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Abstract
This paper develops a dynamic model of labor hoarding to explain the cyclical 

behavior of total factor productivity. The model features convex costs of adjusting 
the labor force which induce firms to vary the intensity of labor utilization over the 
cycle. In particular, cyclical variations in labor ‘effort’ take place as a response to 
expected future changes in industry conditions. The restrictions imposed by the model 
are tested for several two-digit m anufacturing industries. The estim ated param eters 
are then used to simulate the model in order to evaluate whether it is able to generate 
a response of hours and productivity to aggregate innovations similar to th a t found in 
the data.
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1. I n t r o d u c t i o n
In many industries it is observed that output rises and falls at cyclical frequencies more than 
can be accounted for by changes in measured capital and labor inputs, assuming constant 
returns to scale. This procycl ical  produc t i v i t y  is a long-standing puzzle in the empirical study 
of business cycles. Macroeconomists have proposed a variety of explanations.1 Real business 
cycle theorists interpret the procyclical behavior of measured productivity as indicating 
actual shocks to technology. Others have argued that it reflects increasing returns, either 
internal or external to the firm.

This paper reexamines an old explanation, “labor hoarding” (Solow 1964). It is costly 
for firms to adjust labor hours. Hence they respond to short-run increases in demand by 
obtaining increased effort from their workers. Measured productivity then rises with short- 
run increases in output.

To give structure to this hypothesis, I present a dynamic model of labor demand that 
incorporates costs of adjusting hours and a variable rate of utilization of labor. The aim is to 
explain the procyclical behavior of productivity, and also the observed dynamic correlations 
of aggregate variables with sectoral productivity.

The correlation between aggregate variables and sectoral productivity is of particular 
interest because it allows one to discriminate among alternative possible explanations of the 
correlation between sectoral productivity and sectoral output. If one assumes that true tech
nological progress should be uncorrelated across sectors, an association between aggregate 
activity and productivity in an individual sector can be taken to indicate that true shifts in 
technology are not the cause. Furthermore, if, as found in Caballero and Lyons (1990, 1992), 
aggregate activity continues to predict sectoral productivity when sectoral input growth is 
also an explanatory variable, one can also exclude explanations, such as the hypothesis of 
internal increasing returns, that imply that measured productivity should vary whenever the 
scale of sectoral activity changes. Caballero and Lyons interpret their findings as evidence of 
external effects of activity in other sectors on the production possibilities in a given sector. 
Here I show that labor hoarding is also a possible explanation for their findings.

'Among the most recent contributions, see Abbott-Griliches-Hausman (1988), Bernanke-Parkinson 
(1991), Ilall (1987,1989), Gordon (1990), Caballero-Lyons (1990, 1992), Baxter-King (1991), Basu (1993).

1

Digitized for FRASER 
http://fraser.stlouisfed.org/ 
Federal Reserve Bank of St. Louis



The idea is that aggregate variables may enter significantly in a sectoral production- 
function regression not because of any true production externality, but because they act as 
proxies for an omitted variable in the sectoral production function, sectoral labor utilization. 
In my model, sectoral output depends upon the effective labor input, defined as reported 
hours times an unmeasured utilization rate. I show that variations in aggregate variables 
may provide information about this utilization rate beyond what can be inferred from the 
measured sectoral inputs. The reason is simple. Firms tend to ‘hoard’ workers when pro
duction is temporarily low. This under-utilization of workers may take the form of variation 
in work effort, of the kind reported by Schor (1987), or variations in the number of workers 
assigned to non-production tasks, such as maintenance and training, as in Bean (1989). As 
a result, expectations about how future output and employment in a sector will compare 
to present levels are an important determinant of labor utilization. Aggregate variables are 
relevant to this decision problem because they help to forecast future conditions in the sec
tor. In particular, if a higher growth rate of an aggregate variable forecasts lower growth of 
sectoral employment in the future, then this aggregate variable should affect measured sec
toral productivity positively. For in this case, firms subject to costs of adjusting employment 

would prefer a higher present level of utilization of a smaller number of workers.
Not only can the model account for an association between aggregate variables and sec

toral productivity, but it can account, at least roughly, for the dynamic response of sectoral 
productivity to an innovation in aggregate output or aggregate consumption. In Sbordone
(1993) 1 studied the dynamic response of productivity in the two-digit manufacturing in
dustry to fluctuations in the output of the whole manufacturing, and found that permanent 
increases in aggregate output result in permanent increases in sectoral output, but only a 
transitory increase in sectoral productivity (with the effect largely reversed after the first 
year). This discrepancy between the time patterns of the response of sectoral output and 
productivity again indicates that internal increasing returns alone cannot explain the pro
ductivity response. Similarly, the discrepancy between the time patterns of the response of 
aggregate output and sectoral productivity means that the hypothesis of a simple, contem
poraneous external effect of activity in other sectors (as in the model of Baxter and King 
(1991)) cannot account for it. Here I show that a labor hoarding model can account for this 
aspect of sectoral productivity variations as well.

The model describes the behavior of an individual industry. The empirical application
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is to the two-digit sectors of U.S. manufacturing. The model is empirically evaluated along 
two dimensions. First, I estimate the first order condition of the firm’s cost minimization 
problem for a number of sectors, test whether the restrictions they impose on the data 
hold, and whether significant costs of adjusting hours, relative to the cost of increasing 
labor utilization, are found. Secondly, I evaluate whether the model correctly predicts the 
measured response of sectoral total factor productivity to aggregate innovations. The model 
evaluation is based on a simulation exercise, in which some parameters are determined by 
direct estimation.

The structure of the paper is the following. In section 2 I describe the model and the 
strategies for its evaluation; in section 3 I present the Euler equation estimates and relate 
the results to previous literature on adjustment costs. Section 4 discusses the simulated 
response to an aggregate innovation, and section 5 concludes.

2. T h e  m o d e l
Consider a sector i of the economy, in which a representative firm chooses inputs to use in 
production, while facing each period a stochastic shock to its technology. The labor input L 

(elfective hours) is composed of measured hours II and unobserved efTort e: L =  c H . The 
production function is

Qu  = F ( h ' u , e ltHu Q, t ) (2.1)
where c1( is the rate of utilization of labor (effort) and 0 I( is a labor-augmenting technological 
change. While 0 i( need not be stationary, I assume that y Qt =  0 !t/ 0 , i(_i is a stationary 
variable. F  is assumed homogeneous of degree ij in I\ and (e H Q ), so I write

Qi t /K?t  =  f ( e itH itQ tt/ K i t) (2.2)

Firms face technological costs in changing the number of workers or of hours. I write 
total labor costs as (for ease of notation, I omit the subscript i from now on)

C t =  W t H t ( g ( e t ) +  \ ( H t / H t_ l ))

where 11 ( denotes the wage level and g(  ) indicates the proportional increase in the cost 
of hours that are more fully utilized. The function A( ) represents the increase in costs 
associated with rapid adjustment of the labor force. For simplicity, I consider the case of
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adjustment costs related only to the change of the current level with respect to the previous 
one. One way to interpret this component of the total cost is that it represents the cost of 
training new workers. Therefore this cost goes up with the wages to be paid for the hours 
of training.

