is not sufficient for domi-

nance. Consider an economy populated by a pessimistic and a rational agent (the middle

two panels of Figure 1) and the survival region when risk aversion is larger that the inverse

of IES. Section 3.5.1 shows that a pessimistic agent is optimistic about the growth rate of his

own wealth if his portfolio involves a short position in the stock. When the short position

is sufficiently large and IES is larger than one, his consumption-wealth ratio can decline

enough so that he is able to outsave the rational agent. However, when the Pareto share of

the pessimistic agent is large, he determines equilibrium prices, and his wealth share invested
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in the stock approaches one. This makes the agent pessimistic again about the growth rate

of his own portfolio, and the saving motive disappears.

The general equilibrium price effects thus play a central role in the construction of non-

degenerate long-run equilibria. Partial equilibrium models with exogenous price dynamics

that do not depend on wealth shares of individual agents cannot replicate this survival

mechanism.

3.5.3 Comparative statics

Figure 1 also shows the sensitivity of the survival regions to changes in parameter values.

Survival regions do not depend on the time preference parameter β and the growth rate of

the economy μy, because these parameters influence the decision rules of the two agents in a

symmetric way and offset each other in the difference in growth rates of individual wealth.

The only remaining parameters to analyze are the belief distortions un of the two agents,

and the volatility of aggregate endowment σy.

The belief distortions used in Figure 1 may be considered large — the incorrect agent

misperceives the growth rate of the economy by |u1σy| = 0.005, which is a quarter of a

plausible value for the growth rate of μy = 0.02. The top two panels illustrate how survival

regions change when the magnitude of the belief distortion u1 decreases in a situation when

agent 2 is rational.

Decreasing the magnitude of the belief distortion in general improves the survival chances

of the relatively more optimistic agent. The top right panel shows that decreasing the belief

distortion of an optimistic agent shrinks the regions of the parameter space in which the

rational agent dominates and where nondegenerate long-run equilibria exist. A decrease in

u1 > 0 leads to a lower leverage of agent 1 (see the asymptotic formula (32) for π1 (θ1)) and

less overpricing of the risky asset in which the optimistic agent overinvests. Yet the stronger

insurance motive of the relatively more pessimistic agent is still present. As u1 declines to

zero, the relative patience ν2 (θ1) − ν1 (θ1) close to the boundaries in expressions (33) and

(34) is dominated by the linear term u1σy, but the threshold in the survival condition in

Proposition 6 decreases quadratically. This makes it easier for agent 1 to survive, despite

the fact that the speed of convergence to a steady state distribution of θ1, influenced by the

relative patience in the drift term of (18), may be slower.

Interestingly, the middle right panel of Figure 1 shows that decreasing the distortion of

a pessimistic agent in general diminishes his survival chances when risk aversion is larger

than the inverse of IES. In the previous sections, I argued that a pessimistic agent can
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coexist with a rational agent in the long run if he is able to outsave the rational agent when

his Pareto share becomes small. This will occur in economies with IES > 1 in situations

when the pessimistic agent is sufficiently optimistic about the growth rate of his own wealth,

i.e., when he chooses a sufficiently large short position in the stock. But decreasing the

magnitude of u1 also decreases the agent’s willingness to short the stock (see equation (32)),

which subsequently diminishes the relative incentives of the pessimistic agent to save.

The region in which nondegenerate long-run equilibria exist can be expanded if we con-

sider economies populated by an optimistic and a pessimistic agent (the bottom right panel

of Figure 1, with a different scale on the vertical axis). In these situations, motives to mis-

allocate assets arising from belief distortions work in opposite directions for the two agents.

For instance, a pessimistic agent can coexist with a rational agent (u1 < 0, u2 = 0)

in the long run only when IES is larger than one (middle panels of Figure 1), although

a nondegenerate long-run equilibrium can exist for IES smaller than one if we consider

parameterizations where agent 2 is optimistic, albeit with a smaller belief distortion (u1 <

−u2 < 0). With an at least somewhat optimistic agent 2, survival chances of the pessimistic

agent no longer depend solely on his ability to outsave the other agent when preferences are

elastic, but also on the willingness of the optimistic agent to overpay for the claim on the

aggregate endowment.

The case of ‘symmetric’ optimism and pessimism, 0 < u1 = −u2, which under CRRA

preferences generates a rather delicate economy without a stationary distribution for the

Pareto share yet with both agents surviving in the long run, is dissected in a straightforward

way when ρ 	= γ. The parameter space is divided into four regions by the 45◦ line and a

vertical boundary for γ that satisfies (1− γ)σy = u1, and one of the four survival possibilities

from Proposition 6 arises in each of the four regions. The online appendix analyzes this case

in more detail.

Finally, the bottom left panel in Figure 1 illustrates that the analysis is still plausible

when aggregate endowment is deterministic, σy = 0, as long as agents can write contracts

on the realizations of W . Volatility of the aggregate consumption stream has an impact on

the shape of the survival regions but is not central for the existence of parameterizations

under which a nondegenerate long-run equilibrium exists. The essential component of the

model is the existence of a betting mechanism with a probability distribution of outcomes

about which the agents disagree. Not surprisingly, the bottom left panel in Figure 1 also

corresponds to an economy where aggregate endowment is driven by a shock uncorrelated

with W over which there is no disagreement.
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3.6 Comparison to economies with only terminal consumption

In this paper, I analyze economies with intermediate consumption. Kogan, Ross, Wang, and

Westerfield (2006) deal with a different framework with two agents endowed with CRRA

preferences. In their economy, there is no intermediate consumption and the agents split and

consume an aggregate dividend payoff at a terminal date T . The dividend evolves according

to a geometric Brownian motion (1) as in this paper, and agents can continuously retrade

claims on the terminal payoff during the lifetime of the economy. The notion of survival in

that framework is captured by analyzing the limit of the consumption share distribution in

a sequence of economies as T ↗ ∞.

Without intermediate consumption, the agent’s intertemporal decision is reduced to the

maximization of the (risk-adjusted) expected growth rate of the portfolio. In this respect, the

framework is similar to a model in this paper under unitary IES when agents’ consumption-

wealth ratio is constant and equal to β, and intermediate consumption has no impact on the

difference of the wealth growth rates.

