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A LINEAR MODEL OF THE LONG-RUN NEUTRALITY OF MONEY

by
Thomas A. Gittings 

Federal Reserve Bank of Chicago

One of the oldest verbal theories of economics is the quantity theory 

of money. Over the last two hundred years this general theory has been 

presented in a variety of forms. The common assumption of these alternative 

approaches is that a change in the quantity of money causes a proportional 

change in the level of prices and does not affect the level of real output 
in the long run. The theoretical arguments for this theory have been 

developed most clearly by Irving Fisher (2) and Milton Friedman (4).
An extension of the quantity theory of money assumes that a change in 

the rate of growth of money causes, in the long run, an equal change in 

the rate of inflation and does not have any permanent effect on real output 

or employment. In recent times this additional argument has been developed 

in the extensive literature on the lack of a permanent trade-off between the 

rate of inflation and the rate of unemployment. The pioneering work in this 

area was done by Milton Friedman (3) and Edmund Phelps (5).
The purpose of this paper is to translate these economic assumptions into 

mathematical constraints that then are imposed on a small macroeconomic model. 
Mathematically this model consists of linear ordinary difference equations, 
where one of the external forces is assumed to be a weighted average of a 
money variable. The first part of this paper reviews the basic assumptions 
of the quantity theory of money. The derivation of the constraints and 
the corresponding transformation of the data are presented in the 

appendixes. The second part of the paper examines some of the problems 
that arise in estimating and comparing these constrained models.
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In its simplest form the quantity theory of money states that, other 
things being equal, doubling the quantity of money will cause of doubling of 
prices. This theory is an assumption about how an economic system works 
in our physical universe. It is not merely a simple if-then statement of 
logic. As Alexander Del Mar (1) was careful to specify over a hundred years 
ago, this latter interpretation does ,fviolence to Nature, whose movements 

are performed only in time; an element, of which logic has usually taken but 
little account." Del Mar went on to state "whilst the volume of money might 
be increased or diminished instantly, the resulting movement of prices would 
only occur after an interval of time."

Irving Fisher (2) was very careful to make this distinction between the 
short-run and long-run effects of a change in the quantity of money. In his 

words:

We have emphasized the fact that the strictly proportional 
effect on prices of an increase in M [the quantity of money] 
is only the normal or ultimate effect after transition periods 
are over. The proposition that prices vary with money holds 
true only in comparing two imaginary periods for each of 
which prices are stationary or are moving alike upward or 
downward and at the same rate.

He characterizes the dynamic relationship between money and the general 

level of prices with the following analogy:
The peculiar effects during transition periods are 

analogous to the peculiar effects in starting or stopping 
a train of cars. Normally the caboose keeps exact pace 
with the locomotive, but when the train is starting or 
stopping this relationship is modified by the gradual 
transmission of effects through the intervening cars. Any 
special shock to one car is similarly transmitted to 
all the others and to the locomotive.

)
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Although Fisher saw that a "sudden" change in the quantity of money 
initially would affect the volume of real output or trade, he considered this 
effect to be a temporary one. In terms of long run or "ultimate" effects, he 
assumed that "An inflation of the currency cannot increase the product of farms 
or factories, nor the speed of freight trains or ships. The stream of business 

depends on natural resources and technical conditions, not on the quantity of 
money."

Under a system of fiat money, like we have today, Fisher thought that a

change in the quantity of money would not "appreciably affect the quantity of
goods sold for money." He concluded that

. . .the issue of paper money may affect the paper and printing
trades, the employment of bank and government clerks, etc. In 
fact, there is no end to the minute changes in the QTs [measures 
of real output] which the changes mentioned, and others might 
bring about. But from a practical or statistical point of view 
they amount to nothing, for they could not add to nor subtract 
one tenth of 1 per cent from the general aggregate of trade.

Notice that the quantity theory of money focuses on the hypothesized effects

of just one of a myriad of factors that determine the levels of prices

and real outputs. On this matter Fisher wrote
The importance and reality (sic) of this proposition are 

not dimished in the least by the fact that these othere causes 
do not historically remain quiescent and allow the effect on the 
pfs [prices] of an increase in M [money] to be seen alone. The 
effects of M are blended with the effects of changes in the other 
factors in the equation of exchange just as the effects of gravity 
upon a falling body are blended with the effects of the resistance 
of the atmosphere.
In order to translate the preceeding arguments into a mathematical 

model, it is necessary to articulate some of the assumptions that are being
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made. This theory hypothesizes a dynamic relationship between a measure of 
the quantity of money (M) and measures of a price index (P) and the rate of 
producing real output or the level of real transactions (Q). We can define 
a measure of nominal output or transactions (Y) as the product of the price 
index and the measure of real output. Algebraically this definition can be 
written as

1) Y = PQ

Let y, p, q, and m represent the logarithms of Y, P. Q, and M, respectively. 
Equation 1 can be expressed in the following linear form

2) y = P + q,

where each of these variables are assumed to be functions of m, time (t), 

and whatever other variables one wishes to included in a model.
Given the accounting identity between y, p, and q, there are three possible 

ways to formulate a model. We can specify directly the dynamic linkage 

between m and y and p, between m and y and q, or between m and p and q, 
and then use the accounting identity (equation 2) to determine the corresponding 

values of q, p, or y, respectively. These three alternatives correspond to 

the three versions of the dynamic model that are estimated in this paper.
The basic form of each of these models consists of an ordinary difference 

equation, where the time step should be relatively "small11 with respect to the 
speed of adjustment of the economy. Within the context of this mathematical 
framework, the current value of an economic variable is assumed to be a 
function of the lagged values of this variable plus a summation of other 

forces, one of which is a weighted average of the quantity of money.
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Furthermore, these difference equations are assumed to be linear and have 
constant coefficients. Each version of the models consists of the accounting 
equation plus two of the following three equations that need to be estimated:

