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Abstract

We document extreme bias and dispersion in the small sample distributions of five standard 

regression tests of the expectations hypothesis of the term structure of interest rates. These biases derive 

from the extreme persistence in short interest rates. We derive approximate analytic expressions for these 

biases, and we characterize the small-sample distributions of these test statistics under a simple first-order 

autoregressive data generating process for the short rate. The biases are also present when the short rate 

is modeled with a more realistic regime-switching process. The differences between the small-sample 

distributions of test statistics and the asymptotic distributions partially reconcile the different inferences 

drawn when alternative tests are used to evaluate the expectations hypothesis. In general, the test statistics 

reject the expectations hypothesis more strongly and uniformly when they are evaluated using the small- 

sample distributions, as compared to the asymptotic distributions.

On Biases in Tests of the Expectations Hypothesis

of the Term Structure of Interest Rates
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The expectations hypothesis is probably the oldest and most studied theory of the term structure 

of interest rates (see Fisher (1896) and Lutz (1940)). Although the modem finance literature has 

developed more sophisticated models of the term structure, the empirical evidence against the basic 

expectations hypothesis is far from conclusive and offers several interesting puzzles.

For example, Campbell and Shiller (1991) find different results with U.S. data depending on the 

regression specification and the maturity of the bonds. Briefly, the change in the U.S. long-term interest 

rate does not behave as predicted by the theory. Actual long-term rates move in the opposite direction 

from that predicted by the theory. The predictions of the expectations hypothesis for long rates are 

rejected very strongly at the short end of the term structure and quite comfortably at the long end using 

the traditional asymptotic distribution theory. On the other hand, future short-term rates move in the 

direction predicted by the expectations hypothesis. The theory is still rejected at the short end of the term 

structure, but this empirical specification does not reject the expectations hypothesis at the long end of the 

term structure. Campbell and Shiller (1991, p. 505) note that these two sets of results produce an apparent 

paradox:

[T]he slope of the term structure almost always gives a forecast in the wrong direction for the 
short-term change in the yield on the longer bond, but gives a forecast in the right direction for 
long-term changes in short rates.

Campbell and Shiller (1991) use two regression tests and two specification tests from a vector 

autoregression. A fifth specification test is that of Fama (1984). Although this specification has delivered 

rejections of the expectations hypothesis at the short end of the maturity spectrum using U.S. data (see 

Fama (1984), Fama and Bliss (1987) and Stambaugh (1988)), Jorion and Mishkin (1991) found no 

evidence against the expectations hypothesis using longer maturities and data from the United States, the 

United Kingdom, Germany and Switzerland. Hardouvelis (1994) also found less evidence against the 

expectations hypothesis using international data and the Campbell-Shiller specification tests.

The purpose of this paper is to reexamine the econometric methodology underlying these different
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specification tests. The main contribution of the paper is to demonstrate that all regression tests of the 

expectations hypothesis are severely biased in small samples. We show that the high persistence of short­

term interest rates induces extreme bias and extreme dispersion into the small sample distributions of the 

test statistics. Intuitively, the well-known downward bias in estimating autocorrelations (see Marriott and 

Pope (1954) and Kendall (1954)) translates into a large upward bias in the slope coefficients of standard 

tests of the expectation hypothesis because the dependent variables depend on future short rates and the 

regressors depend negatively on current short rates. This bias is an example of the biases in regressions 

on persistent, pre-determined, but not necessarily exogenous regressors studied by Stambaugh (1986), 

Mankiw and Shapiro (1986), and Elliott and Stock (1994).

The bias makes it important to use well-designed Monte Carlo simulations to derive the small 

sample distributions of test statistics. Evaluating the econometric analysis of the expectations hypothesis 

using the small sample distributions may strengthen rejections (because of the positive bias) or weaken 

rejections (because of the increased dispersion). While Campbell and Shiller (1991) and others have used 

Monte Carlo methods to assess the validity of their asymptotic distribution theory and have often reported 

that the asymptotic theory is not to be trusted, the typical Monte Carlo experiment has not adjusted for 

the small sample bias in the coefficients that are estimated to form the data generating process.

The organization of the paper is as follows. Section one reproduces some empirical evidence on 

the expectation hypothesis, using five statistical tests that have appeared in the literature. Section two 

derives the small sample biases for these specifications analytically assuming a first-order autoregressive 

model for the short rate. Section three examines Monte Carlo evidence on both the slope coefficients and 

their t-statistics under the first-order autoregression data generating process. The fourth section considers 

Monte Carlo simulations for a more realistic data generating process for the short rate (a regime-switching 

model). The last section provides some concluding remarks.
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We follow Campbell and Shiller (1991) in defining the expectations theory of the term structure 

as the hypothesis that continuously-compounded long interest rates (the yields on long-term pure discount 

bonds) are weighted averages of expected future values of continuously-compounded short interest rates, 

possibly with an additive time-invariant term premium. Formally,

r(t,n) = E,r(t+i) + cn, 0 )
n j,o

where r(t,n) denotes the continuously compounded annualized yield on a bond with n periods to maturity 

at time t, r(t) denotes the one-period short rate, and cn is the term premium.

A number of tests of equation (1) have been proposed in the literature. First, as noted by 

Campbell and Shiller (1991), equation (1) implies that a maturity specific multiple of the term spread, 

r(t,n) - r(t), predicts future changes in the long bond yield. In particular, the slope coefficient, a,, should 

equal unity in the following regression:

1. A Review of Empirical Evidence on the Expectations Theory of the Term Structure

r(t+l,n-l) -  r(t,n) = a0 + a 1 [r(t,n) - r(t)] + £(t+l). (2)
(n-1)

Second, equation (1) implies that the current term spread should forecast a weighted average of future 

changes in short interest rates. Campbell and Shiller (1991) note that the slope coefficient, 5,, should 

equal unity in the following regression:

n-1

t-1
i-_L (r(t+i)-r(t+i-l)) = 50 + 5,[r(t,n) -r(t)] + e(t+n-l). (3)

A third test of equation (1), implemented by Fama (1984), Fama and Bliss (1987), and Jorion and 

Mishkin (1991), uses forward rates implicit in the term structure. Define f(t,n-l) to be the one-period 

forward rate at time t for an investment n-1 periods in the future:
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f(t,n -l) = nr(t,n) -  (n -l)r(t,n -l). ( 4 )

The expectations hypothesis implies that the forward premium, f(t,n-l) - r(t), is thd* expected change in 

the short rate, E,[r(t+n-l) - r(t)]. Consequently, the slope coefficient, y„ should equal unity in the 

regression of the ex post change in the short rate on the forward premium:

r(t+n-l) -  r(t) = y0 + ^ [f(t,n-l) -  r(t)] + e(t+n-l). (5)

The second and third columns of Table 1 reproduce some of the evidence on equations (2) and

(3) from Campbell and Shiller (1991). These authors use McCulloch’s (1990) monthly data on zero- 

coupon bond yields, from 1952:1 through 1987:2. In Table 1, the short rate has a one-month maturity. 