The difference that prevents a direct comparison of the results lies in the valuation of

wealth. In the absence of intermediate consumption, Kogan, Ross, Wang, and Westerfield

(2006) use the price of a bond maturing at time T as numeraire and define the initial wealth

in the economy with horizon T as the time 0 price of the terminal payoff. (In this paper,

this quantity corresponds to the price of a single cash flow from the aggregate endowment

paid out at time T , scaled by the price of a bond with corresponding maturity.) Then they

consider two approaches to survival analysis.

In the ‘general equilibrium’ approach, they study the limiting properties of the terminal

consumption allocation obtained as a solution of a sequence of planner’s problems as T ↗ ∞.

A critical assumption in this approach is the choice of the initial Pareto shares. These are

chosen so that the initial wealth shares of the two agents are identical, which requires the

initial Pareto share of the irrational agent to approach one as T ↗ ∞. This mechanism

reweighs the behavior of the tail and allows an optimistic agent to ‘survive’ in the sequence

of planner’s problems. In economies with intermediate consumption, consumption at distant

dates contributes only little to the wealth levels, and thus the reweighting of initial Pareto

shares in order to achieve equal initial wealth levels would have no effect on the survival

results. Under the ‘general equilibrium’ notion of survival in Kogan, Ross, Wang, and

Westerfield (2006), optimistic agents can survive when risk aversion is larger than one but

the survival regions differ from the results in this paper under unitary IES (ρ = 0).

Kogan, Ross, Wang, and Westerfield (2006) contrast their ‘general equilibrium’ to a

31



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

ζ1

q(
ζ1 )

 

 
RA = 3
RA = 4
RA = 6
RA = 8

Figure 2: Stationary distributions for the consumption share of the agent with distorted beliefs

ζ1
(
θ1
)
. All models are parameterized by u1 = 0.25, u2 = 0, IES = 1.5, β = 0.05, μy = 0.02,

σy = 0.02, and differ in levels of risk aversion.

simplified approach that is analogous to the boundary analysis in this paper and that they

call the ‘partial equilibrium’ method. This method constructs a homogeneous economy

injected with an infinitesimal agent with different beliefs under the assumption that he does

not affect local price dynamics. It turns out that this method delivers exactly the same

survival regions as those derived in this paper under unitary IES.

Propositions 10 and 11 show that in the model with intermediate consumption considered

in this paper, the return on aggregate wealth and prices of individual finite-horizon cash flows

from the aggregate endowment converge to their homogeneous economy counterparts and

thus the ‘partial equilibrium’ approach is actually the correct method for this paper under

general equilibrium. However, these results do not translate to the setup considered in

Kogan, Ross, Wang, and Westerfield (2006). Although prices of individual cash flows from

the aggregate endowment converge for every fixed T ≥ 0, this convergence is not uniform on

T ∈ [0,∞), which in general invalidates the result on converging returns and prices for the

limit as T ↗ ∞.

4 Dynamics of long-run equilibria

In Section 3, I derived parametric restrictions on the survival regions. However, even if a

nondegenerate long-run equilibrium exists, the question remains whether this equilibrium

delivers quantitatively interesting dynamics under which each of the agents can gain a sig-

nificant wealth share. This section investigates numerically the equilibrium allocations and

prices and their dynamics by solving the ODE (15) and decentralizing the allocations.
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Figure 3: Relative patience
[
ν2
(
θ1
)− ν1

(
θ1
)]

/
(
u1
)2

(left panel) and the drift component of the

Pareto share evolution E
[
dθ1t | Ft

]
/dt (right panel) as functions of the Pareto share θ1. All models

are parameterized by u1 = 0.25, u2 = 0, IES = 1.5, β = 0.05, μy = 0.02, σy = 0.02, and differ in

levels of risk aversion. The dotted horizontal line in the left panel represents the survival threshold
1
2

((
u1
)2 − (u2)2) from Proposition 6.

4.1 Consumption allocation

Figure 2 plots the densities q (ζ1) for the stationary distribution of the consumption share in

economies with an optimistic agent. The parameterizations10 are chosen along a horizontal

line in the top left panel of Figure 1. As risk aversion increases, the distribution of con-

sumption shifts toward the optimistic agent, but the equilibria in general permit substantial

variation over time in the consumption shares of the two agents.

The existence of nondegenerate long-run equilibria depends on the behavior of the relative

patience ν2 (θ1) − ν1 (θ1) in the neighborhood of the boundaries. Figure 3 displays three

different cases. The dashed line represents the low risk aversion case in which both attracting

conditions from Proposition 6 hold and each of the agents dominates with a strictly positive

probability. The solid line corresponds to a parameterization that is close to the CRRA

case when only the survival condition for the rational agent 2 is satisfied (with CRRA

preferences, the relative patience would be identically zero). Finally, a case for which both

survival conditions hold is shown by the dot-dashed line.

Figure 3 also plots the impact of relative patience on the drift component of the Pareto

share process. The drift vanishes at the boundaries and the boundaries are unattainable

(a reflection of the Inada conditions), but sufficiently large positive (negative) slopes at the

left (right) boundaries assure the existence of a nondegenerate stationary equilibrium of the

Pareto share.

The essential components of the survival mechanism are the propensity to save and the

10A full solution of the consumption dynamics requires setting additional parameters that do not influence
the survival regions. I set β = 0.05 and μy = 0.02. The high value for the time preference coefficient is
chosen merely to assure that restrictions in Assumption 2 hold for all compared models.
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Figure 4: Difference in consumption-wealth ratios ξn(θ1) as a function of the consumption share

ζ1(θ1). The left panel considers an optimistic agent 1 (u1 = 0.25) while the right panel a pessimistic
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0.02, and individual curves correspond to different levels of intertemporal elasticity of substitution.
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Figure 5: Wealth shares πn(θ1) of the two agents invested in the claim to aggregate endowment as

functions of the consumption share ζ1(θ1). The left panel considers an optimistic agent 1 (u1 = 0.25)

while the right panel a pessimistic agent 1 (u1 = −0.25). The remaining parameters are u2 = 0,

IES = 1.5, β = 0.05, μy = 0.02, σy = 0.02, and individual curves correspond to different levels of

risk aversion. Wealth share curves originating at 1 for ζ1
(
θ1
)
= 1 (ζ1

(
θ1
)
= 0) belong to agent 1

(2).

portfolio allocation of the two agents. Figure 4 displays the differences in the consumption-

wealth ratios [ξn (θ1)]
−1

of the two agents, which are primarily driven by the intertemporal

elasticity of substitution. For the case of IES = 1, the difference is exactly zero since each

agent consumes a fraction β of his wealth per unit of time. A higher IES improves the survival

chances of the agent who is relatively more optimistic about the return on his own wealth,

as he is willing to tilt his consumption profile more toward the future. Figure 4 captures this

effect for both an optimistic agent 1 (u1 = 0.25, left panel), as well as a pessimistic agent 1

(u1 = −0.25, right panel).

