Monetary Policy with Single Instrument Feedback Rules

Bernardino Adão, Isabel Correia and Pedro Teles

WP 2004-30
Monetary Policy with Single Instrument Feedback Rules.*

Bernardino Adão
Banco de Portugal

Isabel Correia
Banco de Portugal, Universidade Catolica Portuguesa and CEPR

Pedro Teles†
Federal Reserve Bank of Chicago, CEPR.

November, 2004

Abstract

We consider a standard cash in advance monetary model with flexible prices or prices set in advance and show that there are interest rate or money supply rules such that equilibria are unique. The existence of these single instrument rules depends on whether the economy has an infinite horizon or an arbitrarily large but finite horizon.

Key words: Monetary policy; interest rate rules; unique equilibrium.

JEL classification: E31; E40; E52; E58; E62; E63.

1. Introduction

In this paper we revisit the issue of multiplicity of equilibria when monetary policy is conducted with either the interest rate or the money supply as the instrument of

*We thank Andy Neumeyer for comments. We gratefully acknowledge financial support of FCT. The opinions are solely those of the authors and do not necessarily represent those of the Banco de Portugal, Federal Reserve Bank of Chicago or the Federal Reserve System.

†Teles is also affiliated with Banco de Portugal and Universidade Catolica Portuguesa.
policy. There has been an extensive literature on this topic starting with Sargent and Wallace (1975), including a recent literature on local and global determinacy in models with nominal rigidities. We show that it is possible to implement a unique equilibrium with an appropriately chosen interest rate feedback rule, and similarly with a money supply feedback rule of the same type. This is a surprising result because while it is well known that interest rate feedback rules can deliver a locally unique equilibrium, it is no less known that they generate multiple equilibria globally.

We show that the reason for the results is the model assumption of an infinite horizon. In finite horizon economies, the number of degrees of freedom in conducting policy does not depend on the way policy is conducted. The number is the same independently of whether interest rates are set as constant functions of the state, or as backward, current or forward functions of endogenous variables.

In analogous finite horizon economies, the number of degrees of freedom in conducting policy can be counted exactly. The equilibrium is described by a system of equations where the unknowns are the quantities, prices and policy variables. There are more unknowns than variables, and the difference is the number of degrees of freedom in conducting policy. It is a necessary condition for there to be a unique equilibrium that the same number of exogenous restrictions on the policy variables are added to the system of equations. Single instrument policies are not sufficient restrictions. They always generate multiple equilibria. This is no longer the case in the infinite horizon economy, as we show in this paper.

Whether the appropriate description of the world is an infinite horizon economy or the limit of finite horizon economies, thus, makes a big difference for this particular issue of policy interest, i.e. whether policy conducted with a single instrument, such as the nominal interest rate, is sufficient to determine a unique competitive equilibrium.

As already mentioned, after Sargent and Wallace (1975), there is a large literature on multiplicity of equilibria when the government follows either an interest rate rule or a money supply rule. This includes the literature on local determinacy that identifies conditions on preferences, technology, timing of markets, and policy rules, under which there is a unique local equilibrium (see Bernanke and Woodford (1997), Clarida, Gali and Gertler (1998, 1999), Carlstrom and Fuerst (2001a, 2001b), Benhabib, Schmit-Grohe and Uribe (2001a), Dupor (2001) among others). This literature has in turn been criticized by recent work on global stability that makes the point that the conditions for local determinacy are also conditions
for global indeterminacy (see Benhabib, Schmit-Grohe and Uribe (2001b) and Christiano and Rostagno, 2002).

Our modelling approach is close to Adao, Correia and Teles (2003) for the case with sticky prices. In this paper we show that even at the optimal zero interest rate rule there is still room for policy to improve welfare since it is possible to use money supply to implement the optimal allocation in a large set of implementable allocations. This paper is also very close to Adao, Correia and Teles (2004) where we show that it is possible to implement unique equilibria in environments with flexible prices and prices set in advance by pegging state contingent interest rates as well as the initial money supply. Bloise, Dreze and Polemarchakis (2003) and Nakajima and Polemarchakis (2003) are also related research.

We assume that fiscal policy is endogenous. Exogeneity of fiscal policy could be used, as in the fiscal theory of the price level to determine unique equilibria.

The paper proceeds as follows: In Section 1, we consider a simple cash in advance economy with flexible prices. In Section 2, we show that there are single instrument feedback rules that implement a unique equilibrium. In Section 3 we show that in analogous finite horizon environments the single instrument rules would generate multiple equilibria. In Section 4, we show that the results generalize to the case where prices are set in advance. Section 5 contains concluding remarks.

2. A model with flexible prices

We first consider a simple cash in advance economy with flexible prices. The economy consists of a representative household, a representative firm behaving competitively, and a government. The uncertainty in period $t \geq 0$ is described by the random variable $s_t \in S_t$ and the history of its realizations up to period t (state or node at t), $(s_0, s_1, ..., s_t)$, is denoted by $s^t \in S^t$. The initial realization s_0 is given. We assume that the history of shocks has a discrete distribution. The number of states in period t is Φ_t.

