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Perturbation Methods

for Markov-Switching DSGE Models

1 Introduction

In this paper we show how to use perturbation methods as described in Judd (1998) and

Schmitt-Grohe and Uribe (2004) to solve Markov-switching dynamic stochastic general equi-

librium (MSDSGE) models. Our contribution advances the current literature in two significant

respects. First, we develop a general methodology for approximating the solution of a larger

class of Markov-switching models than currently possible and, second, we show the feasibility

and practicality of implementing our methodology when we consider high-order approximations

to the model solution. Current methods only allow for first-order approximations.

The literature on Markov-switching linear rational expectations (MSLRE) models has been

an active field in empirical macroeconomics (Leeper and Zha (2003), Blake and Zampolli (2006),

Svensson and Williams (2007), Davig and Leeper (2007), and Farmer et al. (2009)). Building

on standard linear rational expectations models, the MSLRE approach allows model parame-

ters to change over time according to discrete Markov chain processes. This nonlinearity has

proven to be important in explaining changes in monetary policy and macroeconomic time se-

ries (Schorfheide (2005), Davig and Doh (2008), Liu et al. (2011), and Bianchi (2010)) and in

modeling the expected effects of future fiscal policy changes (Davig et al. (2010), Davig et al.

(2011), Bi and Traum (2012)). In particular, Markov-switching models provide a tractable way

to study how agents form expectations over possible discrete changes in the economy, such as

those in technology and policy.

There are, however, two main shortcomings with the MSLRE approach. First, that approach

begins with a system of standard linear rational expectations equations that have been obtained

from linearizing equilibrium conditions as though the parameters were constant over time. Dis-

crete Markov chain processes are then annexed to certain parameters. As a consequence, the

resultant MSLRE model may be incompatible with the optimizing behavior of agents in an
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original economic model with Markov-switching parameters. Second, because it builds on linear

rational expectations models, the MSLRE approach does not take into account higher-order

coefficients in the approximation. Higher-order approximations improve the approximation ac-

curacy and may be potentially important for certain economic questions.

This paper develops a general perturbation methodology for constructing first-order and

second-order approximations to the solutions of MSDSGE models in which certain parameters

vary according to discrete Markov chain processes. Our method can be easily expanded to

higher-order approximations. The key is to find the approximations using the equilibrium con-

ditions implied by the original economic model when Markov-switching parameters are present.

Thus, our method overcomes the aforementioned shortcomings. By working with the original

MSDSGE model directly rather than taking a system of linear rational expectations equations

with constant parameters as a short-cut, we maintain congruity between the original economic

model with Markov-switching parameters and the resultant approximations to the model so-

lution. Such congruity is necessary for researchers to derive both first-order and second-order

approximations.

Unlike the case with a standard model with constant parameters, one conceptual difficulty

while working with MSDSGE models is that certain Markov-switching parameters, such as the

mean growth rate of technology, complicate the steady-state definition. The definition of the

steady-state for MSDSGEmodels should be independent of the realization of the discrete Markov

chain process for any changing parameter. To this end, we introduce a new concept of steady-

state. We partition the parameter space such that the subset of Markov-switching parameters

that would influence the steady-state in the constant parameter case is now a function of the

perturbation parameter, while the complementary subset is not. This new concept renders a

key to deriving first-order and second-order approximations.

Several important results are as follows. First, we find that first-order approximations to

the solutions of MSDSGE models are, in general, not certainty equivalent when a subset of

Markov-switching parameters needs to be perturbed. Second, we identify the task of finding all

the solutions to a system of quadratic equations as the only bottleneck in obtaining first-order
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and second-order approximations to the solutions of MSDSGE models.

Third, we propose to remove the bottleneck by applying Gröbner bases, a key insight of

our approach. Gröbner bases have not only a sound mathematical theory but also many com-

putational applications. For example, Gröbner bases have been successfully applied by Kubler

and Schmedders (2010a) and Kubler and Schmedders (2010b) to find multiple equilibria in gen-

eral equilibrium models; Datta (2010) uses such bases to find all the Nash equilibria. For our

purpose, Gröbner bases provide a computationally feasible way to obtain all the solutions to a

system of polynomial equations. Once the bottleneck of solving a system of quadratic equations

is resolved, the remaining task to obtain first-order and second-order approximations involves

solving only systems of linear equations even for higher-order approximations.

Fourth, one may use a numerical algorithm to search for a solution to the quadratic system,

but there is no guarantee that such an algorithm is capable of finding all solutions. By employing

Gröbner bases to solve the quadratic system, we can first obtain all its solutions and then

determine how many approximations are stable, where the stability concept follows the earlier

work of Costa et al. (2005), Farmer et al. (2009), Farmer et al. (2011), and Cho (2011). This

procedure enables researchers to ascertain both the existence and the uniqueness of a stable

approximation.

The rest of the paper is organized as follows. Section 2 presents a general class of MSDSGE

models, outlines our methodology, and introduces a new concept of steady-state. Section 3

derives first-order approximations and discusses the feature of no certainty equivalence. Section

4 shows how to reduce the problem of finding first-order approximations to that of finding all

the solutions to a system of quadratic equations. Gröbner bases are proposed to tackle this

problem and the concept of stability is introduced in this section. Section 5 derives a second-

order approximation and shows that it involves solving only linear systems once a first-order

approximation is obtained. Section 6 illustrates how to apply our methodology to three different

MSDSGE models. Concluding remarks are offered in Section 7.
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2 The General Framework

Our general framework is laid out as follows. In Section 2.1 we discuss a general class of

MSDSGE models with a simple example to guide the reader through our new notation. In

Section 2.2 we introduce a new concept of steady-state and discuss a new idea of partitioning

the Markov-switching parameter space. In Section 2.3 we present the general form of model

solutions and state the goal of this paper.

2.1 The Model

We study a general class of MSDSGE models in which some of the parameters follow a discrete

Markov chain process indexed by st with the transition matrix P = (ps,s′). The element ps,s′

represents the probability that st+1 = s′ given st = s for s, s′ ∈ {1, . . . , ns}, where ns is the

number of regimes. When st = s, the model is said to be in regime s at time t. We denote the

vector of all Markov-switching parameters by θt, which has dimension nθ × 1.1

Given (xt−1, εt, θt), the equilibrium conditions for MSDSGE models have the general form

Etf (yt+1, yt, xt, xt−1, χεt+1, εt, θt+1, θt) = 0nx+ny , (1)

where Et denotes the mathematical expectation operator conditional on information available

at time t, 0nx+ny is an (nx + ny) × 1 vector of zeros, xt is an nx × 1 vector of (endogenous

and exogenous) predetermined variables, yt is an ny × 1 vector of non-predetermined (control)

variables, εt is an nε × 1 vector of i.i.d. innovations to the exogenous predetermined variables

with Et−1εt = 0nε, and χ ∈ R is the perturbation parameter. Since the total number of equations

in (1) is ny + nx, the function f maps R2(ny+nx+nε+nθ) into Rny+nx .

Finding first-order and second-order approximations to the solutions of MSDSGE models

using perturbation methods requires us to introduce new notation and lengthy algebraic work.

To aid the reader through our new notation and derivations in the paper, we use a simple real

business cycle (RBC) model as a clear demonstration of how our proposed methodology works.

1Note that the vector θt does not include other parameters that are constant over time. We call those

parameters “constant parameters.”
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The RBC model is an economy with the representative household whose preferences over a

stochastic sequence of consumption goods, ct, are represented by the utility function

maxE0

∞∑

t=0

βt log ct

where β denotes the discount factor. The resource constraint is

ct + kt = ztk
α
t−1 + (1− δ) kt−1,

where kt is a stock of physical capital and zt represents a technological change that is a random

walk in log with a Markov-switching drift as

log zt = µt + log zt−1 + σεt,

where the drift µt takes two discrete values dictated by the Markov chain process represented

by st ∈ {1, 2}, and εt ∼ N (0, 1).

The three equations characterizing the equilibrium are

1

ct
= βEt

1

ct+1

(
αzt+1k

α−1
t + 1− δ

)
,

ct + kt = ztk
α
t−1 + (1− δ) kt−1,

and log zt = µt + log zt−1 + σεt.

Because log zt has a unit root, the economy is non-stationary. To derive a stationary equi-

librium, define ωt = z
1

1−α

t−1 and let c̃t =
ct
ωt
, k̃t−1 = kt−1

ωt
, z̃t =

zt
zt−1

. The transformed (re-scaled)

equilibrium conditions become

1

c̃t
= βEt

z̃
1

α−1

t

c̃t+1

(
αz̃t+1k̃

α−1
t + 1− δ

)
,

c̃t + k̃tz̃
1

1−a

t = z̃tk̃
α
t−1 + (1− δ) k̃t−1,

and log z̃t = µt + σεt.

Substituting out z̃t leads to the following two equilibrium conditions

1

c̃t
= βEt

1

c̃t+1

exp

(
µt + σεt
α− 1

)(
α exp

(
µt+1 + σεt+1

)
k̃α−1
t + 1− δ

)
,
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and c̃t + k̃t exp

(
µt + σεt
1− α

)
= exp (µt + σεt) k̃

α
t−1 + (1− δ) k̃t−1.

Using the notation in this section, we have ny = 1, nx = 1, nε = 1, nθ = 1, yt = c̃t,

xt−1 = k̃t−1, and θt = µt. The equilibrium condition (1) can be specifically expressed as

Etf (yt+1, yt, xt, xt−1, χεt+1, εt, θt+1, θt) =

Et




1
c̃t
− β 1

c̃t+1
exp

(
µt+σεt
α−1

) (
α exp

(
µt+1 + χσεt+1

)
k̃α−1
t + 1− δ

)

c̃t + k̃t exp
(
µt+σεt
1−α

)
− exp (µt + σtεt) k̃

α
t−1 − (1− δ) k̃t−1


 . (2)

2.2 Steady-State and Partition of Markov-Switching Parameters

The definition of the steady-state for MSDSGE models is more complicated than that for stan-

dard DSGE models with constant parameters. To be consistent with the definition of the

steady-state in standard DSGE models with constant parameters, the definition of the steady-

state for MSDSGE models should be independent of the realization of the discrete Markov chain

process.

To achieve this objective, our key idea is to partition the vector θt of Markov-switching

parameters into two subvectors. The first part concerns a subvector of parameters that would

influence the steady-state in the constant parameter case and thus is a function of the pertur-

bation parameter χ. The second part contains the subvector of all remaining parameters that

would not affect the steady-state in the constant parameter case. We denote the first subvector

by θ1t and the second subvector by θ2t. Rewrite the vector θt as

θt = θ (χ, st) , (3)

where θ maps R× {1, . . . , ns} into Rnθ . We have

θt =
[
θ⊺1t θ⊺2t

]⊺
=
[
θ1 (χ, st)

⊺ θ2 (χ, st)
⊺

]⊺
, (4)

where ⊺ indicates transpose. The vector θ1t and θ2t have the dimensions nθ1 × 1 and nθ2 × 1

respectively, and functional forms

θ1 (χ, st) = θ1 + χθ̂1 (st) , (5)

and θ2 (χ, st) = θ̂2 (st) (6)
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for all st.

The specific functional form (5) is chosen for tractable derivations in the rest of the paper.2

We will discuss, below, how to choose the value of θ1. We apply the same partition to the vector

θt+1, where we simply replace the subscript t with t+ 1.

Two important features stand out from (5) and (6). First, θ̂1 (st) is a deviation of θ1t from

θ1 in regime st. Second, θ2t is not a function of the perturbation parameter χ. Thus, the

perturbation parameter, χ, affects only a subset of Markov-switching parameters, θ1t. Since

the steady-state depends on θ̄1 only, a natural choice for this point is the mean of the ergodic

distribution across θ1t.

Now we are ready to define the steady-state of the MSDSGE model.

Definition 1 The nx × 1 vector xss and the ny × 1 vector yss are the steady-state variables if

f
(
yss, yss, xss, xss, 0nε, 0nε, θ1, θ̂2 (st+1) , θ1, θ̂2 (st)

)
= 0nx+ny

holds for all st+1 and st.

In principle, more than one partition of Markov-switching parameters can satisfy the con-

dition, as stated in Definition 1, such that neither θ2 (0, st+1) = θ̂2 (st+1) nor θ2 (0, st) = θ̂2 (st)

enters in the calculation of the steady-state for any st+1 or st. We recommend choosing θ1t as

the smallest set of Markov-switching parameters such that θ̄1 influences the steady-state.

In our simple RBC model, there is no θ2t, but θ1t = µt takes the functional form

µt = µ (χ, st) = µ+ χµ̂ (st) .

We set both εt = 0 and χ = 0. Thus, µt = µt+1 = µ and the steady-state of the RBC model

consists of c̃ss and k̃ss such that




1
css

− β 1
css

exp
(

µ̄

α−1

) (
α exp (µ̄) k̃α−1

ss + 1− δ
)

c̃ss + k̃ss exp
(

µ̄

1−α

)
− exp (µ̄) k̃αss − (1− δ) k̃ss


 = 02,

2Any other functional form, so long as θ1 (0, st) = θ1 holds for all st, will be valid.
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which produces the steady-state values

k̃ss =

(
1

α exp (µ̄)

(
1

β exp
(

µ̄

α−1

) − 1 + δ

)) 1
α−1

,

and c̃ss = exp (µ̄) k̃αss + (1− δ) k̃ss − k̃ss exp

(
µ̄

1− α

)
.

2.3 Model Solution and Approximation

Once the concept of steady-state and the partition of Markov-switching parameters are clearly

defined, we can now proceed to approximate the solution of a MSDSGE model. Consider model

solutions of the form3

yt = g (xt−1, εt, χ, st) , (7)

yt+1 = g (xt, χεt+1, χ, st+1) , (8)

and xt = h (xt−1, εt, χ, st) (9)

where g maps Rnx+nε+1 × {1, . . . , ns} into Rny and h maps Rnx+nε+1 × {1, . . . , ns} into Rnx. In

the RBC model, we have

c̃t = g
(
k̃t−1, εt, χ, st

)
,

c̃t+1 = g
(
k̃t, χεt+1, χ, st+1

)
,

and k̃t = h
(
k̃t−1, εt, χ, st

)
.

In general, we do not know the explicit functional forms of g and h; thus, we need to

approximate them by Taylor expansions around the steady-state.4 In this paper, we present

the results up to second-order Taylor expansions, but our procedure can be easily expanded

to higher orders. For the rest of the paper, first-order Taylor expansions are referred to as

first-order approximations and second-order Taylor expansions as second-order approximations.

3In theory, one could allow g and h to depend on the entire history of the regimes. In practice, this is not

tractable. The assumption that g and h depend only on the current regime corresponds to the notion of a

minimal state variable (MSV) solution in Farmer et al. (2011).
4We assume that the solutions g and h are unique.
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Given the steady-state defined in Definition 1, we have

yss = g (xss, 0nε, 0, st) and xss = h (xss, 0nε, 0, st)

for all st and

yss = g (xss, 0nε, 0, st+1) and xss = h (xss, 0nε, 0, st+1)

for all st+1.

Using Equations (1), (7), (8), and (9), we write the function f as

F (xt−1, χεt+1, εt, χ, st+1, st) = f


 g (h (xt−1, εt, χ, st) , χεt+1, χ, st+1) , g (xt−1, εt, χ, st) ,

h (xt−1, εt, χ, st) , xt−1, χεt+1, εt, θ (χ, st+1) , θ (χ, st)




for all xt−1, εt+1, εt, st+1, and st. The function F maps Rnx+2nε+1×{1, . . . , ns}×{1, . . . , ns} into

Rny+nx . With the assumption that innovations to the exogenous predetermined variables, εt,

are independent of the discrete Markov chain process, st, we write (1) as

Etf (yt+1, yt, xt, xt−1, χεt+1, εt, θt+1, θt) = (10)

G (xt−1, εt, χ, st) =
ns∑

s′=1

pst,s′

∫
F (xt−1, χε

′, εt, χ, s
′, st)µ (ε

′) dε′ = 0ny+nx

for all xt−1, εt, and st, where µ is the density function of the innovations. The function G maps

Rnx+nε+1 × {1, . . . , ns} into Rny+nx .

This paper has two goals. First, we show how to derive first-order and second-order approxi-

mations to the functions g and h around the steady-state. Second, we show that obtaining these

approximations requires solving a quadratic system. We propose a new methodology to find all

the solutions to such a system. Each of the solutions to the system corresponds to a different set

of first-order and second-order approximations. Finding all the solutions is a difficult task but

is crucial to determine how many approximations are stable.5 Sections 3-5, below, are devoted

to accomplishing these two objectives.

5The stability definition is discussed in Section 4.2.3.
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3 First-Order Approximations

This section gives a detailed description of how to derive first-order approximations to the model

solution represented by (7), (8), and (9). We proceed in several steps. We first lay out the

notation in Section 3.1 and then provide detailed derivations needed to find the approximations

in Section 3.2. With the notation and derivations in hand, we show in Section 3.3 how to obtain

first-order approximations to the model solution. In a final subsection, Section 3.4, we discuss

one of the most important features of MSDSGE models: the result of no certainty equivalence

of first-order approximations.

3.1 Notation

3.1.1 Partial Derivatives of f

We begin with the notation for the derivatives of

f (yt+1, yt, xt, xt−1, χεt+1, εt, θt+1, θt)

evaluated at the steady-state. Let

Dfss (st+1, st) =
[
Djf

i
(
yss, yss, xss, xss, 0nε , 0nε , θ1, θ̂2 (st+1) , θ1, θ̂2 (st)

)]
1≤i≤ny+nx,1≤j≤2(ny+nx+nε+nθ)

denote the (ny + nx)×(2 (ny + nx + nε + nθ)) matrix of first partial derivatives of f with respect

to all its variables evaluated at

(
yss, yss, xss, xss, 0nε, 0nε, θ1, θ̂2 (st+1) , θ1, θ̂2 (st)

)

for all st+1 and st. To simplify notation, define

Dn,mfss (st+1, st) = [Dnfss (st+1, st) · · ·Dmfss (st+1, st)]

for all st+1 and st and 1 ≤ n < m ≤ 2 (ny + nx + nε + nθ).
6

6When n = m, Dn,nfss (st+1, st) = Dnfss (st+1, st) for all st+1 and st.
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Appendix A shows that our derivations depend on the following matrices:

D1,nyfss (st+1, st) ,Dny+1,2nyfss (st+1, st) ,

D2ny+1,2ny+nxfss (st+1, st) ,D2ny+nx+1,2(ny+nx)fss (st+1, st) ,

D2(ny+nx)+1,2(ny+nx)+nεfss (st+1, st) ,D2(ny+nx)+nε+1,2(ny+nx+nε)fss (st+1, st) ,

D2(ny+nx+nε)+1,2(ny+nx+nε)+nθfss (st+1, st) , and D2(ny+nx+nε)+nθ+1,2(ny+nx+nε+nθ)fss (st+1, st)

for all st+1 and st.

Given the importance of these derivatives, we return to the RBC example for concrete

illustration. It follows from (2) that

D1,1fss (st+1, st) =




1
c2ss

0


 ,D2,2fss (st+1, st) =


 − 1

c2ss

1


 ,

D3,3fss (st+1, st) =


 (1− α)αβ exp

(
αµ̄

α−1

)
kα−2
ss

css

exp
(

µ̄

1−α

)


 ,D4,4fss (st+1, st) =


 0

−
exp( µ̄

1−α)
β


 ,

D5,5fss (st+1, st) =


 −αβ exp

(
αµ̄

α−1

)
kα−1
ss

css
σ

0


 ,D6,6fss (st+1, st) =




σ
(1−α)css(

exp( µ̄
1−α)kss
1−α

− exp (µ̄) kαss

)
σ




D7,7fss (st+1, st) =


 −αβ exp

(
µ̄α

α−1

)
kα−1
ss

css

0


 , and D8,8fss (st+1, st) =




1
css

exp
(

µ̄

1−α

)
kss
1−α

− exp (µ̄) kαss




for all st+1 and st.

3.1.2 Partial Derivatives of G

We now introduce the notation for the derivatives of G (xt−1, εt, χ, st). Let

DG (xt−1, εt, χ, st) =
[
DjG

i (xt−1, εt, χ, st)
]
1≤i≤ny+nx,1≤j≤nx+nε+1

refer to the (ny + nx) × (nx + nε + 1) matrix of first partial derivatives of G with respect to

(xt−1, εt, χ) for all xt−1, εt, χ, and st. Note that there are no derivatives with respect to st since

it is a discrete variable. Similarly, we let

DG (xss, 0nε, 0, st) =
[
DjG

i (xss, 0nε, 0, st)
]
1≤i≤ny+nx,1≤j≤nx+nε+1
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refer to the (ny + nx) × (nx + nε + 1) matrix of first partial derivatives of G with respect to

(xt−1, εt, χ) evaluated at (xss, 0nε, 0, st) for all st.

