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Abstract

We describe several methods for approximating the solution to a model in which in­
equality constraints occasionally bind, and we compare their performance. We apply 
the methods to a particular model economy which satisfies two criteria: it is similar to 
the type of model used in actual research applications, and it is sufficiently simple that 
we can compute what we presume is virtually the exact solution. We have two results. 
First, all the algorithms are reasonably accurate. Second, on the basis of speed, accu­
racy and convenience of implementation, one algorithm dominates the rest. We show 
how to implement this algorithm in a general multidimensional setting, and discuss the 
likelihood that the results based on our example economy generalize.
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1. I n t r o d u c t i o n

In recent years there has been substantial interest in studying the quantitative properties of 

dynamic general equilibrium models. For the most part, exact solutions to these models are 

unobtainable and so in practice researchers must work with approximations. An increasing 

number of the models being studied have inequality constraints that occasionally bind. The 

main examples of this are heterogeneous agent models in which there are various kinds of 

constraints on the financial assets available to agents. 1 Other examples include multisector 

models with limitations on the intersectoral mobility of factors of production, and models 

of inventory investment.2 An important consideration in selecting algorithms for solving 

models like these is the quantity of computer and programmer time required to achieve an 

acceptable degree of accuracy. The purpose of this paper is to help shed light on these issues.

We describe six algorithms, and evaluate their accuracy in solving the one-sector infinite 

horizon optimal growth model with random productivity disturbances. In this model the 

nonnegativity constraint on gross investment is occasionally binding. We chose this model 

for two reasons. First, its simplicity makes it feasible for us to solve the model by doing 

dynamic programming on a very fine capital grid. Because we take the dynamic programming 

solution to be virtually exact, this constitutes an important benchmark for evaluating the 

four algorithms considered. Second, the one sector growth model is of independent interest,

since it is a basic building block of the type of general equilibrium models analyzed in the 
l i t e r a t u r e .3

All the methods we consider work with the Euler equation associated with the necursive

n J ? ' £ *  e'XaT l en’o ^ 1>TaSan AlyaSa n  and G ertler ( 1991)> den Haan (1993), H eaton and Lucas
J 9 ' 1 uSSett (1993) k iyo tak i and Moore (1993), M arcet and K etterer (1989), M arcet and Marimon
(1992), M arcet and Singleton (1990), Telmer (forthcom ing), and M cCurdy and Ricketts (1992).

-For an example of the former, see Atkeson and Kehoe (1993), and Boldrin, Christiano and Fisher (1994). 
exam ples of the la tte r include Christiano and F itzgerald (1991) and Kahn (1992).

For example solving the heterogeneous agent m odels of Aiyagari (1993), Aiyagari and G ertler (1991) 
ant Huggett (1993) requires repeatedly solving a partia l equilibrium  asset accum ulation problem  for an 
me lvidual agent , for different values of a particular m arket price. A solution to the general equilibrium  
problem is obtained once a value for the m arket price is found which implies a solution to  the partial 
equilibrium problem that satisfies a certain m arket clearing condition. The partial equilibrium  m odel solved 
m these examples is similar to the growth model we work with in this paper.
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representation of the model. Thus, a solution is viewed as a policy function relating decisions 

to a small number of state variables. All but one of the algorithms considered work with a 

version of the model in which the nonnegativity constraint is incorporated by the method of 

Lagrange multipliers. These include suitably modified versions of the algorithms emphasized 

by Bizer and Judd (1989), Coleman (1988), Danthine and Donaldson (1981), Judd (1992a), 

and Marcet (1988). The sixth algorithm, an example of the Finite Element Method, works 

with a version of the model in which the nonnegativity constraint is incorporated by a penalty 

function method. This algorithm has been advocated by McGrattan (1993).4

Our main finding is that, for the model economy studied, one algorithm dominates the 

others in terms of speed, accuracy and programmer time. This algorithm approximates 

the solution indirectly by parameterizing the conditional expectation in the Euler equation 

using an exponentiated polynomial, as in Marcet (1988).5 We show that conventional imple­

mentations of parameterized expectations have some shortcomings, and document that our 

preferred algorithm dominates on these dimensions.

In our example, there are two principal advantages in parameterizing a conditional ex­

pectation. First, the conditional expectation function is smoother than other functions 

characterizing the solution, such as the policy function. In general, it is easier to obtain an 

accurate approximation, the smoother the function being approximated. A second advan­

tage is that working with parameterized expectations is efficient from the point of view of 

programmer time. In the context of methods based on Lagrange multipliers, the require­

ment that the Euler equations and Kuhn-Tucker conditions be satisfied implies a convenient 

mapping from a parameterized expectation function into policy and multiplier functions. 

This obviates the need to separately parameterize the latter. Methods which focus on the 

policy function must jointly parameterize the policy and multiplier functions. Doing this

4See the chapter in Judd  (1992b) on rational expectations models for references to earlier analyses of 
models with nonnegativity constrain ts. As the m aterial in th a t chapter indicates, several of the m ethods 
used in this paper actually correspond to  approaches taken by Gustafson and o ther agricultural economists 
decades ago.

5For other applications of the PEA  when there are occasionally binding constrain ts, see den Haan (1993), 
Marcet and K etterer (1989), M arcet and Marimon (1992), M arcet and Singleton (1990), and M cCurdy and 
Ricketts (1992).
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in a way that the Kuhn-Tucker conditions are satisfied is tricky and adds to programmer 

time. For methods that focus on policy functions, an alternative to working with Lagrange 

multipliers is to work with a penalty function. However, these methods require searching 

for a parameter in the penalty function, which can add substantially to programmer and 

computer time. Although we carefully document these statements for our model economy, 

we expect them to be true in a broader class of models as well.

The paper is organized as follows. In the following section the model to be solved is de­

scribed. This is followed by a review of how the six algorithms can be used to approximate 

the unconstrained version of the model in which the nonnegativity constraint on invest­

ment is ignored. In the next section we describe the way these algorithms are modified to 

accommodate the nonnegativity constraint on investment. Results from implementing the 

algorithms for a particular parameterization of the model are discussed in section 5. In the 

final section we offer some concluding remarks.

2. T h e  M o d e l

We examine a simple version of the stochastic growth model with inelastic labor supply. 

At date 0 the representative agent values alternative consumption streams according to 

/:° ^ = o where c t denotes time t consumption and f3 <E (0,1) is the agent’s discount 

iactor. The aggregate resource constraint is given by

Ct + ̂*h -i _ (1 ~ $)kt < f{kt,0t) = exp(0t)k°, (2.1)

where kt denotes the beginning-of-period-t stock of capital, and S, a <E (0,1). Here, 6 is the 

late of depreciation of capital, and a  is capital’s share in production. We assume 0 t e 0  is 

exogenous with respect to k t and has a first order Markov structure with the density of 0 t+1 

conditional on 6t given by pe>{0t+l | 6t). In our computational experiments, we assume 0t is
i . i . d .  with 0  = {<7, - a } ,  and that the probability associated with each of <r and -<r is 1/2. 

The initial stock of capital, k0, is given.
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In the irreversible investment version of the model, we require that gross investment be 

non-negative, i . e .:

k t+1 -  (1  -  S ) k t >  0. (2.2)

In the reversible investment version, (2.2) is ignored.

We formulate the planner’s problem in recursive form. In doing so we drop t  subscripts 

and use ' to denote next period’s value of a variable. The planner’s dynamic program is then 

given by

W ( k ,  9)  =  max U ( c ( k ,  k ', 9 ) )  +  j3 f  IE(A-', 9 ’) p e, ( 9 ' | 9 )d 9 ' . (2.3)v ’ f(k,e)+(i-$)k>k'>o Je'ee

Equation (2.2) must also be satisfied in the irreversible investment version of the model. 

Assumptions we will place on U ( - )  guarantee that (2.1) always binds for this economy. In 

(2.3) we have used this fact to replace consumption in U(-) with c(-), the function implicit 

from (2.1). Finally, IE (•) is the planner’s value function.

To solve the planner’s problem we introduce a Lagrange multiplier, A, on constraint (2.2). 

The solution to the planner’s problem is a set of time invariant functions g ( k , 9 )  and h ( k , 9 )  

that determine k' and A, respectively, given values of k  and 9.  These functions must satisfy 

an Euler equation,

U c { k .  g ( k ,  9 ) .  9)  — h ( k ,  9)  — f3 f  m ( k ,  9 , 9 ' ;  g ,  h ) p 6.(P ' \ 9 )d 9 ' = 0, (2.4)
J  0 1

and a set of Kuhn-Tucker conditions

g { k ,  9 ) - {  1 -  8 ) k  >  0, h ( k ,  9 )  >  0, and h ( k ,  9 ) [ g { k , 9)  -  (1 -  6 ) k ]  =  0. (2.5)

Also,
m(k.0,O':g,h) = Uc(g{k,0),g{g(k,0),$'),9')\fi;(g(k,8),O') +  1 - 6 j

-h(g(k,e)J')(l-S).

In (2.4)-(2.6), f k  denotes the derivative of / ,  while U c combines the derivative of U  with the
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function c( k ,  k' ,  0) .

If the standard deviation of the technology shock, a, is small enough, (2.2) will never 

bind and A = 0 for all 6 and k  in the ergodic set for capital. Methods for approximating the 

solution to the planner’s problem are well known for this case. Here we consider the case 

where cr is large enough so that A > 0 with nonzero probability.

3. S o l v i n g  t h e  U n c o n s t r a i n e d  M o d e l

It is convenient for us to begin by reviewing how the six algorithms studied in this paper 

are implemented in the reversible investment version of the model. To have a consistent 

terminology for discussing and comparing the algorithms, we use the framework in Reddy

(1993) s numerical analysis text, which corresponds closely to the framework presented in 

Judd (1992a, 1992b). With one class of exceptions, the algorithms considered in this paper

are what Reddy calls w e i g h t e d - r e s i d u a l  m e t h o d s .  The exceptions, standard 

of Marcet (19SS)’s P a r a m e t e r i z e d  E x p e c t a t i o n s  A l g o r i t h m  (PEA), fail to be
implementations 

weighted residual
methods only because of a technicality.

In the reversible investment case, there is only (2.4) with h =  0 to solve, or, more 
compactly,

P{h\ ,  , _  U c ( h g { k . 0 ) , O )  r
0 )d 0 ' =  0, (3-1)

foi k >  0 and all 0 € 0 . In (3.1), the 0 argument in m  reflects that in the reversible investment 

case, the multiplier on gross investment, h , is identically zero. We refer to R ( k , 0 ; g )  as the 

E u le r  r e s id u a l function. Solving the model amounts to finding a function g  that solves the 

functional equation, R ( g )  = 0, he., sets the Euler residual function to zero everywhere.6 

This problem is complicated by the fact that k  can take on a continuum of values. This 

implies that solving (3.1) is a problem of solving a continuum of equations (one for each k , 0 )
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in  a  c o n tin u u m  o f u n k n o w n s  (o n e  k 1 v a lu e  fo r e ach  k ,  0 ) .  A p a r t  fro m  a  few  ca ses , in  w h ich  R

has a convenient structure, solving this problem is computationally infeasible.

Instead, we select a function, g a, parameterized by a finite set of coefficients, a ,  and 

choose values for a ,  a *, to make R ( g a) ‘small’. Weighted-residual methods compute a* as 

the solution to what Reddy (1993, p. 580) refers to as the w e ig h te d - r e s id u a l  f o r m  of (3.1):7

The choice of weighting functions in (3.2), w ( k , 6 ) ,  operationalizes the notion of ‘small’. In

the model always lie in the interior of the interval, { k , k ) .  Computationally, we obtain an

To apply the weighted-residual method, one has to select a family of approximating 

functions. ga, a set of weighting functions, w{k, 0), and strategies for evaluating the integrals 

in (3.2) and the integral implicit in the expectation operator in R . The procedures we 

consider make different choices on these three dimensions. Two general types of g a functions 

include spectral and finite element functions. In the former, each component of a influences 

ga(h\cr), or </a(A\ —ct), over the whole range of k  while in the latter, each component of 

a has influence over only a limited range of k 's .9 Regarding the weighting functions, a 

necessary condition for (3.2) to pin down the parameter vector a, is that there be a number 

of weighting functions equal to the dimension of a . We consider three types of weighting 

functions. In one, the ic(k, 6)'s are related to the basis functions generating ga(k, 9), in which 

case the algorithm is an example of the G a le r k in  method. In another, the basis functions are

"In our case, (3.2) reduces to f k>0 R(k ,  cr;ga)w(k,  a )dk  +  f k>0 R(k ,  —<r;ga)w(k, —a)dk  =  0.
8See Christiano (1991, Appendix] for details about solving the model studied here using a log-linearization

9See Judd (1992a,1992b), McGrattan (1993), and Reddy (1993) for more detailed discussions of spectral 
and finite-element functions, respectively.

(3.2)

practice, the range of integration over k  in (3.2) is finite, with k <  k  <  k . The boundary 

points of this interval are chosen to ensure that the values of the capital stock generated by

initial guess of k and k  by finding the interval (k , k )  that contains k0 and the ergodic set of 

the log-linear approximation to the policy function in its interior.8

method.
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particular kinds of dirac delta functions, in which case the algorithm is an example of the 

c o l lo c a t io n  method. The versions of the PEA that we consider also choose an a to solve an 

expression of the form (3.2) . 10 However, technically, standard implementations of the PEA 

do not fall in the class of weighted-residual methods as defined by Reddy. This is because, 

as we will see below, they work with weighting functions in which the parameter vector, a, is 

an argument. Finally, two numerical procedures are used to evaluate the integrals in (3.2): 

quadrature methods and Monte Carlo integration. We now turn to a detailed discussion of 

the six algorithms considered.