Production uses labor according to a linear technology. We impose a cash-in-advance constraint on the households’ transactions with the timing structure described in Lucas and Stokey (1983). That is, each period is divided into two subperiods, with the assets market operational in the first subperiod and the goods market in the second.
2.1. Competitive equilibria

Households The households have preferences over consumption C_t, and leisure L_t, described by the expected utility function:

$$U = E_0 \left\{ \sum_{t=0}^{\infty} \beta^t u(C_t, L_t) \right\}$$

where β is a discount factor. The households start period t with nominal wealth W_t. They decide to hold money, M_t, and to buy B_t nominal bonds that pay $R_t B_t$ one period later. R_t is the gross nominal interest rate at date t. They also buy B_{t+1} units of state contingent nominal securities. Each security pays one unit of money at the beginning of period $t + 1$ in a particular state. Let $Q_{t,t+1}$ be the beginning of period t price of these securities normalized by the probability of the occurrence of the state. Therefore, households spend $E_t Q_{t,t+1} B_{t,t+1}$ in state contingent nominal securities. Thus, in the assets market at the beginning of period t they face the constraint

$$M_t + B_t + E_t Q_{t,t+1} B_{t,t+1} \leq W_t$$

(2.2)

Consumption must be purchased with money according to the cash in advance constraint

$$P_tC_t \leq M_t.$$

(2.3)

At the end of the period, the households receive the labor income $W_t N_t$, where $N_t = 1 - L_t$ is labor and W_t is the nominal wage rate and pay lump sum taxes, T_t. Thus, the nominal wealth households bring to period $t + 1$ is

$$W_{t+1} = M_t + R_t B_t + B_{t+1} - P_tC_t + W_t N_t - T_t$$

(2.4)

The households’ problem is to maximize expected utility (2.1) subject to the restrictions (2.2), (2.4), (2.3), together with a no-Ponzi games condition on the holdings of assets.

The following are first order conditions of the households problem:

$$\frac{u_L(t)}{u_C(t)} = \frac{W_t}{P_t R_t}$$

(2.5)

$$\frac{u_C(t)}{P_t} = R_t E_t \left[\frac{\beta u_C(t+1)}{P_{t+1}} \right]$$

(2.6)
\[Q_{t,t+1} = \beta \frac{u_C(t+1)}{u_C(t)} \frac{P_t}{P_{t+1}}, \ t \geq 0 \] (2.7)

From these conditions we get \(E_t Q_{t,t+1} = \frac{1}{R_t} \). Condition (2.5) sets the intratemporal marginal rate of substitution between leisure and consumption equal to the real wage adjusted for the cost of using money, \(R_t \). Condition (2.6) is an intertemporal marginal condition necessary for the optimal choice of risk-free nominal bonds. Condition (2.7) determines the price of one unit of money at time \(t + 1 \), for each state of nature \(s^{t+1} \), normalized by the conditional probability of occurrence of state \(s^{t+1} \), in units of money at time \(t \).

Firms The firms are competitive and prices are flexible. The production function of the representative firm is linear

\[Y_t \leq A_t N_t \]

The equilibrium real wage is

\[\frac{W_t}{P_t} = A_t. \] (2.8)

Government The policy variables are taxes, \(T_t \), interest rates, \(R_t \), money supplies, \(M_t \), state noncontingent public debt, \(B_t \). We can define a policy as a mapping for the policy variables \(\{ T_t, R_t, M_t, B_t, t \geq 0, \text{all } s^t \} \), that maps sequences of quantities, prices and policy variables into sets of sequences of the policy variables. Defining a policy as a correspondence allows for the case where the government is not explicit about some of the policy variables. Lucas and Stokey (1983) define policy as sequences of numbers for some of the variables. Adao, Correia and Teles (2003) define policy as sequences of numbers for all the policy variables. Here we allow for more generic functions (correspondences) for all the policy variables. We do not allow for targeting rules that can be defined as mappings from prices, quantities and policy variables to prices and quantities.

The period by period government budget constraints are

\[M_t + B_t = M_{t-1} + R_{t-1}B_{t-1} + P_{t-1}G_{t-1} - P_{t-1}T_{t-1}, \ t \geq 0 \]

Let \(Q_{t+1} \equiv Q_{0,t+1} \), with \(Q_0 = 1 \). If \(\lim_{T \to \infty} E_t Q_{T+1} \mathbb{W}_{T+1} = 0 \)

\[\sum_{s=0}^{\infty} E_t Q_{t,t+s+1} M_{t+s} (R_{t+s} - 1) = \mathbb{W}_t + \sum_{s=0}^{\infty} E_t Q_{t,t+s+1} P_{t+s} [G_{t+s} - T_{t+s}] \] (2.9)
Market clearing Market clearing in the goods and labor market requires
\[C_t + G_t \leq A_t N_t, \]
\[1 - L_t = N_t. \]
We have already imposed market clearing in the money and debt markets.

Equilibrium A competitive equilibrium is a sequence of policy variables, quantities and prices such that the private agents maximize given the sequences of policy variables and prices, the budget constraint of the government is satisfied and the policy sequence is in the set defined by the policy.