The fourth column displays evidence on equation (5), using the same data set. (The other columns will 

be discussed below.)

In the estimates of equation (2) reported in Table 1, the slope coefficient is significantly below 

unity for all maturities, and the point estimate is almost always negative. Furthermore, the point estimates 

become more negative as yields of longer-term bonds are used to form the dependent variable and the 

term spread. However, the specification tests in equations (3) and (5) provide weaker evidence against 

the expectations theory than was found with equation (2). The estimated slope coefficients are almost 

always positive, and, for the longer maturities, they are insignificantly different from unity.1

In addition to the single-equation regression tests in equations (2), (3), and (5), Campbell and 

Shiller (1991) derive tests of equation (1) that use a bivariate vector autoregression (VAR). The VAR 

uses the change in the short rate, Ar(t), and the term spread, s(t,n) s  r(t,n) - r(t). To understand the VAR

1 At this point in the paper, we are defining the concept of statistical significance relative to the asymptotic 

distribution of the OLS estimators. As we shall see in sections 2 and 3, below, the small-sample 

distributions of these estimators differ substantially from their asymptotic counterparts, so the asymptotic 

standard errors should be interpreted with care.
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statistics, let A denote the first-order, companion-form of the VAR parameter matrix. From equation (I), 

the term spread is s(t,n) = X?;}[l-(i/n)]E,Ar(t+i). By evaluating the expected changes in the short rate using 

the VAR, one can obtain an expression for the term spread that Campbell and Shiller (1991) refer to as 

the "theoretical spread", denoted s'(t,n):

n-l

s'(t,n) s  52 (1 -iAOel 'A'
i-1

where el is an indicator vector with one in the first row and zeros everywhere else.

The statistics proposed by Campbell and Shiller (1991) as tests of the expectations hypothesis are

(i) the correlation between s'(t,n) and the actual term spread, s(t,n), and (ii) the ratio of the standard 

deviation of s'(t,n) to the standard deviation of s(t,n). Both statistics are functions of the coefficients of 

the VAR and the covariance matrix of the VAR innovations. Under the expectations hypothesis, both 

should equal one. The columns of Table 1 labeled "Correlation" and "Standard Dev. Ratio" report these 

statistics from Campbell and Shiller (1991). It is of interest that the ratio of the standard deviations 

provides stronger evidence against the expectations hypothesis than the correlation statistic. For the longer 

maturities, the correlation statistic is close to its theoretical value of unity.

2. Analytical Approximations to the Biases in Regression Tests of the Expectation Hypothesis

In this section, we derive first-order approximations to the small sample biases for the different 

specification tests of the expectations hypothesis under an AR(1) model for the short-rate:

r(t+l) = p + pr(t) + e(t+l). ^

Although we choose the AR(1) for analytical tractability, for monthly data a highly serially correlated 

AR(1) model is actually a reasonable approximation of the data. In Table 2, we report the OLS estimates 

of p, p, and a (the standard deviation of e(t+l)), which we denote p, p, and 6, respectively. These 

estimates are reported for the sample corresponding to the data for Table 1.

Table 2 also reports bias-adjusted values of p, p, and o. Kendall (1954) shows that, to a first-

Ar(t)
s(t,n)

(6)
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order approximation,

(8)

where T denotes the sample size. The bias adjustment unwinds the bias in equation (8) such that the 

"bias-adjusted p" is (0 + (1/T))/(1 - (3/T», which makes the bias equal to -0.0094 for the 421 observations 

and the estimated p. The bias-adjusted p and bias-adjusted a modify p and S to insure that the 

unconditional mean and standard deviation of r(t) remain unchanged by the bias-adjustment in p.

We now derive first-order approximations for the five specification tests of the expectations 

hypothesis.

Proposition 1

Under equations (1) and (7), the expected value o f  the slope coefficient o f the firs t specification test in 

equation (2) is

(The proofs of the Propositions are given in the Appendix.)

Denote the coefficient multiplying the bias in p in equation (9) by A(p,n) and the bias in p by 0,. 

Note that A(p,n) is negative and 0, is negative as well. Therefore, the estimate of the slope coefficient 

ft, is biased upward. Note that A(p,2) = -2/(1 - p) and A(p, °°) = -1/(1 - p). While the bias decreases 

as the horizon n increases, the bias is still substantial for large n, especially if p is near unity. For 

example, at the ten-year maturity (n = 120), A(0.9865,120) = -117.9, which combined with the estimated 

value of the bias in p of -0.0094, produces an expected value of a, of 2.109, more than double the 

asymptotic value of unity. Analytical values for the expected values of the slope coefficients for other 

values of n will be reported below in Column 2 of Panel A in Table 3.

When n is large, data on bonds of slightly different maturities are often unavailable. As a result,

= 1 + (9)
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researchers use the following modification of equation (2), in which the regressand is constructed from

yields on constant maturity bonds:

r(t+lai) -  r(t,n) = a0 + a, 1 [r(t,n) -r(t)] + e(t+l).
(n-1)

(10)

While the approximation may seem relatively innocuous, it introduces an approximation error into the 

regression in addition to the small sample bias. Under our data generating process in equation (7), we can 

analytically determine the size of this approximation error.

Proposition 2

Under equations (1) and (7), the expected value o f  the slope coefficient o f  the firs t specification test using 

the approximation as in equation (10) is

The bias term A2(p,n) is quite similar to A(p,n), derived above in Proposition 1. The approximation error 

term c(p,n), which is not zero asymptotically as the sample size increases, is positive and can differ 

substantially from zero. For n = 2, c(p,n) = p. While the approximation error becomes smaller for large 

n, it is still substantial for maturities often used in empirical work. Even with maturities as high as ten 

years (n=120), c(0.9865,120) = 0.584, and the mean of the OLS estimator of a, in the Campbell-Shiller 

sample is 2.687, rather than the population value of unity. The analytical biases in this specification test 

are reported in Column 2 of Panel B in Table 3.

E(&j) = 1 + c(p,/i) + A2(p,/t)0 (ID

where

c( ) = - n i l  -p)p" * p(l -p")
n(l -p) -  (1 -p")

(12)
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The second specification test, equation (3), is also subject to severe small sample bias.

Proposition 3

Under equations (1) and (7), the expected value o f the slope coefficient o f the second specification test 

in equation (3) is

n - 1
* [ * , ] - ! » ........- (1~p).......E e ,

n ( l -p) - (1 -p")>r '
03)

where 0, denotes the sm all sample bias in the OLS estimate o f p7.

