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1. INTRODUCTION

It is common for financial economists to view all asset pricing models only as approximations of
reality. Although these models are likely to be misspecified, it is still useful to empirically eval-
uate the degree of misspecification and their relative pricing performance using actual data. In
their seminal paper, Hansen and Jagannathan (1997, HJ hereafter) propose measures of model
misspecification that are now routinely used for parameter estimation, specification testing and
comparison of competing asset pricing models. The unconstrained (constrained) HJ-distance mea-
sures the distance between the stochastic discount factor (SDF) of a proposed model and the set of
(nonnegative) admissible stochastic discount factors. But despite the recent advances in developing
the appropriate econometric theory for comparing asset pricing models based on the HJ-distance,
a general statistical procedure for model selection in this context is still missing (Chen and Ludvig-
son, 2009, p. 1080). As a result, researchers are still ranking alternative models by comparing their
corresponding sample HJ-distances (see, for example, Parker and Julliard, 2005 and Chen and Lud-
vigson, 2009, among others) without any use of a formal statistical criterion that takes into account
the sampling and model misspecification uncertainty. In this paper, we provide a fully-fledged sta-
tistical framework for estimation, evaluation and comparison of linear and nonlinear (potentially
misspecified) asset pricing models based on the unconstrained HJ-distances. Given some unappeal-
ing theoretical properties of the constrained HJ-distance (Gospodinov, Kan and Robotti, 2010a),
we do not consider explicitly the sample constrained HJ-distance but the generality of our analyt-
ical framework allows us to easily extend the main results for the unconstrained HJ-distance that
we derive in this paper to its constrained analog (see Gospodinov, Kan and Robotti, 2010a, for

details).

The econometric methodology for using the unconstrained HJ-distance as a specification test
for linear and nonlinear models is developed by Hansen, Heaton and Luttmer (1995), Jagannathan
and Wang (1996) and Parker and Julliard (2005). Kan and Robotti (2009) provide a statistical
procedure for comparing linear asset pricing models based on the unconstrained HJ-distance. Fur-
thermore, Kan and Robotti (2009) propose standard errors for the SDF parameter estimates and
the sample HJ-distance that are valid for misspecified models. The objective of this paper is to pro-
vide a unifying framework for improved statistical inference, specification testing and (pairwise and

multiple) model comparison based on the sample HJ-distances of competing linear and nonlinear



asset pricing models.

Our main contributions can be summarized as follows. First, we propose new Lagrange multi-
plier tests for individual and joint testing of correct specification of one or more asset pricing models.
These new specification tests are asymptotically chi-squared distributed and enjoy improved finite-
sample properties compared to the specification test based on the HJ-distance. Second, we derive
the non-degenerate joint asymptotic distribution of the parameters and the Lagrange multipliers
which are not always asymptotically normally distributed.! Third, we improve upon the model
selection testing procedures in the existing literature. This is achieved by incorporating the appro-
priate null hypotheses which leads to simpler model comparison tests that require the estimation of
far fewer parameters than the existing testing procedures. While the practice of not imposing the
null hypotheses in constructing the test statistics can be justified based on asymptotic arguments, it
produces the undesirable outcome of comparing test statistics that are positive by construction (as
in the nested model case discussed in Section 3) to distributions that can take on negative values.
Our modifications are new to the literature on model selection tests and lead to substantial size
and power improvements in setups with many test assets (moment conditions). Importantly, the
proposed tests can be easily adapted to other setups including the quasi-likelihood framework of
Vuong (1989). Fourth, we propose pivotal (chi-squared) versions of the model comparison tests that
are easier to implement and analyze than their weighted chi-squared counterparts. The chi-squared
tests appear to possess excellent finite-sample properties and their improved power proves to be
particularly important in cases where they are used as pre-tests in sequential testing procedures for
strictly non-nested and overlapping models. Fifth, we develop a test for multiple model comparison
as well as a fast numerical algorithm for computing its asymptotic p-value.? Finally, we investigate

the finite-sample performance of the proposed inference procedures using Monte Carlo simulations.

The rest of the paper is organized as follows. Section 2 introduces the population and sample
HJ-distance problems. It also presents the basic assumptions and the asymptotic properties of the
sample HJ-distance and its corresponding estimators. Section 3 develops our pairwise and multiple
model comparison tests based on the sample HJ-distances. Section 4 studies the finite-sample

properties of our testing procedures using Monte Carlo simulation experiments. Some concluding

IThis problem is further investigated rigorously in Gospodinov, Kan and Robotti (2010b).
2The Matlab codes for implementing all the statistical tests and procedures discussed in the paper are available
upon request.



remarks are provided in Section 5. Proofs are collected in the Appendix.