3.1. Two Spectral, W eighted-Residual M ethods

3.1.1. Parameterized Expectations

What distinguishes the class of Parameterized Expectations Algorithms is that they approx­

imate the function, </, indirectly by approximating the conditional expectation in (3 .1 ) as 
fo llow s:

J0I g , 0 ) p e > ( 0 '  | 0 )d 0 ' % exp[ea(£, 0 )], (3 .3 )

where e a ( k . O )  is a function, parameterized by a finite set of parameters, a.  The purpose of 

the exponential in (3.3) is to guarantee nonnegativity. The PEA’s approximation of g  is 

obtained by solving U c( k . k ' J )  =  , 3 e x p  ( e a ( k ,  0 )) for k' given each k , 6 ,  yielding:

£a( M )  = exp(0)A*° + (1 - 6)k - U-1 [0exp (e„(M))], (3.4)

where U~' [ - }  denotes the inverse function of U c. The PEA approximation of h,  /)„, is trivial 

when the nonnegativity constraint on investment is ignored. We simply set h a ( k , 0 )  =  0 for 

all A\0. It remains to describe how the various PEA’s go about computing a*.

One way to view the three versions of the PEA that we consider, is to think of them as 

sohing a particular fixed point problem. A given value of a induces, via (2.6), (3.4), and p e>,

10For a related discussion, see Marcet and Marshall (1994).

7

Digitized for FRASER 
http://fraser.stlouisfed.org/ 
Federal Reserve Bank of St. Louis



a distribution on m ( k , 9 , 9 ' - , g a , h a ) for any fixed (k , 9 ). A new set of parameters values, a', 

is found which makes R ( k , 9 - , g ai) =  exp(eai(k,9))— f e, m ( k , 9 , 9 ' ] g a , h a )pgi (9'  | 9 )d 9 ' close to 

zero in the sense of (3.2).11 Denote this mapping from a to a' by a' = ^(a; N p). The value of 

a selected by the PEA is the fixed point, a*, such that a* = S(a*; N p ). We computed a* by 

applying a standard nonlinear equation solving routine.12 The versions of the PEA that we 

consider differ in the form of the weighting functions used in (3.2) and in the computational 

strategy for evaluating the integrals.

C o n v e n t io n a l  P E A

In our implementation of what we call c o n v e n t io n a l  P E A , we parameterize the expecta­

tion function as follows:

e a ( k , 9 )  =  * j r  a t ( 9 ) P t ( v ( k ) ) ,  (3.5)
t=0

for 9 €  0 .  The basis functions for e a are the N p Legendre polynomials, -P.(-), ? = 0, . . . ,  Arp-  

l .13 Here, a is the 2N p x 1 dimensional vector of parameters, {a,-(0), i =  0, . . . ,  N p - 1 , 9  € 0}. 

We define <p : ( k , k )  —* ( — 1,1) to ensure the polynomials in (3.5) are of similar orders of 

magnitude. That is,

v-(*-) =  2 | 5 | - l .  (3.6)

11 Note, this definition of R  coincides exactly with the one in (3.1), since the PEA policy function, ga, 
implies U c(k\ ga{k, 0)i 0) =  l3exp (ea(k\ 0 )).

12The standard  im plem entation of the PEA finds am by a m ethod of successive approxim ation, as the 
limit of a, £((/; Ar^), S~{cr, Ar^ ) , . . . .  As noted by Judd  (1992b, chapter 13, pp. 11-14) and M arcet (1988), 
this algorithm  can yield explosive, oscillatory sequences, a, a ' , . . . ,  particularly  for higher values of N p. One 
alternative is to  instead iterate  on the operator 5 , where £*(0 ) =  (1 — n)a -h /i£ (a; Arp), for a small fixed value 
o f // . A problem with this approach is th a t it may require tim e-consum ing experim entation w ith alternative 
values of //. In our experience, the equation-solving a lternative described in the tex t finds a* more quickly and 
reliably. The nonlinear equation solver we used is NLSYS in GAUSS. See M arcet (1988), M arshall (1992), 
and Marcet and M arshall (1994) for a discussion of the existence of a* and of the properties of exp[ea. (fe, 0)], 
<7a*(fei0) as N p 00 .

13The polynomials, Pi, have domain and range (—1,1), and are defined as follows. The ith polynom ial is 
P^x)  =  1 +  q \x  +  . . .  +  q \x \  with the a ’s defined by the requirem ent Po(^) =  1 and Pi(x)Pj(x)dx =  0
for j =  0 ......../ — 1 and / >  1. The orthogonality property  of these polynomials is designed to  m itigate
m ulticollinearity problem s associated with step 2 of the conventional PEA  and PEA  with exogenous over- 
sampling, which is discussed later in the text. This construction of our basis polynomials may m itigate 
multicollinearity, but does not elim inate it, since th a t requires th a t the integrand in the above orthogonality  
condition be weighted by a probability density for x.

S
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For any given value of a, a' is found by running a nonlinear regression of m ( h :, 0,  $'■ g a , %a) 

on the space of functions generated by exp (e~(k, 0 ) ) { Ov a € W NP. To specify the regression, 

we need to indicate how many observations of every possible type, (jfc, 0, 6>'), were used. This 

is accomplished by specifying a density function, p(k, 0,0'- a). This density has the following 

structure. Let P i(M ;a ) denote the marginal density of (k,0), which may depend on a. 
Then, p{k,0,0'-a) = Pi{k,0;a)pe,(0> | 0). The nonlinear regression is:

a ’ =  argmin/M *, {exp(e~(£, 0 ) )
3f2,VP -  m ( k ,  0 , 0 ' - g a, Aa)}2p(A-, 0 ,0'; c i)d k d 0 d 0 '  

S ( a ; N P ) .
(3.7)

The hist oidei conditions associated with this regression are

JkAe, {e x P ( e ° ' ( ^ 0 ) )  -  m ( k , 0 , 0 ' ; g a J i a )} exp(ga, ( M ) ) ^ .(M )
da/ -P ( k , 0 , 0 ' ; a ) d k d 0 d 0 ' = 0,

(3.8)
for / = 1, . . . ,  2A> Taking into account the structure o f t h e  fixed point, is easily seen

to solve the version of (3.2) with weighting matrices

u-'(A-, 0: a-) = p , { k ,  0,  a )  exp(e„.(fc, ^ , (3 .9 )

for / = 1, . . .  ?2Arp.

Lnder conventional PEA, all three integrals in the function S  are evaluated by the fol­

lowing Monte Carlo method. First simulate a series of length T, { 0 O, 0 U . . .  , 0 T } ,  using a 

random number generator, and compute an initial value of a . 14 Then:

1. Simulate { k i , k 2 , ..,A-r+ i} recursively using k t+1 =  g a ( k t , 0 t ) ,  t  =  0,1, . . .  T and the
given initial value, k0 .

14,
PFA°T " m  * l° °btainia startinS value « is to generate the data according to step 1 of the conventional
l ^  baS6d °n l0S'Hnear aPPr0Ximatl0"’ - d taki“* value of

9
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2. Find a', in the nonlinear least-squares regression problem : 15

1 T_1
a'  =  argmin -

a€S2NP 1 t = 0
exp(e~(fct,0<)) -  m (kt, 0t ,0t+i;£ o,fta)j (3.10)

for 1 =  1 , . . .  , 2 JVP.

For T large, the function being minimized in (3.10) coincides with the one being mini­

mized in (3.7).

The PEA specification of the density of (fc, 6)  concentrates observations on points of high 

probability. Our computational experiments suggest that greater dispersion in ( k , 6 )  may be 

desirable. Marcet and Marimon (1992) have made this observation in the context of a study 

of the far-from-steady-state properties of a model. However, we find that this may be true 

even when the objects of interest are properties of the steady state distribution of functions 

of k.  In our example, by increasing dispersion relative to conventional PEA, one gets a more 

accurate estimate of properties of the steady state distribution of k  using a lower value of

T .  Presumably, this reflects the well-known fact that high variance in explanatory variables 

implies greater precision in regression estim ates. 16 W ith these considerations in mind, we 

studied two perturbations of the conventional PEA which imply greater dispersion in (&, 0).

P E A  wi t h  E x o g e n o u s  O v e r s a m p l i n g

Under Marcet and Marimon’s (1992) P E A  w i t h  e x o g e n o u s  o v e r s a m p l i n g , p i ( k , Q ; a )  is 

modified so that extra mass is exogenously placed in particular regions of the state space,

15The nonlinear least squares problem in step 2 was handled using a version of the procedure applied in 
M arshall (1992). Let 5 (a ; N p) denote S(a; N p) w ith (3.10) in step 2 replaced by

l T~l 2
a ' =  argm in — ^  e~(Art ,0*) -  log f ?n(fct , 0tl 0*+i; ga,ha))\ =  0,

Zest2NP 1 *=o L v

for / =  1 ,.. .,2A rp. This is ju s t a linear regression and is easy to  solve. We first com puted a** such th a t 
amM =  S (a “*; N p) using a non-linear equation solver. F inding a** takes little com puter tim e because of the 
sim plicity of the modified step 2. We then used a** as a s ta rtin g  value for solving a* =  S(a*; N P). In our 
experience, a* and a** are very close.

16In our context, there is an offsetting effect. Namely, w ith too m uch dispersion, accuracy of the param e­
terized expectation in the neighborhood of steady sta te  is sacrificed.
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( M ) -  This method is implemented by adding J  terms to the criterion function in step 2 

of the conventional PEA. These terms require simulating J  sequences of length f  each, of 

the technology shock: { 6 { , t  =  0 , . . . ,T  -  1 } and of the capital stock, { k j , t  =  1 for

j  =  1 , . . . ,  J  , where is a value of the capital stock close to the region of interest. The 

additional terms are:

E
j=i

T - 1
E  {exp (ea'(ki,0ij) -m(ki,e{,ei+1-,gajla)y
t=o J (3.11)

P E A - C o l l o c a t i o n

Once the PEA is expressed as a weighted residual method, it is clear that there are many 

other ways to find a ’ . One could evaluate all integrals using one of a variety of available 

quadrature formulas.1' Also, there are a variety of different weighting schemes that one can 

use, some of which are discussed below. Finally, there are a great many alternative classes 

of finite paiameter functions that one can use to parameterize expectations.

Here, we pursue one particularly promising weighted residual method. It works with a 

more dispersed set of ( M ) ’s than does conventional PEA. It converts the nonlinear regres­

sion in conventional PEA and PEA with exogenous oversampling into a linear regression on 

an ort hogonal set of explanatory variables. There is reason to expect (and this is confirmed 

in section 5) that the number of observations required in the regression is very small. Fi­

nally. there is some a p r i o r i  reason for believing that the method may have good accuracy 

properties.

The method we pursue is a collocation method, in which the weighting functions are dirac 

delta functions. It is consistent with the use of either Monte Carlo or quadrature methods 

to evaluate the integral in the definition of R .  The dirac delta functions are constructed to 

assign positive weight to the values of k  corresponding to the N p zeros of the N p ' t h  order

Q uadratu re  m ethods approxim ate integrals by the weighted sum of the integrand, evaluated a t a rel­
a te  eh  small num ber of points. This approxim ation to integrals is known to be very accurate in the one 
dimensional case, and recently Judd  and Bernardo (1994), applying the ideas of Stroud (1971), have argued 
that m ultidim ensional quadrature integration can also be made very efficient.
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Chebyshev polynomial, TVp-18 That is, given a we compute a' to solve the following problem:

R ( k , 0 ' , < h > )  =  exp ( e a . { k i , 0 ) )  —  f  m ( k i , O , 0 ' - , g a , h a ) p { e '  \ 9 ) d . O '  -  0 (3.12)

for i = 1 ,..., N p, 6 e  0. Here, A, = 9 _ 1 (ri), where T^p(r.) = 0, i  =  1 , . . . ,  N p . In addition, 

we replaced Pi  in (3 .5 ) with Chebyshev polynomials, T,-, i  =  0 , 1 , . . . ,  N p -  1. There is a 

slight abuse of notation in (3 .1 2 ), since R  is also a function of a, but our notation does not 

reflect this. The system of equations, (3.12), is (3.2) with the weighting functions, i v ( k , 0 ) ,  

constructed using delta functions, 8 ( k  — A:,), N p as follows:

uj'(M) = <
8 ( k  -  la)

0
for 9 =  a

for 9 =  —a
(3.13)

and

u?''(M) = <
8 { k - k t ) for 0 — —a  

0 for 0 =  a
(3.14)

i =  1, . . . ,  Arp.

Our choice of Chebyshev polynomials as basis functions for the parameterized expec­

tations and for determining the grid on k  was influenced by the following two consider­

ations. First, the discrete orthogonality property of Chebyshev polynomials greatly facili­

tates the computations in (3.12) when N p is large. 18 19 This property implies that the mapping, 

a 1 - S ( a ;  N p), defined by the solution to (3.12), has a particularly simple analytic form:

a i ( 0 ) '  =  5 3  T/ { ^ ( k i ) )  log f  m ( k i ,  9 , 0 g a , h a) p ( 6 '  \ 9 ) d 9 '  ,A p i=1 u e > J
(3.15)

18The Chebyshev polynomials are defined as follows: T q(x ) =  1, T\(x) =  x, and Ti(x) =  2xTi-\(x) —  
Ti-i(x), for i >  2. The dom ain and range of these polynomials is (—1,1).

19The discrete orthogonality  property is th a t, for ij <  N p :

N p ( 0 ,for i ^ j

T  Ti(rk)Tj(rk) =  <{ N p, for i =  j =  0
k=i [  N p/2, for i =  j 0,

where rk, k =  1 , . . . ,  N p are the roots of T,vi>(-)-
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for / =  0 ,1 , . . . ,  N p — 1, 9  € 0 .  Here, fi =  2 for / >  0 and fi =  1 for / =  0. In obtaining (3.15), 

we made use of the fact that (3.12) holds if, and only if, it holds for the log of the terms 

on each side of the minus sign. The parameters in (3.15), a', is the set of coefficients in a 

linear regression in which the explanatory variables are all orthogonal. As a result, there is 

no multicollinearity problem, even if N p is quite large. For example, we have applied the 

algorithm with N p as high as 100. In contrast, we had difficulty executing the regression 

step in conventional PEA (see (3.10)) for N p larger than 5, because of multicollinearity 

problems.20 Second, the Chebyshev interpolation theorem suggests that it is a good idea to 

select grid points using the roots of a Chebyshev polynomial (see Judd (1992a, 1992b) for a 

formal statement of the theorem). Suppose we have a given value of a, based on some fixed 

value of N p. According to the Chebyshev polynomial approximation theorem, if N p —► oo in 

the computation of a ', then

sup ||R ( k ,  0; g a,)\\ -4 0 as l \ Tp -» oo, 
ke(k.k).6£Q (3.16)

when a'  is given by (3.1o). Thus, the theorem suggests that with large N p, the function 

exp ( e al( k , , 6 ) )  will not display pathological behavior between grid points.21 This is an at­

tractive property that is not satisfied by polynomial interpolation schemes generally.