Using results from Kendall (1954, equation (20)) one can derive the following first order approximation 

to 0=:

9j = - (1 +P).(1 -pi) + 2jpi 1
T - ( n - l)

(14)
.(1 -P)

For n = 2, the bias is - 0,/(l - p), which is one-half of the small sample bias in equation (2). For longer 

horizons, additional bias terms must be added. In Column 2 of Panel C in Table 3 below, we report 

biases for this specification. Interestingly, they are substantially smaller than for specification (2). Of 

course, this specification implies the loss of n-1 observations relative to the first specification, which will 

be reflected in the Monte Carlo results in the next section. Finally, specification (3) implies that the error 

term e(t+n-l) is a moving average process of order n-1. Several studies (Hodrick (1992), Richardson and 

Stock (1991)) have noted the poor small sample properties of test statistics based on kernel-estimators of 

the asymptotic variance of the OLS-estimators in analogous situations. We will examine the small sample 

behavior of the t-statistics for the slope coefficients for all regression specifications in Table 4 below.

The third specification test, equation (5), is also subject to small sample bias.

Proposition 4:

Under equations (1) and (7), the expected value o f the slope coefficient o f equation (5) is

8
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(15)EW  -  1 + T7~“7Ti\(1 - p - 1)

where 0„.y denotes the sm all sample bias in estimating p"'1.

These biases are reported below in Column 2 of Panel D in Table 3 and are comparable in magnitude to 

those for specification (3).

We now turn to biases in the two VAR-based statistics under the maintained assumption that the 

short rate is generated by the AR(1) in equation (7). We will derive analytical approximations to the bias 

for a first-order VAR. In the Monte Carlo experiments below, we show results for both a first-order and 

a fourth-order VAR, the latter being the VAR-order used in Campbell and Shiller (1991). To simplify 

notation, let rj(p,n) = (l/n)(l - p")/(l - p) - 1. Under the data generating process of equation (7) the term 

spread is s(t,n) = ri(p,n)r(t). The first-order VAR can then be written:

(16)Ar(t+1) = A + A Ar(t)
r|(p,n)r(t+l)> jKp.nMt^ + e(t+l).

Let A denote the OLS estimator of A. It follows from equations (7) and (16) that

0 e - ‘
plim(A) = n(p.n) 

P P

(17)

We can write the theoretical spread as follows:

s'(t, n) = xnAr(t) + yns(t,n), (18)

where xn and yn are the implied coefficients from equation (6). The coefficients xn and yn are functions 

of the estimated A parameters. When x„ and yn are evaluated using plim(A), one finds that x„ = 0, and 

yn = 1. Hence, in an infinite sample the correlation of the theoretical spread and the actual spread would 

be one, and the ratio of their standard deviations would also equal one. In finite samples, however, x„ and 

yn are biased. The biases in xn and yn are functions of the bias matrix of the VAR coefficients, which we

9
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denote E[B], While one might think that both of the VAR-based statistics would inherit a bias from the 

biases in xn and yn, it turns out that, to a first approximation, only the standard deviation ratio is biased: 

Proposition 5:

To a first-order approxim ation, the correlation o f the theoretical spread s'(t,n) and the actual spread s(t,n) 

is unbiased in sm all samples, but the ratio o f the standard deviation o f the theoretical spread to the 

standard deviation o f the actual spread is biased:

varjs 'it , n))~| 
var(s(t, n)) J

11/2
= 1 + i .1. bias) + (y bias)

fi(p, n)

(19)

To a first-order approxim ation, the biases in xn and yn are

el' n - 1

(xn bias, yn bias) = — £  (n “/) 
n j.i

2 2

+ E £
i»l *«1 _/-°

-  (0,1).
(20)

where Jik is the indicator m atrix with 1 in the i-k position and zeros everywhere else, and E[B;jJ denotes 

the bias in the ( i,k fh elem ent o f A.

To implement Proposition 5, we need to determine the bias matrix E[B] of the VAR coefficients. It is 

extremely difficult to derive a first-order approximation to this bias matrix when A0 (the constant term in 

the VAR) is unknown. For this reason, we present a first-order approximation to E[B] for the simpler case 

where the unconditional means of the variables in the VAR are known. (Without loss of generality, these 

means can then be set equal to zero, since the VAR can be estimated with de-meaned data.) It is likely 

that this approximation understates the magnitude of the bias.2 In the next section, we will compare these 

first-order approximations to the average values of our Monte Carlo estimates.

2 In the univariate case of equation (7), Kendall (1954) shows that the first-order approximation to the bias 

in p is -(1 + 3p)/T when p is unknown, but only -2p/T when p is known.
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The VAR coefficients are non-linear functions of the following random variables:

KLi «(t+Or(t) (21)

V s E,1.! e(t+l)r(t-l)

The OLS-estimator for the VAR parameters for a sample of size T can be written as:

(22)

A = plim(A) + B s  plim(A)

Q(Q+P) -v
1 -(Q +p)2

fi(p.n) Q(Q+P) -V
1 -(Q+p)2

Q+V
tl(p,n)(l +Q +p) 

Q+V 
1 +Q +P

(23)

The bias matrix E[B] is a non-linear function of the moments of Q and V: Q s  E[Q], V = E[V], var[Q], 

and cov[Q,V]:

ProtX)sition 6:

To a first-order approximation, the elements o f the bias matrix E[B] in equation (23) are given by:

£(B„) - F ' M - v . ____1 ,  ̂ 2(2(2 + p)«2 + p) „ ( Q2 +pQ -VQ(1 + 3(Q + p)2)
i -(Q +p) i-(e+p)2L i-(e+pr

■___2(^  + p)__ cov(Q,V]
(1 ~(Q + P)2)2

(1 -(Q + P))
var[Q]

(24)

E(B22) = Q + V

1 + Q + P (1 + Q + P)
1 (Q + v)

(l + Q * P)J
var(Q) - 1

(1 + Q + P)2
co\{Q,V), & 5)

E(B21) = x\(p,n)E(Bn ), and E(BI2) = E(B22)/r\(p,n).

We will report analytical values for the biases in the VAR statistics in Column 2 of Panels E and
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F in Table 3, and we compute the moments of Q and V using 20,000 Monte Carlo draws.3 Below, we 

find that the bias in the ratio of the standard deviations is substantial. The mean value of this statistic is 

over 30% higher than the asymptotic value of unity.

3. Monte Carlo Results

3.1 Characteristics of the Small Sample Distributions

Kendall (1954) noted that derivations of first-order bias may be of doubtful validity for p near 

unity. This intuition was later confirmed by numerous papers on unit roots.4 Kendall also noted that the 

distribution of 0 is highly skewed, so that use of the expected value as a criterion of bias is itself open 

to questioa Moreover, the biases in the VAR statistics are based on first-order approximations. For all 

of these reasons, it is important to examine Monte Carlo evidence regarding the slope coefficients in the 

regression tests and the VAR statistics. We report the mean, the standard deviation and the left-tail 

behavior of the small sample distributions and also investigate the distributions of squared t-statistics for 

the slope coefficients. Tables 3 (slope coefficients) and 4 (squared t-statistics) report results for the 421 

observation case coinciding with the Campbell-Shiller sample.