The paper adopts the following notation. Let 2 stand for “asymptotically distributed as,” X?;
signify a chi-squared random variable with p degrees of freedom, |w| = (w’ w)% denote the Euclidean
norm of a vector w and ||A|| = /tr(A’A) be the Euclidean or Frobenius norm of a matrix A,
where tr(-) is the trace operator. Finally, let Z = (Z3,...,Zs)" be a vector of s independent
standard normal random variables, and let £ = (&4, ...,&,)" be a vector of s real numbers. Then,
Fy(¢) =7_, & Z? denotes a random variable which is distributed as a weighted sum of independent

chi-squared random variables with one degree of freedom.

2. HANSEN-JAGANNATHAN DISTANCE

2.1. Population Hansen-Jagannathan Distance

Let x; denote a vector of payoffs of n assets at the end of period t and ¢;—1 be the corresponding
costs of these n assets at the end of period t — 1 with E[g;_1] # 0,,.% This setup can accommodate
both gross and excess returns on test assets as well as payoffs of trading strategies that are based
on time-varying information. In addition, we assume that U = E[z.2}] is nonsingular so that none
of the test assets is redundant.

Let m; represent an admissible SDF at time ¢ and let M be the set of all admissible SDFs. An

SDF m; is admissible if it prices the test assets correctly, i.e.,*

E[:Etmt] = E[qt—l]- (1)

Suppose that y.(7) is a candidate SDF at time ¢ that depends on a k-vector of unknown parameters
v € T, where T is the parameter space of 4.> An asset pricing model is correctly specified if there
exists a v € T' such that y;(y) € M. The model is misspecified if y.(y) ¢ M for all v € T.
When the asset pricing model is misspecified, we are interested in measuring the degree of model

misspecification. HJ suggest using

(SIS

6 = min min (Bl(ye(y) —ma)?)

(2)

3When E [gt—1] = 0n, the mean of the SDF cannot be identified and researchers have to choose some normalization
of the SDF (see, for example, Kan and Robotti, 2008).

4Strictly speaking, the set of admissible SDFs should be defined in terms of conditional expectations. In this
paper, we use an unconditional version of the fundamental pricing equation. This, in principle, could be justified by
incorporating conditioning information through scaled payoffs (see, for example, Section 8.1 in Cochrane, 2005).

®In this paper, we present results for the case in which the candidate SDF depends on some unknown parameters,
but it is straightforward to adapt our analysis to the case in which the SDF does not depend on parameters.




as a misspecification measure of y;(v). We refer to 0 as the HJ-distance measure.

Instead of solving the above primal problem to obtain §, HJ suggest that it is sometimes more

convenient to solve the following dual problem:

2: : E 2 o/ 2_2/ _
§ min max [ye(7)” — (we(y) — Nze)™ — 2N qe—1], 3)

where A is an n-vector of Lagrange multipliers.

Let 6 = [/, \'] and denote by §* = [y*' , \*'] the pseudo-true value that solves the population
dual problem in (3):

0" = arg min mas £ [9:(0)], (4)
where
$(0) = ye(7)? — ma(0)” — 2N g1 (5)
and
my(0) = yi(v) — N (6)

Note that y;(7*) prices the n test assets correctly if the vector of pricing errors is zero, i.e.,

e(v") = Elzwe(v") — qt-1] = On. (7)

In this case, 3 (7*) € M, \* = 0,, and we refer to v* as the true value.

By rearranging the dual problem in (3), it is easy to show that
A=Uely) 0
and
02 = e(v" YU e(v"). (9)

While the quadratic form in the pricing errors in (9) has been widely used in the empirical finance
literature for parameter estimation, model evaluation and comparison, the potential usefulness

of the information regarding model specification contained in the Lagrange multipliers has been

5The optimization problem in (4) bears some strong resemblance to the structure of the Euclidean likelihood
problem defined as min, maxx E[h(XNe(v))] with h(c) = —1¢*> — ¢. Other choices of h(c) give rise to some popular
members of the class of generalized empirical likelihood (GEL) estimators. See Almeida and Garcia (2009) for further
discussion of the class of GEL estimators in the context of asset pricing models.



largely ignored. In this paper, we explicitly exploit this information to develop Lagrange multiplier

specification tests for individual and multiple models.

2.2. Sample Estimators and Assumptions

Since the population HJ-distance of a model and its associated parameters are unobservable, they

have to be estimated from the data. The estimator of 8* in (4) is obtained as the solution to the

@:[7
A

Alternatively, let e () = zy(v) — -1, er(y) = %23;1 er(y) and U = %23;1 xx}. Then, the

sample dual problem

T
1
= i — 0). 10
argmin max - ;:1 ¢:(0) (10)

estimator 6 = #, ;\/)’ can be obtained sequentially as

4 = argmin ep(y)U ter(y), (11)
yer
and
A=U"er(3). (12)

In the following analysis, we appeal to the empirical process theory to derive the limiting
behavior of the estimators and test statistics under correctly specified and misspecified models.
The main regularity conditions for the consistency and the asymptotic distribution theory are
listed below. They include restrictions on the dependence of the data, identification conditions for

the pseudo-true values and some standard assumptions for deriving the limiting distributions.