To simplify notation, we define

DGss (st) = DG (xss, 0nε, 0, st) and DjG
i
ss (st) = DjG

i (xss, 0nε, 0, st)

for all st and 1 ≤ i ≤ ny + nx and 1 ≤ j ≤ nx + nε + 1. Thus,

DGss (st) =
[
DjG

i
ss (st)

]
1≤i≤ny+nx,1≤j≤nx+nε+1

for all st. Let DjGss (st) denote the jth column vector of DGss (st) for all st and 1 ≤ j ≤

nx + nε + 1. It follows that the first partial derivatives of G with respect to xt−1 evaluated at

(xss, 0nε, 0, st) for all st can be expressed as

[D1Gss (st) · · ·DnxGss (st)] ,

the first partial derivatives of G with respect to εt evaluated at (xss, 0nε, 0, st) for all st can be

expressed as

[Dnx+1Gss (st) · · ·Dnx+nεGss (st)] ,

and the first partial derivative of G with respect to χ evaluated at (xss, 0nε, 0, st) for all st is

Dnx+nε+1Gss (st) .

In contrast to one single first derivative in the constant parameter case, there are ns first deriva-

tives of G, one for each possible value of st.

To simply notation further, we define

Dn,mGss (st) = [DnGss (st) · · ·DmGss (st)]

for all st and 1 ≤ n < m ≤ nx + nε + 1.7 Therefore, D1,nxGss (st) represents the first partial

derivatives of G with respect to xt−1 evaluated at (xss, 0nε, 0, st) for all st, Dnx+1,nx+nεGss (st)

represents the first partial derivatives of G with respect to εt evaluated at (xss, 0nε, 0, st) for

all st, and Dnx+nε+1Gss (st) is the first partial derivative of G with respect to χ evaluated at

(xss, 0nε, 0, st) for all st.

7When n = m, then Dn,nGss (st) = DnGss (st) for all st.
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3.1.3 Partial Derivatives of g and h

We are now ready to introduce the notation for the derivatives of g and h evaluated at the

steady-state. Denote

Dg (xss, 0nε, 0, st) =
[
Djg

i (xss, 0nε, 0, st)
]
1≤i≤ny ,1≤j≤nx+nε+1

as the ny × (nx + nε + 1) matrix of first partial derivatives of g with respect to (xt−1, εt, χ)

evaluated at (xss, 0nε, 0, st) for all st and

Dh (xss, 0nε, 0, st) =
[
Djh

i (xss, 0nε, 0, st)
]
1≤i≤nx,1≤j≤nx+nε+1

as the nx × (nx + nε + 1) matrix of first partial derivatives of h with respect to (xt−1, εt, χ)

evaluated at (xss, 0nε, 0, st) for all st.

Simplifying the notation further, we define

Dgss (st) = Dg (xss, 0nε, 0, st) and Djg
i
ss (st) = Djg

i (xss, 0nε, 0, st)

for all st, 1 ≤ i ≤ ny, 1 ≤ j ≤ nx + nε + 1, and

Dhss (st) = Dh (xss, 0nε, 0, st) and Djh
i
ss (st) = Djh

i (xss, 0nε, 0, st)

for all st, 1 ≤ i ≤ nx, and 1 ≤ j ≤ nx + nε + 1. Thus,

Dgss (st) =
[
Djg

i
ss (st)

]
1≤i≤ny,1≤j≤nx+nε+1

and Dhss (st) =
[
Djh

i
ss (st)

]
1≤i≤nx,1≤j≤nx+nε+1

for all st. Let Djgss (st) be the jth column vector of Dgss (st) and Djhss (st) be the jth column

vector of Dhss (st) for all st and 1 ≤ j ≤ nx + nε + 1. We then define

Dn,mgss (st) = [Dngss (st) · · ·Dmgss (st)] and Dn,mhss (st) = [Dnhss (st) · · ·Dmhss (st)]

for all st and 1 ≤ n < m ≤ nx + nε + 1.8

8When n = m, then Dn,ngss (st) = Dngss (st) and Dn,nhss (st) = Dnhss (st) for all st.
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As will be discussed in Section 3.3, the following matrices of first partial derivatives are our

ultimate computational objects to obtain first-order approximations to the model solution

{D1,nxgss (st) ,D1,nxhss (st)}
ns
st=1 , {Dnx+1,nx+nεgss (st) ,Dnx+1,nx+nεhss (st)}

ns
st=1 ,

and {Dnx+nε+1gss (st) ,Dnx+nε+1hss (st)}
ns
st=1 ,

where D1,nxgss (st) represents the first partial derivatives of g with respect to xt−1 evaluated

at (xss, 0nε, 0, st) for all st, D1,nxhss (st) represents the first partial derivatives of h with re-

spect to xt−1 evaluated at (xss, 0nε, 0, st) for all st, Dnx+1,nx+nεgss (st) represents the first partial

derivatives of g with respect to εt evaluated at (xss, 0nε, 0, st) for all st, Dnx+1,nx+nεhss (st) rep-

resents the first partial derivatives of h with respect to εt evaluated at (xss, 0nε, 0, st) for all st,

Dnx+nε+1gss (st) is the first partial derivative of g with respect to χ evaluated at (xss, 0nε, 0, st)

for all st, and Dnx+nε+1hss (st) is the first partial derivative of h with respect to χ evaluated at

(xss, 0nε, 0, st) for all st.

Note that

D1,nxgss (st) ∈ C
ny×nx , D1,nxhss (st) ∈ C

nx×nx ,

Dnx+1,nx+nεgss (st) ∈ C
ny×nε, Dnx+1,nx+nεhss (st) ∈ C

nx×nε ,

Dnx+nε+1gss (st) ∈ C
ny×1, and Dnx+nε+1hss (st) ∈ C

nx×1

for all st. The symbol Cm1×m2 denotes an m1 ×m2 matrix over the complex space. These com-

putational objects can be found by solving systems of equations obtained through the chain rule

using the first partial derivatives of G (xt−1, εt, χ, st). The next subsection shows the derivations

needed to obtain such systems of equations.

3.2 Derivations

We now show how to use the chain rule using the first partial derivatives of G (xt−1, εt, χ, st) to

obtain systems of equations that are needed to solve for the matrices

{D1,nxgss (st) ,D1,nxhss (st)}
ns
st=1 , {Dnx+1,nx+nεgss (st) ,Dnx+1,nx+nεhss (st)}

ns
st=1 ,

and {Dnx+nε+1gss (st) ,Dnx+nε+1hss (st)}
ns
st=1 .
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Denote an m1 ×m2 matrix of zeros by 0m1×m2
. Since

G (xt−1, εt, χ, st) = 0ny+nx

for all xt−1, εt, χ, and st, it follows that

DG (xt−1, εt, χ, st) = 0(ny+nx)×(nx+nε+1)

for all xt−1, εt, χ, and st. In particular,

DGss (st) = 0(ny+nx)×(nx+nε+1)

for all st so that

D1,nxGss (st) = 0(ny+nx)×nx , (11)

Dnx+1,nx+nεGss (st) = 0(ny+nx)×nε,

and Dnx+nε+1Gss (st) = 0ny+nx

for all st. Note that in contrast to one single derivative in the constant parameter case, there

are ns first partial derivatives of G, one for each possible value of st.

The three expressions in (11) imply three systems of equations that will be used to find the

needed matrices

{D1,nxgss (st) ,D1,nxhss (st)}
ns
st=1 , {Dnx+1,nx+nεgss (st) ,Dnx+1,nx+nεhss (st)}

ns
st=1 ,

and {Dnx+nε+1gss (st) ,Dnx+nε+1hss (st)}
ns
st=1

respectively. In what follows, we describe how to use these three systems of equations in (11)

to obtain the needed matrices. We use the following steps to highlight the dependence between

these systems.

Step 1 The condition

D1,nxGss (st) = 0(ny+nx)×nx

implies a system of quadratic equations that determines

{D1,nxgss (st) ,D1,nxhss (st)}
ns
st=1 .
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Step 2 The conditions

Dnx+1,nx+nεGss (st) = 0(ny+nx)×nε and Dnx+nε+1Gss (st) = 0ny+nx

imply two linear systems of equations that determine

{Dnx+1,nx+nεgss (st) ,Dnx+1,nx+nεhss (st)}
ns
st=1

and

{Dnx+nε+1gss (st) ,Dnx+nε+1hss (st)}
ns
st=1

as functions of {D1,nxgss (st) ,D1,nxhss (st)}
ns
st=1.

Appendix A provides a detailed description of the derivations in Steps 1 and 2. In particular,

it derives the first partial derivatives of G needed to build the three systems. It shows that

{D1,nxgss (st) ,D1,nxhss (st)}
ns
st=1 can be determined by solving ns systems of quadratic equations

of the form

A (st)




Inx

D1,nxgss (1)
...

D1,nxgss (ns)



D1,nxhss (st) = B (st)


 Inx

D1,nxgss (st)


 (12)

for all st, where Im denotes the identity matrix of size m×m, and A (st) and B (st) are functions

of the first partial derivatives of f evaluated at the steady-state as

A (st) =
[ ∑ns

s′=1 pst,s′D2ny+1,2ny+nxfss (s
′, st) pst,1D1,nyfss (1, st) · · · pst,nsD1,nyfss (ns, st)

]

and

B (st) = −

ns∑

s′=1

pst,s′
[
D2ny+nx+1,2(ny+nx)fss (s

′, st) Dny+1,2nyfss (s
′, st)

]

for all st.

The fact that we need to solve a quadratic system to determine {D1,nxgss (st) ,D1,nxhss (st)}
ns
st=1

is one of the key discoveries in the paper. The quadratic system has, in general, many solutions.

Each solution corresponds to a different first-order approximation. Finding all the solutions to
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this quadratic system is a difficult task but is crucial to ascertain how many of them imply

stable approximations. In Section 4 we propose a new method to solve this quadratic system

for all its solutions.

Appendix A shows how, after finding a solution to (12), Step 2 implies that

{Dnx+1,nx+nεgss (st) ,Dnx+1,nx+nεhss (st)}
ns
st=1 and {Dnx+nε+1gss (st) ,Dnx+nε+1hss (st)}

ns
st=1 can be

obtained by simply solving the following two systems of linear equations




Dnx+1,nx+nεgss (1)
...

Dnx+1,nx+nεgss (ns)

Dnx+1,nx+nεhss (1)
...

Dnx+1,nx+nεhss (ns)




=
[
Θε Φε

]−1

Ψε and




Dnx+nε+1gss (1)
...

Dnx+nε+1gss (ns)

Dnx+nε+1hss (1)
...

Dnx+nε+1hss (ns)




=
[
Θχ Φχ

]−1

Ψχ,

(13)

where

Θε =

ns∑

s′=1




p1,s′Dny+1,2nyfss (s
′, 1) · · · 0(nx+ny)×ny

...
. . .

...

0(nx+ny)×ny · · · pns,s′Dny+1,2nyfss (s
′, ns)


 ,

Φε =
ns∑

s′=1




p1,s′D1,nyfss (s
′, 1)D1,nxgss (s

′) · · · 0(nx+ny)×nx
...

. . .
...

0(nx+ny)×nx · · · pns,s′D1,nyfss (s
′, ns)D1,nxgss (s

′)




+
ns∑

s′=1




p1,s′D2ny+1,2ny+nxfss (s
′, 1) · · · 0(nx+ny)×nx

...
. . .

...

0(nx+ny)×nx · · · pns,s′D2ny+1,2ny+nxfss (s
′, ns)


 ,

Ψε = −
ns∑

s′=1




p1,s′D2(ny+nx)+nε+1,2(ny+nx+nε)fss (s
′, 1)

...

pns,s′D2(ny+nx)+nε+1,2(ny+nx+nε)fss (s
′, ns)


 ,
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Θχ =

ns∑

s′=1




p1,s′Dny+1,2nyfss (s
′, 1) · · · 0(nx+ny)×ny

...
. . .

...

0(nx+ny)×ny · · · pns,s′Dny+1,2nyfss (s
′, ns)




+




p1,1D1,nyfss (1, 1) · · · p1,nsD1,nyfss (ns, 1)
...

. . .
...

pns,1D1,nyfss (1, ns) · · · pns,nsD1,nyfss (ns, ns)


 ,

Φχ =

ns∑

s′=1




p1,s′D1,nyfss (s
′, 1)D1,nxgss (s

′) · · · 0(nx+ny)×nx
...

. . .
...

0(nx+ny)×nx · · · pns,s′D1,nyfss (s
′, ns)D1,nxgss (s

′)




+

ns∑

s′=1




p1,s′D2ny+1,2ny+nxfss (s
′, 1) · · · 0(nx+ny)×nx

...
. . .

...

0(nx+ny)×nx · · · pns,s′D2ny+1,2ny+nxfss (s
′, ns)


 ,

and Ψχ = −
ns∑

s′=1




p1,s′


 D2(ny+nx+nε)+1,2(ny+nx+nε)+nθfss (s

′, 1)Dθss (s
′) + . . .

D2(ny+nx+nε)+nθ+1,2(ny+nx+nε+nθ)fss (s
′, 1)Dθss (1)




...

pns,s′


 D2(ny+nx+nε)+1,2(ny+nx+nε)+nθfss (s

′, ns)Dθss (s
′) + . . .

D2(ny+nx+nε)+nθ+1,2(ny+nx+nε+nθ)fss (s
′, ns)Dθss (ns)







,

where Dθss (st) denotes the derivative of θ (χ, st) with respect to χ evaluated at χ = 0 for all st.

That is,

Dθss (st) = Dθ (0, st) =
[
Djθ

i (0, st)
]
1≤i≤nθ,j=1

for all st.

Since Φε and Φχ depend on {D1,nxgss (st) ,D1,nxhss (st)}
ns
st=1, we must solve (12) prior to

solving (13). Since (13) is just a linear problem, we have that, first, there is a different solution to

(13) for each solution to (12) and, second, the bottleneck to finding first-order approximations is

obtaining {D1,nxgss (st) ,D1,nxhss (st)}
ns
st=1 by solving the quadratic system (12). The bottleneck

will be fully discussed in Section 4.
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3.3 Approximations

Given a solution to (12) and (13), it is straightforward to build a first-order approximation to

the solutions of the MSDSGE model represented by Equation (1). Let a gfirst and hfirst be

first-order approximations to g and h around the point (xss, 0nε, 0, st). It follows that

gfirst (xt−1, εt, χ, st)− yss = [D1gss (st) · · ·Dnxgss (st)] (xt−1 − xss)

+ [Dnx+1gss (st) · · ·Dnx+nεgss (st)] εt +Dnx+nε+1gss (st)χ

and

hfirst (xt−1, εt, χ, st)− xss = [D1hss (st) · · ·Dnxhss (st)] (xt−1 − xss)

+ [Dnx+1hss (st) · · ·Dnx+nεhss (st)] εt +Dnx+nε+1hss (st)χ

for all xt−1, εt, and st. Hence, first-order approximations can be rewritten as

gfirst (xt−1, εt, χ, st)− yss = D1,nxgss (st) (xt−1 − xss) +Dnx+1,nx+nεgss (st) εt +Dnx+nε+1gss (st)χ

and

hfirst (xt−1, εt, χ, st)−xss = D1,nxhss (st) (xt−1 − xss)+Dnx+1,nx+nεhss (st) εt+Dnx+nε+1hss (st)χ

for all xt−1, εt, and st. To express them in compact form, we have

gfirst (xt−1, εt, χ, st)− yss = Dgss (st)St,

where St =
[
(xt−1 − xss)

⊺ ε⊺t χ
]⊺

and

hfirst (xt−1, εt, χ, st)− xss = Dhss (st)St

for all xt−1, εt, χ, and st.

We summarize what we have developed and what our next task is. For first-order approx-

imations, Section 3.2 lays out a procedure for obtaining the matrices Dgss (st) and Dhss (st)

for all st. The bottleneck is to obtain {D1,nxgss (st) ,D1,nxhss (st)}
ns
st=1 by solving the quadratic

system (12). Once the bottleneck is removed, the task of obtaining first-order approximations
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only involves solving linear systems. As mentioned, the quadratic system has, in general, many

solutions. Each solution corresponds to a different first-order approximation. Finding all the

solutions to a quadratic system is central to ascertaining how many approximations are stable.

Section 4 is devoted to dealing with this bottleneck by finding all the solutions to the quadratic

system (12).

3.4 Feature of No Certainty Equivalence

As pointed out by Schmitt-Grohe and Uribe (2004), the certainty equivalence of first-order

approximations is a main result for a constant parameter model. This result implies that first-

order approximations to constant parameter models are inadequate for analyzing interesting

behavior such as economic agents’ responses to risk. For example, van Binsbergen et al. (2008)

and Rudebusch and Swanson (2008) argue that, when using constant parameter models, at least

second-order approximations are needed to analyze the effects of volatility on agents’ decisions.

While second-order approximations nullify the result of certainty equivalence, they result in a

substantially higher degree of computational difficulty in performing likelihood-based estimation,

as documented by Fernández-Villaverde and Rubio-Ramirez (2007). We show in this section,

however, that first-order approximations to the solutions of MSDSGE models are not necessarily

certainty equivalent. This salient feature opens the door to analyzing risk-related behaviors using

first-order approximations.

To see how certainty equivalence arises in first-order approximations in constant parameter

models, consider Equation (13) with only one regime so that ns = 1. In this degenerate case,

we have
[
Θχ Φχ

]

 Dnx+nε+1gss (1)

Dnx+nε+1hss (1)


 = Ψχ, (14)

where

[
Θχ Φχ

]
=

[
Dny+1,2nyfss (1, 1) +D1,nyfss (1, 1) D1,nyfss (1, 1)D1,nxgss (1) +D2ny+1,2ny+nxfss (1, 1)

]
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and Ψχ = −




 D2(ny+nx+nε)+1,2(ny+nx+nε)+nθfss (1, 1)Dθss (1) + . . .

D2(ny+nx+nε)+nθ+1,2(ny+nx+nε+nθ)fss (1, 1)Dθss (1)




 .

Because θ (χ, 1) = θ̄ in any constant parameter model, we have Dssθ (1) = 0nθ , implying that

Ψχ = 0nx+ny . Therefore the linear system (14) is homogeneous. If a unique solution exists, it is

given by

Dnx+nε+1gss (1) = 0ny and Dnx+nε+1hss (1) = 0nx . (15)

For the constant parameter case, first-order approximations to policy rules are

gfirst (xt−1, εt, χ, 1)− yss = D1,nxgss (1) (xt−1 − xss) +Dnx+1,nx+nεgss (1) εt +Dnx+nε+1gss (1)χ

and

hfirst (xt−1, εt, χ, 1)− xss = D1,nxhss (1) (xt−1 − xss) +Dnx+1,nx+nεhss (1) εt +Dnx+nε+1hss (1)χ

for all xt−1 and εt. Using (15) and these policy rules evaluated at xt−1 = xss and εt = 0nε, we

have

gfirst (xss, 0nε, 1, 1)− yss = 0ny ,

hfirst (xss, 0nε, 1, 1)− xss = 0nx .

That is, first-order approximations to the solutions of the constant parameter model are certainty

equivalent.

With this insight we turn to the MSDSGE case. It is clear from Equation (13) that a

necessary condition for first-order approximations not to display certainty equivalence is Ψχ 6=

0ns(nx+ny). Let us analyze the circumstance under which the condition Ψχ 6= 0ns(nx+ny) is true.

For visual convenience, we rewrite the expression for Ψχ

Ψχ = −
ns∑

s′=1




p1,s′


 D2(ny+nx+nε)+1,2(ny+nx+nε)+nθfss (s

′, 1)Dθss (s
′) + . . .

D2(ny+nx+nε)+nθ+1,2(ny+nx+nε+nθ)fss (s
′, 1)Dθss (1)




...

pns,s′


 D2(ny+nx+nε)+1,2(ny+nx+nε)+nθfss (s

′, ns)Dθss (s
′) + . . .

D2(ny+nx+nε)+nθ+1,2(ny+nx+nε+nθ)fss (s
′, ns)Dθss (ns)







.
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Clearly, if Dθss (st) = 0nθ for all st, then Ψχ = 0ns(nx+ny). Thus, a necessary condition for

Ψχ 6= 0ns(nx+ny) to hold is Dθss (st) 6= 0nθ for some st. Given the partition of θt described in (5)

and (6), we have

Dθss (st) =
[
θ̂1 (st)

⊺ 0⊺nθ2

]⊺
.

