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1. Introduction

Some of the standard methods of forecasting future values of a time 
series that has a trend Include treating the series as an A.R.I.M.A. process, 
using general exponential smoothing, or extrapolating least-squares fitted 
time-polynomials. This article primarily investigates some properties of 
this last method. Given the current and some past values of a single time 
series, the procedure of estimating the coefficients of a polynomial in 
time and extrapolating into the future is equivalent to a specific type of 
autoregressive process. The lag weights in the autoregressive equation are 
independent of the data and are functions only of the number of observations, 
the degree of the estimated time-polynomial, the lead time of the forecast, 
and the weighting function in the least-squares estimation.

This article is concerned with forecasting a time series which can be 
represented by a simple polynomial or exponential trend without a seasonal 
component. One method of forecasting such a variable is to form a stationary 
series from the data, usually by taking the difference between successive 
observations (or logarithms of the observations), and then estimate the 
coefficients for an autoregressive model. In a general A.R.I.M.A. model the 
equation also can include the deviations of some past observations from their 
estimated values. This approach is advocated especially by Wold [6], Whittle .
[5], and Box and Jenkins [!]•

For cases where the time series has such a simple trend, an alternative 
approach is to estimate the time trend and extrapolate to get the forecasts for 
some future dates. This forecasting technique is equivalent to using certain 
deterministic autoregressive equations where the coefficients are independent of 
the data. The primary advantage of this later approach is its computational 
simplicity; forecasts can be made by just taking a weighted sum of a set of 
observations. The process of estimating the coefficients of a time-polynomial 
is embodied in these particular autoregressive coefficients.

In section 2 the autoregressive form for extrapolating a trend estimated 
by ordinary least-squares is derived and some interesting properties of these 
coefficients are noted. Section 3 presents the autoregressive schemes which 
correspond to single period forecasts using exponentially discounted least- 
squares and double exponential smoothing. Section 4 shows what constraints 
on the autoregressive coefficients are necessary if one wants to extrapolate 
any N degree time-polynomial trend. The constraints can be used to reduce 
the number of coefficients that must be specified or estimated in a auto­
regressive equation. Section 5 examines some properties of forecast functions 
which extrapolate trend and use the first difference of the observations.
Section 6 considers two methods of extending the results for any forecast 
lead time and shows how to extrapolate any exponential trend.
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2. ORDINARY LEAST-SQUARES

Extrapolation of trend in a single time series is appropriate when the 
variable satisfies the usual assumptions of a least'squares model. Given T 
observations from discrete, equispaced intervals of time, the time-polynomial 
model of degree N is

The time origin has been set so that the first observation is for time period 
one. The residuals are assumed to be independently distributed with a constant 
variance and zero expectation. The number of observations must be greater 
than the degree of the time-polynomial.

In matrix notation the model is

g is the (N+l)xl vector of coefficients that are to be estimated, and X is the 
Tx(N+l) matrix with Xfcn = tn-l. The ordinary least-squares estimates of the 
vector of coefficients is

Using these estimated coefficients to extrapolate trend, the expected value 
of this variable in the next time period (T+l) is

In order to determine some interesting properties of these autoregressive 
coefficients, let the square matrix Y be equal to X'X. This matrix has 
elements which are sums of the first T positive integers raised to certain powers.

Nz^ = gQ+g^t+.. ."Vĝ t H*ê , t m 1,2 T. (2. 1)

Z - Xg + e (2 . 2)
Where Z is the Txl vector whose t ^  element is the observation for period t,

g = (X'X)-1 X"Z. (2.3)

*  o
ZT+1 = t6 ’

where x is the lx(N+l) vector with xn = (T+l)11-'*'

(2.4)

This forecast can be written as

z* = T (X'X)"1 X'Z (2.5)

&ZT+i = ^ i z t^ 2z t - 1+ ’ * ,+0tz1» 
the tfck lag weight must equal ax+l-t » t = 1>2> • • • 9T.