We first introduce regularity conditions to ensure the stochastic equicontinuity of the sample

HJ-distance and the consistency of 6.

ASSUMPTION A. Assume that

(i) ¢,(0) is m-dependent,
(ii) the parameter space © is compact,
(iii) ¢, (9) is continuous in @ € O almost surely,

(iv) [P (01) — pp(02)] < A0 —02] ¥V 01,02 € ©, where Ay is a bounded random variable that

satisfies imp_o0 7 S E[|A1] < oo for some w > 0,



(v) supocoE(|¢(0)|*] < oo for some w > 0,

(vi) the population dual problem (4) has a unique solution 6% which is in the interior of 6.

Assumptions A(i)-A(v) ensure the stochastic equicontinuity of ¢, (f) (see Andrews, 1994 and
Stock and Wright, 2000) and imply that

T
supgce | D ¢1(6) — El,(0)]| 2 0. (13)
t=1

The m-dependence can be relaxed although results for empirical processes with more general de-
pendence structure are still limited (see, for instance, Andrews, 1993 and Andrews and Pollard,
1994). Assumption A(vi) is an identification condition that ensures the uniqueness of the pseudo-
true value 6*. The uniform convergence in (13) and Assumption A(vi) are sufficient for establishing

the consistency of 6

0L o (14)
Let .
Hy, H] 1 - G2 E[6,(67)]
H= " M| = lim = —— 15
[ HA“/ Hy ] Tgréo T ; 0600’ ( )
and

M M,
M= i M | = lim Var
My My T—o0

1§:Mt l (16)

The next assumption provides conditions for the existence and un1form convergence of the limiting

matrices in (15) and (16).
AssuMPTION B. Let N(6*) be a neighborhood of 0*. Assume that

(i) E[¢p,(0)] is twice continuously differentiable in 0 for 8 € N(6%),

MH < oo and H is of full rank,

(ii) SUPge N (6*) 9000

(iii) M is a finite positive definite matriz when § > 0, or Myy is a finite positive definite matriz

when 6 = 0.

Following Andrews (1994), let hy(f) = 9¢,(6)/06 and define the empirical process v T (f),

where

T 1 T
Z = = 3" ((0) — Ellu(0). (17)
t=1 t=1

6

’ﬂ |



The next assumption ensures that v/ T () obeys the central limit theorem.

AssuMPTION C. Assume that vi(0) satisfies the conditions

(1) |ve (601) — v (02)] < By|01 — 03] ¥V 01,05 € O, where By is a bounded random variable that

satisfies limp_, o % 23;1 E[|By|**t*] < oo for some w > 0,

(i) supgeoE|lv: (0) |**] < oo for some w > 0.

It proves useful for our subsequent analysis to provide explicit expressions for the partitioned

matrices in (15) and (16). Using the fact that

20T — oty - (o) 2, (15)
P~ ofaama (@)~ ), (19)

and under Assumptions A, B and C, we can write

2 *
Hy = 28 |(ur) (o) 25T (20)
Hy, = 2E [;pt ayé(f)] , (21)
Hy, = —2E [za;] = 20, (22)
and
My =4 Z E [(zemi(0") — qr—1) (@e45me15(0") — qrrj—1)'] - (23)
j=—00

If the model is correctly specified, we have A\* = 0,, and y(7*) = m(0*). Then, it follows
that Hyy = Opxg and My = Z‘;‘;_OO El(zwe(v*) — qt—1)(@t4jy+5(Y") — qe4j—1)']. Furthermore,
we have 0¢;(0)/0y = 0; which yields M., = Opxr and My, = Opxk. This is the reason why
Assumption B(iii) requires only My, and not M, to be positive definite when 6 = 0.

2.3. Asymptotic Results



Let

B Py (v*)
_ Iy(v")
D - E[:p = ] (25)
S = Y Ela(e;(v)], (26)
j=—o00

where u; = e(y*) U~ ay.

The following lemma presents the asymptotic distributions of the sample squared HJ-distance

under correctly specified and misspecified models.

Lemma 1. Under Assumptions A, B and C,

(a) if 6 =0,
2 A
To ~ Frk(8), (27)
where the &;’s are the eigenvalues of
A=PU 2SU 2P, (28)

with P being an n x (n — k) orthonormal matriz whose columns are orthogonal to U~:D.

(b) if &> 0,
VT(3* — 62) 2 N (0, 02), (29)

where o =332 Elb(v)bir;(v9)] and be(v*) = 2u (v ) (y*) — uf(v*) + 6°.

