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Abstract

This paper assesses the small sample properties of Generalized Method of Moments (GMM) 
based Wald statistics. The analysis is conducted assuming that the data generating pro­
cess corresponds to (i) a simple vector white noise process and (ii) an equilibrium business 
cycle model. Our key findings are that the small sample size of the Wald tests exceeds 
their asymptotic size, and that their size increases uniformly with the dimensionality of 
joint hypotheses. For tests involving even moderate numbers of moment restrictions, the 
small sample size of the tests greatly exceeds their asymptotic size. Relying on asymptotic 
distribution theory leads one to reject joint hypothesis tests far too often. We argue that 
the source of the problem is the difficulty of estimating the spectral density matrix of the 
GMM residuals, which is needed to conduct inference in a GMM environment. Imposing 
restrictions implied by the underlying economic model being investigated or the null hy­
pothesis being tested on this spectral density matrix can lead to substantial improvements 
in the small sample properties of the Wald tests.
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1 Introduction

This paper assesses the small sample properties of Generalized Method of Moments (GMM) 
based Wald statistics. The analysis is conducted assuming that the data generating pro­
cess corresponds to (i) a simple vector white noise process and (ii) the equilibrium business 
cycle model considered in Burnside and Eichenbaum (1994). Our key findings are that 

the small sample size of the Wald tests exceeds their asymptotic size, and that their size 
increases uniformly with the dimensionality of joint hypotheses. For tests involving even 
moderate numbers of moment restrictions, the small sample size of the tests greatly ex­

ceeds their asymptotic size. Relying on asymptotic distribution theory leads one to reject 
joint hypothesis tests far too often. We argue that the source of the problem is the diffi­
culty of estimating the spectral density matrix of the GMM residuals, which is needed to 
conduct inference in a GMM environment. Imposing restrictions implied by the underly­
ing economic model being investigated or the null hypothesis being tested on this spectral 
density matrix can lead to substantial improvements in the small sample properties of the 

Wald tests.
A common approach to evaluating quantitative equilibrium business cycle models is to 

compare model and non-model based estimates of the second moments of aggregate time 
series. No uniform method for making these comparisons has emerged. Many authors in 
the Real Business Cycle (RBC) literature make these comparisons in a way that abstracts 
from sampling uncertainty in estimates of models’ structural parameters (see for example 
Kydland and Prescott (1982) or Hansen (1985)). Other authors have estimated and tested 
RBC models using full information maximum likelihood methods (see for example Altug
(1989), Christiano (1988), McGratten, Rogerson and Wright (1993) and Leeper and Sims
(1994)).

An intermediate strategy is to simultaneously estimate model parameters and second 
moments of the data using a variant of Hansen’s (1982) Generalized Method of Moments 
(GMM) procedure. Christiano and Eichenbaum (1992) show how, in this framework, 
simple Wald-type tests can be used to test models’ implications for second moments of 
the data. Three advantages of this approach are that (i) at the estimation stage of the 
analysis one need not completely specify agents’ environments, (ii) it is easy to specify 
which aspects of the data one wishes to concentrate on for diagnostic purposes, and (iii)
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it is substantially less demanding from a computational point of view than maximum 
likelihood approaches. Use of this procedure has become more widespread. However its 
properties in small samples are not well understood. This is disturbing in light of recent 

results in the literature casting doubt on the extent to which asymptotic distribution 
theory provides a good approximation to various aspects of the small sample behavior of 
GMM based estimators.1

In this paper we address four basic questions concerning the performance of GMM 
based Wald statistics. First, does the small sample size of these tests closely approximate 
their asymptotic size? Second, do joint tests of several restrictions perform as well or worse 
than tests of simple hypotheses? Third, how can modeling assumptions, or restrictions 
imposed by hypotheses themselves, be used to improve the performance of these tests? 
Fourth, what practical advice, if any, can be given to the practitioner?

We answer these questions under two assumptions about the data generating process. 
First, we assume that the true process generating the macro time series is the equilibrium 
business cycle model developed in Burnside and Eichenbaum (1994). This case is of interest 
for two reasons: (i) the model generates time series that in several respects resemble U.S. 
data, and (ii) we can study issues of size and inference in an applied context. Second, 
we assume that the data generating process corresponds to Gaussian vector white noise. 
Working with such a simple process allows us to assess whether the findings that emerge 
with the more complicated data process also arise in simpler environments. In addition 
we find it easier to build intuition about our results in the simpler environment.

Our main findings can be summarized as follows. First, there is a strong tendency 
for GMM based Wald tests to over-reject. Second, the small sample size of these tests 
increases uniformly as the dimension of joint tests increases. For even moderate number 
of restrictions, the small sample size is dramatically larger than the asymptotic size of the 
test. Indeed correcting for the small sample properties of the Wald test turns out to have a 
substantive impact on inference about the empirical performance of the equilibrium busi­
ness cycle model that is being analyzed. Third, the basic problem is difficulty in accurately 
estimating the spectral density matrix of the GMM error terms. We investigate various 
nonparametric estimators of this matrix that have been suggested in the literature. While

1See for Tauchen (1986), Kocherlakota (1990), Ferson and Foerster (1991), Burnside (1992), Fuhrer, 
Moore and Schuh (1993), Neely (1993), Christiano and den Haan (1994) and West and Wilcox (1994).
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there is there is some sensitivity to which nonparametric estimator is used, these differ­
ences do not affect our basic conclusions. Fourth, we argue that the size characteristics of 
the Wald tests can be improved if the analyst imposes restrictions that emerge from the 
model or the hypothesis being tested when estimating the covariance matrix component 
of the Wald statistic. Not only does such information improve the size of simple tests, it 
significantly ameliorates the problems associated with tests of joint hypotheses.

The remainder of this paper is organized as follows. Section 2 considers the case of 
the Gaussian white noise generating process. In Section 3 we discuss the case where the 
data are generated from an equilibrium business cycle model. Section 4 contains some 
concluding remarks.

2 G a u s s i a n  W h i t e  N o is e  D a t a  G e n e r a t i n g  P r o c e s s e s

In this section we consider the small sample properties of GMM based Wald statistics 
within the confines of a very simple statistical environment. In particular we suppose 
that data generating process is a mean zero, unit variance Gaussian white noise process. 
There are several advantages to working with such a simple process. First, we are able to 

document that the basic problems which arise in the more complex environment considered 
in section 3 also arise here. Second, developing intuition for the results is easier in a 
simpler environment. Third, we can examine the effects of imposing various assumptions 
about the data generating processes on our procedures. Fourth, we can compute all 
relevant population moments exactly. Fifth, simulation is straightforward and the number 
of replications can be increased to gain accuracy in our Monte Carlo experiments.

The remainder of this section is organized as follows. Subsection 2.1 describes the 
data generating process. In subsections 2.2 and 2.3 we discuss the hypothesis tests and 
different experiments that we conducted. Finally, we report the results of our Monte Carlo 
experiments in subsection 2.4.

2.1 The D ata Generating Process

We suppose that am econometrician has time series data on J  =  20 random variables X ,t, 
i =  1, . . . ,  J ,  each of which are i.i.d. N(0,1) and mutually independent.2 The econometri­

2 We also conducted experiments in which the data were independent MA(1 ) processes with Gaussian 
innovations, and which were either positively or negatively serially correlated. In both cases our results were
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cian has T  =  100 observations on Xu, i — 1, J .  To simplify the analysis we assume 
that the econometrician knows that E Xu = 0, for all i and t. The econometrician is 
interested in estimating and testing hypotheses about the standard deviations, a,, of X it, 
i =  1, 2, . . . ,  J .  To estimate tr,- he uses a simple exactly identified GMM estimator based 
on the moment restriction

E (Xft - o ? ) = 0 ,  i = 1 ,2 ,. . . ,  J. (1)

This leads to the GMM estimators

2.2 H ypothesis Testing

The econometrician estimates a,- in order to conduct inference. The hypotheses of interest 
pertain to the variability of the series Xu- The specific hypotheses to be tested are of the 
form

HM : <Ji = o2 = ■■ ■ = oM = 1, M  < J.

We consider this hypothesis because of its similarity to a diagnostic procedure that is 
often used to evaluate RBC (and other) models. The basic idea is to see whether a model 
can ‘account’ for various second moments of the data. In practice this amounts to test­
ing whether the second moments of some series estimated in a nonparametric manner 
equal the analogous second moment implications of a particular RBC model (see section
3). Early work on RBC models tended to concentrate on the volatility of different eco­
nomic aggregates (see for example Hansen (1985)). Here there is no ‘model’. But we can 
test sample moments against their true value (M  =  1) and test whether various second 
moments are equal to each other in population using similar statistical procedures.

The specific Wald statistic that we use to test H u  is given by

W ? = T(a  -  \)'A!{AVTA ')- lA{o -  1). (3)

Here A  =  ( I u  ) and Vj> denotes a generic estimator of the asymptotic variance-
covariance matrix of s/T(d  — <7o), where <r<) is the true value of the parameter vector 
a =  ( ai a2 • • • Oj j . Given well behaved estimators a and Vj>, “Wt X2{M).

qualitatively similar to the white noise case.
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We consider several questions that arise in testing Hm - First, how does the choice of 
estimator Vp affect inference? We are particularly interested in assessing the small sample 
implications of using non-parametric estimators of Vr and understanding the gains to im­
posing different types of restrictions on Vp. Particularly important sources of restrictions 
are the economic theory being investigated and the null hypothesis being tested: For ex­
ample, intertemporal consumption based asset pricing models typically imply restrictions 
on the degree of serial correlation in the error terms that define Vp. (See for example 
Hansen and Singleton (1982) or Eichenbaum and Hansen (1990)). A different example is 
provided in section 3 where we can use the structural model itself to generate an estimate 
of Vp. Since imposing restrictions on Vp can often be computationally burdensome, and 
asymptotic inference is not affected, it is important to understand the nature of the small 
sample gains to doing so.

Second, how does the dimension of the test, i.e. the degrees of freedom M , affect the 
size of the test? This question is important because, in many applications, the model 
gives rise to a large number of over-identifying restrictions. The issue is what trade-offs 
are involved in simultaneously testing more or less of these moment restrictions.

Third, how are the small sample properties of the Wald statistic affected by reparame­
terizing the example?3 An asymptotically equivalent way of assessing hypothesis Hm  is to 
proceed as follows. Suppose that we estimate <7i, along with 0, =  cr, / Oi for * =  2,3 , . . . ,  J. 
To estimate 0, we utilize the following moment restrictions.

E M - a f )  =  0

£ (X S -« JX J )  =  0. . =  2....... J  (4)

This leads to the estimators

The analogous hypothesis to Hm  is

Hm  : 0\ =  Oj =  • • • =  $m  — 1* M  < J.

3Gregory and Veall (1985) study the effects of reparameterizng Wald tests in a regression context.
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The corresponding Wald test statistic for this hypothesis is

=  T{0 -  1 y m A V T A 'Y 'A tf  -  1), (5)

where 0 =  ( <j\ 02 • • • Oj ) and Vt is some estimator for the asymptotic variance-
A

covariance matrix of 0. There is no a priori reason to suppose that the small sample 
properties of Wj? will be the same as those of W jf.

