

Characterizations in a random record model with a non-identically distributed initial record

Gadi Barlevy and H. N. Nagaraja

WP 2005-05

Characterizations in a random record model with a non-identically distributed initial record

Gadi Barlevy*
H. N. Nagaraja ${ }^{\dagger}$

September 15, 2005

Abstract

We consider a sequence of random length M of independent absolutely continuous observations $X_{i}, 1 \leq i \leq M$, where M is geometric, X_{1} has $\operatorname{cdf} G$, and $X_{i}, i \geq 2$, have cdf F. Let N be the number of upper records and $R_{n}, n \geq 1$, be the nth record value. We show that N is free of F if and only if $G(x)=G_{0}(F(x))$ for some $\operatorname{cdf} G_{0}$ and that if $E\left(\left|X_{2}\right|\right)$ is finite so is $E\left(\left|R_{n}\right|\right)$ for $n \geq 2$ whenever $N \geq n$ or $N=n$. We prove that the distribution of N along with appropriately chosen subsequences of $E\left(R_{n}\right)$ characterize F and G, and along with subsequences of $E\left(R_{n}-R_{n-1}\right)$ characterize F and G up to a common location shift. We discuss some applications to the identification of the wage offer distribution in job search models.

Key Words: Moment sequences; Number of records; Record spacings; Geometric distribution; Müntz-Szász theorem; Titchmarsh convolution theorem; Job search models.

AMS 2000 Subject Classification: Primary 62E10; Secondary: 60G70, $62 G 32$.

Abbreviated Title: Characterizations in a record model

[^0]
1. Introduction

Let $\left\{X_{i}, i \geq 1\right\}$ be a sequence of independent random variables. Suppose that M is a positive integer-valued random variable independent of the X_{i}, and assume that only $\left\{X_{i}, 1 \leq i \leq M\right\}$ are observed. Define $L(1)=1$ and $L(n)=\min \left\{k: X_{k}>X_{L(n-1)}\right\}$ for $n>1$, and $R_{n}=X_{L(n)}$ for $n \geq 1$. Then R_{1} is the initial record (sometimes called the trivial record), and R_{n} for $n \geq 2$ represent the upper record values from the sequence $\left\{X_{i}, i \geq 1\right\}$. The total number of records we observe is given by $N=\max \{j: L(j) \leq M\}$ and is itself a random variable.

When the X_{i} are identically distributed, this model is called the random record model (see, e.g., Arnold et al., 1998, p. 224). When we further assume that M has a geometric distribution, i.e. $\operatorname{Pr}(M=m)=q^{m-1} p$ for $m \geq 1$, where $0<p<1$ and $q=1-p$, we have a geometric random record (GRR) model. Nagaraja and Barlevy (2003) derived several characterization results for the GRR model using record moments. In this paper, we consider a variation of the GRR model in which the initial observation, X_{1}, has a potentially different distribution from remaining observations $\left\{X_{i}, i \geq 2\right\}$. We refer to this as a GRR model with a non-identically distributed initial record or a modified GRR model. Our purpose in this paper is to determine whether there exist analogous characterization results for this alternative formulation and to discuss some applications of this variation concerning identification of job search models.

Formally, let X_{1} be distributed with continuous cumulative distribution function (cdf) G, and $\left\{X_{i}, i \geq 2\right\}$ be independent and identically distributed (i.i.d.) with continuous cdf F.

Define a mapping Γ from the set of continuous distribution functions into itself so that $G=\Gamma(F)$. This notation allows us to view the model as being parameterized by a single cdf F. We impose the following assumptions on Γ :

Assumption 1: the probability measure implied by $G=\Gamma(F)$ is absolutely continuous with respect to the probability measure implied by F.

Assumption 2: the composite function $G\left(F^{-1}(u)\right)$ is absolutely continuous in $u \in(0,1)$.

The first assumption implies that the support of G must always form a subset of the support
of F. The second assumption implies that without loss of generality we can assume X_{1} has a well-defined density function, since we can always normalize $F(x)=x$. We denote this density function $g(x ; F(\cdot))=\frac{d}{d x} G(x ; F(\cdot))$.

Remark 1: The identity mapping $\Gamma: F \rightarrow F$ satisfies Assumptions 1 and 2. Our model thus includes the GRR model as a special case.

Remark 2: Our formulation is itself a special case of the Pfeifer (1982) model, in which the distribution of the underlying observations changes after each record is set. Here, the distribution changes only after the first record, and the distribution of the first record $G=\Gamma(F)$ is required to satisfy Assumptions 1 and 2. Although Pfeifer assumes $M=\infty$, Bunge and Nagaraja (1991) subsequently generalized Pfiefer's model to allow the number of observations M to be random.

Remark 3: Our assumptions do not require Γ to be one-to-one, as illustrated by Example 2 below. However, Assumption 1 implies Γ cannot assign a single G to all cdf's F. Thus, G cannot be free of F.

Here are some examples of functions $G(x)$ that satisfy Assumptions 1-2. The motivation for these examples will become clear in Section 6, when we discuss how the model can be applied to estimate job search models.

1. $G(x ; F(\cdot))=\frac{F(x)}{1+\kappa(1-F(x))}$ for some constant κ
2. $G(x ; F(\cdot))=F(x) / z$ if $F(x) \leq z$ and 1 if $F(x)>z$ for some constant $z \in(0,1)$
3. $G(x ; F(\cdot))=\frac{\int_{-\infty}^{x} H(w) d F(w)}{\int_{-\infty}^{\infty} H(w) d F(w)}=\frac{\int_{0}^{F(x)} H\left(F^{-1}(u)\right) d u}{\int_{0}^{1} H\left(F^{-1}(u)\right) d u}$ where $H(\cdot)$ is a cdf.

In Example 1, $G(x)=\sum_{i=1}^{\infty} p q^{i-1} F(x)^{i}$, where $p=(1+\kappa)^{-1}$, or X_{1} has the same distribution as the maximum of a random (geometric) number of i.i.d. random variables distributed like X_{2}. In Example 2, G arises from F by the truncation of its upper tail, and in Example 3, G has the form of a weighted distribution. Note that in the first two examples, $G=\Gamma(F)$ assumes the form $G_{0}(F(x))$ for some function G_{0}, i.e. the $\operatorname{cdf} G$ evaluated at x depends on $F(x)$ but not on the value of F at any point other than x. This is not true for the last example.

We show in Section 2 of the paper that $\Gamma(F)=G_{0}(F(x))$ if and only if the distribution of the number of observed records N is independent of F. In Section 3, we focus on mappings Γ where $\Gamma(F)=G_{0}(F(x))$, and show that under an additional assumption on Γ, the distribution F is characterized by subsequences of the following moments:
a. $E\left(R_{n} \mid N \geq n\right)$
b. $E\left(R_{n} \mid N=n\right)$
c. $E\left(R_{n}-R_{n-1} \mid N \geq n\right)$
d. $E\left(R_{n}-R_{n-1} \mid N=n\right)$.

In demonstrating this result, we appeal not only to the Müntz-Szász theorem, which is often invoked in moment-based characterization theorems (see Kamps, 1998), but also to a convolution theorem due to Titchmarsh (1926). In Section 4, we consider arbitrary mappings Γ that satisfy Assumptions 1 and 2, and provide characterizations of F and G using subsequences of these moments together with the distribution $\operatorname{Pr}(N=n)$. All of these results are premised on a fixed distribution for M. In Section 5 , we derive conditions that jointly characterize F and G as well as the distribution for M. Section 6 then discusses how our results can be used to non-parametrically identify the wage offer distribution in job search models when wage data can only be measured with noise.

2. Characterization results for Γ and N

We begin with results that characterize the mapping Γ. Our first result shows that the number of observed records N is identical for all continuous cdf's F if and only if Γ is such that $G=\Gamma(F)$ evaluated at x can be expressed as a function of $F(x)$.

Proposition 1: In the modified GRR model, the number of observed records N is independent of F if and only if $G(x ; F(\cdot))=G_{0}(F(x))$ for some absolutely continuous cdf G_{0} with support $[0,1]$.

Proof: Building on Bunge and Nagaraja (1991) and Nagaraja and Barlevy (2003), we can
express the likelihood of exactly n observed records with values r_{1} through r_{n} as

$$
h\left(r_{1}, \ldots, r_{n} \cap N=n\right)=\frac{(1-q) g\left(r_{1} ; F(\cdot)\right)}{1-q F\left(r_{1}\right)} \prod_{i=2}^{n} \frac{q f\left(r_{i}\right)}{1-q F\left(r_{i}\right)} .
$$

Next, we integrate out r_{2} through r_{n} to get

$$
h\left(r_{1} \cap N=n\right)=\frac{1}{(n-1)!} \frac{1-q}{1-q F\left(r_{1}\right)}\left(\ln \left(\frac{1-q F\left(r_{1}\right)}{1-q}\right)\right)^{n-1} g\left(r_{1} ; F(\cdot)\right) .
$$

Hence, $\operatorname{Pr}(N=n)$ can be expressed as

$$
\operatorname{Pr}(N=n)=\frac{1}{(n-1)!} \int_{-\infty}^{\infty} \frac{1-q}{1-q F\left(r_{1}\right)}\left[\ln \left(\frac{1-q F\left(r_{1}\right)}{1-q}\right)\right]^{n-1} g\left(r_{1} ; F(\cdot)\right) d r_{1}
$$

Suppose $G(x ; F(\cdot))=G_{0}(F(x))$ where $G_{0}(\cdot)$ is an absolutely continuous function. We want to show that $\operatorname{Pr}(N=n)$ is independent of $F(\cdot)$. Since G_{0} is absolutely continuous, it has a related density function $g_{0}(x)=\frac{d}{d x} G_{0}(x)$. This implies

$$
g\left(r_{1} ; F(\cdot)\right)=\left.\frac{d}{d x} G_{0}(F(x))\right|_{x=r_{1}}=g_{0}\left(F\left(r_{1}\right)\right) f\left(r_{1}\right)
$$

Substituting this in and using the change of variables $u=F\left(r_{1}\right)$, we find

$$
\operatorname{Pr}(N=n)=\frac{1}{(n-1)!} \int_{0}^{1} \frac{1-q}{1-q u}\left[\ln \left(\frac{1-q u}{1-q}\right)\right]^{n-1} g_{0}(u) d u
$$

which is indeed independent of $F(\cdot)$.