The asymptotic distribution and matrix A in part (a) of Lemma 1 coincide with the ones derived
by Hansen, Heaton and Luttmer (1995) and Parker and Julliard (2005). To conduct inference, the
covariance matrices in Lemma 1 should be replaced with consistent estimators. In particular, in

part (a), we can replace A with its sample analog

N
NI

A=PU 25U zP, (30)

where S is obtained using a nonparametric heteroskedasticity and autocorrelation consistent (HAC)

estimator (see, for example, Newey and West, 1987 and Andrews, 1991), P is an orthonormal matrix



azgéj)}' Similarly, in part (b) we can

whose columns are orthogonal to U ~5Dand D = * ZZ;I |::Et

use a HAC estimator to estimate the variance ag.

It has been documented (see Ahn and Gadarowski, 2004) that if we use A to estimate the
eigenvalues ¢,;’s, the specification test in part (a) of Lemma 1 tends to overreject substantially
when the number of test assets n is large relative to the time series observations 7. One way to
reduce the overrejection problem is to use a different estimator of S. The consistent estimator of
Sa = Mjy)/4, denoted by S 4, 1s a good alternative. While Sy converges to S under the correctly
specified model, S4 tends to be larger than S in finite samples, thus rendering the overrejection

problem less severe.

Lemma 2 below establishes the asymptotic normality of the estimates of the SDF parameters

and of the Lagrange multipliers, @, based on the HJ-distance.

Lemma 2. Under Assumptions A, B and C,

(a) if 6 >0,
VT —07) 2 N(0pis, 3, (31)
where =372 E[ldy ;] with I, = [I}; 1] given by
ly = (C+DU D)™ [D’U_let(y*) + {aytag ) _ D’U‘lznt} ut] , (32)
lgt = U_I[Dllt — et(y*) + ZEt’LLt]. (33)
(b) if 6=0,
VTG — 07) 2 N(0,, ), (34)

where ¥ =322 E[thZNQH] with Iy = [I}, ,15,] given by

j=—o0

Iy = (D'UT'D)'D'U e (v"), (35)
Iy = —PU 3e(y"), (36)
and
Iy, Okxn
1= . 37
O(n—k)xk P/U%] (87)




The covariance matrices ¥ and ¥ in Lemma 2 can be consistently estimated using the sample
analogs of (32)—(33) and (35)—(36), respectively. Tests of parameter restrictions based on the Wald
or distance metric (likelihood ratio-type) statistics can be easily developed from the results in

Lemma 2.

While the estimator 4 is asymptotically normally distributed under both the null and alternative
hypotheses, the asymptotic distribution of some linear combinations of \ is not always normal when

0 = 0. To illustrate this, note that when § = 0, the expression for ly; in (33) simplifies to
loy = [U'D(D'UTID)'D' — L,JU ey (v%). (38)

Since D'ly; = 0y, the asymptotic covariance matrix of v/T \ is singular when § = 0. This implies
that for a nonzero vector « in the span of the column space of D, vT'a/) is not asymptotically

normal because o/ls; = 0.7

More generally, Gospodinov, Kan and Robotti (2010b) show that when « is in the span of the
column space of D, then
To'A % — V3, (39)

where 91 and vs are jointly normally distributed vectors of random variables.

The possible breakdown in the asymptotic normality of v/T \ is the reason why in Lemma 2
we report the asymptotic distribution of V' P'U 3\ which always has a non-degenerate asymptotic
normal distribution. It is also interesting to note that premultiplying A by P'U > is similar in spirit
to the decomposition of Sowell (1996) in which the n-vector of normalized population moment
conditions U _%et(y*) is decomposed into k identifying restrictions used for the estimation of ~
that characterize the space of identifying restrictions and (n — k) over-identifying restrictions that
characterize the space of over-identifying restrictions. This type of decomposition provides the
basis for establishing the limiting distribution of the test for over-identifying restrictions. Next, we
use the asymptotic result for VT P'U 2\ in part (b) of Lemma 2 to develop a Lagrange multiplier
(LM) test for model specification.

Theorem 1. Define the LM statistic as

I la (o Las 1aNTL a1
LM;ETAU2P<PU 530 2P> PU3A. (40)

"It should be emphasized that when the SDF does not have parameters (as in the case of Proposition 4.1 of
Hansen, Heaton and Luttmer, 1995), then VT has an asymptotic normal distribution even when § = 0.

10



Then, under Hy: 6 = 0 and Assumptions A, B and C,

A
LM, ~ X2y (41)

Since § = 0 if and only if A = 0,,, the LM test in Theorem 1 provides an alternative model spec-
ification test that measures the distance of the Lagrange multipliers from zero.® Similar arguments
can be used for developing an asymptotically equivalent specification test on the model’s pricing

errors.