This example is of interest because it can shed light on the common practice in the RBC 

literature of testing whether a model matches the volatility of output and the volatility 
of various aggregates relative to output. One could simply test whether a model matches 
the absolute volatility of all the relevant variables. Asymptotically this choice should not 
matter. But the small sample properties of the Wald tests in the two cases could be quite 
different.

2.3 A lternative Covariance M atrix Estimators

In this section we discuss our estimators of the asymptotic variance-covariance matrix of 
a and 0. To be concrete we concentrate on the case of a. The case of 0 is discussed in 
Appendix A. The moment conditions used to estimate <r, (1), can be written in the form 

E[g{Xt,o)] =  0. Here g(', •) is the J  x 1 vector valued function whose *th element is given 
by (Xft — of). Denoting the true value of a by a0, the asymptotic covariance matrix of 
V T (o  — cr0) is given by

Vo =  (D & 'D o )-1,

where
r, _  v,9g(Xu ao)
D° ~  E  a ✓  -

and OO
So= J2

j=-oo
The corresponding estimator of Vo is given by

VT = (D't S ^ D t ) - \

where Dt and St are consistent estimators for D0 and Sq.
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We consider several estimators of V0. Each is defined in terms of some estimators D j 
and St . The different estimators impose varying amounts of information at the econome­
trician’s disposal. Some of this information is in the nature of the maintained assumptions 
concerning the serial and mutual independence properties of Xu  and Gaussianity. Other 
information derives from the null hypothesis being tested.

Initially we consider estimators of So which do not exploit any of this information. 
Instead we estimate So using versions of the nonparametric estimator proposed by Newey 
and West (1987).4 A general version of this estimator can be written as

where

and

S t = E  k ( j r ) n „
y— (T - i)  B t

a _  J ( i / T ) Y , l , t l g { X „ c ) g ( X t . i , a Y  for j > 0  
' 1 ( l / r ) £ i l - y +i »)»(*.. *)' for j  < 0

k(x) |S— |x| for |x| < 1 
otherwise

Here B t is a scalar that determines the bandwidth of the lag window k(-). We consider 
three variants of this estimator,

• uses bandwidth Bt =  4,

• S} uses B t =  2,

• S^ has B t chosen automatically using a procedure suggested by Andrews (1991) 
which is described in more detail in Appendix C.

The next group of estimators that we consider utilizes additional amounts of infor­
mation about the underlying data generating process. The estimator Sj. exploits the 
assumption that the Xu are serially uncorrelated. This implies that

• Sj. has t/th  element given by jr[S^.1(AT?t -  d?)(X?t — a*)].

The estimator imposes the mutual independence of the Xu's as well as their serial 
independence. This implies that

4 There are several alternative estimators which could be used at this stage. We have found our results 
to be relatively insensitive to the choice of procedure in the RBC context so we present results based only 
on the Newey and West (1987) method.
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• Sj- is a diagonal matrix with n th  element given by jr[X£=i(-X?< — d 2)2].

Our next estimator, Sy, also exploits the fact that the Xu are Gaussian. Since Gaus- 
sianity implies that E(X*t) = Zaf,

• Sj. is a diagonal matrix with **th element given by 2af.

Our next two estimators impose additional restrictions derived from the null hypothesis 
being tested. Under hypothesis Hm , a, =  1 for * =  1, . . . ,  M , while <r,- is unrestricted for 
* =  M  +  1 , . . . ,  J .  This suggests the estimator

• Sj> which is a diagonal matrix with **th element 2 for t < M , and 2af for i = 
M  H-1, . . . ,  J .

Corresponding to each estimator of So discussed above, there is am estimator for V0 
given by,

v t = W ( ^ ) - 1̂ ) - 1,

k = 1, 2, . . . ,  7, where D? is a diagonal matrix with n th  element - 2d,-. Since the null 
hypothesis can also be imposed on we also consider the estimator

v i  =  ( D ^ s i r ' D i r 1,

where D \  is a diagonal matrix with n th  element —2 for t <  Af, and - 2d,- for i = M  +
1, . . . ,  J .5 Here the W statistic reduces to ]C^x(d,- — l )2/ 2.

We use the same differential information assumptions to define eight estimators for the
A ,

variance-covariance matrix of 6 that axe analogous to Vj, k =  1, 2 , . . . , 8  (see Appendix
A).

2.4 M onte Carlo Experiments

Our experiments were conducted as follows. We generated 10,000 sets of synthetic time 

series on {Xk, X u , • • •, X j t}J=l, each of length 100. On each artificial data set, we esti­
mated the parameter vector a, the different estimators of the variance covariance matrix

5If we imposed <r< =  1 for all t in the computation of ^  and we would get numerically identical 
results for our test statistics because all the matrices involved in the calculation are diagonal.
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and then calculated the Wald test statistic, that is relevant for testing hypothesis Hm , 
M  G {1,2,5,10,20}. This allowed us to generate an empirical distribution function for 
W™ under the null hypothesis that i f m is true, corresponding to the different estimators 
of V0.

Our results are summarized in-Table 1, the columns of which correspond to different 
specifications of M  (which also equals the degrees of freedom of the test). The rows 
correspond to fixed asymptotic sizes of the test while the entries in the table are the 
percentages, out of 10,000 draws, for which the HI statistic exceeded the relevant critical 
value of the chi-squared distribution.

A number of interesting results emerge here. Consider first the distribution of the test 
statistics generated using V^, Vp, V? and V? (see Panels A-D of Table 1). First, even for 
M  =  1, the small sample size of the tests exceeds their asymptotic size. This result is 
similar to that obtained by Christiano and den Haan (1994) and Newey and West (1993). 
Second, the small sample size of the tests rises uniformly with M . Indeed when we use the 
estimator Vy, the HI statistic for hypothesis fTjo exceeds its asymptotic (1%, 5%, 10%) 
critical values (59%, 73%, 80%) of the time. For even moderate sizes of M , relying on 
asymptotic distribution theory leads one to reject Hm  fax more often than is warranted in 
small samples. It is true that as the bandwidth decreases, the small sample performance 
of the Wald test improves uniformly. But as panel D indicates, even when we impose the 
white noise assumption (i.e. we use V^), the small sample performance of the large joint 
tests is dismal. For example, with M  =  20, tests with asymptotic size (1% , 5%, 10%), 
lead to rejection (17%, 33%, 43%) of the time in samples of 100 observations.

The results generated using V? (which exploits the assumption that the Xu  are mu­
tually independent) are presented in Panel E of Table 1. Comparing Panel E to Panels 
A-D, we see that the impact of imposing the independence assumption is to move the 
small sample sizes of the tests substantially closer to their asymptotic values. Not surpris­
ingly, the impact of this restriction becomes larger as M  increases since there are more 
off-diagonal elements being set to their population values. (In the case of M  =  1 the two 
panels are identical). With M  = 20, the HI statistic for Hm  exceeds its asymptotic (1%, 
5%, 10%) critical values (4.7%, 13.4%, 21.2%) of the time. This represents a substantial 
improvement relative to the situation when we do not impose the zero off-diagonal ele­
ment restriction. Even so, the Wald test still rejects too often in small samples. Panel F,
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which reports results based on Vy, indicates that imposing the Gaussianity assumption 
improves the small performance of even further. To the extent that fourth moments 
are less accurately estimated than second moments for Gaussian processes this result is 
not surprising.

Recall that the estimator Vy exploits information from the null hypothesis regarding 
Of in constructing Sy. The results generated using Vy are reported in Panel G of Table
1. Comparing Panels F and G we see that the net effect of imposing these additional 
restrictions is to move the small sample size of the test even closer to its asymptotic size 
(except for the 10% critical value for M  =  1). For example, with M  =  20, the W statistic 
for Hm  exceeds its asymptotic (1%, 5%, 10%) critical values (2.1%, 7.3%, 12.1%) of the 
time.

Panel H of Table 1 reports results based on Vy where we impose the null hypothesis on 
Dt as well as on S y .  N ow  all of the anomalies associated with the small sample distribution 
of the W statistic disappear. First, the degree to which the small sample sizes match their 
asymptotic sizes is not affected by M . Second, the small sample size of the test statistic is 
extremely close to the corresponding asymptotic size. Indeed, this is true even when we fix 
the asymptotic size of the test at 1%. So, at least for the present example, the parameter 
estimates appear to have a small sample distribution which is very well approximated by 
their large sample distribution. The problem with the small sample distribution of the W 
statistic seems to be closely related to the small sample distribution of Sy and to a much 
smaller extent Dt • The more information the econometrician imposes on St and Dt , the 
better the performance of the tests appears to be in this example.

/x/
Table 2 presents results pertaining to the Wt statistic that is relevant for our alternative 

parameterization of the problem in terms of relative standard deviations.6 In many ways 
these results are qualitatively similar to those obtained with the original parameterization. 
Broadly speaking, the second set of tests leads to slightly more rejections, although only 
to a modest extent. However, unlike the previous parameterization, when we impose all 
of the available information on Sy and DT (Panel H of Table 2), there is still a noticeable 
tendency of joint tests with many degrees of freedom to reject more frequently than tests 

of single hypotheses.

6 The column in Table 2 headed M =  la  is for tests of the hypothesis C\ =  1 , while the column headed 
M  =  16 is for tests of the hypothesis o^/cri =  1 . Both tests have one degree of freedom.
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These results suggest that simply reparameterizing the problem will not dramatically 
improve the performance of tests constructed using nonparametric estimators for St and 
Dt • The key problem with inference seems to arise from difficulties in estimating the 
spectral density matrix of the GMM error terms, So. Imposing as much information as 
possible when estimating So and Do leads to significant improvements in the size properties 
of the Wald tests. In the next section we investigate the extent to which these conclusions 
continue to hold in a more complex statistical environment.

3 A  R e a l  B u s in e s s  C y c le  M o d e l  A s  a  D a t a  G e n e r a t i n g  P r o c e s s

In this section we consider the small sample properties of GMM based Wald statistics 
assuming that the data generating process is given by the business cycle model developed 
in Burnside and Eichenbaum (1994). The model is briefly summarized in subsection
3.1. Subsection 3.2 describes the way the model’s structural parameters were estimated. 
Subsection 3.3 discusses the hypothesis tests we investigated. In subsection 3.4 we present 
the results of our Monte Carlo experiments.

3.1 The M odel

The model economy is populated by a large number of infinitely lived individuals. To go 
to work an individual must incur a fixed cost of f hours. Once at work, an individual 
stays for a fixed shift length of /  hours. The time t instantaneous utility of such a person 
is given by

ln{Ct) + 6 ln { T - < - W tf )  (6)

Here T  denotes the individual’s time endowment, Ct denotes time t privately purchased 
consumption, 6 > 0, and Wt denotes the time t level of effort. The time t instantaneous 
utility of a person who does not go to work is given by ln(Ct) +  6 ln(T).

