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It seems natural to view all asset pricing models only as approximations of the true data generating

process and, hence, potentially misspecified. It is also often the case that these models include

nontraded factors which exhibit very low correlations with the returns on the test assets and may

jeopardize the identifiability of the model parameters. In the presence of misspecification and lack

of identification, the finite-sample distributions of the statistics of interest can depart substantially

from the standard asymptotic approximations developed under the assumption of correctly specified

and fully identified models. In general, ignoring possible model misspecification and identification

failure tends to result in an overly positive assessment of the pricing performance of the asset

pricing model and the individual risk factors. This paper attempts to raise the awareness of applied

researchers about the pitfalls of incorrectly assuming correct specification and identification of the

model and proposes a more conservative (but asymptotically valid) approach to selecting risk factors

and determining if they are priced or not.

It is now widely documented that misspecification is an inherent feature of many asset pric-

ing models and reliable statistical inference crucially depends on its robustness to potential model

misspecification. Kan and Robotti (2008, 2009), Kan, Robotti, and Shanken (2013), and Gospodi-

nov, Kan, and Robotti (2013) show that by ignoring model misspecification, one can mistakenly

conclude that a risk factor is priced when, in fact, it does not contribute to the pricing ability of

the model. While these papers provide a general statistical framework for inference, evaluation

and comparison of potentially misspecified asset pricing models (see also Ludvigson, 2013), the

misspecification-robust inference is developed under the assumption that the covariance matrix of

asset returns and risk factors is of full column rank, i.e., the parameters of interest in these models

are identified. Importantly, the issues with statistical inference under potential model misspeci-

fication become particularly acute when the pricing model includes factors that are only weakly

correlated with the returns on the test assets, such as macroeconomic factors.

In this paper, we further generalize the setup in the papers mentioned above to allow for possible

identification failure in a stochastic discount factor (SDF) framework. We show that in the extreme

case of model misspecification with one or more “useless” factors (i.e., factors that are independent

of the asset returns), the identification condition fails and the validity of the statistical inference is

compromised. We focus on linear SDFs mainly because the useless factor problem is well-defined

for this class of models. In addition, we choose to present our results for the distance metric
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introduced by Hansen and Jagannathan (HJ, 1997). This measure has gained increased popularity

in the empirical asset pricing literature and has been used both as a model diagnostic and as a tool

for model selection by many researchers.

The impact of the violation of this identification condition on the asymptotic properties of

parameter restriction and specification tests in linear asset pricing models estimated via generalized

method of moments (GMM) was first studied by Kan and Zhang (1999b).1 Kan and Zhang (1999b)

analyze the behavior of the standard Wald test (which uses a variance matrix derived under the

assumption of correct model specification) for potentially misspecified models. They show that in

this setup, using the standard Wald tests would lead to conclude too often that the useless factor is

priced. Furthermore, the specification tests have low power in rejecting a misspecified model. An

immediate implication of this result is that many poor models and risk factors may have erroneously

been deemed empirically successful as our empirical applications illustrate.

We extend the analysis of Kan and Zhang (1999b) along several dimensions. First, unlike Kan

and Zhang (1999b), we study the asymptotic and finite-sample properties of misspecification-robust

parameter tests and investigate whether the model misspecification adjustment can restore the va-

lidity of the standard inference in the presence of useless factors. In particular, we demonstrate

that the misspecification-robust Wald test for the significance of the SDF parameter on the useless

factor is asymptotically distributed as a chi-squared random variable with one degree of freedom.

This result is new to the literature and is somewhat surprising given the identification failure. It

stands in sharp contrast with the Wald test constructed under the assumption of correct specifica-

tion which is shown by Kan and Zhang (1999b) to be asymptotically chi-squared distributed with

degrees of freedom given by the difference between the number of assets and the number of factors

included in the model. As a consequence, using standard inference will result in a rather extreme

over-rejection (with limiting rejection probability equal to one) of the null hypothesis that the risk

premium on the useless factor is equal to zero.2

Second, we add to the analysis in Kan and Zhang (1999b) by also studying the limiting behavior

1Burnside (2010, 2011) discusses analogous identification failures for alternative normalizations of the SDF. Kan
and Zhang (1999a) study the consequences of lack of identification for two-pass cross-sectional regressions while
Kleibergen (2009, 2010) and Khalaf and Schaller (2011) propose test procedures that exhibit robustness to the degree
of correlation between returns and factors in a two-pass cross-sectional regression framework.

2Our use of the term “over-rejection” is somewhat non-standard since the true risk premium on a useless factor is
not identifiable. Nevertheless, since a useless factor does not improve the pricing performance of the model, testing
the null of a zero risk premium is of most practical importance.

2



of the estimates and Wald tests associated with the useful factors. We show that in misspecified

models, the estimator of the coefficient associated with the useless factor diverges with the sample

size while the parameters on the useful factors are not consistently estimable. The limiting distri-

butions of the t-statistics corresponding to the useful factors are found to be non-standard and less

dispersed when a useless factor is present. Regardless of whether the model is correctly specified

or misspecified, the misspecification-robust standard errors ensure asymptotically valid inference

and allow us to identify factors that do not contribute to the pricing of the test assets (i.e., useless

factors and factors that do not reduce the HJ-distance). To conserve space, we relegate some of the

theoretical results on the explicit form of the limiting distributions of the estimators, the t-tests

under correct model specification and misspecification as well as the HJ-distance test to an online

appendix available on the authors’ websites.

Third, we provide a constructive solution to the useless factor problem that restores the standard

inference for the t-tests on the parameters associated with the useful factors and for the test of

correct model specification. In particular, we propose an easy-to-implement sequential procedure

that allows us to eliminate the useless factors from the model and show its asymptotic validity.

Monte Carlo simulation results suggest that our sequential model selection procedure is effective

in retaining useful factors in the model and eliminating factors that are either useless or do not

reduce the HJ-distance. As a result, our proposed method is robust to both model misspecification

and presence of useless factors in the analysis.3

Several remarks regarding our theoretical results are in order. We should stress that, similarly to

White (1982) in a maximum likelihood framework, our misspecification-robust approach to inference

allows for the model to be correctly specified and is asymptotically valid (albeit possibly slightly

conservative) even when the model holds. This is important because a pre-test for correct model

specification lacks power in distinguishing between correctly specified and misspecified models when

a useless factor is included in the model. This leaves the misspecification-robust approach as the

only feasible way to conduct inference, especially if a reduced rank test suggests an identification

failure of the model. Another important issue that requires some clarification concerns our definition

of a useless factor. While the paper studies the knife-edge case of a factor that is independent of the

3While we study explicitly only the GMM estimator based on the HJ-distance, our results continue to hold for
the class of optimal GMM estimators. Some simulation results for the optimal GMM case are provided in the online
appendix.
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returns on the test assets, in practice all factors exhibit some nonzero correlation in finite samples

and are probably better characterized as near-useless. The analysis then should be performed

using a local-to-zero asymptotic framework that would provide a continuous transition between the

useless and useful factor cases as in the literature on weak instruments and near unit root processes.

The drawback of this local-to-zero approach is that the limiting distributions depend on a host of

nuisance parameters (localizing constants) that are not consistently estimable. The number of these

localizing constants depends on the dimensionality of the vector of test asset returns which could be

very large (for example, 43 test assets are employed in our empirical analysis). Therefore, it proves

to be more convenient to analyze the knife-edge case of a useless factor which well characterizes the

behavior of near-useless factors as it is the case in the literature on weak instruments and integrated

processes. Simulation results for factors that exhibit a low (but nonzero) correlation with the test

asset returns are qualitatively similar to the ones for the useless factor case reported in this paper

and are available from the authors upon request.

Empirically, our interest is in robust estimation of several prominent asset pricing models with

macroeconomic and financial factors, also studied in Kan, Robotti, and Shanken (2013), using the

HJ-distance measure. In addition to the basic CAPM and consumption CAPM (CCAPM), the

theory-based models considered in our main empirical analysis are the CCAPM conditioned on

the consumption-wealth ratio (CC-CAY) of Lettau and Ludvigson (2001), a time-varying version

of the CAPM with human capital (C-LAB) of Jagannathan and Wang (1996), where the state

variable driving the time variation in the SDF coefficients is the consumption-wealth ratio, the

durable consumption model (D-CCAPM) of Yogo (2006), and the five-factor implementation of

the intertemporal CAPM (ICAPM) used by Petkova (2006). We also study the well-known “three-

factor model” of Fama and French (FF3, 1993). Although this model was primarily motivated by

empirical observation, its size and book-to-market factors are sometimes viewed as proxies for more

fundamental economic factors.

Our main empirical analysis uses the one-month T-bill, the monthly gross returns on the 25

Fama-French size and book-to-market portfolios and the monthly gross returns on the 17 Fama-

French industry portfolios from February 1959 until December 2012. The industry portfolios are

included to provide a greater challenge to the various asset pricing models, as recommended by

Lewellen, Nagel, and Shanken (2010). The HJ-distance test rejects the hypothesis of correct spec-

4



ification for all models. In addition, the test for reduced rank indicates that only CAPM and FF3,

two models with traded factors only, are properly identified. This clearly points to the need for

statistical methods that are robust to model misspecification and weak identification. We show em-

pirically that when misspecification-robust standard errors are employed, several macroeconomic

factors – notably, the durable and nondurable consumption factors, the consumption-wealth factor

of Lettau and Ludvigson (2001) and its interaction with nondurable consumption, labor income

and the market return, the default premium in ICAPM – do not appear to be priced at the 5%

significance level. The only factors that survive our sequential procedure, which eliminates use-

less factors and the factors with zero risk premia, are the market factor in CAPM and FF3, the

book-to-market factor in FF3 and the term premium in ICAPM.

It is important to stress that the useless factor problem is not an isolated problem limited to the

data and asset pricing models considered in our main empirical analysis. We show that qualitatively

similar pricing conclusions can be reached using different test assets and SDF specifications. Overall,

our results suggest that the statistical evidence on the pricing ability of many macroeconomic and

financial factors is weak and their usefulness in explaining the cross-section of asset returns should

be interpreted with caution.

The rest of the paper is organized as follows. Section 1 reviews some of the main results for

asymptotically valid inference under potential model misspecification. In Section 2, we introduce

a useless factor in the analysis and present limiting results for the parameters of interest and their

t-statistics under both correct model specification and model misspecification. In Section 3, we

discuss some practical implications of our theoretical analysis and suggest an easy-to-implement

and asymptotically valid model selection procedure. Section 4 reports results from a Monte Carlo

simulation experiment. In Section 5, we investigate the performance of some popular asset pricing

models with traded and nontraded factors. Section 6 concludes.

1. Asymptotic Inference with Useful Factors

This section introduces the notation and reviews some main results that will be used in the subse-

quent analysis. Let

yt(γ1) = f̃ ′

tγ1 (1)
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be a candidate linear SDF, where f̃t = [1, f ′

t ]
′ is a K-vector with ft being a (K − 1)-vector of risk

factors, and γ1 is a K-vector of SDF parameters with generic element γ1i for i = 1, . . . , K. The

specification in (1) is general enough to allow f̃t to include cross-product terms (using lagged state

variables as scaling factors); see Cochrane (1996).

Also, let xt be the random payoffs of N assets at time t and q �= 0N be a vector of their

original costs. This setup covers the case of gross returns on the test assets. For the case of excess

returns (q = 0N), the mean of the SDF cannot be identified and researchers have to choose some

normalization of the SDF (see, for example, Kan and Robotti, 2008, and Burnside, 2010). The

theoretical and simulation results for the case of excess returns are very similar to those of the gross

returns case presented below and are provided in the online appendix. We assume throughout that

the second moment matrix of xt, U = E[xtx
′

t], is nonsingular so that none of the test assets is

redundant.

Define the model pricing errors as

e(γ1) = E[xtf̃
′

tγ1 − q] = Bγ1 − q, (2)

where B = E[xtf̃
′

t ]. If there exists no value of γ1 for which e(γ1) = 0N , the model is misspecified.

This corresponds to the case when q is not in the span of the column space of B. The pseudo-true

parameter vector γ∗

1 is defined as the solution to the quadratic minimization problem

γ∗

1 = arg min
γ1∈Γ1

e(γ1)
′We(γ1) (3)

for some symmetric and positive-definite weighting matrix W , where Γ1 denotes the parameter

space.

The HJ-distance is obtained when W = U−1 and is given by

δ =
√

e(γ∗

1)
′U−1e(γ∗

1). (4)

Given the computational simplicity and the nice economic and maximum pricing error interpreta-

tion of the HJ-distance, this measure of model misspecification is often used in applied work for

estimation and evaluation of asset pricing models. For this reason, we consider explicitly only the

case of the HJ-distance although results for the optimal GMM estimator are also available from

the authors upon request.
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The estimator γ̃1 of γ∗

1 is obtained by minimizing the sample analog of (3):

γ̃1 = arg min
γ
1
∈Γ1

ê(γ1)
′Û−1 ê(γ1), (5)

where Û = 1

T

∑T
t=1 xtx

′

t, ê(γ1) = B̂γ1 − q and

B̂ =
1

T

T∑
t=1

xtf̃
′

t . (6)

Then, the solution to the above minimization problem is given by

γ̃1 = (B̂′Û−1B̂)−1B̂′Û−1q. (7)

Let et(γ
∗

1) = xtf̃
′

tγ
∗

1 − q and S = E[et(γ
∗

1)et(γ
∗

1)
′]. Assuming that [x′

t, f ′

t ]
′ are jointly stationary

and ergodic processes with finite fourth moments, et(γ
∗

1) − e(γ∗

1) forms a martingale difference

sequence and B is of full column rank, Kan and Robotti (2009) show that

√
T (γ̃1 − γ∗

1)
d→ N (0K, Σγ̃1

), (8)

where Σγ̃1
= E[hth

′

t],

ht = (B′U−1B)−1B′U−1et(γ
∗

1) + (B′U−1B)−1(f̃t − B′U−1xt)ut (9)

and

ut = e(γ∗

1)
′U−1xt. (10)

Note that if the model is correctly specified (i.e., ut = 0), the expression for ht specializes to

h0
t = (B′U−1B)−1B′U−1et(γ

∗

1) (11)

and the asymptotic covariance matrix of
√

T (γ̃1 − γ∗

1) is simplified to

Σ0
γ̃
1

= E[h0
th

0′
t ] = (B′U−1B)−1B′U−1SU−1B(B′U−1B)−1. (12)

Suppose now that the interest lies in testing hypotheses on the individual parameters of the form

H0 : γ1i = γ∗

1i (for i = 1, . . . , K) and define a selector vector ιi with one for its i-th element and zero

otherwise (the length of ιi is implied by the matrix that it is multiplied to). Then, the t-statistic
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for γ̃1i with standard error computed under potential model misspecification is asymptotically

distributed as

tm(γ̃1i) =
γ̃1i − γ∗

1i√
ι
′

iΣ̂γ̃1
ιi

d→ N (0, 1), (13)

where Σ̂γ̃
1

is a consistent estimator of Σγ̃
1
. Note that this result is valid irrespective of whether the

model is misspecified or correctly specified.

In applied work, it is a common practice to test parameter restrictions using t-tests based on

standard errors computed under the assumption of correct model specification. For this reason, it

is instructive to consider the large sample behavior of the t-test

tc(γ̃1i) =
γ̃1i − γ∗

1i√
ι
′

iΣ̂
0
γ̃1

ιi

, (14)

where Σ̂0
γ̃1

is a consistent estimator of Σ0
γ̃1

. If the model is indeed correctly specified, the t-test

tc(γ̃1i) is asymptotically distributed as a standard normal random variable

tc(γ̃1i)
d→ N (0, 1). (15)

However, using the result in (8)–(9), we have that under misspecified models

tc(γ̃1i)
d→ N

(
0,

ι
′

iΣγ̃1
ιi

ι
′

iΣ
0
γ̃1

ιi

)
. (16)

Furthermore, under the assumption that xt and ft are multivariate elliptically distributed, it can be

shown (Kan and Robotti, 2009) that (ι′iΣγ̃
1
ιi)/(ι′iΣ

0
γ̃
1

ιi) > 1, which implies that standard inference

based on critical values from the N (0, 1) distribution would tend to over-reject the null hypothesis

H0 : γ1i = γ∗

1i. This also suggests that the testing procedure based on tc would reject too often the

null hypothesis that the SDF parameter is equal to zero.

We conclude this section with several observations that emerge from a closer inspection of the

function ht in (9) which is used for computing the covariance matrix Σγ̂
1

under misspecification.

It proves useful to rewrite ht as

ht = h0
t + (B′U−1B)−1(f̃t − B′U−1xt)ut. (17)

The adjustment term (B′U−1B)−1(f̃t − B′U−1xt)ut contains three components: (i) a misspecifi-

cation component ut, (ii) a spanning component f̃t − B′U−1xt that measures the degree to which
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the factors are mimicked by the returns on the test assets, and (iii) a component (B′U−1B)−1 that

measures the usefulness of factors. The adjustment term is zero if the model is correctly specified

(ut = 0) or if the factors are fully mimicked by the returns (f̃t = B′U−1xt). If the factors are nearly

uncorrelated with the returns (i.e., B is close to zero), the component (B′U−1B)−1 can be large

and the adjustment term tends to dominate the behavior of ht. Intuitively, near-uncorrelatedness

between the factors and the returns magnifies the consequences of small model specification errors

and imperfectly mimicked factors.

2. Asymptotic Inference in the Presence of a Useless Factor

As argued in the introduction, many popular asset pricing models include macroeconomic risk

factors that often exhibit very low correlations with the returns on the test assets. For this reason,

we now consider a candidate SDF which is given by

yt = f̃ ′

tγ1 + gtγ2, (18)

where gt is assumed to be a useless factor such that it is independent of xt and ft for all time

periods. Note that the independence between gt and xt implies d = E[xtgt] = 0N .

Now let D = [B, d], γ = [γ′

1, γ2]
′, e(γ) = Dγ − q, d̂ = 1

T

∑T
t=1 xtgt, and D̂ = [B̂, d̂]. Note that

since d = 0N , the vector of pricing errors

e(γ) = Bγ1 + dγ2 − q = Bγ1 − q (19)

is independent of the choice of γ2. For the pseudo-true values of the SDF parameters, we can set

γ∗

1 as in (3) but the parameter associated with the useless factor (γ∗

2) cannot be identified. In

the following, we set γ∗

2 = 0, which is a natural choice because we show that γ̂2 is symmetrically

distributed around zero (see the online appendix for details). While the pseudo-true value of γ∗

2 is

not identifiable, the sample estimates of the SDF parameters are always identified and are given by

γ̂ = (D̂′Û−1D̂)−1D̂′Û−1q. (20)

We make the following assumptions.

Assumption 1. Assume that (i) N > K + 1; (ii) [x′

t, f ′

t , gt]
′ are jointly stationary and ergodic

processes with finite fourth moments; (iii) et(γ
∗

1) − e(γ∗

1) forms a martingale difference sequence;

and (iv) the matrices B (N × K) and D (N×(K + 1)) have a column rank K.
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Assumption 2. Let εt = xt − B(E[f̃tf̃
′

t ])
−1f̃t and assume that E[εtε

′

t|f̃t] = Σ (conditional ho-

moskedasticity).

Assumption 1 imposes relatively mild restrictions on the data. The martingale difference se-

quence assumption allows for time-varying second- and higher-order moments of the pricing errors.

This martingale difference sequence structure can be further relaxed to allow for serially correlated

et(γ
∗

1) − e(γ∗

1) at the cost of more tedious notation. Part (iv) of Assumption 1 accommodates our

setup in which gt is a useless factor. Assumption 2 is made for convenience in order to simplify

some limiting results and can also be relaxed.

Our first results are concerned with the limiting behavior of γ̂1 and γ̂2 under correctly specified

and misspecified models. Before we present these results, note that D is not of full column rank

due to the presence of a useless factor. Therefore, the identification of the parameter vector γ∗

fails and the sufficient conditions for the consistency and the asymptotic normality of the GMM

estimator are not satisfied.

Proposition 1. Assume that the conditions in Assumption 1 are satisfied.

(a) If δ = 0, i.e., the model is correctly specified, we have γ̂1 − γ∗

1 = Op(T
−1/2) and γ̂2 = Op(1).

(b) If δ > 0, i.e., the model is misspecified, we have γ̂1 − γ∗

1 = Op(1) and γ̂2 = Op(T
1/2).

The explicit forms of the limiting distributions of the estimators and the proof of Proposition 1

are available in the online appendix. All of the asymptotic distributions are non-normal and only

the rate of convergence for γ̂1 under correctly specified models is standard. The estimator γ̂2

for the parameter on the useless factor converges to a bounded random variable and, hence, it is

inconsistent.4 The presence of model misspecification further exacerbates the inference problems

with the estimator γ̂1 becoming inconsistent and the estimator γ̂2 diverging at rate T
1

2 .