It follows that Dθss (st) 6= 0nθ for some st if and only if θ̂1 (st) 6= 0nθ1 for some st. In sum, a

necessary condition for Ψχ 6= 0ns(nx+ny) to hold is θ̂1 (st) 6= 0nθ1 for some st.

The condition θ̂1 (st) 6= 0nθ1 for some st, however, is insufficient for Ψχ 6= 0ns(nx+ny) to be

true. A sufficient condition is

ns∑

s′=1

pst,s′


 D2(ny+nx+nε)+1,2(ny+nx+nε)+nθfss (s

′, st)Dθss (s
′)+

D2(ny+nx+nε)+nθ+1,2(ny+nx+nε+nθ)fss (s
′, st)Dθss (st)


 6= 0nx+ny

for some st. This additional condition holds if θ1t does not enter the equilibrium conditions

multiplicatively with a variable to which the first partial derivative of f is zero when evaluated

at the steady-state. The following proposition summarizes our findings.

Proposition 2 First-order approximations to the solution of an MSDSGE model are not cer-

tainty equivalent if and only if both θ̂1 (st) 6= 0nθ1 and

ns∑

s′=1

pst,s′


 D2(ny+nx+nε)+1,2(ny+nx+nε)+nθfss (s

′, st)Dθss (s
′)+

D2(ny+nx+nε)+nθ+1,2(ny+nx+nε+nθ)fss (s
′, st)Dθss (st)


 6= 0nx+ny

for some st.

Proof. The “if” part of the proof has been provided in the analysis prior to the stated propo-

sition.

For the “only if” part, we prove it by contradiction. Note that the only way for

Dnx+nε+1gss (st) = 0ny and Dnx+nε+1hss (st) = 0nx

is for Ψχ = 0ns(nx+ny). Suppose θ̂1 (st) = 0nθ1 for all st. Then Ψχ = 0ns(nx+ny) and

Dnx+nε+1gss (st) = 0ny and Dnx+nε+1hss (st) = 0nx
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for all st. It follows that first-order approximations are certainty equivalent.

Now suppose θ̂1 (st) 6= 0nθ1 for some st but

ns∑

s′=1

pst,s′


 D2(ny+nx+nε)+1,2(ny+nx+nε)+nθfss (s

′, st)Dθss (s
′)+

D2(ny+nx+nε)+nθ+1,2(ny+nx+nε+nθ)fss (s
′, st)Dθss (st)


 = 0nx+ny

for all st. In this case, it is straightforward to see that Ψχ = 0ns(nx+ny) and

Dnx+nε+1gss (st) = 0ny and Dnx+nε+1hss (st) = 0nx

for all st. It follows that first-order approximations are certainty equivalent.

These contradictions establish the proof of the “only if” portion.

Proposition 2 implies that if first-order approximations are not certainty equivalent, approx-

imated policy rules evaluated at xt−1 = xss and εt = 0nε are either

gfirst (xss, 0nε, 1, st)− yss = Dnx+nε+1gss (st) 6= 0ny

or

hfirst (xss, 0nε, 1, st)− xss = Dnx+nε+1hss (st) 6= 0nx

for some st.

4 Generalized Quadratic System and New SolutionMethod

One main discovery in this paper is that we identify solving a system of quadratic equations as

the sole bottleneck in obtaining first-order approximations to the solutions of MSDSGE models.

Once this bottleneck is removed, we need solve only two systems of linear equations to obtain

first-order approximations. In this section we show how to find all the solutions to this quadratic

system by introducing a new method. Finding all the solutions is essential to determining how

many first-order approximations are stable. Section 4.1 characterizes the quadratic system.

Section 4.2 proposes a new solution method by applying the theory of Gröbner bases. We show

that the number of solutions to the quadratic system is finite in most cases and define both

the concept and the condition of stability to be used in the paper. Section 4.3 uses our RBC

example to demonstrate how to apply our methodology.
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4.1 Generalized Quadratic System

To understand the difficulty of solving a system of quadratic equations represented by (12), we

begin with the constant parameter case in which ns = 1. In this case, it is well understood that

one can map this special system of quadratic equations to the generalized Schur decomposition

problem related to the matrices A(1) and B(1). Thus, solving this special system of quadratic

equations is equivalent to using the standard matrix algebra procedure to find all the solutions.

In the Markov-switching case when ns > 1, there are ns systems of quadratic equations

represented by (12). Stacking these systems all together expands to a generalized system

of (ny + nx)nsnx quadratic equations with unknowns {D1,nxgss (s) ,D1,nxhss (s)}
ns
s=1. Because

{D1,nxgss (s)}
ns
s=1 appear in every system of the ns systems, the generalized quadratic system

can no longer be mapped to the generalized Schur decomposition problem.9

The quadratic system represented by (12) has multiple solutions in general.10 Each solution

implies a different first-order approximation. It is crucial that we find all the solutions and then

determine how many imply stable approximations. For this purpose we develop, in the next

section, a new method by applying Gröbner bases to our problem.

4.2 New Solution Method

4.2.1 Gröbner Bases

The quadratic system discussed in Section 4.1 is simply a system of quadratic polynomials.

Gröbner bases provide a computationally practical means to obtain all the solutions to a system

of polynomial equations. A more detailed description of Gröbner bases is provided in Appendix

B. In this section we provide an intuitive explanation of how to apply Gröbner bases to solving

a system of multivariate polynomials.

Suppose one wishes to find all the solutions to a system of n polynomial equations in n

9The intuition is that the generalized Schur decomposition cannot deal with the 2ns matrices A(1), . . . , A(ns)

and B(1), . . . , B(ns) when ns > 1.
10For the remainder of the paper, we refer to the generalized quadratic system (12) as the quadratic system.
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unknowns

f1(x1, . . . , xn) = 0, . . . , fn(x1, . . . , xn) = 0.

There exist a number of computationally efficient routines that can transform the original system

of n polynomial equations to an alternative system of n polynomial equations with the same

set of solutions. The following proposition, known as the Shape Lemma, describes a useful

transformation into a reduced Gröbner basis.

Proposition 3 Let

f1(x1, . . . , xn) = 0, . . . , fn(x1, . . . , xn) = 0

be a system of n polynomials in n unknowns. Under certain regularity conditions, there exists

the following set of n polynomials in n unknowns with the same set of roots:

x1 − q1 (xn) = 0, . . . , xn−1 − qn−1 (xn) = 0, qn (xn) = 0,

where each qi(xn) is a univariate polynomial.

Proof. See Appendix B for details.

There are several important aspects to Proposition 3. First, the alternative set of polynomials

in Proposition 3 is known as a Shape basis, a special kind of reduced Gröbner basis. Second, the

regularity conditions, referred to in Proposition 3 and detailed in Appendix B, are satisfied by

the quadratic system in most economic problems. Third, the roots of the univariate polynomial

qn (xn) can be found by any standard root finding algorithm. Fourth, once a root of qn (xn) is

found, one can easily compute qi(xn) to obtain x1, . . . , xn−1.

A large strand of the literature deals with the computation of reduced Gröbner bases. Buch-

berger (1998)’s algorithm is the original technique. Subsequently, many more efficient variants

have been proposed. We refer the interested reader to Cox et al. (1997). In this paper we use

Mathematica to find a Shape basis.

To illustrate how powerful Proposition 3 is, consider the following example featuring a system
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of quadratic polynomials in four unknown variables x1, . . . , x4:

x1x2 + x3x4 + 2 = 0,

x1x2 + x2x3 + 3 = 0,

x1x3 + x4x1 + x4x2 + 6 = 0,

x1x3 + 2x1x2 + 3 = 0.

A Shape basis is

x1 −
1

28
(9x54 + 6x34 − 15x4) = 0,

x2 −
1

28
(−9x54 − 6x34 + 99x4) = 0,

x3 −
1

14
(−3x54 − 9x34 − 2x4) = 0,

3x64 + 9x44 − 19x24 − 49 = 0.

The last polynomial is univariate of degree six in x4. The six roots of this polynomial are

{1.55461,−1.55461, 1.39592i,−1.39592i, 1.86232i,−1.86232i} .

Each of these roots can be substituted into the first three equations to obtain the following six

solutions:

{x1 = 2.89104, x2 = 1.7728, x3 = −4.58328, x4 = 1.55461},

{x1 = −2.89104, x2 = −1.7728, x3 = 4.58328, x4 = −1.55461},

{x1 = 0.372997i, x2 = 3.81477i, x3 = 0.41342i, x4 = 1.39592i},

{x1 = −0.372997i, x2 = −3.81477i, x3 = −0.41342i, x4 = −1.39592i},

{x1 = 4.81861i, x2 = 0.768342i, x3 = −0.914097i, x4 = 1.86232i},

{x1 == −4.81861i, x2 = −0.768342i, x3 = 0.914097i, x4 = −1.86232i}.

It is straightforward to show that these roots solve the original system of quadratic equations.
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4.2.2 A Finite Number of Solutions

One of the regularity conditions for finding reduced Gröbner bases is that the quadratic system

has finitely many solutions. This condition is met in most economic problems. To see why this

result is true, let us first consider the constant parameter case when ns = 1. If the solution of

the model has a unique stable first-order approximation, the usual practice, as in Schmitt-Grohe

and Uribe (2004), involves constructing this stable approximation by ordering the generalized

eigenvalues of the two matrices A (1) and B (1) in a particular way. In general, however,

the quadratic system has multiple solutions. Each solution implies a different first-order ap-

proximation. Some of these solutions may imply unstable approximations. For most economic

problems, the full set of approximations (stable and unstable) can be found by changing the

order of generalized eigenvalues. Hence, the number of approximations is related to the number

of possible orderings of eigenvalues. Therefore, the number of solutions to the quadratic system,

and therefore the number of approximations (stable and unstable), is bounded by


 rank (A (1))− nexo

nx − nexo


 =

(rank (A (1))− nexo)!

(nx − nexo)! (rank (A (1))− nx)!
, (16)

where nexo is the number of exogenous predetermined variables so that 0 ≤ nexo ≤ nx, rank (A (1))

stands for the rank of the matrix A (1).11 This result is familiar to most readers.

Now consider the Markov-switching case when ns > 1. We have the quadratic system or

ns quadratic systems of the form (12). If st were fixed for all t, the number of solutions to the

quadratic system, and therefore the number of approximations (stable and unstable), would be

bounded as in (16). Since we have ns regimes, the total number of solutions to the quadratic

11Note that the matrix A (1) may not be of full rank when there are redundant variables that are linearly

dependent upon others and consequently can be eliminated from the quadratic system. A simple example is a

leisureless RBC model with three variables (capital, consumption, and output) and three equations (the Euler

condition, the resource constraint, and the output definition). If we eliminate the output definition equation and

the output variable, the newly formed matrix A(1) will be of full rank.
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system for most parameter configurations is bounded by

max
st


 rank (A (st))− nexo

nx − nexo



ns

= max
st

(
(rank (A (st))− nexo)!

(nx − nexo)! (rank (A (st))− nx)!

)ns

where rank (A (st)) stands for the rank of the matrix A (st) for all st.
12

Once we know that the number of solutions to the quadratic system is finite, we can use

Mathematica to obtain reduced Gröbner bases for finding all solutions to the quadratic system

and, hence, all first-order approximations. The next question is whether any of the approxima-

tions are stable and if so, how many. We address this question in the following section.

4.2.3 Mean Square Stability

In the constant parameter case, whether a first-order approximation is stable or not can be

determined by verifying whether its largest absolute generalized eigenvalue is greater than or

equal to one, a condition that holds for most concepts of stability. In the Markov-switching case,

the problem is subtle and complicated, and there are alternative concepts of stability. Given a

first-order approximation, we use the concept of mean square stability (MSS) as defined in Costa

et al. (2005). Farmer et al. (2009) discuss several advantages of using the MSS concept over

alternative ones such as the bounded stability. First, under MSS, even if the largest generalized

eigenvalues associated with one particular regime is greater than one, the system, as a whole, can

nonetheless be stable. Second, MSS permits applications in which the system has unbounded

errors and hence unbounded state variables. This unbounded feature holds in our RBC example

with the normally distributed shocks to TFP. Third, in the case of Markov-switching, necessary

and sufficient conditions for the MSS are easily verifiable, whereas other stability concepts do

12For rare configurations of parameters, there may exist infinitely many solutions or the algorithm used

by Mathematica to find reduced Gröbner bases ceases to converge. In such a case, numerical procedures

can be used to solve the generalized quadratic system (12) to find one or possibly more solutions, although

none of those proecdures is guaranteed to find all solutions. Appendix C describes one such numerical pro-

cedure. Alternative numerical methods, such as Newton’s algorithm used in the RISE toolbox of Maih (2013)

(https://github.com/jmaih/RISE toolbox), may be used to find solutions, but again with no guarantee of finding

all solutions.
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not have such conditions. Specifically, the MSS requires verifying whether the following matrix

has all its eigenvalues inside the unit circle

T =
(
P ⊺ ⊗ In2

x

)
Υ, (17)

where

Υ =




D1,nxhss (1)⊗D1,nxhss (1) · · · 0n2
x×n

2
x

0n2
x×n

2
x

· · · 0n2
x×n

2
x

...
. . .

...

0n2
x×n

2
x

· · · D1,nxhss (ns)⊗D1,nxhss (ns)



.

In the Markov-switching case, after we use a reduced Gröbner basis to obtain all the solutions

for {D1,nxgss (st) ,D1,nxhss (st)}
ns
st=1 , we verify, for each solution, whether the matrix Υ has all

its eigenvalues less than one. If only one solution satisfies the MSS criterion, the model has

a unique stable first-order approximation. If there is more than one solution that satisfies the

MSS criterion, the model has multiple stable first-order approximations. If none of the solutions

satisfies the MSS criterion or if there is no solution to the reduced Gröbner basis, the model

does not have any stable first-order approximations. At this point, it is worth emphasizing

that the stability of a second-order approximation (to be defined below) depends only on the

stability of its first-order approximation component. In other words, stability depends only on

the eigenvalues of the matrix Υ. The same is true for higher-order approximations.

4.3 The RBC model

At this junction we view it as instructive to use the previous RBC example to illustrate our

methodology developed thus far. Consider the following parameterization:

α β δ σ µ̄ µ̂ (1) µ̂ (2) p1,1 p2,2

0.3300 0.9976 0.0250 0.0002 0.00333 0.00167 −0.00163 0.90 0.90

The growth rates µ̄+µ̂ (1) and µ̄+µ̂ (2) correspond to regimes where annual output growth rates

are 3 percent and 1 percent respectively, β corresponds to a risk free annual rate of 3 percent

in the steady-state, and σ is set to match the total volatility of TFP growth as estimated in
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Fernández-Villaverde and Rubio-Ramirez (2007). The standard calibration of α implies a capital

share of one third, and the value of δ implies an annual depreciation rate of approximately 10

percent, both in the steady-state. Note that regimes are symmetric in the sense that p1,1 = p2,2.

Given this parameterization, the steady-state values of capital and consumption are kss =

32.0986 and css = 2.18946. We compute the first partial derivatives of f with respect to all the

variables evaluated at the steady-state:

D1,1fss (st+1, st) =


 0.20861

0


 , D2,2fss (st+1, st) =


 −0.2086

1


 , D3,3fss (st+1, st) =


 0.00031

1.00499




D4,4fss (st+1, st) =


 0

−1.0074


 , D5,5fss (st+1, st) =


 0

0


 , D6,6fss (st+1, st) =


 0.00014

0.00900




D7,7fss (st+1, st) =


 −0.0147

0


 , and D8,8fss (st+1, st) =


 0.68169

44.9953




for all st+1 and st.

Using these results, one can build the quadratic system as in (12) and solve for

{D1,1gss (st) ,D1,1hss (st)}
ns
st=1. Remember that in this example, nx = 1, ny = 1, and ns = 2.

The new method leads to the following four solutions

D1,1hss (1) D1,1gss (1) D1,1hss (2) D1,1gss (2)

(1) 0.96364 0.03896 0.96364 0.03896

(2) 1.04023 −0.0380 1.04023 −0.0380

(3) 1.11326 + 0.116871i −0.1114− 0.11745i 1.11326 + 0.11687i −0.1114− 0.11745i

(4) 1.11326− 0.116871i −0.1114 + 0.11745i 1.11326− 0.11687i −0.1114 + 0.11745i

Mathematica finds the four solutions in less than a hundredth of a second. Using the results

in Section 4.2.3, one can verify that only solution (1) implies a stable first-order approximation

under the MSS criterion. Normally, when you have a unique stable first-order approximation,

you call it the first-order approximation. Thus, if we let ĉt = ct − css, k̂t−1 = kt−1 − kss, and
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St =
[
k̂t−1 εt χ

]
⊺

, the first-order approximation to the solution of the model is


 ĉt

k̂t


 =


 0.03896 0.00028 0.00972

0.96364 −0.0092 −0.0843


St

if st = 1, and 
 ĉt

k̂t


 =


 0.03896 0.00028 −0.00972

0.96364 −0.0092 0.0843


St

if st = 2, where the rest of the derivatives used to form the first-order approximation can be

obtained by solving the linear system defined in (13).

The approximation highlights Proposition 2. First-order approximations are, in general, not

certainty equivalent. Since µ̂ (st) 6= 0 for all st and

ns∑

s′=1

pst,s′ (D7,7fss (s
′, st)Dθss (s

′) + D8,8fss (s
′, st)Dθss (st)) 6= 02

for all st, first partial derivatives of g and h with respect to χ will be nonzero. That is,

D3gss (st) 6= 0 and D3hss (st) 6= 0.

5 Second-Order Approximations

Having shown how to construct first-order approximations to the solutions of the MSDSGE

model, we now show how to construct second-order approximations. In Section 5.1, we introduce

additional notation. In Section 5.2, we use the notation to derive second-order approximations to

the model solution. We show that given first-order approximations, second-order approximations

can be obtained by simply solving linear systems. This fact emphasizes that the bottleneck to

find both first-order and second-order approximations is solving the quadratic system defined

by (12). Section 5.3 returns to the RBC model for illustration.
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5.1 Additional Notation

5.1.1 Second Partial Derivatives of f

We begin with additional notation in regard to second partial derivatives of f i. Denote

Hf iss (st+1, st) =
[
DkDjf

i
(
yss, yss, xss, xss, 0nε, 0nε, θ1, θ̂2 (st+1) , θ1, θ̂2 (st)

)]
1≤j,k≤2(ny+nx+nε+nθ)

for all st+1 and st as the 2 (ny + nx + nε + nθ)× 2 (ny + nx + nε + nθ) matrix of second partial

derivatives of f i for 1 ≤ i ≤ ny + nx with respect to all its variables evaluated at

(
yss, yss, xss, xss, 0nε, 0nε, θ1, θ̂2 (st+1) , θ1, θ̂2 (st)

)
.

To conserve space, we do not represent the second partial derivatives of f for our RBC example

(they are available upon request).

5.1.2 Second Partial Derivatives of G

Let

HG
i (xt−1, εt, χ, st) =

[
DkDjG

i (xt−1, εt, χ, st)
]
1≤j,k≤nx+nε+1

be the (nx + nε + 1) × (nx + nε + 1) matrix of second partial derivatives of Gi with respect to

(xt−1, εt, χ) for all xt−1, εt, and st and 1 ≤ i ≤ ny + nx. It follows that

HG
i (xss, 0nε, 0, st) =

[
DkDjG

i (xss, 0nε, 0, st)
]
1≤j,k≤nx+nε+1

is the (nx + nε + 1) × (nx + nε + 1) matrix of second partial derivatives of Gi with respect to

(xt−1, εt, χ) evaluated at (xss, 0nε, 0, st) for all st and 1 ≤ i ≤ ny + nx.

To simplify notation we define

HG
i
ss (st) = HG

i (xss, 0nε, 0, st) and DkDjG
i
ss (st) = DkDjG

i (xss, 0nε, 0, st)

for all st and 1 ≤ i ≤ ny + nx and 1 ≤ j, k ≤ nx + nε + 1. Thus,

HG
i
ss (st) =

[
DkDjG

i
ss (st)

]
1≤j,k≤nx+nε+1

for all st and 1 ≤ i ≤ ny + nx.
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5.1.3 Second Partial Derivatives of g and h

We now introduce the second partial derivatives of g and h. Let

Hgi (xt−1, εt, χ, st) =
[
DkDjg

i (xt−1, εt, χ, st)
]
1≤j,k≤nx+nε+1

be the (nx + nε + 1) × (nx + nε + 1) matrix of second partial derivatives of gi with respect to

(xt−1, εt, χ) for all xt−1, εt, and st and 1 ≤ i ≤ ny. It follows that

Hgi (xss, 0nε, 0, st) =
[
DkDjg

i (xss, 0nε, 0, st)
]
1≤j,k≤nx+nε+1

is the (nx + nε + 1) × (nx + nε + 1) matrix of second partial derivatives of gi with respect to

(xt−1, εt, χ) evaluated at (xss, 0nε, 0, st) for all st and 1 ≤ i ≤ ny.