Next, suppose $\operatorname{Pr}(N=n)$ is independent of $F(\cdot)$. We want to show this implies $G(x ; F(\cdot))=$ $G_{0}(F(x))$ where $G_{0}(\cdot)$ is an absolutely continuous cdf. Given Assumption 1, we can rewrite $\operatorname{Pr}(N=n)$ using the change of variables $u=F\left(r_{1}\right)$ so that

$$
\begin{equation*}
\operatorname{Pr}(N=n)=\frac{1}{(n-1)!} \int_{0}^{1} \frac{1-q}{1-q u}\left[\ln \left(\frac{1-q u}{1-q}\right)\right]^{n-1} \frac{g\left(F^{-1}(u)\right)}{f\left(F^{-1}(u)\right)} d u \tag{1}
\end{equation*}
$$

Since $\{\operatorname{Pr}(N=n), n \geq 1\}$ does not depend on the distribution of $F(\cdot)$, then for any two distributions $F_{1}(\cdot)$ and $F_{2}(\cdot)$, we have for $n=1,2,3, \ldots$

$$
\begin{aligned}
& \int_{0}^{1} \frac{1-q}{1-q u}\left[\ln \left(\frac{1-q u}{1-q}\right)\right]^{n-1} \frac{g\left(F_{1}^{-1}(u) ; F_{1}(\cdot)\right)}{f_{1}\left(F_{1}^{-1}(u)\right)} d u \\
&=\int_{0}^{1} \frac{1-q}{1-q u}\left[\ln \left(\frac{1-q u}{1-q}\right)\right]^{n-1} \frac{g\left(F_{2}^{-1}(u) ; F_{2}(\cdot)\right)}{f_{2}\left(F_{2}^{-1}(u)\right)} d u
\end{aligned}
$$

Let $F_{1}(\cdot)=F(\cdot)$ be any continuous distribution function, and let $F_{2}(\cdot)$ to be the uniform distribution, i.e. $F_{2}^{-1}(u)=u$ and $f_{2}(u)=1$ for all $u \in(0,1)$. Let us further define
$h(u)=g(u ; u)$, i.e. the density function $g(\cdot)$ evaluated when $F(\cdot)$ is uniform. By the Müntz-Szász theorem, it follows that for almost all $u \in(0,1)$,

$$
\frac{g\left(F^{-1}(u) ; F(\cdot)\right)}{f\left(F^{-1}(u)\right)}=h(u)
$$

Since $G\left(x ; F_{1}(\cdot)\right)=\int_{-\infty}^{x} g\left(y ; F_{1}(\cdot)\right) d y$, we have

$$
\begin{aligned}
G(x ; F(\cdot)) & =\int_{-\infty}^{x} g(y ; F(\cdot)) d y \\
& =\int_{-\infty}^{x} h(F(y)) f(y) d y \\
& =\int_{0}^{F(x)} h(z) d z \\
& \equiv G_{0}(F(x))
\end{aligned}
$$

Since $G(\cdot)$ is a cdf, it follows that $G_{0}(\cdot)$ is non-decreasing, $G_{0}(0)=0$, and $G_{0}(1)=1$. Hence, G_{0} is a cdf with support $[0,1]$. Absolute continuity of G_{0} is immediate.

The probability mass function (pmf) of N in (1) implies $N-1$ has a mixed Poisson distribution. An interesting property of this pmf, stated below, will be useful for us later.

Lemma 1: In the modified GRR model, the sequence $\left\{\operatorname{Pr}\left(N=n_{j}\right), j \geq 1\right\}$ such that $\sum_{j=1}^{\infty} n_{j}^{-1}=\infty$ uniquely determines the pmf of N.

Proof: Consider two modified GRR models with cdfs F_{1}, G_{1} and F_{2}, G_{2}. If $\operatorname{Pr}\left(N=n_{j}\right)$ remains the same for these two models, from (1) we have

$$
\int_{0}^{1} \frac{1-q}{1-q u}\left[\ln \left(\frac{1-q u}{1-q}\right)\right]^{n_{j}-1}\left[\frac{g_{1}\left(F_{1}^{-1}(u)\right)}{f_{1}\left(F_{1}^{-1}(u)\right)}-\frac{g_{2}\left(F_{2}^{-1}(u)\right)}{f_{2}\left(F_{2}^{-1}(u)\right)}\right] d u=0
$$

Set $t=\ln \left(\frac{1-q u}{1-q}\right)$ and rewrite the equation above as

$$
\int_{0}^{-\ln (1-q)} h_{1}(t) t^{n_{j}-1} d t=0
$$

It follows from the Müntz-Szász theorem that $h_{1}(t)=0$ almost everywhere or

$$
\begin{equation*}
\frac{g_{1}\left(F_{1}^{-1}(u)\right)}{f_{1}\left(F_{1}^{-1}(u)\right)}=\frac{g_{2}\left(F_{2}^{-1}(u)\right)}{f_{2}\left(F_{2}^{-1}(u)\right)} \tag{2}
\end{equation*}
$$

for almost all $u \in(0,1)$. Again, upon appealing to (1) we conclude that $\operatorname{Pr}(N=n)$, and thus $\operatorname{Pr}(N \geq n)$, remain the same for all $n \geq 1$ under the two models.

The mapping Γ can also be characterized by the dependence structure of the record indicators derived from $\left\{X_{i}, i \geq 1\right\}$. Define the m-th record indicator I_{m} as a random variable that takes on a value of 1 if X_{m} is a record, i.e. if $X_{m}>\max \left\{X_{1}, \ldots, X_{m-1}\right\}$, and 0 otherwise. Previous work by Nevzorov (1986) has shown that if X_{i} are independent random variables and X_{i} has cdf

$$
\begin{equation*}
F_{i}(x)=\{F(x)\}^{\alpha(i)}, \tag{3}
\end{equation*}
$$

for some common F, then $\left\{I_{m}, m \geq 2\right\}$ are independent and I_{m} is Bernoulli with success probability $\alpha(m) /\left\{\sum_{i=1}^{m} \alpha(i)\right\}$. Conversely, Nevzorov shows that if the supports of X_{i} are not disjoint and $\left\{I_{2}, \ldots, I_{n-1}\right\}$ and I_{n} are independent for any F_{n}, then (3) holds for $m=$ $1, \ldots, n-1$. (see also Arnold et al (1998), p. 219). In our model, (3) implies that

$$
\begin{equation*}
G(x)=\Gamma(F(x))=\{F(x)\}^{\alpha} \tag{4}
\end{equation*}
$$

for some $\alpha>0$. Our next proposition establishes that Γ satisfies (4) if and only if the record indicator I_{2} is independent of the record indicators $\left\{I_{3}, \ldots, I_{m}\right\}$ for all m, conditional on at least m observations.

Proposition 2: In a random record model with a non-identically distributed initial record,

$$
\begin{equation*}
\operatorname{Pr}\left(I_{3}=1, \ldots, I_{m}=1 \mid M \geq m\right)=\operatorname{Pr}\left(I_{3}=1, \ldots, I_{m}=1 \mid I_{2}=1, M \geq m\right) \tag{5}
\end{equation*}
$$

for all $m=m_{j}(\geq 3), j \geq 1$ such that $\sum_{j} m_{j}^{-1}=\infty$, if and only if (4) holds.
Proof: The given condition (5) can be expressed as

$$
\operatorname{Pr}\left(I_{2}=1, \ldots, I_{m}=1\right)=\operatorname{Pr}\left(I_{3}=1, \ldots, I_{m}=1\right) \operatorname{Pr}\left(I_{2}=1\right)
$$

Without loss of generality we take $F(x)=x$. Upon conditioning on X_{1}, the LHS can be simplified to

$$
\frac{1}{(m-1)!} \int_{0}^{1}(1-x)^{m-1} d G(x) \text { or } \frac{1}{(m-2)!} \int_{0}^{1}(1-x)^{m-2} G(x) d x
$$

Further $\operatorname{Pr}\left(I_{3}=1, \ldots, I_{m}=1\right)=\mathrm{LHS}+\operatorname{Pr}\left(I_{2}=0, I_{3}=1, \ldots, I_{m}=1\right)$. The second term, upon conditioning on X_{1}, can be written as

$$
\frac{1}{(m-2)!} \int_{0}^{1}(1-x)^{m-2} x g(x) d x
$$

Let $c=\operatorname{Pr}\left(I_{2}=1\right)\left(=\int_{0}^{1} G(x) d x\right)$. Then (5) reduces to the condition

$$
\begin{equation*}
\int_{0}^{1}(1-x)^{m-2}[(1-c) G(x)-c x g(x)] d x=0, \quad m=m_{j}, j \geq 1 \tag{6}
\end{equation*}
$$

By the Müntz-Szász theorem, it follows that for almost all $x \in(0,1)$,

$$
\frac{g(x)}{G(x)}=\frac{(1-c)}{c} \frac{1}{x}
$$

This differential equation clearly shows that (4) holds with $\alpha=(1-c) / c$.

Conversely, if (3) holds, with $F(x)=x, G(x)=x^{\alpha}$, then set $c=(1+\alpha)^{-1}$. It follows that $(1-c) G(x)=\operatorname{cxg}(x)$ for all $x \in(0,1)$. Thus (6) holds for all $m \geq 1$, or (5) holds.

Corollary: If (5) holds, then (4) holds, and in turn the record indicators $\left\{I_{m}, m \geq 2\right\}$ are all independent. Moreover, the distribution of the number of observed records N must be independent of F.

3. Characterization results for a special case

We now turn to characterization results for F. We begin by deriving expressions for the relevant moments we use, and provide conditions for these moments to exist. We then consider the special case where $\Gamma(F)=G_{0}(F(x))$ and provide a characterization result.