(2.7)

N+l. (2. 8)
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2

Since sums of positive powers can be represented as a function of only the 
variables T and N (and the corresponding Bernoulli numbers), the inverse matrix 
(X'X)~1 is also a function of only T and N. Therefore, the equations which 
generate the autoregressive terms are specific N degree polynomials with 
constant coefficients that are functions of T and N. For example, the polynomial 
which generates at is

at x(X'X)-1 t0\“ a0+axt+.. .+ajjt̂

y
(2.9)

Since 0t = t = 1,2,..., T, the lag weights are independent of the data
when one uses thes& autoregressive schemes to extrapolate a time-polynomial 
estimated by ordinary least-squares.

Another interesting property of these weights can be determined by post- 
multiplying the equation for a by the matrix X.

aX = x , (2.10)

or
Zt-1 atttt “ (T+1>n » n = °»1.... N* (2.11)

By virtue of the binomial theorem, this implies that

Et=l 0t = (2.12)

and

st=l 0ttn = 0* n - 1,2,...,N. (2.13)

The explicit form of the polynomial that determines the lag weights has 
been derived for the cases where n = 1, 2, or 3 and t * 1,2,...,T.

N = i, 0t = 2(2T+1 - 3t)
T(T-l) (2.14)

N - 2, 0t = 3 (3T2+3T+2 - 6 (2T+1) t + 10t2)
T (T-l) (T-2) (2.15)

N = 3, 0t = 4 (T-4);
T! [4TJ+6x +14T+6 - 5(61^+61+5)t

+30(2T+l)t2-35t3] (2.16)

Some special properties which hold at least for these three cases but which 
have not been proven for all N cases are

0-L = (N+l)2/T ; (2.17)
0X - (-1)n (N+1)/T ; (2.18)
0t - (X'X)-l t°\ , t - 1,2,...,T

11
(2.19)
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This last property implies that the coefficients of the polynomial which 
generates the autoregressive weights are the elements of the first row of 
the inverse matrix (X'X)”1.

3. DISCOUNTED LEAST-SQUARES

A logical extension of this approach is to estimate the coefficients of 
the time-polynomial by minimizing the discounted sum of squared residuals.
This approach has been proposed by Brown [2,3] and Box and Jenkins [1]. If 
this discounted sum is of the form

s - wt et2’ (3.i)
then the vector of coefficients estimated by discounted least-squares is

S = (X"WX)-1X'WZ. (3.2)

The TxT matrix W is the product of an identity matrix multiplied by the vector 
of discount factors wt, t = 1,2,...,T. Now the autoregressive coefficients 
are a function of T,N, and the discount factors.

Consider the case where N = 1 and the discount weights are determined by

wt = 6T+1-t , t = 1,2.... T, (3.3)

where 6 is some positive fraction less than one. By using the explicit 
forms for a finite sum of an arithmetic-geometric series, one can derive the 
corresponding autoregressive weights for one period extrapolation. The 
general equation for the a vector is now

a = x(X"WX)_1XW. (3.4)

In this example the autoregressive coefficient 0t (“x+i-t^ determined by

0t = aQ 6^ (al * t = 1>2,. • •, T (3.5)

(1 - 6)
ao = S(6-6T(t 2(1-6)2 + 6(2-6?))) ; (3.6)

al ■ (1+6)(1-6T) - T6t (1-6)(2+T(l-6)); (3.7)

a2 = (1-6) (1-6T (l+TU-6))). (3.8)

In the limit as 6 approaches one, the equation (3.5) for the autoregressive 
coefficients is equivalent to equation (2.14).