To put in compact notation we define

Hgiss (st) = Hgiss (xss, 0nε, 0, st) and DkDjg
i
ss (st) = DkDjg

i (xss, 0nε, 0, st)

for all st and 1 ≤ i ≤ ny and 1 ≤ j, k ≤ nx + nε + 1. Hence,

Hgiss (st) =
[
DkDjg

i (xss, 0nε, 0, st)
]
1≤j,k≤nx+nε+1

for all st and 1 ≤ i ≤ ny.

Let

Hhi (xt−1, εt, χ, st) =
[
DkDjh

i (xt−1, εt, χ, st)
]
1≤j,k≤nx+nε+1

be the (nx + nε + 1) × (nx + nε + 1) matrix of second partial derivatives of hi with respect to

(xt−1, εt, χ) for all xt−1, εt, and st and 1 ≤ i ≤ nx. It follows that

Hhi (xss, 0nε, 0, st) =
[
DkDjh

i (xss, 0nε, 0, st)
]
1≤j,k≤nx+nε+1

is the (nx + nε + 1) × (nx + nε + 1) matrix of second partial derivatives of hi with respect to

(xt−1, εt, χ) evaluated at (xss, 0nε, 0, st) for all st and 1 ≤ i ≤ nx.

If we define

Hhiss (st) = Hhiss (xss, 0nε, 0, st) and DkDjh
i
ss (st) = DkDjh

i (xss, 0nε, 0, st)
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for all st, 1 ≤ i ≤ nx, and 1 ≤ j, k ≤ nx + nε + 1, then we have

Hhiss (st) =
[
DkDjh

i (xss, 0nε, 0, st)
]
1≤j,k≤nx+nε+1

for all st and 1 ≤ i ≤ nx.

With these definitions, the second partial derivatives of g and h evaluated at the steady-state

can be expressed as

Hgss (st) =




vec (Hg1ss (st))
⊺

...

vec
(
Hg

ny
ss (st)

)
⊺




and

Hhss (st) =




vec (Hh1ss (st))
⊺

...

vec (Hhnxss (st))
⊺




for all st.

5.2 Approximations

Let gsecond and hsecond be a second-order approximation to g and h around the point (xss, 0nε, 0, st).

With the additional notation introduced in Section 5.1, we have

gsecond (xt−1, εt, χ, st)− yss = Dgss (st)St +
1

2
Hgss (st) (St ⊗ St) ,

where St =
[
(xt−1 − xss)

⊺ ε⊺t χ
]⊺

is an (nx + nε + 1)× 1 vector. Similarly, we have

hsecond (xt−1, εt, χ, st)− xss = Dhss (st)St +
1

2
Hhss (st) (St ⊗ St) .

Similar to our analysis in Section 3.2, given the first-order approximations, the remaining

task is to derive the matrices

{{
Hgiss (st)

}ny
i=1

,
{
Hhiss (st)

}nx
i=1

}ns
st=1

(18)

for all st, where Hgiss (st) ∈ C(nx+nε+1)×(nx+nε+1) for all st and 1 ≤ i ≤ ny and Hhiss (st) ∈

C(nx+nε+1)×(nx+nε+1) for all st and and 1 ≤ i ≤ nx.
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As in the case of first-order approximations, we use the chain rule and the second partial

derivatives of G (xt−1, εt, χ, st) to obtain the systems of equations that can be used to solve for

the Hessian matrices expressed in (18). Since

G (xt−1, εt, χ, st) = 0ny+nx

for all xt−1, εt, χ, and st, it must be the case that

HG
i (xt−1, εt, χ, st) = 0(nx+nε+1)×(nx+nε+1)

for all xt−1, εt, χ, st and 1 ≤ i ≤ ny + nx, and in particular

HG
i
ss (st) = 0(nx+nε+1)×(nx+nε+1)

for all st and 1 ≤ i ≤ ny + nx.
13 It follows that

H1,nx;1,nxG
i
ss (st) = 0nx×nx , H1,nx;nx+1,nx+nεG

i
ss (st) = 0nx×nε ,

H1,nx;nx+nε+1G
i
ss (st) = 0nx , Hnx+1,nx+nε;nx+1,nx+nεG

i
ss (st) = 0nε×nε, (19)

Hnx+1,nx+nε;nx+nε+1G
i
ss (st) = 0nε, and Hnx+nε+1;nx+nε+1G

i
ss (st) = 0

for all st and 1 ≤ i ≤ ny + nx, where we have used the following definition

Hn1,n2;m1,m2
G
i
ss (st) =




Dn1
Dm1

G
i
ss (st) . . . Dn1

Dm2
G
i
ss (st)

...
. . .

...

Dn1
Dm1

Gi
ss (st) . . . Dn2

Dm2
Gi
ss (st)




for all st, 1 ≤ n1, m1 < n2, m2 ≤ nx + nε + 1, and 1 ≤ i ≤ ny + nx.
14

13By Young’s Theorem, all the Hessian matrices in (18) and
{
HGi

ss (st)
}nx+ny

i=1
for all st are symmetric. In

the following, we exploit this fact whenever it is applicable and focus on only the relevant portion of the Hessian

matrices.
14When m1 = m2 we have

Hn1,n2;m1
G

i
ss (st) =




Dn1
Dm1

Gi
ss (st)

...

Dn1
Dm1

Gi
ss (st)



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All the equations in the systems represented in (19) depend on

{D1,nxgss (st) ,D1,nxhss (st)}
ns
st=1 , {Dnx+1,nx+nεgss (st) ,Dnx+1,nx+nεhss (st)}

ns
st=1 ,

and {Dnx+nε+1gss (st) ,Dnx+nε+1hss (st)}
ns
st=1 .

Thus, one must obtain first-order approximations prior to obtaining second-order approxima-

tions. The following steps describe how to use the systems in (19) to obtain the Hessian matrices

expressed in (18) and highlight the dependence between these systems.

Step 1 The condition H1,nx;1,nxG
i
ss (st) = 0nx×nx for 1 ≤ i ≤ ny + nx implies a linear system of

equations that determines the solution for
{
{H1,nx;1,nxg

i
ss (st)}

ny

i=1 , {H1,nx;1,nxh
i
ss (st)}

nx

i=1

}ns
st=1

.

Step 2 Given the solution from Step 1, the condition H1,nx;nx+1,nx+nεG
i
ss (st) = 0nx×nε for 1 ≤ i ≤

ny + nx implies a linear system of equations that determines the solution for
{
{H1,nx;nx+1,nx+nεg

i
ss (st)}

ny

i=1 , {H1,nx;nx+1,nx+nεh
i
ss (st)}

nx

i=1

}ns
st=1

.

Step 3 Given the solution from Step 2, the conditionH1,nx;nx+nε+1G
i
ss (st) = 0nx for 1 ≤ i ≤ ny+nx

implies a linear system of equations that determines the solution for
{
{H1,nx;nx+nε+1g

i
ss (st)}

ny

i=1 , {H1,nx;nx+nε+1h
i
ss (st)}

nx

i=1

}ns
st=1

.

Step 4 Given the solution from Step 1, the condition Hnx+1,nx+nε;nx+1,nx+nεG
i
ss (st) = 0nε×nε for

1 ≤ i ≤ ny + nx implies a linear system of equations that determines the solution for
{
{Hnx+1,nx+nε;nx+1,nx+nεg

i
ss (st)}

ny
i=1 , {Hnx+1,nx+nε;nx+1,nx+nεh

i
ss (st)}

nx
i=1

}ns
st=1

.

Step 5 Given the solutions from Steps 1 and 3, the condition Hnx+1,nx+nε,nx+nε;nx+nε+1G
i
ss (st) =

0nε for 1 ≤ i ≤ ny + nx implies a linear system of equations that determines the solution

for
{
{Hnx+1,nx+nε;nx+nε+1g

i
ss (st)}

ny

i=1 , {Hnx+1,nx+nε;nx+nε+1h
i
ss (st)}

nx

i=1

}ns
st=1

.

for all st, 1 ≤ n1,m1 < n2 ≤ nx + nε + 1, and 1 ≤ i ≤ ny + nx. When n1 = n2 we have

Hn1;m1,m2
G

i
ss (st) =

[
Dn1

Dm1
Gi

ss (st) . . . Dn1
Dm2

Gi
ss (st)

]

for all st, 1 ≤ n1,m1 < m2 ≤ nx + nε + 1, and 1 ≤ i ≤ ny + nx. When m1 = m2 and n1 = n2 we have

Hn1;m1
G

i
ss (st) = Dn1

Dm1
G

i
ss (st)

for all st, 1 ≤ n1,m1 ≤ nx + nε + 1, and 1 ≤ i ≤ ny + nx.
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Step 6 Given the solutions from Steps 1, 3 and 4, the condition Hnx+nε+1,nx+nε+1G
i
ss (st) = 0 for

1 ≤ i ≤ ny + nx implies a linear system of equations that determines the solution for
{
{Hnx+nε+1,nx+nε+1g

i
ss (st)}

ny

i=1 , {Hnx+nε+1,nx+nε+1h
i
ss (st)}

nx

i=1

}ns
st=1

.

In the steps described above, we have used the following definitions:

Hn1,n2;m1,m2
giss (st) =




Dn1
Dm1

giss (st) . . . Dn1
Dm2

giss (st)
...

. . .
...

Dn1
Dm1

giss (st) . . . Dn2
Dm2

giss (st)




for all st, 1 ≤ n1, m1 < n2, m2 ≤ nx + nε + 1, and 1 ≤ i ≤ ny;

Hn1,n2;m1,m2
hiss (st) =




Dn1
Dm1

hiss (st) . . . Dn1
Dm2

hiss (st)
...

. . .
...

Dn1
Dm1

hiss (st) . . . Dn2
Dm2

hiss (st)




for all st, 1 ≤ n1, m1 < n2, m2 ≤ nx + nε + 1, and 1 ≤ i ≤ nx.
15

15When m1 = m2, we have

Hn1,n2;m1
giss (st) =




Dn1
Dm1

giss (st)
...

Dn1
Dm1

giss (st)




for all st, 1 ≤ n1,m1 < n2 ≤ nx + nε + 1, and 1 ≤ i ≤ ny;

Hn1,n2;m1
hi
ss (st) =




Dn1
Dm1

hi
ss (st)

...

Dn1
Dm1

hi
ss (st)




for all st, 1 ≤ n1,m1 < n2 ≤ nx + nε + 1, and 1 ≤ i ≤ nx. When n1 = n2, we have

Hn1;m1,m2
giss (st) =

[
Dn1

Dm1
giss (st) . . . Dn1

Dm2
giss (st)

]

for all st, 1 ≤ n1,m1 < m2 ≤ nx + nε + 1, and 1 ≤ i ≤ ny;

Hn1;m1,m2
hi
ss (st) =

[
Dn1

Dm1
hi
ss (st) . . . Dn1

Dm2
hi
ss (st)

]

for all st, 1 ≤ n1,m1 < m2 ≤ nx + nε + 1, and 1 ≤ i ≤ nx. When m1 = m2 and n1 = n2, we have

Hn1;m1
giss (st) = Dn1

Dm1
giss (st)
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Appendix D provides a detailed description of the derivations for Steps 1 to 6. In particular,

it derives the second partial derivatives of G needed to construct the six systems. It shows

that once we obtain first-order approximations to the model solution, each of the equations in

Steps 1 to 6 becomes linear. As a result, for each first-order approximation, a second-order

approximation can be easily derived from the set of linear systems described above.

In addition, Appendix D shows that if first-order approximations are certainty equivalent,

the systems of equations represented by H1,nx;nx+nε+1G
i
ss (st) (cross partial derivatives between

xt−1 and χ) and Hnx+1,nx+nε;nx+1,nx+nεG
i
ss (st) (cross partial derivatives between εt and χ) for

all st and 1 ≤ i ≤ ny + nx are homogeneous in the unknown variables

H1,nx;nx+nε+1g
i
ss (st) , H1,nx;nx+nε+1h

j
ss (st) ,

Hnx+1,nx+nε;nx+nε+1g
i
ss (st) , and Hnx+1,nx+nε;nx+nε+1h

j
ss (st)

for all st, 1 ≤ i ≤ ny, and 1 ≤ j ≤ nx. This property is formally stated in the following

proposition.

Proposition 4 If first-order approximations are certainty equivalent, then the systems of equa-

tions

H1,nx;nx+nε+1G
i
ss (st) = 0nx and Hnx+1,nx+nε;nx+nε+1G

i
ss (st) = 0nx

for all st and 1 ≤ i ≤ ny + nx are homogeneous in their unknown variables and hence

H1,nx;nx+nε+1g
i
ss (st) = 0nx, H1,nx;nx+nε+1h

j
ss (st) = 0nx,

Hnx+1,nx+nε;nx+nε+1g
i
ss (st) = 0nε and Hnx+1,nx+nε;nx+nε+1h

j
ss (st) = 0nε

for all st, 1 ≤ i ≤ ny, and 1 ≤ j ≤ nx.

Proof. If first-order approximations are certainty equivalent, one can see from Proposition 2

that

Dnx+nε+1gss (st) = 0ny and Dnx+nε+1hss (st) = 0nx

for all st, 1 ≤ n1,m1 ≤ nx + nε + 1, and 1 ≤ i ≤ ny;

Hn1;m1
hi
ss (st) = Dn1

Dm1
hi
ss (st)

for all st, 1 ≤ n1,m1 ≤ nx + nε + 1, and 1 ≤ i ≤ nx.
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for all st. The proof follows directly from the above results.

In the constant parameter case, the cross partial derivatives with respect to χ and other state

variables are always zero because θ̂1 (1) = 0nθ1 . In the Markov-switching case, Proposition 4

implies that if θ̂1 (st) 6= 0nθ1 for some st, then it may be the case that H1,nx;nx+nε+1g
i
ss (st) 6= 0nx ,

H1,nx;nx+nε+1h
j
ss (st) 6= 0nx , Hnx+1,nx+nε;nx+nε+1g

i
ss (st) 6= 0nε or Hnx+1,nx+nε;nx+nε+1h

j
ss (st) 6= 0nε

for some st, some 1 ≤ i ≤ ny, and some 1 ≤ j ≤ nx. These non-trivial extra terms may result

in more accurate second-order approximations.

5.3 Returning to the RBC Model

Let us now return to the RBC example. As shown above, given our parameterization, there is

only one stable first-order approximation. Thus, there is only one stable second-order approx-

imation. When that is the case, we call it the second-order approximation. We can find the

second-order approximation by solving a set of linear systems described in Steps 1 to 6. We

have

[
ĉt

k̂t

]
=

[
0.03896 0.00028 0.00972

0.96364 −0.0092 −0.0843

]
St

+
1

2

[
−0.0004 4× 10−6 0.00016 4× 10−6 4× 10−8 1× 10−6 0.00016 1× 10−6 −0.0003

−0.0002 −0.0003 −0.0025 −0.0003 2.7× 10−6 2× 10−5 −0.0025 0.00002 0.00057

]
(St ⊗ St)

if st = 1 or

[
ĉt

k̂t

]
=

[
0.03896 0.00028 −0.00972

0.96364 −0.0092 0.0843

]
St

+
1

2

[
−0.0004 4× 10−6 −0.0002 4× 10−6 4× 10−8 −1× 10−6 −0.0002 −1× 10−6 −0.0003

−0.0002 −0.0002 0.00251 −0.0003 3× 10−6 −2× 10−5 0.00251 −2× 10−5 0.00057

]
(St ⊗ St)

if st = 2.

Since the first-order approximation is not certainty equivalent in this example, the second-

order approximation highlights the result in Proposition 4. The cross derivatives of g and h

with respect to χ and other state variables evaluated at the steady-state are

Hi,3gss (st) = H3,igss (st) 6= 0, Hi,3hss (st) = H3,ihss (st) 6= 0
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for all st = 1, 2 and 1 ≤ i ≤ 2. Moreover, since regimes are symmetric, the following terms are

symmetric across regimes

D3gss (1) = −D3gss (2) , D3hss (1) = D3hss (2) ,

Hi,3gss (1) = −Hi,3gss (2) , Hi,3gss (1) = −Hi,3gss (2) ,

Hi,3hss (1) = −Hi,3hss (2) , and Hi,3hss (1) = −Hi,3hss (2)

for 1 ≤ i ≤ 2.

6 Applications

Since our theoretical results are new, the purpose of this section is to guide the reader by illus-

trating how to apply our methodology in practice. For this purpose we first continue the previ-

ous RBC model with new parameterization and then study two versions of the New-Keynesian

model.

6.1 Continuing the RBC Model

Stochastic neoclassical growth models, such as the one discussed in previous sections, are the

foundation of modern macroeconomics. Understanding how to solve MSDSGE models of this

prototype would enable us to work on richer models such as those commonly used for policy

analysis. For pedagogical reasons we consider the shock standard deviation, σ, to be constant

across regimes in all the examples studied in the paper. But our approach can be easily extended,

without much computational burden, to cases allowing for Markov-switching volatilities.

The previous RBC example restricts regimes to be symmetric such that p1,1 = p2,2. As a

result, the cross partial derivatives of g and h evaluated at the steady-state are symmetric across

regimes. In this section, we consider an asymmetric-regime case in which p1,1 6= p2,2. As will

be shown, the cross partial derivatives of g and h evaluated at the steady-state are asymmetric

across regimes in this case.
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Consider the same parameter configuration as in Section 4.3, except p1,1 = 0.5, µ̄ = 0.00222,

µ (1) = 0.00278, and µ (2) = 0.00052. In this case, Regime 1 has a shorter expected duration, and

Regime 2 occurs more frequently in the ergodic distribution. With this alternative parameter

configuration, the steady-state is represented by kss = 34.6774, and css = 2.24769 and the first

partial derivatives of f evaluated at this steady-state are different from those in the symmetric-

regime case.16 Using these results we can solve the quadratic system (12).

There are four solutions to the quadratic system under this alternative parameter configu-

ration

D1,1hss (1) D1,1gss (1) D1,1hss (2) D1,1gss (2)

(1) 0.96545 0.0370821 0.96545 0.0370821

(2) 1.03828 −0.035996 1.03828 −0.035996

(3) 2.00373− 0.7042i −1.00465 + 0.70654i 1.11318 + 0.39122i −0.111145− 0.39252i

(4) 2.00373 + 0.7042i −1.00465− 0.70654i 1.11318− 0.39122i −0.111145 + 0.39252i

As before, Mathematica finds the four solutions in less than a hundredth of a second. Solution

(1) is the only one associated with a stable first-order approximation. Remember that the rest

of the coefficients necessary to construct the second-order approximation can be obtained by

solving linear systems and that, given that the first-order approximation is stable, the second-

order approximation is also stable. The second-order approximation to the model solution is

[
ĉt

k̂t

]
=

[
0.03708 0.00029 0.00637

0.96545 −0.0100 −0.1412

]
St

+
1

2

[
−0.0004 4× 10−6 0.00009 4× 10−6 5× 10−8 1× 10−6 0.00009 1× 10−6 −5× 10−6

−0.0002 −0.0003 −0.0040 −0.0003 3× 10−6 0.00004 −0.0040 0.00004 0.00065

]
(St ⊗ St)

if st = 1 and

[
ĉt

k̂t

]
=

[
0.03708 0.00029 −0.0013

0.96545 −0.0100 0.02823

]
St

+
1

2

[
−0.0004 4× 10−6 −1× 10−5 4× 10−6 5× 10−8 −2× 10−7 −1× 10−5 −2× 10−7 −6× 10−5

−0.0002 −0.0003 0.00080 −0.0003 3× 10−6 −8× 10−6 0.00080 −8× 10−6 0.00009

]
(St ⊗ St)

if st = 2.

16In the interest of space, we omit many matrices from this section. They are available upon request.
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Clearly, the first-order approximation can be constructed by only considering the first matrix

of the right hand side the above expressions.

As in the symmetric regime case, the first-order approximation is not certainty equivalent

and the cross derivatives of g and h with respect to χ and other state variables evaluated at

the steady-state are non-zero. These results follow directly from Propositions 2 and 4. Because

µ̂ (st) 6= 0 for all st, we have that

ns∑

s′=1

pst,s′ (D7,7fss (s
′, st)Dθss (s

′) + D8,8fss (s
′, st)Dθss (st)) 6= 02

for all st. Consequently, D3gss (st) 6= 0, D3hss (st) 6= 0, and

Hi,3gss (st) = H3,igss (st) 6= 0, Hi,3hss (st) = H3,ihss (st) 6= 0

for all st = 1, 2 and 1 ≤ i ≤ 2.

