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Abstract

This paper develops the Parameterized Expectations Approach (PEA) for solving nonlinear 

dynamic stochastic models with rational expectations. The method can be applied to a variety of 

models, including models with strong nonlinearities, sub-optimal equilibria, and many continuous 

state variables. In this approach, the conditional expectations in the equilibrium conditions are 

approximated by flexible functional forms of finite elements. The approach is highly efficient 

computationally because it incorporates endogenous oversampling and Monte-Carlo integration, 

and it does not impose a discrete grid on the state variables or the stochastic shocks. We prove 

that PEA can approximate the correct solution with arbitrary accuracy on the ergodic set by 

increasing the size of the Monte-Carlo simulations and the dimensionality of the approximating 

family of functions.
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1 I n t r o d u c t i o n

During the last decade, the use of dynamic stochastic models has extended 
to all fields of economics. These models are difficult to analyze because they 
typically have no analytic solution. However, recent increases in the power 
of computer hardware now allow these models to be studied by numerical 
simulation techniques. Simulations can be used to study the model from 
both a theoretical and empirical perspective. Theoretically, one can see if 
the model reproduces some stylized facts and how it responds to a change in 
the environment or in policy. Empirically, one can perform calibration exer
cises or do more formal testing using estimation by simulation or maximum 
likelihood procedures.

The numerical algorithms most widely used for solving dynamic mod
els with rational expectations in economics are value-function iteration and 
linear-quadratic approximation. They are based on dynamic programming, 
so they are not well-suited to models in which the equilibrium does not cor
respond to the solution of a planner’s problem. Furthermore, value-function 
iteration is affected by the ’curse of dimensionality’, so is impractical for 
models with several continuous endogenous state variables. Linear-quadratic 
approximation can handle large models, but does not provide an arbitrarily 
good approximation in nonlinear models; this is especially a problem, for 
example, when the model has inequality constraints.

This paper introduces the parameterized expectations approach (PEA) 
for calculating numerical solutions to stochastic nonlinear models with ratio
nal expectations. In this approach, the equilibrium conditions of the model 
are written as a system of stochastic difference equations, and the conditional 
expectations in these equations are parameterized with flexible functional 
forms of finite dimensions, such as polynomials or splines. Simulations are 
then generated using these functions in place of the conditional expectations 
in the equilibrium conditions. A PEA solution corresponds to a parameter
ization of the conditional expectations that is consistent with the series it 
generates.

In this paper, we formally characterize the PEA, and we derive a set 
of conditions under which arbitrarily good accuracy can be obtained as the 
solution is refined (for example, as the degree of the polynomial goes to 
infinity); it contains some of our earlier work in Marcet [1988], Marshall
[1988] and Marcet and Marshall [1992].
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The PEA algorithm has been successful in delivering solutions to a num
ber of large and complicated models. Applications in the literature include 
monetary asset pricing models, such as Marshall [1988, 1992], and den Haan 
[1990, 1991]; models of exchange rates, such as Bansal [1990], Bansal, Gal
lant, Hussey and Tauchen [1994] and McCurdy and Ricketts [1992]; asset 
pricing models with heterogeneous agents, such as Marcet and Singleton
[1989], Ketterer and Marcet [1989], and den Haan [1993]; models of tax 
policy, such as Rojas [1991], and Otker [1992]; and nonstandard stochastic 
growth models, such as Marcet and Marimon’s [1992] model with participa
tion constraints and Christiano and Fisher’s [1994] model with investment 
constraints. A related method in which the laws of motion of endogenous 
variables are parameterized has been used to solve asset-pricing models in 
papers by Heaton [1993] and Bekaert [1993]. This non-exhaustive list of 
PEA applications includes models with many continuous state variables, 
multiple heterogeneous agents, strong non-linearities, inequality constraints, 
incentive constraints, participation constraints, non-stationarities, discrete 
choice spaces, and suboptimal equilibria. In short, the PEA has been road- 
tested: its practical applicability to a wide range of economic models has 
been demonstrated. 1

We show that the PEA delivers an arbitrarily close approximation to the 
true equilibrium as the solution is refined. The set of assumptions we impose 
is very general: essentially, our proof applies to most models with continu
ous laws of motion (including non-differentiable cases). To our knowledge, 
no such proof is yet available for other methods that compute approximate 
equilibria by solving systems of Euler equations. Our solution procedure is 
easily adapted to cases where one has to solve for the transition path to the 
stationary distribution starting from an arbitrary initial condition, but in 
the current paper we concentrate our discussion on solving for the stationary 
and ergodic distribution.

In section 2, we formally introduce the parameterized expectations ap
proach and discuss how it can be applied to three well-known examples. In 
section 3, we relate PEA to two strands of economic literature. We first dis
cuss PEA’s relationship to models of least-squares learning; we then compare

'This is to be contrasted with proposals to use numerical methods taken from other sci
ences, without demonstrating their applicability to the problems of concern to economists. 
For example, Judd (1993) lists a number of numerical techniques used in engineering and 
physics that have not been tried in full scale economic applications.
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our method to other solution algorithms used in economic applications. In 
section 4 , we present the convergence result. Section 5 provides a brief dis
cussion of certain practical considerations in applying the method. Section 
6  contains some conclusions and suggestions for extensions.

2  T h e  P a r a m e t e r i z e d  E x p e c t a t i o n s  A p p r o a c h  

( P E A )

2.1 A  G e n e r a l  F r a m e w o r k
We assume that the economy is described by a vector of variables z t €  Z  C  
R n , and a vector of exogenously given shocks u t 6  U  C R s . The equilibrium 
process {z(,u t} is known to satisfy a stochastic difference equation

<7(£<[<£(z<+i)], z t , z t - i , u t ) = 0  (1 )

for all t, where g  : R m x R n x R n x R 3 —» R q and <j> : R n —> R m . Once 
the parameters of the model have been fixed, g  and <f> are functions known 
to the economist. The vector z t includes all endogenous variables, as well as 
those exogenous variables that appear inside the expectation. The process 
u t is assumed to be Markov of order one. As usual, E t is the conditional 
expectation given information up to period t .

The system (1 ) will typically include Euler equations, resource constraints, 
laws of motion of exogenous processes, market clearing conditions, incentive 
constraints, and so forth. Inequality constraints of the form

h { E t [<f>(zt+ i ) ] ,  z t , Zt_i, ut) > 0

are incorporated into (1 ) by including equations

(A(£t[<£(zt+i)],zt,zt_i,u())" =  0
as part of the system g , where (a:)-  is the function ‘negative part of x \  These 
inequality constraints may include Kuhn-Tucker conditions, second order op
timality conditions, or participation constraints in incentive problems.

Often, the sufficient conditions for an equilibrium include, in addition to 
equation (1 ), a set of transversality conditions. For most models, a process
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{ z t }  that satisfies (1 ) also satisfies the transversality conditions if and only if 
the process is stationary. Stationarity can be imposed as an additional side 
condition of the model.

We assume that the past information that is relevant for predicting <j>(zt+1) 
can be summarized in a finite-dimensional vector of state variables x t € X  C 
R} satisfying

x t =  f ( z t - u u t ) ,  (2 )
where /  is a known function.2 This implies

Et[4>(z t + 1)] = E [<f>{z t+ i) \x t\ . (3)
Furthermore, we assume that the model is recursive, so that the conditional 
expectation is given by a time-invariant function £  such that

£ ( x t ) =  E[<f>(zt + i ) \ x t}. (4)

By definition, the function £  satisfies

£  =  arS {h ™1k»} E  I* ^ 2 ‘+i) ~  II2 all (5)
since the conditional expectation is the best predictor in the mean square 
sense.

Throughout the paper we refer to a s o l u t i o n  as a stochastic process {zt(ut} 
satisfying equation (1), (2), and (3), given the exogenous Markov process for 
{u<} . Since we will are dealing with systems g  that are invertible in their 
second argument z t , finding a solution is equivalent to finding a function £  
such that, if { z t , u t }  satisfies

g ( £ { x t ), z ti z t - u i i t )  =  0, (6)
then £  satisfies (4) for all t .  Alternatively, finding a solution is equivalent to 
finding a law of motion H  such that the z t generated by

z t -  H ( z t- U u t ) (7)

2We are assuming here that the researcher knows how to select a set of sufficient state 
variables i<. Sometimes it is difficult to determine the sufficient state vector z t beforehand; 
this is often the case, for example, in models with private information. In principle, it is 
possible to apply PEA and find a sufficient set of state variables numerically; we would 
then have to incorporate into the algorithm a search over functions of past variables that 
summarize past information. We do not pursue this avenue any further in this paper.
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satisfies (1), (2) and (3).
We now show how three well-known models fit into the above framework. 

These examples are chosen for their simplicity; applications of PEA to more 
complicated models can be found in the papers cited in the Introduction.

• Exam ple 1.1 (Lucas [1978] asset pricing m odel)
A representative consumer chooses a stochastic consumption process 
{ct} of a perishable good in order to maximize E q Y ^ o ° t )• The 
single asset in the economy is traded in a competitive market at price p t ,  
and pays an exogenous dividend flow {d(}. The consumer also receives 
exogenous labor income {u;t} . The Euler equation for the maximization 
problem of the consumer is

u ' { c t ) p t =  8  E t [ u ' ( c t+ 1 ) (pi+1 + dt+i)]. (8 )

To map this model into the above framework we let z t = (p<, c t, d t), and 
U( =  (d t w t); the system of equations corresponding to (1 ) is given by 
(8 ) and the market clearing condition c t =  d t +  w t . The function 4>{z) 

is given by u ' ( c ) (p  + d ) .  A time-invariant solution for the asset price 
can be found for which x t =  (d t , w t) is a sufficient set of state variables.

• Exam ple 1.2 (Simple S tochastic G row th M odel)
Consider the simple growth model where an agent maximizes E o 8 lu ( c t ) 
subject to

it ̂  — /g\
k t =  k t- i p  + i t , given, '  '

where c< denotes consumption, kt is the capital stock, it is investment, 
and 6 t is an exogenous stochastic productivity shock, Markov of order 
one. The first order condition for optimality is

u'(ct) =  8 E t [ ^(ct+i) ( k t ~ 1a O t + 1 +  p ) ]  (10)

To map this model into the above framework, set z t =  (ct, kt , k t- i , i t , 0t),  
ut =  Of, and x t =  ( k t- i , 0 t ) .  The function g  is given by the resource con
straints (9) and the Euler equation (10). The function <f>{z) is given by
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ti'(c) (fco-1a0 + f i ) .  Standard results from dynamic programming guar
antee that the solution is characterized by a time-invariant conditional
expectation function.

%

• Exam ple 1.3 (Simple Grow th M odel w ith  Lower B ounds on 
Investm ent)
This example shows how inequality constraints can easily be handled 
by PEA. Suppose we add a non-negativity constraint to the simple 
growth model of example 1 .2 :

t<>0 (11)

With this restriction, the first order condition (1 0 ) is replaced by the 
Kuhn-Tucker conditions

u'(ct) -  A, -  6 E t [ u'(ct+1) (fc“ ‘qOi+i + /x) -  f iX t+ i]  =  0 (12)

tjAf =  0 (13)

At > 0,t't > 0, (14)

where At denotes the Lagrange multiplier associated with constraint 
(1 1 ). Mapping this model into framework (1 ) is accomplished by setting 
z t =  u t =  0 t . The system g  is given by (9), the
Kuhn-Tucker conditions (12) and (13), and the negative parts of the 
inequalities in (14). Note that, in this case, <f>(z) =  u  (c) (A:“- 1a0 + 
f i) — fiX . Again, the model can be shown to be recursive with standard 
dynamic programming techniques.3

2.2 D e f i n i t i o n  a n d  C a l c u l a t i o n  o f  a n  A p p r o x i m a t e  P E A  
S o l u t i o n

System (1 ) and explicit formulas for g  and <j> are easy to find in many mod
els. Unfortunately, finding the solution analytically in any generality is not 
possible. The difficulty is that S  cannot be determined unless the process

3The application of PEA with inequality constraints was developed by Marcet and Sin
gleton [1991]. For a more detailed discussion of how to impose the Kuhn-Tucker conditions 
the reader is referred to that paper.
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for z t is known, but that process can not be backed out from (6 ) unless the 
conditional expectation £  is known. The PEA algorithm addresses this dif
ficulty by replacing £  with an approximating function ip which is chosen to 
resemble £  in a manner to be made precise.