I assume that g{ ) is a positive and strictly convex function, and that H X (  ) is a non
negative, convex function of H .  To get to the restricted cost function (i.e., the minimum 
real expenditure on the variable input, conditional on the quantity Q  to be produced, the 
capital K  and the quasi-fixed factor H )  I solve eq. (2.2) for effort, getting

e, =  T r k t ‘f [ Q , I K 7 )  (23)
where ip{ ) is the inverse of / (  ), and substitute this value into the cost function to obtain

C ( H t , H t. u K t , Q u Q u W t ) =  W tH t

The assumptions made above on the functions g  and A are sufficient for this cost function 
to be convex in H t and H t~ i-

A necessary condition for the firm’s cost minimization problem is to choose the sequence 
{III}  to minimize the expected sum of discounted costs

H t + j - 1 > h t + j ,  Q t + j i  W ' t + j ) }
J=0

where R  represents a real discount factor ( R  =  1/(1 + r), and 0 < R  <  1) and E t denotes 
expectations conditional on knowledge of all the variables up to time t. The Euler equation 
for this problem is

C l i l h .  //(_]. h ’t . Q t . Q t ,  Ur() + R E t  [C2( H t + u H t , K t + u Q t + u Q t+1, W t + l )] =  0 (2.4)

for all t. To find a stationary solution, I transform the variables in order to eliminate the 
sources of non-stationaritv (which are in the H,  K  and Q  processes). I define the following 
variables

= Q t / K ’t ,  7/k = H t / H t - u  l i t  =  K t / K t - U l e t  =  0 , /0 ,- r ,  u t =  W t / Q t , Kt =  K t / H t O t

and rewrite the problem in terms of these variables. The firm chooses processes {7/u, n t ] to 
minimize the expected sum of discounted costs (per unit of initial capital)

OO
^ 5 = 0  7fc(t+s)] C  & t + j i

3 = 0
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(2.5)

where C  (7 h i « , x , « )  =  ^ [ g  (ay? (x ) )  — A (7 *)], su bject to  th e  ev o lu tio n  eq u ation

1 / «t-i7fct 
Iht V 'let

and taking as given stationary stochastic processes for the evolution of the variables {7©t,xt, 7fc*,u>t}.
The optimal choice of (7 will then be a function of (/ct_ i,7et,x t, 7*t,w<) and the 

conditional probability distribution at time t for the future values of (7©«+j, x t+ j , i k t + j , ̂ t + j ) 

for all j  >  1 . Given the assumption of stationarity for the driving processes {7©t, xt, 7a , wt}, 
it follows that {7/,t, a() will be stationary stochastic processes as well. These will satisfy an 
Euler equation of the form

ujt [g (Ktp  (xt)) + A (7ht) -  [a,v? (x,)] g' ( n t<p ( x t ) 

—R E t ojt+i j 0 t+i (7/if+i)2 A'('fht+i)
) + I h t X  (7a<)] 
= 0 (2.6)

If we assume that all information at time t about both current and expected future 
values of the variables {7©f+j, X t + j ,  ' f k t + j , ^ t + j }  can be summarized by a finite vector of state 
variables z t (which includes among its elements 7 0 .r<, ~,tt. ^t ) .  and furthermore that {-(} is 
a stationary Markov process, then we can write the optimal decision rules in the form

7 ht = r h (Kt. U Zt)
Kt — 'k (a'(-i 5 ~t)

These functions, together with the process {~<}, describe the evolution of the complete set of 
stationary variables with which we are concerned. Note that stationary processes for {/c(,x t} 
imply stationary fluctuations in effort, since

e( — Kt ip(xt) 0“-7)

I characterize these decision rules by taking a log-linear approximation for the functions 
f/i and »k in the neighborhood of a constant vector ( k * , z * )  such that the unconditional 
mean of log z t is log z ”, and a-* = (a*, z * ) . If the fluctuations in the variables log z t around
their mean values are sufficiently small, the log-linear decision rules will provide an adequate 
approximation to the equilibrium dynamics.

To guarantee that a solution for a* exists, I make the following assumptions (detailed 
proof is given in appendix Al):

(i) g(c)  goes to infinity as some finite upper bound for e is approached, which implies that 
ci l , ( c ) / 9 ( c ) is a monotonically increasing function, varying between 0 and +00 as e varies 
between zero and its upper bound;
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(ii) A (7^) and A' (7^) are both equal to 0 - the interpretation of this assumption is that 
adjustment costs reach their minimum value of zero when growth of hours is at the steady 
state rate.

To characterize the decision rules, I first assume that the Markov process for log Zt is a 
linear autoregressive process of the form

z t+i =  V z t +  v t+ i  (2.8)

where z t denotes log ( z t/ z *), and {t>t} is a vector white noise process. (I will from now on 
consistently use a hat to denote the percentage deviation of a variable from its steady state 
value.)

Then, I obtain a similar log-linear form for the evolution equations for {7h t , Kt}  by a 
log-linearization of the Euler equation (2.6) and the evolution equation for k (2.5) around 
the steady state solution. These are respectively

a 0 Q t  —  Oi\ +  Q'2 7At ~  q 4 — a 3 E t l h t + i  =  0 (2-9)

and

K t  =  K t _ i  +  7 fct -  7 h t  -  l & t  ( 2 . 1 0 )

where the coefficients a are defined by 2

00 =  g («V  (*“)) -  [«V (•»*“)] 9' («V  (*"))

Oj = ( l i f  (2.11)

o, = [ - . - v b - M V b v  Or-))

Finally, I solve eqs.(2.9) and (2.10) for the evolution of (77̂ ,^ ) ,  taking as given the 
evolution of the vector z t (eq.(2.8)) and initial values (ac_i , z^)'. Specifically, defining y t+1 = 

I write the system of equations (2.9), (2.10) and (2.8) compactly as

A E t  y t+1 — B y t (2.12)

Given (A7_!,3f)', I solve for 7 /̂  and tct as functions of (£*__!, 3*): these solutions are the 
linear approximations to the functions and ^.(Details of these derivations are given in 
appendix A2.)

2Note that in the derivation of eq.(2.9) the terms in Et u>t+1 and Et yet+i cancel because their coefficients 
depend upon A(~;/*) and A'(ŷ ) which I assumed to be 0. Also, as explained below, qq=0.
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Before turning to the implications of these solutions, I want to suggest the following 
interpretation of the Euler equation (2.9). A log-linearization of the effort equation (2.7) 

gives
e t =  K t +  £*^-7 — r H— - %t (2.13)

tp (x*) a 4

Therefore, the Euler equation (2.9) can be written as

a 0u>t -  a 4et +  oi2lht ~  03^ 7/it+i =  0

which, using the fact that a o=0  and a 2 is approximately equal to a 3, gives the behavior of 
effort in terms of the expected deviation of future hours growth from current growth

e t =  - ^ ( E r , h t + i - % )  (2.14)
o4

This interpretation shows that current deviations in effort are negatively related to ex
pected future growth of hours. The intuition for that is that when hours are expected to 
grow, firms start to increase labor today (the marginal cost of increasing labor is lower to
day, taking into account the reduction of future adjustment costs), so decreasing effort today. 
The slow response of labor to cyclical variations, due to costs of adjustment, generates an 
immediate response of efTort, which is the most variable factor.

1 now consider the implications of the derived solution for the co-movemeilts of the 
observable stationary variables

t’f =  [')/.(• Xf. ~ k t -  "Ml]

where by {'u<} I denote a vector of stationary aggregate variables which belong to the 
vector z t and therefore provide information about the future evolution of the variables 
{ • t ' t + j - Note that neither 7© nor aq, which are components of the vector z ,  are 
among the observables.3 This means that I cannot directly conduct tests on the functions 
f/, and 4'.

I can. however, test certain implications of the model about innovations in the aggregate 
variables, if I make further assumptions about the process { z t } . Specifically, I now assume

31 cannot take the sectoral Solow residuals to be a measure of 7© because it neglects the existence of 
variations in labor effort. Furthermore, as is discussed further below, I do not necessarily wish to assume 
that firms are competitive, so that factor shares in total revenues need not represent production function 
elasticities as it is assumed in the construction of Solow residuals.
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(i) that the evolution of the aggregate variables is independent of sector-specific shocks 
(in particular, of sectoral technology shocks), so that I can write

lA t = W ( L ) 7 A t - l  + VAt

where W ( L )  is a finite-order matrix lag polynomial, and the vector white noise VAt is inde
pendent of the sectoral shocks;

(ii) that sectoral technology 0 ( follows a random walk, so that I can write

l e t  — v e t

where VQt is a white noise variable, independent of VAt, and also independent of ^ - i) .
With these assumptions, I can try to assess whether this model is able to explain the 

procyclical behavior of productivity observed in the data. Specifically, I try to see if the model 
is able to replicate the dynamic response of sectoral variables to aggregate innovations, so 
that the mechanism of labor hoarding and varying labor utilization works as an important 
propagation mechanism of aggregate perturbation. Before turning to this experiment, the 
next section explains some direct estimation of the model.