The results show that µ̂ (st) plays a crucial role in determining whether the first-order ap-

proximations are certainty equivalent and whether the cross partial derivatives of g and h with

respect to χ and other state variables evaluated at the steady-state are zero. Unlike the sym-

metric regime case, however, the cross partial derivatives of g and f at the steady-state are not

the same across regimes. Specifically,

D3gss (1) 6= −D3gss (2) , D3hss (1) 6= D3hss (2) ,

Hi,3gss (1) 6= −Hi,3gss (2) , H3,igss (1) 6= −H3,igss (2) ,

Hi,3hss (1) 6= −Hi,3hss (2) , and H3,ihss (1) 6= −H3,ihss (2)

for 1 ≤ i ≤ 3.

Given the first-order and second-order approximations, we can compute and compare their

accuracy using Euler equation errors as suggested in Judd (1998) and Aruoba et al. (2006). The

Euler equation error at point
(
k̃t−1, εt; st

)
for the approximation order ∈ {first, second} is

EEorder
(
k̃t−1, εt, 1; st

)
=

1− β

∫ 2∑

s′=1

pst,s′




c̃order(k̃t−1,εt,1;st)
c̃order(k̃order(k̃t−1,εt,1;st),ε′;1)

exp
(
µ(st)+σεt
α−1

)

×

(
α exp (µ (s′) + σε′) k̃order

(
k̃t−1, εt, 1; st

)α−1

+ 1− δ

)


µ (ε′) dε′
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where c̃order
(
k̃t−1, εt, 1; st

)
and k̃order

(
k̃t−1, εt, 1; st

)
are the appropriate approximations to the

policy functions. The unconditional absolute Euler equation error is

EEorder =
∑

st

∫ ∣∣∣EEorder
(
k̃t−1, εt, 1; st

)∣∣∣µorder
(
k̃t−1, εt, 1; st

)
dk̃t−1dεt

where µorder is the unconditional distribution of the variables k̃ and ε.

To approximate this integral numerically, we simulate a long path for the economy, saving k̃t,

εt, and st along the path. The simulation length is 10,000 periods, with the first 1,000 periods

discarded as a burn-in. Then, for each state
(
k̃t−1, εt, st

)
, we draw 10,000 normally distributed

εt+1’s to compute the expectation over εt+1, and use the transition values pst,st+1
to compute

the expectation over st+1. This entire process takes approximately an hour.

The following table shows the base-10 logarithms of absolute values of Euler equation errors

for the first-order and second-order approximations in both symmetric and asymmetric cases.

Both the first-order and second-order approximations produce a high degree of accuracy: a value

of −5 implies an error of $1 for each $100,000 of consumption. As can be seen, the second-order

approximation achieves an even higher degree of accuracy.

Unconditional Absolute Euler Equation Errors (log10)

p1,1 = 0.9 p1,1 = 0.5

EEfirst −4.6099 −5.3929

EEsecond −5.4158 −6.1983

6.2 A New-Keynesian Model

New-Keynesian models, such as those in Woodford (2003) and Christiano et al. (2005), are often

used in policy analysis. This section discusses a version of the New-Keynesian model, illustrates

how to partition the vector of Markov-switching parameters θt, and discusses the conditions

under which multiple stable approximations exist.
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6.2.1 The Model

We consider a New-Keynesian model with quadratic price adjustment costs. The monetary

authority follows a Taylor Rule. There are two Markov-switching parameters: the technology

drift parameter and the coefficient on inflation in the Taylor rule. Davig and Leeper (2007),

Farmer et al. (2011), and Bianchi (2010), among others, argue that Markov-switching in the

Taylor rule coefficient on inflation captures a switch in U.S. policy regime since the mid 1980s.

The model features the representative consumer maximizing the expected lifetime utility

over consumption Ct and hours worked Ht

E0

∞∑

t=0

βt (logCt −Ht)

subject to the budget constraint

Ct +
Bt

Pt
= WtHt +Rt−1

Bt−1

Pt
+ Tt +Dt,

where Bt is nominal bonds, Wt is the real wage, Rt−1 is the nominal return on bonds, Tt is

lump-sum transfers, and Dt is profits from firms. The first-order conditions are

1 = βEt
Ct
Ct+1

Rt

Πt+1

and Ct = Wt.

The competitive final goods producer combines a continuum of intermediate goods Yj,t into

a final good Yt according to the constant elasticity of substitution (CES) aggregation technology

Yt =

(∫ 1

0

Y
η−1

η

j,t dj

) η
η−1

.

Intermediate goods are produced by firms taking the wage and the demand function

Yj,t =

(
Pj,t
Pt

)−η

Yt

as given. The price Pj,t is set and hours Hj,t are demanded according to

Yj,t = AtHj,t,
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where At is a technology shock following the law of motion

logAt = µt + logAt−1,

where, similar to the RBC model, the drift µt takes two discrete values dictated by the Markov

chain process represented by st ∈ {1, 2}.

These intermediate-goods firms face quadratic price adjustment costs according to

ACj,t =
κ

2

(
Pj,t
Pj,t−1

− 1

)2

Yt.

The firms maximize the expected discounted profits subject to the demand function, the pro-

duction function, and adjustment costs. In the symmetric equilibrium, Pj,t = Pt, Yj,t = Yt, and

Hj,t = Ht for all j, and the optimality conditions are

Wt = mctAt

and κ (Πt − 1)Πt = (1− η) + ηmct + βκEt (Πt+1 − 1)Πt+1
Ct
Ct+1

Yt+1

Yt
,

where mct is the marginal cost faced by the firms.

The monetary authority sets the interest rate Rt by the following Taylor rule

Rt

Rss

=

(
Rt−1

Rss

)ρ
Π

(1−ρ)ψt
t exp (σεt)

where the coefficient on inflation, ψt, takes two discrete values dictated by the same Markov

chain process represented by st.

The market clearing condition is

Yt = Ct +
κ

2
(Πt − 1)2 Yt.

Substituting out mct, Wt, and Ct leads to the equilibrium conditions

1 = βEt

(
1− κ

2
(Πt − 1)2

)
(
1− κ

2
(Πt+1 − 1)2

) Yt
Yt+1

Rt

Πt+1

,

κ (Πt − 1)Πt = (1− η) + η
(
1−

κ

2
(Πt − 1)2

) Yt
At

+ βEtκ (Πt+1 − 1)Πt+1

(
1− κ

2
(Πt − 1)2

)
(
1− κ

2
(Πt+1 − 1)2

) ,
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and
Rt

Rss

=

(
Rt−1

Rss

)ρ
Π

(1−ρ)ψt
t exp (σεt) .

Since the technology shock has a unit root, the model is non-stationary. To obtain a sta-

tionary equilibrium, we define Ỹt = Yt/At, which leads to the stationary equilibrium conditions

as

1 = βEt

(
1− κ

2
(Πt − 1)2

)
Ỹt(

1− κ
2
(Πt+1 − 1)2

)
Ỹt+1

1

exp
(
µt+1

) Rt

Πt+1
,

κ (Πt − 1)Πt = (1− η) + η
(
1−

κ

2
(Πt − 1)2

)
Ỹt + βEtκ

(
1− κ

2
(Πt − 1)2

)
(
1− κ

2
(Πt+1 − 1)2

) (Πt+1 − 1)Πt+1,

and
Rt

Rss

=

(
Rt−1

Rss

)ρ
Π

(1−ρ)ψt
t exp (σεt) .

We partition θt into θ1t = µt and θ2t = ψt. We have

µt = µ (χ, st) = µ+ χµ̂ (st)

and ψt = ψ (χ, st) = ψ̂ (st) .

Hence, the drift parameter µt depends on the perturbation parameter χ, while the Taylor-rule

coefficient on inflation ψt does not. We choose this partition because µt would enter the definition

of steady-state in a constant parameter model, while ψt would not.

Using the notation in Section 2, yt =
[
Πt, Ỹt

]
⊺

and xt−1 = Rt−1, we express the stationary

equilibrium condition as

f (yt+1, yt, xt, xt−1, χεt+1, εt, θt+1, θt) =



1− β
(1−κ

2
(Πt−1)2)Ỹt

(1−κ
2
(Πt+1−1)2)Ỹt+1

1

exp(µt+1)
Rt

Πt+1

(1− η) + η
(
1− κ

2
(Πt − 1)2

)
Ỹt + βκ

(1−κ
2
(Πt−1)2)

(1−κ
2
(Πt+1−1)2)

(Πt+1 − 1)Πt+1 − κ (Πt − 1)Πt

(
Rt−1

Rss

)ρ
Π

(1−ρ)ψt
t exp (σεt)−

Rt
Rss



.

The model solution takes the form of

[
Πt Ỹt

]⊺
= g (Rt−1, εt, χ, st) ,

[
Πt+1 Ỹt+1

]
⊺

= g (Rt, χεt+1, χ, st+1) ,

and Rt = h (Rt−1, εt, χ, st) .

46



6.2.2 Solving the Model

The following subsections show the sequential steps of obtaining approximations to the solution

of the model. First, we find the steady-state. Second, we derive the first partial derivatives of

f with respect to all its variables evaluated at steady-state. Third, we construct second-order

approximations to the solution. We present the results for two parameter configurations to show

how to use reduced Gröbner bases to obtain approximations and the MSS criterion to ascertain

whether we have a unique stable approximation.

Steady-State To obtain the steady-state, we set χ = 0 and εt = 0, so that Πt = Πt+1 = Πss,

Ỹt = Ỹt+1 = Ỹss, Rt = Rt−1 = Rss, and µt+1 = µt = µ̄. Thus the equilibrium conditions in the

steady-state become




1− β
(1−κ

2
(Πss−1)2)Ỹss

(1−κ
2
(Πss−1)2)Ỹss

1
exp(µ̄)

Rss
Πss

(1− η) + η
(
1− κ

2
(Πss − 1)2

)
Ỹss + βκ

(1−κ
2
(Πss−1)2)

(1−κ
2
(Πss−1)2)

(Πss − 1)Πss − κ (Πss − 1)Πss

(
Rss
Rss

)ρ
Π

(1−ρ)ψt
ss − Rss

Rss



= 03×1.

Assuming Πss = 1, we have the steady-state values as

Rss =
exp (µ̄)

β
, Ỹss =

η − 1

η
.

This result confirms our partition such that µ̄ affects the steady-state, while ψt does not. In

principle, we could let θ1t = (µt, ψt) so that perturbation would apply to ψt as well. To obtain

a numerical solution that is as accurate as possible, however, one should keep the number

of perturbed parameters at the minimum. The converse is not true. That is, one cannot

let θ2t = (µt, ψt) because the steady-state in the constant parameter case would depend on

technology drift.
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Partial Derivatives of f In this example, ny = 2, nx = 1, nε = 1, and nθ = 2. Thus, the

first partial derivatives of f with respect to all its variables evaluated at the steady-state are

D1,2fss (st+1, st) =




η

η−1
1

0 βκ

0 0


 ,D3,4fss (st+1, st) =




η

1−η
0

η −κ

0 (1− ρ) ψ̂ (s)




D5,5fss (st+1, st) =




−βe−µ̄

0

−βe−µ̄


 ,D6,6fss (st+1, st) =




0

0

ρβe−µ̄


 ,D7,7fss (st+1, st) =




0

0

0


 ,

D8,8fss (st+1, st) =




0

0

σ


 ,D9,10fss (st+1, st) =




1 0

0 0

0 0


 , and D11,12fss (st+1, st) =




0 0

0 0

0 0


 ,

for all st+1 and st. Note that ψ̂ (st) enters the matrices because we do not perturb ψt.

Unique Stable Approximation Consider the following parameterization

β κ η ρ σ µ̄ µ̂ (1) µ̂ (2) ψ̂ (1) ψ̂ (2) p1,1 p2,2

0.9976 161 10 0.8 0.0025 0.005 0.0025 −0.0025 3.1 0.9 0.90 0.90

The growth rates µ̄ + µ̂ (1) and µ̄ + µ̂ (2) correspond to regimes where the annual growth rate

are 3 percent and 1 percent respectively, β corresponds to an annual risk-free rate of 3 percent,

η has the steady-state markup of 11 percent, and ρ and σ match the estimates in Fernandez-

Villaverde et al. (2009). The two monetary policy parameters ψ̂ (1) and ψ̂ (2) are such that

ψ̂ (1) would imply a unique stable approximation if ψt = ψ̂ (1) for all t and ψ̂ (2) would lead to

multiple stable approximations if ψt = ψ̂ (2) for all t.

Given this parameter configuration, we can calculate the steady-state values of the nominal

rate and output as Rss = 1.0074 and Ỹss = 0.90. The resulting first partial derivatives of f with

respect to all its variables evaluated at the steady-state are

D1,2fss (st+1, st) =




1.11111 1

0 160.614

0 0


 ,D3,4fss (st+1, st) =




−1.11111 0

10 −161.

0 0.2ψ̂ (st)


 ,
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D5,5fss (st+1, st) =




−0.9926

0

−0.9926


 ,D6,6fss (st+1, st) =




0

0

0.77941


 ,D7,7fss (st+1, st) =




0

0

0


 ,

D8,8fss (st+1, st) =




0

0

0.0025


 ,D9,10fss (st+1, st) =




1 0

0 0

0 0


 , and D11,12fss (st+1, st) =




0 0

0 0

0 0




for all st+1 and st.

In this example, we obtain the following nine solutions for {D1,1gss (st) ,D1,1hss (st)}
ns
st=1

D1,1hss (1) D1,1gss (1)
⊺ D1,1hss (2) D1,1gss (2)

⊺

(1) 0.59517 −1.92815 −0.327932 0.699414 −2.9541 −0.554689

(2) 0.77508 −3.64018 −0.0398952 1.3018 −7.43725 2.76721

(3) 0.79559 −1.82393 −0.00706061 1.05423 1.21892 1.40196

(4) 1.0939 − 0.4363i −0.8264 + 4.2641i 0.4706− 0.6986i 1.3311 + 0.0574i −10.008− 1.9739i 2.9287 + 0.3165i

(5) 1.0939 + 0.4363i −0.8264− 4.2641i 0.4706 + 0.6986i 1.3311− 0.0574i −10.008 + 1.9739i 2.9287 − 0.3165i

(6) 1.0952 − 0.2105i −0.9833 + 1.9595i 0.4727− 0.3370i 1.0240− 0.0200i 0.8689 + 0.7833i 1.2351 − 0.1103i

(7) 1.0952 + 0.2105i −0.9833− 1.9595i 0.4727 + 0.3370i 1.0240 + 0.0200i 0.8689 − 0.7833i 1.2351 + 0.1103i

(8) 1.2360 − 0.2511i 0.7554 + 3.0821i 0.6980− 0.4020i 0.7507 + 0.0047i −2.2696 + 0.6345i −0.2718 + 0.0260i

(9) 1.2360 + 0.2511i 0.7554 − 3.0821i 0.6980 + 0.4020i 0.7507− 0.0047i −2.2696− 0.6345i −0.2718 − 0.0260i

Mathematica finds the nine solutions in less than three hundredths of a second. The only

solution that produces a stable first-order approximation is (1) and hence there is a unique stable

approximation. Given solution (1), we can solve the linear systems that allow us to obtain the

second-order approximation. Let ̂̃Y t = Ỹt − Yss, Π̂t = Πt − Πss, R̂t = Rt − Rss, and define

St =
[
R̂t−1 εt χ

]⊺
. The second-order approximation is




̂̃
Y t

Π̂t

R̂t


 =




−1.9282 −0.0062 0.00481

−0.3279 −0.0011 0.00014

0.59517 0.00191 0.00008


St

+
1

2




21.3771 0.06247 −0.0188 0.06247 0.00020 −0.0001 −0.0188 0.00020 −0.0004

0.49793 0.00056 −0.0008 0.00056 2× 10−6 −2× 10−6 −0.0008 2× 10−6 −0.0003

−0.1986 0.00124 −0.0004 0.00124 4× 10−6 −1× 10−6 −0.0004 4× 10−6 −0.0002


 (St ⊗ St)
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if st = 1 and



̂̃
Y t

Π̂t

R̂t


 =




−2.9541 −0.0090 −0.0094

−0.5547 −0.0017 −0.0026

0.69941 0.00214 −0.0006


St

+
1

2




56.9733 0.16487 0.23174 0.16487 0.00050 0.00071 0.23174 0.00050 −0.0016

0.99333 0.00136 0.00033 0.00136 4× 10−6 1× 10−6 0.00033 4× 10−6 −0.0010

−0.1842 0.00160 −0.0005 0.00160 5× 10−6 −2× 10−6 −0.0005 5× 10−6 −0.0002


 (St ⊗ St)

if st = 2.

Again, the first-order approximation is easily obtained from the above expressions. As in the

RBC model, there is no certainty equivalence and the cross derivatives of g and h with respect

to χ and other state variables evaluated at the steady-state are non-zero. Note that the first

partial derivatives of g and h with respect to Rt−1 and εt are different across regimes. This result

occurs because ψt affects the first derivatives of f . Perturbing ψt would make these derivatives

equal and the approximation less accurate.

Accuracy: Euler Equation Errors The Euler equation error at the point (Rt−1, εt; st) is

that for order ∈ {first, second},

EEorder (Rt−1, εt, 1; st) = 1− β

∫ 2∑

s′=1

pst,s′×




1−κ
2 (Πorder(Rt−1,εt,1;st)−1)

2

1−κ
2 (Πorder(Rorder(Rt−1,εt,1;st),εt+1,1;st+1)−1)

2×

Ỹ order(Rt−1,εt,1;st)

Ỹ order(Rorder(Rt−1,εt,1;st),εt+1,1;st+1)
×

1
exp(µ′)

Rorder(Rt−1,εt,1;st)

Πorder(Rorder(Rt−1,εt,1;st),εt+1,1;st+1)



µ (ε′) dε′

where Ỹ order (Rt−1, εt, 1; st), Π
order (Rt−1, εt, 1; st), and R

order (Rt−1, εt, 1; st) are the approxima-

tions to the policy functions. The unconditional absolute Euler equation error is

EEorder =
∑

st

∫ ∣∣EEorder (Rt−1, εt, 1; st)
∣∣µorder (Rt−1, εt, 1; st) dRt−1dεt

where µorder is the unconditional distribution of the variables R and ε.

Numerical approximation of this integral simulates a 10, 000-period path, with the first 1, 000

periods discarded as a burn-in. For each state (Rt−1, εt, st) along the simulated path, we draw
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10,000 normally distributed εt+1’s to compute the expectation over εt+1, and use the transition

values pst,st+1
to compute the expectation over st+1. This entire process takes about an hour.

The following table shows the base-10 logarithms of absolute Euler equation errors for the

first-order and second-order approximations. Both the first-order and the second-order approx-

imations produce a high degree of accuracy: a value of −4 implies an error of $1 for each $10,000

of consumption.

Unconditional Absolute Euler Equation Errors (log10)

EEfirst −3.7395

EEsecond −4.7485

Multiple Stable Approximations As an alternative parameter configuration, we consider

the same parameters as in the previous section except ψ̂ (2) = 0.7. That is, the second regime

now has a slightly lower response by the monetary authority to inflation. In this case, the

steady-state is still the same. As before, Regime 1 would imply a unique stable approximation

if considered in isolation, whereas Regime 2 would imply multiple stable approximations.

The first partial derivatives of f with respect to all its variables evaluated at the steady-state

are the same as those in the previous section except

D3,4fss (st+1, st) =




−1.11111 0

10 −161.

0 0.2ψ̂ (st)




for all st+1 and st, which depends on ψ̂ (st). Using these results, we obtain the following 9
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solutions for {D1,1gss (st) ,D1,1hss (st)}
ns
st=1.