Other weighted residual methods can also be used to find ««. One such method, Galerkin, 

is discussed below. We chose to go with collocation because it allows us to convert the 

nonlinear regression step in the conventional PEA into a linear regression step. For example, 

this conversion is not possible with Galerkin, which sets weighted averages of R  to zero. This

impossibility reflects the fact that the log of an average is not equal to the average of the 

log.

To summarize, the PEA can be viewed as a weighted residual method. In this context, the

2°den Haan and Marcet (1990) report similar difficulties.

^  T ? ! 311* t0 emPllaf ze " hat (3 1 6 ) does not say. Let us make the dependence on a of R  in equation 
( 3 ,2  ,x p „c , bv u n lin g  T„«n, (3.16) does no t s,.v

as A» -  oo. We are currently working on a proof of this la tte r proposition.
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three versions of the PEA are differentiated according to the weighting functions used and the 

manner of evaluating the integrals. The conventional PEA puts relatively heavy weight on 

(jfc, 0)  pairs with high probability and evaluates all integrals in the analysis using Monte Carlo 

integration.22 The PEA with exogenous oversampling shifts more weight into exogenously 

specified regions, but otherwise pursues the same computational strategy as the conventional 

PEA. We also described PEA-collocation. This appears to have several advantages relative 

to conventional PEA: the nonlinear regression step with multicollinear explanatory variables 

in conventional PEA is transformed into a linear regression with orthogonal explanatory 

variables; the number of observations in the regression step is very small, and equals the 

number of parameters in the parameterized expectation function, i.e., T  =  2Arp, which is no 

greater than 16 in our experiments (in conventional PEA, T  can be in the tens of thousands); 

and the distribution of ( k , 0 )  is more dispersed, thus ameliorating the conventional PEA ’s 

problem that it tends to concentrate observations too much.

3 .1 .2 . G alerk in

Judd (1992a) has discussed approximating policy functions by Chebyshev polynomials and 

applying the Galerkin method. In our version of this approach, we proceed as follows.23 The

decision rules are: ;Y(0)-1
< / ( M ) * & ( M )  =  £  a t ( 0 ) T t ( v ( k ) ) .  (3.17)

i=0
The basis functions for g a are the N J Chebyshev polynomials. The [ N{ cr )  +  N ( - a ) ]  x 1 

vector

a =  { a i ( 6 )  | z =  0 , 1 , . . . ,  N ( 6 )  — 1 , 0  £ 0 }

22In his comment on conventional PEA , Judd  (1993) expresses concern about the absence of a solid 
rationale for sampling at high probability points, or for using M onte Carlo ra ther than  quadrature  in tegration . 
O ur com putational results in section 5 below have nothing to  say about the la tte r point, bu t do suggest th a t 
sampling at high probability  points is inefficient.

23For a case study com paring the m ethod discussed in this subsection with a log-linearization procedure, 
see Chari, Christiano, and Kehoe (forthcom ing).
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suppose that N ( a )  =  N ( - a ) =  N J . The 2A^weighting functions, w ( k , 6 ) ,  are constructed 

from the basis functions. They are:

contains the as-yet-undetermined scalar coefficients and <̂>(-) is defined in (3.6). For now, we

w ‘( k , 6 )
1 d g a (lc, 9 )  

(1 -  v?(fc)2)1/2 d a ,  ’ (3.18)

for / =  1

We evaluate (3.2) using M -p o in t Gauss-Chebyshev quadrature. To do this, we first 

compute the M  >  N J roots, r„ i  =  1 , . . . , 3 / ,  of the M th order Chebyshev polynomial 

and use these to construct a grid of capital stocks that is stored in the M  x 1 vector k , 

k  =  [^_1(?’i), v?_1(?-2) , . . .  ,^ _1(rA/)]'. Second, we form the N J x M  matrix A  of rank N J :

T o ( r , ) T 0 ( r 2) • T o{ vm )

T i ( r i ) T x( r 2) • •• T i ( i'm )

\ fJ- \  (7'l ) T N j - i { r 2 ) ■■■■ ( r M )

(3.19)

lism g this notation, the Gauss-Chebyshev quadrature approximation of (3.2) is written com­

pactly. in matrix form, as follows:

A R ( k ,  0 ; a )  =  0 , 0  <E 0 ,  (3.20)

u lie ie R ( f c , 0 ; a )  =  [R(k' i ,  0; a ) ,  R ( k 2 , 0; a ) , . . . ,  i?(A' /̂, 9; a)] ' .  Equation (3.20) represents a 

nonlinear system of 2 N J equations in the 2 N J unknowns, which can solved using standard 

computational routines. Below, we refer to this method as Spectral-Galerkin.

3 .2 . T w o F in ite  E le m e n t, W eig h ted  R esid u a l M e th o d s

We consider the simplest class of finite element functions, those which approximate the 

policy function with a g a ( k , 6 )  taken from the space of functions that is piecewise linear and
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continuous in k  for each fixed 8 24 The parameters of this function are the values of k'  =  g  

at each point on a grid of N f  capital stocks, for each 8.  Denote this capital grid by a vector 

K ,  with elements ordered from smallest to largest, K  =  (fci, k 2, . . . ,  k N j ) \  Here, k x >  k  and 

k N j  <  Tc. Also, denote the value of k ' at each ( k x, 8 )  by <z,-(0), for 8  €  0 ,  i  =  1 ,2 , . . . ,  N * .  The 

2 N f  x 1 vector a  denotes the set of these parameters. The formal representation of g a is:

N>

& ( M )  =  ;c«i(W(*), (3.2i)
i=i

follows:

for i =  2 , 3 , . . .  Ar/ -  1,

Mi(k)  =  {

M i ( k )  =

are the functions,

k-kt_ j 
kt-kt-i ’ k i . i < k <  ki

kt + i—k 
ki + i-ki' A,. 2 ^ A. ^ A. 2 i

0, elsewhere,

k7-k 
k2~ki ’ Ai < k <  A'2

0, elsewhere,

Bind

Ms'j(k) = <
k~ k K , ~l , k N j _ x < k <  kkNJ~kKl-1

0,
Nf

elsewhere.

After specifying a set of 2A’  ̂ weighting functions, i o ( k , 8 ) ,  equation (3.2) is used to pin 

down values for a .  An advantage of finite element methods is computational speed. The 

fact that the parameters of the finite element method have only local impact implies that 

the number of operations needed to solve this system of equations is smaller by orders 

of magnitude than is the case in, for example, the spectral m ethods.25 In the context of 

the finite element methods with collocation, existing efforts to realize this computational

24Reddy (1993) describes system atic procedures for expanding the space of finite elem ent functions to  
include more than one dimension, and piecewise polynom ials of order higher than  one.

25Let 7? denote the dimension of a. By order of m agnitude of the operation count, we mean an integer 
j such tha t c(7i ) / /7J —‘a non-zero constant as n —► oo, where c(n) is the num ber of operations needed to  
com pute a. For exam ple, j =  3 in the Spectral-G alerkin m ethod because of the m atrix  inversion involved in 
applying N ew ton-R aphson.
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efficiency have centered on a particular t i m e  s t e p p i n g  algorithm (see, for example, Bizer and 

Judd (1989), Coleman (1988), and Danthine and Donaldson (19S1)). In the context of finite 

element methods with Galerkin, Judd (1991, p. 12) and McGrattan (1993) point out that 

sparse matrix inversion methods can cut the order of magnitude of the operation count.26

3 .2 .1 . C o llo ca tio n

The finite element, weighted residual method with collocation chooses a  so that

R{ki,0;ga) = 0, (3.22)

for i =  1 , 2 , . . . ,  A'' and 0 € 0 .  This is (3.2), with the weighting functions, u>(A-,0), con­

structed using dirac-delta functions analogous to those used for Quadrature PEA. Equation

(3.22) is a nonlinear system of 2Ar'  equations in 2Ar4 unknowns. Coleman and others apply 

the following t i m e  s t e p p i n g  method for solving (3.22):

1. Fix a.  (We use starting values based on a log-linear approximation to the model’s 

solution.)

2. For each element of the capital grid k, find the k ’( 0 )  that solves

U c( k h k'i ( 0 ) , 0 )  =

^ { ( } ) U c ( ^ { O ) . g a ( k ' ( 0 ) , a ) , a ) [ f k( k ' ( O y , a )  +  1 - 6 }  (3.23)

+ C 2 ) W , ( 0 ) , g a ( k ’(e ) ,  - a ) ,  - a ) [ f k(k' (ey ,  - a )  +  l -  (5]},

for 6 =  — <j, <r.

3. Set a'  =  {*,'(0), * =  1 , 2 , . . .  N f , 6 e Q } .

4. If the maximum deviation of a'  and a exceeds some chosen tolerance, set a =  a'  and 

go to step 2. Otherwise, a 1 is the value of a  sought.

r Z 1" ™  appHcatl0n ° f the finite eIement m ethod " i th  Galerkin, we did not apply a sparse m atrix inversion
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Below, we refer to this algorithm as FEM-collocation.

3.2.2. Galerkin

The finite element, weighted residual method with Galerkin has been advocated by McGrat- 

tan (1993). In our example, the method works to select the value of a  that solves the version 

of (3 .2 ) in which the 2 Ar/ weighting functions, w ( k , 0 ) ,  are constructed from the basis func­

tions, M i ( k ) , i  =  1,2, . . . N ^  in a manner exactly analogous to (3.18) or (3.13)-(3.14). The 

integral in (3.2) is approximated by a finite sum using M -p o in t, Gauss-Legendre quadrature. 

The algorithm then solves the analog equations to (3.20) by Newton-Raphson methods.27 

Below, we refer to this algorithm as FEM-Galerkin.

4. S o l v i n g  t h e  C o n s t r a i n e d  M o d e l
This section describes modifications to the algorithms discussed in the previous section, 

which are designed to accommodate the irreversible investment version of our model. We 

pursue two types of modifications. One is based on the Euler equation associated with the 

Lagrangian representation of the constrained problem. The other is based on the Euler 

equation associated with the penalty function representation of the problem. We apply the 

Lagrangian method in the context of both spectral methods and FEM-Galerkin. For reasons 

elaborated on below, we apply the penalty function method in the context of the FEM only.

The penalty function method is conceptually straightforward. (See Reddy for a dis­

cussion.) Since the Lagrangian method is less straightforward, we begin this section by * i

27Taking in to  account the region over which Mi  is zero, equation (3.2) is: R(k,0,ga)Mi(k)dk for

i =  -  1 and / / ,+1 R(k ,0,ga)Mi(k)dk for i =  1, and R(k,0 ,ga)M>(k)dk for i =  N * . These
expressions are (3.2) with weighting functions defined analogous to  (3.13)-(3.14), bu t the dirac delta  functions 
replaced by Mi(k). AZ-point Gauss-Legendre quadratu re  in tegration  of each integral involves selecting a grid 
of M  capital stocks, say £, , over the associated range of in tegration using the  following procedure. F irst, 
use the Gauss-Legendre quadrature  formulas (see Press, Teukolsky, V etterling, and F lannery (1992, pp. 140- 
153)) to select M  points in the interval ( - 1 ,1 ) .  Then, the elem ents of are obtained by applying y - 1 (') 
to  these num bers. Second, we com pute the M N f —dim ensional vectors k =  [l’i , . . . ,  kĵ j) and R(k, 0; a). An 
j\f x M N *  m atrix  A  is com puted so th a t AR(k, 0; a) represents the finite sum  approxim ation of the integral 
in (3.2).
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presenting our basic strategy for applying it. Under the Lagrangian method, we seek two 

functions: one relating the capital decision to the state and the other relating the Lagrange 

multiplier to the state. It is computationally efficient to restrict the space in which these 

functions belong. We impose two types of restrictions. The first type is valid generally, 

and simply enforces the Kuhn-Tucker conditions. The second type of restriction involves 

assumptions about the properties of the exact functions that solve the problem. We assume 

that (1) the irreversibility constraint is never binding for the high value of the shock, (ii) 

the capital policy function is continuous, (iii) the multiplier policy function is continuous, 

and (iv) for fixed 6>, if the constraint is binding from some level of k  then it is also binding 

for all higher levels of k.  In practice, the validity of these assumptions can be verified ex  

p o s t  by studying the Euler residual function associated with a proposed numerical solution. 

We do this in section 5, where we report our numerical results. There we also evaluate the 

validity of our assumptions by studying the solution to our problem based on a dynamic 

P rogra mini ng a lgori t hm.

Figure 1 depicts hypothetical policy functions in k  x k'  space. The policy functions are 

drawn for a case in which gross investment has n o t  been constrained to be nonnegative, and 

m fact does take on negative values for some values of k.  The points at which the g ( k , a )  

and g ( k ,  - a )  functions cross the 45° line mark the ergodic set of capital for this case. Notice 

that g ( k . a )  never crosses the (1 -  6 ) k  line within the ergodic set. This implies that when

°  =  ^ inVCStment is »evei' n a t i v e .  If. when we impose the nonnegativity constraint, g ( k , a )  

retains its basic shape, then we can infer that A will always be zero when 0 =  a .  On the 

other hand, we see from the figure that g ( k ,  - a )  crosses the (1 -  S ) k  line at a point within 

the ergodic set. Based on this result, we conjecture that when we impose the nonnegativity 

constraint, the exact policy function has the following property: when k  >  k ,  for some k,  

and 6 =  - a  the nonnegativity constraint binds and A > 0, and when k  < k  and 6 =  - a  the 

nonnegativity constraint does not bind and A =  0.