3, E u l e r  E q u a t i o n  E s t i m a t i o n
Tables A1-B3 present estimates of the Euler equation (2.9), with a test of the moment 
conditions and the restrictions imposed on the parameters, for a number of two-digit sectors 
of the manufacturing industry.4 While these estimates provide a first test of the model, they 
are essentially aimed at recovering some parameters to be used in the simulation below. The 
particular parameter of interest is the coefficient on future hours 0:3, which I will call the 
adjustment cost parameter5.

In order to deal with an equation in observable variables, I take first differences of eq.(2.9) 
-  after dividing through cvi -  and obtain a relation among the rate of growth of output, 
capital, hours and wages

\ q t  — ttqAht — — E t ~ \A/i^) + ^ A kt + ^A ti^ +  7TqEt (3*1)

4 Appendix B contains a description of the data used. The selection of the actual sectors investigated is 
based on the extent to which various sectors show cyclical behavior of productivity.

0Below I will also denote the ratio 03/01 as the adjustment cost parameter. This ratio more properly 
denotes the cost of adjusting hours relative to the cost of increasing labor utilization.
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where 7T0 = (ar2 +  <*4)/a:i, ^2 = <*2/<*i 5 ™z =  03/ ^ 1 , 7T4 = J? — a 4 / a u  =  ao/0* 1 , ^6 = 
(0:4 — ao)/«i, and e( =  log7©t. Using the fact that Afot = E t- i A h t +  t/kt, and setting 
7rx = 7To + x3, I write this equation as

Aqt =  XX A/it -  7T2Aht_i -  7T3E tA/l(+i +  W4A k t +  7T5AW t +  U t

where the error term u t includes Vht, the time t  — 1 forecasting error for A h t . I estimate this 
equation through an overidentified linear GMM procedure, instrumenting current and future 
variables on the right hand side with variables in the information set which are uncorrelated 
with the error term. The estimates are obtained under three restrictions imposed by the 
model on the parameters x. First, because the stead}' state level of effort is at the point of 
unitary elasticity of the function g  (see Appendix Al), the parameter aq =  0, and therefore 
x5 = 0.6 Second, when the rate of growth of capital is sufficiently small, and the discount 
factor approximately equal to one, a 2 is approximately equal to a 3. Third, the ratio 04/04 = 
ijSjj. where s// is the share of labor in total costs (s h  = wH+rK )• This last equality follows 
from the definition of o4/o ,.

From (2.11) 04/04 = [-*'*T̂ 7y] and from eq.(2.3) we have that <p(x) =  e H Q / K .  There
fore

?'(*") _ d \ o g ( Q / K * )  1-1 r (c / /© /A ')/'i
<?(*“) rflog(e//0/A')_ Q !  i< n

(3.2)

where the second inequality follows from eq. (2.2). The value of the numerator can be 
derived from the condition 1 hat the cost-minimizing choice of (K, II) satisfy

d Q / O K  = f i r  

d Q / d l l  =  / i w

for some ft >0.‘ From the definition of / ,  these two conditions are respectively

1]KV- i f  _  A ' V ' ( ^ )  = f i r

and

6This restriction is driven by the form of the cost function, where the wage enters multiplicatively. 
However, it does not mean irrelevance of the wage process, since the choice of labor is conditioned on a given 
output.

'// indicates the degree of mark-up pricing (// = P /M C ) .  There is some empirical evidence of a quite 
large degree of market power in several sectors of the manufacturing industry (see Hall (1988) and Domowitz, 
Hubbard and Peterson (1988)). Hall’s estimates, for example, show a particularly high mark-up for sectors 
like Papers, Chemicals and Primary Metals.
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s o  t h a t ,  m u l t i p l y i n g  t h e  f i r s t  b y  K  a n d  t h e  s e c o n d  b y  H, w e  g e t

*)Knf  — — ftrK

and

These two expressions allow to derive the value of the elasticity of supply to effective labor 

in (3.2). The ratio =  hJ h + ^ k  =  so the ratio a * / a i=V*H-  This makes ir4 =

rf — a 4/a i  = 77 — tjsh =  V^Ki where s k  is the share of capital in total costs (s k  =  —
Moreover, the definition of the i t s  implies that ir\ +  7t4 — (7r2 +  7t3) =  tj . This constraint, 

together with the derived expression for 7t4, can be written as

[7Ti — (T2 + 7I’3)]s/v — *4Sh (3.3)

Alternatively, noting that

w H  + r l \

Q

/
Q / K * = V

one can use the relation between shares in total revenue and shares in total costs

s k

S//
rK __ ELK — E ct-

w H + r K  7} Q  7]
w H  _  u w H  _  E S f f

w H +r/\ Tj Q 7] H

to rewrite 7t4 as 7r4 = j t s k  =  ij — f i s n ,  and the constraint (3.3) as

[~1 — (" 2  +  ~3)] (1 — ~ S //)  — 7T4( — S h )
v  n

In the estimation below I therefore impose and jointly test the restrictions that 7Ts(= 
o-o/o-i) =  0, ~2(=  o2/o i)  =  ~3(= 0 3 / 0 1 ), and that 7Ti — ( tt2 +  7r3) +  tt4 =  tj . To impose the 
last constraint, I first consider the case of constant returns to scale, i.e. I set rj =  1 , and 
allow two possible market structures. In table A1 I also set the mark up j i  equal to 1 (perfect 
competition case), which means that the coefficient of capital is 7t4 =  1 — s //. In table A2 

and A3 I allow some degree of market power. In table A2 I report the estimation where the 
mark up // takes its maximum value of l /s # , obtained by imposing 7t4 = 0. In table A3 I 
impose - 4 to be equal to the average of the two boundary values, 0 and (1-s#). Secondly, 
to allow // to be different from 1, I impose that [7Ti — (ir2 +  7r3)](l — ^s//) =  tt4(^s//) and 
use the bounds on the possible levels of pure profits (the ratio j t j r j ) .  For profits to be non

1 0
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negative, h / t] >  1 . For r  to be non negative, fx/ij is bounded from above by the inverse of the 
labor share. In the case of non constant returns to scale I therefore perform the estimation 
assuming in turn for yu/77 the two boundary values, 1 and l /s # , and an intermediate value 
chosen as the simple average of the two boundary values. In table B1 I report results of the 
estimation under the hypothesis that there are no pure profits. Table B2 gives the results 
of the estimation obtained assuming that \ifrj have the maximum value of 1 / $ h , while table 
B3 assumes for n/r i  the mean value of the interval [1, 1 / s h ] for all sectors.

Each table reports the estimated parameter values, the statistic J to test for the overiden
tifying restrictions, and the statistic D, constructed as the difference between the J statistic 
of the restricted model and the J statistic of the corresponding unrestricted, which tests the 
joint restrictions on the parameters.8

On the basis of these two statistics alone it would be hard to reject any specification of 
the model. However, in basically all the sectors the hypothesis of constant returns to scale 
cannot be rejected.

Looking first at the tables A1-A3, the adjustment cost parameter is estimated quite pre
cisely in all the experiments, and it is significant in all the sectors in the perfect competition 
model, and in about half of the sample in the case of constant returns-maximum mark up 
model. Its size is decreasing in the amount of mark up allowed, but it remains significant in 
all sectors when an intermediate mark up is allowed. The mark up estimated in the model, 
however, at most ranges between 1.3 and 1.8 across the sectors.