N M
3) y(t) = £  ciyCrOyCt-i) + £  b (j)m(t-j) + 0

i=i y yJ=°
V M

4) p(t) = ap(i)p(t-i) + £  bp(j)m(t-j) + 0p
i=l j=°
N M

5) q(t) = aq(i)q(t-i) + bq(j)m(t-j) + 0q
i=l j=o

where 0__, 0D and 0a can represent an intercept term plus whatever other y r H
variables one wishes to include. Notice that each of these difference equations 
is of the same order (N) and includes the same number (M) of lagged values of 

money.
Since this model is linear the incremental effect of change in the quantity 

of money is independent of the initial conditions of the model and of the 
effects of other variables that might be added to the model. Furthermore, the 

effects of an equal increase or decrease in the quantity of money are exactly 

equal in absolute magnitude, although they have opposite signs. Because of 
these inherent restrictions, the model is presented with the caveat that it is 
intended to predict the effects of relatively "small" changes in the quantity 
of money or its rate of growth.

Given the functional form of this model, the next step is to specify the 
mathematical constraints that correspond to the assumptions about the long-run
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neutrality of money. Recall that the quantity theory assumes that a change 
in the quantity of money causes a proportional change in the price index and 
level of nominal output, in the long run, and that a change in the rate of 

growth of money causes an equal change in the long-run rates of inflation and 
growth of nominal output. In order for these two conditions to exist, the 
coefficients on equations 3 and 4 must satisfy the following constraints:

N M
6) E a(i> + E

i=l j=o
N M

7) £ + E
i=l j=o

where a(i) represents ay(i) or a^(i) and b(j) represents b^(i) or bp(j).

See Appendix A for the derivation of these constraints.

It should be pointed out that the second constraint (equation 7) differs 
from one that Dean Taylor (6) used in estimating Friedman’s dynamic model of 

nominal output. This particular model is a second order difference equation 
(N=2) with one lag of the money variable (M=l). His constraint is

b(0) = 1 + (A1 e -A^e Ai)
where A^ and A2 are the roots of the characteristic polynomial of this 
difference equations. The fact that this constraint is mathematically incorrect 
can be shown by checking the derivation of equation 7 or by solving Taylor’s 
model with his estimated coefficients. In his model a change in the quantity 
of money does not cause a proportional change in the level of nominal output,

b (j ) = 1

b(j) = 0

in the long run.
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When the equation for the logarithm of real output (equation 5) is 
estimated, the following constraints will impose the assumptions of the 
quantity theory of money:

N M
8) £ a (i) + £  b (j) = 0

i=l j=°

N M
9) £ laq(i) + £  Jbq(j) = 0

i=i
These constraints correspond to the assumptions that neither a change in the 
quantity of money nor a change in the rate of growth of money has a permanent 
effect of the level of real output.

In order to reduce the number of variables that have to be estimated, the 
lag weights in each of the equations of the model are assumed to be generated 

by a third-degree polynomial, e.g. 

a(i) = cxq + a^i + o^i2 + a3i3

b(j) = B 0 +  Bij +  S 2 j 2 +  B 3j 3

where a(i) represents a^(i), a^(i), or a^(i) and b(j) represents by(j) or b^Cj). 
The lag weights for the money variable in the equation for real output are 
assumed to be on a fourth-degree polynomial. Furthermore, the end-points are 
constrained to equal zero or 

a(N+l) = 0 
b(M+l) = 0.

The above constraints and the assumptions about the long-run neutrality of 

money can then be used to determine the corresponding transformation of the
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data. After the data has been transformed the model can be estimated by 
any appropriate statistical technique. See Appendixes B and C for the 
derivation of these transformations.

Given the preceeding method of imposing the assumptions about the 

long-run neutrality of money, the next step is to estimate a version of 
the model. This linear transfer equations model is general enough so that 
it can be fitted to any time series of a monetary aggregate, a price index, 
a measure of real economic activity, and the corresponding measure of 
nominal economic activity. The difference equations can be estimated 

with monthly or quarterly data, provided that the chosen time step is 

relatively small with respect to the speed of adjustment of the economy.

This latter proviso is an inherent restriction of the mathematics of 
difference equations.

Notice the enormous number of combinations that can be tried for any 
given economy or country. Possible measures of nominal economic activity 
include retail sales, personal income, gross national product (GNP), 

and personal consumption expenditures. For a measure of real economic 
activity, one can try using industrial production, man-hours in private 

nonagricultural industry, or a deflated series of nominal economic activity. 
Some of the available price indices that could be estimated include the 
consumers1 price index, wholesale price index, a wage rate series, and 
a price deflator for any nominal income or output series. In terms of a 
measure of monetary aggregate, one can try a series for the monetary base 

or a money supply series such as M-l, M-1+, M-2, M-3, . . . For each set 

of economic time series, it is necessary to specify a range in historical 
time for the purpose of estimation.
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In order to provide a specific example of some of the problems that 
arise in estimating this model, I shall concentrate in the remainder of 
this paper on the dynamic linkage between M-l and GNP. Because GNP data 
is available only on a quarterly basis, the time step of the model is a 
quarter of a year. The sample period for each model is from the first 
quarter of 1959 through the fourth quarter of 1976. Beginning in the first 

quarter of 1977, an eight quarter dynamic simulation of each model is run 
so as to provide measures of how well the models fit outside their period 

of estimation.
Each of the equations that are estimated directly in the models is 

fitted by minimizing the sum of squared errors with respect to the 

coefficients of the equation. The data for each model are first transformed 

into rates of growth by taking the first difference of the logarithms of 
the data. Next, these data have been transformed, according to the procedure 
that has been developed in this paper, so as to build in the long-run 
assumptions about the neutrality of money. Finally, an intercept term 

and some additional variables have been added to each equation and the 

least-squares estimates have been calculated.