Despite the highly non-standard limits of the SDF parameter estimates, it is possible that their

t-statistics are well behaved. To investigate this, we define two types of t-statistics: (i) tc(γ̂1i), for

i = 1, . . . , K, and tc(γ̂2) that use standard errors obtained under the assumption that the model

4Convergence to a random variable arises in other contexts such as spurious regressions with nonstationary data
and instrumental variable models with weak instruments.
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is correctly specified, and (ii) tm(γ̂1i), for i = 1, . . . , K, and tm(γ̂2) that use standard errors under

potentially misspecified models. The two types of t-statistics are based on the estimated covariance

matrices Σ̂0
γ̂ = 1

T

∑T
t=1

ĥ0
t ĥ

0′
t and Σ̂γ̂ = 1

T

∑T
t=1

ĥtĥ
′

t, where

ĥ0
t = (D̂′Û−1D̂)−1D̂′Û−1êt, (21)

ĥt = ĥ0
t + (D̂′Û−1D̂)−1([f̃ ′

t, gt]
′ − D̂′Û−1xt)ê

′Û−1xt, (22)

êt = xt(f̃
′

tγ̂1 +gtγ̂2)−q and ê = 1

T

∑T
t=1

êt. We explicitly consider the behavior of tc(γ̂1i) and tc(γ̂2)

because it is a common practice for researchers to assume correct specification when computing the

t-statistics.

In particular, the t-statistics of H0 : γ1i = γ∗

1i and H0 : γ2 = 0 under the assumption of a

correctly specified model have the form

tc(γ̂1i) =

√
T (γ̂1i − γ∗

1i)√
ι
′

iΣ̂
0
γ̂ιi

(23)

and

tc(γ̂2) =

√
T γ̂2√

ι
′

K+1
Σ̂0

γ̂ιK+1

. (24)

Kan and Zhang (1999b) studied the limiting behavior of tc(γ̂2), when no useful factor is present in

the model, and showed that under H0 : γ2 = 0, tc(γ̂2)
2 is dominated by χ2

1 for correctly specified

models and tc(γ̂2)
2 d→ χ2

N−K for misspecified models. As stated below, these results continue to

hold in the presence of useful factors. We further extend the results in Kan and Zhang (1999b) by

deriving the explicit form of the limiting distributions of tc(γ̂2) for correctly specified models and

of tc(γ̂1i) for correctly specified and misspecified models (see the online appendix) which allows us

to compute the limiting rejection probabilities of these tests when N (0, 1) critical values are used

for inference.

The t-statistics of H0 : γ1i = γ∗

1i and H0 : γ2 = 0 under a potentially misspecified model are

given by

tm(γ̂1i) =

√
T (γ̂1i − γ∗

1i)√
ι
′

iΣ̂γ̂ιi

(25)

and

tm(γ̂2) =

√
T γ̂2√

ι
′

K+1
Σ̂γ̂ιK+1

. (26)
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One of the main contributions of this paper is to establish that the use of misspecification robust

standard errors in constructing the t-tests restores the standard inference on γ2 in misspecified

models. In the other three cases (inference on γ2 in correctly models or on γ1 in correctly specified

and misspecified models), the misspecification-robust t-tests are still asymptotically valid but they

tend to be conservative. The results for tm(γ̂1i) and tm(γ̂2) are presented in the following proposi-

tion. For completeness, we also include the results for tc(γ̂1i) and tc(γ̂2) under correctly specified

and misspecified models. For presentational convenience, Proposition 2 states the limiting results

for the squared t-tests (Wald tests).

Proposition 2.

(a) Suppose that the conditions in Assumptions 1 and 2 hold. If δ = 0, i.e., the model is correctly

specified, then tc(γ̂1i)
2, tc(γ̂2)

2, tm(γ̂1i)
2 and tm(γ̂2)

2 are dominated by χ2
1.

(b) Suppose that the conditions in Assumption 1 hold. If δ > 0, i.e., the model is misspecified,

then tc(γ̂1i)
2 and tm(γ̂1i)

2 are dominated by χ2
1, and

tc(γ̂2)
2 d→ χ2

N−K , (27)

tm(γ̂2)
2 d→ χ2

1. (28)

Explicit expressions for the limiting distributions of the four tests statistics in part (a) and

tc(γ̂1i) and tc(γ̂2) in part (b) as well as the proof of Proposition 2 are provided in the online ap-

pendix. Proposition 2 illustrates the implications of using standard inference procedures (critical

values from N (0, 1)) for testing the individual statistical significance of the SDF parameters γ in

the presence of a useless factor. Apart from tm(γ̂2) in misspecified models, all the other statistics

are not asymptotically distributed as standard normal random variables. For example, in mis-

specified models, the test statistic tc(γ̂2) will over-reject the null hypothesis when N (0, 1) is used

as a reference distribution and this over-rejection increases with the number of test assets N (see

Equation (27)). As a result, researchers will conclude erroneously (with high probability) that the

factor gt is important and should be included in the model. In order to visualize the source of the

over-rejection problem, Figure 1 plots the probability density function of tc(γ̂2) for N − K = 7

when the model is misspecified (see Theorem 2 in the online appendix).
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Figure 1 about here

Given the bimodal shape and a variance of 7 for the limiting distribution of tc(γ̂2), using the

critical values from the standard normal distribution would obviously result in highly misleading

inference. Importantly, part (b) of Proposition 2 shows that the t-statistic under potentially mis-

specified models, tm(γ̂2), retains its standard normal asymptotic distribution even when the factor

is useless and Figure 1 provides a graphical illustration of this result. The reduction in the degrees

of freedom from N−K for the asymptotic chi-squared distribution of tc(γ̂2)
2 to 1 for the asymptotic

chi-squared distribution of tm(γ̂2)
2 is striking.

Proposition 2 also suggests that the presence of a useless factor renders the inference on all

the remaining parameters non-standard. Testing the statistical significance of the parameters on

the useful factors, in both correctly specified and misspecified models, against the standard normal

critical values would lead to under-rejection of the null hypothesis and conservative inference.

The main conclusion that emerges from these results is that one should use misspecification-

robust t-statistics when testing the statistical significance of individual SDF parameters. This

will ensure that the statistical decision from this test is robust to possible model misspecification

and useless factors. If the model happens to be correctly specified, this will result in conservative

inference but the useless factor will be removed with probability greater than 1−α, where α is the

size of the test. If a useless factor is not present in the model, the standard normal asymptotics for

the misspecification-robust test is restored as discussed in Section 1.5

3. Model Selection Procedure

It is worthwhile stressing an important aspect of the approach adopted in this paper. Economic

theory often dictates which risk factors should be included in the model. While in a regression

framework, the inclusion of economic factors that are irrelevant does not affect the statistical

inference in the model and only results in slightly inflated standard errors, this is not the case in

the SDF setup studied in this paper. Our theoretical analysis suggests that the inclusion of an

irrelevant factor, even if there is a compelling reason for its presence from an economic point of

5In the online appendix, we also show that the presence of a useless factor tends to distort the inference on the
HJ-distance test for correct model specification and that this test is inconsistent under the alternative.
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view, has detrimental effects on the statistical inference on the remaining SDF parameters, their

associated t-statistics and the model specification test. We show that the presence of a useless

factor renders the remaining parameter estimates inconsistent and causes their t-statistics under

both correct model specification and model misspecification to under-reject the null. Only after

the useless factor is identified and removed using the misspecification-robust t-test, the validity of

the inference and the consistency of the parameters are restored.

These considerations suggest that a sequential procedure based on the misspecification-robust

t-statistics is necessary. One possibility is to select a subset of risk factors that survive a sequential

testing procedure of individual significance of the SDF parameters γ based on p-values that are

obtained from the quantiles of the N (0, 1) distribution and compared to a common significance level

α. Specifically, in the first stage, the full model is estimated and the factor with the smallest (in

absolute value) t-statistic, for which the null of zero risk premium is not rejected at the pre-specified

nominal level, is eliminated from the model. The model is then re-estimated with only the factors

that survive the first stage. This procedure is repeated until either all factors are eliminated or the

SDF parameter estimates on the remaining factors are found to be statistically significant at the

desired nominal level when using the misspecification-robust t-test.

However, this model selection procedure does not account for the multitude of tests and could

result in a substantially inflated rate of false discoveries (i.e., falsely identifying risk factors as being

priced) depending on the number of tested hypotheses, the number of irrelevant factors and the

dependence structure of the individual tests. The common solution to this multiple testing problem

is to devise adjustments in the testing procedure that control the probability of one or more false

discoveries, which is referred to in the statistical literature as familywise error rate. For a review of

the large literature on controlling the familywise error rate in multiple testing problems and model

selection, see Romano, Shaikh, and Wolf (2008). In this paper, we adopt the Bonferroni method

for controlling the number of false discoveries and ensuring the asymptotic validity of our model

selection procedure. While several refinements of the Bonferroni procedure have been proposed in

the literature (see Benjamini and Hochberg, 1995; Goeman and Solari, 2010; and Romano, Shaikh,

and Wolf, 2008, among others), the Bonferroni method has some advantages that are appealing to

applied researchers.

First, the Bonferroni modification to the multiple testing problem is rather straightforward.
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Let K be the total number of SDF parameters being tested and let the p-value for testing the

hypothesis H0 : γi = 0 be denoted by pT,i. Recall that all of the hypotheses H0 : γi = 0 for

i = 1, ..., K are tested by comparing the misspecification-robust t-statistic against the critical value

of the N (0, 1) distribution for a significance level α. Then, the Bonferroni method rejects the null

hypothesis if pT,i ≤ α/K instead of pT,i ≤ α as in the standard approach. Second, while some of

the proposed methods require independence or some knowledge of the dependence structure of the

individual test statistics, the Bonferroni method is robust to any form of dependence by assuming

a worst-case dependence structure (Romano, Shaikh, and Wolf, 2008). Naturally, the cost of this

robustness is conservative inference. However, given that the number of risk factors in asset pricing

models rarely exceeds five, we show in our simulations that the Bonferroni method is only mildly

conservative (i.e., it tends to select the relevant factors with high probability) while it fully controls

the familywise error rate.

The Bonferroni method is asymptotically valid if (Romano, Shaikh, and Wolf, 2008)

lim supT→∞
P{pT,i ≤ u} ≤ u,

for any uniformly distributed random variable u on the interval (0, 1). The asymptotic validity of

our proposed model selection procedure then follows from combining this asymptotic control of the

Bonferroni method with the result in Proposition 2 which states that the limiting distribution of

tm(γ̂i)
2 is stochastically dominated by the χ2

1 distribution.

Instead of eliminating factors with insignificant t-ratios one at a time, one may be tempted

to drop all the factors with insignificant t-ratios in each stage. Unlike our proposed method, this

alternative procedure can lead to the undesirable outcome of eliminating multiple useful factors

when a linear combination of them is useless. In this situation, only one of these useful factors

should be dropped to restore the full rank condition for the remaining factors. The effectiveness

of our model selection procedure in eliminating useless factors (and factors with zero risk premia)

and retaining useful factors in the model is analyzed in the simulation section below.

4. Monte Carlo Simulations

In this section, we undertake a Monte Carlo experiment to assess the small-sample properties of

the various test statistics in models with useful and useless factors. In our simulations, we also
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evaluate the effectiveness of the sequential model selection procedure described above in retaining

useful factors and eliminating useless factors and factors with zero risk premia.

4.1 Size of tests of parameter restrictions

For the analysis of the SDF parameter and specification tests, we consider three linear models: (i)

a model with a constant term and a useful factor, (ii) a model with a constant term and a useless

factor, and (iii) a model with a constant term, a useful factor and a useless factor. For each model,

we consider two separate cases: the case in which the model is correctly specified and the case in

which the model is misspecified. The returns on the test assets, denoted by Rt, and the useful

factor ft are drawn from a multivariate normal distribution with mean μ and covariance matrix V ,

where

μ = E

[
ft

Rt

]
=

[
μ1

μ2

]
(29)

and

V = Var

[
ft

Rt

]
=

[
V11 V12

V21 V22

]
. (30)

Let μ̂ and V̂ denote the sample estimates obtained from actual data. In all simulation designs, the

covariance matrix of the simulated test asset returns V22 is set equal to the estimated covariance

matrix V̂22 from the 1959:2–2012:12 sample of monthly gross returns on the one-month T-bill, the 25

Fama-French size and book-to-market ranked portfolios and the 17 Fama-French industry portfolios

(from Kenneth French’s website). Note that in this case, N = 43 and q = 1N . For the simulated

useful factor, we calibrate its mean μ1 and variance V11 to the sample mean μ̂1 and sample variance

V̂11 of the value-weighted market excess return. The covariances between the useful factor and the

returns, V12, are chosen based on the covariances estimated from the data, V̂12.

The pseudo-true values of the SDF parameters on the constant and the useful factor, γ∗ =

[γ∗

0, γ∗

1]
′, are chosen as

γ∗ = (X ′V̂ −1

22 X)−1X ′V̂ −1

22 1N ,

where X = [μ̂2, V̂21 + μ̂2μ̂1]. Since the pricing errors of the model are given by

e(γ∗) = E[Rt(γ
∗

0 + ftγ
∗

1)]− 1N = μ2(γ
∗

0 + μ1γ
∗

1) + V21γ
∗

1 − 1N , (31)

we set μ2 = (1N −V21γ
∗

1)/(γ∗

0 +μ1γ
∗

1) for the pricing errors to be zero and the model to be correctly

specified. For misspecified models, the means of the simulated returns, μ2, are set equal to the
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sample means of the actual returns μ̂2. Finally, the useless factor is generated as a standard normal

random variable independent of the returns and the useful factor. Using this approach to generating

data allows the models in our simulation experiment to exhibit a similar degree of misspecification

as some benchmark asset pricing models such as the CAPM. More specifically, the HJ-distance for

models (i) and (iii) is 0.523 while the HJ-distance for model (ii) is 0.535.

The time-series sample sizes that we consider in the simulations are T = 200, 600, and 1000.

These choices of T cover the range of sample sizes that are typically encountered in empirical work

with quarterly (T = 200) and monthly (T = 600) data. The sample size T = 1000 is used to assess

the quality of our asymptotic approximations. We also present the limiting rejection probabilities

based on our asymptotic results in Theorems 2 and 3 in the online appendix.6

In Tables 1 to 3, we report the probabilities of rejection (based on 100,000 simulations) of

H0 : γi = γ∗

i for models (i), (ii), and (iii), respectively, where the γ∗

i ’s for the constant and

the useful factor are the chosen pseudo SDF parameters, and the γ∗

i for the useless factor is set

equal to zero. We present results by comparing two different t-statistics with the standard normal

distribution, the one computed under the assumption that the model is correctly specified, tc(γ̂i),

and the one computed under the assumption that the model is potentially misspecified, tm(γ̂i). For

each table, Panel A reports the probabilities of rejection when the model is correctly specified and

Panel B reports the probabilities of rejection when the model is misspecified.

Table 1 about here

The results in Table 1.A show that for models that are correctly specified and contain only useful

factors, the standard asymptotics provides an accurate approximation of the finite-sample behavior

of the t-tests. Since the useful factor, calibrated to the properties of the value-weighted market

excess return, is closely replicated by the returns on the test assets, the differences between the

t-tests under correctly specified models (tc) and the t-tests under potentially misspecified models

(tm) exhibit no differences even when the model fails to hold exactly (see Panel B).

Tables 2 and 3 present the empirical size of the t-tests in the presence of a useless factor. The

simulation results for the t-tests on the parameters of the useful factor (and the constant term)

6The limiting rejection probabilities of tc in Table 1.B are computed based on (16) assuming that the factor and
the returns are multivariate normally distributed.
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confirm our theoretical findings that the null hypothesis is under-rejected when N (0, 1) is used

as a reference distribution. This is the case for correctly specified and misspecified models. For

example, the under-rejections are particularly pronounced for the tm test on the constant term in

Tables 2 and 3.

Tables 2 and 3 about here

Similarly, the inference on the useless factor proves to be conservative when the model is cor-

rectly specified. However, when the model is misspecified, there are substantial differences be-

tween tc and tm for the useless factor. Under this scenario, we argued in Section 2 that the

t-statistics under correct model specification have a non-normal asymptotic distribution while the

misspecification-robust t-statistic for the parameter on the useless factor has a N (0, 1) asymptotic

distribution. Since the tc test on the useless factor is asymptotically distributed (up to a sign) as√
χ2

N−K , it tends to over-reject severely when the critical values from N (0, 1) are used and the

degree of over-rejection increases with the sample size. In contrast, the tm test on the useless factor

has good size properties although, for small sample sizes, it slightly under-rejects. As the sample

size increases, the empirical rejection rates approach the limiting rejection probabilities (as shown

in the rows for T = ∞) computed from the corresponding asymptotic distributions in Theorem 2

in the online appendix.

Some comments about the under-rejections reported in Tables 2 and 3 for useful (in correctly

specified and misspecified models) and useless (for correctly specified models) factors are in order.

Starting with the useless factor, it turns out that the statistical under-rejection of the hull hypothesis

of a zero SDF coefficient is actually economically beneficial for our selection procedure since this

useless factor will be selected even less often than the nominal size of the test. For the useful factor,

the under-rejections may raise more concerns. However, note that the t-tests for the constant and

the useful factors in Tables 1 to 3 are testing the null hypothesis H0 : γi = γ∗

i . In practice, the

researchers are interested in testing the null hypothesis of whether the factor is priced or not, i.e.,

H0 : γi = 0. While the under-rejections in Tables 2 and 3 will affect the local power of the test, it

is still quite possible that these tests reject with reasonably high probability the null H0 : γi = 0

for useful factors with a nonzero risk premium parameter. This is illustrated in the model selection

procedure below which selects factors based on whether their parameter estimates are significantly
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different from zero or not. The results show that the useful factors with nonzero risk premium

parameters tend to be selected with sufficiently high probability (97%-99% for T = 1000).

4.2 Survival rates of risk factors in the sequential testing procedure

Our findings suggest that the misspecification-robust t-test should be used when it is uncertain

whether the factor is useful or useless and the model is correctly specified or misspecified. How-

ever, since the procedure based on the tm test is often conservative, some useful factors might be

erroneously excluded from the model. The frequency at which this happens is evaluated in the

model selection procedure presented below.

Table 4 reports the survival rates of different factors when using the sequential procedure

described in Section 3. In particular, we compare the survival rates from using the tm test to

the survival rates from using the tc test. The false discovery rate of the multiple testing problem

is controlled using the Bonferroni method. In our simulations, we consider a linear model with

a constant term, two useful factors with γ∗

i �= 0, a useful factor with γ∗

i = 0, and a useless

factor. The mean and variance of the useful factors with γ∗

i �= 0 are calibrated to the mean and

variance of the excess market return and the high-minus-low factor of Fama and French (1993).

The mean and variance of the useful factor with γ∗

i = 0 are calibrated to the mean and variance

of the small-minus-big factor of Fama and French (1993). As in Tables 1–3, the returns and the

useful factors are drawn from a multivariate normal distribution.7 Finally, the useless factor is

generated as a standard normal random variable, independent of the test asset returns and the

useful factors. The time-series sample size is taken to be T = 200, 600, and 1000. The nominal level

of the sequential testing procedure is set equal to 5%. The probability that at least one irrelevant

(useless or unpriced) factor survives the model selection (MS) procedure is reported in the last two

columns of the table with MSc denoting the survival probability computed from the tc tests and

MSm denoting the survival probability computed from the tm tests.

Table 4 about here

Panel A shows that when the model is correctly specified, the procedures based on tc and tm

7See Gospodinov, Kan, and Robotti (2013) for a description on how to impose zero restrictions on the parameters
in correctly specified and misspecified models. The HJ-distance of the misspecified model used in this section is 0.522.
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do a similarly good job in retaining the useful factors with nonzero SDF parameters in the model

(the survival probabilities are 99%–100% for T = 600) and eliminating the useless factor and the

factor that does not reduce the HJ-distance. This indicates that using the tc test in the presence

of a useless factor is not problematic when the underlying model holds exactly. However, as shown

in Panel B, the situation drastically changes when the model is misspecified. In this case, the

procedures based on tc and tm still retain the useful factors with similarly high probability (97%–

100% for T = 600), but they produce very different results when it comes to the useless factor. For

example, despite its conservative nature (due to the Bonferroni adjustment), the procedure based

on tc will retain the useless factor 30% of the time for T = 1000. In contrast, the procedure based on

tm will retain the useless factor only about 0.9% of the time for T = 1000. Similarly, the probability

of at least one irrelevant factor being selected in the final specification of the model is 31% (2.1%)

for T = 1000 when the tc (tm) test is used and the model is misspecified. It should be emphasized

that the effectiveness of the proposed sequential procedure in retaining the useful factors in the

model depends on the correlation between the useful factors and the returns on the test assets and

on the magnitude of the SDF coefficient associated with the useful factor. Our procedure will be

more effective in retaining a useful factor in the model, the higher this correlation and the larger

the SDF coefficient on the useful factor.

Table 5 about here

Table 5 reports the results from a similar exercise but this time the linear asset pricing model

consists of a constant term, two useful factors with γ∗

i �= 0 and two useless factors. This setup

serves to illustrate the usefulness of combining the misspecification-robust t-tests and the Bonferroni

method in controlling the false discovery rate which is about 52% (the probability that at least one

useless factor is deemed priced) for the t-tests constructed under correct model specification when

the true model is misspecified. In contrast, the misspecification-robust model selection procedure

with the Bonferroni adjustment retains one or both useless factors only 2% of the time. Another

important observation is that the presence of more useless factors does not have a tangible impact

on the survival probabilities of the useful factors in misspecified models which remain high, for the

tm tests, at 90%–95% for T = 600.