The equilibrium conditions for the variables \{C_t, L_t, R_t, M_t, B_t, T_t, Q_{t,t+1}\} are the resources constraint
\[C_t + G_t = A_t (1 - L_t), \quad t \geq 0 \quad (2.10) \]
the intratemporal condition that is obtained from the households intratemporal condition (2.11) and the firms optimal condition (2.8)
\[\frac{u_C(t)}{u_L(t)} = \frac{R_t}{A_t}, \quad t \geq 0 \quad (2.11) \]
as well as the cash in advance constraints (2.3), the intertemporal conditions (2.6) and (2.7), and the budget constraints (2.9).

In this section we assume that policy is conducted with either interest rate or money supply feedback rules. We show that there are single instrument feedback rules that implement a unique equilibrium for the allocation and prices. The proposition for an interest rate feedback rule follows:

Proposition 3.1. When the fiscal policy is endogenous and monetary policy is conducted with the interest rate feedback rule
\[R_t = \frac{\xi_t}{E_t \beta u_C(t+1)} \cdot \]
\[\xi_t \] is an exogenous variable, there is a unique equilibrium.
Proof: Suppose policy is conducted with the interest rate feedback rule \(R_t = \frac{\xi_t}{E_t \frac{u_C(t+1)}{P_{t+1}}} \). Then the intertemporal and intratemporal conditions, (2.6) and (2.11) can be written as

\[
\frac{u_C(t)}{P_t} = \xi_t, \quad t \geq 0
\]

\[
\frac{u_C(t)}{u_L(t)} = \frac{\xi_t}{\beta E_t \xi_{t+1}}, \quad t \geq 0
\]

These conditions together with the cash in advance conditions, (2.3), and the resource constraints, (2.10), determine uniquely the variables \(C_t, L_t, P_t \) and \(M_t \).

The budget constraints (3.1) are satisfied for multiple paths of the taxes and state noncontingent debt levels

An analogous proposition is obtained when policy is conducted with a particular money supply feedback rule.

Proposition 3.2. When the fiscal policy is endogenous and the policy is conducted with the money supply feedback rule,

\[
M_t = \frac{\beta R_{t-1} C_t u_C(t)}{\xi_{t-1}}
\]

there is a unique equilibrium.

Proof: Suppose policy is conducted according to the money supply rule \(M_t = \frac{\beta R_{t-1} C_t u_C(t)}{\xi_{t-1}} \). Then, the equilibrium conditions

\[
P_t C_t = \frac{\beta R_{t-1} C_t u_C(t)}{\xi_{t-1}}
\]

obtained using the cash in advance conditions (2.3),

\[
\frac{u_C(t)}{P_t} = \xi_t
\]

obtained from the intertemporal conditions (2.6), in addition to the resource constraints, (2.10) and the intratemporal conditions (2.11) determine uniquely the four variables, \(C_t, h_t, P_t, R_t \) in each period \(t \geq 0 \) and state \(s^t \).

The taxes and debt levels satisfy the budget constraint (3.1)
The result that there are single instrument feedback rules that implement a unique equilibrium is a surprising one. In fact it is well known that interest rate rules may implement a determinate equilibrium, but not a unique global equilibrium. To illustrate this, consider the case where monetary policy is conducted with constant functions for the policy variables. We will show that in that case an interest rate policy generates multiple equilibria. That result is directly extended to the case where the interest rate is a function of contemporaneous or past variables.

3.0.1. Conducting policy with constant functions.

In this section, we show that in general when policy is conducted with constant functions for the policy instruments, it is necessary to determine exogenously both interest rates and money supplies.

The equilibrium conditions are the resources constraints (2.10), the intratemporal conditions (2.11), the cash in advance constraints (2.3), the intertemporal conditions (2.6) and the budget constraints (2.9) that can be written as

\[E_t \sum_{s=0}^{\infty} \beta^s u_C(t + s)C_{t+s} \left(\frac{R_{t+s} - 1}{R_{t+s}} \right) = u_C(t) \frac{W_t}{P_t} + E_t \sum_{s=0}^{\infty} \beta^s u_C(t + s) \frac{[G_{t+s} - T_{t+s}]}{R_{t+s}} \]

(3.1)

using (2.7).

These conditions define a set of equilibrium allocations, prices and policy variables. There are many equilibria. We want to determine conditions on the exogeneity of the policy variables such that there is a unique equilibrium in the allocation and prices. We first consider the case in which a policy are sequences of numbers for money supplies and interest rates.

From the resources constraints (2.10), the intratemporal conditions (2.11), and the cash in advance constraints, (2.3), we obtain the functions \(C_t = C(R_t) \) and \(L_t = L(R_t) \) and \(P_t = \frac{M_t}{C(R_t)} \), \(t \geq 0 \). As long as \(u_C(C_t, L_t)C_t \) depends on \(C_t \) or \(L_t \), excluding therefore preferences that are additively separable and logarithmic in consumption, the system of equations can be summarized by the following dynamic equations:

\[\frac{u_C(C(R_t), L(R_t))}{\frac{M_t}{C(R_t)}} = \beta R_tE_t \left[\frac{u_C(C(R_{t+1}), L(R_{t+1}))}{\frac{M_{t+1}}{C(R_{t+1})}} \right], \quad t \geq 0 \]

(3.2)

together with the budget constraints, (3.1).
Suppose the path of money supply is set exogenously in every date and state. In addition, in period zero the interest rate, R_0, is set exogenously and, for each $t \geq 1$, for each state s^{t-1}, the interest rates are set exogenously in $\#S_{t} - 1$ states. In this case there is a single solution for the allocations and prices. Similarly, there is also a unique equilibrium if the nominal interest rate is set exogenously in every date and state, and so is the money supply in period 0, M_0, as well as, for each $t \geq 1$, and for state s^{t-1}, the money supply in $\#S_{t} - 1$ states. The budget constraints restrict, not uniquely, the taxes and debt levels.