The money variable is the rate of growth of M-l between two successive 
quarters. The quarterly data for M-l is equal to the average of the three 
months' seasonally adjusted data of each quarter. The nominal output 
variable is the rate of growth of GNP minus Federal Government purchases 
of goods and services. Federal purchases have been subtracted since one 
of the additional variables in each equation is a weighted average of 

its rates of growth. The price variable is the rate of change of the GNP 

deflator. For each of these quarterly series, seasonally adjusted data
have been used.
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The lag weights on the weighted average of the rates of growth of 

Federal Government purchases are generated by a third-degree polynomial.
In order to simplify the model, the number of lagged values of Federal 
purchases is assumed to be equal to M, the number of lagged values of 

the money aggregate. The end-point is constrained to equal zero so that 

only three coefficients need to be estimated for this fiscal policy variable.
Two dummy variables have been included in each equation to provide 

estimates of the effects of wage and price controls during the Nixon 

administration and the effects of the quadraupling of crude oil prices in 
1973 by OPEC. Those dummy variables are third-degree time polynomials with 
an end-point constraint. For example, the dummy variables for wage-price 

controls are generated by the following equation:

d„n(t + t) = 6n + 6it + 62T2 + <53t3, x=0,l____ NTWPwr Wp
d (t + NTWP) « 0 wpN wp

where twp is the first quarter with controls and NTWP is the number of 
quarters these dummy variables are applied. The first quarter for the 
wage-price dummy variables is 1971-3, and the first quarter for the OPEC 
dummy variables is 1973-4. Each of these dummy variables requires that 
three additional coefficients be estimated in each equation.

Even after selecting the economic time series to be included, the 
sample period, and the method of estimation, there is a large number of 
possible models that can be tried. For example, what should be the order 

of the differences equations? How many lagged values of the monetary
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aggregate and Federal purchases should be used? How long should each 

of the dummy variables be applied? In terms of the parameters of the 
models, these issues are concerned about the appropriate values of N, M,
NTWP, and NTOIL. NTOIL is the number of quarters the OPEC dummy variables 

are applied.
In order to reduce the number of possible models, I restricted the 

first series of regressions to three values for each of these four parameters. 

The corresponding set of 81, or 3̂ , parameter combinations are summarized 
in the following table:

N M NTWP NTOIL

3 8 8 8
4 12 10 10
5 16 12 12

For each of these parameter combinations, three equations were estimated 
directly —  one for the rate of growth of nominal GNP minus Federal 

Government purchases, the second for the rate of growth of the GNP 

deflector, and the third for the rate of growth of real GNP minus real 
Federal purchases.

These three estimated equations and the accounting identity for the 
rate of growth of nominal output determine the three versions of this 
model. Version I of the model uses the estimated equations for the rates 
of growth of nominal output and the price index and determines the 
corresponding values of the rate of growth of real output from the accounting 

identity. Version II of the model uses the estimated equations for the 

rates of growth of nominal and real output and determines the corresponding
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rate of growth of the deflator from the accounting identity. Version III 
of the model uses the estimated equations for the rates of growth of the 

price deflator and real output and determines the corresponding rate of 

growth of nominal output from the accounting identity. In total there were 

243, or 81 times 3, equations and models estimated in the first set of 
regressions.

The next problem that logically arises is how to evaluate each of these 
alternative models and parameter combinations. My heuristic approach for 

selecting the "best" model developed along the following line. For each 
parameter combination I calculated two sets of summary statistics. The 

first set of statistics includes measures of fit within the sample period.
The second set of statistics includes measures of fit within the forecast 
period.

In the first set of summary statistics I include fifteen numbers. Six 

of these numbers are the coefficients of determination and the root mean

squared errors of the three equations that have been estimated directly.
2 2 2These statistics are labeled R (Dy), R (Dp), R (Dq) and RMSE (Dy),

RMSE (Dp), RMSE (Dq), respectively. Each of the three versions of this 
model uses two of the directly estimated equations and the accounting identity 
to calculate estimates of the "residual" variable. Therefore, there are 
also a coefficient of determination and a root mean squared error for each 
of the three possible residual variables. These six numbers are labeled 
R2 (Dye), R2 (Dpe), R2 (Dqe) and RMSE (Dye), RMSE (Dpe), RMSE (Dqe), 
respectively.
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The next summary statistics that are calculated are just the sums of 
the three root mean squared errors for each version of the models. These 
numbers are labeled RMSE (I), RMSE (II), and RMSE (III), and are defined by 
the following equations:

RMSE (I) = RMSE (Dy) + RMSE (Dp) + RMSE (Dqe)

RMSE (II) = RMSE (Dy) + RMSE (Dpe) + RMSE (Dq)
RMSE (III) = RMSE (Dye) + RMSE (Dp) + RMSE (Dq) .