The portfolio allocation mechanism is depicted in Figure 5 and is closely related to the

behavior of the consumption-wealth ratios. The share of wealth invested in the risky asset is

primarily driven by the risk aversion parameter γ. A higher risk aversion limits the amount

of leverage. For the pessimistic agent, this implies that if risk aversion is high, he does not

form a large enough short stock position that would make him sufficiently optimistic about
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the return on his own wealth and outsave the rational agent when IES > 1.

4.2 Evolution over time

In empirical applications, it may be advantageous if θ1 converges to its stationary distribution

from any initial condition fast enough, so that data observed over finite horizons are a

representative sample of the stationary distribution. Proposition 6 gives sufficient conditions

for the existence of a unique stationary distribution for θ1 but it does not say anything about

the rate of convergence.

It turns out that under the conditions in Proposition 6, convergence occurs at an expo-

nential rate, so that the process θ1 does not exhibit strong dependence properties, although

the exponent may be small. Yan (2008) conducts numerical experiments under separable

utility when one of the agents always vanishes, and shows that the rate of extinction can be

very slow. The same quantitative result can hold under recursive preferences.

Having at hand numerical solutions for the evolution of θ1 and the function ζ1 (θ1), one

can investigate conditional distributions of ζ1 (θ1t ) conditional on θ10 by solving the corre-

sponding Kolmogorov forward equation

∂qt (θ
1)

∂t
+

∂

∂θ1
[
θ1μθ1

(
θ1
)
qt
(
θ1
)]− 1

2

∂2

∂ (θ1)2

[(
θ1σθ1

(
θ1
))2

qt (θ)
]
= 0

for the conditional density qt (θ
1) of θ1t with the initial condition q0 (θ

1) = δθ10 (θ
1), where δ

is the Dirac delta function, and then transforming to obtain the conditional density for ζ1

pt
(
ζ1
(
θ1
))

= qt
(
θ1
) [∂ζ1

∂θ1
(
θ1
)]−1

.

Figure 6 considers the evolution of conditional densities for the consumption share in

different economies. The speed of convergence depends on relative patience ν2 (θ1)− ν1 (θ1)

that governs the magnitude of the drift term of θ1 and the shape of the function ζ1 (θ1)

depicted in bottom right panel.

For high levels of risk aversion, convergence of the conditional distribution pt is slow, due

to the low slope of ζ1 (θ1). With a high level of risk aversion, agents are not willing to engage

in large bets on the realizations of the Brownian motions W , and wealth and consumption

shares evolve only slowly. In the example in Figure 6, it takes 2,500 periods until the density

pt is indistinguishable from the stationary density.

As risk aversion decreases, and agents are willing to bet larger portions of their wealth,
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Figure 6: Distributions of ζ1
(
θ1t
)
conditional on ζ1

(
θ10
)
= 0.5, and the consumption share of agent

1, ζ1
(
θ1
)
, as a function of the Pareto share θ1 (bottom right panel). In the top left panel, the

economy has a nondegenerate long-run distribution. In the top right panel, agent 2 dominates, and

in the bottom left panel, each agent dominates with a strictly positive probability. The parameters

are u1 = 0.25, u2 = 0, IES = 1.5, β = 0.05, μy = 0.02, σy = 0.02. Risk aversion is equal to 8 in the

top left panel, 0.75 in the top right panel, and 0.25 in the bottom left panel.

the evolution of the conditional density pt speeds up. In the middle panel of Figure 6,

consumption is substantially skewed toward the dominating agent 2 already after 50 periods.

In the bottom panel, when the risk aversion coefficient drops to 0.25 and each of the agents

dominates with a strictly positive probability, the mass of the density quickly shifts toward

both boundaries.

5 Extensions and concluding remarks

Before concluding, I consider two extensions of the analyzed model that involve Bayesian

learning about the underlying model and representation of other preference structures as

belief distortions. The online appendix outlines in more detail how to set up these problems

within the framework of this paper.

5.1 The role of learning

The analysis in this paper focuses on the case of fixed belief distortions. Agents are firm

believers in their probability models, and do not use new data to update their beliefs. A
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natural question is to ask what happens when agents are allowed to learn.

Blume and Easley (2006) provide a detailed analysis of the impact of Bayesian learning

on survival under separable utility, and they are able to characterize the relationship between

survival chances and the complexity of the learning problem. The central message arising

from the analysis is that learning, which reduces belief distortions over time, in general aids

survival of agents with incorrect beliefs.

It seems to be reasonable to expect that this insight should hold also under nonseparable

preferences. Unfortunately, results presented in the previous analysis indicate that this

logic is not generally correct. For instance, the middle panels of Figure 1 show that the

survival region of a pessimistic agent can shrink if his belief distortion diminishes, and the

pessimistic agent moves from a region of the parameter space where a nondegenerate long-

run equilibrium exists to one where only the rational agent survives. Whether the pessimist

can then learn quickly enough so that his beliefs converge to rational expectations at a rate

that allows survival depends on the complexity of the learning problem, as shown by Blume

and Easley (2006). As the beliefs converge, the evolution of the Pareto share process θ1

settles. The limiting distribution of θ1 as t ↗ ∞ from which we can deduce the wealth and

consumption distribution remains an open question.