In the B tables, where the hypothesis of ?/=l is released, although the results do not 
suggest rejection of the restrictions, the implicit estimate of 7/ turns out to be either very 
dose to 1, or such imprecisely estimated that one cannot reject the hypothesis that it is equal 
to 1. By the way, in no case increasing returns are found. As in the constant returns case, 
the size of the adjustment cost parameter is inversely proportional to the allowed degree of 
departure from competition, being the highest in the case of zero pure profits. Overall, this 
parameter point estimate is higher than in the case in which returns to scale are constrained 
to be constant.

As a whole, these results suggest that, for most sectors, the theoretical framework of 
adjustment costs and variable rate of utilization for labor is a sensible mechanism to model

sTliis is analogous to the test based on the difference between the restricted and unrestricted sum of the 
squared residuals. See Newey-West (1987) for the discussion of this statistic.
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the dynamics of labor demand. Whether allowing or not for a moderate degree of market 
power, the model fits the data pretty well.

The estimate of a positive adjustment cost in the manufacturing industry is in line with 
other models in the literature (for a survey see Nickell (1989)). By using a convex cost of 
changing hours from one period to the next, this model is similar to those estimated, for 
example, by Pindyckand Rotemberg (1983), Sargent (1978), Shapiro (1986) and Sims (1974). 
However, here the introduction of a labor utilization parameter modifies the form of the 
production function. The projection of the labor utilization rate onto the space of variables 
known at the time of decision making introduces dynamic elements in the production function 
itself.9 Although I do not choose any specific functional form for the cost function, I am able 
to test whether there are significant costs of adjusting hours relative to the cost of increasing 
labor utilization.

Other authors have also studied models in which output does not depend solely upon 
the total number of man-hours employed. For example. Bils and Cho (1993) assume that 
increases in the number of employees and increases in the hours worked per employee affect 
output differently, while Hansen and Sargent (1988) assume that increases in straight time 
hours and increases in overtime hours have different effects. In these models, cyclical shifts 
in the composition of total man-hours are predicted, due to differential adjustment costs 
associated with the two margins, and the composition variable is essentially an omitted 
variable in the standard aggregate production function (relating output to man-hours), like 
the ‘'utilization rate*’ in the present model. Thus the qualitative implications of models of 
those' types are quite similar to those of the model presented here. The difference is primarily 
that those models suggest a particular measurable aspect of the labor input that could be 
used to eliminate the omitted variable problem, while the model presented here (that is more 
general) docs not commit itself to any particular source of utilization variations, and thus 
must use a more indirect estimation strategy to deal with the omitted variable problem.

A dynamic similar to the one considered here could be generated as well by a model 
where what changes in response to increases in demand is instead the utilization rate of 
capital. If direct observations on capital utilization are not available, this coefficient may be

9Because few statistics on labor utilization are available (for the U.K., there is a study by Schor (1987), 
while Shea (1990) tries to construct a series for the U.S. using accident rates), some authors have used 
variables that they argue are proxies for effort, as overtime hours (Caballero-Lyons (1992)) or the number 
of hours per employee (Abbott- Griliches-Hausman (1988) and Eden-Griliches (1993)).
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solved for in terms of observables in the same way I do for labor in this paper. Although 
disentangling the two mechanisms may be worth investigating, if one makes the reasonable 
assumption of complementarity between bodies and machines (a more intensive utilization 
of machines requires more human effort) the results of that more general model would go in 
the same direction.10

Finally, note that the lag structure of eq.(2.9) depends on the specification of the adjust
ment cost. Were the costs associated to adjusting hours spread over more than one period, 
that equation would have a longer lag structure.

With this first assessment of the model, I now proceed to explore whether it may also 
be the case that aggregate variables act as a proxy for the unobserved rate of utilization of 
labor in the industry sectors. For this I conduct a simulation as described below, using in 
turn the sets of estimated values for the structural parameters Q3/Q1 and 0-4/01 that I just 
described. Because of no evidence in favor of departure from constant returns, I will limit 
the simulations to the case of r/ = 1 .

4. S i m u l a t i o n  o f  t h e  M o d e l
In this section I investigate whether the dynamic response of sectoral hours and productivity 
to aggregate innovations, generated by the model, traces the one generated by a simple vector 
autoregressive model fitted to the data. As aggregate variable (the one indicated by 74 in 
the model) I chose aggregate consumption of non durables and services, which has two 
characteristics. First, it does forecast sectoral activity -  below I show evidence on this, for 
t he sectors under study. Secondly, it can be plausibly assumed to be uncorrelated with the 
unobserved technology of the sector, so to satisfy the assumption I made for the variable 
7.4. Finally, because consumption is non stationary, I can interpret the response of the 
sectoral variables as responses to a permanent aggregate shock, and, as the discussion in 
the introduction showed, this model implies that there should be no long run response to 
persistent aggregate shocks.

The hypothesis of the model is that the variable rate of utilization of labor is the main 
factor driving the cyclical behavior of total factor productivity and it is able to explain the

10The complementarity assumption is made, for example, by Abbott et al. (1988), who use hours per 
employee as a proxy for both capital and labor utilization. Shapiro (1993) uses a direct measure of the 
workweek of capital, from an unpublished panel of observations at plant level, to show that a variable 
workweek of capital solves the puzzle of procyclical total factor productivity.
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transitory response of productivity in a sector to shocks to aggregate activity.11 Figs. 1-10 
show the result of the analysis performed on the same two-digit sectors of the manufacturing 
industry analyzed in the previous section.

I first fit for each sector a VAR (1 ) to a four dimensional vector including aggregate 
consumption and capital, hours and output of the sector. In the estimation I impose the 
cointegrating restriction that the capital/output ratio in the sector is a stationary variable. 
This is consistent with the estimation results that show no significant evidence of departure 
from the constant returns to scale assumption. Aggregate consumption, capital and hours 
in the sectors are modeled as 1(1) processes.12 The vector of variables t/,< is therefore defined 
as i/it = [Ac(, qlt — kit, A k a ,  A h a ]  , where lowercase letters denote natural logarithms. To 
support the choice of consumption as an aggregate variable, I perform a block exogeneity test 
to assess whether aggregate consumption forecasts sectoral activity. Results of this test are 
reported on table C. The hypothesis that aggregate consumption does not forecast sectoral 
variables is strongly rejected in all but two sectors (non electrical and electrical machinery). 
However, since the coefficient on lagged consumption in the equation for hours is significant 
also for these two sectors, I conduct the simulation exercise for these two sectors as well.

From the estimated VAR 1 compute the dynamic response of aggregate consumption, 
capital, hours and output/capital ratio in each sector to a unit innovation in aggregate 
consumption. Part a) of each figure (upper left corner) graphs the cumulative responses of 
these variables together with the implied response of total factor productivity (TFP) -  which 
is the cumulate of productivity growth as measured by the Solow residuals.

'Plie evidence from these figures is that a positive unit innovation in consumption raises 
its level, and has a significant and positive long lasting effect on both capital and hours. 
It al so affects total factor productivity (although in few sectors I cannot exclude that the 
impact is not significantly different from zero). This effect, however, is very short-lived. 
Productivity tends to return to its steady state value of zero within at most two periods 
from the shock. The impact effect has the highest coefficient in all the sectors but primary * 1

11 As a first approximation, I assume that the time interval in the model is a year, so that the generated 
time series are annual observations: this allows a direct comparison with the dynamic pattern estimated on 
annual data (the only frequency available for sectoral data on capital and value added). A more interesting 
model may be written for a time interval of a quarter or even a month. This is under investigation, to match 
other empirical facts that emerge from higher frequency data.

1 ̂ Standard unit root tests are conducted to justify the specification of the model in first differences; a 
two-step cointegration test is also conducted to test for the stationarity of the output/capital ratio.
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metals, where the response peaks instead at lag 1 .
These are the ‘facts’ that I want the model to be able to explain. According to the model, 

the behavior of productivity reflects short-run variation in effort. As a consequence, varia
tions in productivity should be larger in sectors with higher adjustment costs (like Chemicals, 
Paper, Primary Metals) and for which aggregate consumption has higher forecasting power. 
I turn therefore to discuss the model implications of a unit innovation in consumption.