3. MODEL SELECTION TESTS

In this section, we refine the asymptotic theory for model comparison tests for strictly non-nested,
nested and overlapping models and provide some new results including chi-squared versions of the
model selection tests and multiple model comparison. Our analysis is similar in spirit to the model
selection methodology of Vuong (1989), Rivers and Vuong (2002), Golden (2003), Marcellino and
Rossi (2008), and Li, Xu and Zhang (2010), but we provide several improvements upon the results
in the literature. First, since for nested models the HJ-distance of the nesting model is always
smaller than the HJ-distance of the nested model, the difference between the sample HJ-distances
of two nested models should be compared with a distribution that only takes on positive values.
However, the existing tests do not impose this restriction and are expected to exhibit size distortions
in finite samples. In contrast, we take into account the nested model structure and develop model
comparison tests with this desirable property. Second, we develop chi-squared versions of the
model comparison tests for strictly non-nested, nested and overlapping models that are easier to
implement than the weighted chi-squared tests. Finally, we provide a multiple model comparison
test that allows us to compare a benchmark model with a set of alternative models in terms of their

HJ-distances.

3.1. Pairwise Model Comparison

Define models

F={yl (v£) ;77 €T#} (42)

8A similar test, that uses the whole vector of Lagrange multipliers and a generalized inverse of their n x n
asymptotic covariance matrix, is used by Smith (1997) and Imbens, Spady and Johnson (1998) in the context of GEL
estimation of moment condition models.

11



and
G = {vf(vg) ivg € I'g}, (43)

where v and g are k1 and ko parameter vectors, respectively, and I'r and I'g denote their

corresponding parameter spaces. The population squared HJ-distances for models F and G are

given by
6% = minmaxE[¢] (05)] (44)
YFEAF
6% = minmaxE[¢f (0g)], (45)
Yo Ag

where Ar and Mg are the vectors of Lagrange multipliers for models F and G, respectively,

0r = [V, Nrls 0 = g, MGl of (0F) = uf (75) — [mf (05)]” = 2X\rai-1, 67 (85) = 47 (vg)® —
[mf (09)]* — 2Xgai-1, mi (05) = yi (v) — Npzi, and m{(6g) = v (vg) — Agzi. Denote by
0F = [v¥#, M7| and 05 = [vg, AG]' the pseudo-true parameters of models F and G, respec-
tively. If F NG = (0, we have the case of strictly non-nested models. For nested models, we have

FCGorGCF. Finally, it FNG #0, F ¢ G, and G ¢ F, we refer to F and G as overlapping

models.

A simple way of testing Hj : 53_- = 5% is suggested by Hansen, Heaton and Luttmer (1995,
pp. 255-256) who establish that the difference between the sample squared HJ-distances of models
F and G under Hy : 53_— = 5% is asymptotically normally distributed:

VT (55— bg) A N(0,02), (46)
where -
oi= Y Eldd] (47)
J=—00
and d; = ¢ (07) — ¢7 (05)-
Define ) )
T (6% —b5)2
LR = (fAz o) , (48)
0d

where G2 is a consistent estimator of o2. Then, from (46) it follows that

LRA 2. (49)

It is important to emphasize that the results in (46) and (49) hold only if 0% # 0. To de-

termine whether the use of the chi-squared test in (49) is appropriate, one could do a pre-test of

12



Hy : 03 = 0 (see, for example, Rivers and Vuong, 2002, Golden, 2003 and Marcellino and Rossi,
2008). Alternatively, since 02 = 0 if and only if o7 0%) = @Y (65), one could do a pre-test of
Hy : QSt]: 0%) = qStg (65). This is the approach that we pursue in this paper. There are two possible
reasons for ¢7 (0%) = QS?(HE): (i) the two SDFs are equal, i.e., y7 (v) = ytg(vé% or (ii) the two
SDFs are different but correctly specified, so that §% = 53 = 0, which implies ¢7 (0%) = qStg (0g) =0.

For strictly non-nested models, we cannot have y{ (v%) = vy (7g)- As a result, we only have to
test Ho : 0% = 0g = 0 before using the test in (49).% For nested models, the test in (49) should not
be performed because under Hy : 6% = (%, we must have /" (V%) = ytg (7%). The reason is that, in
general, the larger model has a smaller HJ-distance and the only case in which the two models can
have the same HJ-distance is when g/ (V%) = ytg (75)- Therefore, we should only perform a test of
Hy:yf (V%) = ytg (75) for nested models. Finally, for overlapping models, it is possible that either
vl (V) =y (vg) or 6% = 6% = 0, so we need to conduct two pre-tests before using the test in (49).

We discuss the strictly non-nested, nested and overlapping cases in the following subsections.

3.1.1 Strictly Non-Nested Models

To test Hy : 0% = 5% = 0 for strictly non-nested models, we can use the test statistic T(ci— — 52)
based on the difference of the sample HJ-distances of models F and G. Alternatively, using our
results in Section 2, we can also develop an LM test that measures the distance of the Lagrange
multipliers of the two models from zero. This will provide a joint test of correct model specification

for models F and G.