Some aspects of our model selection procedure deserve additional remarks. It should be stressed
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that the objective of our proposed sequential test is to find the most parsimonious model with the

same HJ-distance as the full model. The fact that our method eliminates unpriced useful factors

along with useless factors is not of particular concern since these factors do not contribute to the

reduction of the HJ-distance. As a result, our model selection procedure purges the model from

useless factors (that give rise to inference problems) and unpriced factors (that do not improve the

pricing ability of the model) and restores the standard asymptotic theory for the remaining factors

in the SDF.

Finally, we consider a scenario in which a linear combination of two useful factors is useless.

Although our theoretical setup in Section 2 is not specifically designed to deal with this type of

situation, it is still interesting to examine how our sequential model selection procedure fares in

this framework. Each factor is created by adding a normally distributed error to the excess market

return. The error term in each factor has a mean of zero and a variance of 4% of the variance

of the excess market return. The two error terms are independent of each other as well as of the

returns on the test assets and the market portfolio. As in Tables 4 and 5, the returns and the

factors are drawn from a multivariate normal distribution. We are interested in determining the

probability that (i) both factors survive, (ii) only one factor survives, and (iii) no factor survives

using the sequential procedure (with the Bonferroni adjustment) based on misspecification-robust

t-tests. For comparison, we also report results of the sequential procedure based on t-tests under

correct model specification. The nominal level of the sequential testing procedures is set equal to

5%. Ideally, in this framework, only one factor should survive the testing procedures described

above.

Table 6 about here

Panel A of Table 6 shows that when the model is correctly specified, the procedures based on tc

and tm do a similarly good job in retaining only one factor in the model. For example, for T = 1000,

the probability that only one factor survives is either 89% or 90% depending on whether we use tc

or tm. For this sample size, the probabilities that both factors survive and no factor survives are

very low and similar across procedures. However, when the model is misspecified (see Panel B), the

procedures based on tc and tm deliver very different results for the “Both factors survive” and “One

factor survives” cases. For T = 1000, the probability that both factors survive the model selection
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procedure based on tc is 37.5% while the probability that both factors survive the model selection

procedure based on tm is 1.7%. This difference in probabilities becomes larger as the sample size is

allowed to grow. Importantly, the probabilities that only one factor survives are markedly different

across procedures. For example, when T = 1000, the probability that only one factor survives is

about 89% when using t-tests under misspecified models while it is only 56.6% when using t-tests

under correctly specified models.8 In summary, our selection procedure based on t-tests that are

robust to misspecification continues to perform reasonably well even when no single factor is useless

but a linear combination of them is.

5. Empirical Analysis

Our theoretical and simulation results point out some serious pitfalls in the empirical analysis of

asset pricing models with nontraded factors. In the following, we use monthly data to demonstrate

the relevance of our theoretical results.

To show that our findings are not specific to the test assets and SDFs considered in the main

empirical application, we also use an alternative set of test assets and SDFs with macroeconomic

risk factors that are available only at quarterly frequency.

5.1 Main application

First, we describe the data used in the empirical analysis and outline the different specifications of

the asset pricing models considered. Then, we present our results.

5.1.1 Data and asset pricing models

As in the Monte Carlo simulations, the test asset returns are the monthly gross returns on the

one-month T-bill, the value-weighted 25 Fama-French size and book-to-market ranked portfolios

and the 17 industry portfolios from Kenneth French’s website.9 The data are from February 1959

8In an unreported empirical example of the liquidity-augmented CAPM of Liu (2006), the market factor and
the liquidity factor of Pastor and Stambaugh (2003) appear to be individually useful but jointly cause a model
identification failure. Our proposed model selection procedure proves to be effective in retaining only one useful
factor (the market factor in this case) and restoring the full rank condition necessary for identification.

9Using only the 25 Fama-French size and book-to-market ranked portfolios as test assets yields qualitatively similar
results.
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until December 2012. We analyze seven asset pricing models starting with the simple static CAPM.

The SDF specification for this model is

yCAPM
t (γ) = γ0 + γ1vwt, (32)

where vw is the excess return (in excess of the one-month T-bill rate) on the value-weighted stock

market index (NYSE-AMEX-NASDAQ) from Kenneth French’s website. The CAPM performed

well in the early tests, e.g., Fama and MacBeth (1973), but has fared poorly since.

One extension that has performed better is our second model, the three-factor model (FF3)

of Fama and French (1993). This model extends the CAPM by including the two empirically-

motivated factors smb and hml, where smb is the return difference between portfolios of stocks

with small and large market capitalizations, and hml is the return difference between portfolios of

stocks with high and low book-to-market ratios (“value” and “growth” stocks, respectively) from

Kenneth French’s website. The SDF specification is

yFF3
t (γ) = γ0 + γ1vwt + γ2smbt + γ3hmlt. (33)

The third model (ICAPM) is an empirical implementation of Merton’s (1973) intertemporal

extension of the CAPM based on Campbell (1996), who argues that innovations in state variables

that forecast future investment opportunities should serve as factors. The five-factor specification

proposed by Petkova (2006) is

yICAPM
t (γ) = γ0 + γ1vwt + γ2termt + γ3deft + γ4divt + γ5rft, (34)

where term is the difference between the yields of ten-year and one-year government bonds (from

the Board of Governors of the Federal Reserve System), def is the difference between the yields of

long-term corporate Baa bonds and long-term government bonds (from Ibbotson Associates), div

is the dividend yield on the Center for Research in Security Prices (CRSP) value-weighted stock

market portfolio, and rf is the one-month T-bill yield (from CRSP, Fama Risk Free Rates). The

actual factors for term, def, div, and rf are their innovations from a VAR(1) system of seven state

variables that also includes vw, smb, and hml.

Our fourth model is the scaled CAPM specification including human capital (C-LAB) also

considered by Lettau and Ludvigson (2001). This model incorporates measures of the return on
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human capital as well as the change in financial wealth, and allows the conditional SDF coefficients

to vary with the consumption-aggregate wealth ratio (cay) of Lettau and Ludvigson (2001).10 The

SDF specification is

yC−LAB
t (γ) = γ0 + γ1cayt−1 + γ2vwt + γ3labt + γ4vwt·cayt−1 + γ5labt·cayt−1, (35)

where lab is the growth rate in per capita labor income, L, defined as the difference between

total personal income and dividend payments, divided by the total population (from the Bureau

of Economic Analysis). Following Jagannathan and Wang (1996), we use a two-month moving

average to construct the growth rate labt = (Lt−1 + Lt−2)/(Lt−2 + Lt−3) − 1, for the purpose of

minimizing the influence of measurement error. The SDF specification in (35) is obtained by scaling

the constant term, the vw and the lab factors by a constant and cay. Scaling factors by instruments

is one popular way of allowing factor risk premia to vary over time. See Cochrane (1996), among

others.

Next, we consider consumption-based models. Our fifth model (CCAPM) is the unconditional

consumption model with

yCCAPM
t (γ) = γ0 + γ1cnd,t, (36)

where cnd is the growth rate in real per capita nondurable consumption (seasonally adjusted at

annual rates) from the Bureau of Economic Analysis. This model has generally not performed well

empirically (see Lettau and Ludvigson, 2001, for a summary of the poor empirical performance

of CCAPM). Therefore, we also examine two other consumption models that have yielded more

encouraging results.

One such model (CC-CAY) is a conditional version of the CCAPM due to Lettau and Ludvigson

(2001). The relation is

yCC−CAY
t (γ) = γ0 + γ1cnd,t + γ2cayt−1 + γ3cnd,t ·cayt−1. (37)

The SDF specification in (37) is obtained by scaling the constant term and the cnd factor by a

constant and cay.

10Following Vissing–Jørgensen and Attanasio (2003), we linearly interpolate the quarterly values of cay to permit
analysis at the monthly frequency.
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The last model (D-CCAPM), due to Yogo (2006), highlights the cyclical role of durable con-

sumption in asset pricing. The specification is

yD−CCAPM
t (γ) = γ0 + γ1vwt + γ2cnd,t + γ3cd,t, (38)

where cd) is the growth rate in real per capita durable consumption (seasonally adjusted at annual

rates) from the Bureau of Economic Analysis.

5.1.2 Results

Before presenting the estimation results for the SDF parameters, we first investigate whether the

various risk factors are correlated with the asset returns and whether the seven models described

above are properly identified. As mentioned in the theoretical section of the paper, the presence

of a useless factor leads to a violation of the crucial identification condition that the N × K

matrix B = E[xtf̃
′

t ] is of full column rank. Therefore, it is of interest to test if B is of (reduced)

rank K − 1. Since B̂ is not invariant to rescaling of the data, we first perform a normalization

on B̂. Define Θ̂ = Û−
1

2 B̂Ŝ
−

1

2

f̃
and its corresponding population counterpart Θ = U−

1

2 BS
−

1

2

f̃
,

where Ŝf̃ = 1

T

∑T
t=1 f̃tf̃

′

t and Sf̃ = E[f̃tf̃
′

t ]. Note that Θ̂ is invariant to rescaling of the data and

rank(Θ) = rank(B).

Let Π̂ be a consistent estimator of the asymptotic covariance matrix of
√

Tvec(Θ̂ − Θ), where

vec(·) is the vec operator. Following Ratsimalahelo (2002) and Kleibergen and Paap (2006), we

perform a singular value decomposition on Θ̂ such that Θ̂ = Ũ S̃Ṽ ′, where Ũ ′Ũ = IN , Ṽ ′Ṽ = IK ,

and S̃ is an N × K matrix with the singular values of Θ̂ in decreasing order on its diagonal. Let

Ũ2 be the last N − K + 1 columns of Ũ , Ṽ2 be the last column of Ṽ , and

Π̃ = (Ṽ ′

2 ⊗ Ũ ′

2)Π̂(Ṽ2 ⊗ Ũ2). (39)

Then, a test of H0 : rank(Θ) = rank(B) = K − 1 is given by

W∗ = T s̃2
KΠ̃11 d→ χ2

N−K+1, (40)

where s̃K is the smallest singular value of Θ̂, and Π̃11 is the (1, 1) element of Π̃−1.

Table 7.A reports the rank restriction test (W∗) and its p-value (p-val) of the null that E[xt(1, fit)]

has a column rank of one. The panel shows that we cannot reject the null of a column rank of
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one at the 5% significance level for seven out of 14 macroeconomic and financial factors. This

finding suggests that several risk factors in ICAPM, C-LAB, CCAPM, CC-CAY, and D-CCAPM

can be reasonably considered as useless and that our asymptotic results on useless factors are of

practical importance. Panel B further shows that only CAPM and FF3 pass the test of full rank

condition at the 5% nominal level. This is consistent with the fact that vw, smb and hml are

highly correlated with the returns on the test assets while most factors in the other models are not.

Panel B also shows that no model passes the HJ-distance specification test at conventional levels

of significance. Since the HJ-distance test has been shown to substantially over-reject under the

null in realistic simulation settings with many test assets, we also consider an alternative test of

H0 : λ = U−1e = 0N (which is equivalent to the test of H0 : δ = 0). Gospodinov, Kan, and Robotti

(2013) show that this alternative Lagrange multiplier (LM) test has excellent size and power prop-

erties. The results in Panel B indicate that one would reach the same conclusions using the LM

and HJ-distance tests. Therefore, the model rejections documented in Table 7.B do not seem to

be driven by the finite-sample properties of the HJ-distance test. Overall, these empirical findings

suggest that valid inference should account for the fact that some of the models are potentially

misspecified and poorly identified.

Table 7 about here

Although the rank restriction test serves as a useful pre-test for possible identification problems,

this test does not allow us to unambiguously identify which factor contributes to the identification

failure of the model. In addition, this test does not address the question of which risk factors

are important in explaining the cross-sectional differences in asset returns. Our misspecification-

robust test of H0 : γi = 0 proves to be of critical importance in (i) providing the direction of

the identification failure and (ii) allowing us to determine whether a given risk factor is priced.

Panels C and D of Table 7 present the t-tests under correct model specification and potential

model misspecification as well as the model selection procedure described in Section 3. Using t-

tests under correct specification, the results in Panel C suggest that the factors term in ICAPM,

lab · cay in C-LAB, cay in CC-CAY, and cnd in CCAPM, CC-CAY, and D-CCAPM survive the

sequential testing procedure at the 5% significance level using the Bonferroni correction. However,

given the violation of the full rank condition for these models, the standard normal distribution is

not the appropriate reference distribution in this case. Since some of these factors are very weakly
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correlated with the returns on the test assets and effectively behave as useless factors, they tend

to be included in the model much more often than they should (see the simulation results for the

useless factors in Panel B of Table 4 and Table 5). Therefore, the model selection procedure needs

to be implemented using misspecification-robust t-tests.

Panel D shows that, from all of the nontraded factors listed above, only term in ICAPM

survives the sequential procedure based on misspecification-robust t-tests at the 5% significance

level. Finally, for traded factors, we find strong evidence of pricing for the vw factor in CAPM and

the vw and hml factors in FF3 in both Panels C and D.11

5.2 Additional empirical evidence

The results in Table 7 suggest that the statistical evidence on the pricing ability of several macroe-

conomic and financial factors is weak and their usefulness in explaining the cross-section of asset

returns should be interpreted with caution. In this section, we further emphasize the importance

of accounting for model misspecification and weak identification in empirical work. The following

application uses an alternative set of test assets and SDFs that include macroeconomic risk factors

whose data are available only at quarterly frequency.

The test asset returns are the quarterly gross returns on the one-month T-bill, the value-

weighted 6 Fama-French size and book-to-market ranked portfolios, the 17 industry portfolios and

the 10 momentum portfolios from Kenneth French’s website. The sample period is from 1952:Q2

until 2012:Q4. We consider the following asset pricing specifications: (i) the conditional CCAPM

(CC-CAY) version of Lettau and Ludvigson (2001) with cnd, cay and cnd ·cay as described in the

previous section; (ii) the conditional CAPM (C-ML) of Santos and Veronesi (2006) with vw and vw

scaled by the labor income-consumption ratio (ml) as risk factors; (iii) a version of the conditional

consumption CAPM (CC-MY) proposed by Lustig and Van Nieuwerburgh (2005) with the housing

collateral ratio (my), cnd, and the interaction term cnd ·my as risk factors; and (iv) the sector

investment model (SIM) of Li, Vassalou, and Xing (2006) with the log investment growth rates

11It is possible that the individual risk factors considered in this section do not capture adequately the risk in-
corporated in all of the macroeconomic data that is available to market participants. One approach to extract
parsimoniously the common variation in macroeconomic variables is the factor analysis advocated by Stock and Wat-
son (2002). In unreported results, we follow this approach and construct three orthogonal factors that summarize
the dynamics of 130 U.S. macroeconomic time series for the period March 1960 – December 2011. Using the same
set of tests assets, we find that no factor survives the misspecification-robust model selection procedure at the 5%
significance level using the Bonferroni adjustment.
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for households (ih), non-financial corporations (ic), and non-corporate sector (inc) as risk factors.

We include the CC-CAY model again since the original data for the cay factor are available at a

quarterly frequency. These four models with nontraded factors have yielded encouraging results in

cross-sectional asset pricing.12

The empirical results for quarterly data are reported in Table 8, with Panel A showing that for

all factors except for vw and vw·ml, we cannot reject the null that E[xt(1, fit)] has a column rank

of one at the 5% significance level. In addition, the results in Panel B indicate that we cannot reject

the null of reduced rank for all models, except for C-ML, and that all models are rejected by the

HJ-distance and LM specification tests. This clearly points to the need of statistical procedures

that are robust to model misspecification and weak identification.

Table 8 about here

Panel D of Table 8 shows that all factors except for vw ·ml do not survive the model selection

procedure based on the misspecification-robust t-test.13 This stands in sharp contrast to the results

in Panel C of Table 8 where the t-test under correctly specified models is employed. However,

our theoretical and simulation analyses clearly showed that relying on the t-test under correct

specification is grossly inappropriate when the underlying model is misspecified and the factors are

very weakly correlated with the returns on the test assets. As one example, consider CC-MY. In the

final stage of the model selection procedure in Panel C, both cg and my seem to be priced. On the

contrary, no factor in CC-MY survives the model selection procedure based on misspecification-

robust t-tests. Taken together, these results serve as a warning signal to researchers that are

interested in estimating and analyzing SDF parameters on nontraded risk factors.

6. Conclusion

It is well known that asset returns are, at best, only weakly correlated with many macroeconomic

factors. Nonetheless, researchers in finance have typically relied on inference methods that are not

12We also estimated the CAPM, FF3, CCAPM and D-CCAPM models considered in the previous section using
quarterly data and the results are very similar to the ones for the monthly application.

13Although vw·ml is in principle a nontraded factor, it is very highly correlated with the returns on the test assets.
This is a situation in which, as discussed at the end of Section 1, the t-ratios under correctly specified and misspecified
models are likely to deliver a similar answer.
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robust to weak identification and model misspecification when evaluating the incremental pricing

ability of these factors. Our paper demonstrates that when a model is misspecified, the standard

t-test of statistical significance will lead us to erroneously conclude, with high probability, that a

useless factor is relevant and should be included in the model. Importantly, we show that the t-test

of statistical significance will be valid only if it is computed using misspecification-robust standard

errors. Furthermore, we argue that the presence of a useless factor affects the inference on the

remaining model parameters and the test of correct specification. In particular, when a useless

factor is present in the model, the limiting distributions of the t-statistics for the useful factors are

non-standard and the HJ-distance specification test is inconsistent.

In order to overcome these problems, we propose an easy-to implement sequential model se-

lection procedure based on misspecification-robust t-tests that restores the standard inference on

the parameters of interest. We show via simulations that the proposed procedure is effective in

eliminating useless factors as well as factors that do not improve the pricing ability of the model.

Finally, we employ our methodology to investigate the empirical performance of several promi-

nent asset pricing models with traded and nontraded factors. While the market factor and the

book-to-market factor of Fama and French (1993) are often found to be priced, the statistical

evidence on the pricing ability of many nontraded factors is rather weak when using the model

selection procedure based on misspecification-robust t-tests.
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Table 1
Empirical size of the t-tests in a model with a useful factor

Panel A: Correctly specified model

γ̂0 γ̂1

t-test T 10% 5% 1% 10% 5% 1%

tc 200 0.168 0.139 0.108 0.098 0.049 0.010
600 0.134 0.098 0.063 0.099 0.049 0.009

1,000 0.123 0.081 0.044 0.101 0.049 0.009
∞ 0.100 0.050 0.010 0.100 0.050 0.010

tm 200 0.168 0.139 0.108 0.097 0.049 0.010

600 0.134 0.098 0.063 0.099 0.049 0.009
1,000 0.123 0.081 0.044 0.101 0.049 0.009

∞ 0.100 0.050 0.010 0.100 0.050 0.010

Panel B: Misspecified model

γ̂0 γ̂1

t-test T 10% 5% 1% 10% 5% 1%

tc 200 0.173 0.144 0.112 0.099 0.048 0.009

600 0.137 0.099 0.063 0.098 0.049 0.010
1000 0.123 0.081 0.043 0.098 0.048 0.010

∞ 0.100 0.050 0.010 0.100 0.050 0.010

tm 200 0.173 0.144 0.112 0.099 0.048 0.009
600 0.137 0.099 0.063 0.098 0.049 0.010

1000 0.123 0.081 0.043 0.098 0.048 0.010
∞ 0.100 0.050 0.010 0.100 0.050 0.010

The table presents the empirical size of the t-tests of H0 : γi = γ∗

i
(i = 0, 1) in a model with a constant

and a useful factor. γ0 is the coefficient on the constant term and γ1 is the coefficient on the useful factor.
tc denotes the t-test constructed under the assumption of correct model specification and tm denotes the
misspecification-robust t-test. We report results for different levels of significance (10%, 5% and 1%) and for
different values of the number of time series observations (T ) using 100,000 simulations, assuming that the
returns are generated from a multivariate normal distribution with means and covariance matrix calibrated
to the 25 size and book-to-market Fama-French portfolio returns, the 17 Fama-French industry portfolio
returns and the one-month T-bill rate for the period 1959:2–2012:12. The various t-statistics are compared
to the critical values from a standard normal distribution.
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Table 2
Empirical size of the t-tests in a model with a useless factor

Panel A: Correctly specified model

γ̂0 γ̂1

t-test T 10% 5% 1% 10% 5% 1%

tc 200 0.008 0.002 0.000 0.131 0.067 0.012

600 0.002 0.000 0.000 0.099 0.046 0.006
1000 0.002 0.000 0.000 0.098 0.045 0.007
∞ 0.001 0.000 0.000 0.088 0.039 0.005

tm 200 0.001 0.000 0.000 0.036 0.012 0.001

600 0.000 0.000 0.000 0.022 0.006 0.000
1000 0.000 0.000 0.000 0.022 0.006 0.000

∞ 0.000 0.000 0.000 0.018 0.004 0.000

Panel B: Misspecified model

γ̂0 γ̂1

t-test T 10% 5% 1% 10% 5% 1%

tc 200 0.020 0.006 0.000 0.328 0.234 0.103
600 0.020 0.005 0.000 0.472 0.383 0.228
1000 0.024 0.007 0.000 0.557 0.476 0.327