To simulate the model response to a unit aggregate innovation, I do the following. For 
each sector i I estimate the matrix V  in the system

Zit+1 = Vzi t  +

in which the vector is defined as { x lt. 7^ , 74;). and compute the impact response of the 
variables in z  to a unit innovation in 74.

1 then find the unstable root of the matrix A ~ l B  and compute the associated left eigen
vector e. To do this, I assign to the elements of A-1  B  (the structural coefficients a) the values 
1 estimated for the Euler equation (below I will be more specific about which parameters I 
pick for each exercise).

Finally, I solve for 7 as a function of (k,(-i , •?,<)• Specifically, this is 

“//if = —C.V2««-1 ~ cA'3?i( — C,Y47It ~  eA'57At

where <\\j (j  — 2. ..5) are the normalized (by dividing through c.j) elements of the vector e13.
Substituting this value in eqs.(2.9) and (2.10) 1 compute 7)it+1 and all future values for 

20 periods. 1 call 5/u+j (j = l.--20) the '‘simulated” response of hours in the model to a unit 
innovation in 7.4. The response of capital and output is computed analogously. Finally, 
the simulated TFP is the cumulate of the Solow residuals constructed from the computed 
responses of output, capital and hours.

The evaluation of the model is then based on a comparison of the impulse response 
derived from the VAR fitted to the data and the one computed from the model solution.

Given that I want to focus on the ability of the model to replicate the behavior of hours 
and productivity, I graph only the response of these variables. There are three graphs for 
each sector [part b). c) and d) of each figure]. In graphs b) and c) the estimated responses, 
respectively of hours and productivity, are plotted together with the responses simulated

13This is just solution (A.2) of Appendix A.
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by the model under the three different parametrizations discussed in the previous section. 
The lines labeled Modi, Mod2 and Mod3 are the simulated responses under the assumption, 
respectively, of perfect competition, of maximum mark up, and of an intermediate mark 
up value. Using the relations between the a  parameters of the matrix A ~ x B  and the tts 

of the estimated Euler equations { a z /o t i  = tt3 and 014/ 0:1= 1-^4), each simulation uses the 
estimated values of the adjustment cost and the elasticity of supply to effective labor reported 
in tables A1-A3. The thick lines in the graphs are two standard error bands around the 
estimated values.14 The performance of the model is assessed by its ability to generate 
impulse responses that are ‘close’ to the estimated response, in the sense of being within the 
standard error bands.

Part d) of the figures report the simulated response of ‘effort’ under the three model 
parametrizations. In these graphs I include in the legend the value of the mark-up /j, and of 
the adjustment cost 7r3 that characterize each parametrization.

The model performs someway better when some moderate mark up is allowed. The 
ability to trace the pattern of data varies moderately across the sectors. The response of 
total factor productivity is reproduced pretty closely for most of the sectors, while there is 
some overstatement of the short run response of hours in few sectors (chemicals and primary 
metals in particular). The response of ‘effort’ notably depends on the market structure. As 
cq.(2.3) says, e t =  Kt + Xt =  Kt + (1 / f i s n )  x t, so that the cyclical behavior of effort is
decreasing in the degree of mark up. The last two graphs of each picture summarize the trade 
off implicit in the model’s explanation of the productivity behavior. Total factor productivity 
is measured here as15 T F P  =  ysH ^t  ~  (/* — 1 )sH*t-  If p  = 1 its cyclical behavior is totally 
driven by cfTort. With fi >  1 however, since the response of Kt is typically “countercyclical” , 
total factor productivity has a pronounced cyclical pattern even when the effort effect is 
small, and more so depending on the size of p.

Before concluding I want to point out how to translate these results - specifically the 
transitory response of measured sectoral T F P  to aggregate innovations - into a traditional 
production-function regression framework.

Let E t y t+1 =  P[£{_i, z t]' be the solution for the whole vector y ,  and denote by P\, =  { p i j }

l4The standard errors are computed with bootstrapping on 200 simulations.
l5Tliis definition does not include the technology term because of the assumed independence of that term 

from aggregate consumption, which is the only perturbation considered here.
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the first row of the matrix P .16 Then the solution for E ^ h t+ i  can be written as

Et Jht+l = Pi.[«(_!, Z*]' (4.1)

If we restrict the vector z to include only the variables (70 , 2 , 7^,7^), we can explicitly 
write the solution (4.1) and recover the term in expected future hours that appears in eq.(3.1), 
which I rewrite here for convenience

A qt =  7ToA/i( — ir2A/it_i — 7r3(PtA/it+i — E t - \ A h t )  + W4A  kt + ir^Awt + ttq et 

Solving for the term (E tA h t+i — E t ~ \ A h t) using (4.1) we obtain

E tA h t+\ — E t- i A h t — (pi4 — p i 3 ) A k t + (pn — pi4)AA-t_i — pnA /it_i+ ^
P \ z A q t + pi5(Aat — Aa(_i) + pi2£< — (Pn + Pi2)-t-i

Substituting this expression in eq.(3.1) we get a production function that depends on current
and past values of the inputs and also on current and past values of the aggregate variable

A <-/, = d \ A h t + i?2A//(_i + $3AA’< + $4AA’t_i + i)$ (A a t  — A<jj_i) + $6(1 + p L ) s t (4-3)

where the parameters are respectively defined as

$1 = (c>2 + 04)/(Qi + Q'3Pi3)
$2 = (Q3P11 -  Q2)/(ai + 03P13)
$3 =  [01/7 — O 4  — Q 3 ( p i 4  — p i 3 ) ] / ( O j  +  Q'3 p i 3 )

$ 4  =  [ a 3 ( P l 4  “  P l l ) ] / ( « !  +  « 3 P l 3 )  ( 4 . 4 )

$5 = -«3Pl5/(«l + 03P13)
$6 = («4 — C*3Pl2 ) /(ci 1 + O3P13)
P =  [«3(Pll +Pl2)]/(Q'4 -  C13P12)

Eq.(4.2) shows that aggregate variables are correlated with the expected future labor 
growth because they are good forecasting variables. This channel brings them into the 
production-function regression (4.3) with a specific pattern of coefficients: coefficients on 
consecutive lags are the same but have opposite sign, so that the effect in each period vanishes 
in the next. As I show in Sbordone (1993), this is a testable implication in the regression 
analysis context. I argue there that my empirical results do not support the interpretation of 
aggregate variables as a measure of external increasing returns, as in models like Baxter-King
(1991). because they have no long run effect on the level of sectoral productivity.

u“The elements of the matrix P are a combination of the parameters of the optimization and the forecasting 
processes and thereiore, as it is well known in the rational expectations literature, the optimal decision rule 
for 57,( is not invariant to changes in the stochastic process of the forcing variables.
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Moreover, expressions (4.4) show that, in the absence of adjustment costs, because the 
coefficients a? and <*3 are both equal to zero, the parameters t?2> $4 and $5 in (4.3) are all zero. 
Therefore there is no dynamics in the production function regression and no dependence on 
aggregate variables. The intuition for this result is that all the dynamic implications of the 
model come from the movement of effort (see eq.(2.14)). With no adjustment costs there is 
no cyclical variation of effort ( et is always equal to its equilibrium value e*) and, as a result, 
there is no movement in Solow residuals beyond pure variations in technology.

5. Conclusion

In this paper I construct a model of labor demand under the hypothesis that firms, because 
they face some costs in adjusting hours of work, respond to cyclical movements in activity 
by varying the rate of utilization of labor. The purpose of the model is to rationalize the 
observed procyclical movements in total factor productivity, giving at the same time an 
interpretation of the empirical results about the effect of aggregate activity on the cyclical 
behavior of sectoral productivity. This interpretation stresses the information content of 
aggregate variables for the decisions of individual sectors about labor inputs.

The model performs reasonably well. First, its implied restrictions pass the test with the 
data. Second, variations in labor utilization as a response to aggregate innovations generate 
short run dynamics in total factor productivity close to that displayed by actual data.