Consider record moments that condition on the event $N \geq n$. Using the expression for the likelihood $h\left(r_{1}, \ldots r_{n} \cap N \geq n\right)$ from Bunge and Nagaraja (1991) and integrating out r_{2} through r_{n-2} yields the following expression for the joint likelihood of r_{1}, r_{n-1}, and r_{n} when $N \geq n$ for $n \geq 3$:
$h\left(r_{1}, r_{n-1}, r_{n} \cap N \geq n\right)=\frac{1}{(n-3)!}\left[-\ln \left(\frac{1-q F\left(r_{n-1}\right)}{1-q F\left(r_{1}\right)}\right)\right]^{n-3} \frac{q g\left(r_{1}\right)}{1-q F\left(r_{1}\right)} \frac{q f\left(r_{n-1}\right)}{1-q F\left(r_{n-1}\right)} f\left(r_{n}\right)$.
Limiting attention to $n \geq 3$, we derive the following expression for $E\left(R_{n} \mid N \geq n\right)$:

$$
\begin{gather*}
E\left(R_{n} \mid N \geq n\right)=\frac{1}{P(N \geq n)} \int_{-\infty}^{\infty} \int_{-\infty}^{r_{n-1}} \int_{r_{n-1}}^{\infty} r_{n} h\left(r_{1}, r_{n-1}, r_{n} \cap N \geq n\right) d r_{n} d r_{1} d r_{n-1} \\
=\int_{0}^{1} \int_{0}^{u_{n-1}} \frac{\left[-\ln \left(\frac{1-q u_{n-1}}{1-q u_{1}}\right)\right]^{n-3}}{(n-3)!P(N \geq n)} \frac{g\left(F^{-1}\left(u_{1}\right)\right)}{f\left(F^{-1}\left(u_{1}\right)\right)} \\
\cdot \phi_{F}\left(u_{n-1}\right) \frac{q d u_{1}}{1-q u_{1}} \frac{q d u_{n-1}}{1-q u_{n-1}} \tag{7}
\end{gather*}
$$

where

$$
\begin{equation*}
\phi_{F}\left(u_{n-1}\right)=\int_{u_{n-1}}^{1} F^{-1}\left(u_{n}\right) d u_{n} \tag{8}
\end{equation*}
$$

Similarly, the expected record spacing $E\left(R_{n}-R_{n-1} \mid N \geq n\right)$ when $n \geq 3$ can be expressed as

$$
\begin{array}{r}
E\left(R_{n}-R_{n-1} \mid N \geq n\right)=\int_{0}^{1} \int_{0}^{u_{n-1}} \frac{\left[-\ln \left(\frac{1-q u_{n-1}}{1-q u_{1}}\right)\right]^{n-3}}{(n-3)!P(N \geq n)} \frac{g\left(F^{-1}\left(u_{1}\right)\right)}{f\left(F^{-1}\left(u_{1}\right)\right)} \\
\cdot \phi_{F}\left(u_{n-1}\right) \frac{q d u_{1}}{1-q u_{1}} \frac{q d u_{n-1}}{1-q u_{n-1}} \tag{9}
\end{array}
$$

where

$$
\begin{equation*}
\phi_{F}\left(u_{n-1}\right)=\int_{u_{n-1}}^{1}\left[F^{-1}\left(u_{n}\right)-F^{-1}\left(u_{n-1}\right)\right] d u_{n} \tag{10}
\end{equation*}
$$

In the same fashion, we can use the expression for $h\left(r_{1}, \ldots, r_{n} \cap N=n\right)$ derived above and integrate out r_{2} through r_{n-2} to obtain the joint likelihood of r_{1}, r_{n-1}, and r_{n} when $N=n$, where $n \geq 3$:
$h\left(r_{1}, r_{n-1}, r_{n} \cap N \geq n\right)=\frac{1}{(n-3)!}\left[-\ln \left(\frac{1-q F\left(r_{n-1}\right)}{1-q F\left(r_{1}\right)}\right)\right]^{n-3} \frac{q g\left(r_{1}\right)}{1-q F\left(r_{1}\right)} \frac{q f\left(r_{n-1}\right)}{1-q F\left(r_{n-1}\right)} f\left(r_{n}\right)$.
Using this, one can deduce that

$$
\begin{array}{r}
E\left(R_{n} \mid N=n\right)=\int_{0}^{1} \int_{0}^{u_{n-1}} \frac{\left[-\ln \left(\frac{1-q u_{n-1}}{1-q u_{1}}\right)\right]^{n-3}}{(n-3)!\operatorname{Pr}(N=n)} \frac{g\left(F^{-1}\left(u_{1}\right)\right)}{f\left(F^{-1}\left(u_{1}\right)\right)} \\
\cdot \phi_{F}\left(u_{n-1}\right) \frac{q d u_{1}}{1-q u_{1}} \frac{q d u_{n-1}}{1-q u_{n-1}} \tag{11}
\end{array}
$$

where

$$
\begin{equation*}
\phi_{F}\left(u_{n-1}\right)=\int_{u_{n-1}}^{1} F^{-1}\left(u_{n}\right) \frac{(1-q) d u_{n}}{1-q u_{n}} \tag{12}
\end{equation*}
$$

and likewise

$$
\begin{array}{r}
E\left(R_{n}-R_{n-1} \mid N=n\right)=\int_{0}^{1} \int_{0}^{u_{n-1}} \frac{\left[-\ln \left(\frac{1-q u_{n-1}}{1-q u_{1}}\right)\right]^{n-3}}{(n-3)!P(N=n)} \frac{g\left(F^{-1}\left(u_{1}\right)\right)}{f\left(F^{-1}\left(u_{1}\right)\right)} \\
\cdot \phi_{F}\left(u_{n-1}\right) \frac{q d u_{1}}{1-q u_{1}} \frac{q d u_{n-1}}{1-q u_{n-1}} \tag{13}
\end{array}
$$

where

$$
\begin{equation*}
\phi_{F}\left(u_{n-1}\right)=\int_{u_{n-1}}^{1} \frac{1-q}{1-q u_{n}}\left[F^{-1}\left(u_{n}\right)-F^{-1}\left(u_{n-1}\right)\right] d u_{n} \tag{14}
\end{equation*}
$$

All four moment sequences above can thus be expressed as an integral of a common term multiplying a function $\phi_{F}\left(u_{n-1}\right)$ that varies with the particular moment at hand.

We now provide a sufficient condition for the above moments to exist. Here we use the fact that for any random variable $Y, E(Y)$ exists if and only if $E(|Y|)<\infty$.

Proposition 3: If $E\left(\left|X_{2}\right|\right)<\infty$, then
a. $E\left(\left|R_{n}\right| \mid N \geq n\right)$
b. $E\left(\left|R_{n}\right| \mid N=n\right)$
exist for all $n \geq 2$.

Proof: Suppose first that $n \geq 3$. From (7),

$$
\begin{aligned}
E\left(\left|R_{n}\right| \mid N \geq n\right)= & \int_{0}^{1} \int_{0}^{u_{n-1}} \int_{u_{n-1}}^{1} \frac{\left[-\ln \left(\frac{1-q u_{n-1}}{1-q u_{1}}\right)\right]^{n-3}}{(n-3)!P(N \geq n)} \\
& \cdot \frac{g\left(F^{-1}\left(u_{1}\right)\right)}{f\left(F^{-1}\left(u_{1}\right)\right)}\left|F^{-1}\left(u_{n}\right)\right| d u_{n} \frac{q d u_{1}}{1-q u_{1}} \frac{q d u_{n-1}}{1-q u_{n-1}} .
\end{aligned}
$$

Since u_{1} and u_{n-1} both lie in $[0,1]$,the above expression

$$
\begin{aligned}
& \leq \frac{[-\ln (1-q)]^{n-3}}{(n-3)!P(N \geq n)}\left(\frac{q}{1-q}\right)^{2} \int_{0}^{1} \int_{u_{n-1}}^{1}\left\{\int_{0}^{u_{n-1}} \frac{g\left(F^{-1}\left(u_{1}\right)\right)}{f\left(F^{-1}\left(u_{1}\right)\right)} d u_{1}\right\}\left|F^{-1}\left(u_{n}\right)\right| d u_{n} d u_{n-1} \\
& =\frac{[-\ln (1-q)]^{n-3}}{(n-3)!P(N \geq n)}\left(\frac{q}{1-q}\right)^{2} \int_{0}^{1} \int_{u_{n-1}}^{1} G\left(F^{-1}\left(u_{n-1}\right)\right)\left|F^{-1}\left(u_{n}\right)\right| d u_{n} d u_{n-1} \\
& \leq \frac{[-\ln (1-q)]^{n-3}}{(n-3)!P(N \geq n)}\left(\frac{q}{1-q}\right)^{2} \int_{0}^{1} \int_{0}^{1} G\left(F^{-1}\left(u_{n-1}\right)\right)\left|F^{-1}\left(u_{n}\right)\right| d u_{n} d u_{n-1} \\
& \leq \frac{[-\ln (1-q)]^{n-3}}{(n-3)!P(N \geq n)}\left(\frac{q}{1-q}\right)^{2} E\left(\left|X_{2}\right|\right)
\end{aligned}
$$

As long as $E\left(\left|X_{2}\right|\right)<\infty$, then $E\left(\left|R_{n}\right| \mid N \geq n\right)$ exists. A similar argument applies for the case where $n=2$. Extending the argument for $E\left(\left|R_{n}\right| \mid N=n\right)$ is straightforward.

Remark 4: For $n \geq 2$, the existence of the n-th record moment does not depend on whether $E\left(X_{1}\right)$ exists. This is because for $n \geq 2$, the relevant moment is always conditioned on an event in which $M \geq n$ and $\max \left\{X_{2}, \ldots, X_{M}\right\}>X_{1}$. As demonstrated in Nagaraja and Barlevy (2003), if M is geometric with success probability p, then $E\left(E\left(\left|\max \left\{X_{2}, \ldots, X_{M}\right\}\right| \mid M\right)\right)$ $<p^{-1} E\left(\left|X_{2}\right|\right)$. Thus, we are conditioning on the event that X_{1} is exceeded by a random variable whose mean is finite. Even if X_{1} does not have a well-defined unconditional mean, conditioning on the event that its value is exceeded by a random variable with a finite mean suffices to ensure that $E\left(X_{1} \mid N \geq n\right)$ is finite.

Equipped with these preliminaries, we turn to characterizing F from moment sequences. However, we first need to impose an additional assumption on the range of Γ.