D1,1hss (1) D1,1gss (1)
⊺ D1,1hss (2) D1,1gss (2)

⊺

(1) 0.59067 −1.9452 −0.3351 0.71244 −3.2185 −0.6209

(2) 0.79733 −4.7813 −0.0043 1.32443 −11.313 3.71833

(3) 0.85231 −1.7727 0.08374 1.01525 2.03718 1.52618

(4) 1.0444 − 0.4989i −0.7000 + 4.6327i 0.3912− 0.7987i 1.3523 + 0.0442i −14.210− 1.8733i 3.9161 + 0.3132i

(5) 1.0444 + 0.4989i −0.7000− 4.6327i 0.3912 + 0.7987i 1.3523− 0.0442i −14.210 + 1.8733i 3.9161 − 0.3132i

(6) 1.0670 − 0.1894i −1.2845 + 1.5032i 0.4274− 0.3033i 0.9995− 0.0089i 1.6635 + 0.5703i 1.4141 − 0.0629i

(7) 1.0670 + 0.1894i −1.2845− 1.5032i 0.4274 + 0.3033i 0.9995 + 0.0089i 1.6635 − 0.5703i 1.4141 + 0.0629i

(8) 1.2374 − 0.2527i 0.8018 + 3.0980i 0.7004− 0.4046i 0.7582 + 0.0045i −2.3764 + 0.6699i −0.2963 + 0.0317i

(9) 1.2374 + 0.2527i 0.8018 − 3.0980i 0.7004 + 0.4046i 0.7582− 0.0045i −2.3764− 0.6699i −0.2963 − 0.0317i

Now we have two solutions – (1) and (3) – that produce stable approximations. Thus the solution

to the model has multiple stable approximations. This example illustrates how we can use

reduced Gröbner bases and the MSS criterion to determine the number of stable approximations.

6.3 A New-Keynesian Model with Habit

Now consider a slight variant of the previously discussed New-Keynesian model, but with the

representative household having habit formation. We consider this application because deriving

first-order and second-order approximations is more involved when habit formation is present

and the reader would be interested in knowing how to accomplish this task. The household in

this economy maximizes

E0

∞∑

t=0

βt (log (Ct − ϕCt−1)−Ht)

where ϕ denotes habit persistence. Letting λt denote the Lagrange multiplier on the budget

constraint, the first-order conditions are

λt =
1

Ct − ϕCt−1
− βEt

ϕ

Ct+1 − ϕCt
,

λt = βEtλt+1
Rt

Πt+1
,

and 1 = λtWt.

Final good and intermediate goods producers face problems identical to the previous example

and

logAt = µt + logAt−1.
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Thus, the firm’s optimality conditions are

Wt = mctAt

and κ (Πt − 1)Πt = (1− η) + ηmct + βκEt (Πt+1 − 1)Πt+1
λt+1

λt

Yt+1

Yt
.

The resource constraint is

Yt = Ct +
κ

2
(Πt − 1)2 Yt.

For clarity we assume that the monetary authority does not smooth interest rates and follows

the rule

Rt = RssΠ
ψt
t exp (σεt) .

With habits, consumption appears at different dates, as Ct−1, Ct, and Ct+1, in the equilibrium

conditions. Substituting out mct, Wt, Yt, and Rt, we have the equilibrium conditions as

λt =
1

Ct − ϕCt−1
− βEt

ϕ

Ct+1 − ϕCt
,

λt = βEtλt+1
RssΠ

ψt
t

Πt+1
,

and κ (Πt − 1)Πt = (1− η) +
η

Atλt
+ βκEt (Πt+1 − 1)Πt+1

λt+1

λt

Ct+1

Ct

1− κ
2
(Πt − 1)2

1− κ
2
(Πt+1 − 1)2

.

The economy is nonstationary because of the presence of the unit root. If we define λ̃t = λtAt

and C̃t = Ct/At, we have the stationary equilibrium conditions as

λ̃t =
1

C̃t − ϕ exp (−µt) C̃t−1

− βEt
ϕ

C̃t+1 exp
(
µt+1

)
− ϕC̃t

,

λ̃t = βEt
λ̃t+1

exp
(
µt+1

)RssΠ
ψt
t exp (σεt)

Πt+1

,

and κ (Πt − 1)Πt = (1− η) +
η

λ̃t
+ βκEt (Πt+1 − 1)Πt+1

λ̃t+1

λ̃t

C̃t+1

C̃t

1− κ
2
(Πt − 1)2

1− κ
2
(Πt+1 − 1)2

.

To solve the model, we define the two auxiliary variables X̃t = C̃t, and X̃t+1 = C̃t+1. Using

the notation in Section 2, we have yt =
[
Πt X̃t λ̃t

]⊺
, xt−1 = C̃t−1, θ2t = ψt, and the
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equilibrium conditions are

f (yt+1, yt, xt, xt−1, χεt+1, εt, θt+1, θt) =



1
C̃t−ϕ exp(−µt)C̃t−1

− β ϕ

X̃t+1 exp(µt+1)−ϕC̃t
− λ̃t

β λ̃t+1

exp(µt+1)
RssΠ

ψt
t exp(σεt)

Πt+1
− λ̃t

(1− η) + η

λ̃t
+ βκ (Πt+1 − 1)Πt+1

λ̃t+1

λ̃t

X̃t+1

C̃t

1−κ
2
(Πt−1)2

1−κ
2
(Πt+1−1)2

− κ (Πt − 1)Πt

X̃t − C̃t




6.3.1 Solving the Model

Similar to the previous examples, the following subsections show how to solve the model: find the

steady-state, define the matrices of first partial derivatives of f with respect to all its variables

evaluated at the steady-state, and find the second-order approximation to the policy functions.

As in the basic New-Keynesian model, we consider two parameter configurations to show how

to use reduced Gröbner bases to find all the approximations and how to use the MSS criterion

to determine how many of them are stable.

Steady-State Calculating the steady-state involves setting χ = 0 and εt = 0. Therefore, we

have Πt = Πt+1 = Πss, X̃t = X̃t+1 = X̃ss, C̃t = C̃t−1 = C̃ss, and µt+1 = µt = µ̄. The equilibrium

conditions in the steady-state are



1
C̃ss−ϕ exp(−µ̄)C̃ss

− β ϕ

X̃ss exp(µ̄)−ϕC̃ss
− λ̃ss

β λ̃ss
exp(µ̄)

RssΠ
ψt
ss

Πss
− λ̃ss

(1− η) + η

λ̃ss
+ βκ (Πss − 1)Πss

λ̃ss
λ̃ss

X̃ss
C̃ss

1−κ
2
(Πss−1)2

1−κ
2
(Πss−1)2

− κ (Πss − 1)Πss

X̃ss − C̃ss



= 04×1.

Assuming Πss = 1, the steady-state satisfies

Rss =
exp (µ̄)

β
,

λ̃ss =
η

η − 1
,

and C̃ss = X̃ss =
exp (µ̄)− βϕ

exp (µ̄)− ϕ

η − 1

η
.
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Partial Derivatives of f In this example, ny = 3, nx = 1, nε = 1, and nθ = 2. Thus, the

first partial derivatives of f with respect to all its variables evaluated at the steady-state are

D1,3fss (st+1, st) =




0 ϕβ exp(µ̄)

C̄2
ss(exp(µ̄)−ϕ)

2 0

−λss 0 1

βκ 0 0

0 0 0



, D4,6fss (st+1, st) =




0 0 −1

λssψ (st) 0 −1

−κ 0 − η

λ̃
2

ss

0 1 0




D7,7fss (st+1, st) =




− exp(2µ̄)+βϕ2

C̃2
ss(exp(µ̄)−ϕ)

2

0

0

−1



, D8,8fss (st+1, st) =




exp(µ̄)ϕ

C̃2
ss(exp(µ̄)−ϕ)

2

0

0

0



,D9,9fss (st+1, st) =




0

0

0

0




D10,10fss (st+1, st) =




0

λssσ

0

0



,D11,12fss (st+1, st) =




exp(µ̄)βϕ

C̃ss(exp(µ̄)−ϕ)
2 0

−λss 0

0 0

0 0



,

and D13,14fss =




− exp(µ̄)ϕ

C̃ss(exp(µ̄)−ϕ)
2 0

0 0

0 0

0 0




for all st+1 and st.

Unique Stable Approximation Consider the first parameter configuration

β κ η ϕ σ µ̄ µ̂ (1) µ̂ (2) ψ̂ (1) ψ̂ (2) p1,1 p2,2

0.9976 161 10 0.7 0.0025 0.005 0.0025 −0.0025 3.1 0.9 0.90 0.90

All parameters other than ϕ (the degree of habit formation) are similar to those in the previous

New-Keynesian example. The steady-state values are X̃ss = C̃ss = 0.904957 and λ̃ss = 1.11111.
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Consequently the numerical values of the matrices of first partial derivatives of f with respect

to all its variables evaluated at the steady-state are

D1,3fss (st+1, st) =




0 9.21159 0

−1.1111 0 1

160.614 0 0

0 0 0



, D4,6fss (st+1, st) =




0 0 −1

1.11111ψ (st) 0 −1

−161. 0 −8.1

0 1 0



,

D7,7fss (st+1, st) =




−19.6731

0

0

−1



, D8,8fss (st+1, st) =




9.23375

0

0

0



,D9,9fss (st+1, st) =




0

0

0

0



,

D10,10fss (st+1, st) =




0

0.00277778

0

0



,D11,12fss (st+1, st) =




8.33609 0

−1.11111 0

0 0

0 0



,

and D13,14fss (st+1, st) =




−8.35615 0

0 0

0 0

0 0




for all st+1 and st.

Using these matrices, we can solve the quadratic system for {D1,1gss (st) ,D1,1hss (st)}
ns
st=1.
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In this example there are a total of 16 solutions. To conserve space, we report D1,1hss (st) only:

D1,1hss (1) D1,1hss (2)

(1) 0.69651 0.69651

(2) 1.43919 1.43919

(3) X0.79309 1.5799

(4) 1.5799 0.79309

(5) 0.7613− 0.0895i 1.1350− 0.1129i

(6) 0.7613 + 0.0895i 1.1350 + 0.1129i

(7) 1.0207− 0.5488i 1.0926− 0.0218i

(8) 1.0207 + 0.5488i 1.0926 + 0.0218i

(9) 1.1188− 0.4326i 1.0051 + 0.0997i

(10) 1.1188 + 0.4326i 1.0051− 0.0997i

(11) 1.5474− 0.04355i 1.1735− 0.1404i

(12) 1.5474 + 0.04355i 1.1735 + 0.1404i

(13) 1.1021 + 0.3496i 0.8230 + 0.0927i

(14) 1.1021− 0.3496i 0.8230− 0.0927i

(15) 1.1786 + 0.3971i 1.6102− 0.0786i

(16) 1.1786− 0.3971i 1.6102 + 0.0786i

Mathematica finds 16 solutions in approximately 5 seconds. The only solution that produces

a stable approximation is (1). Given Solution (1), we calculate the rest of the matrices needed

to obtain the second-order approximation through solving systems of linear equations. Let ̂̃Ct =

C̃t − C̃ss, Π̂t = Πt − Πss,
̂̃X t = X̃t − X̃ss,

̂̃
λt = λ̃t − λss, and define St =

[ ̂̃Ct−1 εt χ
]
⊺

. The

57



second-order approximation is




̂̃Ct

Π̂t

̂̃Xt

̂̃λt



=




0.69651 −0.0002 0.00045

0. −0.0001 0.00021

0.69651 −0.0002 0.00045

0. 0.00239 −0.0069



St

+




0 0 −0.0020 0 −2× 10−7 −1 × 10−6 −0.0020 −1× 10−6 5× 10−5

0 0 0.00020 0 2× 10−7 −4 × 10−7 0.00020 −4× 10−7 −6× 10−5

0 0 −0.0020 0 −2× 10−7 −1 × 10−6 −0.0020 −1× 10−6 5× 10−5

0 0 0.00143 0 6× 10−6 −1 × 10−5 0.00143 −1× 10−5 −0.0003



(St ⊗ St)

for st = 1 and




̂̃Ct

Π̂t

̂̃Xt

̂̃
λt



=




0.69651 −0.0002 −0.0005

0 −0.0001 −0.0033

0.69651 −0.0002 −0.0005

0 0.00261 0.00707



St

+




0 0 0.00151 0 −2 × 10−7 1× 10−6 0.00151 1× 10−6 −6× 10−5

0 0 0.00165 0 3× 10−7 6× 10−6 0.00165 6× 10−6 −0.0002

0 0 0.00151 0 −2 × 10−7 1× 10−6 0.00151 1× 10−6 −6× 10−5

0 0 0.00156 0 7× 10−6 2× 10−5 0.00156 2× 10−5 0.00036



(St ⊗ St) .

for st = 2. Again, the first-order approximation can be easily obtained from the above expres-

sions.

Accuracy: Euler Equation Errors As in the previous examples, we compare the accu-

racies of the first-order and second-order approximations. The Euler equation error at point
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(
C̃t−1, εt; st

)
for an approximation order ∈ {first,second} is

EEorder
(
C̃t−1, εt, 1; st

)
= 1− β

∫ 2∑

s′=1

pst,s′×




β
λ̃
order

(C̃order(C̃t−1,εt,1;st),χεt+1,1;st+1)
Πorder(C̃order(C̃t−1,εt,1;st),χεt+1,1;st+1)

×

RssΠorder(C̃t−1,εt,1;st)
ψt exp(σεt)

exp(µ(s′))λ̃
order(C̃t−1,εt,1;st)


µ (ε′) dε′

where C̃order
(
C̃t−1, εt, χ; st

)
, Πorder

(
C̃t−1, εt, χ; st

)
, and λ̃

order
(
C̃t−1, εt, χ; st

)
are the approxi-

mations to the policy functions. The unconditional absolute Euler equation error is

EEorder =

∫ ∣∣∣EEorder
(
C̃t−1, εt, χ; st

)∣∣∣µorder
(
C̃t−1, εt, χ; st

)
dC̃t−1dεtdst

where µorder is the unconditional distribution of the variables implied by the approximated

solution.

Numerical approximation of this integral simulates a 10, 000-period path, with the first 1, 000

periods discarded as a burn-in. For each state
(
C̃t−1, εt, st

)
along the simulated path, we draw

10,000 normally distributed εt+1’s to compute the expectation over εt+1, and use the transition

values pst,st+1
to compute the expectation over st+1. The entire process takes approximately an

hour.

The table below reports the base-10 logarithms of absolute Euler equation errors for the

first-order and the second-order approximations. Both the first-order and the second-order

approximations produce a high degree of accuracy: a value of −3 implies an error of $1 for each

$1,000.

Unconditional Absolute Euler Equation Errors (log10)

EEfirst −2.9261

EEsecond −2.9527

Multiple Stable Approximations As an alternative parameterization, consider the same

parameters as above except that ψ̂ (2) = 0.6. The second regime now has a slightly lower

response by the monetary authority to inflation. The numerical values of the matrices of
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partial derivatives of f with respect to all its variables evaluated at steady-state are unchanged

except

D4,6fss (st+1, st) =




0 0 −1

1.11111ψ (st) 0 −1

−161. 0 −8.1

0 1 0




for all st+1 and st, which depends on ψ̂ (st). Using this new matrix as well as the other matrices,

we solve the quadratic system for {D1,1gss (st) ,D1,1hss (st)}
ns
st=1. There are 16 solutions to the

quadratic system, and to conserve space we present D1,1hss (st) only:

D1,1hss (1) D1,1hss (2)

(1) 0.69651 0.69651

(2) 1.43919 1.43919

(3) 0.79309 1.57990

(4) 1.57990 0.79309

(5) 0.65550 1.03904

(6) 1.67928 1.10504

(7) 0.8703− 0.1497i 1.1985 + 0.0323i

(8) 0.8703 + 0.1497i 1.1985− 0.0323i

(9) 1.1236− 0.4088i 0.9377 + 0.1268i

(10) 1.1236 + 0.4088i 0.9377− 0.1268i

(11) 1.4751− 0.1292i 1.2161− 0.0448i

(12) 1.4751 + 0.1292i 1.2161 + 0.0448i

(13) 1.1062 + 0.3393i 0.7984 + 0.1078i

(14) 1.1062− 0.3393i 0.7984− 0.1078i

(15) 1.1817 + 0.3950i 1.6177− 0.0855i

(16) 1.1817− 0.3950i 1.6177 + 0.0855i

There are two solutions – (1) and (5) – that produce stable approximations. The examples

in the previous New-Keynesian model and the current variant with habit might suggest that the
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only parameter affecting the uniqueness of a stable approximation is ψ̂ (s), which governs the

monetary authority’s response to inflation. This conclusion is incorrect.

Consider a higher degree of habit persistence, ϕ = 0.9, while keeping ψ̂ (1) = 3.1 and

ψ̂ (2) = 0.6. Given these parameter values, the steady-state is C̃ss = X̃ss = 0.918512. There are

16 solutions to the quadratic system. The following table presents D1,1hss (st) only:

D1,1hss (1) D1,1hss (2)

(1) 0.89551 0.895511

(2) 1.11937 1.11937

(3) 0.82810 1.05334

(4) 1.47489 1.16828

(5) 1.1194− 0.0017i 1.1194 + 0.0017i

(6) 1.1194 + 0.0017i 1.1194− 0.0017i

(7) 1.1104 + 0.3027i 0.9173 + 0.1984i

(8) 1.1104− 0.3027i 0.9173− 0.1984i

(9) 1.1445− 0.3980i 0.9790 + 0.1850i

(10) 1.1445 + 0.3980i 0.9790− 0.1850i

(11) 1.0486− 0.0839i 1.1523 + 0.0536i

(12) 1.0486 + 0.0839i 1.1523− 0.0536i

(13) 1.1767 + 0.0742i 1.1435− 0.0715i

(14) 1.1767− 0.0742i 1.1435 + 0.0715i

(15) 1.1584 + 0.4344i 1.4032− 0.1185i

(16) 1.1584− 0.4344i 1.4032 + 0.1185i

There is only one solution, which is (1), that produces stable approximations. Remember that

there are two stable approximations when we set ϕ = 0.7 as in the previous example.
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7 Conclusion

Markov switching has been introduced as an essential ingredient to a large class of models usable

for analyses of structural breaks and regime changes in policy, ranging from backward-looking

models (Hamilton (1989) and Sims and Zha (2006)) to forward-looking rational expectations

models (Clarida et al. (2000), Lubik and Schorfheide (2004), Davig and Leeper (2007), Farmer

et al. (2011)). This paper expands this literature by developing a general methodology for

constructing first-order and second-order approximations to the solutions of MSDSGE models.

We resolve conceptual issues related to the steady-state and certainty equivalence of first-order

approximations; we reduce the potentially very complicated problem to a task of solving a

system of quadratic equations; we propose using Gröbner bases to solve such a system; and we

apply the MSS criterion to verify the existence and uniqueness of a stable approximation to the

solution.

The contribution of this paper is not only theoretical but also practical. We show that after

the quadratic system is successfully dealt with, obtaining up to second-order approximations

is straightforward, as the remaining task involves finding a solution to only a system of linear

equations. Our application to three MSDSGE models illustrates the practical value of our

methodology. It is our hope that the advance made in this paper enables applied researchers to

estimate MSDSGE models by focusing on improving the efficiency of our methods.
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8 Appendix A:

This appendix derives, in detail, the two steps described in Section 3.2.
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8.1 Step 1: Obtaining the derivatives of xt−1

Taking first partial derivatives of G with respect to xt−1 in (10) produces the expression for

D1,nxGss (st)

D1,nxGss (st) =

ns∑

s′=1

pst,s′

∫




D1,nyfss (s
′, st)D1,nxgss (s

′)D1,nxhss (st)

+Dny+1,2nyfss (s
′, st)D1,nxgss (st)

+D2ny+1,2ny+nxfss (s
′, st)D1,nxhss (st)

+D2ny+nx+1,2(ny+nx)fss (s
′, st)



µ (ε′) dε′

for all st. Taking
∫
µ (ε′) dε′ = 1 into account, one can simplify the above expression to

D1,nxGss (st) =

ns∑

s′=1

pst,s′




D1,nyfss (s
′, st)D1,nxgss (s

′)D1,nxhss (st)

+Dny+1,2nyfss (s
′, st)D1,nxgss (st)

+D2ny+1,2ny+nxfss (s
′, st)D1,nxhss (st)

+D2ny+nx+1,2(ny+nx)fss (s
′, st)




for all st. Rearranging the above expression for each st leads to

D1,nxGss (st) = (20)

ns∑

s′=1

pst,s′



(
D1,nyfss (s

′, st)D1,nxgss (s
′) +D2ny+1,2ny+nxfss (s

′, st)
)
D1,nxhss (st)

+Dny+1,2nyfss (s
′, st)D1,nxgss (st) +D2ny+nx+1,2(ny+nx)fss (s

′, st)


 .