The proposition follows

Proposition 3.3. Suppose policy are constant functions. In general, if money supply is determined exogenously in every date and state, and if interest rates are also determined exogenously in the initial period, as well as in $\Phi_{t} - \Phi_{t-1}$ states for each $t \geq 1$, then the allocations and prices can be determined uniquely. Similarly, if the exogenous policy instruments are the interest rates in every state, the initial money supply and the money supply, in $\Phi_{t} - \Phi_{t-1}$ states, for $t \geq 1$, then there is in general a unique equilibrium.

The proposition states a general result. In the particular case where the preferences are additively separable and logarithmic in consumption, and money supply is set exogenously in every state, there is a unique equilibrium in the allocations and prices. There is no need to set exogenously the interest rates as well. This example is helpful in understanding the main point of the paper, that the degrees of freedom in conduction policy depend on how policy is conducted and on other characteristics of the environment.

3.0.2. Current or backward interest rate feedback rules

We have shown Proposition 3.3. assuming that policy was conducted with constant functions for the policy variables. However, the use of interest rate rules that depend on current or past variables clearly preserves the same degrees of freedom in the determination of policy, as identified in that proposition. When fiscal policy is endogenous, it is still necessary to determine exogenously the levels of money supply in some but not all states. The corollary follows

Corollary 3.4. When policy is conducted with current or backward interest rate feedback rules and fiscal policy is endogenous, there is a unique equilibrium if the money supply is set exogenously in $\#S_{t} - 1$ states, for each state s^{t-1}, $t \geq 1$, as well M_0.

9
4. Robustness: Finite horizon.

We have shown in the previous section that there are interest rate rules that implement a unique equilibrium but that current or backward feedback rules do not. This means that even if the same number of instruments is set exogenously, the remaining degrees of freedom in determining policy depend on how those degrees of freedom are filled. This happens because the model economy has an infinite horizon.

If the economy had a finite horizon it would be characterized by a finite number of equations and unknowns. In that case the number of degrees of freedom in conducting policy is a finite number that does not depend on whether policy is conducted with constant functions, functions of future, current or past variables, as long as these functions are truly exogenous, i.e. independent from the remaining equilibrium conditions.

To determine the degrees of freedom in the case of a finite horizon economy amounts to simply counting the number of equations and unknowns. We proceed to considering the case where the economy lasts for a finite number of periods $T + 1$, from period 0 to period T. After T, there is a subperiod for the clearing of debts, where money can be used to pay debts, so that

$$\mathbb{W}_{T+1} = M_T + R_T B_T + P_T G_T - P_T T_T = 0$$

The first order conditions in the finite horizon economy are the intratemporal conditions, (2.11) for $t = 0, ..., T$, the cash in advance constraints, (2.3) also for $t = 0, ..., T$, the intertemporal conditions

$$\frac{u_C(t)}{P_t} = R_t E_t \left[\beta \frac{u_C(t+1)}{P_{t+1}} \right], \quad t = 0, ..., T - 1$$

$$Q_{t,t+1} = \beta \frac{u_C(t+1)}{u_C(t)} \frac{P_t}{P_{t+1}}, \quad t = 0, ..., T - 1 \quad (4.1)$$

and, for any $0 \leq t \leq T$, and state s, the budget constraints

$$\sum_{s=0}^{T-t} E_t Q_{t,t+s+1} M_{t+s} (R_{t+s} - 1) = \mathbb{W}_t + \sum_{s=0}^{T-t} E_t Q_{t,t+s+1} P_{t+s} [G_{t+s} - T_{t+s}]$$

where $E_0 Q_{T+1} = \frac{E_0 Q_T}{R_T}$.

10
The budget constraints restrict, not uniquely, the levels of state noncontingent debts and taxes. Assuming these policy variables are not set exogenously we can ignore this restriction. The equilibrium can then be summarized by

\[
\frac{u_C(C(R_t), L(R_t))}{C(R_t)} = \beta R_t E_t \left[\frac{u_C(C(R_{t+1}), L(R_{t+1}))}{C(R_{t+1})} \right], \ t = 0, ..., T - 1 \quad (4.2)
\]

Note that the total number of money supplies and interest rates is the same. There are \(\Phi_0 + \Phi_1 + ... + \Phi_T\) of each monetary policy variable. The number of equations is \(\Phi_0 + \Phi_1 + ... + \Phi_{T-1}\). In order for there to be a unique equilibrium need to add to the system \(\Phi_0 + \Phi_1 + ... + 2\Phi_T\) independent restrictions. One possibility is to set exogenously the interest rates in every state and in addition the money supply in every terminal node. Similarly there is a unique equilibrium if the money supply is set exogenously in every state and the interest rates are set in every terminal node. In this sense, the two monetary instruments are equivalent in this economy.