In general, the small sample distributions from the Monte Carlo experiments differ substantially 

from the asymptotic distributions. In particular, the distributions of the slope coefficients are positively 

biased and asymmetric. Figures 1 and 2 compare the empirical distributions to the respective asymptotic 

distributions of the slope coefficients corresponding to equation (2) without approximation error and 

equation (3) for the 120-month horizon. The asymptotic distributions are normally distributed with means 

of unity and standard errors from Newey and West (1987). The standard errors are the sample means of

3 We use Monte Carlo approximations to the moments of Q and V because analytic approximations to 

var[Q] and cov[Q,V] are extremely difficult to derive. Kendall (1954) shows that E[Q] = -2p/T, and E[V] 

= -2pVT. Our Monte Carlo estimates of these means were extremely close to the Kendall approximations.

4 Stock (1994) provides a recent survey of the unit root literature.
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the Newey-West estimators from 5,000 Monte Carlo experiments. The bias and skewness of the 

distributions is quite apparent.

To provide some perspective on how large a sample one needs to overcome the small sample 

biases, Figures 3 and 4 contain the empirical distributions of the same coefficients as Figures 1 and 2 but 

for three sample sizes: 421, 2,000 and 20,000 observations. The biases are still apparent even with 2,000 

monthly observations (166.67 years). Even with 20,000 observations (1,667 years), the dispersion in the 

distribution is substantial.

The squared t-statistics in Table 4 are also strongly biased to the right. For example, the 5% 

critical value of a x2(l) is 3.841, while the 95th percentile of the empirical distribution of the corresponding 

test statistic for equation (2) at a horizon of 120 is 5.652. When this specification test is conducted with 

the approximation in equation (10), the corresponding 95th percentile is 7.460. The biases in the test 

statistics for equation (3) are even worse because of the problem of estimating the standard error with 

overlapping data. At the horizon of 120, the 95lh percentile is actually 149.806. While this is an extreme 

value, it might be expected since there are fewer than three non-overlapping observations.

The results of the Monte Carlo experiments in Table 3 support the accuracy of the theoretical bias 

calculations for the specifications corresponding to equations (2), (3) and (5). For equation (2), the 

theoretical estimates are no worse than 93% of the mean values of the Monte Carlo experiments. For 

equation (2) with the approximation error, the theoretical estimates are all 95% of the means of the Monte 

Carlo experiments. For equation (3), the theoretical estimates are between 95% and 98% of the means 

of the Monte Carlo experiments. For equation (5), the theoretical estimates are between 95% and 106% 

of the means of the Monte Carlo experiments.

The Monte Carlo analysis confirms the pitfalls in using the approximation n = n-1 for the long­

term bond without recognizing that the specification is biased. In fact, at n=120 (n=60), for the Campbell- 

Shiller sample the coefficient must only be less than 0.968 (1.075) to have a 5% rejection.

13

Digitized for FRASER 
http://fraser.stlouisfed.org/ 
Federal Reserve Bank of St. Louis



The two VAR statistics (Panels E and F of Table 3) have different small sample properties. The 

correlation statistic for n greater than or equal to 12 has virtually no bias as is predicted by the analytical 

results. The distribution of the statistic is also very tight. Of course, this statistic may have low power. 

The theoretical estimate of the ratio of the standard deviations performs less well. For n = 2, the value 

of 1.310 is only 68% of the mean value of the Monte Carlo experiments. The substantial underestimate 

was anticipated since the theoretical estimate assumed that the means of the variables in the VAR are 

known. For larger n, the approximation is more accurate. For n = 60 (n = 120) the analytical estimate 

is 93% (105%) of the mean value of the Monte Carlo experiments. As might be expected since the data 

generating process is an AR(1), the Monte Carlo biases in the VAR statistics are slightly worse for a 

fourth-order VAR (the order used in Campbell and Shiller (1991)) than for a first-order specification.

3.2 Inference Using the Small Sample Distributions

Campbell and Shiller (1991) were careful not to base their conclusions completely on asymptotic 

distribution theory. They conducted Monte Carlo experiments using the estimated VAR as the basis of 

a data generating process. To generate artificial data that satisfy the expectations theory, they first 

generated artificial series for Ar(t) and s(t,n) using a random number generator and the point estimates of 

the VAR coefficients and the covariance matrix of the innovations. Then, they generated the theoretical 

spread, s'(t,n) from equation (6), using the estimated VAR parameters and the series for Ar(t) and s(t,n) 

(which does not satisfy the theory). The series for the theoretical spread (which satisfies the theory) and 

the short rate series were then used as the raw data to reexamine the small sample properties of the various 

test statistics. A major difference between our data generating approach and Campbell and Shiller’s 

approach is that we use bias-adjusted coefficients to generate our short rate series.

Now, consider how our inference about the expectations hypothesis differs from the inferences 

drawn with the asymptotic theory and Campbell and Shiller’s Monte Carlo experiments. To be concrete, 

we focus the discussion on the 120-month horizon. The Campbell-Shiller results based on asymptotic
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distribution theory in Table 1 indicate a strong rejection of the expectations hypothesis with the 

specification in equation (2) (dq = -5.024, s.e. = 2.316, p-value = .009). Campbell and Shiller find that 

2.9% of their estimates are more negative than -5.024, and we find that none of our 5,000 estimated slope 

coefficients are more negative than the sample value. In fact, the minimum value of our statistics is 0.095. 

This is strong evidence against the null hypothesis. The specification corresponding to equation (3) did 

not reject the null hypothesis with asymptotic inference (Sj = 1.157, s.e. = 0.094, p-value = .196). While 

the asymptotic theory predicts that 1.157 is in the right tail of the distribution, Campbell and Shiller find 

that 71.3% of the observations are actually more positive than the point estimate, which reflects the strong 

positive bias in this specification. We find that 84.2% of the point estimates are more positive than 1.157. 

While this is not as strong evidence against the null hypothesis as specification (1), the differences could 

easily be due to differential power of the tests. The strong positive bias in the coefficient estimator seems 

to be the apparent source of the paradox involving the two specifications. The ratio of the standard 

deviations of the theoretical and actual spreads was slightly less than two asymptotic standard errors less 

than one (0.476, s.e. = 0.284, p-value = .065). Campbell and Shiller found that 4.3% of their simulations 

resulted in a smaller value, and we find that 1.1% are smaller. The correlation of the theoretical and 

actual spreads was less than one asymptotic standard error below one (0.979, s.e. = 0.045, p-value = .641). 

Campbell and Shiller found that 15.9% of their simulations resulted in a larger difference between the 

point estimate and one, while we find that 0.979 is less than the minimum value of 0.997. Hence, the 

small sample distributions of the VAR statistics also imply that there is little support of the null 

hypothesis, in contrast to the puzzling asymptotic inference.