Time t output, Yt, is produced via the Cobb-Douglas production function

Vt =  (KtUty-INtfWtXt)* (7)

where 0 < a  < 1, Kt denotes the beginning of time t capital stock, Ut represents the 
capital utilization rate, Nt denotes the number of individuals at work during time t, and
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Xt represents the time t level of technology. We assume that the time t depreciation rate 
of capital, 6t, is given by

St =  SUf (8)

where 0 < 6 < 1 and <f> > 1. The stock of capital evolves according to

Kt+1 =  (1 ~ St)K t + I t (9)

where It denotes time t gross investment.
The level of technology, X t, evolves according to

X t = X t-1  exp (7 +  vt)

where vt is a serially uncorrelated process with mean 0 and standard deviation av. The 
aggregate resource constraint is given by

Ct +  It +  Gt < Yt (10)

where Gt denotes the time t level of government consumption. We assume that Gt evolves 
according to

Gt =  Xtgl (11)

Here is the stationary component of government consumption and gt =  ln(yt*) evolves 
according to

gt = fi + pgt- i  + et (12)

where n  is a scalar, |p| <  1 and et is a serially uncorrelated process with mean 0 and 
standard deviation ae.

In the presence of complete markets the competitive equilibrium of this economy cor­
responds to the solution of the social planning problem:

E0 f > ‘ (ln(Ct) +  9Nt ln(T -  £ -  Wtf )  + 0(1 -  JV,) ln(T)] (13)
t=0

subject to (7) - (12) by choice of contingency plans for {Ct,K t+i,N t, Ut,W t : t > 0}. 
We obtain an approximate solution to this problem using King, Plosser and Rebelo’s
(1988) log-linear solution procedure.7 Let kt = \n(Kt/X t-i) , ht =  ln(Ht), ct =  In(Ct/X t),

7See Burnside (1993) for details.
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Wt = ln(Wt), «* = Vt = H Y t/X t), at = ki(Yt/N tX t), it = \n[It/ X t), h°t =  ln(tf®),
and a® =  ln(Y*/H fX t). Here Ht and H f denote actual and observed time t hours of work. 

As in Prescott (1986), we assume that

ln(JJ?) = ln(Ht) +  & (14)

where is an i.i.d. random variable with mean zero and variance <r|. The time t state of 
the system is given by

st =  ( 1 kt ht vt gt 6  y  

Define the vector of time t endogenous variables f t as

f t = ( c t wt ut yt at it h°t a°t

and the vector of time t shocks

it -  ( 0 0 0 vt et 6  ) ' .

Our assumptions about the exogenous variables and the log-linear approximation to the 
model imply that the evolution of the system can be summarized as

ft =  n *  (15)

where M  and n  are functions of the model’s underlying structural parameters. We take
(15) to be the data generating mechanism in our Monte Carlo experiments.8

3.2 Estim ation

With certain exceptions, the parameters of the model were estimated using a variant of the 
GMM procedure described in Christiano and Eichenbaum (1992). We did not estimate 
/3, T, f and / .  Instead we set /? =  1.03-1/4, T = 1369 hours per quarter, f =  60 and 
chose /  so that the nonstochastic steady state value of Wt is 1. Rather than estimating 
the parameter 5, we estimated 6 =  6U*, where U is the nonstochastic steady state value 
of Ut. To obtain a value of <f> we use the fact that in nonstochastic steady state,

^ = r 1e x p h ) - l + 1
0

8See Burnside (1993) for details.
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In the data, the series gt displays a time trend, so this series was detrended using a 
linear time trend. To simplify matters we did not include the time trend in the Monte 
Carlo experiments. In addition, we chose to estimate the nonstcchastic steady state value 
of Gt/Y t, as the parameter g/y, rather than the mean of the process gt =  ln(Gt/ X t).9

In light of these decisions, the vector of model parameters to be estimated, denoted by 
¥ 1, is given by

^1 = ( 0 a 6 7 a„ g/y  p a( ai )*.

The hypotheses that we investigate involve various second moments of the data. Since 
many of the relevant series exhibit marked trends, some stationary inducing transformation 
of the data must be applied. To facilitate comparisons with the RBC literature, we chose 
to process the data using the Hodrick and Prescott (1980) filter. Consequently, the second 
moments to be discussed pertain to those of Hodrick and Prescott (HP) filtered data.10

We focus on a set of second moments that have received a great deal of attention 
in the RBC literature: the standard deviation of output, c y, the standard deviations of 
consumption, investment and hours relative to the standard deviation of output, <Te/crv, 
Oi/oy and a^/ay and the standard deviation of hours worked relative to the standard devi­
ation of average productivity, <7*/<?<,- We also consider the dynamic correlations between 

average productivity and hours, p'ah =  Corr( API*, !?*+,•)> * =  ± 1,± 2, ±3, ±4, and the 
dynamic correlations between average productivity and output p*ay =  Corr( API*, 3^+,), 
i — —4, —3, —2, — l .11 We denote the vector of diagnostic moments that must be estimated 
in ways not involving the model by

*2 =  ( ° y  ° c l ° v  Oi/Oy ah/c v ah/o a p ~ £  p ~ *  p ~ *  p ~ £

Pah Pah Pah Pah Pay Pay Pay Pay ) •

9The mean of gt would matter in the linearised solution only in determining the steady state share of 
government expenditure in output, which we parameterise directly.

10We have redone all of the experiments in this paper with first differenced data. For a comparison of 
some of the small sample properties of GMM with HP-filtered and first differenced data see Christiano and 
den Haan (1994).

11 The contemporaneous correlations between these variables and p%ay9 » =  1 , 2 ,3,4, can be deduced from 
the other moments that we consider.
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3.2.1 M om ent C onditions U nderlying th e  E stim a to r of \&i

As discussed in Burnside and Eichenbaum (1994), our estimator of 'Pi is based on the
following moment conditions:

£ L | - i [ A l n W ) ] I +  iA ln (fl;)A ln (fl'i’)} =  0 (16)

£[lnW f) -  1» W ) ]  =  0 (17)
£[ln(£t) -  ln(S)] =  0 (18)

E  +  =  °  (19)

^ [ i n W J - l n ^ J - T f ]  =  0 (20)

£[ln(X") - ln (X t°_i)]2 - a 2 ~2(p\a\ =  0 (21)

E[ln(Gt) - ln ( F ()-ln (ff/y )] =  0 (22)

E[{g° ~ pg°t- i )  ln(^f_i)] +  P<fi\o\ =  0 (23)

E[(g°t ~  P9°t-xY\ -  (1 + P2)<p W ( =  0 (24)

In equation (16), H° and H° refer to our two measures of hours worked (see Appendix D).12 
The variables N , representing the nonstochastic steady state value of N t, and <pz, a reduced 
form parameter, are functions of the underlying parameter vector, 'Pi. Furthermore, X° 
represents a measurement-error corrupted signal of the level of technology which can be 
constructed given the data and a vector of parameters 'Pi. Similarly, g° is a signal of gt 
based on the error-ridden measure of technology ATf.13

3 .2.2 M om ent C onditions U nderlying th e  E s tim a to r of $2 

Our estimator of *P2 is based on the following moment conditions:

e [v? - t f ]  = 0
E [c\ -(*«/*,)V] = 0
E [i2 -  {o i/o y fy2] =  0

12 Unlike Burnside and Eichenbaum (1994), we abstract from issues concerning the observability of &t and 
Kt . In particular, we assume, for the purposes of our Monte Carlo experiments, that the econometrician 
observes these series directly.

13See Burnside and Eichenbaum (1994) for details.
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E\h] -  [oH/crfy]} =  0

E[h% -  {phlo a)2a]\ =  0

E[atht+i -  p \k ^ j  a \!  =  0, * =  ± 1 , . . . ,  ±4

E l a t y t + i - p ^ ^ o l / ( ? £ ) ]  =  0, t =  1 ,. . .  ,4,

where a lower case variable, e.g. Zt, is the cyclical component of ln(Z«) as defined by the 
HP filter.

To define our joint estimator of ’J'i and \&2 consider the following generic representation 
of our moment conditions:

E  [ut(tf0)] =  0 t=

where 'fr° is the true value of ( \E,,1 ^2 ) and u< is a vector valued function of dimension 
equal to the dimension of ^°. Let

S rW  =
1 <=i

The GMM estimator, \&r» minimizes

JT = TgTW ? TgT(9). (25)

where T r  is a symmetric positive definite weighting matrix of dimension equal to the 
dimension of Since our GMM estimator is exactly identified, ’J'r is independent of
Tr- We simply set T r  equal to the identity matrix in (25).

A consistent estimator of the variance-covariance matrix of y /T i^ r  — ^o) is given by

V* =  (d ^ D t ) ' 1

where Dt =  d U rC ^ r ) /^ ' and 5 r  is a consistent estimate of Sq, 2?r times the spectral 
density matrix of ut(^°) at frequency zero.

3.3 H ypo thesis  T esting

Suppose we wish to assess the empirical plausibility of the model’s implications for a q x 1 

subset of \p2 given by u>. Let $('&) denote the value of u> implied by the model, given the
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structural parameters t&i. Here $  denotes the (nonlinear) mapping between the model’s 
structural parameters and the relevant population moments. Denote the nonparametric 
estimate of u  obtained without imposing restrictions from the model by T (^).u  The 
hypotheses that we investigate are of the form

H0 : F(<V°) =  -  r(tf°) =  0 (26)

Christiano and Eichenbaum (1992) show that a consistent estimate of the asymptotic 

variance-covariance matrix of \/T [F (^ r)  “  -F('J'o)] is

VP
dF {*  r )

d* ' V*
'a F ( ^ r ) ] '

a w

and that the test statistic

Wt = T F (* Ty V f lF (¥ T) (27)

is asymptotically distributed as a x2 random variable with q degrees of freedom.
We consider two types of hypothesis tests. The first type involve tests of individual 

moments of the data. The test numbers and corresponding moments being tested are 
summarized in the following table.

Test # Moment T e s t# Moment Test # Moment
i Oy 6 .—4Pah 15 Pay
2 Oc/Oy 7 Plh 16 Pay
3 Oi/Oy 8 Pah 17 Pay
4 Ohl<Jy 9 Pah 18 Pay
5 Oh/Oa 10 Pah 19 ray

11 Pah 20 Pay
12 Plh 21 Ply
13 Pah 22 Ply
14 Pah 23 Pay

The second type of tests involve joint moment restrictions. Hypothesis H i states 
that the values of erv, <re/crv, <7,/<rv, Oh/ay and Oh/oa implied by the model are the same, 
in population, as the corresponding moments of the data generating process. Hypothe­
ses H2, H3 and H4 are similar to hypothesis Hi but pertain to the moments {p\h, i = 14

14 Often the mapping T is linear. In particular, T is often a conformable matrix of zeros and ones that 
selects the vector u from '&2-

17

Digitized for FRASER 
http://fraser.stlouisfed.org/ 
Federal Reserve Bank of St. Louis



0, i l ,  i2 , i3 , i4 } , {pj ,̂ $ — 0, i l ,  i2 , i3 , i4 }  and {(Ty, o c/ o y , C i J o v , 0 h / G y i & h l& a i P*ahi 

* = ±1,±2, ±3, ±4, p*av, t  = —4,—3 ,-2 ,-1 } , respectively.15 The test statistics for Hi, 
H2, H3 and H4 have 5, 9, 9, and 17 degrees of freedom, respectively.