Assumption 3: For any cdf F, there exists an $\varepsilon>0$ such that $g\left(F^{-1}(u) ; F(\cdot)\right)=$ $\left.\frac{d}{d x} \Gamma(F)\right|_{x=F^{-1}(u)}$ is positive for almost all $u \in(0, \varepsilon)$.

This assumption implies that $G^{-1}(0)=F^{-1}(0)$. This assumption is clearly necessary: if two distributions $F_{1} \neq F_{2}$ differ only below $G^{-1}(0)$, they would necessarily yield identical record moment sequences.

We first focus on a special case, namely where $G(x ; F(\cdot))=G_{0}(F(x))$ for some absolutely continuous cdf $G_{0}:[0,1] \rightarrow[0,1]$. Recall from Proposition 1 that this is true if and only if $\operatorname{Pr}(N=n)$ does not depend on F. We return to the more general case in the next section.

Proposition 4: Suppose Assumptions 1-3 are satisfied, $E\left(\left|X_{2}\right|\right)<\infty$, and $G(x ; F(\cdot))=$ $G_{0}(F(x))$ for some absolutely continuous cdf $G_{0}:[0,1] \rightarrow[0,1]$.
a. If two distributions F_{1} and F_{2} give rise to either the same sequence $E\left(R_{n} \mid N \geq n_{j}\right)$ or the same sequence $E\left(R_{n} \mid N=n_{j}\right)$ where $\sum_{j} n_{j}^{-1}=\infty$, then $F_{1}(x)=F_{2}(x)$ for almost all x;
b. If two distributions F_{1} and F_{2} give rise to either the same sequence $E\left(R_{n}-R_{n-1} \mid N \geq n_{j}\right)$ or the same sequence $E\left(R_{n}-R_{n-1} \mid N=n_{j}\right)$ where $\sum_{j} n_{j}^{-1}=\infty$, then there exists a c such that $F_{1}^{-1}(x)=F_{2}^{-1}(x)+c$ for almost all x.

Proof: Since $\Gamma(F)=G_{0}(F(x))$, it follows that $g(x ; F(\cdot))=g_{0}(F(x)) f(x)$, which implies $\frac{g\left(F^{-1}\left(u_{1}\right)\right)}{f\left(F^{-1}\left(u_{1}\right)\right)}=g_{0}\left(u_{1}\right)$. Substituting in, any of the moments above can be expressed as

$$
\frac{1}{(n-3)!P(N \geq n)} \int_{0}^{1} \int_{u_{1}}^{1} g_{0}\left(u_{1}\right)\left[-\ln \left(\frac{1-q u_{n-1}}{1-q u_{1}}\right)\right]^{n-3} \phi_{F}\left(u_{n-1}\right) \frac{q d u_{n-1}}{1-q u_{n-1}} \frac{q d u_{1}}{1-q u_{1}}
$$

where $\phi_{F}(\cdot)$ depends on the particular moment in question, i.e. either (8) or (10) in case (a) and either (12) or (14) in case (b). Changing variables according to

$$
\begin{aligned}
& t=-\ln \left(1-q u_{n-1}\right) \Rightarrow d t=\frac{q d u_{n-1}}{1-q u_{n-1}}, u_{n-1}=\frac{1-e^{-t}}{q} \\
& s=-\ln \left(1-q u_{1}\right) \Rightarrow d s=\frac{q d u_{1}}{1-q u_{1}}, u_{1}=\frac{1-e^{-s}}{q}
\end{aligned}
$$

and setting $c=-\ln (1-q)$ allows us to rewrite the above expression as

$$
\frac{1}{(n-3)!P(N \geq n)} \int_{0}^{c} \int_{t=s}^{c} g_{0}\left(\frac{1-e^{-s}}{q}\right) \phi_{F}\left(\frac{1-e^{-t}}{q}\right)(t-s)^{n-3} d t d s
$$

We change variables yet again by setting $\omega=t-s$ to rewrite the above as

$$
\frac{1}{(n-3)!P(N \geq n)} \int_{\omega=0}^{c} \int_{t=\omega}^{c} g_{0}\left(\frac{1-e^{-(t-\omega)}}{q}\right) \phi_{F}\left(\frac{1-e^{-t}}{q}\right) \omega^{n-3} d t d \omega
$$

Define

$$
\eta_{F}(\omega)=\int_{t=\omega}^{c} g_{0}\left(\frac{1-e^{-(t-\omega)}}{q}\right) \phi_{F}\left(\frac{1-e^{-t}}{q}\right) d t
$$

Let $F_{1}(\cdot)$ and $F_{2}(\cdot)$ denote two continuous cdf's that give rise to the same subsequence of moments. Since $G(x ; F(\cdot))=G_{0}(F(x))$ implies $\operatorname{Pr}(N \geq n)$ is the same for all $F(\cdot)$, it follows that for all $n \geq 3$,

$$
\int_{\omega=0}^{c} \eta_{F_{1}}(\omega) \omega^{n-3} d \omega=\int_{\omega=0}^{c} \eta_{F_{2}}(\omega) \omega^{n-3} d \omega
$$

By the Müntz-Szász theorem, it further follows that $\eta_{F_{1}}(\omega)=\eta_{F_{2}}(\omega)$ for almost all $\omega \in$ $(0, c)$, i.e.

$$
\begin{equation*}
\int_{t=\omega}^{c} g_{0}\left(\frac{1-e^{-(t-\omega)}}{q}\right) \phi_{F_{1}}\left(\frac{1-e^{-t}}{q}\right) d t=\int_{t=\omega}^{c} g_{0}\left(\frac{1-e^{-(t-\omega)}}{q}\right) \phi_{F_{2}}\left(\frac{1-e^{-t}}{q}\right) d t \tag{15}
\end{equation*}
$$

for almost all $\omega \in(0, c)$.

We next argue that (15) implies $\phi_{F_{1}}\left(\frac{1-e^{-t}}{q}\right)=\phi_{F_{2}}\left(\frac{1-e^{-t}}{q}\right)$ for almost all $t \in(0, c)$. It will suffice to prove that if

$$
\begin{equation*}
\int_{t=\omega}^{c} g_{0}\left(\frac{1-e^{-(t-\omega)}}{q}\right) \phi(t) d t=0 \text { for almost all } \omega \in(0, c) \tag{16}
\end{equation*}
$$

then $\phi(t)=0$ for almost all $t \in(0, c)$. Appealing to a change in variables $w=c-t$ and $z=c-\omega,(16)$ can be transformed into the following integral equation:

$$
\begin{equation*}
\int_{0}^{z} a(z-w) b(w) d w=0 \text { for almost all } z \in(0, c) \tag{17}
\end{equation*}
$$

where $a(x)=g_{0}\left(\frac{1-e^{-x}}{q}\right)$ and $b(x)=\phi(c-x)$. Applying Theorem VII in Titchmarsh (1926) [or from Theorem 151 in the more accessible reference Titchmarsh (1948, p. 324-5)], there exists a c^{*} such that $a(x)=0$ for all $x \in\left(0, c^{*}\right)$ and $b(x)=0$ for all $x \in\left(0, c-c^{*}\right)$. But Assumption 3 implies that there exists an $\varepsilon>0$ such that $g_{0}(z)>0$ for almost all $z \in(0, \varepsilon)$, which in turn implies that $a(z)>0$ for almost all $z \in(0, \varepsilon)$. Hence, c^{*} must equal 0 , implying $b(z)=0$ for almost all $z \in(0, c)$. But then $\phi(t)=b(c-t)=0$ for almost all $t \in(0, c)$, as claimed.

Lastly, we need to show that the statement of the proposition follows from the fact $\phi_{F_{1}}\left(\left(1-e^{-t}\right) / q\right)=\phi_{F_{2}}\left(\left(1-e^{-t}\right) / q\right)$ for almost all $t \in(0, c)$. Consider case (a); then

$$
\int_{\frac{1-e-t}{q}}^{1}\left[F_{1}^{-1}(u)-F_{2}^{-1}(u)\right] d u=0
$$

or

$$
\int_{\frac{1-e^{-t}}{q}}^{1}\left[\frac{F_{1}^{-1}(u)-F_{2}^{-1}(u)}{1-q u}\right] d u=0
$$

for almost all $t \in(0, c)$. But from Taylor (1965, p. 415), this implies that the function inside the integral is equal to 0 almost surely, which implies $F_{1}^{-1}(u)=F_{2}^{-1}(u)$ almost surely as claimed. In case (b), with ϕ_{F} given in (10), the fact that $\phi_{F_{1}}(t)=\phi_{F_{2}}(t)$ for almost all $t \in(0, c)$ implies that for almost all $u \in(0,1)$,

$$
\int_{u}^{1}\left[F_{1}^{-1}\left(u_{n}\right)-F_{1}^{-1}(u)\right] d u_{n}=\int_{u}^{1}\left[F_{2}^{-1}\left(u_{n}\right)-F_{2}^{-1}(u)\right] d u_{n}
$$

or with ϕ_{F} in (14) we get

$$
\int_{u}^{1}\left[\frac{F_{1}^{-1}\left(u_{n}\right)-F_{1}^{-1}(u)}{1-q u_{n}}\right] d u_{n}=\int_{u}^{1}\left[\frac{F_{2}^{-1}\left(u_{n}\right)-F_{2}^{-1}(u)}{1-q u_{n}}\right] d u_{n}
$$

Nagaraja and Barlevy (2003) already showed that this implies there exists a constant c such that $F_{1}^{-1}(u)=F_{2}^{-1}(u)+c$.