We use these observations and the requirement that the Kuhn-Tucker conditions be 

satisfied to constrain the space of approximate policy functions. Our task is to find functions
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to approximate two policy functions: g ( - )  as before, and the function determining A, h( - ) .  

We restrict the space of approximating functions for g ( - )  as follows:

g ( k , a )  «  g a ( k , ( r ) , (4.1)

g ( k , - a )  & g a ( k , - c r )  =  < 

where % is a function of a and is defined by the property

max{<7a(A:), (1 — £)A’}, k  <  k  

( 1  -  S ) k ,  k  <  k

(4.2)

g a( k )  =  (1 -  S ) k . (4.3)

We restrict the space of approximating functions for /*(•) as follows:

h ( k , c r )  «  7ia ( k , a )  =  0 , (4.4)

and

h ( k ,  —a )  «  h a{ k , a )  =  <
0,

m ax{ /ia(A'),0},

k < k

k <  k

with the property

h { k )  =  0 .

(4.5)

(4.6)

The first expression just says that we use some convenient function ya(-,<r), i . e .  a poly­

nomial or a piecewise linear function parameterized by the vector a ,  to approximate the true 

rule g { - , c r ) .  Expression (4.2) embodies the restriction that the approximating function for 

—a ) ,  g a ( •, — a ) ,  must force gross investment to be zero for k  >  k.  A polynomial or a piece- 

wise linear function g a(•) is used to approximate the true policy function for k  <  k.  The max 

operator in (4.2) ensures the constraint on non-negative gross investment is never violated. 

Also, by solving for k  using (4.3) we make sure g a ( - , - c r )  is continuous. In (4.4) we use our 

conjecture that the gross investment constraint never binds when 9 =  cr to force A to be zero 

for all k  in this case. For the case 6 =  — a  we force A to be zero for k  <  k  and we propose a
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polynomial or piecewise linear function h a (-)  be used to approximate h (•, - a )  for k  >  k.  The 

max operator is used to ensure the Lagrange multiplier is always non-negative and condition

(4.6) forces the function that approximates h (•, - a ) ,  h a (-,  - a ) ,  to be continuous.

It should be clear from expressions (4.1)-(4.6) that our space of approximating functions 

forces the Kuhn-Tucker conditions to be satisfied exactly. Our only task is to find approxi­

mating functions within this class that set the Euler residuals to zero for admissible k  and

6.  This task is not unlike the one we encountered when we ignored constraint (2.2), which 

suggests we can apply similar methods to solve the constrained model.

Assumptions (i)-(iv), stated at the beginning of this section, play an important role 

in our Lagrange multiplier procedure. In section 5 below, we report evidence that these 

assumptions aie valid in our model, so that imposing them is innocuous in our application. 

However, they may be difficult to impose in higher dimensions, or there may be models in 

which the assumptions are not valid. Because of this, it is useful to note that there exist 

versions of our Lagrange multiplier method which do not involve assumptions (i)-(iv). For 

example, we can modify our procedure so that (iii)-(iv) are dropped by replacing (4.2)-(4.3) 

by g { k ,  - a )  ss g a ( k ,  - a )  =  m a x { g a{ k ) , { l  -  S ) k )  for all k  >  0, and (4.5)-(4.6) by

H t .-*) *U<'. -a) = | _°’ >(l-6)k

l max{/?a(A’), 0}, g a ( k ,  - a )  <  (1 -  S ) k

Tins perturbation on our method does not involve computing the variable, k.  We have 

conducted several experiments with this procedure and found it to be practical.

We now turn to the description of our modifications to the algorithms discussed in the 

previous section.

4 .1 . A  L agrangian  M o d ifica tio n  to  th e  P E A

The modification to the PEA to accommodate the case where (2.2) binds occasionally is 

remarkably straightforward. We must now be careful to allow the function m  in (2.6) to 

accommodate a potentially nonzero multiplier, h.  To do this, we work with the following
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(4.7)

modified version of (3.3):

[ m(k,6,6'-,g,h)p0'(0' | 0)dd' ta exp[ea(M)]>
J6'

where e a ( k , 0 )  is defined in (3.5) and m is defined in (2.6). The PEA ’s approximation to the 

decision rule is:

g a ( k ,  6)  =  max { ( 1  -  6 ) k ,  e x p ( 6 ) k a +  (1 -  6 ) k  -  U ~ l \fi exp (ea(fc, 0))]} , (4.8)

and its approximation to the multiplier function, h a ( k , 0 ) ,  is:

M M )  =  U c ( k , g a { k , 0 ) , 0 )  -  /?exp[ea(M )]-  (4*9)

With these modifications to g a and M  the three versions of the PEA can be implemented 

as described in the previous section.

4 .2 . A  L agran gian  M o d ifica tio n  to  th e  S p ectra l-G a lerk in  M e th o d

We choose functional forms for </a(-,cr), g a{-) i  and /».„(•) as follows:

A'(CT)-1
g a{ k , < r ) =  «;(<7 )r ;M k ))i  1 = 0

(4.10)

Ar(—cr) —1
9  »(*) =  H  a i ( ~ < r ) T i ( < p ( k ) ) ,

t=0
(4.11)

N x

h , ( k )  =  ' £ b iT M k ) ) - (4.12)
i=0

An Euler residual function can be constructed in the manner used before to form R ( k , 0 ; a ) ,  

where a is the [Ar(cr) +  N ( - c r )  +  N x] x 1 vector of unknown polynomial coefficients.

To apply the Spectral-Galerkin method we must find a grid vector k  and weighting matrix 

.4 that can be used to form the system A R ( k , 6 ' , a ) .  We can use a Chebyshev grid as before
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to construct k.  When constructing the grid we made sure it was fine enough so that there 

were a substantial number of grid points to the right of k.  Presumably this is needed to 

ensure a good approximation t o  h( - ) .  :

We set N( c r )  =  N ( —a )  +  l \ TX =  N J, N x =  N ( —a )  — 1, and selected M , the number of 

elements in fc, such that M  >  N J . We construct the matrix A  as shown in (3.19). The 

approximation problem is then identical to the one described before: find a that solves 

A R ( k ,  6 ; a)  =  0, for 6  G O.28

Our Lagrangian modification of Spectral-Galerkin accommodates nondifferentiable deci­

sion rules. This seems appropriate in problems with occasionally binding constraints. We 

found it less convenient to accommodate nondifferentiable decision rules in the context of a 

penalty function version of Spectral-Galerkin, so we did not pursue this.

4 .3 . A L agrangian M o d ifica tio n  to  th e  F E M -C o llo ca tio n  M e th o d

This section describes how we applied the Lagrangian method to FEM -collocation.29 We 

choose piecewise linear functions to form g a{- ,<r) ,  <)„(•), and h a (-)  and select the capital stock 

grid k — ( k i ,  k2 , ■.. ,  k j v f ) ' .  The objective is to solve for the coefficients associated with 

this grid: a, (Q) ,  i =  1 ,2 , . . . ,  A'G 0 G 0 ,  as before, and 6,-, i =  1,2 , . . . , i \ r/ , where each &,• 

corresponds to the value taken by the Lagrange multiplier at the Pth element of k  when 

0 =  —a .  Stack the undetermined coefficients in the vector

a =  (a!(cr),«2(or),. . . ,  a N / ( c r ) , a i ( - a ) ,  a 2( - a ) , . . . ,  a N f ( - c r ) ,  b u  b2, . . . ,  bN } )'.

28If N(a) ^  N ( — ct) +  jV \  we can use the M  x 1 Chebyshev grid as in the previous case, bu t now we 
m ust choose separate weighting m atrices for the Euler residual functions R(k,cr\a) and R(k, -a\a). These 
weighting matrices, call them  A h and A 1, can be constructed in a m anner analogous to the construction of A  
in the previous case. The approxim ation problem is to find a th a t solves A hR{k , <7; a) =  A 1 R(k, - a ; a) =  0.

29See Coleman, Gilles, and Labadie (1992) for another application of the Lagrangian m ethod in the context 
of the FEM-collocation algorithm .
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We modify the FEM-collocation algorithm as follows. In step 2 of that algorithm equation

(3.23) for 9  =  a  is replaced by

U c ( k i ,  k \ ( a ) , < j )  =

P{(h)Uc(m<r),ga(ki(<r),<r),<r)[fk(ki(<r),<r) + 1 - $]
+ ( l W c ( k ' i ( a ) , g a (k'i ( a ) ,  - a ) ,  -<r)[/jt(̂ (cr), -cr) +  1 -  8]

- h a ( k > ( a ) , - * ) (  1 - 8 ) ) } .

Equation (3.23) for 9 =  —a  is replaced by:

U c{ k i , A’t'(-cr), — cr) - A, =
/?{( |)^ (A -1/( - a ) ,^ Q(^ (-< 7 ) ,<T),cr)[/jt(A-'(-cr),cr)+ 1 -  8]

H l W c ( k ' ( - a ) , g a( K ( - ^  - < r ) ,  - ° ) l f k W { - * ) ,  - < r )  +  l -

- h a (k't ( - a ) , - a ) ( l - 8 ) ) } .

For each i equation (4.13) is solved by choice of k [ [ a )  as before. Equation (4.14) is first 

solved by choice of A*'(—a )  with A; =  0 . If A’-(—cr) >  ( 1  — S)k{  then we proceed to the next 

value of i in the sequence i =  1 ,2 , . . . ,  N * . Otherwise, k'{( —cr) is set equal to ( 1  —  S)k{ and 

(4.14) is solved by choice of A;. The only other modification to the algorithm is to add to 

the updating rules of step 3 the conditions 6; =  A,-, z =  1 , 2 , . . . ,  ArT 30

4 .4 . A  P e n a lty  F u n ction  M o d ifica tio n  to  th e  F E M -G a lerk in  M e th o d

We now turn to the penalty function implementation of FEM-Galerkin. This is a modified 

version of the algorithm applied by McGrattan (1993). In this approach, a penalty is applied 

to violations of the constraint on capital accumulation. Specifically, we solve a modification

30There are two technical m atters to  be resolved regarding the im plem entation of side conditions (4.3) 
and (4.6). The function g is defined as a set of linear segm ents which are joined a t ga(ki) =  ai(— (T) for 
/ =  1 ,2 , . . . ,  N f  and at ga(k) =  (1 — S)k, where k is obtained as follows. Examine ai(— a) for i =  1 ,2 , . . . ,  N f  
until the first /, say ?' occurs with a t (—cr) <  (1 — S)ki. Then use the line segment defined by ga(kii_2)
and ga{kii_ :l) to  linearly extrapolate a value for k. Formally, g is defined exactly as g is in (3.21), with the 
exception th a t k is added into the list ki, Ao,. . . ,  kN f . We im pose (4.6) by defining h to  be composed of 
linear segm ents joined at ha(k) and at ha(ki) =  bi for i =  l , 2 , . . . , A r^, with ha(k) =  0.

(4.13)

(4.14)
«]
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to the original planner’s problem as follows:

w ( k ,  0 )  =  max (c(*, k \  0 ) )  +  0 1  W ( k ' ,  0 ' ) Pe,(0> \ 9 ) d 9 '  -  |  [max{0, (1 -  6 ) k  -  * ' } ] 2 .

(4.15)
Here tt is a nonnegative penalty parameter. For tt =  0 , (4.15) describes the problem for the 

model when the gross investment constraint is ignored. For positive tt, violations of (2.2) 

reduce the planner’s objective function. Intuitively, we might expect that for large values of

tt the solution to problem (4.15) would be “close” to the exact solution of the constrained 

problem.31

We apply the penalty function method by solving the sequence of problems corresponding 

to an increasing sequence {^n}. In a typical experiment, the sequence contained 31 elements 

beginning with 1, 2, 10, 20, 50, ... and ending with 1,200. For each value of trn, it is necessary 

to solve, using the FEM-Galerkin method, the Euler equation associated with (4.15):

U c{ k , g ( k , 9 ) ,  0)  -  7rn m ax{0, ( 1  -  8 ) k  -  g ( k , 9 ) }

-P !8'{L!c{<Ak.o),g{g(k,6),o'),o,)[fk(g{k,e),ei) + (i - s)]
~ ( l - 8 ) 7 T n max[0. (1 -  6 ) g ( k , 0 )  -  g  ( g ( k ,  0 ) ,  0 ' ) ] } p e, {0'  | 9 ) c W  =  0.

The algorithm stops when the maximum violation of the gross investment constraint on the 

capital stock grid is smaller than some prespecified tolerance.32 Denote by tt* the value of 

the penalty parameter when the algorithm is completed. Then, following Luenberger (1969,

Luenberger (1969, Theorem  1, p .  306) provides a theorem  for the case where the solution to a  constrained 
m axim ization problem  is a finite dimensional vector. In this case, solutions to the penalty  function version
con e r ^ f  tim C° rrefSp°!ldmS an lncreasinS sequence of penalty  param eters tending tow ard infinity will

Umably k  "  S traightf° rWard t0 CXtend the ^ e o re n f to  our en v h o n m e*

= ~ W* ~ MW)]}.

r hen " V3lU;  ° f ffn iS encountered with 7 ( ^ )  less than the chosen tolerance.
time intensive u q  d ! C°[reSp0ndlng t0 an lncreasing sequence {trn } is com puter and program m er-
j  11 ten sn e  \ \  hen we instead a ttem pted  to in itiate the algorithm  with a large value of tt however the

r o T o t l l ' ^ r ” ' our l,,i,ial gu“ s at u,e soiuiio'’ (,,an,"!’the
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Theorem 2, p. 307), an approximation to h(k,6) is given by:

h a( k ,  6 )  =  7r* m ax{0, (1 -  8 ) k  -  g a ( k ,  0)}.

It is worth noting that the FEM is particularly suited to working with penalty functions. 

This is because it uses a functional form that easily accommodates nondifferentiabilities in 

the exact policy function. As we shall see below, there is a likelihood that the solution to 

the constrained problem will involve a policy function for capital that is not smooth. If we 

were to apply the Spectral-Galerkin method with a penalty function we would encounter 

difficulties because that method attempts to approximate the exact policy function with a 

globally smooth approximator.