A. Proofs

A .l. Existence of a steady s ta te  vector ( 7  ̂ , «*).

Consider the case of constant (steady state) values for 7*, 7©, x, and u ,  respectively indicated 
by 7j“. *)0 , .t“ and u>*. In this case there exists a steady state solution in which 7h and k 
arc constant as well (given appropriate initial conditions). I denote these constant values 
respectively by 7  ̂ and k*. The existence of a constant solution for k may be verified from 
the Euler equation. In particular, the Euler equation gives

{9 (KV  (*")) + A (7fc) -  [« V  (**)] 9' ( « V  (**)) + l h  A' (7 h))

or
[K V  (•>•')] 9 ' («■V  M )  = 9  ( « V  (*•)) + A (7 ,*) + 7 ;  A' (7 l) [1 - R  Ye 7fc]

Therefore k " must satisfv

[kVO**")]^ (kV M )  = 1 +
9

A M  , 7fe A' (7^)
g(n*<p(x*))  g  (n*<p (#*)) [1 -  R  71] (A.l)
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where I substituted 7^= 7  ̂ 7@ in the last square brackets. Assumption i) in the text guar
antees that a unique positive solution for k* exists as long as we assume values for 7@ and 
7£ that make the right hand side of this equation positive. By assumption ii) - A (7^) and 
A' (7^) are both equal to 0 - the solution for k * implies that the steady state level of effort is 
at the point of unitary elasticity of the function g, i.e., at the level e* that minimizes g(e)/e, 
as would be optimal in the absence of adjustment costs. The existence of a constant value 
for k , tt* , implies that 7* = 707  ̂ . Hence 71 is indeed constant, and 7^= 7^/7©.

A .2. Log-linear approxim ation to  the  functions and ty.

Consider now the case of small, stationary fluctuations in the variables log z t around their 
mean values log z*. The complete system of equations is

A E t  y t+1 — B y t

where j/<+1 = [77̂ +1 , £7 , £*+i]'. Given (Kt_1,£t)/, we want to solve for 7^ as a function of 
(£(_i, z t ) such that the vector lies in the subspace spanned by the right eigenvectors of A ~ yB  
with eigenvalues that are less than one in modulus.

A unique linear solution exists, because the matrix .4-1  B  has exactly one eigenvalue with
modulus greater than one. To see this, let the u 

B  be denoted N  and M  respectively, (say A =

iper left 2x2 blocks of the matrices A  and
Ar
0 and B  =

M
0

5
V

). Then the

eigenvalues of A ~ 1B  are just the two eigenvalues of A ~x M  and the eigenvalues of V . The 
process is by assumption stable, so the eigenvalues of V' are of modulus less than one. 
N ~ x M  lias one eigenvalue of modulus less than one and one with modulus greater than one, 
because of the following inequalities

T r { N ~ l M )  -  D e t { N ~ ' M )  =  > 1
T r { N ~ ' M )  + D c t ( X - ' A l )  =  > -1

(These inequalities follow from o 2, a 3. a 4 > 0.) Thus A ~ l B  has exactly one eigenvalue with 
modulus greater than one. Denoting by e' the associated left eigenvector, the solution can 
be found by setting

= 0 (A-2)
Solving this equation for 7/,( as a linear function of («<_!,?<), I obtain a log-linear approxima
tion to the function T/,. Substituting this solution into (2.10) I obtain Kt as a linear function 
of (£(_,, z t ) as well, which provides a log-linear approximation to the function 'f.

B .  D a t a  D e s c r i p t i o n  a n d  S o u r c e s
Industrial Production is from ’Industrial production’, 1986 edition by the Board of Governors 
ol the Federal Reserve System. The series were updated using the Federal Reserve Bulletin. 
Data on value added are from the NIPA as published in the Survey of Current Business (July 
issue); the capital stock is net constant dollar fixed private capital, as published in the Survey
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of Current Business (August issue). Total hours of production workers are constructed as 
the product of employment and average weekly hours of production workers; real wage 
is average hourly earnings deflated by the industry gnp deflator. All labor data are from 
’’Employment, Hours and Earnings, United States 1909-1984”, vol. I, by U.S. Dept, of Labor, 
Bureau of Labor Statistics, March 1985; update to 1988 is from Supplement to Employment 
and Earnings, August 1989. The labor share is computed as the average of total labor 
compensation over nominal GNP, both from the NIPA, as published in the Survey of Current 
Business (July issue). Aggregate consumption is the sum of consumption of nondurables and 
services, in constant 82 dollars, from CITIBASE.
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TABLE A1 1

EULER EQUATION ESTIMATES

CONSTANT RETURNS TO SCALE - PERFECT COMPETITION MODEL

annual data 1950/1988

A<1 = n,Ahlt - «2 Ahy.1 “  *3 E< Ally* + 5Awjt+ u jt2

7C2=Jl3 *4 J [df.=7]3 D [df.=4] 4

Paper 1.300 (.105) .325 (.052) .350 (.006) 10.20 (.177) 2.069 (.723)

Print. & Pub. 1.471 (.225) .362 (.112) .253 (.004) 9.198 (.239) 11.21 (.024)

Chemicals 1.701 (.258) .571 (.129) .442 (.006) 8.018 (.331) 3.684 (.450)

Rubber 1.014 (.082) .143 (.041) .272 (.007) 10.21 (.177) 4.563 (.335)

Clay,Gl.,St. 1.126 (.090) .215 (.045) .304 (.007) 9.907 (.193) 6.749 (.149)

Prim. Met. 1.266 (.078) .276 (.039) .286 (.011) 6.958 (.433) 4.201 (.379)

Fabr. Met. 1.082 (.062) .154 (.031) .226 (.005) 7.943 (.337) 6.855 (.144)

NonEl. Mach. 1.034 (.074) .143 (.037) .253 (.007) 2.732 (.909) 2.782 (.595)

El. Mach. 1.030 (.068) .127 (.034) .224 (.006) 10.04 (.186) 5.854 (.210)

Transp. 1.009 (.076) .139 (.038) .270 (.018) 11.71 (.110) 2.215 (.696)

Misc. Man. 1.054 (.137) .160 (.068) .266 (.007) 6.709 (.460) 4.591 (.332)

1 GMM estimation. Instruments are two lags of hours in the sector, lagged capital, two lags of hours in the manufacturing 
industry (excluding the sector itself), lagged w'ages and two lags of aggregate consumption. The coefficient on wages is 
imposed to be zero. The coefficient of capital is imposed to be equal to (l-sh). Standard errors are reported in parentheses.
2 Ax„ indicates the log difference of variable x in sector i at time t. q is industrial production, h is total hours of production 
workers, k is net capital stock in constant dollars, w is real wage.
3 The statistic J is distributed as a chi-square with seven degrees of freedom. It tests for the overidentifying restrictions. 
Probability values are reported in parentheses.
4 The statistic D, constructed as the difference between the J statistic of the restricted model and that of the unrestricted (not 
reported here), is distributed as a chi-square with four degrees of freedom. It tests for the parameter restriction n2=ny 7i4 
=l-sh, -̂(Ttj+TTj )+k4=1, ti5=0. Probability values are reported in parentheses.
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TABLE A21

EULER EQUATION ESTIMATES

CONSTANT RETURNS TO SCALE - maximum value of mark up (p =

annual data 1950/1988

1/Sh)

Aq^n.Ah,,- 2̂ î.t-1 3̂ î.t+1 + *4 Aklt + rc5 Awit + ujt 2

"i n2=rt3 It J[df=7]3 D [df=4] 4

Paper 1.375 (.091) .187 (.045) 1.54 7.115 (.417) 0.931 (.920)

Print. & Publish. 1.528 (.216) .264 (.108) 1.34 6.135 (.524) 7.965 (.093)

Chemicals 1.732 (.227) .366 (.113) 1.79 7.996 (.333) 2.235 (.692)