When policy is conducted with the forward looking feedback rule in Section 2, the policy for the interest rate in the terminal period \(R_T\), cannot be a function of variables in period \(T + 1\). If these rates are exogenous constants, it still remains to determine the money supply in every state at \(T\).

In this finite horizon economy there is an exact measure for the degrees of freedom in conducting policy. In an economy that lasts from \(t = 0\) to \(t = T\), these are \(\Phi_0 + \Phi_1 + ... + 2\Phi_T\). This measure does not depend on how policy is conducted, whether with constant functions or functions of endogenous variables, and it also does not depend on price setting restrictions. The price setting restrictions introduce as many variables as number of restrictions.

5. Robustness: Price setting restrictions

In this section we show that the results derived above extend to an environment with prices set in advance. We modify the environment to consider price setting restrictions. There is a continuum of goods, indexed by \(i \in [0, 1]\). Each good \(i\) is produced by a different firm. The firms are monopolistic competitive and set prices in advance with different lags.

The households have preferences described by (2.5) where \(C_t\) is now the com-
posite consumption

\[C_t = \left[\int_0^1 c_t(i)^{\frac{\theta-1}{\theta}} \, di \right]^{\frac{\theta}{\theta-1}}, \theta > 1. \]

Households have a demand function for each good given by

\[c_t(i) = \left(\frac{p_t(i)}{P_t} \right)^{-\theta} C_t. \]

where \(P_t \) is the price level,

\[P_t = \left[\int p_t(i)^{1-\theta} \, di \right]^{\frac{1}{1-\theta}}. \tag{5.1} \]

The households’ intertemporal and intratemporal conditions are as before, (2.5), (2.6) and (2.7).

The government must finance an exogenous path of government purchases \(\{G_t\}_{t=0}^\infty \), such that

\[G_t = \left[\int_0^1 g_t(i)^{\frac{\theta-1}{\theta}} \, di \right]^{\frac{\theta}{\theta-1}}, \theta > 0 \tag{5.2} \]

Given the prices on each good \(i \) in units of money, \(P_t(i) \), the government minimizes expenditure on government purchases by deciding according to

\[\frac{g_t(i)}{G_t} = \left(\frac{p_t(i)}{P_t} \right)^{-\theta} \tag{5.3} \]

The resource constraints can be written as

\[(C_t + G_t) \int_0^1 \left(\frac{p_t(i)}{P_t} \right)^{-\theta} \, di = A_t N_t. \tag{5.4} \]

We consider now that firms set prices in advance. A fraction \(\alpha_j \) firms set prices \(j \) periods in advance with \(j = 0, \ldots, J - 1 \). Firms decide the price for period \(t \) with the information up to period \(t - j \) to maximize:

\[E_{t-j} \left[Q_{t-j,t+1} (p_t(i)y_t(i) - W_t n_t(i)) \right] \]

subject to the production function

\[y_t(i) \leq A_t n_t(i) \]
and the demand function

\[y_t(i) = \left(\frac{p_t(i)}{P_t} \right)^{-\theta} Y_t \]

(5.5)

where \(y_t(i) = c_t(i) + g_t(i) \)

The optimal price is

\[p_t(i) = p_{t,j} = \frac{\theta}{(\theta - 1)} E_{t-j} \left[\eta_{t,j} \frac{W_t}{A_t} \right] \]

where

\[\eta_{t,j} = \frac{Q_{t-j,t+1} P_t^\theta Y_t}{E_{t-j} [Q_{t-j,t+1} P_t^\theta Y_t]} \]

The price level at date \(t \) can be written as

\[P_t = \left[\sum_{j=0}^{J-1} \alpha_j (p_{t,j})^{1-\theta} \right]^{\frac{1}{1-\theta}} \]

(5.6)

When we compare the two sets of equilibrium conditions, under flexible and prices set in advance, here we are adding more variables, the prices of the differentially restricted firms, but we also add the same number of equations. This argument works in this case, because can write the new equations as functions of current and past variables.

6. Concluding Remarks

The problem of multiplicity of equilibria under an interest rate policy has been addressed, after McCallum (1981), by an extensive literature on determinacy under interest rate rules. Interest rate feedback rules on endogenous variables such as the inflation rate can, with appropriately chosen coefficients, deliver determinate equilibria. There are still multiple equilibria but only one of those equilibria stays in the proximity of a steady state.

In this paper we show that in a simple monetary model with flexible prices or prices set in advance there are interest rate feedback rules, and also money supply feedback rules, that implement unique equilibria. The interest rate feedback rules are forward rules that resemble the policy rules that central banks appear to follow.
The results are not robust to the following change in the theoretical environment. The model economy has an infinite horizon. Suppose that we considered instead the analogous finite horizon economy. In that economy, for an arbitrarily large horizon, there would be no single instrument feedback rules to implement unique equilibria.

References

[7] Carlstrom C. T. and Timothy S. Fuerst, 2001a, ”Taylor Rules in a Model that Satisfies the Natural Rate Hypothesis”, working paper 01-16, Federal Reserve Bank of Cleveland.