5. E v a l u a t i n g  t h e  A l g o r i t h m s
The algorithms we have described were used to approximate the solution to a particular pa­

rameterization of the model. In addition to applying these algorithms we also approximated 

the model solution using dynamic programming (DP) applied to a discrete version of the 

model. We take the DP solution to be virtually identical to the exact solution and use it 

as a benchmark for evaluating the algorithms discussed in this paper. Details about these 

computations are reported in appendix 1. One of our findings is that the results of all the 

algorithms are reasonably accurate. The differences between solution methods are small and 

not economically very meaningful in the context of our model economy. Nonetheless, there 

are some noticeable differences in accuracy and in computation time, and we think these 

are potentially useful as input into decisions about which algorithm to use in more complex 

modeling environments.

We study three aspects of the approximate solutions: the Euler residuals, the policy 

functions, and the implications of the policy functions for various first and second moment 

properties of the model. With one exception, the parameter values we chose are standard 

in the real business cycle literature and are as follows: a =  0.3, 8  =  0 .02, f3 =  1.03-  25, and
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a  — 0.22. The exceptional case, cr, was chosen large enough to ensure that the investment 

constraint binds occasionally. Finally, we specified U ( c t ) =  Inc*.

We study three cases for the PEA and two cases for each of the other algorithms. For 

the PEA, A p 3 in all cases except PEA-collocation applied to the irreversible investment 

model, in which case N p =  8. The solution labelled N p =  3 corresponds to what we have 

called conventional PEA, while the one labelled N p =  3* is PEA with exogenous oversampling 

starting near an estimate of k.  The solutions labelled N p =  3** and N p =  8** correspond to 

PEA-collocation applied in the reversible and irreversible investment cases, respectively.33 

For the Spectral-Galerkin algorithm the cases are: N J =  3 and 8 in the reversible investment 

case and (Ar(<r), Ar(-<j), N x ) =  (5,3,2)  and (9,5,4)  in the irreversible investment case. For 

the FEM-collocation algorithm the two cases are: A^ =  36 and 72. In the case of the FEM- 

Galerkin algorithm we stud}- solutions based on N *  =  18 and 36.34 For each algorithm, the 

highest order parameterization reported is the one for which we obtained convergence. Our 

convergence criterion was based on the second moment properties reported in tables 2 and

3. For each method we incremented the number of parameters until the change in all second 

moment properties was less than one standard deviation. Typically, the last moments to 

converge were the ones based on financial variables.

All computations were carried out on a Gateway 2000 486 D X2/66 and the programs

33For (lie conventional and modified PEA algorithm s, we set T  =  10,000. This compares to  a value of 
T  -  2,500 used by den Haan and M arcel (1990). They work with a model similar to ours and assume 
the technology shock standard  deviation is 0.32, which contrasts with a standard  deviation of 0.22 in our 
model (the one-step-ahead conditional standard  deviation in the technology shock in their model is 0.10). 
For conventional PEA with oversampling, we set T  =  7,500, J =  100, T  =  25, and k{ corresponding to a 
num ber (34.0) in the neighborhood of k, for j =  1,. . J.

34A dditional details of how the algorithm s were im plem ented are as follows. For the Spectral-G alerkin 
cases we used M  =  100. For the param eterization of the model we exam ined, this guarantees an ample 
supply of grid points on either side of k. The grids for the FEM algorithm s were chosen to be equally spaced 
bet ween boundaries ju s t outside the initial guess for the ergodic set, (k, k). T he tolerance on violations of the 
investm ent constrain t for the penalty  function version of the FEM -Galerkin algorithm  was set a t 5 x 1 0 -5 
This tolerance was reached for tt* =  1,250 with N *  =  18 and =  1,200 with N *  =  36. In the text, 
the approxim ate policy functions were expressed in term s of the level of the capital stock. VVe did th is to 
simplify the presentation. In the calculations we work in term s of the log of the capital stock. Grids for 
the Spectral-G alerkin and PEA-collocation m ethods were constructed based on the log of the capital stock 
while grids for the FEM were constructed based on the level of the capital stock.
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are available on request. The computation times are displayed in table l . 35 These times 

should be interpreted with caution. First, we did not make extensive efforts to optimize the 

computer code. Second, it could be misleading to extrapolate the relative time requirements 

reported in our experiments to larger problems. For example, the technology shock in our 

model can take on two values only. This biases computational times in favor of methods such 

as Spectral-Galerkin and PEA-collocation which exploit this fact, and against conventional 

PEA which does not. Also, the operation counts of the various algorithms are of different 

orders of magnitude. For example, the Spectral-Galerkin algorithm involves a number of 

operations that grows at the rate of the cube of the number of decision rule parameters 

sought, while the operation count for the FEM grows linearly or with the square.36

Still, there are several observations worth making about the timing of the various al­

gorithms. First, note that PEA-collocation is faster by orders of magnitude than all the 

other algorithms. Second, in contrast with the other algorithms, the computational time 

for the PEA ’s does not increase substantially when the irreversible investment constraint is 

imposed. This reflects the fact that, in contrast to the other algorithms, taking account of 

this constraint adds virtually no computational burden to a PEA. Third, the slowest algo­

rithm applied to the irreversible investment model is FEM-Galerkin. This reflects the fact 

that this algorithm involves repeatedly solving the model for higher values of the penalty 

function parameter.

35W ith three exceptions, all the program m ing was clone in GAUSS. Two exceptions were the conventional 
PEA and PEA with exogenous oversam pling, which combined FORTRAN w ith GAUSS. The sim ulation part 
of the PEA was program m ed in FO RTRA N  and im ported  in to  a GAUSS shell. FORTRAN program m ing 
could have reduced the com putation tim es for the FEM -collocation algorithm  significantly and the compu­
tation  times for the FEM -Galerkin algorithm  m arginally. The second exception is the DP calculations which 
were done in FO RTRA N . The DP algorithm s required hours to  achieve convergence, b u t the exact tim es are 
not reported on the table.

36C hristiano and Fitzgerald (1991) e laborate on this observation and illustrate  it in a com parison of 
Spectral-G alerkin and FEM -collocation. It should be noted th a t to  achieve a given degree of accuracy in 
problems with sm ooth decision rules, fewer param eters m ay be required in the Spectral-G alerkin proce­
dure than  in the FEM . Also, the assertion about the ra te  of growth of the  operation  count in Spectral- 
Galerkin assumes th a t a standard  N ewton-Raphson equation-solving m ethod is used. T he operation count 
for Spectral-G alerkin could be reduced if a more sophisticated version of th is algorithm  were used.
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5 .1. Euler Equation Residuals

Here, we focus on the Euler residual function (ERF), defined by R ( k ,  9; a*), where a* denotes 

the solved value of a.  We consider the ER F’s for both the reversible and irreversible invest­

ment versions of the model. We study the graphs of the residual functions (see figures 2a and 

2b) and the maximum absolute value (MAV) of R ( k ,  6 ; a*) over k  <E ( k ,  k ) ,  for 0 =  a  and - a ,  

respectively (see table 1). We found it useful, in the context of the PEA, to also compute 

MAV’s over a narrower interval, containing 90% of the simulated capital stocks. The upper 

and lower boundaries of this set are indicated by vertical lines in the PEA component of 

figure 2a. For the PEA, MAV numbers not in parentheses in table 1 are based on this 90% 

confidence interval, while numbers in parentheses are based on the entire interval, ( k , k ) .  In 

figures 2-5, results are displayed for a range of capital stocks corresponding roughly to the 

set, ( k , k )  =  (22.0,40.0).

We now consider the two left hand columns of figures 2a and 2b and the top panel of table 

1, which peitain to the ERF s of the reversible investment model. We begin bv summarizing 

our findings for the PEA. We found that increasing N p beyond N p =  3 in the context 

of conventional PEA has relatively little impact on the results. In the interests of saving 

space, we do not document this finding here. Essentially, results based on conventional PEA 

converged at A'p =  2 and roughly correspond to our A rp =  3 findings.37 Note from figure 

2a that the ERF's for conventional PEA and 0 =  a  are consistently negative over the 90% 

region of capital stocks. This is a sign of inaccuracy in the conventional PE A ’s solution.38 

One way to accommodate this is to increase the length of the Monte Carlo simulations, T.  

However, we found that unpractically large values for T  are required to achieve a significant 

degree of improvement in accuracy.39

Increasing the order of approxim ation to  N p —  5 does not change the results significantly. We found it 
difficult to  increase N p above 5.

38At the same time, the deviations from zero in the euler errors are not large by one economic measure. 
The percent increase in consum ption which would move current m arginal utility  of consum ption down enough 
to close a given gap, R, in the euler error is 1OO0CR/(1 -  f3cR), where c is the level of consum ption. The 
worst MAV in the 90% confidence region for the PEA  is the value of 0.00013 reported for conventional PEA,
0 =  ~o- la  consumption units this is about 0.03 percent.

39We did the N p =  3 calculations for T  =  20,000, 40,000, 60,000, and 80,000. For 9 =  <t, the MAV’s
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An alternative to increasing T  is to alter the distribution of (k , 6)  points at which the 

computations are done. This can be seen by noting the significant improvements that are 

obtained in the N p — 3* and N p =  3** versions of the PEA. In particular, note that the 

ERF’s for 6 =  a  are closer to zero when N p =  3* or 3**, and by orders of magnitude in 

the latter case. We infer from these results that conventional PE A ’s Monte Carlo procedure 

for selecting points in the state space for the computations is not optimal. The alternative 

procedures, PEA with exogenous oversampling and PEA-collocation, seem to work better. 

In each case the distribution of ( k , 0 )  values used in the calculations is more diffuse relative 

to that in conventional PEA. We conjecture that this is the basic reason that they do better. 

The idea is that they do better for the same reason that regression coefficients are more 

precisely estimated, the greater is the dispersion in the explanatory variables.

Notice from figure 2 that the performance of the conventional PEA and PEA with exoge­

nous oversampling deteriorates significantly in the outer 5% tail areas of the interval ( k , k ) .  

The dramatic improvement evident with PEA-collocation over the entire interval ( k , k )  is 

quite striking in comparison (visually, it is hard to distinguish from zero in the figure), espe­

cially since this improvement is achieved by requiring only that the Euler residuals be zero 

at three points in this interval.

For the other three solution algorithms, increasing the number of parameters in the 

decision rule is very effective at driving the ERF’s toward zero. In each case, convergence to 

zero is roughly uniform over the range (k , k ) .  Note how smooth the ERF’s corresponding to 

Spectral-Galerkin are, in contrast to those based on the two FEM methods. This reflects the 

fact that, in our example, the smoothness in the Spectral decision rule mimics more closely 

the properties of the exact decision rule.

We now consider the two right hand columns of figure 2 and the bottom panel of table 

1, which pertain to the ER F’s of the irreversible investment model. We again begin by sum­

for these cases are 9.5 x 1 0 "5 (9.5 x 10"5), 7.4 x 10"5 (3.0 x 10~4), 5.3 x 10~5 (4.5 x 10"4), 3.2 x 10“ 5 
(3.4 x 1 0 -4). respectively. For 0 =  - a  the MAV’s are 1.0 x 10"4 (1.0 x 10"3), 2.6 x 10“ 5, (1.2 x 10"4), 
2.3 x 10_5(1.5 x 10- 4 ), 3.5 x 10-5 (9.7 x 10-5 ). As in table 1, num bers not in parentheses correspond to  
MAV’s based on an interval containing 90% of the realizations of the cap ital stock. N um bers in parentheses 
correspond to  MAV's based on an interval th a t contains 100% of the realizations.
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marizing our findings for the PEAs. The performance of the N p  =  3 and 3* versions of this 

algorithm is roughly comparable to what it is in the reversible investment case. In particular, 

we found that increasing N p does not contribute much to accuracy in the conventional PEA, 

but PEA with exogenous oversampling does help.40 The PEA-collocation ERFs deteriorate 

somewhat (particularly around the point at which the investment constraint begins to bind: 

k  — k  =  33.40, 6  =  —o ,  according to DP), but still dominate the other implementations of 

the PEA.

We now summarize our results for the other algorithms. Relative to the reversible in­

vestment case, the two Galerkin methods have a harder time driving the ERF’s zero. The 

MAV for the best Spectral-Galerkin solution (i.e., (9,5,4))  is approximately 9 x 10-5 , as 

opposed to 4 x 10“7 in the reversible investment case.41 Similarly, the MAV for the best 

FEM-Galerkin method is 4 x 10-4 , as opposed to 7 x 10-5 in the reversible investment case. 

By contrast, the rate of convergence for FEM-collocation is comparable across the reversible 

and irreversible investment models. The reason the Galerkin methods have problems is sim­

ilar to that emphasized in the case of PEA-collocation. It has to do with the difficulty they 

have in driving the Euler residuals to zero in the neighborhood of k =  k.

5.2 . P o lic y  F u n ctio n  C om p arison s

We now compaie the polic\ function approximations obtained for the two versions of the 

model and for the four solution algorithms. In figure 3, policy and multiplier functions based 

on the highest order Spectral-Galerkin method are compared with those based on the DP

40We did the N p -  3 calculations in the irreversible investm ent model for T  =  20,000, 40,000, 60,000, 
and 60, 000. For # =  <t, the MAV’s for these cases are 1.1 x 10-4 (2.3 x 10- 4 ), 8.5 x 10-5 (5.2 x 10~4), 
6.1 x 10-5 (6.6 x 10- 4 ), and 3.9 x 10~5 (5.4 x 10- 4 ), respectively. For 9 =  -c r  the MAV’s are 1 2 x 10-4  
(2.0 x 1 0 -4), 8.2 x 1 0 -5 (7.8 x 10~4), 8.2 x 10"5 (7.2 x 10~4), and 9.4 x 10~5 (7.9 x 10~4). As in table 1, 
numbers not in parentheses correspond to MAV’s based on an interval containing 90% of the realizations of 
the capital stock. N um bers in parentheses correspond to  MAV’s based on an interval th a t contains 100% of 
the realizations.