5.2 Robust utility

The economic interpretation of the distortionary processes un is not limited to ‘irrationality’,

and other preference specifications lead to representations which are observationally equiv-

alent to belief distortions. Consider, for instance, an agent who believes that the model for

the aggregate endowment dynamics is misspecified and views (1) only as a reference model

that approximates the true dynamics, as in the robust utility models of Anderson, Hansen,

and Sargent (2003) and Skiadas (2003). This class of models leads to a representation where

agent n views as relevant the realization of the worst case scenario, characterized by the least

favorable dynamics

dYt

Yt
= μydt+ σy (u

n
t dt+ dW n

t ) ,

where W n is a Brownian motion under Qn
u associated with an endogenously determined

distortionary process un. Epstein and Miao (2003) and Uppal and Wang (2003) construct

models with ambiguity aversion where the optimal solution to the minimization problem

involves a constant un, and thus exactly corresponds to the framework in this paper.
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Under separable preferences, agents who fear misspecification more (and therefore assign

a lower penalty θ to deviations from the reference model) choose a more distorted worst

case scenario, which tends to worsen their survival chances. However, the results for con-

stant belief distortions un indicate that survival chances of the more fearful agents may well

look much better for appropriate nonseparable parameterizations of preferences. A detailed

analysis of the dynamics of these models is left for future research.

5.3 Summary

Survival of agents with heterogeneous beliefs has been studied extensively under separable

preferences. The main conclusion arising from the literature is a relatively robust argument

in favor of the market selection hypothesis. Under complete markets and identical utility

functions, a two-agent economy is dominated in the long run by the agent whose beliefs are

closest to the true probability measure for a wide class of preferences and endowments. In

particular, Kogan, Ross, Wang, and Westerfield (2009) show elegantly that this result holds,

irrespective of the specification of the aggregate endowment process,11 as long as relative

risk aversion is bounded.

This paper shows that the robust survival result is specific to the class of separable

preferences. Under nonseparable recursive preferences of the Duffie-Epstein-Zin type, non-

degenerate long-run equilibria exist for a broad set of plausible parameterizations when risk

aversion is larger than the inverse of the intertemporal elasticity of substitution. It is equally

easy to construct economies dominated by agents with relatively more incorrect beliefs.

The analysis reveals the important role played by the interaction of risk aversion with

respect to intratemporal gambles that determines risk taking, and intertemporal elasticity of

substitution that drives the consumption-saving decision. Critical for obtaining the survival

results, and in particular the nondegenerate long-run equilibria, are the general equilibrium

price effects generated by the wealth dynamics.

The survival results are obtained by extending the planner’s problem formulation of

Dumas, Uppal, and Wang (2000) to a setting with heterogeneous beliefs. Long-run survival

of the agents is determined by the dynamics of a stochastic process that models the Pareto

share of one of the agents as the share becomes negligible. This dynamics can be characterized

in closed form by studying the boundary behavior of a nonlinear ODE resulting from the

planner’s problem. This type of ODE arises in a wider class of recursive utility problems, so

11The survival results under separable utility thus also hold for ‘exotic’ endowment processes like the rare
disaster framework in Chen, Joslin, and Tran (2010).
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these results can be utilized in a broader variety of economic applications.

I provide in analytical form tight sufficient conditions that guarantee survival or ex-

tinction. These conditions can be interpreted as relative patience conditions analogous to

those in Lucas and Stokey (1984). An agent survives in the long run if his relative patience

becomes sufficiently large as his wealth share vanishes. However, in this framework, the

dynamics of relative patience arises endogenously as an equilibrium outcome, and is not a

direct property of agents’ preferences. I also show that the survival conditions are equivalent

to conditions on the limiting expected growth rates of the logarithm of individual wealth

levels in a decentralized economy

These results are obtained for a two-agent economy with an aggregate endowment process

that is specified as a geometric Brownian motion, but the theoretical framework can also be

utilized to derive an analog HJB equation for multi-agent economies with more sophisticated

Markov dynamics. In principle, the qualitative survival results should extend to a wider

class of models with stable consumption growth dynamics, although the analysis of the

existence of a stationary distribution for the Pareto share becomes more complicated in a

multidimensional state space.

Importantly, the developed solution method is not limited to constant distortions and

applies to a much wider class of preferences that are interpretable as deviations in beliefs.

I outline how to use the method in a framework with model uncertainty and learning and

in a model where agents are endowed with robust preferences. Solutions of these problems

are left as open questions for future research. Similarly, formulas for survival regions can

be extended by incorporating heterogeneity in preferences, as in Dumas, Uppal, and Wang

(2000), in a straightforward way.

The bad news for the market selection hypothesis is in some sense good news for models

with heterogeneous agents. Models with agents who differ in preferences or beliefs often

have degenerate long-run limits in which only one class of agents survives. This paper shows

that coupling belief heterogeneity (including preferences that can be interpreted as belief

distortions) and recursive preferences with empirically plausible parameters leads to models

in which the heterogeneity does not vanish over time.
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A Proofs

Proof of Lemma 3. Schroder and Skiadas (1999) prove that V n (Cn) is concave. Consider

the case α1 ↘ 0. Given optimal consumption streams Cn (α), we have

J0 (α) = α1V 1
0

(
C1 (α)

)
+ α2V 2

0

(
C2 (α)

)
(35)

and since V 1
0

(
C1 (α)

)
is bounded from above as a function of α, it follows that

α1V 1
0

(
C1 (α)

) α1↘0−→ v1 ≤ 0

and thus J0
(
0, α2

) ≤ limα1↘0 α
2V 2

0

(
C2 (α)

) ≤ α2V 2
0 (Y ).

Assume suboptimal policies Ĉ1
(
α1, α2

)
=
(
α1
) 1

2|γ| Y and Ĉ2
(
α1, α2

)
=
(
1− (α1

) 1
2|γ|
)
Y . Then

α1V 1
0

(
Ĉ1
(
α1, α2

))
=
(
α1
)1+ 1

2
γ
|γ| γ−1Y γ

0 Ṽ
n α1↘0−→ 0

and

α2V 2
0

(
Ĉ2
(
α1, α2

))
= α2

(
1− (α1

) 1
2|γ|
)γ

γ−1Y γ
0 Ṽ

n α1↘0−→ α2V 2
0 (Y )

which implies J0
(
0, α2

) ≥ α2V 2
0 (Y ). Therefore (13) holds, and the convergence of C2

(
α1, α2

)
is a

direct consequence.