Working Paper Series

A series of research studies on regional economic issues relating to the Seventh Federal Reserve District, and on financial and economic topics.

Does Bank Concentration Lead to Concentration in Industrial Sectors?
Nicola Cetorelli
WP-01-01

On the Fiscal Implications of Twin Crises
Craig Burnside, Martin Eichenbaum and Sergio Rebelo
WP-01-02

Sub-Debt Yield Spreads as Bank Risk Measures
Douglas D. Evanoff and Larry D. Wall
WP-01-03

Productivity Growth in the 1990s: Technology, Utilization, or Adjustment?
Susanto Basu, John G. Fernald and Matthew D. Shapiro
WP-01-04

Do Regulators Search for the Quiet Life? The Relationship Between Regulators and The Regulated in Banking
Richard J. Rosen
WP-01-05

Learning-by-Doing, Scale Efficiencies, and Financial Performance at Internet-Only Banks
Robert DeYoung
WP-01-06

The Role of Real Wages, Productivity, and Fiscal Policy in Germany’s Great Depression 1928-37
Jonas D. M. Fisher and Andreas Hornstein
WP-01-07

Nominal Rigidities and the Dynamic Effects of a Shock to Monetary Policy
Lawrence J. Christiano, Martin Eichenbaum and Charles L. Evans
WP-01-08

Outsourcing Business Service and the Scope of Local Markets
Yukako Ono
WP-01-09

The Effect of Market Size Structure on Competition: The Case of Small Business Lending
Allen N. Berger, Richard J. Rosen and Gregory F. Udell
WP-01-10

Deregulation, the Internet, and the Competitive Viability of Large Banks and Community Banks
Robert DeYoung and William C. Hunter
WP-01-11

Price Ceilings as Focal Points for Tacit Collusion: Evidence from Credit Cards
Christopher R. Knittel and Victor Stango
WP-01-12

Gaps and Triangles
Bernardino Adão, Isabel Correia and Pedro Teles
WP-01-13

A Real Explanation for Heterogeneous Investment Dynamics
Jonas D.M. Fisher
WP-01-14

Recovering Risk Aversion from Options
Robert R. Bliss and Nikolaos Panigirtzoglou
WP-01-15

Economic Determinants of the Nominal Treasury Yield Curve
Charles L. Evans and David Marshall
WP-01-16
Price Level Uniformity in a Random Matching Model with Perfectly Patient Traders
Edward J. Green and Ruilin Zhou

Earnings Mobility in the US: A New Look at Intergenerational Inequality
Bhashkar Mazumder

The Effects of Health Insurance and Self-Insurance on Retirement Behavior
Eric French and John Bailey Jones

The Effect of Part-Time Work on Wages: Evidence from the Social Security Rules
Daniel Aaronson and Eric French

Antidumping Policy Under Imperfect Competition
Meredith A. Crowley

Is the United States an Optimum Currency Area?
An Empirical Analysis of Regional Business Cycles
Michael A. Kouparitsas

A Note on the Estimation of Linear Regression Models with Heteroskedastic Measurement Errors
Daniel G. Sullivan

The Mis-Measurement of Permanent Earnings: New Evidence from Social Security Earnings Data
Bhashkar Mazumder

Pricing IPOs of Mutual Thrift Conversions: The Joint Effect of Regulation and Market Discipline
Elijah Brewer III, Douglas D. Evanoff and Jacky So

Opportunity Cost and Prudentiality: An Analysis of Collateral Decisions in Bilateral and Multilateral Settings
Herbert L. Baer, Virginia G. France and James T. Moser

Outsourcing Business Services and the Role of Central Administrative Offices
Yukako Ono

Strategic Responses to Regulatory Threat in the Credit Card Market*
Victor Stango

The Optimal Mix of Taxes on Money, Consumption and Income
Fiorella De Fiore and Pedro Teles

Expectation Traps and Monetary Policy
Stefania Albanesi, V. V. Chari and Lawrence J. Christiano

Monetary Policy in a Financial Crisis
Lawrence J. Christiano, Christopher Gust and Jorge Roldos