To implement our hypotheses tests we require an estimator, Sr, of So. As in section 
2, our estimators are of the form

r-i
S t =  £  *

where
A. =  f ( 1 /m S .y + i  for y >  0
’ 1 (l/r )ES=-i+i4it)“! for J < 0

The kernel function fc varies depending on the estimator, Hr is the bandwidth and u t = 
Ut('f'r)- Our baseline results are generated using the Bartlett kernel function

k (x )  =  { ‘ " M  « * N S 1v 1 ( 0 otherwise

and Andrews’ (1991) automatic selection procedure for Hr. Appendix C discusses the 
other estimators of So that we consider. As it turns out, our basic results are robust 
across these different estimators of So.

The bandwidth selection procedure that we used can be described as follows. Andrews
(1991) provides an expression for the optimal bandwidth corresponding to a given kernel, 
a process u(, and a set of weights on the different elements of So. The bandwidth is 
optimal in the sense that it leads to minimum MSE estimates of a weighted inner product 
of the elements of So. Andrews’ (1991) procedure simplifies the dependence of the optimal 
bandwidth on the entire spectral density of u t by assuming a simple parametric model for 
the error term. The choice of model does not affect the consistency of Sr- The model 
which we use corresponds to the simplest example in Andrews (1991). Specifically, we 
treat the elements of u< as independent AR(1) scalar processes. No weight is given to 
the off-diagonal elements of So. Under these circumstances, the bandwidth selected will 
depend on the sample size, T, the weights, and coefficient estimates obtained by fitting 
AR(l) processes to the elements of Ut(¥r). Roughly speaking, the more persistent the 
errors, the greater the bandwidth.

lsThe last set of moments contains the nonredundant elements from among the moments involved in tests 
1-23.
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In the standard case, equal weight is placed on all of the error terms. However we 
found that doing this led to test statistics with very poor small sample properties. (See 
Appendix C). Instead we placed zero weight on (17), (18) and (22) along with unit weight 
on the other error terms. The resulting median bandwidth across the different Monte 
Carlo draws was 2.78.

3.4 Parameter Estimates and Some Results Based on Asymptotic Theory

Table 3 reports our point estimates of 'i'x along with corresponding standard errors. The 
data set used to generate these estimates is described in Appendix D. Table 4 presents 
the non-model and model based estimates of { a y, o J o y, 0 i f o y, Oh/cry , C h / o a}. Numbers 
in parentheses are the standard errors of the corresponding point estimates. Numbers in 
brackets are the asymptotic probability values of the statistics for testing whether the 
individual model and data population moment are the same. Notice that we cannot reject 
any of the individual hypotheses in question.

Figures 1 and 2 summarize the model’s implications for the dynamic correlations be­
tween hours worked and average productivity as well as the dynamic correlations between 
average productivity and output. The dotted lines in row 1 correspond to the non-model 
based estimates of {p̂ ,, t = 0, ±1, ±2, ±3, ± 4 } ,  and {p*ay, i  =  0, ± 1, ±2, ±3, ± 4 } ,  while the 
solid lines denote the moments implied by the model. The solid lines in row 2 graph the 
differences between the model and non-model based estimates while the dotted lines de­
pict an asymptotic two standard error band for the differences. According to these figures, 
the model does quite well at accounting for the individual dynamic correlations between 
average productivity and output as well as average productivity and hours worked.

We now turn to our joint hypotheses. Columns 1 and 2 of Table 5 report the W  

statistics for hypotheses {Hi, H 2, H3, H4} and the corresponding asymptotic probability 
values. Notice that hypotheses H 2, H3 and H4 are all rejected at very low significance 
levels. To us the strength of these rejections seems at variance with the results of testing 
the individual components of these hypotheses. One way to reconcile these results is to 
invoke the pattern of covariances in question. However, in light of the results in section 
2, these strong rejections may simply reflect the small sample properties of G M M  based 
Wald statistics as applied to hypotheses involving joint moment restrictions. With this as
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motivation we turn to the Monte Carlo experiments

3.5 Monte Carlo Experiments

To generate data for our Monte Carlo experiments we proceeded as follows. Given the 
estimated value of 'J'i, we generated artificial time series according to the following rules: 
C t =  exp(ct)Xt, Y t = exp(yt)Xt, K t = exp(A;t)Xt_1, G t = exp(y,)Xt, I t = exp(tt)Xt, 
H t = /exp(nt) and St =  6 exp(<f>ut) . Here c t , y t , k t , u t , n t and i t are given by (15). The 
variables X t and gt were generated according to the laws of motion specified in section 3.1. 
One thousand artificial time series data sets, each of length 113, were generated, assuming 
that the stochastic elements of et were normally distributed.16

We begin by reporting the small sample behavior of the W statistics for hypotheses HI, 
H 2, H3 and H4. Column 3 of Table 5 reports the percentage of times (out of 1000 Monte 
Carlo trials) that the “W statistics for these hypotheses were greater than or equal to the 
corresponding W statistic obtained using U.S. data (see column 1). We refer to this fraction 
as the Monte Carlo probability. For hypothesis Hi, H 2 and H3 the asymptotic and Monte 
Carlo probabilities are reasonably similar. However for hypothesis H4 the Monte Carlo 
probability is much larger than the asymptotic probability (.06 versus .00). According to 
asymptotic standard distribution theory, the W statistic which we obtained for hypothesis 
H4 would be very unlikely if the model were specified correctly. But according to the small 
sample results, one would obtain a W statistic this large or larger roughly 6%  of the time.

A complementary way to assess the small sample properties of the Wald tests is to 
consider the fraction of the time that the TV statistics emerging from the Monte Carlos 
exceed the 1%, 5% and 10%  critical values of the relevant chi-squared distributions. These 
axe displayed in columns 4, 5 and 6 of Table 5. Notice that the small sample sizes of the test 
statistics for hypotheses Hi and H4 greatly exceed their asymptotic size. This tendency 
is particularly dramatic in the case of H4, where the W statistics exceed their asymptotic 
1%, 5% and 10% critical values 37%, 51% and 58% of the time.

16 With one exception all the moment conditions underlying our estimator of hold exactly for the 
artificial data generating process. The exception is the planner’s Euler equation for K t+ 1, equation (19), 
discussed in Appendix B. To deal with this problem, we computed the expectation in equation (19) for the 
true log-linearized model. As it turns out, at these parameter values the error is approximately equal to 
2 X  10-6. To correct for possible bias we implemented our Monte Carlos centering equation (19) around 
2 X  10-6 rather than 0.
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Before analyzing this finding, we briefly discuss the size of the test statistics applied to 
the individual moments that make up joint hypotheses Hi, H 2, H3 and H4. Our results 
are displayed in Figure 3. The height of each bar graph in Panels A, B and C denotes 
the percentage of times (out of 1000 trials) that the W statistic for a given hypothesis 
exceeded the 10%, 5% and 1% critical values, of the asymptotic chi-squared distribution.

According to Figure 3, the small sample sizes of the test statistics for hypotheses 1 and 
4-25 are moderately higher than their asymptotic sizes. The small sample sizes of the test 
statistics associated with o c/ a v and O i/ o y are substantially larger than their asymptotic 
sizes. This is consistent with our finding that Wald tests of hypotheses Hi and H4 over- 
reject in small samples. However, these effects do not seem large enough to explain the 
e x ten t to which the Wald test over-rejects HI and H4.

Viewed overall, the outstanding feature of our experiments is the large (small sample) 
size of the Wald test of hypothesis H4. Inference based on the asymptotic distribution of 
the Ml statistic leads to a grossly overly critical assessment of the model’s performance. 
In Appendix C we show that this conclusion is robust to various perturbations. First, 
we consider the effects of different bandwidths when constructing Sx. These were chosen 
both on an a p r i o r i basis and using the Newey and West (1993) automatic bandwidth 
procedure. Second, we consider different estimators of So that correspond to different lag 
windows. Third, we discuss the impact of using a small sample correction suggested by 
Andrews (1991).

A different dimension along which our results could be sensitive is how we parameterize 
the elements of ̂ 2- Specifically, we could include the moments { o e, cr,-, <7* o a} rather them 
{ o c/ o y , O i/ o y , O h /0V, O h / o a}. Under these circumstances the moment conditions defining 
our estimator of ¥2 are given by:

w , - < z  ] = 0
= 0
= 0

£[/>?- » l ] = 0
= 0
= 0, i
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Consistent with this reparameterization we redefined tests 2 through 5 so that they 
pertained to a c , o,-, and o a respectively and adjusted the definitions of HI and H 4 

accordingly.17

Figure 4 reports the small sample size of the Wald tests with asymptotic size equal to 
10%  (Panel A), 5% (Panel B) and 1%  (Panel C) for the reparameterized system. Notice 
that in most cases, small sample size increases. This is true for hypotheses H1-H4, except 
for the test of Hi at the 1%  level. For the tests based on correlations (hypotheses 6- 
23) this is true for 51 out of 54 cases. Notice, however, that small sample performance 
improves dramatically for the tests based on a e and a , over those based on a el a y and 
O i/O y (hypotheses 2 &  3). Interestingly, this improvement does not translate into improved 
performance for the test of hypothesis HI. So while the reparameterization appears to lead 
to more uniform performance across the different moments, it does not solve the overall 
excessive small sample size of the Wald tests. And it certainly does not account for the 
dramatic problems associated with tests of hypothesis H4.

In the remainder of this section we discuss the factors underlying the large (small 
sample) size of the Wald test of hypothesis H4. For this purpose we return to the original 
parameterization of and focus on the role played by the matrix S t  in the small sample 
distribution of the W statistic. To this end, we redid our Monte Carlo experiments using 
the population value of S t , S o , that is implied by the parameters governing the data 
generating process. Specifically, on each of the one thousand data sets, we estimated the 
parameters of the model but formed the W statistic using the fixed matrix S 0. We found 
that the W statistics for H4 exceed their asymptotic (1%, 5%, 10%) critical values (4%, 8%, 
11%) of the time. This contrasts with our baseline findings that the W statistic exceeds 
its asymptotic (1%, 5%, 10%) critical values (37%, 51%, 58%) of the time.18 Evidently, 
the fact that we must estimate So accounts for a substantial part of the problem. But 
even when So is known, relying on asymptotic distribution theory would still lead us to

17The reparameterisation indirectly affected all of the other test statistics because of the covariance 
between the GMM error terms.

18 We also found that the “W statistics for Hi, H2 and H3 exceeded their asymptotic (1%, 5%, 10%) critical 
values (3%, 7%, 11%), (0%, 2%, 4%) and (2%, 5%, 7%) of the time, respectively. The analogous numbers in 
the baseline Monte Carlo where we use St rather than Sq are (12%, 23%, 32%), (8%, 17%, 24%) and (7%, 
13%, 20%).