As proven by D'Esopo [4], the polynomial of degree N obtained by 
multiple exponential smoothing is equivalent to fitting a N degree polynomial 
using exponentially discounted least-squares where the sample size is 
infinite. Therefore, the autoregressive form of the forecast equation for 
double exponential smoothing (N = 1) can be determined from equation (3.5)

Digitized for FRASER 
http://fraser.stlouisfed.org/ 
Federal Reserve Bank of St. Louis



4
by evaluating the limit as T approaches infinity. For one period 
forecasts using double exponential smoothing, the corresponding linear 
autoregressive forecast function has coefficients which are generated by

0* = 6t_2((l-62) - (l-6)2t), t = 1 , 2 , . . . ( 3 . 9 )

4. CONSTRAINTS FOR EXTRAPOLATING 
POLYNOMIAL TRENDS

Another approach to extrapolating polynomial trends is to consider what 
are the properties of a T order linear homogeneous difference equation which 
has a N order polynomial solution equation. These properties can be used 
as constraints if one wishes to estimate autoregressive coefficients that 
will insure the predicted value of a variable will equal its extrapolated 
value whenever T successive observations lie on any N degree time-polynomial. 
In order words, if

zt - $0+0^+.. -+BNtN , t = 1,2,... ,T, (4.1)

and
*
ZT+1 51zT+02ZT-1+ * .+0Tzi (4.2)

then

z*+i - eo+31(T+l)+...+eN(T+l)N. (4.3)

If this condition holds for any value of the 3 coefficients, simple 
substitutions yield the following constraints:

0t = 1 ; (4-4)
E T tn0|. - 0 , n = 1,2,..., N (4.5)t=l L

Notice that these constraints imply that at least one of the autoregressive 
coefficients must be negative in order for the forecast function to extrapolate 
a time-polynomial trend.

The results derived in the section on extrapolating a time-polynomial 
fitted by ordinary least squares are equivalent to imposing these extrapolation 
constraints and the assumption that a N degree polynomial generates the lag 
weights. Alternative autoregressive coefficients that will extrapolate a 
N degree time-polynomial trend can be determined by specifying a different 
generating function and/or by estimating some lag weights subject to the 
extrapolation constraints. In order for a solution to exist there must be 
at least N+l parameters in the function which is assumed to generate the 
autoregressive coefficients.

For example, assume that one wants a set of lag weights that will 
extrapolate any linear trend (N = 1) and which are generated by the second 
degree polynomial

= a„ a-̂ t + a2t Tt = 1,2,..., (4.6)
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Using the two extrapolation constraints enables one to solve for aQ and a^ 
as functions of a2.

2(2T+1) + (T+l)(T+2)
T(T-l) 6 a2 (4.8)

-  6
T(T-l) - (T+l)a2 (4.8)

The value of a2 can be estimated if one has more than T observations of the 
variable. Alternatively it could be determined by imposing an additional 
condition, such as an end point constraint.

Another example of an autoregressive process that can extrapolate any 
linear trend is Brown's double moving average method [3]. At time period T 
the moving average of a variable using the K previous observations is

M = 1 z-  ii-i zT+l-i' (4.9)t K
The moving average of the moving average (double moving average) is

 ̂= "K Ej=l MT+l-j (4.10)
Brown's equation to forecast the value in the next period can be written as

z*T+l = 2K (K+l) r2-|
K-l Mj - (K-l) (4.11)

In order to translate this forecast equation into a linear autoregressive 
form, first manipulate the equation for the double moving average.

M[2] _T 1
K2 ZT+l-i-j (4.12)

By expanding and then adding the coefficients for each observation, one 
finds that

M£2] ■ i2 [ £ i  k*T+l-k + ^  W k ] (4-13)
Substituting equations (4.9) and (4.13) into (4.11) yields the autoregressive 
equation for this forecasting technique.