We considered higher degree approxim ations for the Spectral-G alerkin m ethod but were unable to achieve 
anything resembling the convergence to zero noted in the reversible investm ent case. For example, with 
A' =  8 in the reversible investm ent case, the MAVs are abou t 2 x 1 0 "11 and 7 x 1 0 "11 for 6 =  a and 
0 =  -cr, respectively, while in the irreversible investm ent case with (1 5 ,8 ,7 ) the MAVs are about 4 x 10"5 
and 5 x 10 5 for 6 =  cr and 6 =  — cr, respectively
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method, for both reversible and irreversible investment versions of the model.

There are three main results in figure 3. First, there is very little difference between the 

solution based on Spectral-Galerkin and DP. Over most of the range of k  the functions are 

identical to the eye. We infer from this that the Spectral-Galerkin method provides a highly 

accurate approximation to the solution. Second, the shape of the policy and multiplier func­

tions validate the four assumptions we made when constructing the space of approximating 

functions in section 4. Third, for k  <  k  the constrained and unconstrained policy functions 

are virtually identical, while investment is (slightly) lower in the constrained economy with 

0 == cr, when k  >  k.  Presumably, this reflects in part a rate of return effect: the payoff from 

capital investment is lower in the irreversible investment economy, since there is some chance 

that O' =  —<7, in which case the limitation against consuming capital is binding. The net 

effect of the irreversibility constraint on the average capital stock is quite small, since the 

impact on investment of the irreversibility constraint is positive when k  >  k  and 6 =  — <7.42

The FEM decision rules are indistinguishable from Spectral-Galerkin, and so we do not 

graph them. It is worth comparing the PEA and Spectral-Galerkin rules, however. Figure 

4 compares the PEA and highest order approximation Spectral-Galerkin investment policy 

functions for the reversible investment economy. Qualitatively, the findings here are con­

sistent with our analysis of the Euler residual functions. First, the PEA with exogenous 

oversampling appears to do better in the 90% confidence region for capital, than conven­

tional PEA. Also, the greatest inaccuracy in the conventional PEA and PEA with exogenous 

oversampling appears to be in the lower tail of the capital stock distribution. Finally, the 

PEA-collocation policy functions appears to be indistinguishable from the Spectral-Galerkin 

rule.

Figure 5 compares the PEA and the highest order approximation Spectral-Galerkin in­

vestment policy functions for the irreversible investment economy. Again, the results here 

are consistent with our analysis of the Euler residuals in figure 4. Thus, the PEA-collocation

42\Ye found tha t the average capital stock in the reversible and irreversible versions of the model is 31.3 
in each case. U ncertainty per se does seem to  have an im pact since the steady s ta te  capital stock is 30.5.
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decision rule appears to be essentially indistinguishable from what we take to be more or 

less the exact decision rule. Also, the decision rule produced by the PEA with exogenous 

oversampling represents a definite improvement over conventional PEA. One way to see this 

is that conventional PEA seems to more seriously miss identify k  than PEA with exogenous 

oversampling. This can be seen most clearly in the graphs of the approximate Lagrange 

multipliers, computed using (4.9).43

5 .3 . Approximate Model Implied Moments

We now examine several model moments computed using our four approximate policy func­

tions and the DP algorithm. In table 2 moments related to the unconstrained model are 

displayed. The moments we computed for this case are as follows: R £ (the mean value of 

f ' { k t , 0 t ) +  (1 — <$)), R f  (the mean return on a one-period-ahead state-uncontingent consump­

tion loan), R e -  R l  (the mean equity premium), a j ,  j  =  y , c , i  (the standard deviation of 

gross output, consumption and gross investment, respectively), p ( y , j ) ,  j  =  c , i  (correlation 

of gross output with consumption and gross investment , respectively), and freq(i < 0) (the 

frequency of times that gross investment is negative). The rate of return variables, R s and 

R e , are expressed in annual percent terms. In table 3 moments related to the constrained 

model are displayed. In addition to the moments displayed in table 2 we compute moments 

related to Tobin’s q, the price of new capital in terms of consumption goods. We define 

this price as follows: q =  1 -  X / U ' { c ) . 44 Also, we replace freq(? <  0) with freq(A > 0) (the 

frequency of times that the gross investment constraint binds) in table 3. All statistics are 

based on averages from samples of length 114 replicated 500 times. Numbers in parentheses 

are Monte Carlo standard errors.45

43W ith N p =  3, calculations using conventional PEA for T  =10,000, 20,000, 40,000, 60,000, and 80,000, 
resulted in the following estim ates of k : 33.03, 33.15, 33.27, 33.31, 33.34. W ith N p =  3* (i.e., PEA with 
exogenous oversampling) and T  =  10,000, we obtained k =  33.29. W ith  N p =  8** (i.e., PEA-collocation) 
we obtained k =  33.37. We take the_fc implied by DP, which is k =  33.40, to be the exact solution. Thus, a 
g i\en  le\el of accuracy (in term s of k) can be achieved with a lower value of T  by applying alternatives to  
conventional PEA.

44See Sargent (1980) for an analysis of T obin’s q in a setting similar to  ours.
4oThese are <rx/ \/500, where <rx is the standard  deviation, across our 500 replications, of some statistic , x.
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Consider table 2. W ith conventional PEA there is slight inaccuracy in its predictions 

for financial variables ( e . g . the equity premium is 0.089 % (0.011) with conventional PEA  

versus 0.049 % (0.010) with DP, with standard errors in parentheses) and the algorithm over­

estimates the frequency that gross investment is negative (9.89 % (0.38) with conventional 

PEA and 8.89 % (0.36) with DP.) PEA with exogenous oversampling and PEA-collocation  

both show improvement along these dimensions. Spectral-Galerkin shows convergence at 

N J =  5, FEM collocation shows convergence at N *  =  72, and FEM Galerkin at N *  =  36. 

Notice FEM collocation with N *  =  36 is unable to achieve convergence while FEM Galerkin, 

using exactly the same approximating function, does achieve convergence. This reflects the 

relative computational efficiency of smoothly weighting the Euler residuals, which Galerkin 

does, in the context of the FEM.

Now consider table 3. The primary differences between methods, which in any case are 

small, lie in their implications for statistics involving financial variables. For example, the 

main difference between conventional PEA and the other versions of PEA is that the former 

over predicts R e, R e — R f , and a q.

6. C o n c l u d i n g  R e m a r k s
Our purpose in this paper is to provide researchers working with more complex model 

economies than the one studied here, with some guidance to help select from among the 

many available solution algorithms. We expect that in these more complex problems, compu­

tational speed and programming convenience will be important, desirable characteristics, in 

addition to accuracy. With this in mind, we compared and evaluated six computational algo­

rithms for solving models with occasionally binding inequality constraints. These algorithms 

include: three versions of Marcet’s parameterized expectations algorithm (PEA); a version 

of Judd's Spectral-Galerkin algorithm, extended here to include a Lagrange multiplier func­

tion as one of the objects sought; two finite element methods, Coleman’s FEM-collocation 

algorithm, modified to accommodate a Lagrange multiplier, and McGrattan’s FEM-Galerkin 

algorithm, which accommodates inequality constraints by including a penalty function in the
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objective. In addition, to provide a benchmark solution, we also did dynamic programming 

on a discretized version of our model with a very fine grid. A unique feature of our analysis 

is that we illustrate the use of the Euler residual function in evaluating the accuracy of a 

solution algorithm.46

To our initial surprise, all the algorithms worked quite well. We were particularly sur­

prised at the accuracy with which several of the algorithms predict the Lagrange multiplier. 

Even algorithms such as M cGrattan’s and a version of Marcet’s, which compute the mul­

tiplier indirectly, provide reasonable estimates of this function. Also, for the most part 

all of the algorithms are reasonably accurate for computing particular statistics involving 

endogenous variables from the example model economy.

Still, we have developed information we believe is useful for discriminating among these 

algorithms. By far the easiest algorithm to implement is Marcet’s PEA. As Marcet (1988) 

points out, the algorithm requires virtually no modification to accommodate inequality con­

straints. In the case of the other algorithms, accommodating inequality constraints involves 

substantial complications. For example, implementation of M cGrattan’s method requires 

considerable ‘baby sitting’ of the computer program, as one tries out various values of a 

penalty function parameter. The Spectral-Galerkin and FEM-collocation methods also en­

tail additional complications to accommodate inequality constraints. This reflects the fact 

that they require directly parameterizing a Lagrange multiplier function, in addition to the 

policy functions.

While Marcet’s PEA seems to be the easiest to implement, we had difficulties with 

conventional versions of it. A key component of those versions is a cumbersome nonlinear 

regression step, potentially involving tens of thousands of observations. One reason for the 

large number of observations is that the explanatory variables are inefficiently concentrated 

in a narrow range. We devised an alternative (PEA-collocation), in which the regression step 

is linear, the explanatory variables are orthogonal, and the required number of observations

4bFor an alternative procedure for evaluating the accuracy of a solution algorithm , see den Haan and 
Marcet (1994).
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in the regression is very small: no more than sixteen in our experiments. This method  

produced results as accurate as the best other m ethod, and is orders of magnitude faster.

Although it is clear that PEA-collocation is the best solution method for our example, 

that does not guarantee that it will dominate in higher dimensional cases. Here, there are 

at least two considerations. First, do the linearity and orthogonality properties of PEA- 

collocation survive into multidimensional settings? In appendix 2, we define multidimen­

sional PEA-collocation and show that these properties do indeed survive in general. The 

second consideration involves the mapping from a parameterized expectation function to 

policy and multiplier functions, which is at the heart of any PEA. In our example, this map­

ping is trivial, but in higher dimensions it involves solving nonlinear equations. In principle, 

there could be examples in which this is very costly in programmer and/or computer time, 

in which case perhaps an alternative method might dominate. Here, it should be born in 

mind that PE A ’s have been applied routinely in high dimensional models (see footnote 5).
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Appendix 1: The Dynamic Programming Algorithm
Our DP algorithm is standard. It involves first iterating to convergence on a value 

function and then deriving a decision rule from the converged value function. The mapping 
that we iterated on is:

uj+i(*> °) =  {«(*> k'i °) + <r) + -< r ) ] j ,

for 0  £ 0  and A' £ A =  {Ax, A2, . . . ,  A*a/} .  Also,

u(A', k , 0 )  =  ln[exp(0)A° +  (1 — 6)A — A']

and
A(A, 0) =  A 0  {A' : ( 1  -  6 ) k  <  A' <  exp { 9 ) k a +  ( 1  -  6 ) k }  

for the constrained problem, and

A ( k ,  0)  =  k r \  { k ‘ : 0 <  k ‘ <  exp ( 6 ) k a +  (1 -  6 ) k }

for the unconstrained problem. Here, i’j(-,<r) and v j ( - , — a )  are points in 3fJA/, j  =  1 , 2 ,__
Also v 0( k \  0)  =  0, for 0 E 0  and k'  G k.  The points in k  are equally spaced with A*,- <  A-1+1, i =  
1 , 2 , . . . .  M  — 1, A'i =  16.9, k t\ f  =  55.1, and AI  =  20,000. We iterated on the above mapping 
until reaching a fixed point which was assumed to be achieved when | (e_, — c 7_1)./TJ_1 | <
1 x 10_ ‘ , here | x  \ is the largest element of x  in absolute value and x . / y  represents element 
by element division of the vectors x  and y .  Denote the fixed point by v .  We then computed 
the two decision rule vectors G'(-,cr), G ( - ,  —a )  £ as follows.

G ( k , 0 )  =  argmax | t i ( k ,  k \  6)  +  [t>(A*', <r) +  v ( k \  -c r )] l ,
k<dA(k,9) t l J

where 0 £ 0  and A' £ A.
The DP investment decision rules graphed in section 5 and the DP second moment 

properties are based on G ( k , 9 ) .  The DP version of the multiplier reported in section 5 is 
computed as follows.

A(A i,0)
u 1( k i , G ( k i , 0 ) , 0 ) - v l ( k i , 0 )

1 - 6
,i = 1,2,..., M.

Here, Hi is the derivative of u  with respect to its first argument. Also V\ is our estimate 
of the derivative of v  with respect to its first argument. We obtained this estimate by first 
fitting, by least squares, a seventh order polynomial to c(A,, 9) ,  i =  1 ,2 , . . . ,  M  for 9 £ 0:

c(A„ 9) = /3O(0) + /91(0)S5(Ai) + • • • + /?7(0)b(A,)]7, i = 1,2,..., M.
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Here <p : [&i, 1z m\ —* [0,1]. Then,

v 1( k i , d )  =  0 , ( 0 )  +  2 p 2{ e ) v { k i )  +  • • • +  7 0 T( 0 ) [ (p ( k i )}6 , t =  1 , 2 , . . . ,  M .

Appendix 2: Multidimensional Applications of PEA-Collocation
In this appendix we describe how PEA-collocation is applied in models with an arbitrary 

finite number of endogenous and exogenous state variables. We show that the principle 
qualitative features of PEA-collocation (e.g., linearity of the regression and orthogonality of 
the regressors) survive in a multidimensional setting. We also show that PEA-collocation 
encounters a ‘curse of dimensionality’ problem in very high dimensional systems. We propose 
an alternative, PEA-Galerkin, for dealing with circumstances like this.