Formally, let P  denote a class of functions that is dense in : R l —► f?m| .  
It is assumed that each element of P  is characterized by a parameter vector /? 
with a finite number of nonzero elements. For example, P  can be taken as the 
set of polynomials, splines, neural networks or finite elements. Then, (3 would 
be, respectively, the coefficients of the polynomial, the parameters charac
terizing each partition for the spline, the elements of the neural net, or the 
parameters characterizing the finite elements. The element of P  characterized 
by parameter vector /? is denoted either by •) or by the simpler notation 
rpp. The s e t  o f  a d m i s s i b l e  p a r a m e t e r s  with at most v  non-zero elements is 
denoted A* That is, A  c{/? (E R ° °  : i th element of /? is zero if i  > j/|.

In PEA, the function £  is approximated by choosing an element of P  
that satisfies a property close to (6 ) and (5). More precisely, for a given 
positive integer v ,  /? € A> and {u<}~0, define the process (zt(/3), ut } ~ 0 as 
the solution for all t of the system

9  (W ,  *<(/?)), z t ( 0 ) ,  z t - 1(/?), ttt) =  0 (15)

Now, let
x t { P )  =  /(z»-i (/?),«<)

£ „ (£ )=  argmjn E  || <j>(zt + l (/3)) -  x t ( 0 ) )  | |2 (16)

We wish to choose € A  as close as possible to G v (f3v ) ,  so the approximate 
PEA solution is characterized by a fixed point, denoted /?„> as follows:

0 ,  =  <A(&). (17)

For the sake of simplicity we will assume in the remainder of this section that 
G u is a well-defined mapping, and that a fixed point of G „  exists; these issues 
will be addressed formally in section 4. With the appropriate substitutions, 
one can see that xppv plays the role of £  in (6 ), so our approximate solution 
is the process {zt(^),u<}^0.

9
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From this point on, we address the problem of approximating the solution 
at the stationary and ergodic set. This is an interesting case, since station
a r y  and ergodicity are the basis of time series econometrics or calibration 
exercises. PEA has been applied to solutions outside of the stationary distri
bution by replacing the long simulation in Step 2 below with many repeated 
short-run simulations.4 Therefore, the claim in Judd [1992] (page 447) that 
PEA can not solve for equilibria outside the ergodic set and it can not be 
used for policy comparisons is incorrect.

We now give an operational algorithm for computing the approximate 
PEA solution for a fixed v:

• Step 1 : Write the system g in ( 1 ) so that it is invertible with respect to 
its second argument. Find a set of state variables x  that satisfies (3). If 
a unique solution exists, g and x  should be selected so that (1) and (3) 
are satisfied only by the unique solution. Replace the true conditional 
expectation by the finitely-parameterized function •) for (3 € D v 
to obtain (15).

• Step 2: Fix Zq . For a given yd € D„ and for T  large enough, draw 
a sample of size T  of the exogenous stochastic shock and recursively 
calculate{z*(/?), u<}£_0 using (15).

• Step 3: Find the sample version of Gv. More precisely, Gv<t  is
defined by:

G>,t (£)= argmin £ Ef=o II ^(*<+i(£)) -  ̂ (£»*t(0)) l|2 (18)

This minimization is easy to perform by computing a non-linear least 
squares regression with the sample {.?*(/?), ut} ^ 0, taking as
the dependent variable and V>(*,xt(/?)) as the explanatory function.

• Step 4: Find the fixed point

P v , T  =  G „ , t { ^ v,t )  (19)

We will discuss the numerical calculation of 0„tT in the section 5.

4See Marshall [1988] and [1993], Marcet and Marimon [1992], Rojas [1993] and Chris- 
tiano and Fisher [1994] for applications. Also, see Marcet and Marshall [1992] for a proof 
of convergence when short-run simulations are used.
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We end this subsection by discussing how this algorithm would be applied 
to the three examples presented in section 2 .1 .

• Exam ple 1.1 (Lucas [1978] asset pricing model)
The only non-trivial endogenous variable is the stock price p t . In this 
and the remaining examples, <f> takes only positive values, so it is ap
propriate to choose P  as a set of functions that can take only positive 
values. Step 2 is easily accomplished by solving for the price in each 
period from

u'(c«) P t ( P )  =  i p ( P , d u W t )

which is the (15) version of the Euler equation. The fixed point can be 
found iteratively5. Notice that our choice of state variables guarantees 
that we are approximating the unique stationary (non-bubble) solution. 
Bubble solutions could be allowed by adding today’s price to the list 
of state variables.

• Exam ple 1.2 (Simple Stochastic Growth Model)
Steps 1 and 2 follow similar considerations to the previous example. 
Since the solution is a time-invariant function of (k t- i ,  0 t) and it satisfies 
the Euler equation, we can be certain that the solution approximates 
the unique solution of the model. Notice that the (suboptimal and 
meaningless) solutions to the Euler equation that violate the transver- 
sality condition will never be approximated; in those solutions Co is 
fixed, and k t is a time-invariant function of (&t_ ! ,0£) and c£, so that 
the transversality condition is imposed by our choice of state variables 
and the fact that initial consumption is not fixed.

• Exam ple 1.3 (Simple G row th M odel w ith Lower B ounds on 
Investm ent)
We show how to use the Kuhn-Tucker conditions to find (ct(/?), *<(/?), kt( 0 ) }  
while imposing inequalities (14). Let us write the parameterized version 
of (12) and (14):

u/(ct(/?)) -  A,(/?) =  6 *(/?; Jfc*_,0®), 0t) (20)

5For this model, the mapping G y as well as the fixed point p y can be found analytically. 
See Marcet [1988]
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At(/3) >  0 and *<(/?) > 0 (21)

Notice that, for a fixed value of ; kt-i(/3),6 t), the left side of (21) is 
increasing in t<(/5).
We can then proceed as follows: for each t :

(a) compute (ct(/?), *<(/?)) from (20) under the conjecture that At(fi) =  
0. If the corresponding investment turns out to be negative, then

(b) set i t ( P )  = 0, find c t ((3) from the feasibility constraint, and then 
compute At(/?) from (20).

It is clear that if step (a) delivers a negative investment, consumption 
will be lower when we go to step (b), so uf(ct(/3)) will be higher (relative 
to (a)). This insures that (20) delivers a positive A, so (21) is satisfied.

This strategy requires that the Kuhn-Tucker condition be written in a 
way that the function g is envertible. For example, the Kuhn-Tucker 
condition could be expressed as,

u'(ct)ct -  Atct = 6 E t [c< u'(ct+i) (k?~l a6t+i +  /*) -  ^ctAt+1] (22)

However, if steps (a) and (b) were applied to (22), there may be states 
in which the function u'(c)c is decreasing in i. In that case, step (b) 
would deliver a negative value for the multiplier A. Therefore, (22) 
would be an inappropriate choice for g if PEA is used as a solution 
algorithm. In terms of the step-by-step description of the algorithm,
(22) violates step 1 , since it implies a representation for g that may not 
be invertible with respect to its second element.

3  R e l a t i o n  o f  P E A  t o  t h e  L i t e r a t u r e

3.1 A p p r o x i m a t e  P E A  S o l u t i o n  a n d  L e a s t  S q u a r e s  
L e a r n i n g

In section 4, below, we show that the PEA solution can approximate the 
rational expectations equilibrium arbitrarily well by letting u and T  go to

1 2

Digitized for FRASER 
http://fraser.stlouisfed.org/ 
Federal Reserve Bank of St. Louis



infinity. In this subsection we give an alternative interpretation to the PEA 
solution for fixed v  as the equilibrium of an economy with boundedly rational 
agents.

Suppose it were infeasible for the agents to compute the true conditional 
equilibrium function £. For example, agents may not know the correct func
tional form for 6, or they may face computation constraints. Instead, agents 
are constrained to use some function rfip to forecast of <f>(zt+i). In principle, 
they can choose any parameter P € D„, but they are restricted to a fixed 
degree v. The process {zt(P)} can be interpreted as the vector of endogenous 
variables that would be generated by such an economy. If these agents were 
to choose an arbitrary parameter vector P € D the economy would not be 
in equilibrium: the best forecaster of <f>(zt+1) within the set Du would in fact 
be given by i p ( G u( P ) , x t ( P ) ) ,  rather than by i p ( / 3 ,x t ( (3 )) , the function used 
by the agents ex ante. Presumably, agents would eventually recognize their 
systematic errors and would update the parameters in their forecast function. 
The equilibrium of this boundedly rational economy corresponds to /?„, the 
fixed point of G v defined in equation (17): if the boundedly rational agents 
use (3V they will eventually realize that this is their best alternative, given 
that they are restricted to staying in Dv.

For this model of boundedly rational agents to be meaningful economi
cally, it should be locally stable: if agents start at t =  0 using some beliefs 
Po near the fixed point /?„, and update ft as new information received at each 
period (so their best forecast at time t is given by il)(Pt,xt-1 )), their forecast 
coefficients should converge to /?„. One way to model how agents update their 
forecasts is to assume a least squares learning model (LSL), in which p t is 
generated by a non-linear least squares recursive algorithm (see Appendix 2 ). 
Adapting some results in Ljung [1975], under certain regularity conditions, 
it is possible to show the following results:

• For P  G £)„, if P  7̂  P„, P r o b ( P t —►/?) =  0. That is, LSL will almost 
surely not converge to a parameter vector that is not a fixed point of

• Prob(Pt —► p v) =  1 locally, if and only if the differential equation

0 =  G ,{P )  -  P (23)

13
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is locally stable at /?„. That is, local stability of equation (23) is equiv
alent to local stability of the equilibrium of boundedly rational agents 
under least squares learning.

The second result will be used in section 5.1 to suggest some algorithms for 
computing the approximate solution.

To prove the convergence result in Proposition 1 , we must impose suf
ficient conditions to insure that if a law of motion H * is close to the true 
solution H  in (7), then {z*} (the process generated by H*) is close to {z(} 
(This property is implied by assumptions 4* and 4, in section 4.) Not surpris
ingly, this property is one of the regularity conditions that must be imposed 
for least squares learning to converge. Intuitively, if two H 's are close but 
generate z’s very far apart, agents will be chasing a moving target; their 
observations on z  will not tell them how to update their forecast function. A 
condition like this is likely to be needed for any learning scheme to converge, 
as long as the learning scheme is only based on observations of the realized 
process.

3.2 R e l a t i o n  to  O t h e r  A l g o r i t h m s .
PEA has developed from other solution approaches used previously in eco
nomics. It is closely related to the backsolving procedure of Sims [1985], 
Novales [1991] and Ingram [1990]. In this approach, conditional expectations 
are fixed by assuming a process for {<£(zt+i)} . The remaining variables, in
cluding exogenous processes, are then solved from a system like ( 1 ) using 
this assumption. Backsolving can be understood as PEA without Steps 3 
and 4, with particular assumptions on the whole process for <j>(zt+1 ). An
other predecessor to PEA can be found in Townsend [1983] in a linear model 
with private information; that paper uses v  =  1 and replaces Steps 2 and 3 
with an explicit calculation of Gi based on spectral densities, in which the 
linearity of the model is exploited. The idea of calculating the mapping G i 
with long-run simulations was previously discussed in Marcet and Sargent
[1989].