These statistics provide a single measure of how well any model estimates 
the rates of growth of nominal output, the price deflator, and real output, 
within the sample period. While there are fifteen summary statistics in this 

first set for any parameter combinations, only seven of these numbers are 
related to any particular version of the model.

In the first set of regressions, where I tried 81 different parameter 
combinations, these summary statistics fell within the following ranges:

.543 R2 (Dy) >, .375 .423 > R2 (Dye) >. .269

.608 _< RMSE (Dy) _< .702 .683 _< RMSE (Dye) _< .760

.857 £  R2 (Dp) >_ .799 

.244 _< RMSE (Dp) _< .290
.764 1 R2 (Dpe) >. .513 
.314 _< RMSE (Dpe) _< .452

2 2 .577 _> R (Dq) >_ .388 .656 >_ R (Dqe) >. .436
.695 _< RMSE (Dq) _< .816 .629 _< RMSE (Dqe) _< .783

1.501 j< RMSE (I) _< 1.774
1.631 _< RMSE (II) _< 1.900*
1.648 _< RMSE (III) _< 1.856
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Notice that the best fits as measured by the size of the root mean squared 
errors, are provided by the inflation equation when it is estimated 
directly. This property is robust in the sense that the highest root mean 
squared error of this equation is lower than the smallest root mean squared 
error of any other equation.

By examining the summary statistics for each of the individual 
regressions, it is possible to spot several other patterns. For every 
parameter combination in this set of regressions, the root mean squared error 
for the rate of growth of nominal output is smaller when this variable is 
estimated directly instead of being treated as the residual variable.
Furthermore, the root mean squared error for the rate of growth of real 
output is at least as small when this variable is treated as the residual 

variable instead of being estimated directly. These patterns can be 
summarized by the following inequalities:

RMSE (Dy) < RMSE (Dye)
RMSE (Dp) < RMSE (Dpe)
RMSE (Dqe) _< RMSE (Dq)

when N = (3, 4, 5}, M = (8, 12, 16}, NTWP = {8, 10, 12}, and NTOIL = {8, 10, 12}. 
A direct implication of these findings is that the first version of the model 
always provides the smallest sum of the root mean squared errors. Like any 
empirical findings, these results are dependent upon the economic data that 
are used and the particular model that is estimated.

After selecting the first version of the model, where Dy and Dp are 
estimated directly, I compared the sums of the root mean squared errors for
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different values of NTWP and NTOIL. In every regression this sum was 
lowest when NTWP was equal to 10, instead of 8 or 12. In 78 of the 81 
regressions the sum of the root mean squared errors was lowest when 
NTOIL was equal to 10, instead of 8 or 12. In the three other regressions, 
the model had a slightly better fit when NTOIL was equal to 12. Given 
these patterns, I concluded that ten quarters, or two and a half years, 

was an appropriate length of time to apply the dummy variables for Nixon’s 

wage and price controls and for the formation of the OPEC cartel.

By deciding to set the value of NTWP and NTOIL to equal 10, I had 

narrowed down my search to nine parameter combinations in the first set 
of regressions. The sums of the root mean squared errors of these nine 
regressions are presented in the following table:

TABLE 1: RMSE (I) IN SAMPLE PERIOD

N/M 8 12 16______
3 1.605 1.521 1.524

4 1.619 1.508 1.504
5 1.572 1.506 1.501

Judging only by this criterion, the best fitting model within the sample 
period would be the one with fifth-order difference equations that are 
functions of a 16 quarter, or 4 year, average of the rates of growth of 

M-l and Federal Government purchases.
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In order to compare these models under alternative criteria, I next 
examined the set of summary statistics for the forecast period. This set 
includes the three root mean squared errors in the forecast period and the 
sum of these errors. These statistics, for the first version of the model, 

are RMSE (Df), RMSE (Dp), RMSE (Dq), and RMSE (I), respectively. The sums 

of the root mean squared errors of these nine forecasts are presented in 

the following table.

TABLE 2: RMSE (I) IN FORECAST PERIOD

N/M 8 __, 12 16

3 2.423 2.492 2.465
4 2.415 2.487 2.453
5 2.471 2.542 2.514

Notice that, among these nine models, some of the parameter combinations 

that provide the lowest sums of the root mean squared errors within the 

sample period have the highest sums in the forecast period. In fact, the 
correlation coefficient between these two sets of root mean squared errors 
is negative (-.78)!

Another set of summary statistics includes the accumulative errors 
over the eight quarter forecast. For example, between the first quarter of 
1977 and the fourth quarter of 1978, the GNP deflator increased by 13.860 
percent. Over this time period, a model that predicts this deflator would 

have increased by 14.988 percent would have an accumulative eight quarter 

error of -1.128 percentage points. Table 3 and 4 display the accumulative 
forecast errors for the rates of growth of nominal output and the price 
deflator during the two year dynamic simulation.
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TABLE 3: ACCUMULATIVE ERROR FOR Dy

N/M 8 12 16

3 2.844 3.626 4.131
4 2.774 3.617 4.046

5 3.134 3.750 4.299

TABLE 4: ACCUMULATIVE ERROR FOR Dp

N/M 8 12 16

3 -.334 -1.128 -.811
4 -.366 -1.035 -.632
5 -.261 -1.148 -.716

By using the accounting identify, the accumulative error for the rate of 
growth of real output can be determined by subtracting the accumulative 

error for inflation from the accumulative error for the rates of growth 
of nominal output.