Putting together the ns versions of (20), one for each value of st, and equating them to zero as

implied by (11) yields a quadratic system of (ny + nx)nxns equations. The number of equations

is exactly the same as the number of unknowns {D1,nxgss (st) ,D1,nxhss (st)}
ns
st=1. Writing (20)

in matrix form leads to a system of quadratic equations expressed in (12).
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8.2 Step 2: Obtaining the derivatives of εt and χ

8.2.1 Obtaining the derivatives of εt

By taking first partial derivatives with respect to εt in (10) we obtain the expression for

Dnx+1,nx+nεGss (st)

Dnx+1,nx+nεGss (st) =

ns∑

s′=1

pst,s′

∫




D1,nyfss (s
′, st)D1,nxgss (s

′)Dnx+1,nx+nεhss (st)+

Dny+1,2nyfss (s
′, st)Dnx+1,nx+nεgss (st) +

D2ny+1,2ny+nxfss (s
′, st)Dnx+1,nx+nεhss (st) +

D2(ny+nx)+nε+1,2(ny+nx+nε)fss (s
′, st)



µ (ε′) dε′

for all st. With
∫
µ (ε′) dε′ = 1, this expression simplifies to

Dnx+1,nx+nεGss (st) =

ns∑

s′=1

pst,s′




(
D1,nyfss (s

′, st)D1,nxgss (s
′) +D2ny+1,2ny+nxfss (s

′, st)
)
Dnx+1,nx+nεhss (st)

Dny+1,2nyfss (s
′, st)Dnx+1,nx+nεgss (st)

D2(ny+nx)+nε+1,2(ny+nx+nε)fss (s
′, st)


 (21)

for all st.

Putting together the ns versions of (21), one for each value of st, and equating them to zero

as implied by (11) yields a system of (ny + nx)nεns equations. The number of equations is the

same as that of unknowns {Dnx+1,nx+nεgss (st) ,Dnx+1,nx+nεhss (st)}
ns
st=1. The system is linear

and can be written in matrix form as

[
Θε Φε

]




Dnx+1,nx+nεgss (1)
...

Dnx+1,nx+nεgss (ns)

Dnx+1,nx+nεhss (1)
...

Dnx+1,nx+nεhss (ns)




= Ψε. (22)

The solution to this system is given in (13).
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8.2.2 Obtaining the derivatives of χ

We obtain the expression for Dnx+nε+1Gss (st) by taking first partial derivatives with respect to

χ in (10)

Dnx+nε+1Gss (st) =

ns∑

s′=1

pst,s′

∫




D1,nyfss (s
′, st)


 D1,nxgss (s

′)Dnx+nε+1hss (st)

+Dnx+1,nx+nεgss (s
′) ε′ +Dnx+nε+1gss (s

′)


+

Dny+1,2nyfss (s
′, st)Dnx+nε+1gss (st)+

D2ny+1,2ny+nxfss (s
′, st)Dnx+nε+1hss (st) +

D2ny+nx+1,2ny+nx+nεfss (s
′, st) ε

′+

D2(ny+nx+nε)+1,2(ny+nx+nε)+nθfss (s
′, st)Dθss (s

′)+

D2(ny+nx+nε)+nθ+1,2(ny+nx+nε+nθ)fss (s
′, st)Dθss (st)




µ (ε′) dε′

for all st. Note that Dθss (st) is the derivative of θ (χ, st) with respect to χ evaluated at χ = 0.

That is,

Dθss (st) = Dθ (0, st) =
[
Djθ

i (0, st)
]
1≤i≤nθ,j=1

for all st.

Using the two equalities
∫
µ (ε′) dε′ = 1 and

∫
ε′µ (ε′) dε′ = 0, one can simplify the expression

for Dnx+nε+1Gss (st) as

Dnx+nε+1Gss (st) = (23)

ns∑

s′=1

pst,s′




D1,nyfss (s
′, st) {D1,nxgss (s

′)Dnx+nε+1hss (st) +Dnx+nε+1gss (s
′)}+

Dny+1,2nyfss (s
′, st)Dnx+nε+1gss (st) +D2ny+1,2ny+nxfss (s

′, st)Dnx+nε+1hss (st)

+D2(ny+nx+nε)+1,2(ny+nx+nε)+nθfss (s
′, st)Dθss (s

′) +

D2(ny+nx+nε)+nθ+1,2(ny+nx+nε+nθ)fss (s
′, st)Dθss (st)




for all st.

Putting together the ns versions of (23), one for each value of st, and equating them to

zero as implied by (11), yields a system of linear (ny + nx)ns equations. The number of these

equations is the same as that of unknowns {Dnx+nε+1gss (st) ,Dnx+nε+1hss (st)}
ns
st=1. The linear
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system can be written in matrix form as

[
Θχ Φχ

]




Dnx+nε+1gss (1)
...

Dnx+nε+1gss (ns)

Dnx+nε+1hss (1)
...

Dnx+nε+1hss (ns)




= Ψχ. (24)

The solution to (24) is given in (13).

9 Appendix B: Gröbner bases

In this appendix we give an overview of Gröbner bases and describe how they can be applied to

our problem. See Becker et al. (1998) for a more detailed description and other applications.

We wish to find all the solutions of a system of n polynomials in n variables. Let the

polynomial system under study be

f1(x1, . . . , xn) = 0,
...

fn(x1, . . . , xn) = 0.

Each equation in this system defines a manifold of dimension (n − 1) in Rn and the set of

solutions of the system is the intersection of these manifolds.

When all the fi’s are linear, the solution set consists of a linear subspace of Rn. It is well

known that there are three possible outcomes: a unique solution, no solutions, or infinitely

many solutions. More importantly, the set of linear systems with no solution or infinitely many

solutions is of measure zero in the set of all linear systems. When there is a unique solution, it

can be easily found.

When the fi’s are higher-order polynomials, the solution set is more complicated, but the

intuition from the linear case still holds. For almost all polynomial systems of n equations in n

variables, there are only finitely many solutions and these solutions can be easily found.
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To describe how solutions are computed for polynomial systems, we need to develop the

concept of an ideal and its Gröbner basis. Given a set of polynomials in n variables, {f1, . . . , fm},

the ideal generated by {f1, . . . , fm} is the set of all polynomials of the form

g1(x1, . . . , xn)f1(x1, . . . , xn) + · · ·+ gm(x1, . . . , xn)fm(x1, . . . , xn) (25)

where g1, . . . , gm vary over all polynomials in n variables. We denote this ideal by 〈f1, . . . , fm〉.

For our purpose we focus on one important feature of an ideal. The point (a1, . . . , an) ∈ Rn is

a zero of the polynomials f1, . . . , fm if and only if it is a zero of every polynomial in the ideal

〈f1, . . . , fm〉. This feature implies that if two different sets of polynomials generate the same

ideal, then they have the same zeros. The goal is to find a generating set for which it is easy to

compute zeros.

Before giving the definition of a Gröbner basis, we must first define what we mean by

the leading term of a polynomial. A polynomial in x1, . . . , xn is a sum of terms of the form

cxk11 x
k2
2 · · ·xknn , where ki is a non-negative integer and c is a non-zero real number. The product

xk11 x
k2
2 · · ·xknn is called a monomial in x1 · · ·xn. The degree of a term is the sum of its exponents,

k1 + · · · + kn. For polynomials in a single variable, the leading term is defined to be the one

of highest degree. For polynomials of several variables, there may be many terms of the same

degree. Thus, one defines the leading term relative to a monomial ordering. For instance, the

lexicographical ordering of monomials implies that xk11 · · ·xknn < xm1

1 · · ·xmnn if and only if there

is an i such that ki < mi and kj = mj for j < i. In general, a monomial order must satisfy

1. The monomial x01x
0
2 · · ·x

0
n = 1 is the smallest monomial.

2. If X , Y , and Z are monomials with X < Y , then XZ < Y Z.

The leading term of a polynomial is the largest term with respect to the monomial ordering.

With these notions in hand, we are ready to define a Gröbner basis. The set {h1, . . . , hk} is a

Gröbner basis for the ideal 〈f1, . . . , fm〉 if

1. 〈f1, . . . , fm〉=〈h1, . . . , hk〉
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2. The leading term of any polynomial in 〈f1, . . . , fm〉 is divisible by the leading term of hi

for some i.

Consider the following example. Consider the ideal generated by

{2x1x2 − x1, x2 − x3, x
2
3 − 1}.

Note that the first term of each polynomial is the leading term with respect to the lexicographical

order. Is this generating set a Gröbner basis? The answer is negative because the leading term

in 1
2
(2x1x2 − x1)− x1(x2 − x3) = x1x3 −

1
2
x1 is not divisible by any of the leading terms in the

generating set.

As an illustration, we show how to use Buchberger’s Algorithm to construct a Gröbner basis.

There are many other algorithms, most of which are based on Buchberger’s Algorithm, that can

also be used to construct Gröbner bases. The algorithm begins with constructing S-polynomials.

The polynomial 1
2
(2x1x2−x1)−x1(x2−x3) = x1x3−

1
2
x1 is called the S-polynomial of 2x1x2−x1

and x2 − x3 because factors
1
2
and x1 were chosen so that the leading terms would cancel. After

the S-polynomial has been formed, it must be reduced using the elements of the generating set.

The reduction step is illustrated by the following example.

Consider the S-polynomial of 2x1x2−x1 and x
2
3−1, which is 1

2
x23(2x1x2−x1)−x1x2(x

2
3−1) =

x1x2 −
1
2
x1x

2
3. This polynomial is reduced by using the leading terms in the generating set to

eliminate terms in the S-polynomial. In this case the reduction proceeds as follows:

x1x2 −
1

2
x1x

2
3 ⇒ (x1x2 −

1

2
x1x

2
3)−

1

2
(2x1x2 − x1) = −

1

2
x1x

2
3 +

1

2
x1

−
1

2
x1x

2
3 +

1

2
x1 ⇒ (−

1

2
x1x

2
3 +

1

2
x1) +

1

2
x1(x

2
3 − 1) = 0

So the reduction of the S-polynomial of 2x1x2−x1 and x
2
3−1 gives the zero polynomial. Readers

should convince themselves that the S-polynomial of 2x1x2−x1 and x2−x3 given above cannot

be reduced further and that the S-polynomial of x2 − x3 and x23 − 1 can be reduced to zero.

Note that the reduction is in general not unique. It can depend on the order in which the terms

are eliminated and on particular elements of the generating set that are used to eliminate the

terms. One can always devise an algorithm to reduce any polynomial in finite steps.
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Buchberger’s Algorithm proceeds as follows. Successively form the S-polynomials from pairs

of polynomials in the generating set and reduce them. If a reduced non-zero S-polynomial is

obtained, add it to the generating set. Continue until all S-polynomials formed from pairs of

the enlarged generating set can be reduced to zero. This algorithm is guaranteed to terminate

in a Gröbner basis. See Buchberger (1998) or Becker et al. (1998) for details.

Continuing with our example, the reduced S-polynomial of 2x1x2−x1 and x2−x3 is x1x3−
1
2
x1.

We add it to our generating set to obtain

{2x1x2 − x1, x2 − x3, x
2
3 − 1, x1x3 −

1

2
x1}.

As discussed above, the S-polynomials of both the pair 2x1x2−x1 and x
2
3−1 and the pair x2−x3

and x23−1 are zero. Note also that the S-polynomial of 2x1x2−x1 and x1x3−
1
2
x1 reduces to zero,

but the S-polynomial of x2−x3 and x1x3−
1
2
x1 is x1x3(x2−x3)−x2(x1x3−

1
2
x1) =

1
2
x1x2−x1x

2
3

and reduces to

1

2
x1x2 − x1x

2
3 ⇒ (

1

2
x1x2 − x1x

2
3)−

1

4
(2x1x2 − x1) = −x1x

2
3 +

1

4
x1

−x1x
2
3 +

1

4
x1 ⇒ (−x1x

2
3 +

1

4
x1) + x1(x

2
3 − 1) = −

3

4
x1.

We add this non-zero polynomial to our generating set to obtain

{2x1x2 − x1, x2 − x3, x
2
3 − 1, 2x1x3 − x1,−

3

4
x1}.

The reader should verify that all S-polynomials of pairs from this generating set will reduce to

zero. Thus we have obtained a Gröbner basis.

Gröbner bases are not unique, because adding any element from the ideal generated by a

Gröbner basis will result in another Gröbner basis. To obtain uniqueness, with respect to the

monomial ordering, we work with a reduced Gröbner basis. A Gröbner basis is said to be reduced

if

1. The coefficient of the leading term of each polynomial in the basis is one.

2. Each polynomial in the basis cannot be further reduced with respect to the other polyno-

mials in the basis.
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Any Gröbner basis can be easily transformed to a reduced Gröbner basis by first reducing

each polynomial in the basis with respect to the other polynomials in the basis and then dividing

the resultant leading term by the leading coefficient. For instance, the Gröbner basis obtained

above is not reduced because both 2x1x2 − x1 and 2x1x3 − x1 can be reduced to zero. Thus

these polynomials must be eliminated to obtain the reduced Gröbner basis

{x1, x2 − x3, x
2
3 − 1}.

The reduced basis above is called a Shape basis because it is of the form

{x1 − q1(xn), . . . , xn−1 − qn−1(xn), qn(xn)},

where q1, . . . , qn are polynomials in a single variable with the degree of qi strictly less than the

degree of qn for 1 ≤ i ≤ n− 1. Shape bases are particularly useful because it is straightforward

to find all the zeros from this representation. One first finds the values of xn that are zeros of

qn(xn) and then substitutes each of these values into q1 through qn−1 to obtain the values of x1

through xn−1.

Not all reduced Gröbner bases are Shape bases. The Shape lemma, below, gives the condi-

tions under which the reduced Gröbner basis is a Shape basis.

Lemma 5 Let f1, . . . , fn be polynomials in x1, . . . , xn. The reduced Gröbner basis with respect

to the lexicographical ordering of the ideal 〈f1, . . . , fn〉 is a Shape basis if and only if the following

conditions hold.

1. The system f1, . . . , fn has only finitely many zeros.

2. If (a1, . . . , an) and (b1, . . . , bn) are two distinct zeros, then an 6= bn.

3. Each zero is either a simple point or a multiple point of local dimension one.

4. If a zero is a multiple point, then the tangent line at the zero does not contain the hyperplane

xn = 0.
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The meaning of Conditions 1 and 2 is clear, but Conditions 3 and 4 need further explana-

tion. The point (a1, . . . , an) ∈ Rn is a zero of the polynomial system f1, . . . , fn if and only if

〈f1, . . . , fn〉 ⊆ 〈x1 − a1, . . . , xn − an〉. If there exists an i such that

〈f1, . . . , fn〉 ⊆ 〈x1 − a1, . . . , (xi − ai)
2, . . . , xn − an〉 ⊂ 〈x1 − a1, . . . , xn − an〉,

then we say the zero is a multiple point ; otherwise, the zero is simple. One can verify that the

zero (a1, . . . , an) is a multiple point if and only if there exists an i such that ∂fj/∂xi|(a1,...,an) = 0

for all 1 ≤ j ≤ n. The tangent space at the zero (a1, . . . , an) is the set of all (x1, . . . , xn) ∈ Rn

such that 


∂f1
∂x1

|(a1,...,an) · · · ∂f1
∂xn

|(a1,...,an)
...

. . .
...

∂fn
∂x1

|(a1,...,an) · · · ∂fn
∂xn

|(a1,...,an)







x1
...

xn


 = 0.

Note that this matrix of partial derivatives is the Jacobian. If the zero is simple, then this

definition of the tangent space corresponds to our usual geometric notion of a tangent space,

but the correspondence breaks down if the zero is a multiple point. The local dimension of a

zero is the dimension of the tangent space. Note that the local dimension is zero if and only if

the Jacobian is of full rank. Thus, if the Jacobian is of full rank, then the zero will be simple.

The converse, however, is not necessarily true.

One can verify that if the reduced Gröbner basis is a Shape basis, then Conditions 1-4 will

hold. The converse is also true, but the verification requires much more work. See Becker et al.

(1993) for details. If the Jacobian at each zero is of full rank, then each zero is isolated and

there can only be finitely many zeros. Thus, Conditions 1-4 hold in this case. Since the set

of polynomial systems of n equations in n unknowns whose Jacobian is not of full rank is of

measure zero in the set of all such systems, Conditions 1-4 hold almost surely.

In summary, for almost all polynomial systems, there are only finitely many zeros and Buch-

berger’s Algorithm can be used to find them. While Buchberger’s Algorithm is instructive, it

can be inefficient for certain problems. Active research continues to develop variants of this

algorithm that improve efficiency.
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10 Appendix C: Iterative algorithm

This section describes an iterative procedure to find solutions of the quadratic system (12).

In general, this method will not provide us with all the solutions to the system. Recall the

quadratic system to be solved is

A (st)




Inx

D1,nxgss (1)
...

D1,nxgss (ns)



D1,nxhss (st) = B (st)


 Inx

D1,nxgss (st)




for all st, where

A (st) =
[ ∑ns

s′=1 pst,s′D2ny+1,2ny+nxfss (s
′, st) pst,1D1,nyfss (1, st) · · · pst,nsD1,nyfss (ns, st)

]

and

B (st) = −

ns∑

s′=1

pst,s′
[
D2ny+nx+1,2(ny+nx)fss (s

′, st) Dny+1,2nyfss (s
′, st)

]

for all st.

The idea of the algorithm is to guess a set of policy functions and solve for each regime’s policy

functions as in the constant parameter model case using the generalized Schur decomposition.

When the solutions are close to the guesses, then a solution has been found.

Algorithm 6 Let
{
D1,nxg

(j)
ss (st) ,D1,nxh

(j)
ss (st)

}
denote solution at iteration j.

1. Set j = 1 and initialize D1,nxg
(0)
ss (st) = 0ny×nx and D1,nxh

(0)
ss (st) = 0nx×nx.

2. For each st, construct the transformed system

A
(
st,
{
D1,nxg

(j−1)
ss (s′)

}ns
s′=1,s′ 6=st

)

 Inx

D1,nxg
(j)
ss (st)


D1,nxh

(j)
ss (st) (26)

= B (st)


 Inx

D1,nxg
(j)
ss (st)




75



where

A
(
st,
{
D1,nxg

(j)
ss (s′)

}ns
s′=1,s′ 6=st

)
=






∑ns
s′=1 pst,s′D2ny+1,2ny+nxfss (s

′, st)

+
∑ns

s′=1,s′ 6=st
pst,s′D1,nyfss (s

′, st)D1,nxg
(0)
ss (s′)


 pst,stD1,nyfss (st, st)




3. The set of systems (26) is identical to a constant parameter model case. When find-

ing D1,nxh
(j)
ss (st), use the ”most stable” generalized eigenvalues, those with the smallest

modulus.

4. Check max
{∥∥∥D1,nxh

(j)
ss (st)−D1,nxh

(j−1)
ss (st)

∥∥∥ ,
∥∥∥D1,nxg

(j)
ss (st)−D1,nxg

(j−1)
ss (st)

∥∥∥
}
< crit.

If yes, then stop and check for MSS. If no, then set j =⇒ j + 1 and return to step 2.

11 Appendix D: Second partial derivatives

This appendix derives, in detail, the six steps described in Section 5.2. Let us first define

DkDjf
i
ss (st+1, st) =

DkDjf
i
(
yss, yss, xss, xss, 0nε, 0nε, θ1, θ̂2 (st+1) , θ1, θ̂2 (st)

)

for all st+1 and st and 1 ≤ i ≤ ny + nx and 1 ≤ j, k ≤ 2 (ny + nx + nε + nθ) and

Hn1,n2;m1,m2
f iss (st+1, st) =




Dn1
Dm1

f iss (st+1, st) . . . Dn1
Dm2

f iss (st+1, st)
...

. . .
...

Dn2
Dm1

f iss (st+1, st) . . . Dn2
Dm2

f iss (st+1, st)




for all st+1 and st and 1 ≤ n1, m1 < n2, m2 ≤ 2 (ny + nx + nε + nθ) and 1 ≤ i ≤ ny + nx.
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11.1 Step 1: Obtaining the derivatives of xt−1 twice

The first equation is the derivative with respect to xt−1 twice.