* — 1> • • • »4.
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reject hypothesis H4 too often.
A natural question arises as to whether the small sample distribution of the W statistic 

for H4 would coincide even more closely to its asymptotic distribution if we imposed the 
population values of D t  and F ( ^ t ) as well as S t  in the Monte Carlo experiments. For 
our data generating process the answer is no. Indeed, we found that the small sample size 
of Wald test for H4 actually moved substantially farther away from its asymptotic size 
under these circumstances. Specifically, the W statistic for H4 exceeded its asymptotic 
(1%, 5% 10%) critical values (16%, 25%, 32%) of the time. While this does not represent 
a logical problem, we are surprised by the result.

Overall our results suggest that sampling error in S t  plays a substantial role in the large 
(small sample) sizes of Wald tests involving multiple moment conditions. This suggests 
an alternative way to estimate 5j. Specifically, the econometrician could calculate the 
implied population value of S t  for any given set of parameter estimates when estimating 
the model. The obvious drawback to this procedure, it that, for nontrivial models, it is 
computationally quite burdensome.

4 C o n c lu s io n

This paper examined the small sample properties of Generalized Method of Moments 
(GMM) based Wald statistics. For the data generating processes considered we found that 
the small sample size of these tests exceeded their asymptotic size. The problem became 
dramatically worse as the dimensionality of the joint tests being considered increased. We 
offered evidence that the basic problem has to do with the difficulty of estimating the 
spectral density matrix of the G M M  residuals that is needed to conduct inference. Our 
results lead us to be very skeptical that the problem can be resolved by losing any of 
the alternative nonparametric estimators of this matrix that have been discussed in the 
literature. Instead we advocate using estimators which impose as much a priori information 
as possible. Two important sources of such information are the economic theory being 
investigated and the null hypothesis being tested. There are two costs associated with 
pursuing this strategy. The first is computational. The second is that to pursue it the 
analyst will often be required to make stronger distributional assumptions about the nature 
of the unobservable shocks impacting on agents’ environments. But, in this case, two of
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the prime reasons for using a G M M  strategy, as opposed to maximum likelihood methods, 
disappear.
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TABLE 1

Small Sample Performance of Joint Tests 
Using Normally Distributed White Noise Data 

Estimating Standard Deviations

A. Estimated S t , B ?  =  4

Asymptotic Size Small Sample Size (%)

* II h* Af = 2 Af = 5 Af = 10 M  =  20

1% 2.69 3.41 6.99 16.98 58.68
5% 7.49 9.25 15.61 30.92 73.37
10% 12.65 14.93 23.32 40.10 80.29

B. Estimated S t , B t  = 2

Asymptotic Size Small Sample Size (%)

* II M  —  2 M  =  5 Af = 10 M  =  20

1% 2.31 2.87 4.83 9.17 28.88
5% 6.90 8.26 12.22 19.91 45.62
10% 12.03 13.62 19.32 28.55 55.88

C. Estimated Sr, B t  by Andrews Procedure

Asymptotic Size Small Sample Size (%)
Af = 1 Af = 2 Af = 5 Af = 10 Af = 20

1% 2.27 2.91 4.71 9.06 26.64
5% 6.94 8.27 11.94 19.27 43.43
10% 11.98 13.50 19.04 27.87 53.83

D. Estimated S t , No Lags

Asymptotic Size Small Sample Size (%)
Af = 1 Af = 2 Af = 5 Af = 10 Af = 20

1% 2.15 2.73 4.17 6.67 17.31
5% 6.74 7.94 10.82 16.23 32.87
10% 11.79 13.22 17.43 24.10 42.51

26

Digitized for FRASER 
http://fraser.stlouisfed.org/ 
Federal Reserve Bank of St. Louis



E. Estimated Diagonal Sr, No Lags

Asymptotic Size Small Sample Size (%)
M  = 1 M  =  2 M  =  5 M  =  10

oII

1% 2.15 2.67 3.33 3.88 4.71
5% 6.74 7.58 9.32 11.04 13.39
10% 11.79 13.04 15.50 17.56 21.20

F. Gaussianity Applied to E

Asymptotic Size Small Sample Size (%)
M  —  1 M  = 2 M  = 5 M  = 10 M  =  20

1% 1.67 1.82 2.22 2.40 2.58
5% 5.94 6.08 7.20 7.72 8.53
10% 10.60 11.30 12.50 13.25 14.45

G. Impose H o on Sr in F

Asymptotic Size Small Sample Size (%)

II h-* M  = 2 M  = 5 M  =  10 M  = 20
1% 1.46 1.67 2.03 2.10 2.10
5% 4.61 5.33 5.97 6.58 7.26
10% 9.34 9.55 10.47 11.70 12.05

H. Impose H q on Sr in F, and on Dr

Asymptotic Size Small Sample Size (%)
M  =  1 * II to II Cn s II o M  = 20

1% 0.96 0.97 0.99 0.96 0.92
5% 5.16 4.90 5.08 5.01 4.99
10% 10.14 10.13 10.20 10.11 9.99
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TABLE 2

Small Sample Performance of Joint Tests 
Using Normally Distributed White Noise Data 

Estimating Relative Standard Deviations

A. Estimated S r ,  B t  =  4

Asymptotic Size Small Sample Size (%)
M  —  l a M  = 16 II$ orHIIStoII M  = 20

1% 2.59 2.26 3.65 7.88 18.55 59.25
5% 7.49 7.09 9.55 16.62 32.30 73.11
10% 12.65 12.12 15.35 24.17 40.99 79.98

B. Estimated S t , B t  =  2

Asymptotic Size Small Sample Size (%)eII s II M  =  2 M  =  5 M  =  10 M  = 20
1% 2.31 1.95 3.14 5.65 10.61 31.09
5% 6.90 6.63 8.58 13.08 21.73 47.21
10% 12.03 11.46 14.13 20.32 29.98 56.65

C. Estimated S r ,  B t  by Andrews Procedure

Asymptotic Size Small Sample Size (%)
M  = la M  = 16 NII M  =  5 M  = 10 AT = 20

1% 2.28 1.90 3.12 5.45 9.80 27.60
5% 6.88 6.57 8.46 12.87 20.65 43.72
10% 11.84 11.40 13.93 19.98 28.84 53.46

D. Estimated S t , N o Lags

Asymptotic Size Small Sample Size (%)
M  =  l a

rHII*

M  =  2 M  =  5 M  = 10 M  = 20
1% 2.15 1.84 2.95 4.88 8.18 20.29
5% 6.74 6.42 8.09 11.90 17.92 34.91
10% 11.79 11.15 13.54 18.41 25.80 44.46
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E. Impose Mutual Independence

Asymptotic Size Small Sample Size (%)

II t—‘ & rHII Af = 2 Af = 5 II h-‘ O Af = 20
1% 2.15 1.79 2.87 4.07 5.37 7.36
5% 6.74 6.24 7.88 10.43 12.44 16.51
10% 11.79 11.07 13.29 16.60 19.24 23.72

F. Gaussianity Applied to E

Asymptotic Size Small Sample Size (%)
M  =  l a Af = lb Af = 2 Af = 5 Af = 10 Af = 20

1% 1.67 1.44 2.10 2.81 3.53 4.51
5% 5.94 5.45 6.45 8.10 9.41 11.28
10% 10.60 10.25 11.68 13.48 14.81 17.33

G. Impose H q on S t  in F

Asymptotic Size Small Sample Size (%)

Af = la Af = 16 M  =  2 M  = 5 orHII Af = 20
1% 1.46 2.79 1.76 2.50 2.98 3.86
5% 4.61 6.09 5.63 7.04 8.45 9.51
10% 9.34 9.86 9.82 11.71 13.23 15.19

H. Impose H q on S t  in F, and on D t

Asymptotic Size Small Sample Size (%)
Af = la Af = 16 II Af = 5 Af = 10 Af = 20

1% 0.96 1.36 1.21 1.71 2.02 2.67
5% 5.16 5.43 5.36 6.19 6.71 7.76
10%> 10.14 10.11 10.25 11.24 11.92 13.40
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TABLE 3

Model Parameters 
Estimates and Standard Errors*

Parameter Estimate Std. Error
e 3.5955 (0.0377)
a 0.6422 (0.0193)
6 0.0208 (0.0002)

0.0038 (0.0012)
a v 0.0088 (0.0007)
g/y 0.1763 (0.0022)
9o 1.7885 (0.0809)
9 i -0.0019 (0.0003)
P 0.9456 (0.0299)

0.0152 (0.0012)
0.0088 (0.0011)

* All standard errors shown in this table are based on estimates of S t  computed using 
the Bartlett window suggested by Newey and West (1987), and the automatic bandwidth 
selection procedure suggested by Andrews (1991).
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Tests of the Models
TABLE 4

Moment U.S. Data Model W
a v 0.0192

(0.0018)
0.0167
(0.0013)

1.614
(0.204)

O c l o y 0.437
(0.029)

0.480
(0.009)

2.005
(0.157)

O i j O y 2.224
(0.068)

2.244
(0.072)

0.044
(0.835)

O h / O y 0.859
(0.069)

0.795
(0.051)

0.990
(0.320)

O h i o  a 1.221
(0.115)

1.033
(0.037)

2.258
(0.133)

‘Numbers under the heading U.S. Data are second moments of HP-filtered U.S. data. 
Numbers under the heading model, are the model’s implications for the corresponding 
moments as functions of ¥ 1. Standard errors for each are in parentheses. The p-values 
for the corresponding W statistics are in parentheses.

TABLE 5
Small Sample Performance of the Joint Tests

Hypothesis Test Performed Using U.S. Data* Size (%) of Tests*
W p-value M C  p-value 10% 5% 1%

HI 6.64 0.25 0.48 31.7 23.0 11.9
H 2 43.7 0.00 0.01 23.6 16.5 7.6
H3 35.5 0.00 0.01 20.2 13.3 6.5
H4 66.3 0.00 0.06 57.6 50.7 36.7

‘The numbers under the heading ‘p-value’ are the p-values obtained when the W  statistics 
for HI, H 2, H3 and H4 are compared to x2 distributions with 5, 9, 9 and 17 degrees 
of freedom respectively. The numbers under the heading ‘M C  p-value’ are obtained by 
comparing these statistics to the distribution of the W statistics generated by our Monte 
Carlo experiments.
tThe numbers on this side of the table indicate the frequency (in %) with which the W  
statistics from our Monte Carlo experiments exceed the 10%, 5% and 1%  critical values 
of the relevant x2 distributions.
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TABLE 6
The Form of the Lag Window and Small Sample Performance