An examination of the coefficients of the GNP deflator regressions 

reveals an interesting pattern. Five of these estimated difference equations 
are unstable. In these models an increase in the rate of growth of money 
causes a temporary increase in the rate of inflation. After a relatively 
long period of time, the rate of inflation begins to decrease. Eventually 
these models enter a period of self-sustaining hyperdeflation, following 
the initial increase in the rate of growth of money. Since the equations 
for the rate of growth of nominal output are stable, this version of the 

model predicts that real output eventually will be growing at an ever 

increasing rate! Needless to say, these unstable models are inconsistent
with the assumptions about the long-run neutrality of money.
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The "mechanics11 of this peculiar instability problem can be seen easily 
by examining the sums of the coefficients for the lagged values of inflation. 
Table 5 displays these sums for the nine regressions.

TABLE 5: SUM OF ap(i)Ts, i = 1.2,..., N

N/M 8 12 16
3 1.088 .976 .858
4 1.077 1.053 .928

5 1.054 1.101 .967

With one trivial exception, the coefficients for the lagged values of 

inflation in these regressions are always positive numbers that are less 
than one. Therefore, whenever their sum is greater than one, the model is 
unstable. Recall that one of the constraints that is imposed upon these 
models is that the sum of the coefficients for lagged values of inflation 

plus the sum of the coefficients for the money variables are equal to 
one (equation 6). Whenever the model is unstable because the sum of the 
ap(i) coefficients is greater than one, the sum of the bp(j) coefficients 

must be negative. This is why these unstable models predict an eventual 

hyperdeflation following an increase in the rate of growth of money.
Even when the inflation equations are stable, the sums of the 

coefficients for the lagged values of inflation are close to one. These 
models display high degrees of "inflationary momentum". By this expression, 
economists mean that an economy takes a relatively long period of time 
to adjust to a one period disturbance in the rate of inflation. One of 

the perplexing questions raised by these regressions is why does the 

inflation equation predict a relatively slow speed of adjustment when the
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directly estimated equations for the rates of growth of nominal and real 
output predict a relatively fast speed of adjustment.

In order to see how the three versions of this model fit for 

alternative values of M, I ran a second set of regressions and calculated 

some of the dynamic impact multipliers. In this set of regression I estimated 

third-order difference equations and varied M between 10 and 16. By 
setting N equal to 3, the end-point and third-degree polynominal constraints 

on the coefficients of lagged values of the dependent variables are 
nonbinding. Figure 1 plots some of the summary statistics for these 
regressions.

The three graphs in the first column plot the root mean squared errors 
within the sample period. The different values of M are arranged along 
the horizontal axes. There are two distinct patterns in these graphs.

Each version of the model fits about the same within the sample period 

regardless of the value of M. In other words, the plots of the root 
mean squared errors are very flat. The second pattern is that the first 

version of the model consistently provides the best fit within the sample 
period. Recall that the relevant root mean squared errors for this version 
of the model are RMSA (Dy), RMSE (Dp), and RMSE (Dqe).

The three graphs in the middle column plot the root mean squared 

errors in the forecast period. Notice that these errors always are higher 
in the forecast period than they are in the sample period. Furthermore, 
none of the three versions of the model consistently provides the best fit 

within the forecast period.

(
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Figure 1: Summary Statistics
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The graphs in the third column plot the accumulative errors for each 
variable in the two year forecast period. Notice that most of the accumulative 
errors for the GNP deflator estimates are less than one percentage point.

These errors are very small when compared with the 13.86 percent increase in 

the GNP deflator during 1977 and 1978. On the other hand, the accumulative 
errors for the real GNP estimates are substantial. For the different 

models they range between 3 and 5 percentage points, compared with a 9.85 
percent increase in real GNP between the first quarter of 1977 and the fourth 
quarter of 1978.

After weighing how well these models fit within the sample and the 

forecast periods, I subjectively selected 14 to be the value of M. This 
model uses weighted averages of the current rates of growth of money and 
of Federal government purchases and their lagged values for the previous 
three and a half years. The dynamic impact multipliers for a one percentage 
point change in the rate of growth of money are plotted in Figure 2. The 

three graphs correspond to the three versions of the model where N, M,

NTWP, and NTOIL are equal to 3, 14, 10, and 10, respectively.
Given these parameter combinations, the equation that is estimated 

directly for the rate of growth of nominal income predicts that Dy will 
increase rapidly, overshoot, and then converge within five percent of 
its long-run value by eight quarters. The inflation equation that is 
estimated directly predicts that Dp will pass through its new equilibrium 
value in two years, overshoot by about fifteen percent and then very 

gradually converge onto its long-run value. Therefore, the implicit 
prediction of the first version of the model is that real output will 

increase for two years and then gradually return to its equilibrium
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Figure 2: Dynamic Impact Multipliers for a Change 
in the Rate of Growth of Money
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value. By summing the first eight values of Dqe, one obtains 0.886. This 
is the maximum percentage increase in output that temporarily is caused by 
a one percentage point increase in the rate of growth of money.

However, when the rate of growth of real output is estimated directly, 
the regression predicts the Dq will be positive for only six quarters or 

one and a half years. According to this regression, the maximum percentage 
increase in real output is only 0.518 following a one percentage increase 

in the rate of growth of money. In the second version of the model, where 

inflation is the residual variable, the model predicts that Dpe will 
increase by its equilibrium value in six quarters, overshoot, and then 
converge to within five percent of its equilibrium value by four years.