∞ 0.088 0.039 0.005 1.000 1.000 1.000

tm 200 0.002 0.000 0.000 0.081 0.036 0.005
600 0.001 0.000 0.000 0.081 0.038 0.006

1000 0.001 0.000 0.000 0.086 0.041 0.007
∞ 0.001 0.000 0.000 0.100 0.050 0.010

The table presents the empirical size of the t-tests of H0 : γi = γ∗

i
(i = 0, 1) in a model with a constant

and a useless factor. γ0 is the coefficient on the constant term and γ1 is the coefficient on the useless factor.
tc denotes the t-test constructed under the assumption of correct model specification and tm denotes the
misspecification-robust t-test. We report results for different levels of significance (10%, 5% and 1%) and for
different values of the number of time series observations (T ) using 100,000 simulations, assuming that the
returns are generated from a multivariate normal distribution with means and covariance matrix calibrated
to the 25 size and book-to-market Fama-French portfolio returns, the 17 Fama-French industry portfolio
returns and the one-month T-bill rate for the period 1959:2–2012:12. The various t-statistics are compared
to the critical values from a standard normal distribution. The rejection rates for the limiting case (T = ∞)
are based on the asymptotic distributions given in Theorem 2 in the online appendix.
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Table 3
Empirical size of the t-tests in a model with a useful and a useless factor

Panel A: Correctly specified model

γ̂0 γ̂1 γ̂2

t-test T 10% 5% 1% 10% 5% 1% 10% 5% 1%

tc 200 0.054 0.023 0.007 0.094 0.045 0.008 0.128 0.066 0.012

600 0.059 0.028 0.008 0.096 0.047 0.009 0.100 0.046 0.006
1000 0.056 0.025 0.007 0.096 0.046 0.009 0.095 0.043 0.005

∞ 0.052 0.020 0.002 0.096 0.047 0.009 0.088 0.039 0.005

tm 200 0.027 0.011 0.004 0.090 0.042 0.007 0.036 0.012 0.001

600 0.037 0.016 0.006 0.092 0.045 0.008 0.022 0.006 0.000
1000 0.037 0.016 0.005 0.092 0.044 0.008 0.019 0.005 0.000

∞ 0.037 0.014 0.002 0.092 0.045 0.008 0.018 0.004 0.000

Panel B: Misspecified model

γ̂0 γ̂1 γ̂2

t-test T 10% 5% 1% 10% 5% 1% 10% 5% 1%

tc 200 0.056 0.023 0.005 0.095 0.046 0.008 0.319 0.227 0.098
600 0.057 0.023 0.004 0.095 0.046 0.009 0.464 0.376 0.224

1000 0.057 0.021 0.003 0.094 0.046 0.009 0.550 0.469 0.319
∞ 0.088 0.039 0.005 0.088 0.039 0.005 1.000 1.000 1.000

tm 200 0.016 0.006 0.002 0.086 0.040 0.006 0.080 0.036 0.005
600 0.013 0.005 0.002 0.079 0.037 0.006 0.082 0.038 0.006

1000 0.009 0.003 0.001 0.071 0.032 0.005 0.087 0.042 0.007
∞ 0.001 0.000 0.000 0.001 0.000 0.000 0.100 0.050 0.010

The table presents the empirical size of the t-tests of H0 : γi = γ∗

i
(i = 0, 1, 2) in a model with a constant, a

useful and a useless factor. γ0 is the coefficient on the constant term, γ1 is the coefficient on the useful factor,
and γ2 is the coefficient on the useless factor. tc denotes the t-test constructed under the assumption of correct
model specification and tm denotes the misspecification-robust t-test. We report results for different levels
of significance (10%, 5% and 1%) and for different values of the number of time series observations (T ) using
100,000 simulations, assuming that the returns are generated from a multivariate normal distribution with
means and covariance matrix calibrated to the 25 size and book-to-market Fama-French portfolio returns,
the 17 Fama-French industry portfolio returns and the one-month T-bill rate for the period 1959:2–2012:12.
The various t-tests are compared to the critical values from a standard normal distribution. The rejection
rates for the limiting case (T = ∞) are based on the asymptotic distributions given in Theorem 2 in the
online appendix.
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Table 4
Survival rates of risk factors: two useful, one unpriced and one useless factors

Panel A: Correctly specified model

Useful (γ∗

1 �= 0) Useful (γ∗

2 �= 0) Useful (γ∗

3 = 0) Useless Prob.

T tc(γ̂1) tm(γ̂1) tc(γ̂2) tm(γ̂2) tc(γ̂3) tm(γ̂3) tc(γ̂4) tm(γ̂4) MSc MSm

200 0.519 0.517 0.674 0.661 0.027 0.023 0.023 0.002 0.049 0.025
600 0.986 0.987 0.999 0.999 0.014 0.013 0.009 0.001 0.023 0.014
1000 1.000 1.000 1.000 1.000 0.013 0.013 0.008 0.000 0.022 0.013

Panel B: Misspecified model

Useful (γ∗

1 �= 0) Useful (γ∗

2 �= 0) Useful (γ∗

3 = 0) Useless Prob.

T tc(γ̂1) tm(γ̂1) tc(γ̂2) tm(γ̂2) tc(γ̂3) tm(γ̂3) tc(γ̂4) tm(γ̂4) MSc MSm

200 0.498 0.502 0.648 0.633 0.033 0.025 0.108 0.008 0.138 0.033
600 0.971 0.981 0.993 0.996 0.018 0.014 0.206 0.008 0.220 0.022

1000 0.996 0.998 0.999 0.999 0.015 0.012 0.295 0.009 0.306 0.021

The table presents the survival rates of the useful and useless factors in a model with a constant, two useful factors
(with γ∗

1 �= 0 and γ∗

2 �= 0), a useful factor that does not contribute to pricing (with γ∗

3 = 0) and a useless factor
(with γ∗

4 unidentified). The sequential procedure is implemented by using the misspecification-robust t-tests (tm(γ̂i)
column) as well as the t-tests under correctly specified models (tc(γ̂i

) column). The false discovery rate of the
multiple testing procedure is controlled using the Bonferroni method. The last two columns of the table report the
probability that at least one useless or unpriced useful factor survives using the t-tests under correctly specified
models (MSc) and misspecification-robust t-tests (MSm). The nominal level of the sequential testing procedure
is set equal to 5%. Panels A and B are for correctly specified and misspecified models, respectively. We report
results for different values of the number of time series observations (T ) using 100,000 simulations, assuming that
the returns are generated from a multivariate normal distribution with means and covariance matrix calibrated to
the 25 size and book-to-market Fama-French portfolio returns, the 17 Fama-French industry portfolio returns and
the one-month T-bill rate for the period 1959:2–2012:12.
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Table 5
Survival rates of risk factors: two useful and two useless factors

Panel A: Correctly specified model

Useful (γ∗

1 �= 0) Useful (γ∗

2 �= 0) Useless Useless Prob.

T tc(γ̂1) tm(γ̂1) tc(γ̂2) tm(γ̂2) tc(γ̂3) tm(γ̂3) tc(γ̂4) tm(γ̂4) MSc MSm

200 0.520 0.521 0.666 0.658 0.023 0.002 0.024 0.002 0.046 0.004

600 0.988 0.989 0.999 0.999 0.009 0.001 0.010 0.001 0.019 0.001
1000 1.000 1.000 1.000 1.000 0.008 0.000 0.008 0.000 0.016 0.001

Panel B: Misspecified model

Useful (γ∗

1 �= 0) Useful (γ∗

2 �= 0) Useless Useless Prob.

T tc(γ̂1) tm(γ̂1) tc(γ̂2) tm(γ̂2) tc(γ̂3) tm(γ̂3) tc(γ̂4) tm(γ̂4) MSc MSm

200 0.300 0.308 0.398 0.389 0.105 0.007 0.106 0.007 0.205 0.015
600 0.853 0.900 0.921 0.951 0.202 0.009 0.204 0.009 0.384 0.018

1000 0.959 0.983 0.981 0.992 0.279 0.010 0.282 0.010 0.517 0.020

The table presents the survival rates of the useful and useless factors in a model with a constant, two useful factors
(with γ∗

1 �= 0 and γ∗

2 �= 0), and two useless factors (with γ∗

3 and γ∗

4 unidentified). The sequential procedure
is implemented by using the misspecification-robust t-tests (tm(γ̂i) column) as well as the t-tests under correctly
specified models (tc(γ̂i

) column). The false discovery rate of the multiple testing procedure is controlled using
the Bonferroni method. The last two columns of the table report the probability that at least one useless factor
survives using the t-tests under correctly specified models (MSc) and misspecification-robust t-tests (MSm). The
nominal level of the sequential testing procedure is set equal to 5%. Panels A and B are for correctly specified and
misspecified models, respectively. We report results for different values of the number of time series observations
(T ) using 100,000 simulations, assuming that the returns are generated from a multivariate normal distribution with
means and covariance matrix calibrated to the 25 size and book-to-market Fama-French portfolio returns, the 17
Fama-French industry portfolio returns and the one-month T-bill rate for the period 1959:2–2012:12.
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Table 6
Survival rates when a linear combination of the factors is useless

Panel A: Correctly specified model

Both factors survive One factor survives No factor survives

T tc tm tc tm tc tm

200 0.025 0.002 0.250 0.251 0.726 0.746

600 0.015 0.001 0.680 0.688 0.305 0.311
1000 0.014 0.001 0.889 0.900 0.098 0.100

Panel B: Misspecified model

Both factors survive One factor survives No factor survives

T tc tm tc tm tc tm

200 0.138 0.013 0.229 0.255 0.633 0.732

600 0.277 0.015 0.505 0.685 0.217 0.300
1000 0.375 0.017 0.566 0.888 0.059 0.095

The table presents the probability that both factors survive, only one factor survives, and no factor
survives in a model in which a linear combination of two useful factors is useless. The sequential
procedure is implemented by using the misspecification-robust t-test (tm column) as well as the t-test
under correctly specified models (tc column). The false discovery rate of the multiple testing procedure
is controlled using the Bonferroni method. The nominal level of the sequential testing procedure is
set equal to 5%. Panels A and B are for correctly specified and misspecified models, respectively.
We report results for different values of the number of time series observations (T ) using 100,000
simulations, assuming that the returns are generated from a multivariate normal distribution with means
and covariance matrix calibrated to the 25 size and book-to-market Fama-French portfolio returns, the
17 Fama-French industry portfolio returns and the one-month T-bill rate for the period 1959:2–2012:12.
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Table 7
Monthly analysis of some popular linear asset pricing models

Panel A: Rank test for individual factors

Test vw smb hml term def div rf cay lab vw·cay lab·cay cnd cnd·cay cd

W∗ 205.7 199.9 189.7 51.5 88.0 186.2 42.0 54.0 54.8 83.1 49.7 54.6 43.0 58.6
p-val 0.000 0.000 0.000 0.149 0.000 0.000 0.470 0.101 0.088 0.000 0.193 0.092 0.430 0.046

Panel B: HJ-distance, Lagrange multiplier, and rank tests

Model δ̂ p-val LM p-val W∗ p-val
CAPM 0.523 0.000 139.766 0.000 205.7 0.000
FF3 0.487 0.000 121.265 0.000 190.7 0.000
ICAPM 0.446 0.005 73.171 0.000 50.5 0.084
C-LAB 0.481 0.000 78.892 0.000 31.1 0.780
CCAPM 0.513 0.000 112.888 0.000 54.6 0.092
CC-CAY 0.484 0.000 81.523 0.000 40.9 0.430
D-CCAPM 0.510 0.000 114.966 0.000 46.4 0.225
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Table 7 (continued)
Monthly analysis of some popular linear asset pricing models

Panel C: Model selection procedure using standard errors under correct model specification

Model vw smb hml term def div rf cay lab vw·cay lab·cay cnd cnd·cay cd

CAPM -2.64

FF3 -3.43 -0.57 -4.59
-3.69 -4.62

ICAPM 1.27 -3.35 0.62 1.32 0.56
1.24 -4.00 0.43 1.25
1.17 -4.02 1.19

-4.11 0.49
-4.32

C-LAB -0.72 0.15 0.59 2.46 -2.22
-0.71 0.60 2.45 -3.36
-0.80 2.39 -3.43

2.38 -3.63
-3.79

CCAPM -3.23

CC-CAY -3.13 -3.05 0.97
-3.24 -3.03

D-CCAPM -1.12 -2.41 -0.67
-1.14 -2.58

-3.23

Panel D: Model selection procedure using model misspecification-robust standard errors

Model vw smb hml term def div rf cay lab vw·cay lab·cay cnd cnd ·cay cd

CAPM -2.64

FF3 -3.35 -0.53 -4.40
-3.68 -4.45

ICAPM 0.97 -2.43 0.49 1.03 0.42
0.95 -3.05 0.34 0.99
0.93 -3.13 0.98

-3.21 0.48
-3.54

C-LAB -0.64 0.08 0.36 1.88 -1.09
-0.61 0.37 1.88 -1.81
-0.71 1.87 -1.80

1.89 -2.07
-1.98

CCAPM -1.75
CC-CAY -1.85 -1.88 0.47

-1.89 -1.84
-1.89

D-CCAPM -0.90 -1.22 -0.41
-0.90 -1.27

-1.75
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Table 7 (continued)
Monthly analysis of some popular linear asset pricing models
The table presents the estimation and testing results of the seven asset pricing models described in Sec-
tion 5.1.1. The models are estimated using monthly gross returns on the 25 size and book-to-market Fama-
French portfolios, the 17 Fama-French industry portfolios and the one-month T-bill. The data are from
1959:2 until 2012:12. Panel A reports the rank restriction test (W∗) and its p-value (p-val) of the null that

E[xt(1, fit)] has a column rank of one. In Panel B, we report the sample HJ-distance (δ̂), the Lagrange
multiplier (LM) test, and the rank restriction test (W∗) with the corresponding p-values (p-val) for each
model. The t-tests of the model selection procedures based on the standard errors under correct model
specification and model misspecification are in Panels C and D, respectively. We use boldface to highlight
those cases in which the factors survive the model selection procedure at the 5% significance level using the
Bonferroni adjustment.
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Table 8
Quarterly Analysis of Some Popular Linear Asset Pricing Models

Panel A: Rank Test for Individual Factors
Test vw vw·ml cnd cay cnd·cay my cnd ·my ih ic inc

W ∗ 92.2 92.5 46.0 43.9 33.6 39.0 39.6 42.4 33.5 28.1
p-val 0.000 0.000 0.066 0.098 0.438 0.218 0.199 0.128 0.444 0.708

Panel B: HJ-Distance, Lagrange Multiplier, and Rank Tests

Model δ̂ p-val LM p-val W ∗ p-val

C-ML 0.790 0.000 95.378 0.000 54.2 0.008
CC-CAY 0.761 0.000 73.471 0.000 29.8 0.527
CC-MY 0.751 0.002 86.353 0.000 40.8 0.111
SIM 0.776 0.000 87.339 0.000 24.3 0.800

Panel C: t-tests Using Standard Errors Under Correct Model Specification
Model vw vw·ml cnd cay cnd ·cay my cnd ·my ih ic inc

C-ML 1.91 -1.97
-2.99

CC-CAY -2.77 -2.17 0.51
-2.95 -2.33
-3.36

CC-MY -2.74 2.51 -0.99
-2.91 2.41

SIM -2.89 -0.59 0.26
-3.04 -0.60
-3.42

Panel D: t-tests Using Model Misspecification-Robust Standard Errors
Model vw vw·ml cnd cay cnd·cay my cnd ·my ih ic inc

C-ML 1.34 -1.38
-2.97

CC-CAY -1.80 -1.57 0.31
-1.92 -1.64
-1.99

CC-MY -1.88 1.64 -0.64
-1.97 1.51
-1.99

SIM -1.92 -0.38 0.15
-2.04 -0.38
-2.27
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Table 8 (continued)
Quarterly analysis of some popular linear asset pricing models
The table presents the estimation and testing results of the four asset pricing models described in Section 5.2.
The models are estimated using quarterly gross returns on the 6 size and book-to-market Fama-French
portfolios, the 17 Fama-French industry portfolios, the 10 momentum portfolios and the one-month T-bill.
The data are from 1952:Q2 until 2012:Q4. Panel A reports the rank restriction test (W∗) and its p-value
(p-val) of the null that E[xt(1, fit)] has a column rank of one. In Panel B, we report the sample HJ-distance

(δ̂), the Lagrange multiplier (LM) test, and the rank restriction test (W∗) with the corresponding p-values
(p-val) for each model. The t-tests of the model selection procedures based on the standard errors under
correct model specification and model misspecification are in Panels C and D, respectively. We use boldface
to highlight those cases in which the factors survive the model selection procedure at the 5% significance
level using the Bonferroni adjustment.
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Figure 1

Asymptotic distributions of tc(γ̂2) and tm(γ̂2) under misspecified models. The figure presents

the probability density functions of the limiting distributions of tc(γ̂2) and tm(γ̂2), the t-statistics
for the useless factor that use standard errors constructed under correctly specified and potentially

misspecified models, respectively, for N −K = 7 (see part (b) of Theorem 2 in the online appendix).
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In this online appendix, we derive the limiting distributions of the parameter estimates and their

corresponding t-statistics as well as the HJ-distance test for correct model specification when a

useless factor is present in the model. We follow the same notation as in the paper.

Theoretical Results for Gross Returns

First, we provide theoretical results for the gross returns case. Consider a candidate SDF which is

given by

yt = f̃ ′

tγ1 + gtγ2, (1)

where f̃t = [1, f ′

t ]
′, ft is a (K−1)-vector of useful risk factors and gt denotes a useless factor which

is independent of xt and ft for all time periods. For ease of exposition, we assume that E[gt] = 0

and Var[gt] = 1.1 Let B = E[xtf̃
′

t ] and note that the independence between gt and xt implies

d = E[xtgt] = 0N (2)

and

E[xtx
′

tg
2
t ] = E[E[xtx

′

t|gt]g
2
t ] = UE[g2

t ] = U. (3)

Now let D = [B, d], γ = [γ′

1, γ2]
′, e(γ) = Dγ − q, d̂ = 1

T

∑T
t=1 xtgt, B̂ = 1

T

∑T
t=1 xtf̃

′

t and

D̂ = [B̂, d̂]. Note that since d = 0N , the vector of pricing errors

e(γ) = Bγ1 + dγ2 − q = Bγ1 − q (4)

is independent of the choice of γ2. The pseudo-true value of the SDF parameter associated with

the useless factor (γ∗

2) cannot be identified. In the following, we set γ∗

2 = 0, which is a natural

choice because in Theorem 1 we will show that γ̂2 is symmetrically distributed around zero. While

the pseudo-true value γ∗

2 is not identified, the sample estimates of the SDF parameters are always

identified and they are given by

γ̂ = (D̂′Û−1D̂)−1D̂′Û−1q. (5)

1This assumption does not affect our asymptotic results on statistical inference for the slope parameters of the
linear SDF. It does, however, affect the limiting distribution of the estimated SDF’s intercept and the statistical
inference on it. The limiting results derived under a generic mean and variance of the useless factor are available
from the authors upon request.
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Note that the estimator in (5) can be obtained equivalently by running an ordinary least squares

(OLS) regression of Û−
1
2 q on Û−

1
2 B̂ and Û−

1
2 d̂. In order to construct γ̂2, we can project Û−

1
2 q and

Û−
1
2 d̂ on Û−

1
2 B̂, and then regress the residuals from the first projection on the residuals from the

second projection. It follows that

γ̂2 =
d̂′Û−

1
2 [IN − Û−

1
2 B̂(B̂′Û−1B̂)−1B̂′Û−

1
2 ]Û−

1
2 q

d̂′Û−
1
2 [IN − Û−

1
2 B̂(B̂′Û−1B̂)−1B̂′Û−

1
2 ]Û−

1
2 d̂

. (6)

Similarly, the parameter vector γ̂1 is obtained by projecting Û−
1
2 q and Û−

1
2 B̂ on Û−

1
2 d̂ and then

regressing the residuals from the first projection on the residuals from the second projection, which

yields

γ̂1 = (B̂′Û−
1
2 [IN − Û−

1
2 d̂(d̂′Û−1d̂)−1d̂′Û−

1
2 ]Û−

1
2 B̂)−1

× B̂′Û−
1
2 [IN − Û−

1
2 d̂(d̂′Û−1d̂)−1d̂′Û−

1
2 ]Û−

1
2 q. (7)

We make the following assumptions.

Assumption 1. Assume that (i) N > K + 1; (ii) [x′

t, f ′

t , gt]
′ are jointly stationary and ergodic

processes with finite fourth moments; (iii) et(γ
∗

1) − e(γ∗

1) forms a martingale difference sequence;

and (iv) the matrices B (N × K) and D (N×(K + 1)) have a column rank K.

Assumption 2. Let εt = xt − B(E[f̃tf̃
′

t ])
−1f̃t and assume that E[εtε

′

t|f̃t] = Σ (conditional ho-

moskedasticity).