T h e  P r o b l e m

Let k  £ A C 3?' denote a vector of endogenous state variables. We suppose that the 
exogenous variables, 0 6  0  C 3?m, are a first order, stationary Markov process with transition 
density p e, (0'  | 0) .  Since we restrict m  only to be finite, this is equivalent to assuming the 
exogenous variables have an arbitrary finite ordered Markov representation. In contrast to 
the analysis in the main text, here we suppose 0 is a vector of continuous random variables. 
Let u : A x A x 0  —► 3? denote the one-period return function. This may be an indirect utility 
function that iesults after static decisions, such as labor supply in standard business cycle 
models oi the sectoial allocation of capital in a multisector model, have been maximized 
out. We consider model economies which lead to the analysis of the following functional 
equation:11'

W ( M ) max
k'er{k,0),G{k,k',6)>ou u ( k ,  k r, 6)  +  0  f  W ( k ' ,  9 ' ) p e, (0'  | 0 ) d 9 \  for all k  6 K ,  0 £ 0u- Jo's®

where G  is a w  x 1 vector-valued function, G  : I \  x A' x 0  -► 3^’. Also, IT : A' x 0  —► 3? is a 
value function, and T : A x 0  —> A and G ( k ,  k ' , 9 )  >  ()„, characterize the constraints on the 
choice of k in the maximization. Here, 0U, denotes a w  x 1 vector of zeros. The correspondence 
T summaiizes constraints that either bind always or never, while the function G  summarizes 
restrictions that bind occasionally.* 48 In what follows it is convenient to use the notation 
•s =  vec( k ,  6 ) ,  where s  is a q x 1 vector, q =  / +  m.

Let g  : A x 0  -» I \  be the (single-valued) policy function which attains the maximum in 
the functional equation, and let h : I \  x  0  - >  $ t w denote the i v x 1 vector-valued multiplier

4< For a detailed discussion of model economies like this, see Stokey and Lucas with Prescott (1989).
48By a constraint never binding, we mean th a t its m ultiplier is zero for alm ost all (k,0) £  I\ x 0 .  

An example of this is the one sector grow th model where T summarizes the nonnegativity  constraints on 
consumption and capital, and the appropriate Inada conditions on u are satisfied. By a constraint always 
binding, we mean th a t its m ultiplier is almost always nonzero. An example of this is the resource constraint 
in the model ju st described. In the model analyzed in the body of the paper, T  summarizes the resource 
constraint and nonnegativity constrain ts on capital and consum ption, and the constraint, G(k,k',8) >  Ou,, 
is the nonnegativity constraint on gross investm ent.
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u2 {k,g{k,0) ,e)  +  G2 (k,g(k ,0) , e)T h{k,e) +  l3 j  m{k,9,ff- ,g,h)pe,{ff \G)dff =  %  (6.1)J 81

and the Kuhn-Tucker conditions,

G(k,g(k ,0) ,6)  >  0w,h(k,0) >  On,, and h(k,6).  * G{k ,g(k ,0 ) , 0 )  =  0W, (6.2)

where .* denotes element-by-element multiplication. Also,

m(k,  M 'l g,h) =  «, (g(k,0), g ( s ( M ) ,«') , $') + G, (g(k, 6 ) , g (g(k , « ),« '), 0')T h (g(k, 6), O' ) ,
(6.3)

where m : I\ x 0  x 0  —*• 3^, is an l x 1 vector-valued function. In (6.1)-(6.3), tq denotes the 
/ x 1 vector of derivatives of u with respect to the i th argument, G{ denotes the iv x / matrix 
of derivatives of G with respect to its i th argument, and T denotes the matrix transposition 
operator. The problem is to approximate g and h, solutions to the functional equations 
(6.1)-(6.3).

f u n c t i o n  c o r r e s p o n d i n g  t o  t h e  c o n s t r a i n t s ,  G ( f c ,  k', 6) >  0 ^ .  W e  s u p p o s e  t h a t  t h e  p o l i c y  a n d
m u l t i p l i e r  f u n c t i o n s  m u s t  s a t i s f y  t h e  E u l e r  e q u a t i o n s ,

The PEA

The PEA approximates g and h indirectly by parameterizing the j-th  conditional expec­
tation in (6.1) by a function exp(eaJ(s)), j  — 1 , 2 , . . . , / :

exp(eaJ(s)) ~  [  m 3(s,6';g,h)pe>{0' \ 0)d$’, j  =  1 , 2 , . . . , / ,  (6.4)
Je'eo

for all A'x 0 . Here, a3 G is a finite set of parameters, and m 3 is the j th element of the 
function, m.  Let a =  vec(«1, a2, . . . ,  a1). We define a mapping from a to policy and multiplier 
functions, ga and ha, as follows. For any given «, replace the conditional expectation in (6.1) 
by the parameterized expectation in (6.4) and let ga and ha denote the policy and multiplier 
functions which satisfy the Euler equation and Kuhn-Tucker conditions.49 These policy and 
multiplier functions then imply a conditional expectation function, fg,e& m(s,  O'; ga, h a)pe>{0' \ 
0)d0' for all s £ A’ x 0 .  A new vector of parameters, a' =  S(a]l  ■ N p), is then chosen to 
make the function exp(ea/(s)) as close as possible to this conditional expectation. Here, INP 
denotes the number of elements in a. A PEA seeks an a* such that a* =  5(a*; / • N p).

PEA-Collocation

As in the text, we construct ea(s) using Chebyshev polynomials. We begin by defining 
what these are in a multidimensional setting, and by displaying their discrete orthogonality 
property. As in the text, it is this property which accounts for the orthogonal regressor 
property of PEA-collocation.

49In general, finding ga and ha for any (A, 9) (E A’ x 0  requires solving a system  of equations using numerical 
m ethods. In contrast, in the m odel economy of the m ain tex t, the solution to  these equations has a simple 
analytic form (see (4.8) and (4.9)).
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Chebyshev polynomials with q-dimensional domain are constructed from the one dimen­
sional Chebyshev polynomials studied in the text. Let =  {T0{x), Ti(x) , . . . ,  Tn- i (x) }  
denote the basis functions for one dimensional Chebyshev polynomials of degree n — 1, for 
n >  1, where x E (—1,1). The tensor product basis for degree n — 1 Chebyshev polyno­
mial functions of q variables is constructed by taking all possible <?-term products of the n 
elements in Accordingly, the resulting basis is

^  = { T i 1( x i ) T i 2{ x 2) - - - T iq( x q) | i j  =  0 , 1 , . . . , n -  1 , j  = 1 , 2 , . . . , 9}.

Here, (xj, ar2, ..., x9) is an element of the q-(o\d Cartesian product of (—1,1), which we denote 
by (— 1, l )9. Notice that contains nq elements.

A convenient feature of this tensor product basis is that it inherits the discrete orthog­
onality properties of (see Judd (1992b, chapter 5) and the references given there). Let 
<I>1 , 4>2 , ■ • •, <£n« be a list of the elements of where <f>v : ( —1, l ) 9 —> ( — 1,1) for v =  1,..., n9. 
Then the discrete orthogonality property in the multidimensional setting is, for i , j  < nq,

n<>
<Pi{r v ) <T>j ( r v)

v=l

0, for i ±  j  
Ci(n,q), for i =  j  ’

where C{(n,q) are constants that depend on the basis and rv E ( —1,1)7 is composed of a 
selection of q elements from the set of n zeros of Tn, v =  1 , 2 , . . . ,  nq. In particular, the set of 
rVs is defined by the nq ways of choosing q of the n zeros of Tn. The zeros of Tn are given by

/ ( 2 A' — 1 )tt\  ,
r k =  COS I ----—----  1 , k  = 1 ,. . . ,  n.

Also, for / =  1 , 2 , . . . ,  nq

c t { n , q )  =  t  $ > { r v ) 2-
V—\

We construct the parameterized expectation function using the elements of as follows:

n q

e«u(s) = ^ 2 a i ^ i ( ( p ( s ) ) , j  = 1 , 2 , . . . , / .
i = 1

Notice that l \ p — nq here. The function is the multidimensional version of the analogous 
function used in the main text (see (3.6).) That is <p : n L iU ^ s;) C J?9 —> (— 1, l )9, where 
(s,-, Si), i = 1 , 2 , . . . ,  q bound the exogenous and endogenous variables.

We now derive the multidimensional version of the orthogonal regressor result, (3.15). 
With PEA-collocation, a' =  S(a ; / • nq) is defined by:

R j ( s v -,ga, X > )  -  exp(eay(v>(s,,))) -  /  mj (sv, $'■, ga, ha)pe>{d' \ 9)dff =  0, j  =
J 6* G©

1 9 /

(6.5)
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for v =  1 , . . . ,  n9, where sv =  <̂ -1 (rv), v =  1 , . . . ,  n9 .50 Now (6.5) holds if and only if it holds 
for the log of the terms on each side of the minus sign. That is, for each v =  1 , 2 , . . . ,  n9 and 
each j  =  1 , 2 , . . . , / ,  (6.5) holds if and only if

Multiply both sides of each equation in (6.6) by <}>i(sv) and for fixed j  sum over v =  
1 , 2 , . . . ,  nq. By the discrete orthogonality property, all terms on the left side of the equality, 
except those involving 4>i(<p(sv))2, v =  1 , . . . , n 9, are zero. Repeating this procedure for 
4>2,4>3,...,(f>n<,i one finds that, analogous to (3.15), the mapping a' =  S(a-,l ■ nq) has the 
simple analytical form,

grows exponentially as the dimension increases. One could instead work with a strict subset 
of the number of elements in the tensor product basis. For example, Judd (1992b, chapter 
5) suggests working with the following subset:

Notice that C ^  C $J,9\  since simply deletes high-order cross product terms in For 
very large problems the computational burden of finding the a* that solves a* =  S(a*; / • n9) 
may be unacceptable. In these circumstances, a useful alternative may be to use a smaller 
basis. However, if one continues to work with the Chebyshev zeros, rv, v =  1 , 2 , . . . ,  n9, then 
PEA-collocation is no longer implementable in general. This is because PEA-collocation now 
attempts to solve the n9 equations, (6.6), using less than nq unknowns. There are several 
options. One is to apply PEA-collocation to a reduced number of equations. Another is to 
maintain the number of equations and apply a different weighted residual method.

From the text, it is clear that there are many such methods. One such method is a 
modified version of the Galerkin procedure discussed in the text, PEA-Galerkin,  which is 
applied as follows. First, select a value for n, and choose a subset of Arp basis functions from 
$Jj9\  where N p < nq. Then, compute rv,u =  1,2, . . . , n 9 as above and form the N p x nq

50The integral in (6.5) could be approxim ated by quadratu re  or M onte Carlo m ethods.

PEA-Galerkin

A disadvantage of a tensor product basis is that the number of elements in the basis

4 4
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m a t r i x  A  a n d  t h e  nq x  1 v e c t o r  FLj(s,ga,ha) a s  f o l l o w s :

A =

<Mrt)
M pi)

^i(r2) •
<f>2(r2) • ■■ <f>2 (rn«)

i Rj(S') (Jai —

1 ? Qai ha) 
2i Qai ha)

. 4>Np{rx) Ârp(fi*2) • Qa') ha )

where s =  [$i , . . . ,  sn9], and sv, v =  1 , 2 , . . . ,  n9, is as defined above. By the discrete orthog­
onality property, the rows of A are orthogonal. Finally, find the value of a that solves the 
system of l • N p nonlinear equations:

ARj{s ,ga,ha) =  0 ,j  =  1 , 2 , . . . , / .

4 5
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T a b l e  1
C o m p u t a t i o n  T i m e s  a n d  M a x i m u m  A b s o l u t e  V a l u e s

o f  t h e  E u l e r  R e s i d u a l s  f o r  t h e  V a r i o u s  A l g o r i t h m s

Time MAV of Euler Residuals
Model Approximation Method (Seconds) 6 =  a 0 = —cr

Unconstrained PEA: N p = 3 155.1 9.2 x 10~ 5 1.3 x 10~ 4

(1 .0  x 1 0 "4) (1.6 x lO"3)
N p = 3* 151.9 3.3 x lO" 5 1 .6  x 1 0 ~ 4

(5.1 x 10~4) (1.5 x lO"3)
N p =  3** 0 . 6 1.7 x 10~ 6 2 .1  x lO" 6

(3 . 2  x 1 0 ~6) (4.1 x 10~6)
Spectral-Galerkin: N J =  3 3.5 4.5 x lO” 4 1 .2  x 1 0 ~ 4

N J = 5 6.3 3.7 x lO" 7 6 . 2  x 1 0 - 7

FEM-Collocation: Nf  =  36 253.1 1 .0  x 1 0 ~ 4 7.8 x 10~ 5

N* =  72 557.6 3.3 x 10" 5 2.7 x 10" 5

FEM-Galerkin: N* = 18 8 . 8 3.7 x 10" 4 1.3 x lO" 4

N* = 36 17.9 7.2 x lO" 5 4.8 x 10“ 5

Constrained PEA: N p =  3 174.4 1.1  x 1 0 ~ 4 1.7 x 10" 4

(1.6 x lO"4) (8 . 8  x lO"4)
N p =  3* 181.7 3.3 x lO" 5 1.9 x 10" 4

/o? b* X o 1 •fe. (7.2 x 10"3)
N p = 8 ** 2.5 2 . 6  x 1 0 " 5 9.9 x 10" 5

(2 . 6  x 1 0 ~5) (9.9 x 10-5)
Spectral-Galerkin: (5,3,2) 17.6 6 . 2  x 1 0 - 4 7.3 x 10" 4

(9,5,4) 27.9 8 . 8  x 1 0 - 5 8 . 0  x 1 0 - 5

FEM-Collocation: N f =  36 522.9 1 .0  x 1 0 “ 4 7.8 x 10“ 5

N* =  72 996.2 3.4 x 10" 5 2 . 8  x 1 0 " 5
FEM-Galerkin: N f  = 18 212.5 7.3 x 10- 3 2.4 x lO" 2

N f =  36 1783.9 1.5 x lO" 4 3.7 x 10- 4

Notes: (i) For the Spectral-G alerkin and FEM -G alerkin approxim ations to the constrained model we used 
the unconstrained approxim ations for starting  values. S tarting  values for the unconstrained calculations were 
based on the log-linear approxim ate decision rules. The tim es displayed include com putation  tim es for these 
starting  values, (ii) In practice, the FEM -G alerkin algorithm  as applied to the constrained model involves 
solving penalty function versions of the model for several values of the penalty  param eter 7r. The com putation 
times for this application reflect this fact, (iii) The ordered trip lets for the Spectral-G alerkin approxim ations 
to the constrained m odel correspond to (N(cr), N ( — a), N x). (iv) See the tex t for an explanation of the 
asterisks associated w ith the PEA entries, (v) The MAV num bers corresponding to the PEA have the 
following in terp retation . They are based on confidence intervals from sim ulations of length 10,000 based 
on implied decision rules for the approxim ation in question. The num bers not in parenthesis correspond 
to MAVs based on an interval containing 90% of the realizations of the capital stock. The num bers in 
parenthesis correspond to MAVs based on an interval th a t contains 100% of the realizations.
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T a b l e  2
S t a t i s t i c s  f r o m  V a r i o u s  A p p r o x i m a t i o n s  o f  t h e  U n c o n s t r a i n e d  M o d e l