To set up the notation, define ef (v%) = 25/ (v%) — qe—1, € (&) = :L"tytg(yz) — -1, and

o

= > Elad], (50)

j=—00

S S
s— | 57 Srg
Sgr  Sg

where & = [ef (v%)', e (7))

Let Pr and Pg denote orthonormal matrices with dimensions
n X (n—ky) and n X (n — ky) whose columns are orthogonal to U_%D]: and U_%Dg, respectively,
where D (Dg) is the D matrix for model F (G) defined in Section 2.3. Also, denote by Pr, Pg,

Sr, Sg, S’y:g, S’g]:, ;\]:, and ;\g the sample counterparts of Pr, Pg, Sr, Sg, Srg, Sgr, Ar and Ag,

°In a likelihood framework (see Vuong, 1989), two strictly non-nested models cannot be both correctly specified.
However, in our context, a correctly specified model is defined in terms of moment conditions and it is possible for
two strictly non-nested models to be both correctly specified. We offer such an example in the Appendix. See Kan
and Robotti (2009) and Hall and Pelletier (2010) for further discussion of this point.

13



respectively. Finally, let

(51)

The following theorem provides the appropriate asymptotic distributions of the difference in
the sample squared HJ-distances when both models are correctly specified and an LM test of

Hy : A\r = Ag = 0,, (which is equivalent to testing Hp : 0% = 5% =0).

Theorem 2. Suppose that Assumptions A, B and C hold for each model and yt]:(ﬁ_-) # ytg(yz)
Then, under Hy : 53_— =62 =0,

(a)
T(55 = bg) 2 Fan_ty 1y (6), (52)

where the &;’s are the eigenvalues of the matrix

P}-'U_%SfU_%P]-' —P}:U_%S]:QU_%PQ (53)
PLU 386U 3 Pr  —~PLU 3SgU 3 Py
(b)
e~ g

LMy, = T/\J’QE;\;Q/\J’Q ~ Xon—ky ko (54)

where B (-5 80— 5 F B s G, b P
S =1 7 7 FoF Fg G (55)

Vo | pgUiSerUibe BLUASG0 R

Since the eigenvalues &;’s in part (a) of Theorem 2 can take on both positive and negative
values, the test of the hypothesis Hy : 6% = 5% = 0 should be two-sided. The LM test in part (b) of
Theorem 2 provides an alternative way of testing Hy : 53_- = 5% = 0 (using the equivalence between
Hy : 53_- = 5% =0 and Hy: A\r = A\g = 0,,) but it is easier to implement and is expected to deliver
power gains compared to the test in part (a). The reason is that the test in part (a) may have low
power in finite samples when 53_- R~ 5; # (0 although it is still consistent since under the alternative

5% — b = O,(T~2) and |T(55 — dg)| — .

In summary, our proposed test of equality of the squared HJ-distances of two strictly non-nested
models involves first testing whether the two models are both correctly specified using one of the

tests in Theorem 2. If we reject, then we can perform the test in (49). Suppose that a; and a9 are

14



the asymptotic significance levels used in the pre-test 53_— = 5% = 0 and in the chi-squared test in
(49), respectively. Then, our sequential test has a significance level that is asymptotically bounded
above by max|a1, ag|. Thus, if a3 = ag = 0.05, the significance level of this procedure, as a test of

Hy: 6% = 5%, is asymptotically no larger than 5%.

3.1.2 Nested Models

For nested models, o2 is zero by construction under the null of equal HJ-distances. Therefore, the
chi-squared test in (49) cannot be used. In addition, for nested models, §% = 5% if and only if
uf (15) = 49 (45), 50 we can simply test Ho : g (v) = 49 (3).

. O*E[¢] (83 . 0¢.(0% .

Let Hr = limp_ o % Z?:l 89[?852} ) and Mr = limp_,, Var [\/LT 23;1 ¢—ta(gﬂ) with Hg and
Mg defined similarly. Marcellino and Rossi (2008) among others show that under Hy : ¢7 (8%) =

o7 (0%),"°

2 A2 A
T(6F = 0g) ~ Fantiey+ks (§) (57)
where the £,’s are the eigenvalues of the matrix

1 [ —HZ'My —Hz'Mgg

- 58
2 Hg_lMg]: Hg_lMg (58)

Several remarks regarding this inference procedure are in order. First, estimating the £,’s from
the sample counterpart of the matrix in (58) produces more nonzero estimated £;’s than the theory
suggests. In addition, the estimated £,;’s do not have the same sign. This is problematic because
for nested models, the larger model has a smaller sample HJ-distance by construction. By not
imposing the constraints that the £,’s should have the same sign, the nonnegative test statistic
T (53_— — 52) is compared with a distribution that can take on both positive and negative values.
This could result in serious finite-sample distortions of the test. In the ensuing analysis, we will
show that under Hj : 53_— = 0%, some of the &;’s are equal to zero and the nonzero ¢;’s have the

same sign.