* _ r2K-i a „ 
t+i " Ek=i 0kzT+l-k, (4.14)

where 2K2 - (K+l)k
\  “ (K-l) K2 » k ” 1*2,..,K, (4.15)

and . -(K+l)(2K-k) . 2.... 2K„ ^
k (K-1)k2

(4.16)

Notice that the first K coefficients are positive and decreasing in value whereas 
that last K-l coefficients are negative and increasing in value. This implies 
that there is a relatively large difference between the K and the K+l lage 
weights.
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5. EXTRAPOLATING USING FIRST DIFFERENCES 
OF THE OBSERVATIONS

As shown in the previous section, in order for a linear autoregressive 
function to be able to extrapolate all N degree time-polynomial trends, the 
coefficients must satisy the constraints (4.4) and (4.5). And alternative 
forecast equation form is to use the first differences of the observations 
so that

V l  - ZT + «tCl] <zT+l-t - zT-t). « - l>
The notation indicates that these coefficients are for the first
difference between successive observations. Since the first difference of 
a N degree polynomial is a N-l degree polynomial, the corresponding constraints
on the p [lj coefficients that will enable one to extrapolate any time trend are

£tll1«t[l] - 1 «-2>
and, if N > 1,

Et=l tn0t^  “ 0 » n = 1»2....N-l. (5.3)
The relation between these two sets of autoregressive coefficients can 

be summarized by

- & ml 0S - 1, t - 1,2.... T—1 (5.4)

or

01 - 1 +

0t - 0fc[l] - 0t[l] , t = 2,3,..., T-l;

0T = - 0TIiJ (5.5)

When one assumes that the 0t coefficients are determined bv some specific 
function, the corresponding function which generates the 0t^J coefficients 
can be determined. For example, if one forecasts one period ahead by 
estimating a linear time-polynomial, the coefficients of the equivalent 
autoregressive process are given by equation (2.14). Substituting this
equation into (5.4) yields the following function for the corresponding 0t 
coefficients.

0 ^  = -1 + (4T-l)t -3t2
T(T-l) , t = 1,2,...,T-l. (5.6)

[1]

Notice that this is a second degree polynomial in t; whereas, the 0t coefficients 
are determined by a linear equation. Furthermore, this equation is concave 
from below.
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6. SOME ADDITIONAL OBSEVATIONS

One of the simplifying assumptions of the preceding analysis is that the 
forecasts are being made for only one period ahead. There are two established 
approaches one can use when generalizing the results for any lead time L. One 
may estimate the coefficients of a time-polynomial and solve the estimated 
equation for any desired time. The coefficients of the corresponding linear 
autoregressive process can be determined from equation (3.4), where the t 
vector is now defined by

Tn = (T+L) n-l, n * 1,2,..., N+l (6.1)

The second approach is to consider the autoregressive process to be a 
T order difference equation where the observations are the initial conditions. 
Evaluating this difference equation for successive time periods provides 
forecasts for any desired lead time. When using an autoregressive process 
for extrapolating an estimated trend, this second approach is equivalent to 
estimating the trend in the original T observations, extrapolating to get the 
next period forecast, using this value and the T-l previous observations to 
reestimate the trend, and extrapolating the revised trend one period. This 
process of estimating and extrapolating owe period is repeated until the 
forecast of each desired lead time is obtained.

When a variable has a simple exponential time trend, the coefficients can 
be estimated by least-squares after transforming the observations into a 
linear logarithmic system. The logarithm of the next period forecast can 
therefore be determined by the linear autoregressive process

ln,(z£+1) = Efĉ 1 0fc ln(zT+i_t)> (6.2)

Where 0t is generated by equation (2,14). The value of this forecast can 
also be determined by the corresponding linear logarithmic autoregressive 
process

^ T fiji.
ZT+1 = nt=l ẑT+l-t).

Using this logarithmic form, any simple exponential time trend can be 
extrapolated provide the exponential weights satisfy the constraints (4.4) 
and (4.5) for N = 1.
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7. CONCLUSIONS

Assume one wishes to forecast future values of a time series that can be 
represented by a time-polynomial model where the stochastic terms are 
independently distributed with zero means and the observations are from 
discrete, equispaced intervals of time. Instead of estimating the coefficients 
of the time-polynomial by ordinary or discounted least-squares and extrapolating 
to get the forecasts, one only needs to take a weighted sum of the observations. 
The equation which generates the autoregressive coefficients is a function of 
the number of observations used, the degree of the fitted time-polynomial, the 
lead time of the forecast, and the function which determines the discount weights.
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