Regulatory Incentives and Consolidation: The Case of Commercial Bank Mergers and the Community Reinvestment Act
Raphael Bostic, Hamid Mehran, Anna Paulson and Marc Saidenberg
<table>
<thead>
<tr>
<th>Working Paper Series (continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technological Progress and the Geographic Expansion of the Banking Industry</td>
</tr>
<tr>
<td>Allen N. Berger and Robert DeYoung</td>
</tr>
<tr>
<td>Choosing the Right Parents: Changes in the Intergenerational Transmission</td>
</tr>
<tr>
<td>of Inequality — Between 1980 and the Early 1990s</td>
</tr>
<tr>
<td>David I. Levine and Bhashkar Mazumder</td>
</tr>
<tr>
<td>The Immediacy Implications of Exchange Organization</td>
</tr>
<tr>
<td>James T. Moser</td>
</tr>
<tr>
<td>Maternal Employment and Overweight Children</td>
</tr>
<tr>
<td>Patricia M. Anderson, Kristin F. Butcher and Phillip B. Levine</td>
</tr>
<tr>
<td>The Costs and Benefits of Moral Suasion: Evidence from the Rescue of</td>
</tr>
<tr>
<td>Long-Term Capital Management</td>
</tr>
<tr>
<td>Craig Furfine</td>
</tr>
<tr>
<td>On the Cyclical Behavior of Employment, Unemployment and Labor Force Participation</td>
</tr>
<tr>
<td>Marcelo Veracierto</td>
</tr>
<tr>
<td>Do Safeguard Tariffs and Antidumping Duties Open or Close Technology Gaps?</td>
</tr>
<tr>
<td>Meredith A. Crowley</td>
</tr>
<tr>
<td>Technology Shocks Matter</td>
</tr>
<tr>
<td>Jonas D. M. Fisher</td>
</tr>
<tr>
<td>Money as a Mechanism in a Bewley Economy</td>
</tr>
<tr>
<td>Edward J. Green and Ruilin Zhou</td>
</tr>
<tr>
<td>Optimal Fiscal and Monetary Policy: Equivalence Results</td>
</tr>
<tr>
<td>Isabel Correia, Juan Pablo Nicolini and Pedro Teles</td>
</tr>
<tr>
<td>Real Exchange Rate Fluctuations and the Dynamics of Retail Trade Industries</td>
</tr>
<tr>
<td>on the U.S.-Canada Border</td>
</tr>
<tr>
<td>Jeffrey R. Campbell and Beverly Lapham</td>
</tr>
<tr>
<td>Bank Procyclicality, Credit Crunches, and Asymmetric Monetary Policy Effects:</td>
</tr>
<tr>
<td>A Unifying Model</td>
</tr>
<tr>
<td>Robert R. Bliss and George G. Kaufman</td>
</tr>
<tr>
<td>Location of Headquarter Growth During the 90s</td>
</tr>
<tr>
<td>Thomas H. Klier</td>
</tr>
<tr>
<td>The Value of Banking Relationships During a Financial Crisis:</td>
</tr>
<tr>
<td>Evidence from Failures of Japanese Banks</td>
</tr>
<tr>
<td>Elijah Brewer III, Hesna Genay, William Curt Hunter and George G. Kaufman</td>
</tr>
<tr>
<td>On the Distribution and Dynamics of Health Costs</td>
</tr>
<tr>
<td>Eric French and John Bailey Jones</td>
</tr>
<tr>
<td>The Effects of Progressive Taxation on Labor Supply when Hours and Wages are</td>
</tr>
<tr>
<td>Jointly Determined</td>
</tr>
<tr>
<td>Daniel Aaronson and Eric French</td>
</tr>
</tbody>
</table>
The Case of the Missing Productivity Growth:
Or, Does information technology explain why productivity accelerated in the United States but not the United Kingdom?
Susanto Basu, John G. Fernald, Nicholas Oulton and Sylaja Srinivasan

Inside-Outside Money Competition
Ramon Marimon, Juan Pablo Nicolini and Pedro Teles

The Importance of Check-Cashing Businesses to the Unbanked: Racial/Ethnic Differences
William H. Greene, Sherrie L.W. Rhine and Maude Toussaint-Comeau

A Structural Empirical Model of Firm Growth, Learning, and Survival
Jaap H. Abbring and Jeffrey R. Campbell

Market Size Matters
Jeffrey R. Campbell and Hugo A. Hopenhayn

The Cost of Business Cycles under Endogenous Growth
Gadi Barlevy

The Past, Present, and Probable Future for Community Banks
Robert DeYoung, William C. Hunter and Gregory F. Udell

Measuring Productivity Growth in Asia: Do Market Imperfections Matter?
John Fernald and Brent Neiman

Revised Estimates of Intergenerational Income Mobility in the United States
Bhashkar Mazumder

Product Market Evidence on the Employment Effects of the Minimum Wage
Daniel Aaronson and Eric French

Estimating Models of On-the-Job Search using Record Statistics
Gadi Barlevy

Banking Market Conditions and Deposit Interest Rates
Richard J. Rosen

Creating a National State Rainy Day Fund: A Modest Proposal to Improve Future State Fiscal Performance
Richard Mattoon

Managerial Incentive and Financial Contagion
Sujit Chakravorti, Anna Llyina and Subir Lall

Women and the Phillips Curve: Do Women’s and Men’s Labor Market Outcomes Differentially Affect Real Wage Growth and Inflation?
Katharine Anderson, Lisa Barrow and Kristin F. Butcher