Without loss of generality, we assume F C G. Suppose that the null hypothesis Hy : 37 (V%) =

ytg(yz) can be written as a parametric restriction of the form Ho : ¥g(vg) = Og,—k, for model G

10 Alternatively, we can directly test Ho : 02 = 0. In this case,

~2 A
TUZ ~ Foniky+ky (f)v (56)

where the £,’s are four times the squared eigenvalues of the matrix in (58) (see Golden, 2003).
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against Hy : ¥g(vg) # Oky—ky, Where 9(-) is a twice continuously differentiable function in its

argument. Define
0
w9 () = 206010) (59)
g
as a (ko — k1) X ky derivative matrix of the parametric restrictions 1)g. For many models of interest,
vl (vr) =19 (7g) when a subset of the parameters of model G is equal to zero (or a constant vector
c). In this case, we can rearrange the parameters such that ¥g(vg) = [0(ky—k)xkrs Tho—k1]7g — €
Then, ¥9Y = [0(ko—k: Yk s Lkqa—k;], Which is a selector matrix that selects only the part of the
g (k2—k1)xk1 2—k1

parameter vector g that is not contained in model F. Also, let X5, be the asymptotic covariance
matrix of 44 given by the upper left k x k block of ¥ in part (a) of Lemma 2, VY = \Ifg(yz), and
Hg = (CY9 + DYU'DY)~1, where the matrices C, D, and U are defined in Section 2.3. Finally,
define the Wald test statistic

PN ~ ~ _q A
Waldy, = Tipg(W985,09) g, (60)
where {ﬁg = Yg(Yg)- W9 = ¥9(%g), and ia,g is a consistent estimator of ¥5.
Theorem 3 below presents the asymptotic distribution of T’ (53_- — 5;) and the Wald test under
Hy : ¢g(7§) = Oky—k; -
Theorem 3. Suppose that Assumptions A, B and C hold and F C G. Then, under Hy :
Yo (15) = Oky—ky 5
(a)
2 A2 4
T(0F = 6g) ~ Fry—ky (£), (61)
where the &;’s are the eigenvalues of the matrix
(07 Hgwi") "1 uis; vf, (62)

(b)
ld:, 22
W(I 12)g ~ ng—kl' (63)

Part (a) of Theorem 3 shows that, under Hy : yf (vi) = 4 (75), only ko — k1 of the eigenvalues

of (58) are nonzero and they all have the same sign.!! In practice, we need to estimate the &,’s to

11t can also be shown that under Hp : 02 = 0,

T63 % Fiyoiy (£), (64)
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construct the test. Using the sample version of the matrix in part (a) of Theorem 3 instead of the
sample version of the matrix in (58) to estimate the &;’s results in a substantial reduction of the
number of estimated eigenvalues. In addition, the resulting estimated eigenvalues are guaranteed to
be positive. The Wald test in part (b) of Theorem 3 offers an alternative way of testing the equality
of two nested SDFs by testing directly Ho : ¥g(75) = Og,—;- This Wald test is asymptotically

pivotal and is easier to implement than the test in part (a).

3.1.3 Owverlapping Models

For overlapping models, the variance 0% can be zero when (i) v/ (v) = ¢ (7g) or (ii) both
models are correctly specified.'? Since Theorem 2 is applicable to the second scenario, here we only

need to derive the test of Hy : 4 (v%) = ytg(yz)

It is well known that for linear models, the equality of the SDFs implies zero restrictions on the
parameter vectors (see, for example, Lien and Vuong, 1987 and Kan and Robotti, 2009). Similar
restrictions can also be obtained for nonlinear models. Let y/*(v5) be the SDF of model H, where
H = FNG and vy is a kg-vector. Therefore, y{ (v%) = ytg(yg) implies v/ (v%) = yl*(73,) and
ytg(yz) = y/*(74,). Suppose that Hy : 47 (v%) = y/*(v4,) and ytg(yz) = yl*(v4,) can be written as
a parametric restriction of the form Ho : ¢z (v%) = O, —k, and ¥g(75) = Oky—ky, Where ¥ £(-) and

g(-) are some twice continuously differentiable functions of their arguments. Let

V¥ (1) = Mgfiﬂ (65)
and
V(o) = 2010 (66)

be (ki — k3) x ki and (ko — k3) X ko derivative matrices of the parametric restrictions 1) and v,
respectively. In many cases, Hy : y{ (V%) = yZ{(y’;{) implies that a subset of the parameters of model
F is equal to zero, and Hy : yf (vg) = ylt (73,) implies that a subset of the parameters of model G is
equal to zero. For such cases, we can arrange the parameters so that U7 (yz) = (0(ky —kg) xks s Thy—ks]

and W9 (vg) = [0(ty—y)xhy> Tho—ts) Let 34

45c be the asymptotic covariance matrix of Jrg =

where the £;’s are four times the squared eigenvalues of the matrix in (62). Note the reduction in the number of
eigenvalues compared to the test in (56) that does not impose parametric restrictions. The proof of this result is
available from the authors upon request.