In summary, when our Monte Carlo distributions are used to evaluate the specification tests of the 

expectations hypothesis, the hypothesis is rejected more decisively than if the asymptotic distributions or 

Campbell and Shiller’s Monte Carlo distributions were used. The results are consequently uniformly less 

supportive of the null hypothesis and appear less paradoxical.
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4. Robustness to the Data Generating Process

Although short-term interest rates are definitely very persistent, the data generating process used 

above is not a state-of-the-art model for the short rate. Perhaps the most important failure of the data 

generating process is that it is conditionally homoskedastic. In this section, we investigate whether our 

results are robust to the use of a more realistic data generating process for the short rate. Our model 

builds on the regime-switching models of Hamilton (1988) and Gray (1995a). We model the short interest 

rate as a two-regime Maikov switching model with state-dependent transition probabilities.

Let S(t) be an indicator variable identifying the regime at date t: S(t) e (1,2). The short interest 

rate follows the law of motion

. Mj+MO+hJitOlea+l), if S(t+1) = 1, (26)
p2+P2r(t)+h2[r(t)]e(t+l), if S(t+1) = 2,

where {£,) is a sequence of independent standard normal random variables, and the time-varying 

conditional standard deviation h,[r(t)] is given by

h,[r(t)] = CFjKt)7, fori = 1,2. (27)

Notice that the realization r(t+l) is affected by two random shocks not known at date t: e(t+l) and S(t+1). 

The law of motion for S(t) is as follows:

Prob[S(t+l) = 11 S(t) = 1, r(t)] =
exp[a, +b,r(t)]

1 +exp[a1+b1r(t)]
(28)

Prob[S(t+l) = 2 | S(t) = 2, r(t)] =
exp[aj +b2r(t)] (29)

1 +exp[a2+b2r(t)]

where {aj, b,, i = 1, 2} are parameters of the model. Under equations (26)-(29), the conditional 

distribution of r(t+l) given r(t) and S(t) is a mixture of normals with state-dependent mixing probabilities. 

Under the expectations theory of the term structure, long rates are determined by two state variables: the
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current short rate and the current regime.

Table 5 presents our parameter estimates, obtained using Gray’s (1995b) recursive maximum- 

likelihood procedure. As in Table 1, we use the McCulloch (1990) data from 1952:1 through 1987:2. 

These parameter estimates capture a number of appealing features. First, there is strong evidence of 

conditional heteroskedasticity as the y parameters are quite significantly different from zero. The 

difference in the conditional volatility of the two regimes is further influenced by the big difference 

between a2 and Regime 2 is clearly the high-volatility regime. There is also more evidence of mean 

reversion in regime 2, as c pt. Furthermore, if the current regime is regime 1, the probability of 

switching into regime 2, the high-volatility regime, is increasing in r(t). This follows from equation (28) 

because b, < 0. Similarly, if the economy is currently in the high-volatility regime, the probability of 

staying in that regime is increasing in r(t). This follows from equation (29) because b2> 0. Therefore, 

regardless of the current regime, the probability that the next period will be the high-volatility regime is 

increasing in r(t). The high-volatility regime is also the high-mean regime. This fact is determined by 

simulating 10,000 observations of the model and examining the means of the series conditional on being 

in the regimes. The mean for regime 1 is 5.211% and the mean for regime 2 is 7.764%.

There are good reasons to believe that this model is particularly vulnerable to small-sample 

problems. First, the difference between the means in the two regimes, the extremely high persistence 

within regimes, and the non-trivial conditional heteroskedasticity imply a highly leptokurtic unconditional 

distribution for short rates.5 It is well known that quite large samples are required for conventional 

asymptotic estimation to work well with leptokurtic distributions. Second, both regimes display near-unit-

5 Bollerslev, Chou and Kroner (1992) provide a review of the literature on GARCH models and discuss 

the problems inherent in doing time series estimation with leptokurtic data.
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root behavior for the short rate, implying that the process is nearly non-stationary.6 Both considerations 

suggest that an extremely long time series is necessary for the empirical distribution of the sample to 

replicate the population distribution.

In order to calculate the distributions of regression coefficients associated with the term structure 

of interest rates when the short rate follows the regime switching model, we must compute the long- 

maturity yields implied by the expectations theory. Since the model is highly non-linear, this task is 

computationally intractable. Nevertheless, we can compute expected future short rates using a discrete- 

state approximation for the two state variables of the regime switching model: the short interest rate and 

the regime. We use an equally-spaced grid of 168 points on the space of possible realizations of the short 

rate for each of the two regimes for a total of 336 discretized states. For each of the states, the transition 

probabilities are computed by evaluating the conditional density of next period’s short interest rate (a state- 

dependent mixture-of-normals) at each discrete state, and then normalizing these transition probabilities 

to sum to unity. When we simulate our Markov chain approximation and estimate our regime-switching 

model from the simulated data, the estimated parameters are all within one-half standard error of the 

original point estimates reported in Table 5.7

We use the linearized Markov process to generate 421 observations on short rates and long rates

6 Elliott and Stock (1994) discuss inference when there is near unit root behavior in a regressor. The high 

persistence of the short rate and the Markov regime structure for the short rate imply that the spread in 

our model is highly serially correlated as it is in the actual data.

7 It is also instructive to compare statistics for a simulation of 10,000 observations of the non-linear short- 

rate model to the corresponding statistics of our discrete-state approximation. The means are 5.860 and 

5.850, respectively; the standard deviations are 2.845 and 3.050; the first-order autocorrelations are 0.971 

and 0.973; the minimum values are 0.476 and 0.400; the maximums are 25.23 and 25.45; and the 

probabilities of regime one are 0.254 and 0.265.
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that satisfy the expectations hypothesis. Then, we perform the statistical tests in Table 1 for 5,000 

independent replications. The distributions of the specification test statistics under this alternative data- 

generating process are summarized in Table 6. These distributions are very similar to the distributions 

displayed for the homoskedastic AR(1) data generating process in Table 3. The mean values of the Monte 

Carlo experiments are only slightly lower for the alternative data generating process, and the standard 

deviations are slightly larger in some cases but slightly smaller in others. The differences in mean bias 

presumably arise because the parameter estimates in Table 5 imply a slightly less persistent short-rate 

process than the AR(1) process in Table 3. In particular, the first-order autocorrelation of the short interest 

rate in our regime-switching model is 0.9713, whereas the first-order autocorrelation in Table 3 is 0.9865. 

We conclude from this exercise that the biases we document are not artifacts of the simple data generating 

process given in equation (7). Rather, they are likely to be found whenever the short interest rate has 

extremely high serial persistence.