Our first results are concerned with the limiting behavior of γ̂1 and γ̂2 under correctly specified

and misspecified models. We adopt the following notation. Let B̃ = U−
1
2 B, q̃ = U−

1
2 q, and

P be an N × (N − K) orthonormal matrix whose columns are orthogonal to B̃ so that PP ′ =

IN − B̃(B̃′B̃)−1B̃′. Also, let z ∼ N (0N , IN) and y ∼ N (0N , U−
1
2 SU−

1
2 ), and they are independent

of each other. Finally, we define w = P ′z ∼ N (0N−K, IN−K), s = (q̃′Pw)/(q̃′PP ′ q̃)
1
2 ∼ N (0, 1),

u = P ′y ∼ N (0N−K, Vu) with Vu = P ′U−
1
2 SU−

1
2 P , and r = (B̃′B̃)−

1
2 B̃′y ∼ N (0K, Vr) with

Vr = (B̃′B̃)−
1
2 B̃′U−

1
2 SU−

1
2 B̃(B̃′B̃)−

1
2 .

Theorem 1. Assume that the conditions in Assumption 1 are satisfied.

(a) If δ = 0, i.e., the model is correctly specified, we have

√
T (γ̂1 − γ∗

1)
d→ (B̃′B̃)−

1
2

[
r − w′u

w′w
(B̃′B̃)−

1
2 B̃′z

]
, (8)

2



and

γ̂2
d→ w′u

w′w
. (9)

(b) If δ > 0, i.e., the model is misspecified, we have

γ̂1 − γ∗

1
d→ − δs

w′w
(B̃′B̃)−1B̃′z, (10)

and
1√
T

γ̂2
d→ δs

w′w
. (11)

Proof. See the Appendix.

The results in Theorem 1 subsume the results in Proposition 1 in the paper and can be sum-

marized as follows. First, for correctly specified models, Theorem 1 shows that γ̂2 converges to a

bounded random variable rather than the constant zero.2 While the parameter estimates for the

useful factors are consistently estimable, they are asymptotically non-normally distributed. Sec-

ond, the presence of a useless factor further exacerbates the inference problems when the model is

misspecified. In this case, the estimator γ̂1 is inconsistent while the estimator γ̂2 diverges at rate

T
1
2 .

We next derive the limiting distributions of two types of t-statistics (as defined in the paper):

(i) tc(γ̂1i) of H0 : γ1i = γ∗

1i for i = 1, . . . , K, and tc(γ̂2) of H0 : γ2 = 0 that use standard

errors obtained under the assumption that the model is correctly specified, and (ii) tm(γ̂1i) of

H0 : γ1i = γ∗

1i for i = 1, . . . , K, and tm(γ̂2) of H0 : γ2 = 0 that use standard errors under

potentially misspecified models. The two types of t-statistics are based on the estimated covariance

matrices Σ̂0
γ̂ = 1

T

∑T
t=1 ĥ0

t ĥ
0′
t and Σ̂γ̂ = 1

T

∑T
t=1 ĥtĥ

′

t, where

ĥ0
t = (D̂′Û−1D̂)−1D̂′Û−1êt, (12)

ĥt = ĥ0
t + (D̂′Û−1D̂)−1([f̃ ′

t, gt]
′ − D̂′Û−1xt)ê

′Û−1xt, (13)

êt = xt(f̃
′

tγ̂1 + gtγ̂2)− q and ê = 1
T

∑T
t=1 êt.

The results presented below are driven, to a large extent, by the limiting behavior of the matrix

Ŝ = 1
T

∑T
t=1 êtê

′

t. In the presence of a useless factor, the results in Theorem 1 imply that for

2The limiting random variable has mean zero and variance tr(Vu)/[(N − K)(N −K − 2)], where tr(·) is the trace
operator.
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misspecified models

êt = (T−
1
2 γ̂2)(T

1
2 xtgt) + Op(1) (14)

and
Ŝ

T
= (T−

1
2 γ̂2)

2U + op(1), (15)

so Ŝ diverges at rate T . In contrast, for correctly specified models, we have

Ŝ = S + γ̂2
2U + op(1), (16)

so that Ŝ converges to a random matrix.

In addition to the random variables and matrices defined before Theorem 1, we introduce

the following notation. Let ũ ∼ N (0, 1), r̃i ∼ N (0, 1), z̃i ∼ N (0, 1), v ∼ χ2
N−K−1, and they

are independent of each other and w. Theorem 2 and Corollary 1 (Proposition 2 in the paper)

below provide the limiting distributions of the t-statistics under correctly specified and misspecified

models.

Theorem 2.

(a) Suppose that the conditions in Assumptions 1 and 2 hold.3 If δ = 0, i.e., the model is correctly

specified, we have

tc(γ̂1i)
d→ ũz̃i +

√
λi

√
w′wr̃i[

λiw′w + z̃2
i + ũ2

(
1 +

z̃2
i

w′w

)]1
2

, (17)

tm(γ̂1i)
d→ ũz̃i +

√
λi

√
w′wr̃i[

λiw′w + z̃2
i + ũ2

(
1 +

z̃2
i

w′w

)
+

z̃2
i
v

w′w

] 1
2

, (18)

tc(γ̂2)
d→ ũ(

1 + ũ2

w′w

) 1
2

, (19)

tm(γ̂2)
d→ ũ(

1 + ũ2+v
w′w

) 1
2

, (20)

where λi is a positive constant and its explicit expression is given in the Appendix.

3The limiting distribution of tc(γ̂2) does not depend on the conditional homoskedasticity assumption. The expres-
sions for the limiting distributions of the other t-statistics under conditional heteroskedasticity are more involved,
and the results are available upon request.
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(b) Suppose that the conditions in Assumption 1 hold and denote the sign operator by sgn (·). If

δ > 0, i.e., the model is misspecified, we have

tc(γ̂1i)
d→ z̃i(

1 +
z̃2
i

w′w

) 1
2

, (21)

tm(γ̂1i)
d→ N

(
0,

1

4

)
, (22)

tc(γ̂2)
d→ sgn(s)

√
w′w, (23)

tm(γ̂2)
d→ N (0, 1). (24)

Proof. See the Appendix.

Corollary 1.

(a) Suppose that the conditions in Assumptions 1 and 2 hold. Then, for correctly specified models,

the limiting distributions of t2c (γ̂1i), t2m(γ̂1i), t2c(γ̂2), and t2m(γ̂2) are stochastically dominated

by χ2
1.

(b) Suppose that the conditions in Assumption 1 hold. Then, for misspecified models, the limiting

distributions of t2c(γ̂1i) and t2m(γ̂1i) are stochastically dominated by χ2
1.

Proof. See the Appendix.

Finally, it is instructive to investigate whether the presence of a useless factor affects the limiting

behavior of the specification test based on the sample squared HJ-distance

δ̂
2

= ê′Û−1ê. (25)

In the absence of a useless factor, it is well known that under a correctly specified model (Jagan-

nathan and Wang, 1996)

T δ̂
2 d→

N−K∑
i=1

ξiXi, (26)

where the Xi’s are independent chi-squared random variables with one degree of freedom and the

ξi’s are the N − K nonzero eigenvalues of

S
1
2 U−1S

1
2 − S

1
2 U−1B(B′U−1B)−1B′U−1S

1
2 . (27)
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In practice, the specification test based on the HJ-distance is performed by comparing T δ̂
2

with

the critical values of
∑N−K

i=1 ξ̂iXi, where the ξ̂i’s are the nonzero eigenvalues of

Ŝ
1
2 Û−1Ŝ

1
2 − Ŝ

1
2 Û−1B̂(B̂′Û−1B̂)−1B̂′Û−1Ŝ

1
2 . (28)

When the model is misspecified, Hansen, Heaton, and Luttmer (1995) show that the sample squared

HJ-distance has a limiting normal distribution. However, in the presence of a useless factor, the

above results do not hold. In the next theorem, we add to the existing literature (Kan and Zhang,

1999) by characterizing the limiting behavior of the sample squared HJ-distance in the presence of

a useless factor.

Theorem 3. Let Q1 ∼ Beta
(

N−K
2 , 1

2

)
with density fQ1(·), Q2 ∼ Beta

(
N−K−1

2 , 1
2

)
with density

fQ2(·) and cα be the 100(1− α)-th percentile of χ2
N−K−1.

(a) Suppose that the assumptions in part (a) of Theorem 2 hold. If δ = 0, we have

T δ̂
2 d→ E[(f̃ ′

tγ
∗

1)
2]χ2

N−K−1 (29)

and the limiting probability of rejecting H0 : δ2 = 0 by the HJ-distance test of size α is∫ 1

0
P

[
χ2

N−K−1 >
cα

q

]
fQ1(q)dq < α. (30)

(b) Suppose that the assumptions in Theorem 1 hold. If δ > 0, we have

δ̂
2 d→ δ2Q2 (31)

and the limiting probability of rejecting H0 : δ2 = 0 by the HJ-distance test of size α is∫ 1

0
P

[
χ2

N−K >
cαq

1 − q

]
fQ2(q)dq < 1. (32)

Proof. See the Appendix.

An immediate consequence of the result in Theorem 3 is that the presence of a useless factor

tends to distort the inference on the specification test as well. More specifically, part (b) of The-

orem 3 reveals that the HJ-distance test of correct model specification is inconsistent under the

alternative.
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Note that the limiting probabilities of rejection in (30) and (32) are only functions of the

significance level α and the degree of over-identification N − K. Figure 1 plots these probabilities

for different significance levels (α = 0.01, 0.05, and 0.1) and N − K ranging from 2 to 20.

Figure 1 about here

The top panel of Figure 1 reveals that under a correctly specified model, the limiting probability

of rejection of the HJ-distance test is below its nominal level when a useless factor is present. When

the model is misspecified, the bottom panel of Figure 1 shows that the probability of rejection of

the HJ-distance test will not approach one even in large samples. In fact, there is a nonzero

probability that the HJ-distance test will favor the null of correct specification, and this probability

is particularly high when N − K is small. As a result, the presence of a useless factors makes it

more difficult for the HJ-distance test to detect a misspecified model.

Theoretical Results for Excess Returns

In the following analysis, we provide theoretical results for the excess returns case. The proofs are

similar to the gross returns case and are omitted but are available from the authors upon request.

Let xt be the excess returns on N test assets at time t with mean μ and covariance matrix V. It

is well known that when only excess returns are used as test assets, it is not possible to identify the

mean of the candidate SDF and some normalization of the SDF becomes necessary. As a result,

we follow Kan and Robotti (2008) and define the candidate SDF as

yt = 1 − (ft − μf)′γ1 − (gt − μg)γ2, (33)

where ft is a vector of K systematic factors with mean μf and covariance matrix Sf , and gt is a

useless factor with mean μg and variance σ2
g, such that it is independent of ft and xt for all time

periods.4

The pseudo-true value of γ1 under the modified HJ-distance measure is given by

γ∗

1 = (B′V −1B)−1B′V −1μ, (34)

4Note that here the number of useful factors is set equal to K. This differs from the analysis in the previous section
where the number of useful factors is set equal to K − 1.
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where B = Cov[xt, f
′

t]. We set the pseudo-true value of γ2, γ∗

2, equal to 0 even though it is not

identified (see Section 2 of the paper for a discussion of this issue). Let d = Cov[xt, gt] = 0N ,

μ̂ = 1
T

∑T
t=1 xt, V̂ = 1

T

∑T
t=1(xt − μ̂)(xt − μ̂)′, and

D̂ =

[
1

T

T∑
t=1

xt(ft − μ̂f )′,
1

T

T∑
t=1

xt(gt − μ̂g)

]
≡ [B̂, d̂]. (35)

The sample estimator of γ = [γ′

1, γ2]
′ is given by

γ̂ =

[
γ̂1

γ̂2

]
= (D̂′V̂ −1D̂)−1D̂′V̂ −1μ̂. (36)

It is straightforward to show that

γ̂1 = (B̂′V̂ −
1
2 [IN − V̂ −

1
2 d̂(d̂′V̂ −1d̂)−1d̂′V̂ −

1
2 ]V̂ −

1
2 B̂)−1

× B̂′V̂ −
1
2 [IN − V̂ −

1
2 d̂(d̂′V̂ −1d̂)−1d̂′V̂ −

1
2 ]V̂ −

1
2 μ̂ (37)

and

γ̂2 =
d̂′V̂ −

1
2 [IN − V̂ −

1
2 B̂(B̂′V̂ −1B̂)−1B̂′V̂ −

1
2 ]V̂ −

1
2 μ̂

d̂′V̂ −
1
2 [IN − V̂ −

1
2 B̂(B̂′V̂ −1B̂)−1B̂′V̂ −

1
2 ]V̂ −

1
2 d̂

. (38)

Finally, Kan and Robotti (2008) suggest that a modification of the traditional HJ-distance is

needed when using the de-meaned factors. Their proposed measure, the modified HJ-distance,

employs the inverse of the covariance matrix (instead of the second moment matrix) of the excess

returns as the weighting matrix and is given by

δm =

√
e(γ∗

1)
′V −1e(γ∗

1), (39)

where e(γ∗

1) = μ − Bγ∗

1. The sample version of the model misspecification measure in (39) is given

by

δ̂m =
√

ê′V̂ −1ê, (40)

where ê = μ̂ − D̂γ̂.

In deriving the limiting behavior of γ̂1 and γ̂2 under correctly specified and misspecified models,

we adopt the following notation. Let B̃ = V −
1
2 B, μ̃ = V −

1
2 μ, et(γ

∗

1) = xty
∗

t , y∗t = 1− (ft − μf)′γ∗

1,

S = E[et(γ
∗

1)et(γ
∗

1)
′], and P be an N × (N −K) orthonormal matrix whose columns are orthogonal

to B̃ so that PP ′ = IN − B̃(B̃′B̃)−1B̃′. Also, let z ∼ N (0N , IN) and y ∼ N (0N , V −
1
2 SV −

1
2 ),

and they are independent of each other. Finally, we define w = P ′z ∼ N (0N−K, IN−K), s =

8



(μ̃′Pw)/(μ̃′PP ′μ̃)
1
2 ∼ N (0, 1), u = P ′y ∼ N (0N−K, Vu) with Vu = P ′V −

1
2 SV −

1
2 P , and r =

(B̃′B̃)−
1
2 B̃′y ∼ N (0K, Vr) with Vr = (B̃′B̃)−

1
2 B̃′V −

1
2 SV −

1
2 B̃(B̃′B̃)−

1
2 .

Theorem 4. Assume that the conditions in Assumption 1 are satisfied.

(a) If δm = 0, i.e., the model is correctly specified, we have

√
T (γ̂1 − γ∗

1)
d→ (B̃′B̃)−

1
2

[
r − w′u

w′w
(B̃′B̃)−

1
2 B̃′z

]
, (41)

and

γ̂2
d→ w′u

σgw′w
. (42)

(b) If δm > 0, i.e., the model is misspecified, we have

γ̂1 − γ∗

1
d→ −δms

w′w
(B̃′B̃)−1B̃′z, (43)

and
1√
T

γ̂2
d→ δms

σgw′w
. (44)

As in the case of gross returns, we define two types of t-statistics: (i) tc(γ̂1i), for i = 1, . . . , K,

and tc(γ̂2) that use standard errors obtained under the assumption that the model is correctly

specified, and (ii) tm(γ̂1i), for i = 1, . . . , K, and tm(γ̂2) that use standard errors under potentially

misspecified models. The two types of t-statistics are based on the estimated covariance matrices

Σ̂0
γ̂ = 1

T

∑T
t=1 ĥ0

t ĥ
0′
t and Σ̂γ̂ = 1

T

∑T
t=1 ĥtĥ

′

t, where

ĥ0
t = (D̂′V̂ −1D̂)−1D̂′V̂ −1ẽt, (45)

ĥt = ĥ0
t + (D̂′V̂ −1D̂)−1

(
[(ft − μ̂f)′, gt − μ̂g]

′ − D̂′V̂ −1(xt − μ̂)
)

ût, (46)

ẽt = (xt − μ̂)ŷt + μ̂, ŷt = 1 − (ft − μ̂f )′γ̂1 − (gt − μ̂g)γ̂2, and ût = ê′V̂ −1(xt − μ̂).

In addition to the random variables and matrices defined before Theorem 4, we introduce

the following notation. Let ũ ∼ N (0, 1), r̃i ∼ N (0, 1), z̃i ∼ N (0, 1), v ∼ χ2
N−K−1, and they

are independent of each other and w. Let ci and ĉi be the i-th diagonal elements of C and Ĉ,

respectively, where

C = S−1
f Cov[(ft − μf)(ft − μf)′, y∗t

2]S−1
f + γ∗

1E[(ft − μf )y∗t
2]′S−1

f

+ S−1
f E[(ft − μf )y∗t

2]γ∗

1
′ + E[y∗t

2]γ∗

1γ
∗

1
′ (47)
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and

Ĉ = S−1
f Cov[(ft − μf )(ft − μf )′, y∗t

2]S−1
f − γ∗

1γ
∗

1
′. (48)

Define

λi = 1 +
ci

E[y∗t
2]bi

, (49)

λ̂i = 1 +
ĉi

E[y∗t
2]bi

, (50)

where bi is the i-th diagonal element of (B̃′B̃)−1. Theorem 5 below provides the limiting distri-

butions of the t-statistics under correctly specified and misspecified models. Let the following

assumption replace Assumption 2.

Assumption 2’. Let εt = (xt−μ)−BS−1
f (ft−μf) and assume that E[εt|ft] = 0N and Cov[εtε

′

t, y
∗2
t ] =

0N×N .

Theorem 5.

(a) Suppose that the conditions in Assumptions 1 and 2’ hold. If δm = 0, i.e., the model is

correctly specified, we have

tc(γ̂1i)
d→ ũz̃i +

√
λi

√
w′wr̃i[

λ̂iw′w + z̃2
i + ũ2

(
1 +

z̃2
i

w′w

)]1
2

, (51)

tm(γ̂1i)
d→ ũz̃i +

√
λi

√
w′wr̃i[

λ̂iw′w + z̃2
i + ũ2

(
1 +

z̃2
i

w′w

)
+

z̃2
i
v

w′w

] 1
2

, (52)

tc(γ̂2)
d→ ũ(

1 + ũ2

w′w

) 1
2

, (53)

tm(γ̂2)
d→ ũ(

1 + ũ2+v
w′w

) 1
2

. (54)

(b) Suppose that the conditions in Assumption 1 hold and denote the sign operator by sgn (·). If
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δm > 0, i.e., the model is misspecified, we have

tc(γ̂1i)
d→ z̃i(

1 +
z̃2
i

w′w

) 1
2

, (55)

tm(γ̂1i)
d→ N

(
0,

1

4

)
, (56)

tc(γ̂2)
d→ sgn(s)

√
w′w, (57)

tm(γ̂2)
d→ N (0, 1). (58)

In the next theorem, we characterize the limiting behavior of the sample squared modified

HJ-distance in the presence of a useless factor for the excess returns case.

Theorem 6. Let Q1 ∼ Beta
(

N−K
2 , 1

2

)
with density fQ1(·), Q2 ∼ Beta

(
N−K−1

2 , 1
2

)
with density

fQ2(·) and cα be the 100(1− α)-th percentile of χ2
N−K−1.

(a) Suppose that the assumptions in part (a) of Theorem 5 hold. If δm = 0, we have

T δ̂
2

m
d→ E[y∗2t ]χ2

N−K−1 (59)

and the limiting probability of rejecting H0 : δ2
m = 0 by the modified HJ-distance test of size

α is ∫ 1

0
P

[
χ2

N−K−1 >
cα

q

]
fQ1(q)dq < α. (60)

(b) Suppose that the assumptions in Theorem 4 hold. If δm > 0, we have

δ̂
2

m
d→ δ2

mQ2 (61)

and the limiting probability of rejecting H0 : δ2
m = 0 by the modified HJ-distance test of size

α is ∫ 1

0
P

[
χ2

N−K >
cαq

1 − q

]
fQ2(q)dq < 1. (62)

Overall, the results for excess returns are very similar to the results for gross returns in the

paper. The only noticeable differences are for the t-tests on γ̂1i in part (a) of Theorem 5. This

implies that the nature of the problem (and the solution) is essentially the same regardless of

whether one uses gross returns or excess returns in the analysis.
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Simulation Results

In this section, we undertake Monte Carlo experiments to assess the small-sample properties of

the test statistics based on the modified HJ-distance in models with useful and useless factors. In

addition, we analyze the finite-sample properties of some optimal GMM estimators. The simulation

designs, data, and models are the same as the ones considered in Tables 1–6 of the paper.

Modified HJ-distance with excess returns

The results in Panel A of Table 1 show that for models that are correctly specified and contain only

useful factors, the standard asymptotics provides an accurate approximation of the finite-sample

behavior of the t-tests.

Table 1 about here

Since the useful factor, calibrated to the properties of the value-weighted market excess return, is

closely replicated by the returns on the test assets, the differences between the t-tests under correctly

specified models (tc) and the t-tests under potentially misspecified models (tm) are negligibly small

even when the model fails to hold exactly.

Panel B of Table 1 and Table 2 present the empirical size of the t-tests in the presence of a

useless factor.

Table 2 about here

The simulation results for the t-tests on the parameters of the useful factor confirm our the-

oretical findings that the null hypothesis is under-rejected when N (0, 1) is used as a reference

distribution. This is the case for correctly specified and misspecified models.