H1,nx;1,nxG
i
ss (st) =

ns∑

s′=1

pst,s′×




(D1,nxgss (s
′)D1,nxhss (st))

⊺





 H1,ny;1,nyf

i
ss (s

′, st)D1,nxgss (s
′)

+2H1,ny;2ny+1,2ny+nxf
i
ss (s

′, st)


D1,nxhss (st)

+2H1,ny;ny+1,2nyf
i
ss (s

′, st)D1,nxgss (st)

+2H1,ny;2ny+nx+1,2(ny+nx)f
i
ss (s

′, st)




+D1,nxgss (st)
⊺




Hny+1,2ny;ny+1,2nyf
i
ss (s

′, st)D1,nxgss (st)

+2Hny+1,2ny;2ny+1,2ny+nxf
i
ss (s

′, st)D1,nxhss (st)

+2Hny+1,2ny;2ny+nx+1,2(ny+nx)f
i
ss (s

′, st)




+D1,nxhss (st)
⊺





 H2ny+1,2ny+nx;2ny+1,2ny+nxf

i
ss (s

′, st)

+D1,nyf
i
ss (s

′, st)H1,nx;1,nxgss (s
′)


D1,nxhss (st)

+2H2ny+1,2ny+nx;2ny+nx+1,2(ny+nx)f
i
ss (s

′, st)




+


 D1,nyf

i
ss (s

′, st)D1,nxgss (s
′)

+D2ny+1,2ny+nxf
i
ss (s

′, st)


H1,nx;1,nxhss (st)

+Dny+1,2nyf
i
ss (s

′, st)H1,nx;1,nxgss (st)

+H2ny+nx+1,2(ny+nx);2ny+nx+1,2(ny+nx)f
i
ss (s

′, st)




The condition H1,nx;1,nxG
i
ss (st) = 0nx×nx for 1 ≤ i ≤ ny+nx implies a linear system of equa-

tions that determines the solution for
{
{H1,nx;1,nxg

i
ss (st)}

ny

i=1 , {H1,nx;1,nxh
i
ss (st)}

nx

i=1

}ns
st=1

.
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11.2 Step 2: Obtaining the derivatives of xt−1 and εt

The second equation is the derivative with respect to xt−1 and εt.

H1,nx;nx+1,nx+nεG
i
ss (st) =

ns∑

s′=1

pst,s′×




(D1,nxgss (s
′)D1,nxhss (st))

⊺





 H1,ny ;1,nyf

i
ss (s

′, st)D1,nxgss (s
′)

+2H1,ny;2ny+1,2ny+nxf
i
ss (s

′, st)


Dnx+1,nx+nεhss (st)

+H1,ny;ny+1,2nyf
i
ss (s

′, st)Dnx+1,nx+nεgss (st)

+H1,ny;2(ny+nx)+nε+1,2(nx+ny+nε)f
i
ss (s

′, st)




+D1,nxgss (st)
⊺





 Hny+1,2ny;1,nyf

i
ss (s

′, st)D1,nxgss (s
′)

+Hny+1,2ny ;2ny+1,2ny+nxf
i
ss (s

′, st)


Dnx+1,nx+nεhss (st)

+Hny+1,2ny;ny+1,2nyf
i
ss (s

′, st)Dnx+1,nx+nεgss (st)

+Hny+1,2ny;2(ny+nx)+nε+1,2(nx+ny+nε)f
i
ss (s

′, st)




+D1,nxhss (st)
⊺




H2ny+1,2ny+nx;ny+1,2nyf
i
ss (s

′, st)Dnx+1,nx+nεgss (st)

+H2ny+1,2ny+nx;2(ny+nx)+nε+1,2(nx+ny+nε)f
i
ss (s

′, st)

+


 H2ny+1,2ny+nx;2ny+1,2ny+nxf

i
ss (s

′, st)

+D1,nyf
i
ss (s

′, st)H1,nx;1,nxgss (s
′)


Dnx+1,nx+nεhss (st)




+


 H2ny+nx+1,2(nx+ny);1,nyf

i
ss (s

′, st)D1,nxgss (s
′)

+H2ny+nx+1,2(ny+nx);2ny+1,2ny+nxf
i
ss (s

′, st)


Dnx+1,nx+nεhss (st)

+


 D1,nyf

i
ss (s

′, st)D1,nxgss (s
′)

+D2ny+1,2ny+nxf
i
ss (s

′, st)


H1,nx;nx+1,nx+nεhss (st)

+H2ny+nx+1,2(ny+nx);ny+1,2nyf
i
ss (s

′, st)Dnx+1,nx+nεgss (st)

+Dny+1,2nyf
i
ss (s

′, st)H1,nx;nx+1,nx+nεgss (st)

+H2ny+nx+1,2(nx+ny);2(nx+ny)+nε+1,2(nx+ny+nε)f
i
ss (s

′, st)




Conditional on the solution from Step 1, the condition H1,nx;nx+1,nx+nεG
i
ss (st) = 0nx×nε

for 1 ≤ i ≤ ny + nx implies a linear system of equations that determines the solution
{
{H1,nx;nx+1,nx+nεg

i
ss (st)}

ny

i=1 , {H1,nx;nx+1,nx+nεh
i
ss (st)}

nx

i=1

}ns
st=1

.
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11.3 Step 3: Obtaining the derivatives of xt−1 and χ

The third equation is the derivative with respect to xt−1 and χ.

H1,nx;nx+nε+1G
i
ss (st) =

ns∑

s′=1

pst,s′×




(D1,nx
gss (s

′)D1,nx
hss (st))

⊺




H1,ny ;1,ny
f i
ss (s

′, st)


 Dnx+nε+1gss (s

′)

+D1,nx
gss (s

′)Dnx+nε+1hss (st)




+H1,ny;ny+1,2ny
f i
ss (s

′, st)Dnx+nε+1gss (st)

+H1,ny;2ny+1,2ny+nx
f i
ss (s

′, st)Dnx+nε+1hss (st)

+H1,ny;2(nx+ny+nε)+1,2(nx+ny+nε)+nθ
f i
ss (s

′, st)Dθss (s
′)

+H1,ny;2(nx+ny+nε+nθ)+1,2(nx+ny+nε+nθ)f
i
ss (s

′, st)Dθss (st)




+D1,nx
hss (st)

⊺




H2ny+1,2ny+nx;1,ny
f i
ss (s

′, st)


 Dnx+nε+1gss (s

′)

+D1,nx
gss (s

′)Dnx+nε+1hss (st)




+H2ny+1,2ny+nx;2ny+1,2ny+nx
f i
ss (s

′, st)Dnx+nε+1hss (st)

+H2ny+1,2ny+nx;ny+1,2ny
f i
ss (s

′, st)Dnx+nε+1gss (st)

+H2ny+1,2ny+nx;2(nx+ny+nε)+1,2(nx+ny+nε)+nθ
f i
ss (s

′, st)Dθss (s
′)

+H2ny+1,2ny+nx;2(nx+ny+nε)+nθ+1,2(nx+ny+nε+nθ)f
i
ss (s

′, st)Dθss (st)

D1,ny
f i
ss (s

′, st)


 H1,nx;nx+nε+1gss (s

′)

+H1,nx;1,nx
gss (s

′)Dnx+nε+1hss (st)







+D1,nx
gss (st)

⊺




Hny+1,2ny;1,ny
f i
ss (s

′, st)


 Dnx+nε+1gss (s

′)

+D1,nx
gss (s

′)Dnx+nε+1hss (st)




+Hny+1,2ny ;ny+1,2ny
f i
ss (s

′, st)Dnx+nε+1gss (st)

+Hny+1,2ny ;2ny+1,2ny+nx
f i
ss (s

′, st)Dnx+nε+1hss (st)

+Hny+1,2ny;2(nx+ny+nε)+1,2(nx+ny+nε)+nθ
f i
ss (s

′, st)Dθss (s
′)

+Hny+1,2ny ;2(nx+ny+nε+nθ)+1,2(nx+ny+nε+nθ)f
i
ss (s

′, st)Dθss (st)




+H2ny+nx+1,2(nx+ny);1,ny
f i
ss (s

′, st)


 Dnx+nε+1gss (s

′)

+D1,nx
gss (s

′)Dnx+nε+1hss (st)




+H2ny+nx+1,2(ny+nx);ny+1,2ny
f i
ss (s

′, st)Dnx+nε+1gss (st)

+H2ny+nx+1,2(ny+nx);2ny+1,2ny+nx
f i
ss (s

′, st)Dnx+nε+1hss (st)

+H2ny+nx+1,2(nx+ny);2(nx+ny+nε)+1,2(nx+ny+nε)+nθ
f i
ss (s

′, st)Dθss (s
′)

+H2ny+nx+1,2(nx+ny);2(nx+ny+nε)+nθ+1,2(nx+ny+nε+nθ)f
i
ss (s

′, st) θχ (s)

+


 D1,ny

f i
ss (s

′, st)D1,nx
gss (s

′)

+D2ny+1,2ny+nx
f i
ss (s

′, st)


H1,nx;nx+nε+1hss (st)

+Dny+1,2ny
f i
ss (s

′, st)H1,nx;nx+nε+1gss (st)



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Given the solution from Step 2, the condition Hnx+1,nx+nε;nx+nε+1G
i
ss (st) = 0nx

for 1 ≤ i ≤ ny + nx implies a linear system of equations that determines the solution
{
{Hnx+1,nx+nε;nx+nε+1g

i
ss (st)}

ny

i=1 , {Hnx+1,nx+nε;nx+nε+1h
i
ss (st)}

nx

i=1

}ns
st=1

.

11.4 Step 4: Obtaining the derivatives of εt−1 twice

The fourth equation is the derivative with respect to εt−1 twice.

Hnx+1,nx+nε;nx+1,nx+nεG
i
ss (st) =

ns∑

s′=1

pst,s′×




[D1,nxgss (s
′)Dnx+1,nx+nεhss (st)]

⊺





 H1,ny;1,nyf

i
ss (s

′, st)D1,nxgss (s
′)

+2H1,ny;2ny+1,2ny+nxf
i
ss (s

′, st)


Dnx+1,nx+nεhss (st)

+2H1,ny;ny+1,2nyf
i
ss (s

′, st)Dnx+1,nx+nεgss (st)

+2H1,ny;2(ny+nx)+nε+1,2(nx+ny+nε)f
i
ss (s

′, st)




+Dnx+1,nx+nεhss (st)
⊺





 H2ny+1,2ny+nx;2ny+1,2ny+nxf

i
ss (s

′, st)

+D1,nyf
i
ss (s

′, st)H1,nx;1,nxgss (s
′)


Dnx+1,nx+nεhss (st)

+2H2ny+1,2ny+nx;2(nx+ny)+nε+1,2(nx+ny+nε)f
i
ss (s

′, st)




+Dnx+1,nx+nεgss (st)
⊺




Hny+1,2ny;ny+1,2nyf
i
ss (s

′, st)Dnx+1,nx+nεgss (st)

+2Hny+1,2ny ;2ny+1,2ny+nxf
i
ss (s

′, st)Dnx+1,nx+nεhss (st)

+2Hny+1,2ny;2(ny+nx)+nε+1,2(nx+ny+nε)f
i
ss (s

′, st)




+


 D1,nyf

i
ss (s

′, st)D1,nxgss (s
′)

+D2ny+1,2ny+nxf
i
ss (s

′, st)


Hnx+1,nx+nε;nx+1,nx+nεhss (st)

+Dny+1,2nyf
i
ss (s

′, st)Hnx+1,nx+nε;nx+1,nx+nεgss (st)

+H2(ny+nx)+nε+1,2(nx+ny+nε);2(ny+nx)+nε+1,2(nx+ny+nε)f
i
ss (s

′, st)




Given the solution from Step 1, the condition Hnx+1,nx+nε;nx+1,nx+nεG
i
ss (st) = 0nε×nε

for 1 ≤ i ≤ ny + nx implies a linear system of equations that determines the solution
{
{Hnx+1,nx+nε;nx+1,nx+nεg

i
ss (st)}

ny

i=1 , {Hnx+1,nx+nε;nx+1,nx+nεh
i
ss (st)}

nx

i=1

}ns
st=1

.
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11.5 Step 5: Obtaining the derivatives of εt−1 and χ

The fifth equation is the derivative with respect to εt−1 and χ.

Hnx+1,nx+nε;nx+nε+1G
i
ss (st) =

ns∑

s′=1

pst,s′×




(D1,nx
gss (s

′)Dnx+1,nx+nε
hss (st))

⊺




H1,ny ;1,ny
f i
ss (s

′, st)


 Dnx+nε+1gss (s

′)

+D1,nx
gss (s

′)Dnx+nε+1hss (st)




+H1,ny ;ny+1,2ny
f i
ss (s

′, st)Dnx+nε+1gss (st)

+H1,ny ;2ny+1,2ny+nx
f i
ss (s

′, st)Dnx+nε+1hss (st)

+H1,ny ;2(nx+ny+nε)+1,2(nx+ny+nε)+nθ
f i
ss (s

′, st)Dθss (s
′)

+H1,ny ;2(nx+ny+nε+nθ)+1,2(nx+ny+nε+nθ)f
i
ss (s

′, st)Dθss (st)




+Dnx+1,nx+nε
hss (st)

⊺




H2ny+1,2ny+nx;1,ny
f i
ss (s

′, st)


 Dnx+nε+1gss (s

′)

+D1,nx
gss (s

′)Dnx+nε+1hss (st)




+H2ny+1,2ny+nx;ny+1,2ny
f i
ss (s

′, st)Dnx+nε+1gss (st)

+H2ny+1,2ny+nx;2ny+1,2ny+nx
f i
ss (s

′, st)Dnx+nε+1hss (st)

+H2ny+1,2ny+nx;2(nx+ny+nε)+1,2(nx+ny+nε)+nθ
f i
ss (s

′, st)Dθss (s
′)

+H2ny+1,2ny+nx;2(nx+ny+nε)+nθ+1,2(nx+ny+nε+nθ)f
i
ss (s

′, st)Dθss (st)

D1,ny
f i
ss (s

′, st)


 H1,nx;nx+nε+1gss (s

′)

+H1,nx;1,nx
gss (s

′)Dnx+nε+1hss (st)







+Dnx+1,nx+nε
gss (st)

⊺




Hny+1,2ny ;1,ny
f i
ss (s

′, st)


 Dnx+nε+1gss (s

′)

+D1,nx
gss (s

′)Dnx+nε+1hss (st)




+Hny+1,2ny ;ny+1,2ny
f i
ss (s

′, st)Dnx+nε+1gss (st)

+Hny+1,2ny ;2ny+1,2ny+nx
f i
ss (s

′, st)Dnx+nε+1hss (st)

+Hny+1,2ny ;2(nx+ny+nε)+1,2(nx+ny+nε)+nθ
f i
ss (s

′, st)Dθss (s
′)

+Hny+1,2ny ;2(nx+ny+nε+nθ)+1,2(nx+ny+nε+nθ)f
i
ss (s

′, st)Dθss (st)




+H2(nx+ny)+nε+1,2(nx+ny+nε);1,ny
f i
ss (s

′, st)


 Dnx+nε+1gss (s

′)

+D1,nx
gss (s

′)Dnx+nε+1hss (st)




+H2(nx+ny)+nε+1,2(nx+ny+nε);ny+1,2ny
f i
ss (s

′, st)Dnx+nε+1gss (st)

+H2(nx+ny)+nε+1,2(nx+ny+nε);2ny+1,2ny+nx
f i
ss (s

′, st)Dnx+nε+1hss (st)

+H2(ny+nx)+nε+1,2(nx+ny+nε);2(nx+ny+nε)+1,2(nx+ny+nε)+nθ
f i
ss (s

′, st)Dθss (s
′)

+H2(ny+nx)+nε+1,2(nx+ny+nε);2(nx+ny+nε)+nθ+1,2(nx+ny+nε+nθ)f
i
ss (s

′, st)Dθss (st)

+


 D1,ny

f i
ss (s

′, st)D1,nx
gss (s

′)

+D2ny+1,2ny+nx
f i
ss (s

′, st)


Hnx+1,nx+nε;nx+nε+1hss (st)

+Dny+1,2ny
f i
ss (s

′, st)Hnx+1,nx+nε;nx+nε+1gss (st)



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Given the solution from Steps 1 and 3, the condition Hnx+1,nx+nε,nx+nε;nx+nε+1G
i
ss (st) = 0nε

for 1 ≤ i ≤ ny + nx implies a linear system of equations that determines the solution
{
{Hnx+1,nx+nε;nx+nε+1g

i
ss (st)}

ny

i=1 , {Hnx+1,nx+nε;nx+nε+1h
i
ss (st)}

nx

i=1

}ns
st=1

.

11.6 Step 6: Obtaining the derivatives of χ twice

The sixth equation is the derivative with respect to χ twice.

Hnx+nε+1;nx+nε+1G
i
ss (st) =

ns∑

s′=1

pst,s′×







 Dnx+nε+1gss (s′)

+D1,nxgss (s
′)Dnx+nε+1hss (st)




⊺

H1,ny ;1,ny f
i
ss (s

′, st)



 Dnx+nε+1gss (s′)

+D1,nxgss (s
′)Dnx+nε+1hss (st)





+2



 Dnx+nε+1gss (s′)

+D1,nxgss (s
′)Dnx+nε+1hss (st)




⊺





H1,ny ;ny+1,2ny f
i
ss (s

′, st)Dnx+nε+1gss (st)

+H1,ny ;2ny+1,2ny+nxf
i
ss (s

′, st)Dnx+nε+1hss (st)

+H
1,ny ;2(nx+ny+nε)+1,2(nx+ny+nε)+nθ

f iss (s
′, st)Dθss (s′)

+H
1,ny ;2(nx+ny+nε+nθ)+1,2(nx+ny+nε+nθ)

f iss (s
′, st)Dθss (st)





+Dnx+nε+1gss (st)
⊺





Hny+1,2ny ;ny+1,2ny f
i
ss (s

′, st)Dnx+nε+1gss (st)

+2Hny+1,2ny ;2ny+1,2ny+nxf
i
ss (s

′, st)Dnx+nε+1hss (st)

+2Hny+1,2ny ;2(nx+ny+nε)+1,2(nx+ny+nε)+nθ
f iss (s

′, st)Dθss (s′)

+2H
ny+1,2ny ;2(nx+ny+nε+nθ)+1,2(nx+ny+nε+nθ)

f iss (s
′, st)Dθss (st)





+Dnx+nε+1hss (st)
⊺





H2ny+1,2ny+nx;2ny+1,2ny+nxf
i
ss (s

′, st)Dnx+nε+1hss (st)

+2H
2ny+1,2ny+nx;2(nx+ny+nε)+1,2(nx+ny+nε)+nθ

f iss (s
′, st)Dθss (s′)

+2H
2ny+1,2ny+nx;2(nx+ny+nε)+nθ+1,2(nx+ny+nε+nθ)

f iss (s
′, st)Dθss (st)

+
[
D1,nyf

i
ss (s

′, st)H1,nx;1,nxgss (s
′)
]
Dnx+nε+1hss (st)

+2
[
D1,nyf

i
ss (s

′, st)H1,nx;nx+nε+1gss (s′)
]





+(ε′)⊺





H
2(nx+ny)+1,2(nx+ny)+nε;2(nx+ny)+1,2(nx+ny)+nε

f iss (s
′, st)

+D1,nyf
i
ss (s

′, st)Hnx+1,nx+nε;nx+1,nx+nεgss (s
′)

+Dnx+1,nx+nεgss (s
′)′ H1,ny ;1,nyf

i
ss (s

′, st)Dnx+1,nx+nεgss (s
′)

+2Dnx+1,nx+nεgss (s
′)′ H

1,ny ;2(ny+nx)+1,2(ny+nx)+nε
f iss (s

′, st)




ε′

+Dθss (s′)
⊺




H

2(nx+ny+nε)+1,2(nx+ny+nε)+nθ ;2(nx+ny+nε)+1,2(nx+ny+nε)+nθ
f iss (s

′, st)Dθss (s′)

+2H
2(nx+ny+nε)+1,2(nx+ny+nε)+nθ ;2(nx+ny+nε)+nθ+1,2(nx+ny+nε+nθ)

f iss (s
′, st)Dθss (st)





+Dθss (st)
⊺ H

2(nx+ny+nε)+nθ+1,2(nx+ny+nε+nθ);2(nx+ny+nε)+nθ+1,2(nx+ny+nε+nθ)
f iss (s

′, st)Dθss (st)

+



 D1,ny f
i
ss (s

′, st)D1,nxgss (s
′)

+D2ny+1,2ny+nxf
i
ss (s

′, st)



Hnx+nε+1;nx+nε+1hss (st)

+D1,ny f
i
ss (s

′, st)Hnx+nε+1;nx+nε+1gss (s′)

+Dny+1,2ny f
i
ss (s

′, st)Hnx+nε+1;nx+nε+1gss (st)

+D
2(nx+ny+nε)+1,2(nx+ny+nε)+nθ

f iss (s
′, st)Hθss (s′)

+D
2(nx+ny+nε)+nθ+1,2(nx+ny+nε+nθ)

f iss (s
′, st)Hθss (st)





Given the solutions from Steps 1, 3 and 4, the condition Hnx+nε+1;nx+nε+1G
i
ss (st) = 0
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for 1 ≤ i ≤ ny + nx implies a linear system of equations that determines the solution
{
{Hnx+nε+1;nx+nε+1g

i
ss (st)}

ny

i=1 , {Hnx+nε+1;nx+nε+1h
i
ss (st)}

nx

i=1

}ns
st=1

.
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