The coefficients that are estimated directly for this particular set 

of data and combination of parameters are listed in Table 6. Except for 
the intercept terms, these are some of the coefficients of the various 

polynomial generating functions of the model. The corresponding t-statistics 

are listed in parentheses. The extremely low t-statistics for 33 in the 
equations for Dy and Dp and for (3̂ in the equation of Dq indicate that 
lower order polynomials can be used to generate the lag weights of the 

monetary aggregates. In none of these equations is a weighted average of 
Federal government purchases of goods and services statistically 
significant at any conventional level. On the other hand, the dummy 

variables, especially the ones for the quadrupling of crude oil prices 
by OPEC, are statistically significant in the sample period. These 
patterns are found in all of the equations in the second set of regressions.
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TABLE 6: CONSTRAINED ESTIMATES OF THE LONG-RUN NEUTRALITY OF MONEY
N=3, M=14, NTWP=10, NT0IL=10, (t-statistics in parentheses)

Coefficients of the Polynomial Constraints
Dependent Lagged Dependent Variables Monetary Aggregate Federal Government Purchases
Variable Intercept a0 a2 60 63 Y0 12

1.2537 -0.4231 -0.0236 0.6342 -0.0008 -0.0138 -0.0036 0.0004
Dy

(3.60) (-1.50) (-0.08) (1.74) (-0.003) (-0.D2) (-0.002) (0.0003!

-0.0555 1.7193 -0.1628 0.1220 -0.000008 0.0256 -0.0151 0.0021
Dp (-0.46) (1.26) (-1-22) (1.36) (-0.00008) (0.09) (-0.02) (0.004)

0.9656 0.4608 -0.9966 0.5626 0.3372 &,=3xl0~6 -0.0296 0.0075 -0.0008
Dq

(-0.001)(1.81) (0.14) (-0.13) (0.13) (2.41) (0.00002) (-0.04) (0.004)

Coefficients of the Polynomial Dummy Variables
Wage-Price Controls OPEC Cartel

Dependent 2 60 62 53 60 «2  ̂3Variable R
-1.5294 -0.1323 0.0059 0.4249 0.4247 -0.0029Dy .518
(-2.03) (-0.91) (0.64) (0.61) (2.98) (3.27)

-0.5160 -0.0855 -0.0067 0.2483 -0.1516 0.0010
Dp .837

(-1.73) (-1:45) (-1.78) (0.86) (-2.55) (2.71)

-1.1428 -0.2863 0.0156 -0.1730 0.4885 -0.0311
Dq .537

(-1.11) (-1.70) (1.45) (-0.21) (2.95) (-3.02)
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In conclusion, let us review the path followed in this paper. The 

main purpose of this paper is to translate the assumptions about the 
long-run neutrality of money into mathematical constraints that then 

can be imposed when estimating a small macroeconomic model. For a 

clear verbal presentation of this theory, I used Irving Fisher’s 

description of the quantity theory of money. Next, I specified that 

the mathematical form of the models to be estimated would consist of 

linear ordinary difference equations. For this type of model, the 

assumptions about the long-run neutrality of money correspond to certain 
linear restrictions on the coefficients of each equation. In the 

appendixes, these restrictions were derived and the appropriate trans­

formations of the data were presented.
The second part of this paper uses M-l and GNP quarterly data to 

estimate three versions of the model under a variety of parameter 

combinations. The different parameters tried include the order of the 

difference equations, the number of lagged values of the monetary 

aggregate, and the length of time to apply dummy variables for Nixon’s 

wage-price controls and the quadrupling of crude oil prices by OPEC.

In order to compare these alternative models after they have been 
estimated, I calculated two sets of summary statistics. These two sets 
include measures of fit within the sample period and within a two-year 
forecast period. This latter set of statistics was used in selecting 
the ’’best” model, since many parameter combinations provide about the 
same degree of fit within the sample period. On the other hand, some 
of the estimated models that did not fit relatively well within the 

sample period did predict relatively well within the forecast period.
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Furthermore, some of the better fitting models within both of these 
periods contain an unstable inflation equation, where an increase in the 
rate of growth of money ultimately causes a self-generating hypderdeflation. 
After subjectively weighing these summary statistics and stability 

conditions, I chose a single set of parameters and calculated the dynamic 

impact multipliers associated with a change in the rate of money.

The major contribution of this paper is that it provides economists 
with a simple method of imposing the assumptions about the long-run 
neutrality of money within a system of linear difference equations. 
Furthermore, these models can be estimated with a large variety of 

economic time series for money, prices, nominal output, and real output. 

Additional explanatory variables may be added, and these alternative 

models may be estimated and compared by any method one chooses to use.

The final test for any of these models is how well do they predict the 

future vis-a-vis other existing models.
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APPENDIX A
CONSTRAINTS FOR A NOMINAL SERIES

Assume the following linear transfer function that relates the logarithm 
of a nominal output or price series y(t) to its lagged values and to the 
current and lagged values of the logarithm of a monetary aggregate m(t):

N M
1) y(t) =■ Z a(i)y(t-i) + Z b(j)m(t-j). 

i=l j=o

The assumption that a change in the quantity of money causes a proportional 

change in the level of the nominal variable, in the long run, implies that

N M
2) y(t) + A = Z a(i)(y(t-i) + A) + Z b(j)(m(t-j) + A). 

i=l j=o

Subtract equation 1 from equation 2 and divide by A to obtain the first 
constraint:

N M
3) 1 = Z a(i) + Z b(j)

i=l j=o

Without loss of generality we can normalize the long-run values of y(t) 

and m(t) so that they equal one. The assumption that a change in the rate of 
growth of money (6) causes an equal change in the long-run rate of inflation 
implies that the values of y(t-i) and m(t-j) are equal to 1-iS and l-j6, 
respectively. In terms of our linear transfer function this means that 

N M
4) 1 = Z a(i)(l-iS) + Z b(j)(1—j 6)

i=l j=o
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Subtract equation 2 from equation 4 and divide by 6 to obtain the 
second constraint:

N M
5) 0 = E ia(i) + Z jb(j)

i=l j =o
Notice that this constraint means that at least one of the coefficients of 

the transfer function must be negative.