Remark 5: From the proof above, we can further deduce what happens when we relax Assumption 3, i.e. when we assume that $G_{0}^{-1}(0)>0$. By the Titchmarsh convolution theorem, for any solution $b(w)$ to (17), there exists a value c^{*} such that $a(x)=0$ for all $x \in\left(0, c^{*}\right)$ and that $b(x)=0$ for all $x \in\left(0, c-c^{*}\right)$. However, without Assumption 3, we can only conclude that $c^{*} \leq-\ln \left(1-q G_{0}^{-1}(0)\right)$. Consequently, we can deduce that $\phi(t)=$ $b(c-t)=0$ for almost all $t \in\left(-\ln \left(1-q G_{0}^{-1}(0)\right), c\right)$, and hence that $\phi_{F_{1}}\left(\left(1-e^{-t}\right) / q\right)=$ $\phi_{F_{2}}\left(\left(1-e^{-t}\right) / q\right)$ for almost all $t \in\left(-\ln \left(1-q G_{0}^{-1}(0)\right), c\right)$. In case (a) it would therefore follow that $F_{1}(x)=F_{2}(x)$ for almost all $x>F^{-1}\left(G_{0}^{-1}(0)\right)$, and in case (b) it would follow that $F_{1}^{-1}(u)=F_{2}^{-1}(u)+c$ for almost all $u>G_{0}^{-1}(0)$. In other words, one can generalize Proposition 4 to imply that the moment sequences in the statement of the proposition uniquely characterize the distribution F over the range $\left(F^{-1}\left(G_{0}^{-1}(0)\right), \infty\right)$.

4. Characterization results for the general case

We now move to the general case of any arbitrary function $G(x ; F(\cdot))$ which satisfies Assumptions 1-3. In this case, it may no longer be true that record moments alone characterize
the distribution F. However, record moments and the distribution of the number of records together do characterize F.

Proposition 5: Suppose Assumptions 1-3 are satisfied, and $E\left(\left|X_{2}\right|\right)<\infty$.
a. If two distributions F_{1} and F_{2} give rise to the same sequences $E\left(R_{n} \mid N \geq n_{j}\right)$ and $\operatorname{Pr}\left(N=n_{j}\right)$ where $\sum_{j} n_{j}^{-1}=\infty$, then $F_{1}=F_{2}$ and $G_{1}=G_{2}$ almost surely
b. If two distributions F_{1} and F_{2} give rise to the same sequences $E\left(R_{n}-R_{n-1} \mid N \geq n_{j}\right)$ and $\operatorname{Pr}\left(N=n_{j}\right)$ where $\sum_{j} n_{j}^{-1}=\infty$, then $F_{1}^{-1}(x)=F_{2}^{-1}(x)+c$ and $G_{1}^{-1}(x)=$ $G_{2}^{-1}(x)+c$ for some constant c.

Proof: Since both F_{1} and F_{2} give rise to the same sequence $\operatorname{Pr}\left(N=n_{j}\right)$ where $\sum_{j} n_{j}^{-1}=$ ∞, from Lemma 1 and (2) we conclude that $\operatorname{Pr}(N \geq n)$ also match for $n \geq 1$, and for almost all $u \in(0,1)$,

$$
\frac{g_{1}\left(F_{1}^{-1}(u)\right)}{f_{1}\left(F_{1}^{-1}(u)\right)}=\frac{g_{2}\left(F_{2}^{-1}(u)\right)}{f_{2}\left(F_{2}^{-1}(u)\right)}
$$

Let us write this common function as $g_{0}(u)$. In contrast to the previous section, $g_{0}(u)$ now depends on the sequence $\operatorname{Pr}\left(N=n_{j}\right)$ as opposed to a stand-alone function.

Recall that all four moment sequences above can be written as

$$
\int_{0}^{1} \int_{0}^{u_{n-1}} \frac{\left[-\ln \left(\frac{1-q u_{n-1}}{1-q u_{1}}\right)\right]^{n-3}}{(n-3)!P(N \geq n)} g_{0}\left(u_{1}\right) \phi_{F}\left(u_{n-1}\right) \frac{q d u_{1}}{1-q u_{1}} \frac{q d u_{n-1}}{1-q u_{n-1}}
$$

for appropriately defined $\phi_{F}(\cdot)$. Using the change of variables

$$
\begin{aligned}
t & =-\ln \left(1-q u_{n-1}\right) \Rightarrow d s=\frac{q d u_{n-1}}{1-q u_{n-1}}, u_{n-1}=\frac{1-e^{-t}}{q} \\
s & =-\ln \left(1-q u_{1}\right) \Rightarrow d t=\frac{q d u_{1}}{1-q u_{1}}, u_{1}=\frac{1-e^{-s}}{q} \\
c & =-\ln (1-q)
\end{aligned}
$$

we can rewrite this expression as

$$
\int_{0}^{c} \int_{t=s}^{c} g_{0}\left(\frac{1-e^{-s}}{q}\right) \phi_{F}(t) \frac{(t-s)^{n-3}}{(n-3)!P(N \geq n)} d t d s
$$

Setting $\omega=t-s$, we can further rewrite this expression as

$$
\int_{\omega=0}^{c} \int_{t=\omega}^{c} g_{0}\left(\frac{1-e^{-(t-\omega)}}{q}\right) \phi_{F}(t) \frac{\omega^{n-3}}{(n-3)!P(N \geq n)} d t d \omega
$$

Let us define

$$
\eta_{F}(\omega)=\int_{t=\omega}^{c} g_{0}\left(\frac{1-e^{-(t-\omega)}}{q}\right) \phi_{F}(t) d t
$$

Let F_{1} and F_{2} denote two continuous cdf's that give rise to the same sequences. Define N_{1} as the number of records when $X_{2} \sim F_{1}$ and N_{2} as the number of records when $X_{2} \sim F_{2}$. If F_{1} and F_{2} give rise to the same moment sequences, then

$$
\frac{1}{(n-3)!P\left(N_{1} \geq n\right)} \int_{\omega=0}^{c} \eta_{F_{1}}(\omega) \omega^{n-3} d \omega=\frac{1}{(n-3)!P\left(N_{2} \geq n\right)} \int_{\omega=0}^{c} \eta_{F_{2}}(\omega) \omega^{n-3} d \omega
$$

Since $\operatorname{Pr}\left(N_{1} \geq n\right)=\operatorname{Pr}\left(N_{2} \geq n\right)$, it follows that

$$
\int_{\omega=0}^{c} \eta_{F_{1}}(\omega) \omega^{n-3} d \omega=\int_{\omega=0}^{c} \eta_{F_{2}}(\omega) \omega^{n-3} d \omega
$$

and then by the Müntz-Szász theorem $\eta_{F_{1}}(\omega)=\eta_{F_{2}}(\omega)$ almost surely, i.e.

$$
\int_{t=\omega}^{c} g_{0}\left(\frac{1-e^{-(t-\omega)}}{q}\right) \phi_{F_{1}}(t) d t=\int_{t=\omega}^{c} g_{0}\left(\frac{1-e^{-(t-\omega)}}{q}\right) \phi_{F_{2}}(t) d t
$$

As in the proof of Proposition 4, we rely on the Titchmarsh convolution theorem to establish that $\phi_{F_{1}}(t)=\phi_{F_{2}}(t)$ almost surely, from which we conclude that $F_{1}=F_{2}$ in case (a) and $F_{1}^{-1}(u)=F_{2}^{-1}(u)+c$ in case (b).

Next, in case (a), we use the fact that $F_{1}(x)=F_{2}(x)$ for almost all x and the fact (from Lemma 1) that

$$
\frac{g_{1}\left(F_{1}^{-1}(u)\right)}{f_{1}\left(F_{1}^{-1}(u)\right)}=\frac{g_{2}\left(F_{2}^{-1}(u)\right)}{f_{2}\left(F_{2}^{-1}(u)\right)}
$$

for almost all u to conclude that

$$
g_{1}\left(F_{1}^{-1}(u)\right)=g_{2}\left(F_{2}^{-1}(u)\right)
$$

for almost all $u \in(0,1)$. Hence,

$$
G_{1}(x)=\int_{F_{1}^{-1}(0)}^{x} g_{1}(x) d x=\int_{F_{2}^{-1}(0)}^{x} g_{2}(x) d x=G_{2}(x)
$$

as claimed.

In case (b), we use the fact that $F_{1}^{-1}(u)=F_{2}^{-1}(u)+c$ for almost all u, to conclude that

$$
\frac{g_{1}\left(F_{2}^{-1}(u)+c\right)}{f_{1}\left(F_{2}^{-1}(u)+c\right)}=\frac{g_{2}\left(F_{2}^{-1}(u)\right)}{f_{2}\left(F_{2}^{-1}(u)\right)}
$$

But for almost every $u \in(0,1)$, it must also follow that $f_{1}\left(F_{2}^{-1}(u)+c\right)=f_{2}\left(F_{2}^{-1}(u)\right)$. Hence, we have

$$
\frac{g_{1}\left(F_{2}^{-1}(u)+c\right)}{f_{2}\left(F_{2}^{-1}(u)\right)}=\frac{g_{2}\left(F_{2}^{-1}(u)\right)}{f_{2}\left(F_{2}^{-1}(u)\right)}
$$

This implies that for almost every $u \in(0,1)$,

$$
g_{1}\left(F_{2}^{-1}(u)+c\right)=g_{2}\left(F_{2}^{-1}(u)\right)
$$

and hence that

$$
G_{1}(x+c)=\int_{F_{2}^{-1}(0)+c}^{x+c} g_{1}(x) d x=\int_{F_{2}^{-1}(0)}^{x} g_{2}(x) d x=G_{2}(x)
$$

which implies $G_{1}^{-1}(u)=G_{2}^{-1}(u)+c$. This completes the proof.

By a similar argument, one can show that the proposition above remains true if we condition on the event that $N=n$ rather than on the event that $N \geq n$.

Remark 6: If Γ is known, then once we identify F, we can also recover $G=\Gamma(F)$. But Proposition 5 implies that G is itself characterized by the sequences $E\left(R_{n} \mid N \geq n\right)$ and $\operatorname{Pr}(N=n)$. Hence, we can test certain conjectures on Γ by checking whether the distribution $\Gamma(F)$ at the F we identify is the same as the G directly implied by the moment sequences and the distribution of N.

5. Characterization results across GRR models

The modified GRR model we study can be summarized by a triple $\{\Gamma, F, q\}$. So far, we have implicitly focused on results that characterize F within a given model. That is, for a given q and Γ, we showed that there is at most one F for which the model is consistent with a given sequence of record moments and a given distribution for N. In this section, we ask whether it is possible to characterize the model itself as opposed to the distribution F within a given model. We show that if two models $\left\{\Gamma_{1}, F_{1}, q_{1}\right\}$ and $\left\{\Gamma_{2}, F_{2}, q_{2}\right\}$ yield the same record moments and the same distribution of the number of records, then $q_{1}=q_{2}$, $F_{1}=F_{2}$ almost surely, and $\Gamma_{1}\left(F_{1}\right)=\Gamma_{2}\left(F_{2}\right)$ almost surely. In other words, the sequences considered in Proposition 5 characterize not only F and G but also the distribution of M.