Evaluating the Calvo Model of Sticky Prices
Martin Eichenbaum and Jonas D.M. Fisher
<table>
<thead>
<tr>
<th>Working Paper Series (continued)</th>
</tr>
</thead>
</table>
| The Growing Importance of Family and Community: An Analysis of Changes in the Sibling Correlation in Earnings
Bhashkar Mazumder and David I. Levine |
| WP-03-24 |
| Should We Teach Old Dogs New Tricks? The Impact of Community College Retraining on Older Displaced Workers
Louis Jacobson, Robert J. LaLonde and Daniel Sullivan |
| WP-03-25 |
| Trade Deflection and Trade Depression
Chad P. Brown and Meredith A. Crowley |
| WP-03-26 |
| China and Emerging Asia: Comrades or Competitors?
Alan G. Ahearne, John G. Fernald, Prakash Loungani and John W. Schindler |
| WP-03-27 |
| International Business Cycles Under Fixed and Flexible Exchange Rate Regimes
Michael A. Kouparitsas |
| WP-03-28 |
| Firing Costs and Business Cycle Fluctuations
Marcelo Veracierto |
| WP-03-29 |
| Spatial Organization of Firms
Yukako Ono |
| WP-03-30 |
| Government Equity and Money: John Law’s System in 1720 France
François R. Velde |
| WP-03-31 |
| Deregulation and the Relationship Between Bank CEO Compensation and Risk-Taking
Elijah Brewer III, William Curt Hunter and William E. Jackson III |
| WP-03-32 |
| Compatibility and Pricing with Indirect Network Effects: Evidence from ATMs
Christopher R. Knittel and Victor Stango |
| WP-03-33 |
| Self-Employment as an Alternative to Unemployment
Ellen R. Rissman |
| WP-03-34 |
| Where the Headquarters are – Evidence from Large Public Companies 1990-2000
Tyler Diacon and Thomas H. Klier |
| WP-03-35 |
| Standing Facilities and Interbank Borrowing: Evidence from the Federal Reserve’s New Discount Window
Craig Furfine |
| WP-04-01 |
| Netting, Financial Contracts, and Banks: The Economic Implications
William J. Bergman, Robert R. Bliss, Christian A. Johnson and George G. Kaufman |
| WP-04-02 |
| Real Effects of Bank Competition
Nicola Cetorelli |
| WP-04-03 |
| Finance as a Barrier To Entry: Bank Competition and Industry Structure in Local U.S. Markets?
Nicola Cetorelli and Philip E. Strahan |
| WP-04-04 |
Working Paper Series (continued)

The Dynamics of Work and Debt
Jeffrey R. Campbell and Zvi Hercowitz
WP-04-05

Fiscal Policy in the Aftermath of 9/11
Jonas Fisher and Martin Eichenbaum
WP-04-06

Merger Momentum and Investor Sentiment: The Stock Market Reaction
To Merger Announcements
Richard J. Rosen
WP-04-07

Earnings Inequality and the Business Cycle
Gadi Barlevy and Daniel Tsiddon
WP-04-08

Platform Competition in Two-Sided Markets: The Case of Payment Networks
Sujit Chakravorti and Roberto Roson
WP-04-09

Nominal Debt as a Burden on Monetary Policy
Javier Díaz-Giménez, Giorgia Giovannetti, Ramon Marimon, and Pedro Teles
WP-04-10

On the Timing of Innovation in Stochastic Schumpeterian Growth Models
Gadi Barlevy
WP-04-11

Policy Externalities: How US Antidumping Affects Japanese Exports to the EU
Chad P. Bown and Meredith A. Crowley
WP-04-12

Sibling Similarities, Differences and Economic Inequality
Bhashkar Mazumder
WP-04-13

Determinants of Business Cycle Comovement: A Robust Analysis
Marianne Baxter and Michael A. Kouparitsas
WP-04-14

The Occupational Assimilation of Hispanics in the U.S.: Evidence from Panel Data
Maude Toussaint-Comeau
WP-04-15

Reading, Writing, and Raisinet$: Are School Finances Contributing to Children’s Obesity?
Patricia M. Anderson and Kristin F. Butcher
WP-04-16

Learning by Observing: Information Spillovers in the Execution and Valuation
of Commercial Bank M&As
Gayle DeLong and Robert DeYoung
WP-04-17

Prospects for Immigrant-Native Wealth Assimilation:
Evidence from Financial Market Participation
Una Okonkwo Osili and Anna Paulson
WP-04-18

Institutional Quality and Financial Market Development:
Evidence from International Migrants in the U.S.
Una Okonkwo Osili and Anna Paulson
WP-04-19

Are Technology Improvements Contractionary?
Susanto Basu, John Fernald and Miles Kimball
WP-04-20
Working Paper Series (continued)

The Minimum Wage, Restaurant Prices and Labor Market Structure
Daniel Aaronson, Eric French and James MacDonald

Betcha can’t acquire just one: merger programs and compensation
Richard J. Rosen

Not Working: Demographic Changes, Policy Changes, and the Distribution of Weeks (Not) Worked
Lisa Barrow and Kristin F. Butcher

The Role of Collateralized Household Debt in Macroeconomic Stabilization
Jeffrey R. Campbell and Zvi Hercowitz

Advertising and Pricing at Multiple-Output Firms: Evidence from U.S. Thrift Institutions
Robert DeYoung and Evren Örs

Monetary Policy with State Contingent Interest Rates
Bernardino Adão, Isabel Correia and Pedro Teles

Comparing location decisions of domestic and foreign auto supplier plants
Thomas Klier, Paul Ma and Daniel P. McMillen

China’s export growth and US trade policy
Chad P. Bown and Meredith A. Crowley

Where do manufacturing firms locate their Headquarters?
J. Vernon Henderson and Yukako Ono

Monetary Policy with Single Instrument Feedback Rules
Bernardino Adão, Isabel Correia and Pedro Teles