Similarly, the inference on the useless factor proves to be conservative when the model is cor-

rectly specified. However, when the model is misspecified, there are substantial differences between

tc and tm for the useless factor. Since the tc test for significance of the useless factor is asymp-

totically distributed (up to a sign) as
√

χ2
N−K , it tends to over-reject severely when the critical

values from N (0, 1) are used and the degree of over-rejection increases with the sample size. In

12



contrast, the tm test on the useless factor has good size properties although, for small sample sizes,

it slightly under-rejects. As the sample size increases, the empirical rejection rates approach the

limiting rejection probabilities (as shown in the rows for T = ∞) computed from the corresponding

asymptotic distributions in Theorem 5.

Tables 3 and 4 report the survival rates of different factors when using the sequential procedure

described in Section 3 of the paper.

Table 3 about here

Panel A of Table 3 shows that when the model is correctly specified, the procedures based on

tc and tm do a similarly good job in retaining the useful factors with nonzero SDF parameters in

the model and eliminating the useless factor and the factor that does not reduce the HJ-distance.

However, as shown in Panel B, the situation drastically changes when the model is misspecified.

In this case, the procedures based on tc and tm still retain the useful factors with similarly high

probability, but they produce very different results when it comes to the useless factor. For example,

despite its conservative nature (due to the Bonferroni adjustment), the procedure based on tc will

retain the useless factor 30% of the time for T = 1000. In contrast, the procedure based on tm will

retain the useless factor only about 0.8% of the time for T = 1000. Similarly, the probability of at

least one irrelevant factor being selected in the final specification of the model is 30% (1.5%) for

T = 1000 when the tc (tm) test is used and the model is misspecified.

Table 4 about here

Table 4 reports the results from a similar exercise but this time the linear asset pricing model

consists of a constant term, two useful factors with γ∗

i �= 0 and two useless factors. This setup

serves to illustrate the usefulness of combining the misspecification-robust t-tests and the Bonferroni

method in controlling the false discovery rate which is about 48% (the probability that at least one

useless factor is deemed priced) for the t-tests constructed under correct model specification when

the true model is misspecified. In contrast, the misspecification-robust model selection procedure

with the Bonferroni adjustment retains one or both useless factors only 1% of the time.

Finally, we consider a scenario in which a linear combination of two useful factors is useless.

13



Table 5 about here

Panel A of Table 5 shows that when the model is correctly specified, the procedures based on

tc and tm are both effective in retaining only one factor in the model. However, when the model

is misspecified (see Panel B), the procedures based on tc and tm deliver very different results. For

T = 1000, the probability that both factors survive the model selection procedure based on tc is

about 38% while the probability that both factors survive the model selection procedure based

on tm is about 2%. Importantly, the probabilities that only one factor survives are very different

across procedures. For example, when T = 1000, the probability than only one factor survives is

about 89% when using t-tests under misspecified models while it is only about 56% when using

t-tests under correctly specified models.

Optimal GMM with gross returns

In this subsection, we use the same notation as in the paper and set the number of useful factors

equal to K − 1. The optimal s-step (s ≥ 2) GMM estimator of the SDF parameters is defined as

γ̂(s) =
(
D̂′Ŝ−1

(s−1)
D̂

)
−1

D̂′Ŝ−1
(s−1)

q, (63)

where

D̂ =

[
1

T

T∑
t=1

xtf̃
′

t ,
1

T

T∑
t=1

xtgt

]
(64)

and

Ŝ(s−1) =
1

T

T∑
t=1

[
et

(
γ̂(s−1)

)
− e

(
γ̂(s−1)

)] [
et

(
γ̂(s−1)

)
− e

(
γ̂(s−1)

)]
′

(65)

with et

(
γ̂(s−1)

)
= xt

[
f̃ ′

t γ̂
(s−1)
1 + gtγ̂

(s−1)
2

]
−q = xtyt

(
γ̂(s−1)

)
−q, e

(
γ̂(s−1)

)
= T−1

∑T
t=1 et

(
γ̂(s−1)

)
=

D̂γ̂(s−1) − q.

Let ût = e
(
γ̂(s)

)
′

Ŝ−1
(s−1)xt and ẑt = e

(
γ̂(s)

)
′

Ŝ−1
(s−1)

(
et

(
γ̂(s−1)

)
− e

(
γ̂(s−1)

))
. A consistent

estimator of the asymptotic variance of the SDF parameters under misspecified models is given by

(a proof of this result is available upon request) Σ̂
γ̂(s) = 1

T

T∑
t=1

ĥtĥ
′

t, where

ĥt = (D̂′Ŝ−1
(s−1)

D̂)−1
[
D̂′Ŝ−1

(s−1)

(
xtyt

(
γ̂(s)

)
− et

(
γ̂(s−1)

)
ẑt

)
+ [f̃ ′

t , gt]
′ût

]
− γ̂(s). (66)

When the model is correctly specified, the ĥt expression simplifies to

ĥ0
t =

(
D̂′Ŝ−1

(s−1)
D̂

)
−1

D̂′Ŝ−1
(s−1)

et

(
γ̂(s)

)
. (67)

14



In addition, the GMM test of correct model specification is given by

Te
(
γ̂(s)

)
′

Ŝ−1
(s−1)

e
(
γ̂(s)

)
. (68)

In the absence of a useless factor, it is well known that under a correctly specified model this test

is asymptotically chi-squared distributed with N − K degrees of freedom.

Tables 6 to 11 about here

In our simulations, we use the identity matrix to compute the first-step GMM estimator and

analyze the finite-sample properties of the optimal 3-step GMM estimator and specification test

in models with useful and useless factors. Our Monte Carlo simulations (see Tables 6–11) show

that the results for optimal GMM are broadly consistent with the ones for the estimators and test

statistics based on the HJ-distance. In addition, the rejection rates for the limiting case (T = ∞) are

equivalent to those based on the asymptotic distributions given in Theorem 2 in the first section of

this online appendix. This implies that our robust model selection procedure is also applicable to

the class of optimal GMM estimators.
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Appendix: Preliminary Lemma and Proofs of Main Results

A.1 Preliminary Lemma

Lemma A.1. Let

xt = BS−1
f̃

f̃t + εt, (A.1)

where B = E[xtf̃
′

t ], Sf̃ = E[f̃tf̃
′

t ] and E[εt|f̃t] = 0N . Suppose Cov[εtε
′

t, (f̃
′

tγ
∗

1)
2] = 0N×N (a

sufficient condition for this to hold is E[εtε
′

t|f̃t] = Σ, i.e., conditional homoskedasticity). When the

model is correctly specified, we have

S = E[(xtf̃
′

tγ
∗

1 − q)(xtf̃
′

tγ
∗

1 − q)′] = E[(f̃ ′

tγ
∗

1)
2]U + BCB′ , (A.2)

where U = E[xtx
′

t] and C is a symmetric K × K matrix.

Proof of Lemma A.1. Under a correctly specified model, we have q = Bγ∗

1. It follows that

S = E[xtx
′

t(f̃
′

tγ
∗

1)
2] − qq′ = E[xtx

′

t(f̃
′

tγ
∗

1)
2] − Bγ∗

1γ
∗

1B
′. (A.3)

For the first term, we have

E[xtx
′

t(f̃
′

tγ
∗

1)
2] = E[xtx

′

t]E[(f̃ ′

tγ
∗

1)
2] + Cov[xtx

′

t, (f̃
′

tγ
∗

1)
2]

= E[(f̃ ′

tγ
∗

1)
2]U + Cov[BS−1

f̃
f̃tf̃

′

tS
−1

f̃
B′ + εtε

′

t, (f̃
′

tγ
∗

1)
2]

= E[(f̃ ′

tγ
∗

1)
2]U + BS−1

f̃
Cov[f̃tf̃

′

t , (f̃
′

tγ
∗

1)
2]S−1

f̃
B′, (A.4)

where the last equality follows from the assumption that Cov[εtε
′

t, (f̃
′

tγ
∗

1)
2] = 0N×N . Therefore, we

have

S = E[(f̃ ′

tγ
∗

1)
2]U + BCB′ , (A.5)

where

C = S−1

f̃
Cov[f̃tf̃

′

t , (f̃
′

tγ
∗

1)
2]S−1

f̃
− γ∗

1γ
∗

1
′. (A.6)

This completes the proof.

A.2 Proofs of Theorems and Corollary 1

Proof of Theorem 1.
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part (a): We start with the limiting distribution of
√

T (γ̂1 − γ∗

1). Under the assumptions in

Theorem 1, we have
√

T Û−
1
2 d̂

d→ z ∼ N (0N , IN) (A.7)

and

−
√

T Û−
1
2 (B̂γ∗

1 − q)
d→ y ∼ N (0N , Vy), (A.8)

where Vy = E[mtm
′

t] is the covariance matrix of y, and

mt = U−
1
2 (xtf̃

′

tγ
∗

1 − q) = U−
1
2 et(γ

∗

1). (A.9)

Therefore, we have Vy = U−
1
2 SU−

1
2 for correctly specified models. In addition, y and z are

independent of each other. Using y and z, we can write (7) as

√
T (γ̂1 − γ∗

1) = (B̂′Û−
1
2 [IN − Û−

1
2 d̂(d̂′Û−1d̂)−1d̂′Û−

1
2 ]Û−

1
2 B̂)−1

× B̂′Û−
1
2 [IN − Û−

1
2 d̂(d̂′Û−1d̂)−1d̂′Û−

1
2 ]
√

T Û−
1
2 (q − B̂γ∗

1)

d→ (B̃′[IN − z(z′z)−1z′]B̃)−1B̃′[IN − z(z′z)−1z′]y

= (B̃′[IN − z(z′z)−1z′]B̃)−1B̃′[IN − z(z′z)−1z′][PP ′ + B̃(B̃′B̃)−1B̃′]y

= −(B̃′[IN − z(z′z)−1z′]B̃)−1 B̃′zz′PP ′y

z′z
+ (B̃′B̃)−1B̃′y. (A.10)

Let w = P ′z ∼ N (0N−K, IN−K), u = P ′y ∼ N (0N−K , Vu) with Vu = P ′U−
1
2 SU−

1
2 P , r =

(B̃′B̃)−
1
2 B̃′y ∼ N (0K, Vr) with Vr = (B̃′B̃)−

1
2 B̃′U−

1
2 SU−

1
2 B̃(B̃′B̃)−

1
2 . Making use of the iden-

tity

(B̃′[IN − z(z′z)−1z′]B̃)−1 = (B̃′B̃)−1 +
(B̃′B̃)−1B̃′zz′B̃(B̃′B̃)−1

w′w
(A.11)

and z′z = z′B̃(B̃′B̃)−1B̃′z + w′w, we obtain

√
T (γ̂1 − γ∗

1)
d→ (B̃′B̃)−

1
2

[
−w′u

w′w
(B̃′B̃)−

1
2 B̃′z + r

]
. (A.12)

For the derivation of the limiting distribution of γ̂2, we define M = IN−U−
1
2 B(B′U−1B)−1B′U−

1
2

and M̂ = IN − Û−
1
2 B̂(B̂′Û−1B̂)−1B̂′Û−

1
2 . Using that M̂Û−

1
2 B̂ = 0N×K , we obtain

√
TM̂Û−

1
2 q =

√
TM̂Û−

1
2 (q − B̂γ∗

1)
d→ My, (A.13)

and we can rewrite γ̂2 as

γ̂2 =
(
√

TÛ−
1
2 d̂)′(

√
TM̂Û−

1
2 (B − B̂)γ∗

1)

(
√

T Û−
1
2 d̂)′M̂(

√
T Û−

1
2 d̂)

. (A.14)
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Then, from (A.7), (A.8) and M̂
p→ M = PP ′, we get

γ̂2
d→ z′My

z′Mz
=

(P ′z)′(P ′y)

(P ′z)′(P ′z)
=

w′u

w′w
. (A.15)

This completes the proof of part (a) of Theorem 1.

part (b): Using the fact that Û−
1
2 B̂

a.s.−→ B̃ and
√

T Û−
1
2 d̂

d→ z, we can obtain the limiting

distribution of γ̂1 in (7) as

γ̂1
d→ (B̃′[IN − z(z′−1z′]B̃)−1B̃′[IN − z(z′−1z′]q̃. (A.16)

Using (A.11) and the fact that γ∗

1 = (B̃′B̃)−1B̃′ q̃, we obtain

γ̂1 − γ∗

1
d→

[
(B̃′B̃)−1 +

(B̃′B̃)−1B̃′zz′B̃(B̃′B̃)−1

w′w

](
B̃′ q̃ − B̃′zz′q̃

z′z

)
− (B̃′B̃)−1B̃′ q̃

= −(B̃′B̃)−1B̃′z
z′q̃

z′z
+ (B̃′B̃)−1B̃′z

z′B̃(B̃′B̃)−1B̃′ q̃

w′w
− (B̃′B̃)−1B̃′z

z′q̃

z′z

z′B̃(B̃′B̃)−1B̃′z

w′w

= −(B̃′B̃)−1B̃′z
z′q̃

w′w
+ (B̃′B̃)−1B̃′z

z′B̃(B̃′B̃)−1B̃′q̃

w′w

= −z′Mq̃

w′w
(B̃′B̃)−1B̃′z

= − δs

w′w
(B̃′B̃)−1B̃′z, (A.17)

and the last equality follows because δ2 = q̃′PP ′ q̃ and s = q̃′PP ′z/(q̃′PP ′ q̃)
1
2 .

For the limiting distribution of γ̂2, we have

T−
1
2 γ̂2 =

(
√

T d̂′Û−
1
2 )M̂Û−

1
2 q

(
√

T d̂′Û−
1
2 )M̂(

√
T Û−

1
2 d̂)

d→ z′Mq̃

z′Mz
=

δs

w′w
. (A.18)

This completes the proof of part (b) of Theorem 1.

Proof of Theorem 2.

part (a): Using Lemma A.1, we have

S = E[(f̃ ′

tγ
∗

1)
2]U + BCB′ (A.19)

under the conditional homoskedasticity assumption. It follows that

Vu = P ′−
1
2 SU−

1
2 P = E[(f̃ ′

tγ
∗

1)
2]IN−K , (A.20)

Vr = (B̃′B̃)−
1
2 B̃′−

1
2 SU−

1
2 B̃(B̃′B̃)−

1
2 = E[(f̃ ′

tγ
∗

1)
2]IK + (B̃′B̃)

1
2 C(B̃′B̃)

1
2 , (A.21)

Cov[u, r′] = P ′−
1
2 SU−

1
2 B̃(B̃′B̃)−

1
2 = 0(N−K)×K . (A.22)
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Let ũ = w′u/(w′Vuw)
1
2 = E[(f̃ ′

tγ
∗

1)
2]−

1
2 w′u/(w′w)

1
2 . It is easy to show that ũ ∼ N (0, 1) and it is

independent of w, z and r. Using ũ, we can simplify the limiting distribution of
√

T (γ̂1 − γ∗

1) in

(A.12) to
√

T (γ̂1 − γ∗

1)
d→ −E[(f̃ ′

tγ
∗

1)
2]

1
2

ũ

(w′w)
1
2

(B̃′B̃)−1B̃′z + (B̃′B̃)−
1
2 r. (A.23)

The estimated covariance matrix of γ̂ for a potentially misspecified model is given by

V̂m(γ̂) =
1

T 2

T∑
t=1

ĥtĥ
′

t, (A.24)

where

ĥt = (D̂′Û−1D̂)−1D̂′Û−1êt + (D̂′Û−1D̂)−1([f̃ ′

t, gt]
′ − D̂′Û−1xt)ût, (A.25)

and ût = ê′Û−1xt. In order to derive the limiting distribution of ĥt, we need to obtain the limiting

representations of (D̂′Û−1D̂)−1, (D̂′Û−1D̂)−1D̂′Û−1, and ût.

It is straightforward to show that

D̂′Û−1 =

⎡
⎣ B̃′U−

1
2 + Op(T

−
1
2 )

1
√

T
z′U−

1
2 + Op(T

−1)

⎤
⎦ , (A.26)

D̂′Û−1D̂ =

⎡
⎣ B̃′B̃ + Op(T

−
1
2 ) 1

√

T
B̃′z + Op(T

−1)

1
√

T
z′B̃ + Op(T

−1) z′z
T

+ Op(T
−

3
2 )

⎤
⎦ . (A.27)

Then, using the partitioned matrix inverse formula, we have

(D̂′Û−1D̂)−1 =

⎡
⎣ H + Op(T

−
1
2 ) −√

T (B̃′B̃)−1B̃′z
w′w

+ Op(1)

−√
T z′B̃(B̃′B̃)−1

w′w
+ Op(1) T

w′w
+ Op(T

1
2 )

⎤
⎦ , (A.28)

where

H = (B̃′[IN − z(z′z)−1z′]B̃)−1 = (B̃′B̃)−1 +
(B̃′B̃)−1B̃′zz′B̃(B̃′B̃)−1

w′w
. (A.29)

After simplification, we obtain

(D̂′Û−1D̂)−1D̂′Û−1 =

⎡
⎣ (B̃′B̃)−1B̃′−

1
2 − (B̃′B̃)−1B̃′zw′P

′−
1
2

w′w
+ Op(T

−
1
2 )

√

Tw′P ′−
1
2

w′w
+ Op(1)

⎤
⎦ . (A.30)

With the above expressions, we now derive the limiting distribution of ût. Note that the vector

of sample pricing errors is given by

ê = D̂γ̂ − q = D̂(D̂′Û−1D̂)−1D̂′Û−1q − q. (A.31)
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Using (A.13), (A.15), and the identity

IN − Û−
1
2 D̂(D̂′Û−1D̂)−1D̂′Û−

1
2 = M̂ − M̂Û−

1
2 d̂(d̂′Û−

1
2 M̂Û−

1
2 d̂)−1d̂′Û−

1
2 M̂, (A.32)

we can obtain the limiting distribution of −
√

T Û−
1
2 ê as

−
√

T Û−
1
2 ê =

√
TM̂Û−

1
2 q −

√
TM̂Û−

1
2 d̂γ̂2

d→ My − Mz
w′u

w′w
= P

(
IN−K − ww′

w′w

)
u, (A.33)

and we have
√

T ût
d→ −u′

(
IN−K − ww′

w′w

)
P ′−

1
2 xt. (A.34)

Using (A.28), (A.30), (A.34), and the fact that

êt = xt(f̃
′

tγ̂1 + γ̂2gt) − q = xtf̃
′

tγ
∗

1 − q +
w′u

w′w
xtgt + Op(T

−
1
2 ) (A.35)

under a correctly specified model, we can write the limiting distribution of ĥt = [ĥ′

1t, ĥ2t]
′, where

ĥ1t denotes the first K elements of ĥt, as

ĥ1t
d→

[
(B̃′B̃)−1B̃′U−

1
2 − (B̃′B̃)−1B̃′zw′P ′U−

1
2

w′w

](
xtf̃

′

tγ
∗

1 − q + xtgt
w′u

w′w

)

+
(B̃′B̃)−1B̃′z

w′w
u′

(
IN−K − ww′

w′w

)
P ′−

1
2 xtgt, (A.36)

ĥ2t√
T

d→ 1

w′w
w′P ′U−

1
2

(
xtf̃

′

tγ
∗

1 − q + xtgt
w′u

w′w

)
− 1

w′w
u′

(
IN−K − ww′

w′w

)
P ′U−

1
2 xtgt. (A.37)

Under the conditional homoskedasticity assumption, we have

1

T

T∑
t=1

(xtf̃
′

tγ
∗

1 − q)(xtf̃
′

tγ
∗

1 − q)′
a.s.−→ S = E[(f̃ ′

tγ
∗

1)
2]U + BCB′. (A.38)

Together with the fact that

1

T

T∑
t=1

xtx
′

tg
2
t

a.s.−→ E[xtx
′

tg
2
t ] = E[xtx

′

t]E[g2
t ] = U, (A.39)

we can show that the estimated misspecification-robust covariance matrix of γ̂1 has a limiting

distribution of

T V̂m(γ̂1) =
1

T

T∑
t=1

ĥ1tĥ
′

1t

d→ E[(f̃ ′

tγ
∗

1)
2]

(
1 +

ũ2

w′w

)[
(B̃′B̃)−1 +

(B̃′B̃)−1B̃′zz′B̃(B̃′B̃)−1

w′w

]
+ C

+ u′

(
IN−K − ww′

w′w

)
u

(B̃′B̃)−1B̃′zz′B̃(B̃′B̃)−1

(w′w)2
. (A.40)
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Let bi be the i-th diagonal element of (B̃′B̃)−1. Then, we can readily show that

z̃i = −ι
′

i(B̃
′B̃)−1B̃′z√

bi

∼ N (0, 1), (A.41)

v =
u′[IN−K − w(w′w)−1w′]u

E[(f̃ ′

tγ
∗

1)
2]

∼ χ2
N−K−1, (A.42)

and v is independent of ũ, z and w. Using z̃i and v, we can express the limiting distribution of

s2
m(γ̂1i) as

Ts2
m(γ̂1i) = T ι

′

iV̂m(γ̂1)ιi
d→ E[(f̃ ′

tγ
∗

1)
2]bi

[(
1 +

ũ2

w′w

)(
1 +

z̃2
i

w′w

)
+

z̃2
i v

(w′w)2

]
+ ci, (A.43)

where ci is the i-th diagonal element of C. In addition, by letting

r̃i = (E[(f̃ ′

tγ
∗

1)
2]bi + ci)