Proposition 6: Suppose two models $\left\{\Gamma_{1}, F_{1}, q_{1}\right\}$ and $\left\{\Gamma_{2}, F_{2}, q_{2}\right\}$ both satisfy Assumptions 1-3, and $E\left(\left|X_{2}\right|\right)<\infty$ in both models. Let $G_{1}=\Gamma_{1}\left(F_{1}\right)$ and $G_{2}=\Gamma_{2}\left(F_{2}\right)$ and assume $\sum_{j} n_{j}^{-1}=\infty$.
a. If $\left\{\Gamma_{1}, F_{1}, q_{1}\right\}$ and $\left\{\Gamma_{2}, F_{2}, q_{2}\right\}$ give rise to the same sequence $\operatorname{Pr}\left(N=n_{j}\right)$, then $q_{1}=q_{2}$
and (2) holds, i.e.,

$$
\frac{g_{1}\left(F_{1}^{-1}(u)\right)}{f_{1}\left(F_{1}^{-1}(u)\right)}=\frac{g_{2}\left(F_{2}^{-1}(u)\right)}{f_{2}\left(F_{2}^{-1}(u)\right)}
$$

for almost all $u \in(0,1)$.
b. If, in addition to the condition in (a), the two GRR models give rise to the same sequence $E\left(R_{n} \mid N \geq n_{j}\right)$, then $G_{1}=G_{2}$ almost surely, and $F_{1}=F_{2}$ almost surely.
c. If, in addition to the condition in (a), the two GRR models give rise to the same sequence
$E\left(R_{n}-R_{n-1} \mid N \geq n_{j}\right)$, then there exists a c such that $G_{1}^{-1}(x)=G_{2}^{-1}(x)+c$ almost surely, and $F_{1}^{-1}(x)=F_{2}^{-1}(x)+c$ almost surely.

Proof: We prove (a). The remaining two claims then follow from Proposition 5.

Since both $\left\{G_{1}, F_{1}, q_{1}\right\}$ and $\left\{G_{2}, F_{2}, q_{2}\right\}$ give rise to the same sequence $\operatorname{Pr}\left(N=n_{j}\right)$, then for $j=1,2,3, \ldots$

$$
\begin{aligned}
\int_{0}^{1} \frac{1-q_{1}}{1-q_{1} u} & {\left[\ln \left(\frac{1-q_{1} u}{1-q_{1}}\right)\right]^{n_{j}-1} \frac{g_{1}\left(F_{1}^{-1}(u)\right)}{f_{1}\left(F_{1}^{-1}(u)\right)} d u } \\
& =\int_{0}^{1} \frac{1-q_{2}}{1-q_{2} u}\left[\ln \left(\frac{1-q_{2} u}{1-q_{2}}\right)\right]^{n_{j}-1} \frac{g_{2}\left(F_{2}^{-1}(u)\right)}{f_{2}\left(F_{2}^{-1}(u)\right)} d u
\end{aligned}
$$

Set $t=\ln \left(\left(1-q_{1} u\right) /\left(1-q_{1}\right)\right)$ and $\ln \left(\left(1-q_{2} u\right)\left(1-q_{2}\right)\right)$ respectively on the left hand side and right hand side above. We can then rewrite the equation above as

$$
\begin{aligned}
\int_{0}^{-\ln \left(1-q_{1}\right)} & \frac{1-q_{1}}{q_{1}} \frac{g_{1}\left(F_{1}^{-1}\left(\frac{1-\left(1-q_{1}\right) e^{t}}{q_{1}}\right)\right)}{f_{1}\left(F_{1}^{-1}\left(\frac{1-\left(1-q_{1}\right) e^{t}}{q_{1}}\right)\right)} t^{n-1} d t \\
& =\int_{0}^{-\ln \left(1-q_{2}\right)} \frac{1-q_{2}}{q_{2}} \frac{g_{2}\left(F_{2}^{-1}\left(\frac{1-\left(1-q_{2}\right) e^{t}}{q_{2}}\right)\right)}{f_{2}\left(F_{2}^{-1}\left(\frac{1-\left(1-q_{2}\right) e^{t}}{q_{2}}\right)\right)} t^{n-1} d t
\end{aligned}
$$

Let us rewrite this equation as

$$
\int_{0}^{-\ln \left(1-q_{1}\right)} h_{1}(t) t^{n-1} d t=\int_{0}^{-\ln \left(1-q_{2}\right)} \frac{q_{1}}{q_{2}} \frac{1-q_{2}}{1-q_{1}} h_{2}(t) t^{n-1} d t
$$

We now proceed to prove the claim by contradiction. Suppose wlog that $q_{2}>q_{1}$. Then

$$
-\ln \left(1-q_{2}\right)>-\ln \left(1-q_{1}\right)
$$

Define

$$
\widehat{h}_{1}(t)=\left\{\begin{array}{cl}
h_{1}(t) & \text { if } t \leq-\ln \left(1-q_{1}\right) \\
0 & \text { if } t \in\left(-\ln \left(1-q_{1}\right),-\ln \left(1-q_{2}\right)\right)
\end{array}\right.
$$

Then we have

$$
\int_{0}^{-\ln \left(1-q_{2}\right)} \widehat{h}_{1}(t) t^{n-1} d t=\int_{0}^{-\ln \left(1-q_{2}\right)} \frac{q_{1}}{q_{2}} \frac{1-q_{2}}{1-q_{1}} h_{2}(t) t^{n-1} d t
$$

for all $n=1,2,3, \ldots$ By Müntz-Szász, it follows that

$$
\widehat{h}_{1}(t)=\frac{q_{1}}{q_{2}} \frac{1-q_{2}}{1-q_{1}} h_{2}(t)
$$

for almost all $t \in\left(0,-\ln \left(1-q_{2}\right)\right)$, which implies $h_{2}(t)=0$ for almost all t in $\left(-\ln \left(1-q_{1}\right),-\ln \left(1-q_{2}\right)\right)$. But this implies $g_{2}(x)=0$ for almost all x in $\left[F_{2}^{-1}(0), F_{2}^{-1}\left(\left(q_{2}-q_{1}\right) /\left[q_{2}\left(1-q_{1}\right)\right]\right)\right]$, which violates Assumption 3.

Given $q_{1}=q_{2} \equiv q$, the fact that both $\left\{G_{1}, F_{1}, q\right\}$ and $\left\{G_{2}, F_{2}, q\right\}$ give rise to the same sequence $\operatorname{Pr}\left(N=n_{j}\right)$ implies, in view of Lemma 1, that (2) holds.

6. Application

Finally, we discuss how the results of this paper can be used to identify the wage offer distribution in job search models. In particular, we show that the offer distribution is identified in a larger class of models than was previously demonstrated in work by Nagaraja and Barlevy (2003) and Barlevy (2005).

Consider the following model of job search, which is frequently used in labor economics. (The literature on job search is too vast; for a survey of previous work on the identification and estimation of these models, see Eckstein and Van den Berg (2005).) At any point in time, a worker can be either employed or unemployed. While unemployed, all workers receive a fixed dollar amount X^{*} per unit time (which may be zero). This amount can reflect unemployment benefits, as well as the monetary value of the leisure she enjoys while not working. Employed and unemployed workers encounter employers at a constant rate λ per unit time. Each time a worker encounters an employer, the latter offers her a wage of X that is drawn independently from a continuous offer distribution F. The worker must then choose whether to stay on her current job (alternatively, remain unemployed) or accept the new offer and change employers (alternatively, exit unemployment). In addition, a worker can lose her
job, an event that occurs at constant rate δ whenever she is employed. When a worker loses her job, she cannot recall any of her past offers, and instead becomes unemployed. Workers are assumed to maximize their earnings. Hence, the optimal strategy for an employed worker is to only accept offers that surpass her current wage. Similarly, while unemployed, the worker should only accept offers that exceed X^{*}. We assume $F^{-1}(0) \geq X^{*}$, i.e. all employers offer at least X^{*} (otherwise their offers would never be accepted).

Let M denote the number of job offers a worker receives between intervening spells of unemployment, and index the offers according to the order in which they arrive so that X_{i} denotes the i-th offer since the worker was last unemployed. Barlevy (2005) shows that M will have a geometric distribution, i.e. $\operatorname{Pr}(M=m)=q^{m-1} p$ where $p=\delta(\delta+\lambda)^{-1}$ and $q=1-p$. Given the worker's strategy, the wages on the jobs the worker accepts corresponds to records from the sequence $\left\{X_{i}, 1 \leq i \leq M\right\}$. In the typical datasets economists use, workers are only queried on the jobs they work on, not on job offers they received but turned down. Thus, we assume that the only available data consists of $\left\{R_{n}, 1 \leq n \leq N\right\}$, not the original observations $\left\{X_{i}, 1 \leq i \leq M\right\}$ or even the number of observations M. A question of interest for economists is whether this data can identify the offer distribution F.

Since $R_{1}=X_{1}$, the distribution F is obviously identified from the empirical distribution of wages of workers on the first job. However, a key obstacle in taking the above model to data is that empirically a considerable number of workers voluntarily move into lower wage jobs, in direct violation of the model. To resolve this discrepancy, economists have argued that wages in the data are a noisy version of wages in the model, i.e. we observe not R_{n} but $R_{n}+\varepsilon_{n}$ for some random variable ε_{n} where $E\left(\varepsilon_{n}\right)=0$. The ε_{n} can be viewed as measurement error, but alternative interpretations for this term have been offered (see Barlevy (2005) for a discussion). Once we assume that we only observe $R_{n}+\varepsilon_{n}$, we can no longer identify F from the distribution of X_{1}. Previous work, as summarized in Eckstein and Van den Berg (2005), resorted to parametric assumptions on F and the distribution of ε to proceed with estimation. By contrast, Nagaraja and Barlevy (2003) and Barlevy (2005) argued that characterization results for the GRR model imply that F is identified non-parametrically, since one can still recover $E\left(R_{n}\right)$ from noise-ridden data.