Other authors have used approximations of Euler equations with flexible 
functional forms more recently. Examples can be found in Coleman (1988), 
Judd (1992), Baxter (1991) and McGratten (1993); some of these methods 
are based on numerical methods used in other sciences such as engineering
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or physics. We now relate these methods to PEA in terms of the framework 
and the notation laid out in section 2. Define £(x; P )  as the analogue to £  
for the P  process. More precisely,

£(x; P )  =  E [  <j>{zt+l{p))\ x t ( P )  =  x  ], (24)

so, if F  (• | u) denotes the distribution of ut+i conditional on u t =  u, (24) 
implies

.£ ( /(* ,« ); /? )  =  I  iF (u '\u ).
J u

Assuming that x  =  z, these solution procedures can be summarized as 
follows:

• Choose a class of functions P  and a degree of approximation v .  Param
eterize the law of motion by an element t̂ € P ‘, this is equivalent to 
parameterizing expectations as

H P , z) = (*■(/?» z> u ) (25)

where g f 1 represents the inverse of g  with respect to its first argument, 
evaluated at g  =  0 .

• Fix a grid of p  points (x1, x2, ..., xp) in the state space Rf and a set of 
weights to1, to2,..., top.

• For a given /?, calculate £ (xJ; P )  numerically for each j .  As we can see 
from (24), this involves calculating p  integrals over R 3 (recall that s is 
the number of exogenous shocks in ut).

• Find /?„ that solves

P* =  arg {min} Ejf= i II £(*J; P) ~  H P ,  *J) II* • (26)
The difference ||£(xJ;/?) — i p ( P , H ) \ \  is often called the ’residual’ of the 

Euler equation at grid-point j ,  and a generic name for these methods is 
’Minimum Weighted Residuals’. The methods differ in the way the approxi
mating class P ,  the grid-points, and the weights are chosen, how the system
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g  is written, the way iterations are performed to find the above minimum, 
and in the method for computing the integrals involved in £ ( x ; f l ) .

It is clear that the steps involved in PEA are similar to the steps in MWR 
methods. In particular, (26) is analogous to (18). There are, however, several 
fundamental differences:

1 . In MWR, the grid-points and weights are exogenous in the sense that 
they are independent from the approximating parameter /?. Notice that, 
in PEA, the sum in (18) is evaluated at the generated series, so that 
{ x t ( P ) } J = \ plays the role of the grid, and the weights are given by the 
empirical probability of each value of x  in the simulated series; hence, 
the grid and weights are chosen by the algorithm, as a function of fS. 
This is known as e n d o g e n o u s  o v e r s a m p l i n g .

2. The conditional expectation involved in S  is never calculated explicitly 
in PEA. Instead, the approximation in (18) tries to find ^  close to 
<f>(zt+ 1), so that the calculation of the r e s i d u a l  (a fundamental step in 
MWR methods), is entirely bypassed.

3. all integrals are calculated by Monte-Carlo instead of quadrature.

The endogenous oversampling feature implies that PEA only pays atten
tion to those points that actually happen in the solution. This avoids the 
problem that researchers face when they must choose grid-points without 
knowing which points are likely in equilibrium. With endogenous oversam
pling, only the economically relevant region of the state space is explored, so 
no computer time is spent on states that never happen in equilibrium. Fur
thermore, the resulting approximation fits more closely at those states that 
happen more frequently. This is one reason why PEA has been successful in 
models with a large number of state variables. On the other hands, methods 
based on exogenous state-space grids are impractical for such models, since 
the number of points in the grid increases exponentially with the number of 
state variables.

In numerical analysis, the grid (x1, x2, ..., x p) is sometimes adapted in 
the course of the algorithm as a result of the iterations on /?. This is a 
form of endogenous oversampling. Unfortunately, these procedures have not 
yet been used by economists applying MWR. Indeed, some economists have
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claimed that endogenous oversampling is a bad feature of an algorithm6 . In 
fact, endogenous oversampling is an important feature of many algorithms in 
numerical analysis, and it is likely to be an essential element in any algorithm 
for solving models with many state variables.

By eliminating the integral computations involved in the calculation of the 
residual, PEA further reduces computation time, since standard quadrature 
integration is often very costly even in two-dimensional problems. (Notice 
that, strictly speaking, this makes PEA a non-MWR method.) The use of 
Monte-Carlo integration means that the integrals can be calculated even in 
models with a large number of stochastic shocks.

PEA parameterizes the conditional expectations directly, while economists 
using MWR often parameterize the laws of motion it. Formally, the two al
ternatives are equivalent: we showed in section 2  how to find a law of motion 
consistent with V’/3j equation (25) shows how to find V’/s consistent with a 
proposed law of motion it. However, parameterizing conditional expectations 
often has some practical advantages: i )  sometimes we know that x  contains 
fewer variables than z , so that /? contains fewer parameters; i i )  when the 
degree of the polynomial is increased, one can see if some higher-order ele
ments need to be introduced beforehand by testing the predictive power of 
those elements7; H i) if the shocks have a continuous distribution, the condi
tional expectation is obtained by integrating over H , so that £  is likely to 
be smoother than H  and easier to approximate with low degree polynomials; 
i v )  inequality constraints are often easier to impose when the conditional 
expectation function is parameterized8.

The method in Heaton [1993]9 fits into the framework of Section 2  except 
that the approximate solution satisfies

y  £  W *+.(fer»  -  - H A . J = o

Simple algebra shows that this is exactly equivalent to PEA with the pa
rameterization (25) if the objective function defining G „  in (9) is modified

6See, for example, Judd [1992].
7See den Haan and Marcet (1994) for a full description of this idea.
8Christiano and Fisher (1994) make this point in their comparison of solution techniques 

in a model close to our Example 1.3.
9Also used in Bekaert [1993].
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to E \ \  [<f>(zt+ i ( 0 ) )  -  rJ>(£ ,X t(0 ))]  h ( z t ( 0 ) )  ||2, where h  =  |d01 1/d*'| . In
other words, Heaton’s method is a special case of our algorithm where Step 
3  is modified to be a w e i g h te d  non-linear least squares minimization, and 
where h- is used as a weighting function. Heaton’s method performs endoge
nous oversampling, it uses Monte-Carlo integration, and it does not calculate 
any residual. A small modification of our convergence proof accounts for this 
case, but is not included in this paper. 10

4  C o n v e r g e n c e  t o  t h e  A p p r o x i m a t e  S o l u t i o n  
a s  v  — > o o

Convergence will be proved in the strong sense that the approximate law 
of motion H p v , defined in (28) below, converges uniformly to the true law 
of motion H  on the support of the stationary distribution. Proposition 1 
establishes the convergence result when v  and T  are chosen sufficiently large. 
Proposition 2 provides a partial converse to proposition 1 .

A formal proof of convergence is essential for any proposed approximation 
method. It is not sufficient to show that typ can, in principle, approximate 
any fixed function arbitrarily well. In PEA, the approximating function xjjp 
is required to approximate a conditional expectation function £(•; 0 )  which 
itself depends on 0  through the simulated process {z*(/3), x t { 0 ) } . In other 
words, £(•;/?) is a moving target.

Furthermore, one can easily construct examples of plausible approxima
tion schemes which fail to converge to the function being approximated. For 
example, Judd (1994) points to a standard non-convergence example where, 
if a polynomial of degree v  was fitted exactly at v  equally-spaced grid-points, 
the approximation becomes arbitrarily bad as v  becomes larger. He suggests 
that PEA may suffer from a similar problem of nonconvergence; Proposition 
1 formally disposes of Judd’s criticism.11

10Details on the algebra and the convergence proof for the weighted case are in Marcet 
and Marshall [1992].

u In any case, this example does not apply to PEA for two reasons: i ) in the example, the 
function is evaluated at v  points, while PEA evaluates the function at T  points, where T is 
much larger than v \  i i ) the v  points in the example cited by Judd are chosen independently 
of /?, while in PEA this task is endogenous. If anything, this non-convergence example may 
be indicative of convergence problems for algorithms, including some suggested in Judd
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To demonstrate convergence of the approximate solution, several con
ceptual issues must be addressed: i )  the class P  has to be dense in the 
appropriate space, i i )  Compactness of the function space P  is needed in 
order to:guarantee that a sequence of approximators contains a convergent 
subsequence, H i) In general, G vj  need not have a fixed point, so the defini
tion of an approximate solution must be generalized to insure that a solution 
exists for all v  and T, and that a fixed point exists approximately for large 
v  and T .  i v )  It must be shown that G „tT is a good approximation to G „ ,  for 
large T .  v )  Simulations are generated endogenously in Step 2 , so we must 
insure that {zt(/?)} is well behaved. In particular, we must show that the 
series does ro t explode, and that the effect of the initial conditions chosen 
for z  dies out sufficiently rapidly. Point v )  and the choice of P  are related 
problems since one must insure that P  is dense in the set of laws of motion 
that generate well-behaved series.

The first set of assumptions are regularity conditions on the functions 
defining the equilibrium (1). Let <7,_1 be the implicit function that defines 
the i th argument of g; for example,

g ( a , g 2 l ( a , z , u ) , z , u )  =  0 (27)

The process { z t ((3), x t ( (3 )}  defined by equation (15) is a first-order Markov 
process satisfying zo ( /3 )  =  zq and

z t ((3) = H ( z t„ x ( p ) , u t \ p )  = *<(/?)), Zt-i(/?),«t) (28)

For notational convenience we will let H p  denote the function H (•, •; /?). Note 
that H p  is analogous to H } 2

A ssum ption 1  ( a )  F u n c t i o n s  <j>,g, a n d  f  a r e  u n i f o r m l y 13 L i p s c h i t z - c o n t i n u o u s
in  a l l  a r g u m e n t s , a n d  a r e  d i f f e r e n t ia b l e  a . e . * 12 13

(1992), where n = v  and where the grid is exogenous. To our knowledge, no convergence 
proof for such methods is yet available.

12We use MH” to denote both the Markov operator defined in (7) and that defined in 
(28). It will be clear which usage is intended since the operator defined in (28) has /? as 
an argument, while the true solution does not.

13A function with multiple arguments is said to be uniformly Lipschitz-continuous if the 
Lipschitz coefficient with respect to the i th argument does not depend on the value of the 
j th argument.
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(b) For all (a ,z ,u ) € <f>{Z) x Z x U, g2 l satisfying (27) exists and is 
uniformly Lipschitz-continuous in its second argument.

(c) Tl\e true conditional expectation £ is Lipschitz-continuous a.e.

where ’a.e.’ is with respect to the Lebesgue measure. Notice that parts (a) 
and (b) can be checked directly, while part (c) can not be verified directly 
from functions <f>, g , and / .  It should be kept in mind, however, that in most 
models parts (a) and (b) imply part (c) . 14

Assumption 1 (b) insures that H  can be derived from knowledge of g and 
£; similarly, it insures that Hp is well defined and that it can be derived from 
knowledge of g and xpp. The assumption that g fx is Lipschitz-continuous 
insures that a small change in zt- 1 does not necessitate an arbitrarily large 
change in zt to maintain equilibrium condition (1). If g is differentiable, this 
assumption requires the partial derivative of g with respect to its second 
argument to be uniformly bounded away from zero. Assumption 1 implies 
that H is Lipschitz-continuous.

The next two assumptions insure that the conditional expectation terms 
in (1 ) can be well approximated by some function xp. Approximating classes 
of functions, such as polynomials, exponentiated polynomials, or splines, ap
proximate a given function arbitrarily well only over a compact set. There
fore, we impose

A ssum ption 2  Z x U is a compact set.

Assumption 2  implies that both exogenous and endogenous state variables 
have compact support. Compact support for endogenous processes can be 
implied by economic models in a number of ways. In models with capital 
accumulation, depreciation often implies a bounded capital stock if U is 
bounded. Asset pricing models are only well defined if a lower bound on 
asset-holdings is imposed on agents; this is usually assumed through short- 
sale constraints. Finally, if the model is stationary, bounded support can be 
achieved by directly imposing exogenous constraints on the model’s variables 
at levels which will be attained with very small probability. For example, 
in the simple growth model with zero depreciation the capital stock can be

HSee, for example, Santos’s [1991] proof that £  is differentiable in dynamic programming 
models.
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arbitrarily large. However, a very high level of the capital stock would be 
achieved in equilibrium with extremely low probability, so the technology of 
the model can be modified by imposing a very large upper bound on the level 
of the capital stock. Presumably, the difference between the behavior of the 
original model and this modified model will be negligible.