−
1
2 ι

′

i(B̃
′B̃)−

1
2 r ∼ N (0, 1), (A.44)

we can write the i-th element in (A.23) as

√
T (γ̂1i − γ∗

1i)
d→ (E[(f̃ ′

tγ
∗

1)
2]bi)

1
2

ũz̃i

(w′w)
1
2

+ (E[(f̃ ′

tγ
∗

1)
2]bi + ci)

1
2 r̃i. (A.45)

Finally, by letting5

λi = 1 +
ci

E[(f̃ ′

tγ
∗

1)
2]bi

> 0, (A.46)

we can write the limiting distribution of tm(γ̂1i) as

tm(γ̂1i) =
γ̂1i − γ∗

1i

sm(γ̂1i)

d→ ũz̃i +
√

λi

√
w′wr̃i[

λi(w′w) + z̃2
i + ũ2

(
1 +

z̃2
i

w′w

)
+

z̃2
i
v

w′w

]1
2

. (A.47)

The estimated covariance matrix of γ̂1 that assumes a correctly specified model is obtained by

dropping the second term in (A.40). Then, it can be shown that

Ts2
c(γ̂1i)

d→ E[(f̃ ′

tγ
∗

1)
2]bi

[(
1 +

ũ2

w′w

)(
1 +

z̃2
i

w′w

)]
+ ci (A.48)

and hence

tc(γ̂1i) =
γ̂1i − γ∗

1i

sc(γ̂1i)

d→ ũz̃i +
√

λi

√
w′wr̃i[

λi(w′w) + z̃2
i + ũ2

(
1 +

z̃2
i

w′w

)] 1
2

. (A.49)

We now turn our attention to the limiting distributions of tc(γ̂2) and tm(γ̂2). From part (a) of

Theorem 1, we have

γ̂2
d→ w′u

w′w
=

(w′Vuw)
1
2

(w′w)
ũ, (A.50)

5From (A.44), we can see that E[(f̃ ′

tγ
∗

1)
2]bi + ci is the variance of ι

′

i(B̃
′B̃)−

1

2 r. Therefore, we have λi > 0.
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where ũ = w′u/(w′Vuw)
1
2 ∼ N (0, 1), and it is independent of w. Using (A.37), we obtain

s2
m(γ̂2) =

1

T 2

T∑
t=1

ĥ2
2t

d→ 1

(w′w)2

[
w′Vuw +

(w′u)2

w′w

]
+

u′[IN−K − w(w′w)−1w′]u

(w′w)2

=
w′Vuw + u′u

(w′w)2
. (A.51)

Therefore, the t-statistic of γ̂2 under the misspecification-robust standard error is given by

tm(γ̂2) =
γ̂2

sm(γ̂2)

d→ ũ(
1 + u′u

w′Vuw

) 1
2

. (A.52)

For s2
c(γ̂2) which assumes a correctly specified model, we drop the second term in ĥ2t, and we

obtain

s2
c(γ̂2)

d→ 1

(w′w)2

[
w′Vuw +

(w′u)2

w′w

]
=

w′Vuw

(w′w)2

(
1 +

ũ2

w′w

)
. (A.53)

It follows that

tc(γ̂2) =
γ̂2

sc(γ̂2)

d→ ũ(
1 + ũ2

w′w

) 1
2

. (A.54)

Under the conditional homoskedasticity assumption, Vu = E[(f̃ ′

tγ
∗

1)
2]IN−K , so we can write

tm(γ̂2)
d→ ũ(

1 + ũ2+v
w′w

) 1
2

, (A.55)

where v is defined in (A.42). This completes the proof of part (a) of Theorem 2.

part (b): We first derive the limiting distribution of ĥt in (A.25). When a model is misspecified,

we can see from part (b) of Theorem 1 that γ̂2 = Op(T
1
2 ) and γ̂1 = Op(1), so γ̂2 is the dominant

term. Therefore, using (11), we have

êt = xt(f̃
′

tγ̂1 + gtγ̂2) − q = xtgtγ̂2 + Op(1) =

√
Tδs

w′w
xtgt + Op(1). (A.56)

In addition, using (A.31), (A.32) and (A.18), we have

−Û−
1
2 ê = M̂Û−

1
2 q − M̂Û−

1
2 d̂γ̂2

d→ Mq̃ − Mzz′Mq̃

z′Mz
= P [IN−K − w(w′w)−1w′]P ′q̃. (A.57)

It follows that under a misspecified model,

ût = ê′Û−1xt
d→ −q̃′P [IN−K − w(w′w)−1w′]P ′−

1
2 xt. (A.58)

22



Then, using (A.28) and (A.30), we can express the limiting distribution of ĥt = [ĥ′

1t, ĥ2t]
′ as

ĥ1t√
T

d→ q̃′Pw

w′w
(B̃′B̃)−1B̃′

(
IN − zw′

w′w
P ′

)
U−

1
2 xtgt

+
(B̃′B̃)−1(B̃′z)

w′w
q̃′P [IN−K − w(w′w)−1w′]P ′−

1
2 xtgt, (A.59)

ĥ2t

T

d→ q̃′Pw

(w′w)2
w′P ′−

1
2 xtgt − 1

w′w
q̃′P [IN−K − w(w′w)−1w′]P ′−

1
2 xtgt. (A.60)

Using the fact that P ′B̃ = 0(N−K)×K and [IN−K − w(w′w)−1w′]w = 0N−K , we have

B̃′

(
IN − zw′

w′w
P ′

)
P [IN−K − w(w′w)−1w′]P ′q̃ = 0K , (A.61)

and we can show that the two terms in the limiting distribution of ĥ1t/
√

T are asymptotically

uncorrelated. It follows that

V̂m(γ̂1) =
1

T 2

T∑
t=1

ĥ1tĥ
′

1t

=
(q̃′Pw)2

(w′w)2

[
(B̃′B̃)−1 +

(B̃′B̃)−1B̃′zz′B̃(B̃′B̃)−1

w′w

]

+
1

(w′w)2

[
q̃′PP ′ q̃ − (q̃′Pw)2

w′w

]
(B̃′B̃)−1B̃′zz′B̃(B̃′B̃)−1

=
δ2

(w′w)2

[
s2(B̃′B̃)−1 + (B̃′B̃)−1B̃′zz′B̃(B̃′B̃)−1

]
. (A.62)

Using z̃i as defined in (A.41), we can express the limiting distribution of s2
m(γ̂1i) as

s2
m(γ̂1i) = ι

′

iV̂m(γ̂1)ιi
d→ δ2bi

(w′w)2
(s2 + z̃2

i ). (A.63)

In addition, we can also use z̃i to express the i-th element in (10) as

γ̂1i − γ∗

1i
d→ δs

√
biz̃i

w′w
. (A.64)

It follows that when the model is misspecified, tm(γ̂1i) has the following limiting distribution:

tm(γ̂1i) =
γ̂1i − γ∗

1i

sm(γ̂1i)

d→ sz̃i√
s2 + z̃2

i

. (A.65)

To show that tm(γ̂1i)
d→ N (0, 1/4), consider the polar transformation s = ω cos(θ) and z̃i = ω sin(θ),

where ω =
√

s2 + z̃2
i . The joint density of (ω, θ) is given by

f(ω, θ) =
ωe−

ω
2

2

2π
I{ω>0}I{0<θ<2π}. (A.66)
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Therefore, ω and θ are independent. Using the polar transformation, we obtain

sz̃i√
s2 + z̃2

i

= ω cos(θ) sin(θ) =
ω sin(2θ)

2
. (A.67)

Since θ is uniformly distributed over (0, 2π), sin(θ) and sin(2θ) have the same distribution. It

follows that ω sin(2θ)
d
= ω sin(θ) ∼ N (0, 1). Therefore,

tm(γ̂1i)
d→ N

(
0,

1

4

)
. (A.68)

The estimated covariance matrix of γ̂1 that assumes a correctly specified model is obtained by

dropping the second term in the line before (A.62). We can then show that

s2
c(γ̂1i)

d→ δ2s2bi

(w′w)2

(
1 +

z̃2
i

w′w

)
. (A.69)

Using (A.64), we can then obtain the limiting distribution of tc(γ̂1i) as

tc(γ̂1i) =
γ̂1i − γ∗

1i

sc(γ̂1i)

d→ z̃i(
1 +

z̃2
i

w′w

) 1
2

. (A.70)

Turning our attention to the limiting distributions of tc(γ̂2) and tm(γ̂2), we use (A.60) and the fact

that δ2 = q̃′PP ′ q̃ to obtain

s2
m(γ̂2)

T
=

1

T 3

T∑
t=1

ĥ2
2t

d→ (q̃′2

(w′w)4
w′w +

1

(w′w)2
q̃′P

(
IN−K − ww′

w′w

)
P ′q̃

=
δ2

(w′w)2
. (A.71)

Therefore, using (11), the t-statistic of γ̂2 under the misspecification-robust standard error is given

by

tm(γ̂2) =
γ̂2

sm(γ̂2)

d→ s ∼ N (0, 1). (A.72)

For s2
c(γ̂2) which assumes a correctly specified model, we drop the second term of ĥ2t in (A.60),

and we obtain
s2
c(γ̂2)

T

d→ (q̃′Pw)2

(w′w)3
=

δ2s2

(w′w)3
. (A.73)
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It follows that

tc(γ̂2) =
γ̂2

sc(γ̂2)

d→ sgn(s)
√

w′w. (A.74)

Note that since s ∼ N (0, 1), sgn(s) has probabilities of 1/2 of taking the values of −1 or 1, and it

is independent of s2. As a result, sgn(s) is also independent of w′w ∼ χ2
N−K .6 This completes the

proof of part (b) of Theorem 2.

Proof of Corollary 1 (Proposition 2 in the paper).

We only provide the proof of part (a) since the proof of part (b) is similar for t2c(γ̂1i) and obvious

for t2m(γ̂1i). First, comparing the limiting distribution of t2c(γ̂1i) with the limiting distribution of

t2m(γ̂1i) in part (a) of Theorem 2, we see that there is an extra positive term z̃2
i v/(w′w) in the

denominator. Therefore, the limiting distribution of t2m(γ̂1i) is stochastically dominated by the

limiting distribution of t2c(γ̂1i). It remains to be shown that the latter is stochastically dominated

by χ2
1. From part (a) of Theorem 2, we have

t2c(γ̂1i)
d→ (ũz̃i +

√
λi

√
w′wr̃i)

2

λi(w′w) + z̃2
i + ũ2

(
1 +

z̃2
i

w′w

) . (A.76)

Let t̃ = z̃i/
√

w′w. It is easy to see that the limit of t2c(γ̂1i) is stochastically dominated by (t̃ũ +
√

λir̃i)
2/(λi + t̃2) ∼ χ2

1.

Next, since 1 + ũ2/(w′w) > 1 and 1 + (ũ2 + v)/(w′w) > 1 almost surely, both the limiting distri-

butions of t2c(γ̂2) and t2m(γ̂2) are stochastically dominated by ũ2 ∼ χ2
1. This completes the proof of

Corollary 1.

Proof of Theorem 3.

part (a): Using (A.33) in the proof of Theorem 2, we can easily obtain

T δ̂
2

= T ê′Û−1ê
d→ u′[IN−K − w(w′w)−1w′]u = u′PwP ′

wu, (A.77)

6It is straightforward to show that the limiting probability density function of tc(γ̂2) is

f(t) =
|t|N−K−1e−

t
2

2

2
N−K

2 Γ
`

N−K

2

´ . (A.75)

25



where Pw is an (N −K)×(N −K−1) orthonormal matrix such that PwP ′

w = IN−K −w(w′w)−1w′.

Let ṽ = (P ′

wVuPw)−
1
2 P ′

wu ∼ N (0N−K−1, IN−K−1), which is independent of w. Then, we have

T δ̂
2 d→ ṽ′(P ′

wVuPw)ṽ. (A.78)

For testing H0 : δ = 0, T δ̂
2

is compared with
∑N−K−1

i=1 ξ̂iXi, where the Xi’s are independent

chi-squared random variables with one degree of freedom and the ξ̂i’s are the N − K − 1 nonzero

eigenvalues of

Ŝ
1
2 Û−1Ŝ

1
2 − Ŝ

1
2 Û−1D̂(D̂′Û−1D̂)−1D̂′Û−1Ŝ

1
2 . (A.79)

Using (A.32), we can write the above matrix as

Ŝ
1
2 Û−

1
2 [IN − Û−

1
2 D̂(D̂′Û−1D̂)−1D̂′Û−

1
2 ]Û−

1
2 Ŝ

1
2

= Ŝ
1
2 Û−

1
2 M̂Û−

1
2 Ŝ

1
2 − Ŝ

1
2 Û−

1
2 M̂Û−

1
2 d̂(d̂′Û−

1
2 M̂Û−

1
2 d̂)−1d̂′Û−

1
2 M̂Û−

1
2 Ŝ

1
2 . (A.80)

Let P̂ be an N×(N−K) orthonormal matrix such that P̂ P̂ ′ = M̂ and P̂w be an (N−K)×(N−K−1)

orthonormal matrix such that P̂wP̂ ′

w = IN−K − P̂ ′−
1
2 d̂(d̂′Û−

1
2 M̂Û−

1
2 d̂)−1d̂′Û−

1
2 P̂ . We can easily

show that ξ̂i’s are the nonzero eigenvalues of

Ŝ
1
2 Û−

1
2 P̂ P̂wP̂ ′

wP̂ ′Û−
1
2 Ŝ

1
2 , (A.81)

or equivalently the eigenvalues of

P̂ ′

wP̂ ′Û−
1
2 ŜÛ−

1
2 P̂ P̂w. (A.82)

Using (A.35), we can show that

P̂ ′Û−
1
2 êt

d→ P ′−
1
2 et(γ

∗

1) +
w′u

w′w
P ′−

1
2 xtgt. (A.83)

It follows that

P̂ ′Û−
1
2 ŜÛ−

1
2 P̂

d→ P ′U−
1
2 SU−

1
2 P +

(w′u)2

(w′w)2
IN−K = Vu +

(w′Vuw)ũ2

(w′w)2
IN−K , (A.84)

where ũ = w′u/(w′Vuw)
1
2 ∼ N (0, 1) and it is independent of w.

Under the conditional homoskedasticity assumption, we have Vu = E[(f̃ ′

tγ
∗

1)
2]IN−K and hence

T δ̂
2 d→ E[(f̃ ′

tγ
∗

1)
2]ṽ′ṽ ∼ E[(f̃ ′

tγ
∗

1)
2]χ2

N−K−1, (A.85)

P̂ ′

wP̂ ′Û−
1
2 ŜÛ−

1
2 P̂ P̂w

d→ E[(f̃ ′

tγ
∗

1)
2]

(
1 +

ũ2

w′w

)
IN−K−1. (A.86)
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It follows that

ξ̂i
d→ E[(f̃ ′

tγ
∗

1)
2]

(
1 +

ũ2

w′w

)
=

E[(f̃ ′

tγ
∗

1)
2]

Q1
, (A.87)

where Q1 = w′w/(ũ2 + w′w) ∼ Beta
(

N−K
2 , 1

2

)
and it is independent of ṽ′ṽ. Therefore, the limiting

probability of rejection of the HJ-distance test of size α is∫ 1

0
P

[
χ2

N−K−1 >
cα

q

]
fQ1(q)dq, (A.88)

where cα is the 100(1 − α) percentile of χ2
N−K−1. Since 0 < Q1 < 1, the limiting probability of

rejection is less than α. This completes the proof of part (a) of Theorem 3.

part (b): Using (A.57), the limiting distribution of the squared sample HJ-distance δ̂
2

= ê′Û−1ê

can be obtained as

δ̂
2 d→ q̃′P [IN−K − w(w′w)−1w′]P ′q̃

= (q̃′PP ′q̃)
w′[IN−K − P ′ q̃(q̃′PP ′q̃)−1q̃′P ]w

w′w
= δ2Q2, (A.89)

where

Q2 =
w′[IN−K − P ′q̃(q̃′PP ′ q̃)−1q̃′P ]w

w′w
∼ Beta

(
N − K − 1

2
,
1

2

)
(A.90)

and it is independent of w.

From the proof of part (a), we know that the ξ̂i’s are the eigenvalues of

P̂ ′

wP̂ ′Û−
1
2 ŜÛ−

1
2 P̂ P̂w. (A.91)

From (15) and (11), we have

Ŝ

T
d→ δ2s2

(w′w)2
U, (A.92)

which implies

P̂ ′

wP̂ ′Û−
1
2 ŜÛ−

1
2 P̂ P̂w

T

d→ δ2s2

(w′w)2
IN−K−1 (A.93)

and
ξ̂i

T

d→ δ2s2

(w′w)2
=

δ2(1− Q2)

w′w
. (A.94)

When we compare T δ̂
2

with the distribution of
∑N−K−1

i=1 ξ̂iXi, we are effectively comparing Q2

with (1− Q2)/(w′2
N−K−1, and we will reject H0 : δ = 0 when

w′w >
cαQ2

1 − Q2
. (A.95)
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Note that w′w ∼ χ2
N−K and it is independent of Q2, so the limiting probability of rejection for a

test with size α is ∫ 1

0

P

[
χ2

N−K >
cαq

1 − q

]
fQ2(q)dq. (A.96)

This completes the proof of part (b) of Theorem 3.
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Table 1
Empirical size of the t-tests (modified HJ-distance case)

Panel A: Model with a useful factor

Correctly specified model Misspecified model

t-test T 10% 5% 1% 10% 5% 1%

tc 200 0.098 0.049 0.009 0.098 0.049 0.009

600 0.100 0.050 0.009 0.099 0.048 0.009
1000 0.097 0.048 0.010 0.099 0.049 0.009

∞ 0.100 0.050 0.010 0.100 0.050 0.010

tm 200 0.098 0.049 0.009 0.098 0.048 0.009
600 0.100 0.050 0.009 0.098 0.048 0.009
1000 0.097 0.048 0.010 0.099 0.049 0.009

∞ 0.100 0.050 0.010 0.100 0.050 0.010

Panel B: Model with a useless factor

Correctly specified model Misspecified model

t-test T 10% 5% 1% 10% 5% 1%

tc 200 0.129 0.067 0.013 0.327 0.235 0.101
600 0.101 0.046 0.007 0.472 0.384 0.231

1000 0.095 0.044 0.006 0.556 0.477 0.328
∞ 0.088 0.039 0.005 1.000 1.000 1.000

tm 200 0.037 0.012 0.001 0.080 0.036 0.005
600 0.022 0.006 0.000 0.082 0.038 0.006

1000 0.021 0.006 0.000 0.088 0.041 0.007
∞ 0.018 0.004 0.000 0.100 0.050 0.010

The table presents the empirical size of the t-tests of H0 : γ1 = γ∗

1 in a model with a useful factor (Panel A)
and in a model with a useless factor (Panel B). Each panel considers the case in which the model is correctly
specified and the case in which the model is misspecified. tc denotes the t-test constructed under the
assumption of correct model specification and tm denotes the misspecification-robust t-test. We report
results for different levels of significance (10%, 5% and 1%) and for different values of the number of time
series observations (T ) using 100,000 simulations, assuming that the returns are generated from a multivariate
normal distribution with means and covariance matrix calibrated to the excess returns on the 25 Fama-French
size and book-to-market portfolios and the 17 Fama-French industry portfolios for the period 1959:2–2012:12.
The various t-statistics are compared to the critical values from a standard normal distribution. In Panel B,
the rejection rates for the limiting case (T = ∞) are based on the asymptotic distributions given in Theorem 5.
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Table 2
Empirical size of the t-tests (modified HJ-distance case)

Panel A: Correctly specified model

γ̂1 γ̂2

t-test T 10% 5% 1% 10% 5% 1%

tc 200 0.094 0.045 0.008 0.130 0.066 0.012

600 0.095 0.047 0.009 0.100 0.047 0.007
1000 0.097 0.048 0.009 0.095 0.043 0.006

∞ 0.092 0.045 0.008 0.088 0.039 0.005

tm 200 0.090 0.042 0.008 0.036 0.012 0.001
600 0.091 0.044 0.008 0.023 0.006 0.000

1000 0.093 0.046 0.008 0.020 0.005 0.000
∞ 0.088 0.042 0.008 0.018 0.004 0.000

Panel B: Misspecified model

γ̂1 γ̂2

t-test T 10% 5% 1% 10% 5% 1%

tc 200 0.094 0.046 0.008 0.321 0.230 0.098
600 0.095 0.047 0.008 0.464 0.374 0.223

1000 0.094 0.046 0.008 0.553 0.471 0.321
∞ 0.088 0.039 0.005 1.000 1.000 1.000

tm 200 0.086 0.041 0.007 0.080 0.036 0.005

600 0.079 0.036 0.006 0.081 0.038 0.006
1000 0.072 0.032 0.005 0.088 0.041 0.007

∞ 0.001 0.000 0.000 0.100 0.050 0.010

The table presents the empirical size of the t-tests of H0 : γ
i
= γ∗

i
(i = 1, 2) in a model with a useful and

a useless factor. γ1 is the coefficient on the useful factor and γ2 is the coefficient on the useless factor.
tc denotes the t-test constructed under the assumption of correct model specification and tm denotes the
misspecification-robust t-test. We report results for different levels of significance (10%, 5% and 1%) and for
different values of the number of time series observations (T ) using 100,000 simulations, assuming that the
returns are generated from a multivariate normal distribution with means and covariance matrix calibrated
to the excess returns on the 25 Fama-French size and book-to-market portfolios and the 17 Fama-French
industry portfolios for the period 1959:2–2012:12. The various t-tests are compared to the critical values
from a standard normal distribution. The rejection rates for the limiting case (T = ∞) are based on the
asymptotic distributions given in Theorem 5.
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Table 3
Survival rates of risk factors: two useful, one unpriced and one useless factors
(modified HJ-distance case)

Panel A: Correctly specified model

Useful (γ∗

1 �= 0) Useful (γ∗

2 �= 0) Useful (γ∗

3 = 0) Useless Prob.