Proof of Proposition 4. The planner’s problem has an appealing Markov structure. Denoting

λ̄ =
(
λ̄1, λ̄2

)′
and u =

(
u1, u2

)′
, the state vector is Z =

(
λ̄′, Y

)′
, and the planner’s problem (11-12)

leads to the Hamilton-Jacobi-Bellman equation for J (Z),

0 ≡ sup
(C1,C2,ν1,ν2)

2∑
n=1

λ̄n [F (Cn, νn)− Jλ̄nνn] + JyμyY +
1

2
tr (JzzΣ) , (36)

where

Σ =

( (
diag

(
λ̄
)
u
) (

diag
(
λ̄
)
u
)′ (

diag
(
λ̄
)
u
)
σyY

σyY
(
diag

(
λ̄
)
u
)′

σ2
yY

2

)

and diag
(
λ̄
)
is a 2× 2 diagonal matrix with elements of λ̄ on the main diagonal.

The maximization over
(
ν1, ν2

)
in the HJB equation (36) can be solved separately. Under the

optimal discount rate process νn for agent n,

f (Cn, Jλ̄n) ≡̇ sup
νn

F (Cn, νn)− Jλ̄nνn =
β

ρ

[
(Cn)ρ (γJλ̄n)

1− ρ
γ − γJλ̄n

]
. (37)

The function f is the aggregator in the stochastic differential utility representation of recursive

preferences postulated by Duffie and Epstein (1992b). The online appendix gives more detail on
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this relationship. Optimal consumption shares ζn are given by the first-order conditions in the

consumption allocation

ζn=̇
Cn

Y
=

(γJλ̄n)
1−ρ/γ
1−ρ

(
λ̄n
) 1

1−ρ∑2
k=1 (γJλ̄k)

1−ρ/γ
1−ρ

(
λ̄k
) 1

1−ρ

,

where Jλ̄n are agents’ continuation values under the optimal consumption allocation.

The HJB equation (36) further implies that J is homogeneous degree one in λ̄ and homogeneous

degree γ in Y . The transformation of variables (14) leads to the guess

J (Z) = γ−1Y γθ2J̃
(
θ1
)
= γ−1Y γθ2

[
θ1J̃1

(
θ1
)
+
(
1− θ1

)
J̃2
(
θ1
)]

,

where J̃n
(
θ1
)
are continuation values of the two agents scaled by γ−1Y γ , defined in (16). The ODE

for J̃n
(
θ1
)
then immediately follows. The continuity at the boundaries follows from Lemma 3.

In addition, the same logic and derivation of the HJB equation applies to multi-agent economies

and more sophisticated Markov dynamics of the aggregate endowment process. In an N -agent

economy, the state vector includes N−1 Pareto shares as state variables. The boundary conditions

for θn = 0, n ∈ {1, . . . , N} associated with the N -agent version of the ODE (15) are given by the

solutions of (N − 1)-agent economies that exclude agent n. In this way, solutions to multi-agent

economies can be calculated by iteratively adding individual agents.

Proof of Proposition 6. Given an initial condition θ10 ∈ (0, 1), the process (18) lives on

the open interval (0, 1) with unattainable boundaries (the preferences satisfy an Inada condition

at zero). For any numbers 0 < a < b < 1, the process θ1 has bounded and continuous drift and

volatility coefficients on (a, b), and the volatility coefficient is bounded away from zero. It is thus

sufficient to establish the appropriate boundary behavior of θ1 in order to make the process positive

Harris recurrent (see Meyn and Tweedie (1993)). Since the process will also be ϕ -irreducible for the

Lebesgue measure under these boundary conditions, there exists a unique stationary distribution.

Denote μθ (θ) and σθ (θ) the drift and volatility coefficients in (18). The boundary behavior of

the process θ1 is captured by the scale measure S : (0, 1)2 → R defined as

s (θ) = exp

{
−
∫ θ

θ0

2μθ (τ)

σ2
θ (τ)

dτ

}
S [θl, θh] =

∫ θl

θh

s (θ) dθ

for an arbitrary choice of θ0 ∈ (0, 1), and the speed measure M : (0, 1)2 → R

m (θ) =
1

σ2
θ (θ) s (θ)

M [θl, θh] =

∫ θl

θh

m (θ) dθ.

Karlin and Taylor (1981, Chapter 15) provide an extensive treatment of the boundaries.
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The boundaries are nonattracting if and only if

lim
θl↘0

S [θl, θh] = ∞ and lim
θh↗1

S [θl, θh] = ∞ (38)

and this result is independent of the fixed argument that is not under the limit. With nonattracting

boundaries, the stationary density will exist if the speed measure satisfies

lim
θl↘0

M [θl, θh] < ∞ and lim
θh↗1

M [θl, θh] < ∞, (39)

again independently of the argument that is not under the limit.

In our case,

s (θ) = exp

{
−
∫ θ

θ0

2
(
ν2 (τ)− ν1 (τ)

)
τ (1− τ) (u1 − u2)2

dτ

}
ssep (θ) ,

where

ssep (θ) =

(
1− θ

1− θ0

)− 2u1

u1−u2
(

θ

θ0

) 2u2

u1−u2

(40)

is the integrand of the scale function in the separable case, when ν2 (θ)− ν1 (θ) ≡ 0.

For the left boundary, assume that in line with condition (i), there exist θ ∈ (0, 1) and ν ∈ R

such that ν2 (θ)− ν1 (θ) ≥ ν for all θ ∈ (0, θ). Taking θ0 = θ, the scale measure can be bounded as

S [θl, θ] ≥
∫ θ

θl

exp

{
−
∫ θ

θ

2ν

τ (1− τ) (u1 − u2)2
dτ

}(
1− θ

1− θ

)− 2u1

u1−u2
(
θ

θ

) 2u2

u1−u2

dθ =

=

∫ θ

θl

(
θ

θ

) 2u2

u1−u2
− 2ν

(u1−u2)2
(
1− θ

1− θ

) 2ν

(u1−u2)2
− 2u1

u1−u2

dθ

The left limit in (38) thus diverges to infinity if

2u2

u1 − u2
− 2ν

(u1 − u2)2
≤ −1,

which is satisfied when ν ≥ 1
2

[(
u1
)2 − (u2)2].

The argument for the right boundary is symmetric. Taking θ̄ ∈ (0, 1) and ν̄ ∈ R such that

ν2 (θ)− ν1 (θ) ≤ ν̄ for all θ ∈ (θ̄, 1), the calculation reveals that we require ν̄ ≤ 1
2

[(
u1
)2 − (u2)2].