The next set of assumptions describes the class of approximating func
tions, { ip  : D„ x R p —► R m}, where D „  is a compact subset of the space of 
sequences with at most the first u  elements non-zero.15 We will construct the 
sequence {A/}£Li such that D „  C A /+i,V  i/, and we define D  =  (J„>i A / •

A ssum ption 3 ( a )  V x  <E X ,  f o r  e a c h  v ,  th e  r e s t r i c t i o n  o f  i p ( - , x )  to  D „
s a t i s f i e s  a  L i p s c h i t z  c o n d i t i o n  u n i f o r m l y  in  x .

( b)  |ip ( f i , -)| < M, V/? € A  w h e r e  supz€z <p(z) <  M  < oo.

( c )  ip((3, •) i s  c o n t i n u o u s ,  d i f f e r e n t ia b l e  a l m o s t  e v e r y w h e r e ,  a n d  3 K  < oo
s u c h  t h a t  | j < K y V/? G D ,  x  G X  w h e r e  th e  d e r i v a t i v e  e x i s t s .

( d )  F o r  a n y  c o n t i n u o u s  f u n c t i o n  q : A  x R p —► R m s u c h  t h a t  | <7 | < K '  <
K ,  th e r e  e x i s t s  a s e q u e n c e  {/?„}£ii, € D „ ,  s u c h  t h a t

dip(/3̂ ,x)
d x

q ( x ) =  0.

Assumption 3 (b) is nonrestrictive, since ip is only used to approximate the 
conditional expectation of <p. Notice that in assumption 3(d) we assume that 
the d e r i v a t i v e s  of the approximating function sequence approximate any con
tinuous function. In Lemma 1 of Appendix 1 we show that assumption 3 (d) 
implies that any absolutely continuous function can be uniformly approxi
mated by some sequence {ipp  In practice, assumption 3 (d) is not very
restrictive. For most commonly-used approximation functions, such as poly
nomials or splines, the derivatives are themselves a class of approximating 
function. (Step functions are one exception.)

lsThe restriction that D v be compact is without loss of generality. In the case that the 
parameters may have to be arbitrarily large for obtaining an approximation (as it may be 
the case, for example, with polynomials), the {A} sequence is constructed so that there 
is a bound on all elements of {A} but this bound goes to infinity as v  grows.
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There is a popular misconception that the derivatives of polynomial ap
proximators must diverge from the derivatives of the target function when 
the approximators become uniformly close to the target. This is true only for 
certain ways of constructing polynomial approximators; for example, if the 
approximation is required to fit a v th order polynomial to the target function 
exactly on v  points. It is not true, however, if the approximating sequence is 
chosen to minimize other criteria, such as the l?  distance, that take into ac
count the fit of the function at many points. For example, polynomials would 
fit Assumption 3, since the derivative of a polynomial is itself a polynomial, 
and our Lemma 1 shows that an approximating sequence can be chosen with 
bounded derivatives.

In this paper, we restrict our attention to stationary and ergodic pro
cesses.

D efin ition  {zt°(0 )}  and {zt°°} are stationary and ergodic processes sat
isfying equations (28) and (7), respectively, for t =  0 ,± 1 ,± 2 , ...

That is, {z t} and (z<(/?)} denote processes generated respectively by (25) 
and (12) starting from a fixed initial condition zo, while {zf°}t^_oo and 
{z(°°(/?)}£-oo denote stationary and ergodic processes. The processes {zt{P)} 
and {zt) are, in general, non-stationary, since the initial condition is fixed, 
rather than a draw from the stationary distribution.

There is a final set of issues to be addressed. In common with virtually 
all solution methods discussed in section 3, PEA delivers an approximation, 
Hp, to the equilibrium law of motion H. This approximate law of motion 
generates a time series {zt((3)}J= l, starting from some arbitrary initial con
dition, which is used to obtain inferences about the stochastic properties of 
the true stationary equilibrium process zf°. For this procedure to be valid, 
three conditions must hold: i) {zf°(/?)} and {z f5} must exist; it) the effect 
of the initial condition must decline as t grows; iii) if Hp is close to H, then 
zf°(/?) must be close to zf°. These three conditions are closely related; most 
processes either satisfy all three conditions or violate all of them. None of 
these conditions hold, for example, if {z t} were an explosive process or a 
random walk.

Insuring that these conditions hold is not only a problem for PEA. They 
must hold for any proposed approximation procedure if the approximator is
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to converge to the true stationary equilibrium process. For example, if H  
were explosive, an approximation method that used a fixed grid (x i, ...jX,,) 
could never converge to the true equilibrium, since the endogenous process 
would eventually explode out of the pre-specified discrete grid.

These considerations require additional regularity conditions both on the 
true equilibrium and on the space of admissible PEA approximators. We 
propose two distinct sets of conditions, either of which is sufficient to prove 
proposition 1. In the first, more general, approach, we simply assume the 
•needed conditions directly. Formally, for an arbitrary law of motion H a 
(where a  is an index) let { z°}  denote the process generated by H a starting 
at fixed initial condition z0, and let {zf00} denote the stationary process 
associated with H a.

D efin ition  S  is a closed set (in the sup norm) of laws of motion such 
that, for all H a 6 S

(a) a stationary process with support in the set ZU °  exists

(b) if initial condition (z0,u i) € Z U °, sup0 |zf — zf00! —* 0 almost surely 
as t —► oo, uniformly in the initial condition zq.

(c) for any sequence of functions such that H k —* H a in the sup norm
as k —» oo, we have zf°k —> zf00 almost surely as k —» oo, uniformly in 
t.

Note that condition (b) allows for a process with several disjoint ergodic 
sets. All that is required is that, once the process is in the ergodic set, the 
effect of the initial conditions disappears.
A ssum ption  4* The law o f motion H is in the interior o f S .

This assumption can not be verified directly from knowledge of system (1). 
There is a large literature on how to verify parts (a) and (b) of the definition 
of S  analytically.16 Part (c) in this definition is essentially a robustness 
condition; if it did not hold, one can make the case that the model at hand 
is not a particularly interesting one, since the time-series properties of the

16For example, Marimon (1989) shows existence of a stationary and ergodic solution 
of the growth model under very general assumptions. Santos [1991] verifies part b) for 
dynamic programming models.
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model’s endogenous variables would be highly sensitive to small deviations 
from fully rational behavior. Alternatively, one can verify assumption 4* by 
using proposition 2 below: if assumption 4* is the only assumption to fail, 
this will;be detected with PEA by the absence of an asymptotic fixed point.

Under assumptions 1, 2, 3, and 4* , the approximate PEA solution con
verges to the true stationary equilibrium, in the sense of Proposition 1 below, 
if the set D„ of admissible parameters is restricted to the subset B f , defined
by

B f  =  {fi € D„:HP € S ) . (29)

A potential problem with using assumption 4* is that it is difficult to check 
formally if j3 € B f  . In principle, (5 €B^ can be checked infoimally, as follows: 
part (a) can be tested by observing if the solution settles around a stationary 
distribution; part (b) can be tested by re-doing the calculations with different 
z0; finally, if part (c) were not satisfied, the series will not settle down even 
with small changes in and the user will notice that the iterations to find 
the fixed point will not converge.

Our second set of regularity conditions avoids this problem: the needed 
restrictions on the /?„’s can be checked formally. The cost is that this second 
set of regularity conditions is somewhat less general than assumption 4*. 
The alternative conditions uses the following version of Duffie and Singleton’s
(1993) asymptotic unit circle (AUC) condition:

A ssum ption  4 (a) H has a stationary and ergodic solution
with support in the set Z U .

(b) There exists a sequence o f positive random variables {/>(««)}

Elog[p(ut)] =  a  <  0 a. s. (30)

such that H (',u )  has Lipschitz coefficient p(u) in ZU .

Assumption 4 is a nonlinear analogue to the unit circle condition in linear 
time series models. While this is more restrictive than 4*, it is still satisfied 
in most models of interest. First, the Lipschitz constants on H  need to be 
imposed only on the ergodic set of the true solution. Second, as long as the 
expectation in (30)is less than zero, the condition permits Lipschitz constants 
greater than unity for a subset of U with positive (possibly substantial)

satisfying
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probability measure. Finally, the assumption is silent about the particular 
transformation of the endogenous variables used to construct the z t series. 
For example, the simple growth model of Example 1.2 for p  =  0 is known to 
satisfy this condition if we write the law of motion in terms of log(kt), even 
though this may not be true if H  is written in terms of kt directly.

Under assumption 4, we must impose an analogous AUC condition on 
the set of admissible approximators, which will be denoted B ^ u c :

D efinition: For all i/y 1&*UC is a closed subset of £>„ with the prop
erty that, V/? € B * u c , there exist psitive constants Sp and positive random 
variables {p/?(ut)} satisfying

Elog[p/3(u()] <  a  < 0 a.s. (31)

such that, for all || (31 — /? || < H (•, u t; /?') has Lipschitz coefficient pp(ut).

The expectation in (31) is with respect to the stationary distribution of ut. 
For any given /?, condition (31) can be verified numerically: set pp(ut) equal 
to the maximum derivative of //(•, u t; /?'), and integrate numerically over the 
u 's.17

Under either assumption 4* or assumption 4, we must restrict the ap
proximate solution f3vj  to a subset B u € D„, where B„ equals B f  or H *uc  
depending on which assumption is used. Under this restriction it is not easy 
to guarantee that G ^t  has a fixed point, since Gu<t  now maps B„ into a 
larger set D„. One way to guarantee the existence of a fixed point is to re
strict the minimization that defines Gv>t  in (18) to the set B„. The function 
Gu>t  would then map B,. into itself, and existence of a fixed point would 
follow from Brouwer’s theorem. It turns out that this strategy does not de
liver a proof of Proposition 1: we must use the fact that G>tr minimizes the

17Another consequence of using assumption 4 and B^yc is that the proof becomes 
much more involved than if B^and assumption 4* were used. The reason is that the proof 
needs to show that H  can be arbitrarily well approximated by a sequence of H j  s with
P  € B * u c . In other words, we need that PC\{rpp : P G U ^xB^yc} is dense in the subset 
of { h :  R l —* flm} containing S .  Now, since U£Lj B AUC has an empty interior, this does 
not follow immediately from the fact that P  is dense in { h  : R 1 - *  R m } . On the other 
hand, denseness of Pfl [ipp : /? G U^LjBf} in the subset of [ h  : R 1 —► containing 8  
follows immediately from assumption 4* and the definition of this set.
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mean square error among all admissible /? € D„. (See, for example, Lemma 
8 , equation 62). Instead, we use the following definition of an approximate 
solution, which generalizes equation (19):

%

D efinition: An approxim ate so lution  o f order v, sam p le size  T , is 
a parameter vector /?„,t satisfying

Pv,T =  argmin ££f=i I0(/?,*<(/?)) ~ 'P{G„,T(/3),xt(/3))\2 (32)

Under assumptions 1 to 3 an approximate solution always exists by con
tinuity and boundedness of the objective function. If G„tr  had a fixed point 
in the set B„, the two definitions would obviously coincide. In practice, a 
fixed point usually can be found. Even if no fixed point exists for finite v 
and T, lemma 9 in the appendix implies that as v, T  —► 00

4  IVKA'.t , zt(/?i/,r)) -  V ^ .H /W ) ,  “ ♦O*
1 «=i

This makes precise the sense in which and C?„,r(/3) can be made arbitrarily 
close. In that sense, the approximate solution (32) represents a fixed point 
asymptotically.