Moment 10% 5% 1%
B P Q B P Q B P Q

1 16.1 16.0 15.8 10.1 9.7 9.5 3.0 3.1 3.0
2 25.5 24.0 25.4 17.9 16.3 17.5 8.2 8.0 8.3
3 25.4 25.7 25.5 18.8 19.7 19.0 8.2 9.0 8.2
4 13.2 14.2 13.3 7.3 8.0 7.3 2.0 2.2 1.8
5 12.4 13.4 12.0 6.7 7.6 6.7 1.2 1.6 1.3
6 15.5 15.0 14.9 9.0 8.9 8.8 3.2 3.1 2.6
7 14.4 14.2 14.3 8.3 8.0 7.8 2.7 2.8 2.6
8 17.1 17.4 17.6 9.7 9.5 8.6 3.0 3.0 2.6
9 18.2 18.3 17.7 10.5 10.6 9.9 2.5 3.1 2.7
10 16.3 16.9 16.4 10.5 10.5 10.1 3.8 4.4 4.0
11 7.8 8.8 7.9 3.9 5.2 4.4 0.5 1.1 0.6
12 10.6 10.1 9.3 4.0 4.5 4.0 1.3 1.4 1.2
13 13.0 12.3 12.4 6.8 6.9 6.4 2.0 2.2 2.2
14 12.8 12.8 12.5 6.9 7.5 6.7 2.8 2.8 2.4
15 17.2 16.4 16.1 10.5 9.8 9.8 4.0 3.9 3.8
16 18.9 17.6 17.9 10.7 10.1 10.2 3.6 3.7 3.3
17 19.9 19.1 19.2 11.8 11.6 10.9 3.5 3.7 3.6
18 19.1 19.3 18.6 11.1 11.1 10.4 4.0 3.8 3.5
19 12.6 13.9 12.2 6.2 6.5 5.4 1.6 1.9 1.5
20 7.1 8.5 7.4 4.8 5.5 4.3 0.5 0.9 0.7
21 11.8 11.1 10.1 6.3 5.9 5.2 1.3 1.6 1.2
22 14.2 13.6 12.4 7.2 7.1 6.9 2.2 2.4 2.3
23 14.4 13.9 13.7 8.8 8.2 8.0 2.2 2.4 2.4
HI 31.7 32.6 30.4 23.0 24.1 22.7 11.9 13.2 11.5
H 2 23.6 28.1 26.1 16.5 21.3 18.8 7.6 10.6 8.3
H3 20.2 23.7 21.1 13.3 16.7 14.9 6.5 8.7 7.3
H4 57.6 63.6 59.0 50.7 56.9 52.4 36.7 43.4 38.3

‘The sets of columns labelled x% refer to the sizes of tests (in %) with asymptotic size 
equal to x % . The labels B , P, Q  refer to the Bartlett, Parzen and Quadratic Spectral 
windows. The Bartlett kernel columns are our baseline case, the others differ from that 
case only in the lag window used, and consequently in the bandwidths chosen by the 
Andrews (1991) procedure. Tests are numbered as described in the text.
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The Impact of Excluding Some Moment Restrictions
TABLE 7

Moment 10% 5% 1%
Ex In Ex In Ex In

1 16.1 28.8 10.1 22.4 3.0 13.0
2 25.5 33.4 17.9 25.5 8.2 14.9
3 25.4 35.7 18.8 29.4 8.2 19.2
4 13.2 28.5 7.3 22.2 2.0 12.4
5 12.4 28.1 6.7 20.7 1.2 11.0
6 15.5 30.0 9.0 22.0 3.2 12.1
7 14.4 27.0 8.3 20.2 2.7 11.6
8 17.1 26.6 9.7 20.0 3.0 11.8
9 18.2 30.9 10.5 22.7 2.5 13.2
10 16.3 29.8 10.5 23.1 3.8 13.7
11 7.8 23.5 3.9 17.0 0.5 9.0
12 10.6 26.1 4.0 18.8 1.3 10.3
13 13.0 26.6 6.8 19.4 2.0 11.0
14 12.8 25.9 6.9 19.3 2.8 11.0
15 17.2 33.9 10.5 25.4 4.0 15.1
16 18.9 33.5 10.7 25.3 3.6 13.5
17 19.9 34.2 11.8 25.4 3.5 15.1
18 19.1 32.2 11.1 24.1 4.0 14.5
19 12.6 29.6 6.2 23.3 1.6 12.0
20 7.1 28.5 4.8 20.5 0.5 10.4
21 11.8 29.3 6.3 21.8 1.3 13.1
22 14.2 31.3 7.2 24.5 2.2 14.7
23 14.4 31.3 8.8 25.0 2.2 14.8
HI 31.7 85.4 23.0 82.3 11.9 71.7
H 2 23.6 95.8 16.5 93.7 7.6 88.2
H3 20.2 93.5 13.3 91.6 6.5 85.9
H4 57.6 100.0 50.7 100.0 36.7 99.9

‘The columns labelled ‘Ex’ correspond to our baseline case, while those labelled ‘In’ cor­
respond to experiments in which the three moment restrictions, excluded in our baseline 
case, are not excluded in computing the automatic bandwidths.
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TABLE 8

The Newey and West Automatic Bandwidth Procedure'

Moment 10% 5% 1%
A NW(4) N W ( 12) A NW(4) N W ( 12) A NW(4) N W ( 12)

1 16.1 16.5 19.0 10.1 9.8 11.3 3.0 3.3 4.0
2 25.5 27.0 24.7 17.9 18.9 17.9 8.2 9.2 9.2
3 25.4 25.1 26.8 18.8 17.6 20.5 8.2 7.5 10.0
4 13.2 12.5 16.5 7.3 7.1 9.4 2.0 2.0 2.9
5 12.4 12.1 15.8 6.7 6.7 9.4 1.2 1.3 2.8
6 15.5 16.0 18.6 9.0 9.4 10.4 3.2 3.0 4.2
7 14.4 14.5 16.1 8.3 8.7 9.3 2.7 3.4 4.2
8 17.1 16.9 18.1 9.7 9.4 11.5 3.0 2.4 3.2
9 18.2 17.5 19.0 10.5 9.6 11.3 2.5 2.7 3.8
10 16.3 17.2 18.4 10.5 10.0 12.5 3.8 3.9 5.6
11 7.8 7.7 11.0 3.9 3.8 6.0 0.5 0.5 1.8
12 10.6 11.1 14.0 4.0 5.0 7.9 1.3 1.5 2.2
13 13.0 13.1 14.7 6.8 7.2 9.1 2.0 2.3 3.3
14 12.8 13.8 15.3 6.9 7.6 9.2 2.8 2.9 4.2
15 17.2 17.7 21.0 10.5 10.5 13.0 4.0 4.0 4.7
16 18.9 18.5 21.5 10.7 11.3 13.1 3.6 4.1 5.3
17 19.9 19.6 22.7 11.8 11.8 14.0 3.5 4.2 5.3
18 19.1 19.8 21.2 11.1 11.2 13.0 4.0 3.8 5.0
19 12.6 11.3 16.1 6.2 6.1 8.8 1.6 1.3 2.6
20 7.1 7.5 11.7 4.8 4.5 6.7 0.5 0.6 1.7
21 11.8 11.8 15.8 6.3 6.6 9.1 1.3 1.4 2.8
22 14.2 13.7 17.9 7.2 8.1 11.1 2.2 2.6 4.6
23 14.4 14.9 18.4 8.8 9.4 12.1 2.2 2.9 4.4
HI 31.7 31.8 42.4 23.0 21.8 34.6 11.9 12.1 20.8
H 2 23.6 24.8 41.8 16.5 17.2 34.8 7.6 8.7 23.9
H3 20.2 20.7 38.6 13.3 14.9 30.9 6.5 8.4 20.7
H4 57.6 55.9 78.8 50.7 49.8 73.0 36.7 36.4 63.0

‘The columns labelled ‘A ’ correspond to our baseline case, which uses the Andrews au­
tomatic bandwidth procedure, while those labelled *NW(x)’ correspond to experiments 
using the Newey and West procedure, with x being the value of n.
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TABLE 9

Variable Versus Fixed Bandwidth'

Moment 10% 5% 1%
V 2 4 V 2 4 V 2 4

1 16.1 16.4 16.6 10.1 10.5 9.8 3.0 3.1 3.0
2 25.5 28.3 23.9 17.9 20.1 16.3 8.2 9.6 7.9
3 25.4 24.2 25.6 18.8 17.4 19.6 8.2 6.4 8.7
4 13.2 12.0 13.6 7.3 6.5 8.0 2.0 1.1 2.1
5 12.4 10.9 13.6 6.7 5.9 7.5 1.2 1.1 1.6
6 15.5 15.5 15.3 9.0 9.3 8.8 3.2 2.6 3.2
7 14.4 14.8 14.4 8.3 8.5 8.0 2.7 2.4 2.9
8 17.1 17.6 17.1 9.7 8.9 10.3 3.0 2.2 3.2
9 18.2 17.8 17.9 10.5 9.5 10.4 2.5 2.2 2.9
10 16.3 15.8 17.4 10.5 10.1 10.4 3.8 3.5 4.3
11 7.8 6.1 8.7 3.9 2.9 4.4 0.5 0.3 0.9
12 10.6 9.2 11.4 4.0 3.7 4.7 1.3 1.2 1.4
13 13.0 12.8 12.7 6.8 6.8 7.0 2.0 2.4 2.2
14 12.8 13.1 13.0 6.9 7.3 7.5 2.8 2.5 3.1
15 17.2 17.1 16.5 10.5 11.0 9.8 4.0 3.9 3.6
16 18.9 18.7 18.4 10.7 10.9 10.7 3.6 3.9 3.9
17 19.9 19.8 20.1 11.8 11.8 11.8 3.5 3.4 4.2
18 19.1 18.8 19.5 11.1 10.4 11.7 4.0 3.2 3.8
19 12.6 9.5 13.6 6.2 4.1 6.1 1.6 1.0 1.7
20 7.1 5.8 8.7 4.8 2.5 4.9 0.5 0.2 0.5
21 11.8 9.7 12.7 6.3 5.0 6.9 1.3 0.9 1.5
22 14.2 13.1 14.4 7.2 7.2 7.6 2.2 2.4 2.7
23 14.4 14.2 14.2 8.8 8.4 8.6 2.2 2.4 2.3
HI 31.7 28.6 32.3 23.0 19.6 24.3 11.9 10.7 12.8
H 2 23.6 20.0 25.6 16.5 12.9 19.4 7.6 5.8 8.7
H3 20.2 16.7 21.6 13.3 10.6 14.9 6.5 5.3 7.2
H4 57.6 49.6 62.7 50.7 41.2 55.2 36.7 27.5 41.6

’The sets of columns labelled x% refer to tests with asymptotic size equal to x% . The 
labels V, 2 and 4 refer to variable bandwidths picked with the Andrews (1991) procedure, 
a fixed bandwidth of 2 and a fixed bandwidth of 4 respectively. All results are based on 
our other baseline choices.
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TABLE 10