5. Conclusions

We explore the small sample properties of five commonly-used tests of the expectations hypothesis 

of the term structure of interest rates. We document that, even with what seem like relatively large sample 

sizes, the asymptotic distributions of most of these statistics are not to be trusted. Perhaps the most 

surprising result of the paper is the finding of extreme positive bias in the slope coefficients of traditional 

single-equation regression tests. Very large biases, extreme dispersion, and substantial skewness are 

present even in samples containing 35 years of monthly data. The problems arise because these statistics 

essentially estimate serial correlation coefficients, and there are well-known biases in OLS estimates of 

autocorrelation coefficients for very persistent data. An exception to this pattern is the Campbell-Shiller 

correlation statistic, which, somewhat surprisingly, displays virtually no bias and has a tight distribution 

around its probability limit.

When we evaluate the expectations hypothesis relative to the small-sample distributions of these
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statistics under the null hypothesis, we find that the evidence against the expectations hypothesis is 

strengthened and appears to be less paradoxical than if either the asymptotic distributions or Campbell and 

Shiller’s (1991) small sample distributions are employed. The main message of the paper is that it is 

imperative that researchers use well designed Monte Carlo experiments with bias-adjusted parameters to 

assess the significance of their test statistics.

2 0

Digitized for FRASER 
http://fraser.stlouisfed.org/ 
Federal Reserve Bank of St. Louis



Table 1

The Campbell-Shiller (1991) Results

n
(months)

Equation
(2)

Equation
(3)

Equation
(5)

Correlation Standard Dev. 
Ratio

2 0.002 0.501 0.501 0.736 0.681
(0.238) (0.119) (0.119) (0.148) (0.136)

12 -1.381 0.161 0.252 0.391 0.382
(0.683) (0.228) (0.216) (0.468) (0.119)

24 -1.815 0.302 0.518 0.543 0.304
(1.151) (0.212) (0.458) (0.764) (0.138)

36 -2.239 0.614 0.660 0.770 0.311
(1.444) (0.230) (0.473) (0.531) (0.227)

48 -2.665 0.873 0.967 0.867 0.338
(1.634) (0.291) (0.426) (0.328) (0.274)

60 -3.099 1.232 1.530 0.912 0.360
(1.749) (0.182) (0.333) (0.218) (0.290)

120 -5.024 1.157 0.845 0.979 0.476
(2.316) (0.094) (0.348) (0.045) (0.284)

Note: The estimates and asymptotic standard errors for columns 2, 3, 5, and 6 arc reproduced from 
Campbell and Shiller (1991): Table 1(a) for equation (2), Table 2 for equation (3), Table 3(a) for the 
Correlation, and Table 4(a) for the Standard Deviation Ratio). The monthly data are from McCulloch
(1990), and the sample is from 1952:1 to 1987:2. Column 4 contains estimates and standard errors for 
equation (5) which were computed by the authors from the same data. Equation (2) is a regression of the 
change in the yield on an n-period bond on [ l/(n-1)] times the term spread between the long yield and 
the short rate. At all horizons other than n = 2, equation (2) is estimated using the approximation 
described in the text. Equation (3) is a regression of the weighted average of changes in future short rates 
on the term spread. Equation (5) is a regression of the future short rate minus the current short rate on 
the forward premium. In that regression, the short rate has a one-month maturity for n=2 and n=12, a 3- 
month maturity for n=24, a 6-month maturity for n=36, and a one-year maturity for the remaining 
regressions. The last two columns report statistics related to the implied term spread calculated from a 
VAR. They are the correlation between the implied spread and the actual spread and the ratio of the 
standard deviation of the implied spread to the standard deviation of the actual spread.
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Table 2

A First-Order Autoregressive Model for the Short Interest Rate

r(t) = p + pr(t-l) + cu(t) 

u(t) -  N(0,1)

p 0.9771
bias adj. p 0.9865

P 0.1281
bias adj. p 0.0755

6 0.6481
bias adj. o 0.4988

Note: The sample is monthly data from 1952:1 to 1987:2. The OLS estimates are given with a hat, and 
"bias adj." denotes the values of the parameters after adjusting for small sample bias. For p, the bias 
adjustment is p = ((3 + (l/T))/( 1 - (3/T)). For p, the bias adjustment is p = p(l - p)/(l - 0). For o, the 
bias adjustment is a  = d[(l - p2)/( 1 - p2)]0'5.
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Table 3

Monte Carlo Distribution of the Slope Coefficients

Panel A: Equation (2)

n Analytical
Estimate

Mean a 1% 5% 10%

2 2.393 2.573 1.864 -0.313 0.222 0.561

12 2.362 2.538 1.822 -0.284 0.239 0.571

60 2.233 2.392 1.649 -0.162 0.311 0.612

120 2.109 2.252 1.483 -0.045 0.381 0.651

Panel B: Equation (2) (With Approximation Error)

2 3.370 3.549 1.851 0.682 1.214 1.551

12 3.296 3.471 1.810 0.667 1.187 1.517

60 2.985 3.143 1.640 0.604 1.075 1.374

120 2.687 2.830 1.476 0.544 0.968 1.237

Panel C: Equation (3)

2 1.697 1.788 0.933 0.330 0.613 0.778

12 1.681 1.762 0.865 0.357 0.639 0.797

60 1.617 1.668 0.606 0.362 0.724 0.904

120 1.555 1.585 0.419 0.433 0.777 1.001

Panel D: Equation (5)

2 1.697 1.788 0.933 0.330 0.613 0.778

12 1.674 1.740 0.835 0.338 0.641 0.804

60 1.577 1.561 0.515 0.333 0.712 0.898

120 1.489 1.400 0.422 0.253 0.684 0.867
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Panel E: VAR Statistics (Order = 1) Correlation Coefficient

n Estimate Mean a 1% 5% 10%

2 1.0 0.915 0.102 0.562 0.701 0.767

12 1.0 0.997 0.007 0.974 0.987 0.991

60 1.0 0.9999 0.0003 0.999 0.9996 0.9997

120 1.0 0.99998 0.00007 0.9998 0.9999 0.99994

Panel F: VAR Statistics (Order = 1) Standard Deviation Ratio

2 1.310 1.940 0.959 0.430 0.703 0.902

12 1.315 1.716 0.817 0.356 0.635 0.794

60 1.316 1.419 0.461 0.402 0.678 0.819

120 1.316 1.248 0.289 0.459 0.729 0.854

Panel G: VAR Statistics (Order = 4) Correlation Coefficient

2 0.644 0.136 0.307 0.413 0.464

12 0.968 0.036 0.816 0.902 0.929

60 0.999 0.002 0.990 0.996 0.997

120 0.9997 0.0006 0.998 0.999 0.999

Panel H: VAR Statistics (Order = 4) Standard Deviation Ratio

2 2.703 1.099 0.802 1.222 1.458

12 1.787 0.846 0.375 0.670 0.841

60 1.442 0.479 0.359 0.674 0.827

120 1.259 0.297 0.409 0.722 0.860

Note: The Monte Carlo evidence is based on 5,000 replications. The data generating process is equation
(7) with the bias adjusted parameters from Table 2, and the sample size is 421. The horizon is n months. 
The column labelled Analytical Estimate contains the expected value of the distribution predicted by the 
analytical derivations in Section 2. The columns labelled Mean, c, 1%, 5%, and 10% are the sample 
mean, the standard deviation and the respective quantiles of the empirical distribution.
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Table 4