T tc(γ̂1) tm(γ̂1) tc(γ̂2) tm(γ̂2) tc(γ̂3) tm(γ̂3) tc(γ̂4) tm(γ̂4) MSc MSm

200 0.253 0.239 0.380 0.355 0.010 0.008 0.013 0.001 0.023 0.008
600 0.862 0.852 0.962 0.958 0.010 0.009 0.008 0.000 0.018 0.009

1000 0.986 0.984 0.999 0.999 0.010 0.009 0.006 0.000 0.016 0.009

Panel B: Misspecified model

Useful (γ∗

1 �= 0) Useful (γ∗

2 �= 0) Useful (γ∗

3 = 0) Useless Prob.

T tc(γ̂1) tm(γ̂1) tc(γ̂2) tm(γ̂2) tc(γ̂3) tm(γ̂3) tc(γ̂4) tm(γ̂4) MSc MSm

200 0.242 0.213 0.368 0.320 0.013 0.007 0.084 0.005 0.096 0.012
600 0.818 0.776 0.930 0.908 0.013 0.007 0.201 0.006 0.211 0.013

1000 0.958 0.934 0.989 0.983 0.013 0.007 0.295 0.008 0.304 0.015

The table presents the survival rates of the useful and useless factors in a model with a constant, two useful factors
(with γ∗

1 �= 0 and γ∗

2 �= 0), a useful factor that does not contribute to pricing (with γ∗

3 = 0) and a useless factor
(with γ∗

4 unidentified). The sequential procedure is implemented by using the misspecification-robust t-tests (tm(γ̂
i
)

column) as well as the t-tests under correctly specified models (tc(γ̂i
) column). The false discovery rate of the

multiple testing procedure is controlled using the Bonferroni method. The last two columns of the table report the
probability that at least one useless or unpriced useful factor survives using the t-tests under correctly specified
models (MSc) and misspecification-robust t-tests (MSm). The nominal level of the sequential testing procedure is
set equal to 5%. Panels A and B are for correctly specified and misspecified models, respectively. We report results
for different values of the number of time series observations (T ) using 100,000 simulations, assuming that the returns
are generated from a multivariate normal distribution with means and covariance matrix calibrated to the excess
returns on the 25 Fama-French size and book-to-market portfolios and the 17 Fama-French industry portfolios for
the period 1959:2–2012:12.

32



Table 4
Survival rates of risk factors: two useful and two useless factors (modified HJ-
distance case)

Panel A: Correctly specified model

Useful (γ∗

1 �= 0) Useful (γ∗

2 �= 0) Useless Useless Prob.

T tc(γ̂1) tm(γ̂1) tc(γ̂2) tm(γ̂2) tc(γ̂3) tm(γ̂3) tc(γ̂4) tm(γ̂4) MSc MSm

200 0.272 0.254 0.375 0.344 0.012 0.001 0.012 0.001 0.024 0.001
600 0.891 0.877 0.959 0.951 0.007 0.000 0.007 0.000 0.014 0.001

1000 0.991 0.989 0.999 0.998 0.006 0.000 0.006 0.000 0.012 0.000

Panel B: Misspecified model

Useful (γ∗

1 �= 0) Useful (γ∗

2 �= 0) Useless Useless Prob.

T tc(γ̂1) tm(γ̂1) tc(γ̂2) tm(γ̂2) tc(γ̂3) tm(γ̂3) tc(γ̂4) tm(γ̂4) MSc MSm

200 0.252 0.218 0.352 0.294 0.075 0.004 0.075 0.004 0.147 0.008
600 0.812 0.751 0.900 0.857 0.178 0.005 0.179 0.005 0.340 0.010

1000 0.947 0.908 0.976 0.957 0.263 0.006 0.261 0.006 0.482 0.013

The table presents the survival rates of the useful and useless factors in a model with a constant, two useful factors
(with γ∗

1 �= 0 and γ∗

2 �= 0), and two useless factors (with γ∗

3 and γ∗

4 unidentified). The sequential procedure
is implemented by using the misspecification-robust t-tests (tm(γ̂

i
) column) as well as the t-tests under correctly

specified models (tc(γ̂i
) column). The false discovery rate of the multiple testing procedure is controlled using

the Bonferroni method. The last two columns of the table report the probability that at least one useless factor
survives using the t-tests under correctly specified models (MSc) and misspecification-robust t-tests (MSm). The
nominal level of the sequential testing procedure is set equal to 5%. Panels A and B are for correctly specified and
misspecified models, respectively. We report results for different values of the number of time series observations
(T ) using 100,000 simulations, assuming that the returns are generated from a multivariate normal distribution
with means and covariance matrix calibrated to the excess returns on the 25 Fama-French size and book-to-market
portfolios and the 17 Fama-French industry portfolios for the period 1959:2–2012:12.
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Table 5
Survival rates when a linear combination of the factors is useless (modified HJ-
distance case)

Panel A: Correctly specified model

Both factors survive One factor survives No factor survives

T tc tm tc tm tc tm

200 0.026 0.003 0.247 0.250 0.727 0.747
600 0.015 0.001 0.677 0.685 0.308 0.313

1000 0.013 0.001 0.889 0.900 0.097 0.099

Panel B: Misspecified model

Both factors survive One factor survives No factor survives

T tc tm tc tm tc tm

200 0.140 0.013 0.228 0.255 0.631 0.733
600 0.275 0.015 0.505 0.684 0.219 0.301

1000 0.377 0.016 0.563 0.890 0.060 0.094

The table presents the probability that both factors survive, only one factor survives, and no factor
survives in a model in which a linear combination of two useful factors is useless. The sequential
procedure is implemented by using the misspecification-robust t-test (tm column) as well as the t-test
under correctly specified models (tc column). The false discovery rate of the multiple testing procedure
is controlled using the Bonferroni method. The nominal level of the sequential testing procedure is
set equal to 5%. Panels A and B are for correctly specified and misspecified models, respectively.
We report results for different values of the number of time series observations (T ) using 100,000
simulations, assuming that the returns are generated from a multivariate normal distribution with
means and covariance matrix calibrated to the excess returns on the 25 Fama-French size and book-to-
market portfolios and the 17 Fama-French industry portfolios for the period 1959:2–2012:12.
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Table 6
Empirical size of the t-tests in a model with a useful factor (optimal GMM case)

Panel A: Correctly specified model

γ̂0 γ̂1

t-test T 10% 5% 1% 10% 5% 1%

tc 200 0.176 0.142 0.108 0.114 0.061 0.015

600 0.140 0.100 0.063 0.103 0.052 0.011
1000 0.125 0.082 0.043 0.102 0.051 0.010

∞ 0.100 0.050 0.010 0.100 0.050 0.010

tm 200 0.173 0.141 0.108 0.107 0.055 0.012
600 0.139 0.100 0.063 0.102 0.051 0.010

1000 0.125 0.081 0.043 0.101 0.050 0.010
∞ 0.100 0.050 0.010 0.100 0.050 0.010

Panel B: Misspecified model

γ̂0 γ̂1

t-test T 10% 5% 1% 10% 5% 1%

tc 200 0.182 0.147 0.110 0.122 0.067 0.018
600 0.143 0.103 0.065 0.110 0.057 0.013

1000 0.128 0.085 0.044 0.107 0.055 0.012
∞ 0.100 0.050 0.010 0.100 0.050 0.010

tm 200 0.175 0.144 0.110 0.109 0.056 0.012

600 0.140 0.101 0.064 0.103 0.052 0.011
1000 0.125 0.083 0.044 0.101 0.051 0.010

∞ 0.100 0.050 0.010 0.100 0.050 0.010

The table presents the empirical size of the t-tests of H0 : γ
i

= γ∗

i
(i = 0, 1) in a model with a constant

and a useful factor estimated by optimal (3-step) GMM. γ0 is the coefficient on the constant term and γ1

is the coefficient on the useful factor. tc denotes the t-test constructed under the assumption of correct
model specification and tm denotes the misspecification-robust t-test. We report results for different levels
of significance (10%, 5% and 1%) and for different values of the number of time series observations (T ) using
100,000 simulations, assuming that the returns are generated from a multivariate normal distribution with
means and covariance matrix calibrated to the 25 size and book-to-market Fama-French portfolio returns,
the 17 Fama-French industry portfolio returns and the one-month T-bill rate for the period 1959:2–2012:12.
The various t-statistics are compared to the critical values from a standard normal distribution.
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Table 7
Empirical size of the t-tests in a model with a useless factor (optimal GMM
case)

Panel A: Correctly specified model

γ̂0 γ̂1

t-test T 10% 5% 1% 10% 5% 1%

tc 200 0.012 0.004 0.000 0.150 0.088 0.026
600 0.003 0.000 0.000 0.107 0.053 0.009

1000 0.002 0.000 0.000 0.100 0.047 0.007
∞ 0.001 0.000 0.000 0.088 0.039 0.005

tm 200 0.002 0.000 0.000 0.038 0.015 0.002

600 0.000 0.000 0.000 0.024 0.007 0.000
1000 0.000 0.000 0.000 0.018 0.004 0.000

∞ 0.000 0.000 0.000 0.016 0.004 0.000

Panel B: Misspecified model

γ̂0 γ̂1

t-test T 10% 5% 1% 10% 5% 1%

tc 200 0.043 0.020 0.004 0.350 0.267 0.146

600 0.035 0.013 0.002 0.475 0.391 0.248
1000 0.040 0.015 0.002 0.559 0.481 0.336

∞ 0.088 0.039 0.005 1.000 1.000 1.000

tm 200 0.007 0.002 0.000 0.079 0.039 0.009
600 0.003 0.001 0.000 0.083 0.040 0.007

1000 0.003 0.000 0.000 0.088 0.043 0.008
∞ 0.001 0.000 0.000 0.100 0.050 0.010

The table presents the empirical size of the t-tests of H0 : γ
i

= γ∗

i
(i = 0, 1) in a model with a constant

and a useless factor estimated by optimal (3-step) GMM. γ0 is the coefficient on the constant term and γ1

is the coefficient on the useless factor. tc denotes the t-test constructed under the assumption of correct
model specification and tm denotes the misspecification-robust t-test. We report results for different levels
of significance (10%, 5% and 1%) and for different values of the number of time series observations (T ) using
100,000 simulations, assuming that the returns are generated from a multivariate normal distribution with
means and covariance matrix calibrated to the 25 size and book-to-market Fama-French portfolio returns, the
17 Fama-French industry portfolio returns and the one-month T-bill rate for the period 1959:2–2012:12. The
various t-statistics are compared to the critical values from a standard normal distribution. The rejection
rates for the limiting case (T = ∞) are equivalent to those based on the asymptotic distributions given in
Theorem 2.
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Table 8
Empirical size of the t-tests in a model with a useful and a useless factor (optimal
GMM case)

Panel A: Correctly specified model

γ̂0 γ̂1 γ̂2

t-test T 10% 5% 1% 10% 5% 1% 10% 5% 1%

tc 200 0.064 0.029 0.008 0.118 0.064 0.015 0.153 0.091 0.028
600 0.061 0.029 0.008 0.101 0.051 0.010 0.108 0.054 0.009

1000 0.058 0.025 0.006 0.097 0.049 0.009 0.099 0.048 0.007
∞ 0.052 0.020 0.002 0.096 0.047 0.009 0.088 0.039 0.005

tm 200 0.031 0.013 0.004 0.103 0.052 0.011 0.040 0.016 0.002

600 0.038 0.017 0.006 0.095 0.047 0.009 0.024 0.006 0.000
1000 0.037 0.016 0.004 0.092 0.045 0.008 0.021 0.006 0.000

∞ 0.037 0.014 0.002 0.092 0.045 0.008 0.018 0.004 0.000

Panel B: Misspecified model

γ̂0 γ̂1 γ̂2

t-test T 10% 5% 1% 10% 5% 1% 10% 5% 1%

tc 200 0.086 0.041 0.010 0.144 0.084 0.026 0.350 0.266 0.144

600 0.077 0.034 0.007 0.124 0.067 0.016 0.471 0.385 0.241
1000 0.076 0.032 0.006 0.120 0.065 0.015 0.552 0.473 0.330

∞ 0.088 0.039 0.005 0.088 0.039 0.005 1.000 1.000 1.000

tm 200 0.026 0.010 0.003 0.106 0.056 0.012 0.081 0.040 0.008
600 0.018 0.006 0.002 0.089 0.042 0.008 0.082 0.040 0.008

1000 0.013 0.005 0.001 0.080 0.037 0.006 0.089 0.042 0.008
∞ 0.001 0.000 0.000 0.001 0.000 0.000 0.100 0.050 0.010

The table presents the empirical size of the t-tests of H0 : γ
i
= γ∗

i
(i = 0, 1, 2) in a model with a constant, a

useful and a useless factor estimated by optimal (3-step) GMM. γ0 is the coefficient on the constant term,
γ

1
is the coefficient on the useful factor, and γ

2
is the coefficient on the useless factor. tc denotes the t-test

constructed under the assumption of correct model specification and tm denotes the misspecification-robust
t-test. We report results for different levels of significance (10%, 5% and 1%) and for different values of the
number of time series observations (T ) using 100,000 simulations, assuming that the returns are generated
from a multivariate normal distribution with means and covariance matrix calibrated to the 25 size and
book-to-market Fama-French portfolio returns, the 17 Fama-French industry portfolio returns and the one-
month T-bill rate for the period 1959:2–2012:12. The various t-tests are compared to the critical values
from a standard normal distribution. The rejection rates for the limiting case (T = ∞) are equivalent to
those based on the asymptotic distributions given in Theorem 2.
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Table 9
Survival rates of risk factors: two useful, one unpriced and one useless factors
(optimal GMM case)

Panel A: Correctly specified model

Useful (γ∗

1 �= 0) Useful (γ∗

2 �= 0) Useful (γ∗

3 = 0) Useless Prob.

T tc(γ̂1) tm(γ̂1) tc(γ̂2) tm(γ̂2) tc(γ̂3) tm(γ̂3) tc(γ̂4) tm(γ̂4) MSc MSm

200 0.744 0.708 0.812 0.770 0.042 0.030 0.048 0.004 0.087 0.034
600 0.999 0.999 1.000 1.000 0.016 0.014 0.014 0.001 0.029 0.014

1000 1.000 1.000 1.000 1.000 0.015 0.014 0.011 0.000 0.026 0.014

Panel B: Misspecified model

Useful (γ∗

1 �= 0) Useful (γ∗

2 �= 0) Useful (γ∗

3 = 0) Useless Prob.

T tc(γ̂1) tm(γ̂1) tc(γ̂2) tm(γ̂2) tc(γ̂3) tm(γ̂3) tc(γ̂4) tm(γ̂4) MSc MSm

200 0.713 0.639 0.785 0.697 0.062 0.033 0.157 0.013 0.207 0.045
600 0.994 0.995 0.997 0.998 0.026 0.014 0.219 0.009 0.237 0.023

1000 0.999 0.999 1.000 1.000 0.023 0.013 0.299 0.009 0.314 0.022

The table presents the survival rates of the useful and useless factors in a model with a constant, two useful factors
(with γ∗

1 �= 0 and γ∗

2 �= 0), a useful factor that does not contribute to pricing (with γ∗

3 = 0) and a useless factor
(with γ∗

4 unidentified) estimated by optimal (3-step) GMM. The sequential procedure is implemented by using the
misspecification-robust t-tests (tm(γ̂

i
) column) as well as the t-tests under correctly specified models (tc(γ̂i

) column).
The false discovery rate of the multiple testing procedure is controlled using the Bonferroni method. The last two
columns of the table report the probability that at least one useless or unpriced useful factor survives using the
t-tests under correctly specified models (MSc) and misspecification-robust t-tests (MSm). The nominal level of
the sequential testing procedure is set equal to 5%. Panels A and B are for correctly specified and misspecified
models, respectively. We report results for different values of the number of time series observations (T ) using
100,000 simulations, assuming that the returns are generated from a multivariate normal distribution with means
and covariance matrix calibrated to the 25 size and book-to-market Fama-French portfolio returns, the 17 Fama-
French industry portfolio returns and the one-month T-bill rate for the period 1959:2–2012:12.
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Table 10
Survival rates of risk factors: two useful and two useless factors (optimal GMM
case)

Panel A: Correctly specified model

Useful (γ∗

1 �= 0) Useful (γ∗

2 �= 0) Useless Useless Prob.

T tc(γ̂1) tm(γ̂1) tc(γ̂2) tm(γ̂2) tc(γ̂3) tm(γ̂3) tc(γ̂4) tm(γ̂4) MSc MSm

200 0.749 0.715 0.807 0.768 0.048 0.005 0.047 0.005 0.092 0.009
600 0.999 0.999 1.000 1.000 0.014 0.001 0.014 0.001 0.028 0.001

1000 1.000 1.000 1.000 1.000 0.011 0.000 0.010 0.000 0.021 0.001

Panel B: Misspecified model

Useful (γ∗

1 �= 0) Useful (γ∗

2 �= 0) Useless Useless Prob.

T tc(γ̂1) tm(γ̂1) tc(γ̂2) tm(γ̂2) tc(γ̂3) tm(γ̂3) tc(γ̂4) tm(γ̂4) MSc MSm

200 0.356 0.283 0.453 0.359 0.153 0.012 0.152 0.011 0.284 0.023
600 0.843 0.873 0.915 0.935 0.224 0.011 0.222 0.011 0.415 0.022

1000 0.951 0.973 0.977 0.987 0.295 0.012 0.292 0.011 0.533 0.023

The table presents the survival rates of the useful and useless factors in a model with a constant, two useful factors
(with γ∗

1 �= 0 and γ∗

2 �= 0), and two useless factors (with γ∗

3 and γ∗

4 unidentified) estimated by optimal (3-step) GMM.
The sequential procedure is implemented by using the misspecification-robust t-tests (tm(γ̂

i
) column) as well as the

t-tests under correctly specified models (tc(γ̂i
) column). The false discovery rate of the multiple testing procedure is

controlled using the Bonferroni method. The last two columns of the table report the probability that at least one
useless factor survives using the t-tests under correctly specified models (MSc) and misspecification-robust t-tests
(MSm). The nominal level of the sequential testing procedure is set equal to 5%. Panels A and B are for correctly
specified and misspecified models, respectively. We report results for different values of the number of time series
observations (T ) using 100,000 simulations, assuming that the returns are generated from a multivariate normal
distribution with means and covariance matrix calibrated to the 25 size and book-to-market Fama-French portfolio
returns, the 17 Fama-French industry portfolio returns and the one-month T-bill rate for the period 1959:2–2012:12.
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Table 11
Survival rates when a linear combination of the factors is useless (optimal GMM
case)

Panel A: Correctly specified model

Both factors survive One factor survives No factor survives

T tc tm tc tm tc tm

200 0.046 0.006 0.259 0.253 0.695 0.741
600 0.020 0.002 0.673 0.683 0.306 0.315

1000 0.016 0.001 0.887 0.899 0.097 0.099

Panel B: Misspecified model

Both factors survive One factor survives No factor survives

T tc tm tc tm tc tm

200 0.186 0.017 0.228 0.240 0.586 0.743
600 0.295 0.017 0.489 0.670 0.216 0.313

1000 0.389 0.019 0.552 0.882 0.059 0.099

The table presents the probability that both factors survive, only one factor survives, and no factor
survives in a model estimated by optimal (3-step) GMM in which a linear combination of two useful
factors is useless. The sequential procedure is implemented by using the misspecification-robust t-test
(tm column) as well as the t-test under correctly specified models (tc column). The false discovery
rate of the multiple testing procedure is controlled using the Bonferroni method. The nominal level
of the sequential testing procedure is set equal to 5%. Panels A and B are for correctly specified and
misspecified models, respectively. We report results for different values of the number of time series
observations (T ) using 100,000 simulations, assuming that the returns are generated from a multivariate
normal distribution with means and covariance matrix calibrated to the 25 size and book-to-market
Fama-French portfolio returns, the 17 Fama-French industry portfolio returns and the one-month T-bill
rate for the period 1959:2–2012:12.
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Figure 1

Limiting probabilities of rejection of the HJ-distance test. The figure presents the limiting proba-
bilities of rejection of the HJ-distance test under correctly specified and misspecified models when

one of the factors is useless.
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