Variable Versus Fixed Bandwidth

Moment 10% 5% 1%
V 6 8 V . 6 8 V 6 8

1 16.1 17.8 19.0 10.1 10.4 11.6 3.0 3.6 3.9
2 25.5 23.1 23.2 17.9 15.8 16.6 8.2 7.6 8.0
3 25.4 26.7 26.5 18.8 20.0 20.8 8.2 9.8 9.9
4 13.2 16.0 16.9 7.3 9.0 10.3 2.0 2.5 2.8
5 12.4 15.1 16.6 6.7 8.6 9.6 1.2 2.2 2.8
6 15.5 16.3 17.8 9.0 9.3 9.9 3.2 4.2 5.0
7 14.4 15.5 15.9 8.3 8.6 9.9 2.7 3.4 3.6
8 17.1 17.3 17.6 9.7 10.7 11.2 3.0 3.5 4.0
9 18.2 18.0 19.0 10.5 11.0 11.6 2.5 3.4 4.0
10 16.3 18.6 19.5 10.5 11.5 12.5 3.8 5.0 5.3
11 7.8 11.0 12.2 3.9 5.7 7.0 0.5 1.4 1.7
12 10.6 13.3 14.6 4.0 5.9 7.4 1.3 2.1 2.3
13 13.0 13.6 14.4 6.8 8.1 9.1 2.0 3.0 3.3
14 12.8 14.2 15.2 6.9 8.7 9.4 2.8 3.7 4.1
15 17.2 18.2 20.2 10.5 10.8 12.6 4.0 4.0 4.9
16 18.9 20.9 23.0 10.7 12.0 14.0 3.6 4.4 5.3
17 19.9 21.0 22.7 11.8 13.1 14.8 3.5 4.8 5.0
18 19.1 21.0 21.8 11.1 12.4 13.9 4.0 5.1 5.2
19 12.6 15.1 17.2 6.2 8.3 10.1 1.6 2.4 3.3
20 7.1 10.9 12.6 4.8 6.0 7.3 0.5 1.6 2.1
21 11.8 15.2 17.1 6.3 8.1 9.3 1.3 2.2 2.7
22 14.2 17.3 18.8 7.2 10.0 12.4 2.2 3.5 4.8
23 14.4 16.8 19.2 8.8 10.9 12.5 2.2 3.6 5.1
HI 31.7 37.8 42.9 23.0 28.5 34.1 11.9 16.3 20.3
H 2 23.6 34.7 43.2 16.5 26.4 35.6 7.6 14.8 21.6
H3 20.2 29.8 39.7 13.3 22.0 30.8 6.5 11.8 17.8
H4 57.6 76.3 86.6 50.7 69.6 81.9 36.7 55.9 72.0

‘The sets of columns labelled x% refer to tests with asymptotic size equal to x% . The 
labels V, 6 and 8 refer to variable bandwidths picked with the Andrews (1991) procedure, 
a fixed bandwidth of 6 and a fixed bandwidth of 8 respectively. All results are based on 
our other baseline choices.
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First Order VAR Prewhitening'
TABLE 11

Moment 10% 5% 1%
Ex In Ex In Ex In

1 7.1 11.5 4.2 7.7 1.2 3.4
2 8.5 14.1 5.8 9.5 2.0 4.6
3 15.2 21.6 9.2 15.4 3.2 6.9
4 6.6 12.7 4.0 9.2 1.0 3.3
5 7.3 11.9 4.1 7.8 1.3 3.7
6 4.6 11.0 2.5 6.3 1.1 2.9
7 5.1 9.7 3.0 6.0 1.2 3.3
8 5.5 10.6 3.2 6.5 0.5 2.7
9 7.0 12.3 3.7 7.5 1.0 2.7
10 7.0 11.6 3.9 7.7 1.4 4.2
11 2.8 6.7 1.8 3.9 0.3 1.8
12 3.6 6.9 1.8 3.9 0.6 1.8
13 3.0 6.5 1.7 4.1 0.4 1.1
14 3.6 6.8 1.9 4.4 0.7 2.5
15 6.6 12.4 4.2 8.5 1.5 3.2
16 8.5 15.2 4.9 10.4 1.7 4.2
17 8.4 13.8 4.5 9.5 1.4 4.6
18 8.6 14.5 4.3 9.9 1.6 4.3
19 7.3 13.3 3.2 9.0 0.9 3.3
20 4.1 7.7 2.3 4.5 0.8 2.4
21 3.7 6.9 2.2 5.2 0.6 2.0
22 2.6 6.4 1.4 3.6 0.5 1.8
23 4.6 7.5 2.9 4.5 0.7 2.4
HI 39.8 68.5 30.8 62.9 19.7 51.2
H 2 49.5 89.7 42.3 85.9 28.9 79.9
H3 49.1 88.8 40.5 84.5 28.1 77.2
H4 91.1 100.0 88.1 100.0 81.8 99.7

’The columns labelled ‘Ex’ correspond to our baseline case, while those labelled ‘In’ cor­
respond to experiments in which the three moment restrictions, excluded in our baseline 
case, are not excluded in computing the automatic bandwidths.
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FIGURE 1
C o r r e l a t io n  o f  A P L t w it h  Ht+i (H P  F il t e r )*

Benchmark yodel Factor Hoarding Model

FIGURE 2
C o r r e l a t io n  o f  A P L t w it h  Yt+i (H P  F il t e r )*

Benchmark Model Factor Hoarding Model

*In the Correlation panels: solid line - model predicted correlations, dashed line - sample 
correlations. In the Difference panels the dashed lines represent a 2-standard error band 
around the difference.
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Sm all Sa m ple  S ize  o f  t h e  W T ests  
RBC Example

FIGURE 3

A. A s y m p to t ic  S ize  =  10%
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Sm all S a m p l e  S ize  o f  t h e  W T ests  
Reparameterized RBC Example

FIGURE 4

A. A s y m p to t ic  S ize  =  10%
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A  C o v a r i a n c e  M a t r i c e s  f o r  t h e  R e p a r a m e t r i z e d  W h i t e  N o is e  
C a s e

In this appendix we discuss our estimators of the asymptotic variance-covariance matrix of
0. The estimators Sy, S ? and S ? are defined as for a . When we allow the econometrician 
to exploit the lack of serial correlation in the data generating mechanism, we obtain

• S£, with (1,1) element - d?j2], (!»j) and (j» l) elements -
° l ) { X ? t - 0 ? X \ t)) for j  > 2, and (i,j) element given by £[£f=1(X?t - 0t2X*t)(X?t - 
0 ? X \ t)\, for * > 2, and j  > 2.

If the econometrician imposes the mutual independence restriction then we obtain
• with (1,1) element £ 521=1 (1» j) and (j\ 1) elements 0? ( o f — £  52j=i X f ^

for j  > 2, (*, *') element £ £f=1 X f t - Of o f  +  Of 52f=i X f t - d*) for * > 2 and ( i , j )  

element given by 6?0? (jr 52f=i X f t — b f j for * > 2 and 2 <;  ̂  *•
If in addition the econometrician exploits the fact that the X u  axe Gaussian, we have 

that E ( X f t) = 3<7i and E ( X f t) = 3erf = 3Of o f for j  > 2. This restriction can be imposed 
on Sy, which yields

• S%, with (1,1) element 2o f , (l,j) and ( j , 1) elements — 20? b f for j  > 2, (t,t) element 
4 Of o f for t > 2 and (:, j )  element given by 26*0?o f for * > 2 and 2 < j /  i .

We consider two types of hypotheses when estimating 6 : (i) hypothesis H m  : 0,- = 1, 
* = 1,..., M , and (ii) hypothesis H u  ‘.62 =  1. When we impose H m  we obtain

• with (1,1) element given by 2; (1, j) and ( j , 1) element —2 for 2 < j  <  M  and 
— 26? for j  >  M ; (t,t) element equal to 4 for 2 < t < M  and 4Of for * > M; and 
(t,j) element equal to 2 for 2 < i , j  <  M ,  26? for 2 < * < M ,  j  >  M  and 20?6? for 
t , j  >  M .

When we impose hypothesis H u  we obtain
• S j-, which is identical to except in the second row and second column. The 
diagonal (2,2) element is 4o f while the (2, j) and (j,2) elements are 20? o f ,  j  >  2 .

For each of the estimators above we construct an estimator for the variance-covariance 
matrix of the G M M  estimator:

V-T* = (R f tS j) - 1̂ ] - 1,
where D ?  is a diagonal matrix with (1,1) element — 2di and ($,*)) element — 20,0*, for 
j  >  2 . Since the null hypothesis H m  cam also be imposed on D \ , we also consider the 
estimator

V-r = [ D » { S I ) - 'D 't \~\

where D \  is a diagonal matrix with nth element —2 for i < M, and — 20,- for i  >  M . For 
the hypothesis H u  we have D \  equal to D ?  except that the (2,2) element is — 2b \ .
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B  T h e  E u l e r  E q u a t i o n  f o r  C a p i t a l  in  t h e  R B C  E x a m p l e

In this appendix we discuss our procedure for ensuring that the Euler equation for capital 
holds exactly in the data generating process underlying our Monte Carlo experiments. 
The Euler equation for K t+1 does not hold exactly for our linearized representation of the 
model. This equation is given by

E (B.l)

As a result, when we estimate the model using artificially generated time series from 
the linearized model it is important to adjust this moment restriction appropriately. We 
compute the expectation in equation (B.l) for our linearized model (it is approximately 
2 x 10-5) evaluated at the parameter values we use to generate the artificial data. We 
then center the moment restriction around that value rather than 0. This expectation, 
denoted by e , is computed as follows

e =  E  

= E 1 - P  exp(ct - cm ) ((1 - a) (1 - ̂ -1) exp(yt+1 - k t+ i) + exp( - 7  - vt+1))

Let = ( 1 k t N t  Vt gt & ) and st+i = ( sj+1 ) . Any variable in the linearized 
model, say Zt, determined at time t is given as a function 7r'st, for some vector tcx de­
termined by the solution to the model. Therefore we can write the Euler equation error 
simply as

e  =  E 1 -/?((!- a ) (1 - <f> exp(/zist+i) + exp(-^) exp(A*'2st+i))J,

where
Hi

In our simulations we assume that the innovations to the exogenous variables are normally 
distributed. In this case the properties of log-normal random variables can be exploited 
to show that

e = 1 -  #[(1 -  a)(l - <f> x) e x p ( n i E s  +  ,̂ i) + exp(~ 7 + n'2E s  -I- ,

where E s  and T, are the mean and unconditional covariance matrix of These are 
both computable as a by-product of the solution method.
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C  A l t e r n a t i v e  C o v a r ia n c e  M a t r i x  E s t i m a t o r s

This appendix considers the robustness of the results presented in section 3 to alternative 
estimators, Sr, of the the weighting matrix S 0.

We consider various forms of S t  which depend on
i. whether we include a small sample correction or not,
ii. the form of the lag window, &(•),
iii. the method for determining the bandwidth, B t , and
iv. whether we prewhiten the errors u t.

As described in the text, we take as our baseline case an estimator which
i. does not apply any small sample correction,
ii. uses the Bartlett lag window suggested by Newey and West (1987), and
iii. selects the bandwidth automatically using the method suggested by Andrews

(1991), and
iv. does not prewhiten the errors.

C.l The Small Sample Correction
The large sample performance of the tests is unaffected by the inclusion of a small sample 
degrees of freedom correction in the estimator S t - In a regression context, Andrews (1991) 
suggests the small sample correction of multiplying S t  by a factor of T / ( T  — d) where 
d is the dimension of the coefficient vector. In our simulated samples, the sample size 
is T  =  113, while the length of the parameter vector ̂  is d = 27. Therefore, applying 
Andrews’ small sample correction increases the magnitude of the elements of S t  by a factor 
of 31%. Since the effect is uniform, applying the correction unambigously decreases all test 
statistics by 31%. This decreases the small sample size of the tests, although this effect will 
not be uniform. We did not apply the small sample correction in our baseline experiments. 
Although applying the correction would have improved our results somewhat, we found 
that this was special to results based on the HP filter, as opposed to results based on first 
differenced data.