It turns out that the bounds implied by conditions (39) are marginally tighter. Following the

same bounding argument as above, sufficient conditions for (39) to hold are

ν >
1

2

[(
u1
)2 − (u2)2] and ν̄ <

1

2

[(
u1
)2 − (u2)2] . (41)

The construction reveals that these bounds are also the least tight bounds of this type under which

42



the proposition holds.

It is also useful to note that the unique stationary density q (θ) is proportional to the speed

density m (θ). Finally, if the limits in Proposition 6 do not exist, they can be replaced with

appropriate limits inferior and superior.

This discussion has sorted out case (a). Conditions (i’) and (ii’) are sufficient conditions for

the boundaries to be attracting. Lemma 6.1 in Karlin and Taylor (1981) then shows that if the

‘attracting’ condition is satisfied for a boundary, then θ1 converges to this boundary on a set of

paths that has a strictly positive probability. This probability is equal to one if the other boundary

is non-attracting. Combining these results, we obtain statements (b), (c), and (d).

Proof of Corollary 7. Assume without loss of generality that
∣∣u2∣∣ ≤ ∣∣u1∣∣. The sufficient part

is an immediate consequence of Proposition 6. Under separable preferences, ν2 − ν1 ≡ 0, and thus

if
∣∣u2∣∣ < ∣∣u1∣∣ then conditions (i’) and (ii) hold, and agent 2 dominates in the long run under P .

For the necessary part, when u2 = u1, then θ1 is constant and both agents survive under P .

When −u2 = u1 = u, then it follows from inspection of formula (40) in the proof of Proposition 6

that conditions (38) are satisfied and the boundaries are non-attracting. Lemma 6.1 in Karlin and

Taylor (1981) then implies that both agents survive under P .

Note that even though both agents survive when −u2 = u1, the speed density m (θ) ∝
θ−1 (1− θ)−1 is not integrable on (0, 1) and thus there does not exist a finite stationary measure.

The result on survival under measure Qn follows from the fact that the evolution of Brownian

motion W under the beliefs of agent n is dWt = undt+ dW n
t . Since the evolution of θ1 completely

describes the dynamics of the economy, substituting this expression into (18) and reorganizing

yields the desired result.

Proof of Lemma 8. Lemma 3 implies that the planner’s objective function can be continu-

ously extended at θ1 = 0 by the continuation value for agent 2 living in a homogeneous economy.

Expression (35) scaled by
(
α1 + α2

)
γ−1Y γ leads to an equation in scaled continuation values

J̃
(
θ1
)
= θ1J̃1

(
θ1
)
+
(
1− θ1

)
J̃2
(
θ1
)

and the proof of Lemma 3 yields

lim
θ1↘0

J̃(θ1) = lim
θ1↘0

J̃2(θ1) = Ṽ 2,

where Ṽ 2 is defined in (7). Since J̃2
(
θ1
)
= J̃

(
θ1
)− θ1J̃θ1

(
θ1
)
, then

lim
θ1↘0

θ1J̃θ1
(
θ1
)
= 0. (42)
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Further, consider the behavior of individual terms in ODE (15) as θ1 ↘ 0. Using expression

(17), the first term is proportional to

θ1
(
ζ1
(
θ1
))ρ (

J̃1
(
θ1
))1− ρ

γ
=

(
θ1
) 1

1−ρ

(
J̃1
(
θ1
)) 1−ρ/γ

1−ρ [
K
(
θ1
)]−ρ

=

= ζ1
(
θ1
) [

K
(
θ1
)]1−ρ

,

whereK
(
θ1
)
is the denominator in the formula for the consumption share (17), and limθ1↘0K

(
θ1
)
=(

Ṽ 2
) 1−ρ/γ

1−ρ
, which is a finite value. Since limθ1↘0 ζ

1
(
θ1
)
= 0, the first term in (15) vanishes as

θ1 ↘ 0. The sum of the second and third term converges to

β

ρ

(
Ṽ 2
)1− ρ

γ
+

(
−β

ρ
+ μy + u2σy +

1

2
(γ − 1) σ2

y

)
Ṽ

and formula (7) implies that this expression is zero. Since the fourth term in (15) also converges

to zero due to result (42), the last term in (15) must also converge to zero, or

lim
θ1↘0

(
θ1
)2

J̃θ1θ1
(
θ1
)
= 0. (43)

Finally, differentiate the PDE (15) by θ1 and multiply the equation by θ1. Using comparisons

with results (42–43), the assumption that ζn
(
θ1
)
/J̃n

(
θ1
)1/γ

are bounded and bounded away from

zero and limθ1↘0 ζ
1
(
θ1
)
= 0, it is possible to determine that all terms in the new equation con-

taining derivatives of J̃
(
θ1
)
up to second order vanish as θ1 ↘ 0. The single remaining term that

contains a third derivative of J̃
(
θ1
)
is multiplied by

(
θ1
)3

and must necessarily converge to zero

as well, and thus

lim
θ1↘0

(
θ1
)3

J̃θ1θ1θ1
(
θ1
)
= 0.

Proof of Lemma 9. Itô’s lemma implies

dJ̃2
(
θ1t
)

= d
[
J̃
(
θ1t
)− θ1t J̃θ1

(
θ1t
)]

=

= − (θ1t )2 J̃θ1θ1 (θ1t ) dθ1tθ1t
− 1

2

[(
θ1t
)2

J̃θ1θ1
(
θ1t
)
+
(
θ1t
)3

J̃θ1θ1θ1
(
θ1t
)](dθ1t

θ1t

)2

and since the drift and volatility coefficients in the dynamics of θ1 given by equation (18) are

bounded by assumption, applying results from Lemma 8 proves the claim about the drift and

volatility coefficients of J̃2
(
θ1
)
(J̃2 itself converges to a nonzero limit so the scaling is innocuous).
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Further notice that

dJ̃1
(
θ1t
)

= d
[
J̃
(
θ1t
)
+
(
1− θ1t

)
J̃θ1
(
θ1t
)]

= − (θ1t )2 J̃θ1θ1 (θ1t ) dθ1tθ1t
+ (44)

+
1

2

[(
θ1t
)2

J̃θ1θ1
(
θ1t
)
+
(
1− θ1t

) (
θ1t
)2

J̃θ1θ1θ1
(
θ1t
)](dθ1t

θ1t

)2

and that
ζ1
(
θ1
)

J̃1 (θ1)
1
γ

=
(
θ1
) 1

1−ρ

(
J̃1
) 1−1/γ

1−ρ
K
(
θ1
)−1

(45)

is bounded and bounded away from zero by assumption. Denote the numerators of ζ1 and ζ2

Z1
(
θ1
)
=
(
θ1
) 1

1−ρ

(
J̃1
(
θ1
)) 1−ρ/γ

1−ρ
Z2
(
θ1
)
=
(
1− θ1

) 1
1−ρ

(
J̃2
(
θ1
)) 1−ρ/γ

1−ρ
.