The minimization problem in the above definition is over a restricted set. 
Finding constrained minima numerically in non-linear setups is often difficult. 
In practical applications of PEA, one can avoid imposing this restriction 
directly by solving an unconstrained minimization along a homotopy path 
for which the constraint does not bind. More details are given at the end of 
next section.

Notice that, either under assumption 4 or under 4*, we may have non
uniqueness. This can happen because system (1) may be satisfied for several 
laws of motion H , or because a given law of motion has several ergodic sets 
ZU . Our discussion of examples 1.1,1.2 and 1.3 shows how to pick out unique 
solutions in some cases.

Now we present the fundamental proposition in this section.18

l8It is understood that the double limits in the paper are defined as:

lim C„,r = lim (Jim G ,t )
v , T — oq v — oo \T- > 0 0 /
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Proposition 1  (Convergence of A pproxim ate Solutions): A s s u m e

t h a t  th e r e  i s  a  u n iq u e  s o l u t i o n  w i th  a  u n iq u e  s t a t i o n a r y  a n d  e r g o d i c  d i s t r i 
b u t io n ;  d e n o t e  th e  s u p p o r t  a s  Z U .  U n d e r  a s s u m p t i o n s  1, 2 , a n d  3 ,  i f , in  
a d d i t i o n ,  either a s s u m p t i o n  4 *  h o ld s  a n d  B„ =  B f or a s s u m p t i o n  4  h o ld s  

a n d  B„ =  B^yc, th e n

lim ( sup | H ( z , u \ (3^ t ) — H ( z , u )  | 1 = 0 ,  a.s.
\ ( z , u ) e z f f  )

lim I sup | d’ if l i 'T , z) — S { x )  | I = 0, a.s.
\x e / ( z U )  )

(All proofs are in Appendix 1 .) Notice that convergence obtains in the strong 
sense of uniform convergence. Also notice that convergence is guaranteed 
only in the ergodic set ZU . In case that the solution is non-unique or has 
several ergodic sets, a trivial modification of the proof of Proposition 1 would 
show that the approximate solution becomes arbitrarily close to the set of 
ergodic solutions

The following corollary asserts that all properties of the model that are of 
interest in time series applications are appropriately approximated by PEA.

Corollary 1 U n d e r  th e  c o n d i t i o n s  o f  P r o p o s i t i o n  1, i f  (z0 ,u i) € Z U , w e  
h a v e

( a )  ( S i m u l a t e d  S o l u t i o n  P a t h s  c o n v e r g e )

Zi {(3v>t ) —► Zt a . s . ,  u n i f o r m l y  in  t ,

(b )  ( E q u i l i b r iu m  C o n d i t i o n s  a r e  s a t i s f i e d  in  th e  l i m i t )

g  ( E  [<j>(zt+ 1 ( p v tT ) ) \ x t ( 0 „tT)\, zt(&,r ), «t) -» 0  a . s .

( c )  ( S i m u l a t e d  S a m p l e  M o m e n t s  c o n v e r g e ) :  I f  d  : Z  —* R ? i s  a n y  L i p s c h i t z  
f u n c t i o n ,  t h e n

-» £(d(zt°°)) a . s .
1 t=i
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a s  u , T  —* oo.

We now provide a partial converse to Proposition 1 . It shows how the 
conclusion of Proposition 1 depends on assumption 4* or 4, and provides 
a way to check these assumptions in the limit. Specifically, if B„ =  B f , 
part (a)  says that if H  does not satisfy assumption 4*, this can be detected
because min ||Vv3 — V’G„(/?)| is eventually bounded away from zero; part (b)  

tells us that those equilibria that fail to satisfy assumption 4* will not be 
approximated by PEA. (An analogous interpretation holds for B„ =  B^1707.) 
For example, this implies that rational expectations bubble equilibria in Ex
ample 1.1  will not be approximated by PEA with the choice of state variables 
proposed in section 2 .

P roposition 2 U n d e r  a s s u m p t i o n s  1, 2  a n d  3,

( a )  t/B*, = Bjf a n d  a s s u m p t i o n  4 *  i s  n o t  s a t i s f i e d  or i f  B„ =  H * u c  a n d  
a s s u m p t i o n  4  i s  n o t  s a t i s f i e d ,  th e n  th e r e  e x i s t  7  > 0 a n d  N  >  0 s u c h  
t h a t  W  > N

min E [rJ > (P ,x ™ (0 ) )  -  t { G „ { ( 3 ) , x ? ( 0 ) ) ] 2 >  7PfcOl/

(b )  i f  B„ = B J a n d  th e r e  e x i s t s  a n  e q u i l ib r iu m  H  t h a t  d o e s  n o t  s a t i s f y  
A s s u m p t i o n  4*> o r  i f  B„ = a n d  th e r e  e x i s t s  a n  e q u i l i b r i u m  H
t h a t  d o e s  n o t  s a t i s f y  A s s u m p t i o n  4 , th e n  H p vT d o e s  n o t  c o n v e r g e  to  H .

Proposition 2 can be used to verify assumption 4* or 4 by calculating

i f ;  11 ii!
1  t =  1

for v  and T  arbitrarily large. If B„ =  B f , assumption 4* is satisfied if and 
only if this infinite sum can be made arbitrarily close to zero. (An analogous 
verification of assumption 4 holds for B„ =  B^170.) This is important be
cause verifying assumption 4* or 4 analytically may be difficult if one simply 
inspects the equilibrium conditions (1 ).
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5  S o m e  P r a c t i c a l  Issues.

5.1 S i m p l e  A l g o r i t h m s  for finding (3u>t
In order to calculate the fixed point of Step 4 (or the arg min in equation (32)) 
one can use standard hill-climbing algorithms for solving non-linear systems 
of equations. Nevertheless, this may not always be the best alternative. First, 
calculation of the gradient of can become very expensive in models with
many coefficients. Second, is only well defined if /3 G B u .

We will discuss the second issue in the subsection on homotopy, below. In 
order to avoid the first problem, the following algorithm based on modified 
successive approximations has been used successfully in many applications

M r  +  1) =  (1 -  A)fl,,T(r) + AG „ , t { M t ) )  (33)
for some A > 0 . It is clear that no gradient has to be calculated, so that 
the iterations are extremely easy to program, and each iteration is done very 
quickly. This algorithm needs more iterations to converge than a gradient 
algorithm, but there is a trade-off between ease of performing each iteration 
and number of iterations needed to converge. In practice, the above algorithm 
is often at least as fast as gradient algorithms.

Although one can construct examples where iterations on (33) are locally 
unstable, this has not been the case in most practical applications up to date. 
Furthermore, since the least-squares learning model is locally stable if and 
only if the differential equation (23) is stable, iterations on (33) with A small 
diverge only if the model is locally unstable under learning. If this were the 
case, the model would be uninteresting from an economic standpoint.

Another fast algorithm that avoids calculating the gradient is to simulate 
directly the model under least squares learning. More precisely, Steps 2, 3 
and 4 are substituted by

• Step 2’: For T  large enough, draw a sample of size T  of the exoge
nous stochastic shock and calculate { z t , U t } J =Q using the least squares 
learning model of Appendix 2 .

Again, if the model is stable under learning /?t will converge to the fixed 
point.
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5.2 S p e e d  o f  C o m p u t a t i o n ,  Initial C o n d i t i o n s  a n d  H o 
m o  topy.

The design of S t e p s  1 t o  4  in s e c t i o n  2  i s  d e s c r i b e s  t h e  s i m p l e s t  p o s s i b l e  a p p l i 
c a t i o n  of PEA. A number of elementary modifications can be used to speed 
up computations, for example: one iteration on the algorithm for running 
the non-linear regressions of Step 3 is sufficient to deliver the fixed point; g  
can be often rewritten in a way that solving for z t in Step 2  is very simple; 
the class of functions P  can be chosen to match some properties of the con
ditional expectation (for example, it can be set to take only positive values); 
and, as suggested by the definition in equation (32), it is better to place the 
convergence criterion used to decide that the algorithm has arrived at the 
fixed point on the values of 0 ^, instead of on the values of /?.

Suppose a researcher has calculated the solution of order u  and wants to 
calculate the solution of order j/+ 1. In this case, using (3v>t  as initial condition 
for the iterations to find the v  +  1 approximation is not a good alternative, 
since the elements of the higher degree will usually be correlated with those 
of a lower degree; instead, it is best to start the algorithm at Gv+i,T(/9i/,T)- 
Furthermore, it is not always necessary to introduce all elements of degree 
v + 1. Only those higher-order elements that have some incremental predictive 
power for <f>(zt+1(/?)) need be included.

It is likely that the introduction of textbook techniques from numerical 
analysis will be useful for finding minima, computing efficient Monte-Carlo 
integrals, introducing alternative flexible functional forms, and setting homo- 
topy paths. One has to be careful not to introduce these techniques unless 
there is a good reason; oftentimes, the simplest approach will be sufficient 
for solving the model of interest. In many cases, a simple algorithm is also 
the fastest alternative.

Many successful pplications of PEA make use of homotopy techniques; 
this is a simple way of obtaining starting values for the algorithm and of 
keeping the simulations in the stable set B„. Along a homotopy, the desired 
solution is obtained by moving slowly from a known solution to the solution 
of the model we are interested in. For example, den Haan and Marcet (1990) 
calculate the simple growth model of example 1 .2  with partial depreciation 
by starting out at the solution for the case p  =  0  (a case for which we 
know the analytic solution), and then solving a series of models increasing 
p  gradually. At each step along the homotopy, the solution for the previous
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step is used as initial condition. In this way, one insures that all iterations 
stay close to the true law of motion and, therefore, away from the boundary 
of B„. Therefore, there is no need to use c o n s t r a i n e d  minimization routines 
in order:to solve the minimization problem in (32).

PEA has turned out to be a fast and simple method in many applications. 
A comparison of speed of convergence, accuracy and convenience in a highly 
non-linear model has been made by Christiano and Fisher (1994); they use a 
simple growth model with irreversible investment (our example 1.3) and as
sume that the shock 6 t is a discrete Markov chain. Their model is particularly 
unsuitable to PEA, since it only has one continuous state variable and the 
stochastic shock can take only two possible values: in this particular model, 
endogenous oversampling is not very useful, and Monte-Carlo integration is 
very inefficient, since integrals £ ( x i ] ( 3 )  are given by a simple formula that is 
exploited in the other algorithms but not in PEA. The computation times 
are higher for PEA but, even for their model, only by factors of five or seven. 
Furthermore, of the several algorithms they tried, PEA was the only one 
where the computation time increased only slightly when a non-negativity 
constraint was introduced. Finally, Christiano and Fisher find that PEA 
delivers a very accurate answer for low-degree polynomials and it is, by far, 
the easiest method to implement.

The claim in Judd (1992) that MWR methods are ’hundreds of times 
faster’ than PEA is based on comparing the computation times of den Haan 
and Marcet (1990) with his own computations. These computation times 
are not comparable because different starting values were used: den Haan 
and Marcet (1990) (who were unaware that they were in a race) deliberately 
started the algorithm at a very incorrect initial condition to illustrate the use 
of homotopy. The solutions reported in Judd (1992) use the non-stochastic 
s t e a d y - s t a t e  s o l u t i o n  as starting value, which happens to be very close to 
the stochastic solution. Despite their model choice, the comparison done in 
Christiano and Fisher (1994) is more informative, since they start out all the 
algorithms at equivalent initial conditions.

6  C o n c l u s i o n

We have presented the PEA algorithm for solving dynamic stochastic non
linear models with rational expectations. This approach is highly flexible,
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and it has been used successfully in many applications with suboptimal equi
libria, strong non-linearities and inequality constraints. It is particularly fast 
in those models with a large number of state variables and stochastic shocks, 
and is quite easy to implement.

We prove that, for models with continuous laws of motion and under 
some mild regularity assumptions, the approximate solution converges to the 
true solution with arbitrary accuracy as the approximation is refined. Con
vergence has been proved for the case of the stationary distribution. Similar 
results for other techniques solving Euler equations with finite dimensional 
approximations are not yet available.