C.2 The Lag Window
We consider three forms of lag window, k (-) . 

Bartlett kernel given by
k(X 1 — 1*1 

0

Newey and West (1987) suggest using the

for |x| < 1 
otherwise.
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Gallant (1987) proposes using the Parzen kernel given by
( 1 — 6xJ + 6|x|3 for 0 < |x| < 1/2, 

k p ( x ) = < 2(1 — |x|)3 for 1/2 < |x| < 1,
( 0 otherwise.

Andrews (1991) examines the properties of the Quadratic Spectral (QS) kernel given by
, , \ 25 ( sin(67rx/5) . . \

( - 6 ^ 5 — cos(6,rl/5)J  '

Andrews (1991) shows that within a certain class of estimators, which includes each of 
these kernels, the QS kernel is optimal in the sense that it minimizes the asymptotic MSE 
of Sr*

We use the Bartlett kernel as our baseline lag window. Holding the other elements of 
the baseline estimator fixed we examine the small sample performance of our Wald tests 
using the Parzen and QS kernels. The results are summarized in Table 6 which shows the 
small sample size of the tests using the different lag windows. The results indicate that 
the small sample size of the tests is insensitive to the choice of lag window, at least in our 
example.

C.3 The Choice of Bandwidth
An issue which arises immediately with these estimators is how to choose the bandwidth 
parameter B t  for a given kernel. Andrews (1991) shows that the optimal bandwidths (in 
an M S E  sense) for the three kernels are

( 1.1447[a(l)T]1/s Bartlett kernel 
Bf = < 2.6614[a(2)7’]1/5 Parzen kernel 

( 1.322l[a(2)T]1/5 QS kernel,
where a (q ) is a function which depends on the unknown spectral density matrix of u t 

given by
/(A ) =  i  £  n , e - « \

j = - o o

where fly =
Since S p is a matrix estimator, its MSE is typically measured with respect to some 

weighting scheme such as (following Andrews 1991)

MSE(T/Br, Sr, W ) = -^-£vec(Sr -  S0)'Wvec(Sr - S0),
B t

where W  is some d? x  d? positive definite matrix. The measure of M S E  depends on the 
choice of the matrix W . Given a particular matrix W  the optimal bandwidth formulas 
can be made operational since

. . _ 2(vec/^)Wvec/to)
= trW(/ + K pP) /(0) ® /(0) ’
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where K p p is defined so that vec(A') = K ppv e c ( A ) , and

/<”  =  s  t  u rn # .J=-oo

Automated bandwidth selection procedures provide a means of estimating the a’s in the 
above formulas.

C.3.1 Andrews’ (1991) Automated Bandwidth Procedures
Andrews (1991) proposes various automatic bandwidth estimators. These are data-based 
procedures which implement the above formulas for estimates of a(l) and a(2). There 
are many possible procedures, both parametric and nonparametric, that can be used 
to estimate a(l) and a(2). Parametric estimators require choosing an approximating 
parametric model for the errors ut. Typical choices are parsimoniously parameterized and 
may model the errors individually. They further require the choice of a weighting matrix
W .

Since the possibilities were numerous, we chose perhaps the simplest approach which 
is to choose a weighting matrix which only puts weight on the diagonal elements of S T  

and to model each error term as an AR(1). Of course, the errors do not follow AR(l) 
processes but this does not affect consistency of the estimators for S o . Rather it generates 
a bias in estimates of the optimal bandwidth. In the AR(1) case

d(2)

a (l)

* 4 6 2ct4 k

1 = 1

z >
i= 1

(i - A ) 1 ,=1
IPi&i

(1 - P i)4
k

o t

where tu* is the weight given to error term i in computing the estimator, and (p,,̂ «) are 
standard estimates of the parameters of the A R  model obtained from residual t. The 
simplest estimator sets to,- = 1 for all i .

Andrews suggests setting tVi to zero for any error terms corresponding to a constant re­
gressor in a regression model. Presumably, this is motivated by the fact that the covariance 
properties of those error terms are qualitatively dissimilar to the covariance properties of 
the error terms corresponding to nonconstant regressors. In our examples, we placed no 
weight on the error terms corresponding to (17), (18) and (22) and unit weight on all other 
error terms, as these error terms behave very differently than the others. This constitutes 
our baseline method. To assess the impact of excluding these three moment restrictions 
we compared our baseline results to experiments where they were not excluded. In our 
baseline experiments the median bandwidth from the 1000 draws was 2.78 for the Bartlett 
kernel. With equal weight given to all moment conditions the median bandwidth rose sig­
nificantly to 40.1. Furthermore, as can be seen in Table 7, the small sample performance 
of some of our tests deteriorated significantly.
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C.3.2 Newey and West’s (1993) Automated Bandwidth Procedure
Newey and West’s (1993) procedure is related to the procedures outlined above but is 
nonparametric in the sense that no pseudo-model of the residuals is specified in order 
to estimate the a’s. Newey and West note that when the M S E  criterion is rewritten as 
w ' ( S t  — 5o)t2; for some d x 1 vector to, the formula for a (q ) can be rewritten as

«(?) = £  |iPw'ftiw] /  f £  w% w  .
./=- oo J /  L/=—oo

In order to estimate 0 (9), Newey and West (1993) suggest the approximation

d(9) = J2  / [ £  w'fy*5 »
J=—n J /  Ly=-n

where n is chosen a  p r io r i in order to be consistent with n  —*■ 00 and n / T 2/9 —► 00 (for 
the Bartlett window) as T  —► 00. Newey and West cite evidence that S t  is less sensitive 
to arbitrary n than it is to arbitrary choices of B t -

We present results for choices of n = 4 and n = 12. The weight vector we use puts 
zero weight on the same moment restrictions we excluded from our baseline Andrews 
method. The results are summarized in Table 8. When we chose n = 4 we obtained 
very similar results to when we used the Andrews procedure. This is not surprising: 
the median bandwidth chosen by the Newey and West procedure was 2.74 while the 
median bandwidth chosen by the Andrews procedure was 2.78. When we used n = 12 
this increased the median bandwidth of the Newey and West procedure to 7.39. This 
led to massive overrejections of the joint hypotheses similar in scale to when we used a 
fixed bandwidth of 8 (see the next subsection). Overall our results indicate that automated 
procedures may perform similarly but only if they are ‘timed’ in a way that happens to lead 
to similar bandwidths. We suspect that the Andrews procedure, while it has no parameter 
like n  to be chosen, would be analagously sensitive to the choice of pseudo-model for the 
error terms.

C.3.3 Arbitrary Fixed Bandwidth
It is difficult to compare results obtained with fixed bandwidths to those obtained using 
variable bandwidths, since any results we find may not be interpretable beyond the confines 
of our example. However, in Table 9 and Table 10 we compare our baseline results with 
results obtained using fixed bandwidths of 2, 4, 6 and 8 in repeated samples. While the 
results are mixed for small bandwidths, the results indicate a deterioration of small sample 
performance (especially for joint tests) for bandwidths of 6 and 8. What is also clear from 
these tables is that the bandwidth affects the various tests differentially.

C.4 Prewhitening of the Errors
Andrews and Monahan (1992) suggest a procedure which prewhitens the error terms as 
a first step prior to the computation of Sy. Prewhitening is motivated by the apparent
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problem in estimating S t  when the nature of the persistence in the errors is unknown. A 
particular bandwidth in tandem with a particular lag window may not adequately capture 
the nature of the persistence in the errors in small samples. The whiter are the error 
terms the less important will be the choice of lag window and bandwidth. A prewhitening 
procedure uses an arbitrary procedure to whiten the error terms, computes the equivalent 
of S t  for those whiter errors, then recolors the estimated matrix.

As an example, suppose that a first-order VAR is fit to process ut,

u t = nut-i + fjt -

Suppose that n converges to II asymptotically so that the errors ut('Jro) have the repre­
sentation

Wt(^o) =  I lu t- i^ o )  +  fit-
Define ^ ^

SS = £  m n',-,) = £  n;.
j=—oo ;=-oo

Then notice that
s0 = {i - n ) - lsz[i -n ' ) -1.

An analagous estimator S t  is

s T =  ( i - i t ) - l s } ( i - i t ' ) - 1,

where S £ is an estimator of the variety described in previous sections applied to f\t . For 
higher order VARs represented as [I — II(L)]ut = T)t , the corresponding estimator would 
be

sT = [i-fi{i)]~ls } [ i - i i ( i y ]~ \
We conducted experiments using lst-order VARs for the error terms. The results of 

these experiments are presented in Table 11. Given that we prewhitened the errors we 
thought that comparisons should be made with both the ‘Ex’ and the ‘In’ columns in Table 
7. Notice that small sample sample performance of the tests changes dramatically. Some 
of the tests reject less often, but the joint tests perform terribly. The test of H4 almost 
always rejects in the ‘In’ case where we include all the error terms in our bandwidth calcu­
lations. These results are somewhat surprising. We might expect prewhitening to improve 
performance. However, the median bandwidth chosen by the automated procedures rises 
to 7.72 in the ‘Ex’ case and drops to 29.7 in the ‘In’ case. The rise in the ‘Ex’ case is not 
surprising since the included errors have been projected onto lags of the excluded errors.

D  D a t a

In this appendix we describe the data that was used to estimate the RBC model of section
3. Private consumption, C t, was measured as the sum of private sector expenditures on 
nondurable goods plus services plus the imputed service flow from the stock of durable
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goods. The first two measures were obtained from the Survey of Current Business. The 
third measure was obtained from Brayton and Mauskopf (1985). Government consump­
tion, G t, was measured by real government (federal, state and local) purchases of goods 
minus real government investment. The government data was provided to us by John Mus- 
grave at the Bureau of Economic Analysis. The official capital stock, K t , was measured as 
the sum of consumer durables, producer structures and equipment, and government and 
private residential capital plus government non-residential capital. Data on gross invest­
ment, J(, are the flow data that conceptually match the capital stock data. Gross output, 
Y u was measured as ( C t +  G t + /*) plus time t inventory investment. Our basic measure of 
hours worked is the quarterly time series constructed by Hansen (1985), which we refer to 
as household hours. The data cover the period 1955:3-1984:1 and were converted to per 
capita terms using an efficiency weighted measure of the population.19 We use Prescott’s
(1986) model of measurement error in hours worked. In particular we assume that the 
log of measured hours worked differs from the log of actual hours worked by an i.i.d. 
random variable that has mean zero and standard deviation To estimate we need 
two measures of hours worked. The first is Hansen’s measure of hours worked which is 
based on the household survey conducted by the Bureau of the Census. The second is the 
establishment survey conducted by the Bureau of Labor Statistics.

19See Christiano (1988, appendix) for further details.
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