Rubber & Plastic 1.095 (.076) .047 (.038) 1.37 6.766 (.454) 3.286 (.511)

Clay;Glass, Stone 1.168 (.072) .084 (.036) 1.44 9.290 (.232) 3.493 (.479)

Primary Metals 1.325 (.101) .163 (.034) 1.4 7.068 (.422) 3.381 (.496)

Fabricated Metals 1.162 (.060) .081 (.029) 1.29 5.633 (.583) 3.878 (.423)

Nonel. Machinery 1.012 (.064) .006 (.032) 1.34 7.011 (.428) 7.263 (.123)

Electr. Machinery 1.077 (.067) .038 (.033) 1.29 12.71 (.079) 7.021 (.135)

Transp. Equipm. 1.116 (.070) .058 (.035) 1.37 10.27 (.173) 1.316 (.858)

Misc. Manufact. 1.185 (.134) .092 (.067) 1.36 5.339 (.619) 3.308 (.508)

1 GMM estimation. Instruments are two lags of hours in the sector, lagged capital, two lags of hours in the manufacturing 
industry (excluding the sector itself), lagged wages and two lags of aggregate consumption. The value of p in column 4 is 
derived as the inverse of the labor share. This follows from imposing the restriction that n4=0, where, as explained in the text, 
n4=l-psh. Standard errors are reported in parentheses.
2 Axu indicates the log difference of variable x in sector i at time t. q is industrial production, h is hours of production 
workers, k is net capital stock in constant dollars, w is real wage.
3 The statistic J is distributed as a chi-square with seven degrees of freedom. It tests for the overidentifying restrictions. 
Probability values are reported in parentheses.
4 The statistic D, constructed as the difference between the J statistic of the restricted model and that of the unrestricted (not 
reported here), is distributed as a chi-square with four degrees of freedom. It tests for the parameter restrictions n2=7t3, tt4=0, 
7ij-(7r2+7i3 )+n4=l, k5= 0. Probability values are reported in parentheses.
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TABLE A 3 1

EULER EQUATION ESTIMATES 

CONSTANT RETURNS TO SCALE - intermediate value of mark up 

annual data 1950/1988

Aqit= K 1Ahit - n 2 Ah,t.1-7T3Et Ahit+1 + rt4 Aklt + K5Aw1( + ult2

U\ tc2=̂ k 3 J [df=7]3 D [df=4] 4

Paper 1.339 (.097) .256 (.048) 1.27 8.879 (.261) 1.387 (.846)

Print. & Publish. 1.494 (.219) .310 (.109) 1.17 7.637 (.366) 7.787 (.100)

Chemicals 1.717 (.241) .469 (.121) 1.39 7.842 (.347) 2.754 (.600)

Rubber & Plastic 1.055 (.079) .095 (.039) 1.19 8.023 (.331) 3.639 (.457)

Clay,Glass,Stone 1.147 (.080) .149 (.040) 1.22 9.213 (.238) 4.230 (.376)

Primary Metals 1.298 (.073) .221 (.036) 1.2 6.710 (.460) 3.384 (.496)

Fabricated Metals 1.122 (.060) .117 (.030) 1.14 6.241 (.512) 4.538 (.338)

Nonel. Machinery 1.019 (.068) .072 (.034) 1.17 4.178 (.759) 4.051 (.399)

Elect. Machinery 1.052 (.067) .082 (.033) 1.14 10.83 (.146) 6.145 (.188)

Transp. Equipm. 1.063 (.072) .096 (.036) 1.19 10.33 (.170) 1.402 (.844)

Misc. Manuf. 1.120 (.135) .127 (.067) 1.18 5.705 (.575) 3.574 (.467)

1 GMM estimation. Instruments are two lags of hours in the sector, lagged capital, two lags of hours in the manufacturing 
industry (excluding the sector itself), lagged wages and two lags of aggregate consumption. The coefficient on wages is 
imposed to be zero. The coefficient on capital is constrained to be the average between the two boundary values of 0 and 
(l-sh), and the mark up value is computed as the ratio (l-7t4.)/sh. Standard errors are in parentheses.
2 Axit indicates the log difference of variable x in sector i. q is industrial production, h is total hours of production workers, k 
is net capital stock in constant dollars, and w is real wage.
3 The statistic J, distributed as a chi-square with seven degrees of freedom., tests for the overidentifying restrictions. 
Probability values are reported in parentheses.
4 The statistic D, constructed as the difference between the J statistic of the restricted model and that of the unrestricted (not 
reported here), is distributed as a chi-square with four degrees of freedom. It tests for the parameter restrictions 7X2=7T3 , ti, 
-(7t2+n3)+7t4 =1, n4 =avg(0,l-sh), and n5 = 0. Probability values are reported in parentheses.
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TABLE B l 1

EULER EQUATION ESTIMATES 

NON CONSTANT RETURNS TO SCALE - no pure profits (p/T) = 1) 

annual data 1950/1988

Aqi= n 1Ahlt- K 2Ah.t.1 4Ak* + Jt5 AWjt +  Uj, 2

U\ k2=k3 *4 J [df=6]2 3 D [df=3] 4

Paper 1.564 (.136) .468 (.096) .118 (.131) 0.341 7.812 (.252) 1.493 (.683)

Print. & Publ. 1.470 (.229) .386 (.146) .236 (.073) 0.936 8.879 (.180) 11.06 (.011)

Chemicals 1.493 (.257) .675 (.126) .112 (.175) 0.255 5.345 (.500) 1.037 (.792)

Rubber & PI. 0.910 (.112) .235 (.074) .164 (.074) 0.604 7.449 (.281) 3.836 (.280)

Clay,Glass,St. 1.089 (.101) .283 (.080) .229 (.073) 0.75 8.209 (.223) 5.981 (.112)

Primary Metals 1.152 (.114) .356 (.073) .176 (.080) 0.616 4.291 (.637) 2.669 (.445)

Fabric. Metals 1.064 (.083) .168 (.049) .212 (.039) 0.94 8.173 (.225) 6.723 (.081)

Nonel. Machin. 1.021 (.079) .189 (.062) .218 (.038) 0.861 1.807 (.936) 1.857 (.602)

Electr. Machin. 0.938 (.093) .222 (.072) .143 (.053) 0.637 6.759 (.343) 4.104 (.250)

Transp. Equip. 1.027 (.098) .130 (.048) .284 (.045) 1.05 11.71 (.069) 2.172 (.537)

Misc. Manuf. 1.009 (.175) .205 (.129) .217 (.119) 0.816 6.710 (.348) 4.392 (.222)

1 GMM estimation. Instruments are two lags of hours in the sector, lagged capital, two lags of hours in the manufacturing 
industry (excluding the sector itself), lagged wages and two lags of aggregate consumption.
2 Axit indicates the log difference of variable x in sector i at time t. q is industrial production, h is hours of production 
workers, k is net capital stock in constant dollars, w is real wage.
3 The statistic J is distributed as a chi-square with six degrees of freedom. It tests for the overidentifying restrictions. 
Probability values are reported in parentheses.
4 The statistic D, constructed as the difference between the J statistic of the restricted model and that of the unrestricted (not 
reported here), is distributed as a chi-square with three degrees of freedom. It tests for the parameter restrictions rc2=7t3, k 5=0,  
and [7t,-( n2+ny)](\-sb) =ti4 sh. Probability values are reported in parentheses.
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TABLE B21

EULER EQUATION ESTIMATES

NON CONSTANT RETURNS TO SCALE - maximum value of pure profits (pi/T]

annual data 1950/1988

1 = l/s„)

Aqi = n 1Ahlt- n 2 A h ^ -T t j Akit + Jt5Awit +  ujt 2

«i K2=7t3 r] R J[df=6] 3 D [df=3]4

Paper 1.283 (.134) .301 (.123) .681 (.324) 1.05 6.521 (.367) 0.765 (.858)

Print. & Publish. 1.533 (.223) .267 (.140) .999 (.226) 1.34 6.072 (.415) 5.474 (.140)