Then ζ2 = Z2/
(
Z1 + Z2

)
and, omitting arguments,

dZ1 =
1

1− ρ
Z1dθ

1

θ1
+

1− ρ
γ

1− ρ
Z1dJ̃

1

J̃1
+

1

2

ρ

(1− ρ)2
Z1

(
dθ1

θ1

)2

+

+
1

2

(
ρ− ρ

γ

)(
1− ρ

γ

)
(1− ρ)2

Z1

(
dJ̃1

J̃1

)2

+
1− ρ

γ

(1− ρ)2
Z1dθ

1

θ1
dJ̃1

J̃1

dZ2 = − 1

1− ρ
Z2 θ1

1− θ1
dθ1

θ1
+

1− ρ
γ

1− ρ
Z2dJ̃

2

J̃2
+

1

2

ρ

(1− ρ)2
Z2

(
θ1

1− θ1

)2(
dθ1

θ1

)2

+

+
1

2

(
ρ− ρ

γ

)(
1− ρ

γ

)
(1− ρ)2

Z2

(
dJ̃2

J̃2

)2

−
1− ρ

γ

(1− ρ)2
Z2 θ1

1− θ1
dθ1

θ1
dJ̃2

J̃2
.

Since the drift and volatility coefficients of dJ̃2/J̃2 vanish as θ1 ↘ 0, and limθ1↘0 Z
2
(
θ1
)
=(

Ṽ 2
) 1−ρ/γ

1−ρ
, the drift and volatility coefficients in the equation for dZ2 vanish. In the equation for

dZ1, it remains to determine the behavior of terms containing dJ̃1 (the remaining contributions to

drift and volatility terms converge to zero because limθ1↘0 Z
1
(
θ1
)
= 0):

Z1

J̃1
= θ1

[(
θ1
) 1

1−ρ

(
J̃1
) 1−1/γ

1−ρ

]ρ
,

where the term in brackets is bounded and bounded away from zero by utilizing (45). Using the

first θ1 to multiply the coefficients in dJ̃1 in formula (44), we conclude that the coefficients in
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Z1dJ̃1/J̃1 vanish as θ1 ↘ 0. Finally, the drift term arising from
(
dJ̃1

)2
vanishes, and

Z1

(
dJ̃1

J̃1

)2

=

(
θ1
)5 (

J̃θ1θ1
)2

J̃ + (1− θ1) J̃θ1

[(
θ1
) 1

1−ρ

(
J̃1
) 1−1/γ

1−ρ

]ρ(
dθ1t
θ1t

)2

.

Here, the last term has bounded drift, the second last term is bounded, and the first term converges

to zero as θ1 ↘ 0, which can be shown by using the l’Hôpital’s rule (the numerator converges to

zero and the denominator to zero or +∞, depending on the sign of γ):

lim
θ1↘0

(
θ1
)5 (

J̃θ1θ1
)2

J̃ + (1− θ1) J̃θ1
= lim

θ1↘0

5
(
θ1
)4

J̃θ1θ1 + 2
(
θ1
)5

J̃θ1θ1θ1

1− θ1
= 0.

Thus all terms in the drift and volatility coefficients of dZ1 vanish.

Applying Itô’s lemma to ζ2 yields

dζ2 =
1

Z1 + Z2
dZ2 − Z2

(Z1 + Z2)2
(
dZ1 + dZ2

)
+

+
Z2

(Z1 + Z2)3
(
dZ1 + dZ2

)2 − 1

(Z1 + Z2)2
dZ2

(
dZ1 + dZ2

)

and the results on the behavior of dZ1 and dZ2 as θ1 ↘ 0 lead to the desired conclusion about the

convergence of drift and volatility coefficients of dζ2.

Proof of Proposition 10. Convergence of the risk-free interest rate follows from the direct

calculation of

r (0) = lim
t↘0

−1

t
logE

[
M2

t S
2
t (0) | F0

]
where S2

t (0) is the limiting stochastic discount factor corresponding to the one prevailing in a

homogeneous economy populated only by agent 2. Lemma 9 shows that the local behavior of S2
t

converges to S2
t (0) as θ

1
0 ↘ 0. Similarly, convergence of the wealth-consumption ratio follows from

ξ
(
θ1
)
= ξ1

(
θ1
)
ζ1
(
θ1
)
+ ξ2

(
θ1
)
ζ2
(
θ1
)
.

Since ξn
(
θ1
)
are bounded and ζ1

(
θ1
)
converges to zero, we have

lim
θ1↘0

ξ
(
θ1
)
= lim

θ1↘0
ξ2
(
θ1
)
=

1

β

(
Ṽ 2
)ρ

,

where Ṽ 2 is given by (7).
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In order to obtain the convergence of the infinitesimal return, observe that

ξ1
(
θ1
)
ζ1
(
θ1
)
= β−1θ1J̃1

(
θ1
) [

Z1
(
θ1
)
+ Z2

(
θ1
)]ρ−1

and

d
[
θ1J̃1

(
θ1
)]

= θ1J̃1
(
θ1
) dθ1
θ1

+ θ1dJ̃1
(
θ1
)
+ θ1dJ̃1

(
θ1
) dθ1
θ1

.