128imilar to the case of strictly non-nested models, it is possible for two overlapping SDFs to be both correctly
specified. Examples are available upon request.
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B#, 46V, Hr = (CF +DF'UDF) ™!, Hg = (C9+ DYUI DY), U = W7 (v5), WF = 09 ()

and -
\P]:g — \P* O(kl_kB)XkZ (67)
* - 0 \Ifg :
(kg—kg)xkl *
Define the Wald test statistic
~/ ~ ~ ~ _qA
Wald%g — T¢fg(\1,fg§]%gqffg/) W ran (68)
where {b]:g = [Wr(£), ¢g(@g)/]/a
\i,/]:g _ \P]:(’?]:) O(kl—kB)XkZ : (69)
O(ky—tg) ks ¥9(3g)

and X4 #g 18 & consistent estimator of ¥4 g

The next theorem establishes the asymptotic distribution of T’ (53:—52) and Wald Dra test under
the null hypothesis Ho : 9 z(7%) = Ok, -k, and 9g(v5) = Oky—ks-

Theorem 4. Suppose that FNG # 0, F ¢ G, G ¢ F, and Assumptions A, B and C hold.
Then, under Ho : ¥ z(VF) = Ory—ky and ¥g(75) = Oky—ks,

(a)
T(8% — 5) 2 Fryony—ois (6), (70)

where the &;’s are the eigenvalues of the matrix

—(UTHFUT) ™ Ok —ks)x (ky—ks) Foy.

wr9 (71)
ad _ * Y * )
Ohy—kg)x (k1 —ks)  (PTHgWJ") ™ 7o

A
Wald{b}_g ~ Xi1+k2—2k3‘ (72)

Unlike the case of nested models, the eigenvalues in part (a) of Theorem 4 are not always
positive because 53_- — 5; can take on both positive and negative values. As a result, we need to
perform a two-sided test of Hy : yf (g = ytg (7g). Similarly to the nested case, an alternative way
of testing the equality of two overlapping SDF's is to directly test the constraints (V%) = O, ks,
and g (7g) = Ok, —k; using the asymptotically pivotal Wald test in part (b) of Theorem 4.
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In summary, our proposed sequential testing procedure of equality of the squared HJ-distances
of two overlapping models is the following. First, we need to test whether the two models are both
correctly specified using either the test in part (a) of Theorem 2 or the chi-squared test in (54). It
should be noted that the tests in part (a) of Theorem 2 and part (a) of Theorem 4 are both O,(T1)
and will have low power against each other. Furthermore, the test in part (a) of Theorem 4 will
not be consistent against the alternative Hy : y7 (v%) # y/*(v4,) when both models are correctly
specified. As a result, our recommendation is to use the LM test in part (b) of Theorem 2 as
a pre-test of whether the two models are both correctly specified. If the null is rejected, we can
proceed with testing if the SDFs of the two models are equal using the tests in Theorem 4. Finally,
if we still reject, we can then perform the chi-squared test in (49). The significance level of this
procedure, as a test of Hy : 53_- = 5%, is asymptotically bounded above by max[aq, g, 3], where

a1, a9, and ag are the asymptotic significance levels used in these three tests.

The results in Theorems 3 and 4 offer substantial advantages over the inference procedure (57)—
(58) in Section 3.1.2. Imposing the parametric restrictions that directly arise from the structure
of the models and the appropriate null hypotheses results in a drastic reduction of the number of
weights that are used to compute the critical values of the tests. More specifically, the number of
eigenvalues in the weighted chi-squared distribution is reduced from 2n + ki + ko to ko — kq for
nested and to kq + ko — 2k3 for overlapping models. This proves to be particularly advantageous
when the number of test assets n is large. The reduced dimensions of the matrices in part (a) of
Theorems 3 and 4 are expected to lead to improved finite-sample (size and power) behavior of the

model selection tests.

3.2. Multiple Model Comparison

Thus far, we have considered pairwise model comparison. However, when multiple models are
involved, pairwise model comparison may not determine unambiguously the best performing model.
In this subsection, we develop formal multiple model comparison tests for non-nested and nested
models. The non-nested model comparison test is a multivariate inequality test based on results
in the statistics literature due to Wolak (1987, 1989).!13 Suppose we have p + 1 models. We

are interested in testing the null hypothesis that the benchmark model, model 1 (we could think

13Kan, Robotti and Shanken (2010) adapt the multivariate inequality test of Wolak (1987, 1989) to compare the
performance of alternative asset pricing models in a two-pass cross-sectional regression framework.
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of model 1 as model F in the pairwise model comparison subsection), performs at least as well
as the other p models. Let 5? denote the population squared HJ-distance of model ¢ and let
p = (p2,---sPpy1), Where