However, in order to apply this identification result, we need to keep track of all jobs between spells of unemployment so that we can determine which record number n each job represents. Unfortunately, this is not possible in many datasets. In particular, many surveys
collect data on workers that are already employed. For those workers, we have no way of classifying which record number to assign to the jobs we observe for them. Although we could wait until the worker is next unemployed, unemployment is often a sufficiently low probability event that a large part of the data would have to be thrown out. The results of this paper suggest a way to incorporate data for workers who are already employed. In particular, we know from previous work on search models, e.g. Burdett and Mortensen (1998), that the economy described by this model converges in the limit to a steady state in which the fraction of all employed workers who earn a wage of x or less is equal to

$$
\begin{equation*}
G(x)=\frac{F(x)}{1+\lambda / \delta(1-F(x))} \tag{18}
\end{equation*}
$$

Moreover, the number of offers the worker receives starting from any job continues to have a geometric distribution. Thus, as long as the economy we consider is at its steady state, the wages on the jobs we observe for a randomly chosen employed worker will correspond to records from a sequence $\left\{X_{i}, 1 \leq i \leq M\right\}$ where M has a geometric distribution, $X_{1} \sim G$ as defined in (18), and $X_{2}, \ldots, X_{M} \sim F$. Since $G=G_{0}(F(x))$, we can appeal to Proposition 4 to argue that average wages or average wage changes identify the wage offer distribution F. For example, if the average wage gains of workers is constant regardless of how many jobs they have changed since the first job we observe them on, the wage offer distribution must be exponential.

More generally, our results can be applied whenever the distribution of the wage on the first job we observe for a worker differs from the offer distribution F. For example, some surveys focus on the poor, and use the initial earnings of a worker as a criterion for selection into the survey. In this case, even if we could track workers from their very first job out of unemployment, the distribution of wages on the worker's first job would correspond to

$$
G(x)=\left\{\begin{array}{cc}
F(x) / z & \text { if } F(x)<z \tag{19}\\
1 & \text { else }
\end{array}\right.
$$

where z reflects the percentile of the threshold wage workers must earn within the wage offer distribution to qualify for the survey. Once again, we can appeal to Proposition 4 to argue that average wages or average wage changes identify the offer distribution F.

Discrepancies between the wage on the first job we observe for a worker and the offer distribution $F(\cdot)$ are not confined to sampling issues. Suppose we could track workers from the first job out of unemployment and that no wages were censored. However, suppose the amount workers earn while unemployed varies across workers. For example, they might
enjoy leisure differently, or they might earn different unemployment benefits (which is not unreasonable given these often depend on what the worker earned on his last job before becoming unemployed). Let $H(x)$ denote the fraction of workers whose X^{*} is x or less, and suppose $H^{-1}(0) \leq F^{-1}(0)$. Workers whose X^{*} will hold out for a higher wage before they accept a job offer. The wage on the first job out of unemployment for a worker chosen at random from H is now given by

$$
\begin{equation*}
G(x ; F(\cdot))=\frac{\int_{-\infty}^{x} H(w) d F(w)}{\int_{-\infty}^{\infty} H(w) d F(w)}=\frac{\int_{0}^{F(x)} H\left(F^{-1}(u)\right) d u}{\int_{0}^{1} H\left(F^{-1}(u)\right) d u} \tag{20}
\end{equation*}
$$

Workers continue to draw offers from F at rate λ, so the wages of a worker chosen at random between two consecutive unemployment spells will correspond to records from a sequence $\left\{X_{i}, 1 \leq i \leq M\right\}$ where M has a geometric distribution, $X_{1} \sim G$ as defined in (20), and $X_{2}, \ldots, X_{M} \sim F$. Since $G(x ; F(\cdot))$ cannot be represented as $G_{0}(F(x))$ for some function $G_{0}(\cdot)$, we must appeal to Proposition 5 to argue that average wages or average wage changes, together with the distribution of the number of jobs workers hold between unemployment spells, identify F. If the distribution of reservation wages H is itself unknown, Proposition 5 implies we can also identify the distribution of wages of workers on their first job G. It is easily demonstrated that given F and G, one can recover H. Thus, when workers have different reservation wages, not only is the common offer distribution F they face still identified, but so is the distribution of X^{*} across workers. Thus, we could infer the distribution of how much workers value leisure from the extent of job mobility we observe for them once they become employed. Lastly, Proposition 6 tells us that we do not need to know the ratio λ / δ in advance to identify F, since we can recover it from data on N, i.e. the distribution of how many jobs workers hold between consecutive unemployment spells. For an empirical implementation of these ideas using panel data on young workers, see Barlevy and Nagaraja (2005).

References:

Arnold, B. C., Balakrishnan N. and Nagaraja H. N. (1998). Records. New York: John Wiley and Sons.

Barlevy, G. (2005). Identification of job search models using record statistics. FRB Chicago mimeo.

Barlevy, G. and Nagaraja, H. N. (2005). Identification of job search models with initial condition problems. FRB Chicago mimeo.

Bunge, J. and Nagaraja, H. N. (1991). The distribution of certain record statistics from a random number of observations. Stochastic Processes and their Applications, 38 167-83.

Burdett, K. and Mortensen, D. (1998). Wage differentials, employer size, and unemployment. International Economic Review, 39 257-273.

Eckstein, Z. and Van den Berg, G. (2005). Empirical labor search: a survey. Journal of Econometrics, forthcoming.

Kamps, U. (1998). Characterizations of distributions by recurrence relations and identities for moments of order statistics. In Handbook of Statistics, Vol. 16, Order Statistics: Theory and Methods, eds N. Balakrishnan and C. R. Rao, Elsevier, Amsterdam, 291-311.

Nagaraja, H. N. and Barlevy G. (2003). Characterizations using record moments in a random record model and applications. Journal of Applied Probability, 40 826-33.

Nevzorov, V. B. (1986). Two Characterizations using records. Stability Problems for Stochastic Models (Eds., V. V. Kalashnikov, B. Penkov and V. M. Zolotarev), Lecture Notes in Mathematics 1223, Berlin: Springer-Verlag, 79-85.

Pfeifer, D. (1982). "Characterizations of Exponential Distributions by Independent Nonstationary Record Increments. Journal of Applied Probability, 19 127-35. (Correction, 19, p. 906.)

Taylor, A. (1965). General Theory of Functions and Integration. New York: Blaisdell Publishing.

Titchmarsh, E. C. (1926). The zeros of certain integral functions. Proceedings of the London Mathematical Society, Series 2, 25 283-302.

Titchmarsh, E. C. (1948). Introduction to the Theory of Fourier Integrals. 2nd ed. Oxford: Clarendon Press.

Working Paper Series

A series of research studies on regional economic issues relating to the Seventh Federal Reserve District, and on financial and economic topics.
Outsourcing Business Services and the Role of Central Administrative Offices WP-02-01 Yukako Ono
Strategic Responses to Regulatory Threat in the Credit Card Market* WP-02-02Victor StangoThe Optimal Mix of Taxes on Money, Consumption and IncomeWP-02-03Fiorella De Fiore and Pedro Teles
Expectation Traps and Monetary Policy WP-02-04
Stefania Albanesi, V. V. Chari and Lawrence J. Christiano
Monetary Policy in a Financial Crisis WP-02-05Lawrence J. Christiano, Christopher Gust and Jorge RoldosRegulatory Incentives and Consolidation: The Case of Commercial Bank Mergersand the Community Reinvestment ActWP-02-06Raphael Bostic, Hamid Mehran, Anna Paulson and Marc Saidenberg
Technological Progress and the Geographic Expansion of the Banking Industry WP-02-07 Allen N. Berger and Robert DeYoung
Choosing the Right Parents: Changes in the Intergenerational TransmissionWP-02-08of Inequality - Between 1980 and the Early 1990sDavid I. Levine and Bhashkar MazumderThe Immediacy Implications of Exchange OrganizationWP-02-09James T. MoserMaternal Employment and Overweight ChildrenWP-02-10Patricia M. Anderson, Kristin F. Butcher and Phillip B. Levine
The Costs and Benefits of Moral Suasion: Evidence from the Rescue of WP-02-11Long-Term Capital ManagementCraig Furfine
On the Cyclical Behavior of Employment, Unemployment and Labor Force Participation WP-02-12 Marcelo Veracierto
Do Safeguard Tariffs and Antidumping Duties Open or Close Technology Gaps? WP-02-13 Meredith A. Crowley
Technology Shocks Matter WP-02-14
Jonas D. M. Fisher
Money as a Mechanism in a Bewley Economy WP-02-15Edward J. Green and Ruilin Zhou

Working Paper Series (continued)

Optimal Fiscal and Monetary Policy: Equivalence Results
WP-02-16
Isabel Correia, Juan Pablo Nicolini and Pedro Teles

Real Exchange Rate Fluctuations and the Dynamics of Retail Trade Industries
WP-02-17 on the U.S.-Canada Border
Jeffrey R. Campbell and Beverly Lapham
Bank Procyclicality, Credit Crunches, and Asymmetric Monetary Policy Effects:
WP-02-18
A Unifying Model
Robert R. Bliss and George G. Kaufman
Location of Headquarter Growth During the 90s
WP-02-19
Thomas H. Klier

The Value of Banking Relationships During a Financial Crisis:
WP-02-20
Evidence from Failures of Japanese Banks
Elijah Brewer III, Hesna Genay, William Curt Hunter and George G. Kaufman
On the Distribution and Dynamics of Health Costs
WP-02-21
Eric French and John Bailey Jones
The Effects of Progressive Taxation on Labor Supply when Hours and Wages are
WP-02-22
Jointly Determined
Daniel Aaronson and Eric French

Inter-industry Contagion and the Competitive Effects of Financial Distress Announcements:
WP-02-23
Evidence from Commercial Banks and Life Insurance Companies
Elijah Brewer III and William E. Jackson III
State-Contingent Bank Regulation With Unobserved Action and
WP-02-24
Unobserved Characteristics
David A. Marshall and Edward Simpson Prescott

Local Market Consolidation and Bank Productive Efficiency
WP-02-25
Douglas D. Evanoff and Evren Örs
Life-Cycle Dynamics in Industrial Sectors. The Role of Banking Market Structure
WP-02-26
Nicola Cetorelli