It is interesting to notice the different roles that these two 
constraints play when the model is expressed as a rate of change equation. 
Let D represent a difference operator that is defined such that

Dx(t) = x(t) - x(t-l).

The transfer function in terms of rates of changes can be written as
N M

Dy(t) = E a(i)Dy(t-i) + E b(j)Dm(t-j)
i=l j=o

In this model the constraint that the sum of the coefficients equals one 
(equation 3) imposes the assumption that a change in the rate of growth 

of money causes, in the long run, an equal change in the rate of 
inflation. The additional constraint that the weighted sum of 

coefficients equals zero (equation 5) means that a change in the quantity 
of money will cause a proportional change in the level of the nominal
variable.
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APPENDIX B

The dynamic relationship between the logarithms of a money variable 

m(t) and a nominal variable y(t) is assumed to be represented by the 
following linear transfer function, where the lag weights are generated 
by third-degree polynomials.

N M
1) y(t) = Z a(i)y(t-i) + Z b(j)m(t-j)

i=l

2) a(i) = aQ + a^i + a2i2 + a3i3

3) b(j) - 60 + Bij + &zj2 + e3j3

There are eight basic coefficients in this model - aQ, ai, a2> 013,

3q > $1, $2» an<* ^3“ Four of these coefficients can be determined by 
constraining the end points —  a(N+l) and b(M4-l) —  to equal zero and by 

making the two assumptions about the long-run neutrality of money (see 
Appendix A). These constraints are summarized by the following four 

equations:

4) a(N+l) = 0
5) b(M+l) = 0

N M
6) E a(i) + E b(j) * 1

i=l j=*o
N M

7) E ia(i) + E jb(j) = 0
i=l j=o
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These equations can be substituted into the model to determine a linear 
transformation of the data that will impose the four constraints. The 

appendix will outline the transformation that can be used when a^ 9 a3,

So> and $3 are estimated directly. The remaining coefficients can then 
be determined from equations 2-6.

Use equations 2-4 to evaluate the two end-point constraints and 
rearrange to obtain the following expressions for a0 and 3i:

8) ao = -(N+l)a1 -(N+l)2a2 -(N+l)3a3

9) = -$0/(M+l) - (M+l)62 - (M+l)233

Next expand the two economic constraints by substituting in the polynomial 

generating function to obtain

10} Na0 +  a 1Si + c^Ei2 +  a 3Z i 3 +  (Mfl)B0 +  6 Zj

+  g2Z j2 +  @ E j 3 «  13
11) a^Ei + c^Zi2 + a2Zi3 + a ^ i 1* + eQEj + g ^ j 2 

+ g2Zj3 + ggEj1* = 0

The ranges of summation have been omitted with the understanding that the 
terms with i's are summed from 1 to N and terms with j’s are summed from 
0 to M.

Use equations 8 and 9 to factor out ag and 61 in equations 10 and 
11 and rearrange into matrix format.
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Zi -  N(N+l) Z j 2 -  (M+l)Ej

Zi2 - (N+l)Zi Zj3 - (M+l)Z j2 e.

1 N(N+1)2-Zi2 N(N+1) 3-Zi3 Zj/(M+l)-(M+l) (M+-1) 2Zj-Z j 3
0 (N+l)2Zi-Zi3 (N+l) 3Zi-Zil+ Zj2/(M+1) - Zj (M+l)2Zj-Zj4

or

Au = Bv,

where u = (ô  B2) " and v = (1 a2 a3 0̂ ^3^

The next several steps require a fair amount of tedius algebra that 
can be described briefly as follows. Recall (or look up in any mathematical 
handbook) that the sums of powers os positive integers are given by the 
following equations:

Zk - K(K+l)/2

Zk2 = K(K+1)(2K+1)/6
Zk3 = K2(K+l)2/4
Zk4 = K(K+1)(2K+1)(3K2+3K-l)/30,

where the summations are from 0 or 1 to K. Use these equations to 
evaluate the summation terms in matrix A and invert this matrix to get

-M(M+-1) 2 (M+2) /12 -M(M+l) (M+2) /6

-N(N+1)(N+2)/6 -N(N+1)/2
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where

1A | = M(M+1)(M+2)N(N+1)(3M-2N-1)/72.

In order to use this transformation it is necessary that 3M-2N-1 does not 

equal zero. This special case can be solved by selecting a different set 
of four coefficients that are to be estimated directly and by calculating 

the corresponding transformation of the data.