The drift and volatility coefficients of the first term on the right-hand side vanish as θ1 ↘ 0 by the

proof of Lemma 8, and the coefficients of the other two terms vanish by combining the results in

that Lemma with equation (44). Further,

d
{[

Z1 + Z2
]ρ−1

}
= (ρ− 1)

[
Z1
(
θ1
)
+ Z2

(
θ1
)]ρ−2 (

dZ1 + dZ2
)
+

+
1

2
(ρ− 2) (ρ− 1)

[
Z1
(
θ1
)
+ Z2

(
θ1
)]ρ−3 (

dZ1 + dZ2
)2

and since dZ1 and dZ2 have vanishing coefficients by the proof of Lemma 9 and the remaining

terms are bounded, we obtain that dξ1
(
θ1
)
ζ1
(
θ1
)
has vanishing drift and volatility coefficients as

θ1 ↘ 0. The same argument holds for dξ2
(
θ1
)
ζ2
(
θ1
)
, and thus dξ

(
θ1
)
has vanishing coefficients

as well. Therefore all but the first term in

dΞt = d
[
ξ
(
θ1t
)
Yt

]
= Ξt

dYt

Yt
+ Ytdξ

(
θ1t
)
+ dξ

(
θ1t
)
dYt

have coefficients that decline to zero as θ1t ↘ 0, which proves the result.

Proof of Proposition 11. The evolution of θ1 given by equation (18) implies that for every

fixed t ≥ 0

θ10 ↘ 0 =⇒ θ1t → 0, P -a.s.

and thus also ζ2
(
θ1t
)→ 1 and J̃2

(
θ1t
)→ Ṽ 2, P -a.s.12 The last two terms in the expression for the

stochastic discount factor, S2
t , equation (24), converge to one, P -a.s., and since ν2

(
θ1s
)
, 0 ≤ s ≤ t

also converges to ν2 (0) and is bounded, we have S2
t

P−→ S2
t (0). Consider a family of random

variables M2
t S

2
t

(
θ10
)
indexed by the initial Pareto share θ10. Since this family is uniformly integrable,

12This result becomes more transparent if we consider ζ2 and J̃2 as functions of log θ1. The dynamics of
log θ1

d log θ1t =
(
1− θ1t

) [
ν2t
(
θ1t
)− ν1

(
θ1t
)
+

1

2

((
u2
)2 − (u1

)2)− 1

2
θ1t
(
u1 − u2

)2]
dt+

+
(
1− θ1t

) (
u1 − u2

)
dWt

has bounded drift and volatility coefficients and thus for ∀ε > 0, ∀k > 0, it is possible to achieve

P
[
θ1t < k

]
= P

[
log θ1t < log k

]
> 1− ε

by setting log θ10 sufficiently low.
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then convergence in probability implies convergence in mean, and we obtain the convergence result

for bond prices

E
[
M2

t S
2
t

(
θ10
) | F0

] θ10↘0−→ E
[
M2

t S
2
t (0) | F0

]
.

The same argument holds for M2
t S

2
t

(
θ10
)
Yt, which yields the result for the price of individual cash

flows from the aggregate endowment.

For the proof of the next lemma, the following result will be useful:

Lemma 18 Let f : R → R be differentiable with a monotone first derivative in a neighborhood of

−∞ and have a finite limit limx→−∞ f(x). Then limx→−∞ f ′(x) = 0.

Proof of Lemma 12. Transformation (27) together with the previously used γV 1
t = Y γ J̃1

(
θ1t
)

imply that

V̂ 1
(
θ1
)
= βγ

(
J̃1
(
θ1
)1/γ

ζ1 (θ1)

)γ(1−ρ)

. (46)

Think for a moment of V̂ 1 as a function of log θ1, where we are interested in the limiting behavior

as log θ1 → −∞. We have

θ1V̂ 1
θ1 = V̂ 1

log θ1 and
(
θ1
)2

V̂ 1
θ1θ1 = V̂ 1

(log θ1)2
− V̂ 1

log θ1 . (47)

Differentiating repeatedly expression (46) and exploiting the local behavior of J̃
(
θ1
)
as θ1 ↘ 0, we

conclude that the assumptions of Lemma 18 hold, and thus both expressions in (47) converge to

zero as θ1 ↘ 0.

Proof of Lemma 13. Utilizing Lemma 12 to deduce which terms in ODE (29) vanish and

Proposition 10 to determine the limiting values of the remaining coefficients, we obtain

lim
θ1↘0

β
1

1−ρ

(
V̂ 1
(
θ1
))− ρ

γ
1

1−ρ
= β − ρ

(
μy + u2σy − 1

2
(1− γ) (σy)

2

)
−

− ρ

1− ρ

[(
u1 − u2

)
σy +

1

2

(
u1 − u2

)2
1− γ

]
,

which is the limiting consumption-wealth ratio for agent 1. The formulas for the wealth share

invested in the claim on aggregate consumption and the coefficients of the wealth process are

obtained by plugging in the previous results into expressions (26) and (30).

Proof of Proposition 14. Given convergence to the homogeneous economy counterpart,

the expression for limθ1↘0 ν
2
(
θ1
)
is given by equation (8). Utilizing the formula for the wealth-
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consumption ratio (20) and the result from Lemma 13 then yields

lim
θ1↘0

ν1
(
θ1
)

= lim
θ1↘0

β
γ

ρ
+ (ρ− γ)

[
ξ1
(
θ1
)]−1

= β + (γ − ρ)

(
μy + u2σy − 1

2
(1− γ) σ2

y

)
+

+
γ − ρ

1− ρ

[(
u1 − u2

)
σy +

1

2

(
u1 − u2

)2
1− γ

]
.

The first two terms in the last expression are equal to the limit for ν2
(
θ1
)
, which yields the result

for the difference of the discount rates. The expression for part (ii) is obtained by symmetry.

Proof of Corollary 15. The critical point is the limits for the consumption-wealth ratios as

the Pareto share of one of the agents becomes small. Since the large agent’s consumption-wealth

ratio converges to that in a homogeneous economy, the relevant parameter restriction is the same

as restriction (9) in Assumption 2. The consumption-wealth ratio of the small agent is given in

expression (20), and restriction (10) in Assumption 2 assures that this quantity is strictly positive,

and the wealth-consumption ratio finite.

Proof of Corollary 16. Utilize results in Proposition 13 and the fact that limθ1↘0 μΞ2

(
θ1
)
= μy

and limθ1↘0 σΞ2

(
θ1
)
= σy, then form the differences in the limiting expected logarithmic growth

rates, and compare them to inequalities in Proposition 6.

Proof of Corollary 17. The results are obtained by taking limits of the expressions in

Proposition 14.
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