A very general condition requiring, essentially, ergodicity of the true pro
cess, is enough for convergence. We have also proved convergence under the 
more restrictive assumption that Duffie and Singleton’s AUC condition has 
to hold in the support of the ergodic distribution in order to guarantee that 
the stability condition on the approximate process can be verified formally. 
Future research might deliver similar convergence results for PEA under dis
continuous laws of motion, but certain technical details, such as a condition 
for compactness of the class of approximating functions and an equivalent 
stability condition, need to be addressed. Our restriction to the support 
of the stationary distribution is non-essential: a result that guarantees con
vergence of the law of motion outside the ergodic set can be found in the 
predecessor to this paper when the algorithm uses short-run simulations.

The convergence theorem in this paper represents a first step in studying 
the properties of PEA and other numerical methods for solving systems of 
Euler equation. Additional work needs to be done. For example, it would be 
useful to understand the optimal rate at which u  and T  should be allowed 
to grow. A more formal method of selecting the higher degree elements to 
include when increasing u  would be valuable. Finally, the use of more sophis
ticated homotopy techniques can improve the speed of convergence in large 
models, and it can provide a basis for a theorem proving that the iterations 
to find the approximate solution converge globally from the initial condi
tions. We believe that this area of research will pay substantial dividends in 
expanding the range of economic models accessible to quantitative analysis.
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APPENDIX 1 
PROOFS AND LEMMAS

For ease of exposition and notation, the propositions and lemmas are 
proved for the case where G u and are well-defined functions (that is, the 
least-squares minimizers in (16), (18), (32) and , (54) are unique). This avoids 
dealing explicitly with convergence of correspondences. All propositions are 
valid for the general case where these objects may be non-unique. First, 
suppose G vj { P )  were multi-valued. For any £ € G ^ r i P ) ,  fakes the
same value, so the minimand in (32) is well-defined. If the minimizer in (32) 
were non-unique, there would be multiple equivalent PEA approximators for 
each value of v  and T .  In that case, one could still construct a doubly-indexed 
sequence {/?k,t } by selecting any one of the equivalent PEA approximators 
for each v  and T .  Any such sequence converges to the true equilibrium, in 
the sense of proposition 1. Finally, throughout this appendix, || • || denotes 
the L 2 norm, and B = U„>iB„.

The first lemma proves that P  is dense in the space of conditional expec
tations. If €  was differentiable, the lemma would follow almost trivially from 
the fundamental theorem of integral calculus. Most of the derivations in the 
Lemma are to handle nondifferentiabilities in £.

Lem m a 1 There  exists a sequence /?„ € D*, such that

(*)

(b)

l i m ^ f e l*/->oo (jx
d £ ( x )  

Ox ’ a.e.  in X .

Jjm sup |V>(/?„,:r)-£(x)| =  0

( c )

l i m s u p v-><x> sup 
x€X

d £ ( x )

d x
— sup 

xex d x
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Proof.
To accommodate points of non-differentiability, our proof strategy in

volves smoothing the function £ .  We first define and characterize kernel 
approximator functions. For k =  1,2, • • •, let nk : R p —► R m be a continuous 
function for which fNk Kk{t)dt =  1, and let A  C X  be a set of Lebesgue 
measure zero. Let q : (X  — A) —► R m be any arbitrary bounded continuous 
function. The kernel approximator function qk is defined as follows:

qk(x )  =  J  k <l(x  + t ) n k( t ) d t

In a technical appendix, available upon request, we prove that

limsupsup | qk(x )  | =  sup | q (x )  | . (34)
k—>oo x£X x£X

Property (34) will be used in proving part (c) of the lemma.
To prove the lemma, choose x € X .  By theorem (7.29) in Wheeden and 

Zygmund (1977)), since £  is absolutely continuous, the derivative of £  exists 
a.e., it is uniformly bounded, and we have

for all x € X.  Let d£k denote the kernel approximator to and let £ k
be defined as follows:

£ k{x)  =  J X_ d £ k(x' )dx '  +  M k, (35)

where the scalar sequence { M k} is chosen so that £ k(x )  =  £ ( x )  for all k. 
Clearly,

d £ k(x )  =
d £ k( x ) 

d x  ’
so, in particular, d £ k is differentiable everywhere and,

d £ ( x )  d £ k(x)limk—*oo = 0
d x  d x

pointwise, except on a set of Lebesgue measure zero.

(36)
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We first prove that

lim sup \ £ k(x )  — £ { x ) \  = 0. (37)
*€* 1 1

Given our construction (35), it is enough to show that the integrals of d £ k 
converge uniformly to the integrals of |£ .

Let K  denote the Lipschitz coefficient on £, which exists by virtue of 
assumption 1(c). It follows that K  is a bound on and (by virtue of
(34) on 8gg . Using Egorov’s theorem (see Wheeden and Zygmund (1977) 
page 57), we know that convergence a.e. of measurable functions implies 
uniform convergence except in a set of arbitrarily small measure. Therefore, 
given any e > 0, we can find A  C  X  such that | A  |< c/(4 K )  (where, | A  \ 
represents the Lebesgue measure of the set A )  and

sup
x£X—A

In particular, there exists a k such that, for all k >  k , s u p * ^ ^  | d£Q ^  ~  | <
c/(2 |X|). For such a k , Egorov’s theorem implies that,

d £ k{x)  d £ ( x )
d x d x

0 as k —► oo

sup |^(a:) — £(z)| = sup 
xex 1 1 rgX Jx U X  Jx

d £ ( x ' )
d x

dx'

< sup
x€X

d £ k{x')

d x

d £ ( x ' )
d x

d £ k{x')
d x

d £ ( x ' )

d x
dx

■)

< sup ( f  , , e/{2 | A' \ ) d x ' +  I A  | 2A') <| A 11/(2 | A |)+2Ae/(4 K )  =  e ,
xex \Jlx,x]-A J

This completes the proof of (37).
Parts (a), (b), and (c) of the Lemma can now be demonstrated. Fix k.  

By Assumption 3 there exists a sequence f3k € D v such that

lim sup 
xex

di>(ff,,x)
d x

d £ k{x)
d x

0. (38)
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(39)

Equation (38) implies

Jfirn sup |v>(/?*,x) — £fc(x)| = 0.

and

lim sup 
*'-00*6X

9 r p ( ^ l , x ) 8 £ k ( x )

d x
— sup 

xex d x
(40)

We know from the properties of kernel approximators that £ k —> £  as 
k  —► oo and that, for each k ; from (39) we have that —* £ k uniformly asPi/
v  —► oo. Furthermore, (34) implies that sup^g^ suPa:€A' |^f^|

as k  —* oo. Therefore, a sequence {/3„} can be constructed by taking the 

appropriate elements from the doubly indexed sequence {/?*} so that parts
(a) , (b), and (c) of the Lemma are satisfied. Q E D

The next lemma proves that restricting the approximation to stay in the 
set of well-behaved laws of motion B  does not preclude an arbitrarily good 
approximation. Formally, the lemma could be stated as saying that P  is 
dense in B.

Lem m a 2 L e t  be  a s  i n  l e m m a  1, t h e n  G B„ f o r  v  s u f f i c i e n t l y  l a r g e .

P r o o f .

In the case where assumption 4* is made and B„ = B^, the lemma follows 
immediately from part (c) of the definition of 5, since H  is in the interior 
of S .  The remainder of the proof is for the case where assumption 4 is made 
and B„ =  3 * u c . We use the following result:

sup
xex

£ { x ) ~  £  (*) d  £  (x)

x —x
— sup 

x e x d x
(41)

A proof of equation (41) is in a technical appendix available from the authors. 
Assumptions 1(a) and 3(a) imply that H ( z , u \ ‘) is continuous in /?. There
fore, to prove the lemma, it is sufficient to show that, for each v ,  the minimal 
Lipschitz coefficient of H ( - , u ] P u ) (which we will denote p p  (tt)) satisfies

limsuppjj (tt) < p ( u ) ,
1/-+00

(42)
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where p(u) is the Lipschitz coefficient on H defined in Assumption 4. Un
der Assumptions 1(a) and 1(b), the functions <7 , ( 7 2  and /  are uniformly 
Lipschitz in all arguments. Therefore, the following coefficients are finite:

g{oc,z',z, u ) -g (a ,z ',  z,u) 
a — a

K\{u) =  maxOf,Qft2#,Z

I<3 ( u )  =  max 
a,7,z',z

K ( u )  = max
CXyZyZ

g{<*, z',z,u) -  g(a,z',z,u)
z — z

g i l (a,z,u) -  g?x{cc, z,u)
z — z

/(*»“ ) -  /(* ,« )
z — z

K / ( u )  =  max
Z , Z

where z, z, z €  Z, and a  € <f>(Z). Assumption 4 then implies that 

\l<\(u)I<j(u)K  -I- A'3(u)] K (u) < p(u)

where K  = supx6^ |d |. Let Kp be defined as follows:

50(/?,x)Kp = sup
z€A' dx

(43)

It follows that

pp(u) = [K \(u)K j(u)Kp  + A'3(u)] I<(u) (44)

Equations (43), (44), and Lemma 1(c) immediately imply (42). QED.

The next Lemma collects a number of results that will be used later. Let 
£ *  denote an arbitrary function defined on X\ let H* : Z x U —> Z be defined 

by
$(£*(/(*»«))» H ‘ ( z , u), z, u) =  0,

so H m is the law of motion consistent with £*; let p’ (u) be the Lipschitz 
coefficient of //*(•, u).

If assumption 4* is made, we will assume that H* € S. If assumption 4 
is made, we will assume that H* satisfies the AU C condition in (31), so that
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J3[log[/>*(u<)]] <  a" <  0 a.s. (45)

Let zf3'* be a sta tionary  and ergodic process satisfying zf3'" =  H*(
For any 'given zeZ, define {zt(r,z; recursively as follows:

Z-T(T,Z]0) =  z

Zt(T,z-,/3) =  t f ( z t_ i ( r , J ; / ? ) ,u t; 0 ), t >  - r ,

so z<(r,z;/?) is obtained w ith the  law of m otion Hp, s ta rting  a t z a t date 
—r .  Similarly, {zf(T,z)}?l_T is obtained w ith the law of m otion H*  and 
initial condition z_T(r , z) =  z. N ote th a t zt(r ,z ;/3 )  and zt* (r ,z )  depend only 
on {uj}j-__T+1, while the stationary  processes zf°’’ and zf°(/?) depend on 

Finally, let {/?*} be a sequence such th a t

lim sup \ x j ) { P l , x )  — £ ' ( x ) \  =  0xgX
(N ote th a t, according to  Lem m a 1 , {/?„} plays the  role of th is sequence if
£• = S).

L e m m a  3 (a) zf°-* exists, and  lim r_oo | z *{t , z) —  zf°-* | =  0 a .s.

(b) For all (3 G B , zf°(/?) exists, and lim T_oo | zt( r , z ; /?) —  zf°(/?) | =  
0  a.s.

(c) For any v and any t, the restriction of zf°((3) to B„ is continuous in /3 
a.s.

(d) lim^—oo supl€ 0 u6t/ | H(z,u;0*) —  H*(z,u) | =  0.

(e) lim^_»oo su p je^ y T>j | z ,(r , z; ft) -  z*(r, z) | =  0  a.s.

Proof.
U nder assum ption 4* w ith B„ =  B f , parts  (a) and  (b) follow im m ediately 

from  parts  (a) and (b) of the definition of S. U nder assum ption 4 w ith B „ =  
B * uc, p arts  (a) and  (b) follow directly from  Duffie and Singleton’s [1993] 
Lem m a 3. P a r t (c) is proven as follows: Let e >  0 be given. It is sufficient 
to  show th a t 35 >  0  such th a t

| /? — 0  | <  5 implies th a t | z£°(/?) —  z” (/3 ) | <  e a.s.
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(46)

For any z € Z  and any r,

I ZV 0 )  ~ ZF(P) I £  I *i°°(0) “  zt(T,z-,P) |
. + I zt{T,z\p) -  zt(T,z;(3) | +  | zt(T,z;/3) -  z f ° 0 ) \

According to part (b) of this lemma, r can be chosen big enough so the 
first and third terms on the right-hand side of (46) are less than e/3 almost 
surely. Furthermore, H ( z , w ,  •) : B  —» Z  is continuous, so z t ( r , z ;  •) : B  —* Z  

is continuous. It follows that there exists S > 0 such that | /? — /? | <  S,  and 
the second term on the right-hand side of (46) is less than e/3.