Evaluate the summation terms in matrix B and then premultiply by A 
to obtain the following equations:

12) a l = c0 + c xa2 + c2a3 + c3£Q + C/+63

13) $2 = ^0 + ^ia2 + ^2a3 + d 3BQ + d^f^ 
where

c0 = -6(M+1)
N(N+1)(3M-2N-1)

C1 = ~M(4N+5)+3N2+5N+l 
3M-2N-1

c = (3N+4)(-15M(N+1)+12N2+17N+1)
10(3M-2N-1)

c 3 = (M4-2) (M+3)
N(N+l)(3M-2N-1)

ck = (M-1)M(M+1) (M+2) (M+3)
ION(N+l)(3M-2N-1)

d„ = 12 (N+2)_______
M(Mfl)(Mf2)(3M-2N-1)

dl = -(N-1)N(N+1)(N+2)
M(Mfl)(Mf2)(3M-2N-1)

d2 = -3(N-1)N(N+1)(N+2)(3N+4)
5M(M+L)(M+2)(3M-2N-1)

d 3 = 6(M-N-2)
M(Mfl)(3M-2N-1)

du = 3(5N(M+l)-2(4M2+3M-2))
5(3M-2N-1).
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The accuracy of the preceding steps can be checked by first assuming 
arbitrary values for N, M, a2, a3, 0Q, and 01. By using equations 8, 9,
12, and 13 it is then possible to determine the corresponding values of 
ocq , oij, 0j, and 02. These coefficients’ values can then be plugged into 

equations 10 and 11 to see if these equations sum to 1 and 0, respectively.

Equations 8, 9, 12, and 13 can be substituted into polynomial 
constants to yield

14) a(i) = <J>0 (i) + <f>̂ (i)a2 + <P2 (i)a3 + <j>3(i)g0 + <j>i+(i)g3

15) b(j) = Y0(j) + 'P1(j)o2 + V j ) a 3 + V ^ o  + V j ) e 3 
where

*0(i) - -(N+l)c0 + c0i
<(>3 (i) = -(N+l) (c^+N+1) + cxi + i2

4>2(i) = -(N+l) (c?+(N+l)2) + c2i + i3
4> 3 (i) = -(N+1)c 3 + c3i

♦^(D « -(N+l)Ctf + ck±

V0(j) = - (M+l)d0j + d0j2
^l(j) = -(M+l)d1j + dxj2
4'2(j) = -(M+l)d2j •+ d2j2
^3(j) = l-((M+l)d3 + 1/(M+l))j + d3j2

M J )  = -(M+l)(d4+M+l)j + d^j2 + j3
Equations 13 and 14 can then be substituted into the original transfer 

function to determine the corresponding linear transformation of the data. 
The constrained model is given by

z(t) = a2x3(t) + a3x2(t) + gQx3(t) + g ^ C t )
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where
z(t) = y(t) - £<t>0 (i)y(t-i) - (j )m(t-j )

x (t) = Z4> (i)y(t-i) + ZY, (j)m(t-j) , k = 1,2,3,4k k K

After transforming the data, this model can be estimated by any standard 
regression technique. The estimated coefficients will determine how 

quickly the nominal variable responds to a change in the quantity of 

money. By calculating the dynamic input multipliers of this model, it 
is possible to check the accuracy of this transformation by seeing if the 
long-run multipliers correspond to the two economic constraints.
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APPENDIX C
CONSTRAINTS FOR A REAL SERIES

Assume that the current level of the logarithm of real output
q(t) is a function of its lagged values plus a weighted average of the

logarithms of a money variable m(t).
M

1) q(t) = f(q(t-i))+ E b(j)m(t-j)
j=0

The assumptions that the level of the money variable and its rate of 

growth do not have a long-run impact of the level of real output imply 

that

2) Zb(j) - 0

3) Zjb(j) - 0
where terms with jfs are summed from 0 to M. When the lag coefficients 

are generated by a polynomial, these two constraints can be used to 
eliminate two of the coefficients that must be estimated.

Suppose the lag weights are determined by the following fourth- 
degree polynomial

4) b(j) - e0+ Bjj + e2j2+ e3j3 +

where the end point b(Mfl) is constrained to equal zero.
5) b(Mfl) - 0

Equations 2, 3 and 5 can be used to factor out three of the coefficients. 
Suppose g , and are factored out by substituting these equations
into equation 4. In matrix format we can derive the following system 

of equations:
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M+l (M+l)2 (M+l)3 h -1 -(M+l)4

I---Oca
1___

Ej Ej2 Ej3 *2 = -(M+l) "Ej4
Ej2 Ej3 Ej 4 _ $3 _~Zj -Ej5

or

Au = Bv
where u = (3̂  3^ 3^) ̂ and v = (3Q 3i+)." The summation terms can be
evaluated by using the equations for sum of powers of positive integers 

(see Appendix B). The equation for the sum of fifth powers is 
Ek5 = K2(K+l)2(2K2+2K-1)/12,

where k is summed from 0 to K.

Invert matrix A and then premultiply matrix B by A  ̂to obtain the 
following equations

IICQ

♦ i e 0

* 2  " * 2 * 0

* 3  " ^ 3 e 0

+
b

+ v2 b 
+ VaBi*

w h e r e

<j>! - - (3M+1) (3M4-2) / ( (M-l)M(MH) )
<J>2 = 6(3M+2)/((M-l)M(M+l))
<p 3 = -10/( (M-1)M(M+1) )
4^ = - (M+l) (Mz+2M+2) / 5 
^2 = (6M2+12M+7)/5 
4*3 = -2 (M+l)

These constraints can then be used to transform the money data into two

sets that can be used to estimate the model.
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B0xi(t) + 34x2(t) = Eb(j)m(t-j)
where

xl(t) - Zm(t-j)(l + + <j)2j2 + 4>3j3 )

x2(t) = Em(t-j)('t'1j + y2j2 + Y3j3 + j^)

The same transformation can be used when the model is estimated using 

the first difference or rates of growth of the real input and money 

variables. Notice that it is independent of the function that includes 
the lagged values of the real output variable.
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