Monte Carlo Distributions of the Squared t-statistics for the Slope Coefficients

Panel A: Equation (2)

n Mean a 90% 95% 99%

all 1.597 2.038 4.219 5.652 9.060

Panel B: Equation (2) (With Approximation Error)

2 2.942 2.690 6.517 8.177 11.891

12 2.899 2.677 6.460 8.118 11.833

60 2.707 2.612 6.162 7.814 11.509

120 2.496 2.534 5.858 7.460 11.028

Panel C: Equation (3)

2 1.608 2.055 4.258 5.650 9.157

12 2.712 3.863 7.277 10.281 18.362

60 10.992 25.259 27.104 45.072 114.806

120 38.921 97.146 91.339 149.806 396.448

Panel D: Equation (5)

2 1.608 2.055 4.258 5.650 9.157

12 2.959 4.298 7.829 11.484 20.624

60 7.698 13.213 19.937 30.651 61.665

120 12.102 23.881 30.543 50.401 109.506

Note: The Monte Carlo evidence is based on 5,000 replications. The data generating process is equation
(7) with the bias adjusted parameters from Table 2, and the sample size is 421. The horizon is n months. 
The distributional characteristics should be compared to a x2(l) distribution. The characteristics of the 
X2(l) distribution are as follows: the mean is 1.0, the standard deviation is 1.414 and the critical values 
are 2.705 (90%), 3.841 (95%), and 6.635 (99%).
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Table 5

Estimates of Parameters of the Regime-Switching Model

Pi 0.0526
(0.0342)

P2 0.2003
(0.1719)

Pi 0.9975
(0.0087)

P* 0.9605
(0.0292)

<*1 0.1784
(0.0237)

02 0.4807
(0.0922)

Yi 0.3803
(0.0906)

Tfc 0.4611
(0.0777)

ai 5.5354
(2.4795)

b, -0.3557
(0.3092)

32 1.3549
(0.9419)

b2 0.1272
(0.1011)

Note: The regime-switching model is equations (26)-(29). Data are monthly observations on the one- 
month interest rates from 1952:01 through 1987:02. Robust standard errors (see White (1982)) are in 
parentheses.

26

Digitized for FRASER 
http://fraser.stlouisfed.org/ 
Federal Reserve Bank of St. Louis



Table 6

Monte Carlo Distributions of the Slope Coefficients 

Using a Regime-Switching Model as the Data Generating Process

Panel A: Equation (2)

n Mean a 1% 5% 10%

2 2.567 2.294 -0.164 0.207 0.446

12 2.685 2.339 -0.112 0.242 0.501

60 2.043 1.441 0.146 0.420 0.625

120 1.761 1.042 0.266 0.506 0.677

Panel B: Equation (2) (With Approximation Error)

2 3.452 2.243 0.774 1.145 1.387

12 3.488 2.315 0.715 1.076 1.332

60 2.638 1.512 0.633 0.915 1.152

120 2.147 1.087 0.577 0.827 1.015

Panel C: Equation (3)

2 1.784 1.149 0.397 0.603 0.720

12 1.704 0.865 0.429 0.660 0.806

60 1.411 0.449 0.525 0.774 0.895

120 1.308 0.232 0.536 0.851 0.974

Panel D: Equation (5)

2 1.783 1.147 0.418 0.603 0.723

12 1.650 0.793 0.459 0.683 0.812

60 1.276 0.339 0.458 0.735 0.868

120 1.183 0.315 0.383 0.676 0.799
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Panel E: VAR Statistics (Order = 1) Correlation Coefficient

n Mean a 1% 5% 10%

2 0.912 0.110 0.522 0.688 0.765

12 0.996 0.019 0.973 0.987 0.991

60 1.000 0.014 0.999 1.000 1.000

120 0.999 0.014 0.992 0.996 0.997

Panel F: VAR Statistics (Order = 1) Standard Deviation Ratio

2 1.943 1.192 0.480 0.704 0.837

12 1.629 0.779 0.456 0.662 0.790

60 1.241 0.310 0.589 0.765 0.832

120 1.112 0.161 0.697 0.839 0.908

Note: The Monte Carlo evidence is based on 5,000 replications. The data generating process is the 
regime-switching model of equations (26)-(29) using the parameter estimates of Table 5. The horizon is 
n months. The columns labelled Mean, a, 1%, 5%, and 10% are the sample mean, the standard deviation 
and the respective quantiles of the empirical distribution.
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Appendix

Under the AR(1) data generating process of equation (7), the regressor in equation (2) can be written as

Proof of Proposition 1:

__ l__[r(t,n) — r(t) ] = — !—
( n - l ) lV WJ (n -1)

(1 -P n) _ j'
_n(l -p)

and the dependent variable in equation (2) can be written as

r(t), (AI)

r(t + l,n  -  1) -  r(t,n) = 1 CL1

(n-1) Ln(i - p)
r(t) + (1 -p “-‘)

(n - l ) ( l - p )
e(t+l).

By the algebra of OLS, equations (Al) and (A2) imply

(A2)

-n(l -p"-1) covT(e(t+l), r(t))
n(l -p ) ~(1 -p") it>__

1
(A3)

where covT and varT denote sample second moments. The conclusion of Proposition 1 follows from (A3), 

along with the observation that, under the assumed data generating process (7),

E((3)-p
covT(e(t+l), r(t)) 

varT(r(t))
(A4)

QED.

Proof of Proposition 2:

If constant maturity bonds are used to construct the dependent variable in equation (2), the dependent 

variable can be written as

r(t+l, n) - r(t, n) = !(p» - l)r(t) + ,(1 ■ pl>)e(t+l). (A5)
n n (l-p )

The regressor is again given in equation (A 1). The algebra of OLS then implies equations (11)-(12) in 

the text QED.
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Proof of Proposition 3:

From the AR(1) data generating process, the regressor in equation (3) can be written is q(pji)r(t), where 

T|(p,n) = (l/n)(l - p")/(l - p) - 1. Note that the dependent variable in equation (3) is the weighted average 

of future short rates minus the current short rate:

The slope coefficient in equation (3) can therefore be written as

— 1 — V ” "1 Y T' n"  -  1 =  1 +  * y N i - i  q  ( A T )
rniCp.n)^'0 Z' 1’1 r(t)2 q(p, n) nr|(p, n )^ * 1 j

because each of the bivariate OLS slope coefficient terms in equation (A6) can be written as the true j-th 

autocorrelation plus a bias term:

Equation (13) follows from combining terms in pj to get q(p,n) and rewriting the coefficient multiplying 

the sum of the bias terms. QED.