Part (d) of the lemma is proved as follows. Assumption 1(b) insures that 
g 2 * is uniformly Lipschitz. Since

H ’ ( z , u )  =  g ^ 1 ( £ ’ ( f ( z , u ) ) , z , u )  and

H { z ,  u; P I )  =  g ^  f ( z ,«)), z ,  u)

we have, for some K  <  oo,

sup | H " ( z , u ) -  H { z , u \ 0 ’ ) |
2,U

< - I <  sup | £ ‘ ( f ( z , u ) ) - x j > ( 0 ; , f ( z , u ) )  | -+0e z,u

as v  —» oo.
We now turn to part (e) of the Lemma. Under assumption 4* with B„ =  

B f , part (e) follows immediately from part (d) of the lemma along with part 
(c) of the definition of S .  The remainder of this proof treats the case where 
assumption 4 is made and where B„ = B * u c . In this part of the proof, it is 
useful to notate explicitly the dependence of the z ’s on the draw from the 
sample space, so we use the notation ” zt(r, "z,u>; 0 ) "  and ”z*(r, z,u>)” .

According to part (d) of this lemma, for any <5 > 0 3 N ( S )  <  o o  such that 
supI U | H * ( z , u )  — H ( z , u ]  (3‘ ) | < S, Vis >  N ( 6 ) .  Therefore, for date —r + 1,

|z_T+i(r,J ,a> ;/? ;) -  z1t+1(t , z ,w )| =

| H ( z , u - t+ \ ( u))] P I )  -  H m( z , u - T+i (u j ) ) | <  6,

' i u  >  N ( S ) .  Proceeding recursively forward to date t ,  one obtains:

I zt(r,z,u;p*)-z;(T,z,u) < S
<+T-l j

h - 2  n  />*(«<-*+!m )
3=1 k=l
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W  > N ( S ) .  Since delta can be made arbitrarily small, part (e) of the 

lemma follows if M(t,u>,r) =  n i= i />*(u«-/fc+i(w)) is bounded for al
most all w, with the bound uniform in r. (Notice that M (t,w ,r) does 
not depend on z . )  Since log(/j*(u<(a;)) is stationary and ergodic, the sam
ple mean of log[p*(u*(u>))] converges almost surely to its population mean. 
Therefore, equation (45) there exists a J ( t , u )  < oo such that, for almost all 

J E i= i log[?*(ut-Jfc+iH)] < a*,V ; > and

M ( t , u , T )  <  />•(«*-*+!(«))

< E / i ' r ’ n i_ , />•(«,-»+.(«))+E 5 , [«*•]'■
= E /IV * ni_, />-(«,_*+!(«)) +  e » 7(l -  e°‘) =  K ( t , w )  <  oo,

for almost all u .  This proves part (e) of the lemma. Q E D .

The following lemma insures compactness of P  in the supnorm.

Lem m a 4 T h e  f a m i l y  o f  f u n c t i o n s  P  =  {V>(/?, •),/? € D }  i s  e q u i c o n t i n u o u s .  

P r o o f .

Assumption 3 states that the derivative of elements of P  is uniformly 
bounded, so

I ~  V’(^,x)

Q E D .

g0(/?,(g<)
dx

d x ' < K X  —  X  I

The next lemma is a uniform strong law of large numbers for the mean 
square prediction error. For / 3 ,( e D  let h t ( ( 3 , £ )  =  <f>(zt + \ { P ) )  — i l > ( £ , x t { ( } ) ) ,  

let =  ^(z1°?,(^)) -  V>(f,x~(/?)) and let 7„,t  be defined by:

i t ?  =  sup { i f E L . N ^ W - E l W . O F l } -  (47)P£Bu£(zDt/

Lem m a 5 limr—oo' f t .T  ~  0 a.s.

P r o o f
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The proof is sketched.

7t,T < SUP \t 'ET=i h t ( P , 0 2 ~  h f i P i O 2

? + sup If T j = i h ? ( P , 0 2 ~  E  hV { P , t Y

h f ’(/?, £) satisfies the conditions of Hansen’s uniform strong law of large num
bers for stationary and ergodic processes. (See Hansen [1982], Lemma 4.5.) 
It follows that the second term on the right-hand side of (48) converges to 
zero almost surely as T  —► oo. Under assumption 4* with B„ = B^, the first 
term on the right-hand side of (48) converges to zero almost surely as an 
immediate implication of part (b) of the definition of S. On the other hand, 
if assumption 4 is made and B„ = 3 *uc, it can be shown that the first term 
on the right-hand side of (48) also converges to zero almost surely by using a 
slight modification of the proof of Lemma 4 in Duffie and Singleton (1993). 
QED.

The following lemma insures that the non-linear regressions converge to 
the population least squares minimizer.

Lemma 6 lim sup | G ut {P) — G„{P) | = 0, a.s.
T-°°/3€Bv

Proof.
Let e > 0 be given. Let set Q(e, /?) £ D„ be the set of elements of D„ 

which are bounded away from G U(P). Formally:

Q ( e , 0 )  = { ( z D l, s . t . \ ( - G M \  > 0
Define 7r(e,/?) > 0 by

*(£,/?) =  -  E [ h r ( P , G M , v ) ? }  (50)

and let 7r(c) be defined by

(48)

7r(e) = inf 7r(e, 3)/?gB„
Compactness of D v implies that

7r(e) > 0

(51)

(52)
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Equation (52) and Lemma 5 imply that 3 A 6 fl with prob (A) =  1 and 
3 T(u>, e) such that, for V u  t  A and V T  >  T(u>, e),

: o < 1;,t M  <  ̂  (53)
where 7 *(T(u>) is defined in (47). Choose some w e A , T >  T(u>, e), and arbi
trary /? 6 B„.

iFrom the definition of

0 < E[h?(0,G„,T{i),» ) ,* )?  -  E { h ? { 0 ,G M ,u ) \ 2

1 t=1
T T

+ ? E I W , g ,,t W ,» ) } 2 -  ^  c .W )^ ) )2
1 t=1 1 t=l

+ 4 BM /J,G,,(0 ),")]! -  E \ h r ( f i , G M , u ) - p
1 t-1

E [ h T ( 0 ,  G,.r(/>, w), W)]:2 -  i  £ M l > ,  G , . t W ,  «)]’
1 (=1

+ i; D M A  <?,(/»), «)]J -  E { h ? ( 0 , G M ,»)]
1 t= l

2

< 27*t(u>) < 7r(e) < tt(c,P )

where the third inequality follows from the definition of G ^ t ( P , u>), the fourth 
inequality follows from (53), and the fifth inequality follows from (51). This 
implies that G v ,t (/?,u;) ft Q ( P ,  e), proving the lemma. QED.

Lemma 7 states that the approximate solution for large enough T  will be 
arbitrarily close to the "population” approximate solution of order u :

/?„ =  arg min || rp(p,  * V ( P ) )  ~  x T ( P ) )  II (54)

Lem m a 7 L e t  he the approx im ate  solut ion, as in equat ion (32) .  Then,  
given v, we have

lim | Pu,T — Pu | =  0, a.s.T—+oo
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P r o o f .

We first show that the minimand in (54) converges to the minimand in
(18) uniformly in (3 as T  —*■ oo:

sup

2
- E i!

i t

1 t = 1
sup

PeBv | <w ,x,(0)) -  t ( c , . T(fi),*tW) I2 -

(55)

+ sup 
PzBv 1 <=i

We first show that the first term on the right-hand side of (55) converges 
to zero. According to assumption 3(a), tl>(-,x) is Lipschitz, uniformly in x £
X. Furthermore, the xj> : B„ x X  —► R m is a continuous function of a compact 
set, so is bounded. These conditions imply that |0(/?, xt((3)) — ip(£,xt(P)) |2 
is Lipschitz in £ € B„, uniformly in /? 6 B„, so 3A" < oo such that

11 *i>(fi,x,(p)) -  ih g .,t (/3),x,(/3))i 2 - \ < K 0 , x , m - < H G . m , x , m )  i2

< 1< I G„r(/3) -  G „ ( t S )  | (56)

Lemma 6 implies that the right-hand side of (56) converges uniformly to zero 
as T  —» oo, so, given e > 0,3 T ( e )  such that V T  > T(e),

sup | G„ ,T { P )  ~  G M  | < £  (57)
/JeB*

Equations (56) and (57) imply that the first term on the right-hand side of 
(55) is less than e for all T  > T(e), which proves that term converges to zero 
as T  —» oo.

We now complete the proof. By an argument analogous to that used in 
the proof of Lemma 5, | ^(/^ £«(/?)) — 0(Gv(/?),xt(/?)) |2 satisfies a uniform 
strong law of large numbers. This implies that the second term on the right- 
hand side of (55) converges to zero as T  —► oo. Thus, the left-hand side of
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(55) converges to zero, so the minimand in (18) converges uniformly to the 
minimand of (54). Since the minimization is over the compact set B„, this 
implies the conclusion of the lemma. Q E D .

Lem m a 8 L e t  b e  a  s e q u e n c e  s u c h  t h a t  /?„ G B „,V j/. T h e n

lim
1/—+QO £ ( x r ( h ) J v )  -  tf(cM & ),* r(& )) 0 (58)

P r o o f .

According to Lemma 4, { r p ( ( 3 , - ) , / 3  G B }  is an equicontinuous family of 
functions. Assumptions 1(a) and 1(b) then imply that {£(•,/?),/? € B }  is also 
equicontinuous. Furthermore, since <j> is a bounded function, it follows that 
{£(•,/?), (5 € 5 }  is uniformly bounded and Arzela’s theorem (Kolmogorov 
and Fomin (1970, p. 102)) then implies that there exists a subsequence Vk 

and a continuous function £ such that

lim sup | £ (x ,/?„ ) — £(x) | =  0. (59)
k->°° xex

The function £ is the uniform limit of a sequence of uniformly Lips- 
chitz functions, so £ satisfies a Lipschitz condition. By a proof analogous to 

Lemma 1(b), there exists a sequence with G D„k such that

lim sup |£(x) — VK/^n*) I =  0. (60)
iex

(Notice that this sequence is different from \ P u k ]  in the statement of the 

lemma)
Equation (58) is now demonstrated along subsequence i/*. The definition 

of G  implies that

^ A j - a r g n u n  |£ ( * r ( A J » f l J  “  |  » (61)

since the expectational error is orthogonal to the least squares predictor. 
The following chain of inequalities hold:
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II £ ( x r ( l k) M - r P ( G Vk( i k) , x r 0 , k)) ii 
$  II £ ( * r ( « , -  H ^ x r i ^ m
<  supieA- I £ ( x , j 3 y k ) -  I

< supx6X I £ ( x , j 3 „ k )  - S ( x )  | +  supl€JC I S ( x )  -  I p 0 „ k , x )  I -*  0

(62)
where the first inequality follows from (61) and the third inequality follows 
from the triangle inequality. The first term on the right-hand side of (62) 
converges to zero as k  —► oo by (59). The second term on the right-hand side 
of (62) converges to zero as k  —» oo by (60).

Since (62) holds for any arbitrary convergent subsequence, this result 
implies the conclusion of the lemma. Q E D .

The next and last lemma shows that /?„ gets arbitrarily close to (?„(/?„) 
as v  grows. In this sense, we say that an asymptotic fixed point exists.

Lem m a 9

Km |  min || V>(/?, * W ))  “  ^(G v(fi)t x?(0))  || |  =  0

P r o o f .