Chemicals 1.516 (.270) .607 (.196) .302 (.480) 0.54 5.760 (.450) 1.047 (.790)

Rubber & Plastic 1.001 (.116) .140 (.088) .721 (.243) 0.99 5.604 (.469) 2.427 (.488)

Clay,Glass,Stone 1.127 (.085) .169 (.081) .789 (.176) 1.13 6.507 (.369) 2.354 (.502)

Primary Metals 1.193 (.101) .289 (.077) .615 (.206) 0.861 3.238 (.778) 1.186 (.756)

Fabric. Metals 1.110 (.078) .130 (.048) .850 (.130) 1.1 5.115 (.529) 2.586 (.460)

Nonel. Mach. 0.985 (.070) .138 (.062) .709 (.112) 0.95 1.128 (.980) 0.908 (.823)

Elect. Machinery 0.945 (.088) .193 (.075) .559 (.188) 0.72 6.249 (.396) 3.514 (.319)

Transp. Equipm. 1.062 (.089) .086 (.046) .890 (.117) 1.22 9.912 (.128) 1.096 (.778)

Misc. Manuf. 1.140 (.196) .131 (.137) .878 (.381) 1.12 5.346 (.500) 3.152 (.369)

1 GMM estimation. Instruments are two lags of hours in the sector, lagged capital, two lags of hours in the manufacturing 
industry (excluding the sector itself), lagged wages and two lags of aggregate consumption. The parameter p4 is constrained to 
be 0, so the value of h reported in column 4 is derived as the sum of the estimated 7ip 7i2, and 7i3. The value of \i in column 5 
is computed as the ratio Tj/s„. Standard errors are reported in parentheses.
2 Ax* indicates the log difference of variable x in sector i at time t. q is industrial production, h is total hours of production 
workers, k is net capital stock in constant dollars, and w is real wage.
3 The statistic J is distributed as a chi-square with six degrees of freedom. It tests for the overidentifying restrictions. 
Probability values are reported in parentheses.
4 The statistic D, constructed as the difference between the J statistic of the restricted model and that of the unrestricted (not 
reported here), is distributed as a chi-square with three degrees of freedom. It tests for the parameter restrictions 7t2=7t3, 7t4 
=0, and n5 =0. Probability values are reported in parentheses.
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TABLE B3 1

EULER EQUATION ESTIMATES

NON CONSTANT RETURNS TO SCALE - intermediate value of pure profits (p/T| in (1, l/sh))

annual data 1950/1988

Aqit= n, Ahit -  n2 Ahl t., -  it, E, Ahit+1 + n4Akit + n5 Awit + ujt 2

*1 7C2=7E3 *4 *1 n/n J[d f= 6 ]2 3 D [df=3] 4

Paper 1.229 (.137) .378 (.114) .087 (.055) .560 (.319) 1.3 7.443(.282) 1.086 (.780)

Print. & Publ. 1.501 (.224) .304 (.143) .111 (.028) 1.00 (.152) 1.19 7.358 (.289) 7.456 (.058)

Chemicals 1.507 (.263) .642 (.153) .064 (.099) .292 (.383) 1.39 5.509 (.480) 1.028 (.079)

Rubber & PI. 0.963 (.114) .183 (.082) .098 (.037) .695 (.231) 1.18 6.484 (.371) 2.993 (.392)

Clay,Gl.,St. 1.115 (.091) .213 (.081) .122 (.031) .812 (.169) 1.22 7.356 (.289) 3.573 (.311)

Primary Met. 1.179 (.108) .318 (.076) .091 (.034) .635 (.214) 1.2 3.757 (.709) 1.768 (.622)

Fabric. Met. 1.086 (.081) .146 (.049) .106 (.018) .900 (.131) 1.14 6.477 (.372) 4.193 (.241)

Nonel. Mach. 1.001 (.073) .159 (.062) .098 (.016) .781 (.093) 1.17 1.292 (.972) 1.143 (.767)

Elect. Mach. 0.945 (.090) .203 (.074) .070 (.024) .609(.183) 1.14 6.449 (.375) 3.747 (.290)

Transp. Eqp. 1.052 (.093) .103 (.047) .136 (.019) .982 0120) 1.18 10.39 (.109) 1.428 (.699)

Misc. Man. 1.093 (.188) .150 (.136) .127 (.059) .92 (.380) 1.18 5.771 (.449) 3.534 (.316)

1 GMM estimation. Instruments are two lags of hours in the sector, lagged capital, two lags of hours in the manufacturing 
industry (excluding the sector itself)* lagged wages and two lags of aggregate consumption. The coefficient on wages is 
imposed to be zero. The ratio fi/T| is chosen to be the average value between 1 and the inverse of the labor share. Then T| is 
computed as 1*1=7̂ -(7i2+n3)+7t4, and the implied value for |i is derived from it. Standard errors are reported in parentheses.
2 Axa indicates the log difference of variable x in sector i at time t. q is industrial production, h is total hours of production 
workers, k is net capital stock in constant dollars, and w is real wage.
3 The statistic J is distributed as a chi-square with six degrees of freedom. It tests for the overidentifying restrictions. 
Probability values are reported in parentheses.
4 The statistic D, constructed as the difference between the J statistic of the restricted model and that of the unrestricted (not 
reported here), is distributed as a chi-square with three degrees of freedom. It tests for the parameter restrictions n2=ny 
n4=l-sh, and n5 = 0. Probability values are reported in parentheses.
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TABLE C

BLOCK EXOGENEITY TEST FOR AGGREGATE CONSUMPTION 

annual data 1950/1988

LR 1 p-value

Paper 15.98 0.0011

Chemicals 13.26 0.0041

Rubber and Plastic' 12.24 0.0066

Clay, Glass, Stone 12.92 0.0048

Primary Metals 20.4 0.0001

Fabricated Metals 11.56 0.009

Nonelectrical Mach. 5.22 0.1564

Electrical Machinery 3.4 0.3339

Transport. Equipment 6.8 0.0785

Miscell. Manufactures 11.22 0.0106

1 LR=(T-q)*(loglXrl-loglLJ) where Zr and Xu are the residual covariance matrices respectively of the restricted (excluding 
lagged aggregate consumption) and unrestricted VAR estimated on each sector, T is the number of observations and q the 
number of parameters estimated in each unrestricted equation.
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F i g .  7  -  N O N E L E C T R I C A L  M A C H I N E R Y

a )  E s t i m a t e d  R e s p o n s e  t o  a u n i t  i nn .  in C o n s u m p t i o n
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F i g .  8  -  E L E C T R I C A L  M A C H I N E R Y
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F i g . 9  - R A N S P O R T A T I O N  E Q U I P M E N T

a) Estimated Response to a unit inn. in Consumption b) Estimated and Simulated Hours
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a) Estimated Response to a unit inn. in Consumption
0.05 

0.04 

0.03 

0.02 

0.01 

0.00 

-0.01 

-0.02
0 2 4 6 8 10 12 14 16 18 20

years

/ — — ------ ----- —/ -
/

Hours
■/•- K 
-/ \/ -i

agRr. C
■

; \  \, q /k  
\

..........J.. -

— i— i— i— i— i— i— i— i_>_ .1.-, 1. i_
TFP

-j_1_i_1 ■ .1_J__i_

b) Estimated and Simulated Hours

c) Estimated and Simulated TFP
0.010

0.008

o  0.006coCL<f)<D
^  0.0040JA D 
Q.
1 0.002

0.000

-0.002
0 2 4 6 8 10 12 14 16 18 20

years

d) Simulated Effort

\ \

\ \.
\ \

.......... Mod 1: fJ L - 1, a c = . 1 60
-----  Mod2: ju = 1 .3 6 , oc =  .0 9 2
..........  Mod3: oc =  .1 2 7

Digitized for FRASER 
http://fraser.stlouisfed.org/ 
Federal Reserve Bank of St. Louis