PEA: N p = S-G: N J = FEM-C: AT/ = FEM-G: N *  =
Statistic DP 3 3* 3** 3 5 36 72 18 36

R e 3.099 3.120 3.092 3.090 3.146 3.090 3.073 3.088 3.102 3.092
(0.007) (0.006) (0.006) (0.007) (0.006) (0.007) (0.007) (0.007) (0.007) (0.007)

R f 3.052 3.031 3.040 3.043 3.022 3.043 3.049 3.043 3.039 3.042
(0.015) (0.015) (0.015) (0.015) (0.016) (0.015) (0.015) (0.015) (0.015) (0.015)

R e -  R f 0.047 0.089 0.051 0.047 0 .0 1 2 0.047 0.024 0.045 0.063 0.049
(0 .0 1 0 ) (0 .0 1 1 ) (0 .0 1 1 ) (0 .0 1 0 ) (0 .0 1 1 ) (0 .0 1 0 ) (0 .0 1 0 ) (0 .0 1 0 ) (0 .0 1 0 ) (0 .0 1 0 )

a y 62.2 62.2 62.2 62.2 62.1 62.2 62.3 62.2 62.2 62.2
(0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04)
7.22 7.21 7.25 7.13 7.31 7.13 7.15 7.13 7.12 7.13

(0.09) (0.09) (0.09) (0.09) (0.09) (0.09) (0.09) (0.09) (0.09) (0.09)
60.1 59.9 60.0 60.1 59.8 60.1 60.3 60.1 60.0 60.1

(0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04)
p ( y , c ) 0.354 0.362 0.361 0.358 0.370 0.358 0.357 0.358 0.358 0.358

(0 .0 0 2 ) (0 .0 0 1 ) (0 .0 0 1 ) (0 .0 0 1 ) (0 .0 0 1 ) (0 .0 0 1 ) (0 .0 0 1 ) (0 .0 0 1 ) (0 .0 0 1 ) (0 .0 0 1 )
p ( y , *) 0.993 0.993 0.993 0.993 0.993 0.993 0.993 0.993 0.993 0.993

(0 .0 0 0 2 ) (0 .0 0 0 2 ) (0 .0 0 0 2 ) (0 .0 0 0 2 ) (0 .0 0 0 2 ) (0 .0 0 0 2 ) (0 .0 0 0 2 ) (0 .0 0 0 2 ) (0 .0 0 0 2 ) (0 .0 0 0 2 )
Freq(z < 0) 8.89 9.89 9.17 8.64 10.50 8.72 8.23 8.59 8.97 8.67

(0.36) (0.38) (0.37) (0.37) (0.39) (0.37) (0.35) (0.36) (0.37) (0.36)

Notes: (i) Statistics shown are averages from samples of length 114 replicated 500 times, (ii) Freq(t < 0) indicates the per cent rate at which gross investment is 
negative across samples, (iii) Numbers in parenthesis are Monte Carlo standard errors, (iv) See the text for a description of the asterisk notation used for the 
PEA entries in the table, (v) Finally, S-G stands for Spectral-Galerkin, FEM-C stands for FEM-Collocation and FEM-G stands for FEM-Galerkin.
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T a b l e  3
S t a t i s t i c s  f r o m  V a r i o u s  A p p r o x i m a t i o n s  o f  t h e  C o n s t r a i n e d  M o d e l

PEA: Np = Spectral-Galerkin FEM-C!: Nf  = FEM-G: N* =
Statistic DP 3 r 8 ** (5,3,2) (9,5,4) 36 72 18 36

Re 3.126 3.160 3.126 3.128 3.121 3.125 3.109 3.122 3.588 3.125
(0.005) (0.005) (0.005) (0.005) (0.006) (0.006) (0.005) (0.006) (0.017) (0.006)

Rl 3.055 3.043 3.052 3.053 3.051 3.053 3.058 3.054 3.069 3.053
(0.017) (0.018) (0.017) (0.017) (0.017) (0.017) (0.017) (0.017) (0.027) (0.017)

Re -  Rf 0.071 0.117 0.074 0.076 0.070 0.072 0.051 0.068 0.519 0.072
(0.015) (0.016) (0.015) (0.015) (0.015) (0.015) (0.013) (0.015) (0.043) (0.015)

°y 62.2 62.2 62.2 62.2 62.2 62.2 62.3 62.2 61.9 62.2
(0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04)

<7c 7.08 7.15 7.20 7.09 7.09 7.08 7.10 7.07 8.96 7.07
(0.09) (0.08) (0.08) (0.08) (0.08) (0.08) (0.09) (0.08) (0 .1 1) (0.08)

0i 59.7 59.6 59.7 59.7 59.7 59.8 59.8 59.8 58.3 59.8
(0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.05) (0.03)

0q 0.318 0.341 0.319 0.312 0.283 0.310 0.295 0.302 1.070 0.303
(0.014) (0.014) (0.014) (0.014) (0.014) (0.014) (0.014) (0.014) (0.040) (0.014)

p ( y , c ) 0.400 0.411 0.404 0.400 0.409 0.399 0.396 0.398 0.445 0.398
(0 .0 0 2 ) (0 .0 0 2 ) (0 .0 0 2 ) (0 .0 0 2 ) (0 .0 0 2 ) (0 .0 0 2 ) (0 .0 0 2 ) (0 .0 0 2 ) (0.004) (0 .0 0 2 )

p ( y , i ) 0.994 0.994 0.994 0.994 0.994 0.994 0.994 0.994 0.990 0.994
(0 .0 0 0 2 ) (0 .0 0 0 2 ) (0 .0 0 0 2 ) (0 .0 0 0 2 ) (0 .0 0 0 2 ) (0 .0 0 0 2 ) (0 .0 0 0 2 ) (0 .0 0 0 2 ) (0 .0 0 0 2 ) (0 .0 0 0 2 )

p{y,<i ) 0.229 0.248 0.236 0.226 0 .2 0 1 0 .2 2 0 0.217 0 . 2 2 0 0.157 0.218
(0.008) (0.008) (0.008) (0.008) (0.007) (0.008) (0.007) (0.007) (0.006) (0.007)

Freq(A > 0) 9.67 10.92 10.11 9.73 8.08 9.31 9.04 9.31 4.53 9.17
(0.39) (0.41) (0.40) (0.40) (0.36) (0.39) (0.38) (0.39) (0 .2 2 ) (0.39)

Notes: (i) Statistics shown are averages from samples of length 114 replicated 500 times, (ii) Freq(A > 0) indicates the per cent rate at which the constraint 
binds across samples, (iii) Numbers in parenthesis are Monte Carlo standard errors, (iv) See the text for a description of the asterisk notation used for the PEA 
entries in the table, (v) FEM-C stands for FEM-Collocation and FEM-G stands for FEM-Galerkin. (vi) The ordered triplets is the Spectral-Galerkin columns 
correspond to (N(cr), N ( —a), N x).
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F i g u r e  2 a .  E u l e r  r e s i d u a l s  f o r  P E A  a n d  S p e c t r a  1 - G a l e r k i n

Reversible Investment Reversible Investment Irreversible Investment  Irreversible Investment

PEA: 75 = a PEA: $ = - a PEA: = a PEA: = —a
to oo «-

Capital Stock 1 Capital Stock 1 Capital Stock 1 Capital Stock

Spect ral  —Galerkin: 1$ = cr Spect ra l -Galerkin: = - a Spectral  —Galerkin: = a S p e c t r a l  —G a le rk in : =  — cr

22 26 30 34 38 42 22 26 30 34 38 42
Capital Stock Capital Stock

o oo

C a p i t a l  S t o c k
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FEM— Collocation: 'O = a

F i g u r e 2 b .  E u l e r  r e s i d u a l s  f o r  F E M - c o l 1 o c a t i o n  a n d  F E M - G a l e r k i n

Reversible Investment Irreversible Investment Irreversible Investment

FEM-Crelocation: = —a FEM —Collocation: ^ FEM—Collocation: = —a
lnc\j lOCM

FEM — Galerkin: = a FEM-Galerkin: a? = —a FEM-Galerkin: $ = a FEM-Galerkin: = — a
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F i g u r e  3 .  P o l i c y  f u n c t i o n s  i m p l i e d  b y  D y n a m i c  P r o g r a m m i n g  a n d  S p e c t r a l - G a l e r k i n

Investment Rule: = a Unconstrained Investment Rules: = a Constrained Investment Rules: $ = o

Capital Stock
Investment Rule: = -cr

Capital Stock
Unconstrained Investment Rules: = -a

C a p i t a l  S t o c k

Constrained Investment Rules: # = -a
lO lO

A Rule: 7? = -a
1 1 1 1 1 p

X'

--- Unconstrained--Constrained

2 1  2 3  2 5  2 7  2 9  3 1  3 3  3 5  3 7  3 9  4 1

Capital Stock

A Rule: = — cr
ro
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Unconstrained Investment Rule
i9 = <J

-i? = a

= a

C a p i t a l  S t o c k

-0
.1

5 
0.0

5 
0.2

0 
-0

.1
5 

0.0
5 

0.2
0 

-0
.1

5

Unconstra ined Investment Rule 
= — a

R u l e s  i n  t h e  R e v e r s i b l e  I n v e s t m e n t  e c o n o m y

21 23 25 27 29 31 33 35 37 39 41
Capital Stock

Unconstra ined Investment Rule 
= — a

21 23 25 27 29 31 33 35 37 39 41
Capital Stock

Unconstra ined Investment Rule
i? = — a

21 23 25 27 29 31 33 35 37 39 41
Capital Stock
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F i g u r e  5 -  P E A  v e r s u s  S p e c t r a l - G a l e r k i n  I n v e s t m e n t  a n d  L a m b d a  R u l e s  i n  t h e  I r r e v e r s i b l e  I n v e s t m e n t  E c o n o m y

Constra ined Investment Rule 
rd =  o

Constra ined Investment Rule 
45 = -  a

Constra ined X Rule 
45 = — a

Capital Stock

Constra ined Investment Rule 
1? = a

CN

Capital Stock

Constra ined Investment Rule
45 = <7

23 25 27 29 31 33 35 37 39 41
Capital Stock

Capital Stock

Constrained Investment Rule 
45 = —a

Capital Stock

Constrained Investment Rule 
45 = - a

C a p i t a l  S t o c k

CN

Capital Stock

Constra ined X Rule 
45 = — a

CN

Constra ined X Rule
45 = — <7

CM

C a p i t a l  S t o c k
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W orking P aper Series
A series of research studies on regional economic issues relating to the Seventh Federal 
Reserve District, and on financial and economic topics.

REGIONAL ECONOMIC ISSUES

Estimating Monthly Regional Value Added by Combining Regional Input
With National Production Data
Philip R. Israilevich and Kenneth N. Kuttner

WP-92-8

Local Impact of Foreign Trade Zone 
D avid  D. Weiss

WP-92-9

Trends and Prospects for Rural Manufacturing 
William A. Testa

WP-92-12

State and Local Government Spending-The Balance 
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Richard H. Mattoon

WP-92-14

Forecasting with Regional Input-Output Tables 
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WP-92-20

A  Primer on Global Auto Markets 
Paul D. Ballew and Robert H. Schnorbus

WP-93-1

Industry Approaches to Environmental Policy 
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D avid  R. Allardice, Richard H. Mattoon and William A. Testa

W P-93-8

The Midwest Stock Price Index-Leading Indicator 
of Regional Economic Activity 
William A. Strauss
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Lean Manufacturing and the Decision to Vertically Integrate 
Some Empirical Evidence From the U.S. Automobile Industry 
Thomas H. K lier

WP-94-1

Domestic Consumption Patterns and the Midwest Economy 
Robert Schnorbus and Paul Ballew

WP-94-4

1

Digitized for FRASER 
http://fraser.stlouisfed.org/ 
Federal Reserve Bank of St. Louis



Working paper series continued

ISSUES IN FINANCIAL REGULATION

Incentive Conflict in Deposit-Institution Regulation: Evidence from Australia 
Edward J. Kane and George G. Kaufman

Capital Adequacy and the Growth of U.S. Banks 
H erbert Baer and John M cElravey

Bank Contagion: Theory and Evidence 
George G. Kaufman

Trading Activity, Progarm Trading and the Volatility of Stock Returns 
James T. M oser

Preferred Sources of Market Discipline: Depositors vs.
Subordinated Debt Holders 
Douglas D. Evanoff

An Investigation of Returns Conditional 
on Trading Performance 
James T. M oser and Jacky C. So

The Effect of Capital on Portfolio Risk at Life Insurance Companies 
Elijah Brewer III, Thomas H. Mondschean, and Philip E. Strahan

A Framework for Estimating the Value and 
Interest Rate Risk of Retail Bank Deposits 
D avid  E. Hutchison, George G. Pennacchi

Capital Shocks and Bank Growth-1973 to 1991 
Herbert L. Baer and John N. McElravey

The Impact of S&L Failures and Regulatory Changes
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Elijah Brewer and Thomas H. Mondschean
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Working paper series continued

Stock Margins and the Conditional Probability of Price Reversals 
Paul Kqfinan and James T. M oser

Is There Lif(f)e After DTB?
Competitive Aspects of Cross Listed Futures
Contracts on Synchronous Markets
Paul Kojman, Tony Bouwman and James T. M oser

Opportunity Cost and Prudentiality: A Representative- 
Agent Model of Futures Clearinghouse Behavior 
Herbert L. Baer, Virginia G. France and James T. M oser

The Ownership Structure of Japanese Financial Institutions 
Hesna Genay

Origins of the Modem Exchange Clearinghouse: A History of Early 
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