According to Lemma 1(b), a sequence {/?„}£!j exists such that

lim sup | £ ( x )  -  ^ ( ^ .x )  | =  0 (63)
‘/-,0° xex

Recall that £  is the true conditional expectation. According to Lemma 2, 
/?„ € B„, so the minimand in the statement of the lemma is dominated by

(64)

and it is enough to show that (64) goes to zero. Now,

< | | w , . * r ( « ) - f ( * r ( 0 | |  + [5 (* r(A .))  -  £ (* r (A .) ; /u |
+ | W ( « ; A . )  -  * ( G .( /U * r ( /U ) |

(65)
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The first term in the right side goes to zero as v  —► oo by the choice of 
The second term is bounded by

| /  « » (* .» ') )  <UVI«) -  /  A,)) ^ M « )

where F(*|u) is the conditional distribution of given u t =  u. The above 
expression converges to zero by Lemma 3 (d) and the Lipschitz-continuity of 
<p. Finally, the third term goes to zero by Lemma 8. QED.

P roo f of P roposition 1

In this proof, convergence of a function of (z, x ) in the supnorm is taken 
over the ergodic set of the true process Z U  C Z  x U.

Let xpp =  xp((3, •) and Hp = //(•, •; /?). We first show that xppv converges 
to £  pointwise.

Since P  is a uniformly bounded, equicontinuous class of functions, it is a 
compact set in the sup norm. Therefore, there exists a subsequence (indexed 
by k ) and a limiting function xp" such that xppVk —* xp’ in the supnorm. It is 
enough if we show that, for any such convergent subsequence, xp* =  £  a.e. in
Y U .

Let H * be the law of motion consistent with xp’, and £ ’ the true condi
tional expectation consistent with H ’ . We have Hp —*■ H* uniformly, by 
an argument analogous to that used in the proof of Lemma 3(d). Note that

d F { u ' \u ) .  (66)

All the functions inside the integral are continuous and bounded, so Lebesgue 
Dominated Convergence implies

(/(*> Jv  $  (H * ( # “(*« u)>u')] dF {u ' \u )  =  £ ’ { f { z ,  u)) (67)

as k —* oo.
We will eventually show that H  =  H ’ \ to this end, we first have to prove 

that H ’ satisfies assumption 4* (if B„ =  B f) or assumption 4 (if B„ =  
B * u c ). In the former case, HpVk € S,Vfc, by the definition of B f. Since 
S  is closed under the sup norm, and Hpv H* uniformly, it follows that 
H ’ € S .
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We now turn to the latter case. It is sufficient to show that, if B„ =  
B^1707, H * has a Lipschitz coefficient satisfying (45). Let

p * { u )  =  sup
z,z£Z

H * ( z , u )  -  H - { z , u )

z  — z

Fix t  > 0, and any u € U.  By definition of p*(u), there exist z  and z  such 
that

,■(«) < m * 'u? ~  ^ ’u)l(i + t )
\ z  -  z  I

H " ( z ,  u )  -  H Pl/k( z , u )  | +  \ H 0„k ( z , u ) -  H/}„k ( z , u ) \ +  \ H p „k ( z , u )  -  H m( z , u ) \
(1+0I z  — z  I

" H ‘ { z , u ) - H p„k ( z , u )| + **»(*■“)-«•(*- “)l' 1 rt i ( it 1I z — z | + PPvk \U) (1+c) 

(68)
where pp„k (u ) is the function defined in (31) Now, fix z, z; take logs on both 
sides of (68). Since inequality (68) holds for all we can take the liminf* 
on both sides and use the uniform convergence of H p Uk —> H *  to obtain

log p ' ( u )  <  (lirninf log ftj.,(u)j +log(I + e) (69)

which holds for all e > 0 and all u .  Now, given any e, taking expectations 
over u we get

B  [log />*(“ )] < E  [lhn inf log + log(l +  e)

<lirninf [lSlog p/j^(u)] + log(l + e) < a  + log(l +  c)

where the second inequality follows from Fatou’s lemma, and the last in
equality follows from the fact that (3Uk € B „ .  Since the above inequality 
holds for all e > 0, we conclude

E  log p * ( u )  <  a
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This completes the demonstration that H * satisfies (45) when B„ =  B £ u c .

We have shown that H * satisfies assumption 4* or 4 (depending on the 
definition of B„ being used). It follows that a stationary and ergodic process 
{ z f 00}  ejcists satisfying z^ °°  =  so the L 2 norm of {-2*°°} is well
defined. We can write,

||V>-(*n -  £ '(* ;~ )|| <

+  IW A ..,* r to J )  -  <HGV.(ft,)>*r(/U)ll

+ aj i i

We can now apply Lemma 3, parts (a), (b), and (e), to conclude

I x r - z f W I - ^ O a . s .  (71)

The limsup of the right side of (70) equals zero, as follows: The limsup of 
the first term is equal to zero by the definition of V>*; the second term goes 
to zero by (71), along with the continuity of and Lebesgue Dominated 
Convergence; the third term goes to zero by Lemma 9; the fourth term 
goes to zero by Lemma 8, the fifth term goes to zero by (71), along with 
the continuity of £ ( - , / 3 „ k ) ,  and Lebesgue Dominated Convergence; the sixth 
term goes to zero by (67).

We have proved that the left side of (70) is equal to zero, which implies 
V>*(x*°°) =  £ m( X f ° ° )  almost surely in the support of x*°°. We can summarize 
this derivation as follows:

-  r ( x )  =  E  (^(*;~) I =  x )  (72)

This is an important result in itself; it says that the limit of the pa
rameterized expectations V’* >s equal to the true expectation of the process 
generated by ij>m.

Finally, since

9 ( ' K 0 » k i x t ( P ' * ) ) * z t ( 0 * k) i Z t - i ( P » k ) , U t )  =  0, VA:
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by construction, and g  is continuous, (72) and lemma 3(e) imply

s  (£  ( ^ ; +i) I * ;) ,  = ° ,
with probability one, which implies that H *  is a rational expectations equi
librium or, equivalently, that £ *  =  €  and H  =  H * .  To summarize, we have 
shown that any convergent subsequence of H p v goes to H  in the supnorm, 
which implies that the same holds for the whole sequence.

To complete the proof, we have to show the same type of convergence for 
the sample version of the approximate solution. It is enough to show

Lim sup ^ (x , P v,t ) — V’(~, P v ) \  =  0. (73)
T  —* oo i 6 A '

Lemma 7 and continuity of xpp in /? imply pointwise. Since P

is equicontinuous, by Lemma 4, and bounded it is compact in the sup norm, 
which implies uniform convergence as in (73). Finally, (72), (73), and Lemma 
3(d) imply that H p  T converges uniformly to //*. This completes the proof 
of Proposition 1.

P roo f of Corollary

a) Follows from lemma 3(e) and the uniform convergence of H p v T  —* H  

as in Proposition 1.

b) Lemmas 8 and 9 imply || f ( x f ° ( ^ ir),i9„,r) -  || —> 0.
Part b) of the corollary follows from part a) and continuity of g .

c) Follows from proposition 1 and part (b) of the definition of S  (if as
sumption 4* is imposed and B„ = B^) or from the AU C condition, 
Proposition 1 and Lemma 4 in Duffie and Singleton (if assumption 4 is 
imposed and B„ =  T5*u c ).

P roof of P roposition 2
We give the proof for the case where B„ = B * u c . The proof for the case 

where B^ =  B f  is analogous, and is therefore omitted.

• We first prove that if

min E \ m  * W ))  -  * « ? ,(« ,  * r ( « ) ] 2 -  “ (’ 4)
P  C-Oi/
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then assumption 4 is satisfied. Consider any convergent subsequence 
of {Vvj„r }; as in the proof of proposition 1, this subsequence has a 
limit xf>* for which the corresponding law of motion H * satisfies the 
AUC condition (30). As in the proof of proposition 1, (70) holds for 
this V’* and the corresponding conditional expectation S* (defined as 
in (67)) . Now, consider the right side of (70); with the exception of 
the third term, all terms go to zero as k —► oo if Assumptions 1, 2 and 
3 are satisfied19. The third term goes to zero because of (74). This 
proves the existence of an equilibrium Hm that satisfies AUC and that 
Assumption 4 is satisfied.
To prove part (x)  assume, towards a contradiction, that

liminf p £b v E [ rp (0 ,x f= {p ))  -  ^ (^ (Z ? ) ,!^ ^ ) ) ]2 =  0.

Then there would be a subsequence {/?„*} for which the min goes to 
zero and we can find a sub-subsequence {/?„*.} such that Hp„ —* H*.
By the argument given above, this would imply existence of H* that 
satisfies Assumption 4, which is a contradiction.

• We now prove part (b). Let Q  =  { laws of motion for z  that satisfy AUC condition}. 
By an argument analogous to that used in proving that H * of Propo
sition 1 satisfies AUC, we can prove that Q  is a closed set. Since each 
HpvT € Q  and H Q ,  part (b) follows immediately.

QED

19Notice that assumption 4 has only been used in results leading to Lemma 9, which 
causes the third term in (70) to go to zero.
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APPENDIX 2
NON-LINEAR LEAST SQUARES LEARNING 

The recursive least squares estimator to predict <f>(zt+1 ) can be written as

A = A -i + <* R T l W*<) -  iH A ,i.-i)l)
R ,  =  R t-1 + a ,  *♦<*;*-■> (75)

Notice that if we fixed /?, replaced 5* by z*(/?), and for the particular choice 
a* = (1/0) A ls the non-linear least squares estimator to predict <f>(zt (l3)) 
with V>(*)£*-i(/?)), where the series z  are not affected by /?<, except that the 
residuals are calculated recursively.

In the system defined by (75), however, the V s  depend on the estimate 
/3t . In words, (75) describes an economy where agents use recursive non
linear least squares to form their expectations about the future, and where 
equilibrium is generated by such expectations; the first equation says that 
today’s beliefs are updated according with last period’s beliefs and the pre
diction error made this period, the second equation gives the gradient for 
how the prediction error affects the beliefs /?*, and the last equation defines 
the equilibrium z t in terms of the expectations of the agents. This is a non
linear version of economies studied Marcet and Sargent (1989), where the 
non-linearities appear both in the equation generating the observations and 
in the expectational rules.

Using notation

D M P )  =  | W ,  * t - i ( P ) ) / W \ 0=1; and R ( 0 )  =  E {  D M 0 )  W P ) '  )

and adapting results from Ljung (1975], it is possible to show that the only 
0 ' s  where least squares learning can converge with positive probability are 
0  <= D v that satisfy

R 0 ) - ' E ( D A 0 )  (? ) ) ] )=  0. (76)

This equation is obtained by taking the object multiplying a t  in the recursive 
algorithm, fixing 0  — 0 ,  and taking the expectation with respect to the
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stationary distribution of { z t (/3)}. Now, since the first order conditions for 
the maximization problem of (16) imply that

; E  ( D M P )  W t m  -  r p ( G M , x t . ,(/?))]) =  0.

it is clear that (76) is satisfied, precisely, at the fixed point /?„.
Further results in Ljung [1975] guarantee that j3t —* /?„ if the differential 

equation

? M .  =  R(0(t ) )- 'E{  D M 0(r) )  W (r),x ,_ ,(/? (r)»))
(77)

is stable. To analyze this differential equation, notice that the right side of 
(77) is equal to

R ( 0 T ' e ( D M 0 )  W > * .-iW )l)

by the definition of G„.  By the mean value theorem, in a neighborhood of /?„ 
this expression can be written as

m u r ' E  ( d m 0) D M 0 ) '  (o ,(0)  -  0))

for some /3 in this neighborhood. Therefore, /?t —► /?„ locally if and only if 
the differential equation

= R(0(t) ) - 'E(  D M 0(r) )  D M 0 (t)Y) (G,(0(t) ) - 0 ( t)) = G„(0(t) ) - 0 ( t)

is locally stable at /?„.
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