Proof of Proposition 4:

From the definition of the forward rate in equation (4) and using the data generating process in equation

(7), we have the following:

(A6)

V'T-n*i r(t+j)r(t) _ rtj j. o
^ - l r(t)2 j

(A8)

f(t,n-l) -r(t) = [p-1 -  l]r(t). (A9)

The estimated OLS slope coefficient in equation (5) can then be written as

(A10)

The result also uses equation (A8) above. QED.
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We write the theoretical spread as

Proof of Proposition 5:

s'(t,n) = xnAr(t)+yns(t, n) (All)

with the x„ and yn coefficients evaluated according to equation (6) in the text using the estimated value 

of A from the VAR. The sample variance of s'(t,n) will involve the sample variances of Ar(t) and s(tji) 

as well as their covariance:

varT(Ar(t)) = 2(1 -p  - Q)varT(r(t» (A12)

varT(s(t,n)> = rj(p, n)2varT(r(t)) (A13)

covT(s(t, n), Ar(t)) = r|(p, n)(l -  p -  Q)varT(r(t)), (A 14)

where the approximation involves varT(rt.,) = varT(r,). Equations (A12) and (A14) employ the definition 

of Q in equation (21) in the text. Then, the sample variance of the theoretical spread is

varT(s'(t, n)) = {x22(l -p  -Q) + y2il(p,n)2 + 2xnynti(p,n)(l -p  - Q)}varT(r(t)). (A15)

The ratio of the sample standard deviation of the theoretical spread to the sample standard deviation of 

the actual spread and the sample correlation of the theoretical spread and the actual spread can be formed 

from equations (A 14) and (A 15). These statistics are functions of x„, yn, and Q. We evaluate the expected 

value of these functions by taking the expected value of a first-order Taylor’s series expansion of the 

functions around the plims of xn, yn, and Q, which are 0, 1, and 0, respectively. The result is given in 

Proposition 6. Finally, the biases in the coefficients x„ and yn as a function of the biases in the A 

parameters are found using the results of Graham (1981, chapter 4, section 4.6, pp. 67-68). QED. 

Proof of Proposition 6:

First, partition the VAR coefficient matrix A as
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(A16)A =
^1

a12
^2

The estimated coefficients are given by:

E . a*)* n(P,n)E,T.i

fa. n(p.n)5X, MtMt) iKpm)2̂  r(t)2

£ T„ Ar(t)y '(t+1) 

XT-i ^(P^MOy ‘(t+i)

(A17)

where yx(t+l) = Ar(t+1), y2(t+l) = r|(p,n)r(t+l), and rj(p,n) is given above in Proposition 3. The 

determinant of the matrix to be inverted, D, provides the denominator of the VAR-coefficients. In 

deriving the results, we used the assumption:

£ 1 ,  = E : ,  r(t-l)2. (A18)

The following results are also useful:

J T , Ar(t)2-- - - 2(1 -Q -p), (A 19)
T L  *> !

and

E., (Q*P).

Equations (A11)-(A13) imply:

(A20)
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D D (A21)= Tl(p, n)2[l -(Q +p)2].

With V defined as in equation (22) in the text, using the AR(1) data generating process to evaluate yj, and 

using equations (A16)-(A21), equation (23) in the text follows from dividing the numerator and 

denominator of the expression in (A 17) by [E[r(t)2]2. The biases in the VAR parameters in Proposition 

5 are found by taking the expected values of second-order Taylor’s series expansions of equation (23) 

around the unconditional mean values of Q and V. QED.

E x o T

3 3
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Figure 1 Monte Carlo Distribution vs. Asymptotic Distribution of First Campbell/Shiller 
Specification Statistic

The solid line displays the Monte Carlo density function for the OLS estimate of a 1? the slope 
coefficient in equation (2), when the maturity of the long bond equals 120 months, the sample 
size equals 421 months, and the short interest rate is generated by the AR(1) process given in 
equation (7) with the bias-adjusted parameters from Table 2. The Monte Carlo evidence is based 
on 5,000 replications. The dotted line displays the density implied by the asymptotic

iproximation \Jt  [6c, -  1 j -  normal [o, Tcr^J. The asymptotic standard error Ga was set to equal 
'10, the average Newey-West standard error over the 5,000 Monte Carlo replications. In 
vputing o a, a single Newey-West lag was used.
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Figure 2 Monte Carlo Distribution vs. Asymptotic Distribution of Second Campbell/Shiller 
Specification Statistic

The solid line displays the Monte Carlo density function for the OLS estimate of 5lT the slope 
coefficient in equation (3), when the maturity of the long bond equals 120 months, the sample 
size equals 421 months, and the short interest rate is generated by the AR(1) process given in 
equation (7) with the bias-adjusted parameters from Table 2. The Monte Carlo evidence is based 
on 5,000 replications. The dotted line displays the density implied by the asymptotic

approximation / f jS j  -  1
0.196, the average Newey-West standard error over the 5,000 Monte Carlo replications. In 
computing ct8, 120 Newey-West lags were used (one more than the minimum number of lags 
needed to account for the overlap in constructing the dependent variable in (3) from monthly 
data).

-  normal [0, Tc^j. The asymptotic standard error o5 was set to equal
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Figure 3 Monte Carlo Distributions of First Campbell/Shiller Specification Statistic as Sample 
Size Increases

This figure displays three Monte Carlo density functions for the OLS estimate of a „  the slope 
coefficient in equation (2), when the maturity of the long bond equals 120 months and the short 
interest rate is generated by the AR(1) process given in equation (7) with the bias-adjusted 
parameters from Table 2. The solid line displays the density function with 421 monthly 
observations. (This plot is identical to the solid line in Figure 1.) The dashed line is the 
corresponding density with 2,000 observations, and the dotted line is the density with 20,000 
observations. This Monte Carlo evidence is based on 5,000 replications.
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Monte Carlo Distribution of Second C/S Slope: Ten-Year Bonds, # Obs. = 421, 2000, 2000C

_________________________________ Value of Slope Coefficient__________________________________
Figure 4 Monte Carlo Distributions of Second Campbell/Shiller Specification Statistic as Sample 
Size Increases

This figure displays three Monte Carlo density functions for the OLS estimate of 8t, the slope 
coefficient in equation (3), when the maturity of the long bond equals 120 months and the short 
interest rate is generated by the AR(1) process given in equation (7) with the bias-adjusted 
parameters from Table 2. The solid line displays the density function with 421 monthly 
observations. (This plot is identical to the solid line in Figure 2.) The dashed line is the 
corresponding density with 2,000 observations, and the dotted line is the density with 20,000 
observations. This Monte Carlo evidence is based on 5,000 replications.

Digitized for FRASER 
http://fraser.stlouisfed.org/ 
Federal Reserve Bank of St. Louis