Private School Location and Neighborhood Characteristics WP-02-27
Lisa Barrow
Teachers and Student Achievement in the Chicago Public High Schools
WP-02-28
Daniel Aaronson, Lisa Barrow and William Sander

The Crime of 1873: Back to the Scene
WP-02-29
François R. Velde
Trade Structure, Industrial Structure, and International Business Cycles
WP-02-30
Marianne Baxter and Michael A. Kouparitsas
Estimating the Returns to Community College Schooling for Displaced Workers
WP-02-31
Louis Jacobson, Robert LaLonde and Daniel G. Sullivan

Working Paper Series (continued)

A Proposal for Efficiently Resolving Out-of-the-Money Swap Positions WP-03-01 at Large Insolvent Banks George G. Kaufman
Depositor Liquidity and Loss-Sharing in Bank Failure Resolutions WP-03-02George G. Kaufman
Subordinated Debt and Prompt Corrective Regulatory Action WP-03-03Douglas D. Evanoff and Larry D. Wall
When is Inter-Transaction Time Informative? WP-03-04
Craig FurfineTenure Choice with Location Selection: The Case of Hispanic NeighborhoodsWP-03-05in ChicagoMaude Toussaint-Comeau and Sherrie L.W. Rhine
Distinguishing Limited Commitment from Moral Hazard in Models of WP-03-06 Growth with Inequality*
Anna L. Paulson and Robert Townsend
Resolving Large Complex Financial Organizations WP-03-07
Robert R. Bliss
The Case of the Missing Productivity Growth: WP-03-08Or, Does information technology explain why productivity accelerated in the United Statesbut not the United Kingdom?Susanto Basu, John G. Fernald, Nicholas Oulton and Sylaja Srinivasan
Inside-Outside Money Competition WP-03-09Ramon Marimon, Juan Pablo Nicolini and Pedro Teles
The Importance of Check-Cashing Businesses to the Unbanked: Racial/Ethnic Differences WP-03-10
William H. Greene, Sherrie L.W. Rhine and Maude Toussaint-Comeau
A Firm's First Year WP-03-11
Jaap H. Abbring and Jeffrey R. CampbellMarket Size MattersWP-03-12Jeffrey R. Campbell and Hugo A. Hopenhayn
The Cost of Business Cycles under Endogenous Growth WP-03-13 Gadi BarlevyThe Past, Present, and Probable Future for Community BanksWP-03-14Robert DeYoung, William C. Hunter and Gregory F. Udell
Measuring Productivity Growth in Asia: Do Market Imperfections Matter? WP-03-15
John Fernald and Brent Neiman
Revised Estimates of Intergenerational Income Mobility in the United States WP-03-16 Bhashkar Mazumder

Working Paper Series (continued)

Product Market Evidence on the Employment Effects of the Minimum Wage
WP-03-17 Daniel Aaronson and Eric French

Estimating Models of On-the-Job Search using Record Statistics
WP-03-18 Gadi Barlevy

Banking Market Conditions and Deposit Interest Rates
WP-03-19
Richard J. Rosen

Creating a National State Rainy Day Fund: A Modest Proposal to Improve Future
WP-03-20
State Fiscal Performance
Richard Mattoon

Managerial Incentive and Financial Contagion
WP-03-21
Sujit Chakravorti, Anna Llyina and Subir Lall
Women and the Phillips Curve: Do Women's and Men's Labor Market Outcomes
WP-03-22
Differentially Affect Real Wage Growth and Inflation?
Katharine Anderson, Lisa Barrow and Kristin F. Butcher
Evaluating the Calvo Model of Sticky Prices
WP-03-23
Martin Eichenbaum and Jonas D.M. Fisher
The Growing Importance of Family and Community: An Analysis of Changes in the
WP-03-24
Sibling Correlation in Earnings
Bhashkar Mazumder and David I. Levine
Should We Teach Old Dogs New Tricks? The Impact of Community College Retraining
WP-03-25 on Older Displaced Workers
Louis Jacobson, Robert J. LaLonde and Daniel Sullivan
Trade Deflection and Trade Depression
WP-03-26
Chad P. Brown and Meredith A. Crowley
China and Emerging Asia: Comrades or Competitors?
WP-03-27
Alan G. Ahearne, John G. Fernald, Prakash Loungani and John W. Schindler
International Business Cycles Under Fixed and Flexible Exchange Rate Regimes
WP-03-28
Michael A. Kouparitsas

Firing Costs and Business Cycle Fluctuations
WP-03-29
Marcelo Veracierto
Spatial Organization of Firms
WP-03-30
Yukako Ono
Government Equity and Money: John Law's System in 1720 France
WP-03-31
François R. Velde
Deregulation and the Relationship Between Bank CEO
WP-03-32
Compensation and Risk-Taking
Elijah Brewer III, William Curt Hunter and William E. Jackson III

Working Paper Series (continued)

Compatibility and Pricing with Indirect Network Effects: Evidence from ATMs WP-03-33Christopher R. Knittel and Victor Stango
Self-Employment as an Alternative to Unemployment WP-03-34
Ellen R. RissmanWhere the Headquarters are - Evidence from Large Public Companies 1990-2000Tyler Diacon and Thomas H. Klier
Standing Facilities and Interbank Borrowing: Evidence from the Federal Reserve's
New Discount Window
Craig FurfineWP-03-35
Netting, Financial Contracts, and Banks: The Economic ImplicationsWP-04-02
William J. Bergman, Robert R. Bliss, Christian A. Johnson and George G. Kaufman
Real Effects of Bank Competition WP-04-03
Nicola Cetorelli
Finance as a Barrier To Entry: Bank Competition and Industry Structure in WP-04-04 Local U.S. Markets?
Nicola Cetorelli and Philip E. Strahan
The Dynamics of Work and Debt WP-04-05
Jeffrey R. Campbell and Zvi Hercowitz
Fiscal Policy in the Aftermath of 9/11 WP-04-06Jonas Fisher and Martin Eichenbaum
Merger Momentum and Investor Sentiment: The Stock Market Reaction
To Merger Announcements WP-04-07
Richard J. Rosen
Earnings Inequality and the Business Cycle WP-04-08Gadi Barlevy and Daniel TsiddonPlatform Competition in Two-Sided Markets: The Case of Payment NetworksWP-04-09Sujit Chakravorti and Roberto Roson
Nominal Debt as a Burden on Monetary Policy WP-04-10
Javier Díaz-Giménez, Giorgia Giovannetti, Ramon Marimon, and Pedro Teles
On the Timing of Innovation in Stochastic Schumpeterian Growth Models WP-04-11 Gadi Barlevy
Policy Externalities: How US Antidumping Affects Japanese Exports to the EU WP-04-12
Chad P. Bown and Meredith A. Crowley
Sibling Similarities, Differences and Economic Inequality WP-04-13
Bhashkar Mazumder

Working Paper Series (continued)

The Occupational Assimilation of Hispanics in the U.S.: Evidence from Panel Data
WP-04-15 Maude Toussaint-Comeau

Reading, Writing, and Raisinets ${ }^{1}$: Are School Finances Contributing to Children's Obesity?
WP-04-16
Patricia M. Anderson and Kristin F. Butcher

Learning by Observing: Information Spillovers in the Execution and Valuation	WP-04-17
of Commercial Bank M\&As	
Gayle DeLong and Robert DeYoung	
Prospects for Immigrant-Native Wealth Assimilation:	WP-04-18
Evidence from Financial Market Participation	
Una Okonkwo Osili and Anna Paulson	

Institutional Quality and Financial Market Development:
WP-04-19
Evidence from International Migrants in the U.S.
Una Okonkwo Osili and Anna Paulson
Are Technology Improvements Contractionary?
WP-04-20
Susanto Basu, John Fernald and Miles Kimball

The Minimum Wage, Restaurant Prices and Labor Market Structure
WP-04-21
Daniel Aaronson, Eric French and James MacDonald

Betcha can't acquire just one: merger programs and compensation	WP-04-22
Richard J. Rosen	
Not Working: Demographic Changes, Policy Changes,	WP-04-23
and the Distribution of Weeks (Not) Worked	
Lisa Barrow and Kristin F. Butcher	

The Role of Collateralized Household Debt in Macroeconomic Stabilization
WP-04-24
Jeffrey R. Campbell and Zvi Hercowitz
Advertising and Pricing at Multiple-Output Firms: Evidence from U.S. Thrift Institutions
WP-04-25
Robert DeYoung and Evren Örs
Monetary Policy with State Contingent Interest Rates
WP-04-26
Bernardino Adão, Isabel Correia and Pedro Teles

Comparing location decisions of domestic and foreign auto supplier plants
WP-04-27 Thomas Klier, Paul Ma and Daniel P. McMillen

China's export growth and US trade policy
WP-04-28
Chad P. Bown and Meredith A. Crowley

Where do manufacturing firms locate their Headquarters?
WP-04-29
J. Vernon Henderson and Yukako Ono

Monetary Policy with Single Instrument Feedback Rules
WP-04-30
Bernardino Adão, Isabel Correia and Pedro Teles

Working Paper Series (continued)

Firm-Specific Capital, Nominal Rigidities and the Business Cycle WP-05-01
David Altig, Lawrence J. Christiano, Martin Eichenbaum and Jesper Linde

Do Returns to Schooling Differ by Race and Ethnicity? WP-05-02
Lisa Barrow and Cecilia Elena Rouse

Derivatives and Systemic Risk: Netting, Collateral, and Closeout WP-05-03
Robert R. Bliss and George G. Kaufman

Risk Overhang and Loan Portfolio Decisions
WP-05-04
Robert DeYoung, Anne Gron and Andrew Winton

Characterizations in a random record model with a non-identically distributed initial record WP-05-05 Gadi Barlevy and H. N. Nagaraja

[^0]: *gbarlevy@frbchi.org; Economic Research Department, Federal Reserve Bank of Chicago, 230 South La Salle Street, Chicago, IL 60604-1413, USA
 ${ }^{\dagger}$ hnn@stat.ohio-state.edu; Department of Statistics, The Ohio State University, 1958 Neil Ave., Columbus OH 43210-1247, USA.

